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Abstract

This paper proposes a multi-modal transformer network for detecting actions in untrimmed

videos. To enrich the action features, our transformer network utilizes a novel multi-modal

attention mechanism that captures the correlations between di↵erent combinations of spa-

tial and motion modalities. Exploring such correlations for actions e↵ectively has not been

explored before. We also suggest an algorithm to correct the motion distortion caused by

camera movements. Such motion distortion severely reduces the expressive power of motion

features represented by optical flow vectors. We also introduce a new instructional activity

dataset that includes classroom videos from K-12 schools. We conduct comprehensive ex-

periments to evaluate the performance of di↵erent approaches on our dataset. Our proposed

algorithm outperforms the state-of-the-art methods on two public benchmarks, THUMOS14

and ActivityNet, and our instructional activity dataset.
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1. Introduction

Action Detection is temporally localizing action class instances, commonly in continuous-

streaming videos. Action sequences are represented as two spatial and temporal components,

which jointly can define the meaning of various actions. For example, the action ”throwing

a ball” is characterized by its spatial components, the image pixels of the ball, and its5

movement during the action sequence. A popular way to represent such spatial and temporal

components of actions are RGB images and optical flows, respectively [1]. However, such

spatial-temporal action detection using the RGB and optical flow modalities is challenging.
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The two main challenges are the separated RGB and optical flow modalities and camera

movement [2]. We will discuss the challenges above and our solutions to handle them as10

follows:

1.1. Multi-modal attention for solving separated RGB and optical flow

The optical flow is a powerful modality to model motions in action videos. As the op-

tical flow is extracted independently, the current action detection algorithms exploit RGB

and optical flow images separately [3]. Many actions however are defined by the correlative15

patterns among spatial (RGB) and motion (optical flow) pixels or among each modality

themselves. Some examples are shown in Fig. 1. The first scenario is when both sub-

jects/objects of interest move. An example of such an action “dancing” is shown in Fig.

1 - top, where two persons move toward each other. We compute such correlations using

our Motion-Motion Attention (AttnM�M ) within our transformer network using a novel20

multi-modal attention mechanism. Next is when we have both moving and stationary sub-

jects/objects in the scene that jointly define the action such as “kicking a ball” (Fig. 1 -

middle). Here, our Spatial-Motion Attention (AttnS�M ) calculates the correlations between

the spatial stationary features (for the person) and temporal motion features (for the ball)

within our transformer network. And finally, our Spatial-Spatial Attention (AttnS�S) com-25

putes the correlative patterns in the scene when all the objects/subjects are stationary such

as persons and violins in the action “playing violin” shown in Fig. 1 - bottom.

There have been some methods that evaluated several aspects of the optical flow in action

recognition and detection. [4] suggests that some features such as velocity, gradient, and

divergence represented in the optical flow are e↵ective in action recognition. [5] investigates30

the correlations between optical flow and action recognition accuracy based on several well-

known optical flow estimation methods. [6] proposes a deep network that extracts e↵ective

optical flow for action recognition. However, there has not been any approach to e↵ectively

capture the correlations between optical flow and RGB images. Such correlations, as stated

above, are important in action modeling. So, we propose an e↵ective strategy to capture35

the correlations between optical flow and RGB images.

1.2. Motion distortion correction for solving camera movement

Continuous-streaming action videos are often captured in the wild, where camera move-

ment is common. Such camera movement can significantly distort the motion represented
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Motion-Motion Attention (dancing)

Spatial-Motion Attention (kicking a ball)

Spatial-Spatial Attention (playing violin)

Figure 1: Our multi-modal attention mechanism covers a variety of actions. Top, Motion-Motion Attention
(AttnM�M ): in this case, the goal is to find the correlations between both moving subjects/objects of
interest such as the action “dancing” where the two persons get toward each other. Motion vectors (green
vectors) are shown in the right large image based on two consecutive left (small) frames. Middle, Spatial-
Motion Attention (AttnS�M ): this scenario aims to find the correlations between moving subjects/objects,
such as a ball in this example, and stationary ones (the person here). In this example, the green motion
vectors are only illustrated on the ball. The motion vectors for the ball are shown in the right (large) image.
Bottom, Spatial-Spatial Attention (AttnS�S): In this case, all the subjects/objects (persons and violins)
are almost stationary such as “playing violin”.
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by the optical flow as it causes spatial-temporal inconsistency. An example is shown in40

Fig. 2 where the person is running toward the southwest, and getting closer to the orange

street line in two consecutive frames (Fig. 2 (a) and (b)) and the car is stationary. A

standard state-of-the-art optical flow algorithm [ref] fails to extract the correct optical flow

motion vectors (Fig. 2 (c)) because of spatial-temporal inconsistency caused by the camera

movements. In this example, the person’s movement (orange arrows) is inconsistent with45

respect to his spatial location in the image (yellow arrows). To solve this issue, we propose

a motion distortion correction algorithm whose corrected results for the moving person and

the stationary car are shown in Fig. 2 (d).

There have been some approaches that tried to include the camera movement factor in

optical flow extraction. [2] estimates the camera pose jointly with optical flow and depth50

maps using a complex network architecture. Similarly, [7] proposes that a collaboration

between camera pose, optical flow, and depth map estimation is useful. However, these

methods have some issues: (1) such methods require a complicated deep network design and

training; (2) they need to have the ground truths for objects’ poses which are challenging

to obtain in real-world scenarios; (3) these approaches have not been validated in real-world55

applications such as action detection to show the practical reliability of the extracted optical

flows. We, however, propose a simple yet e↵ective approach that does not require any ground

truths to improve the optical flow extraction. Furthermore, we validated our improved

optical flows in real-world scenarios (action detection) on several public benchmarks.

A new instructional activity dataset. We created a new dataset of instructional60

activities gathered from K-12 schools. We used a trained and professional team of annotators

to label 24 instructional activity classes in our collected videos. We annotate every second

(30 frames) of the video with multiple class labels. Some frame examples from our annotated

videos and computed optical flow are shown in Fig. 3. We will give more details about our

dataset in Section 4.1.2.65

The main contributions of this paper can be summarized as follows:

• We propose a novel transformer network for action detection.

• We suggest a new multi-modal attention mechanism to e↵ectively capture spatial-

temporal features from RGB and optical flow modalities.

• We introduce a novel motion distortion correction algorithm to handle camera move-70
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(a) (b)

(c) (d)

Figure 2: Illustration of the results of our motion distortion correction algorithm: (a) and (b) show two
consecutive sampled frames of an action sequence [ref]. In this sequence, the person is running toward the
southwest. Due to the spatial-temporal inconsistency caused by camera movements, the actual motion is
distorted. Specifically, in reality, the person is getting closer to a reference orange street lines (shown as
orange vectors) which is inconsistent with the person’s spatial location with respect to the image origin
(yellow vectors). (c) show the optical flow motion vectors corresponding to the person and the parked car
obtained from a standard state-of-the-art algorithm [ref]. Due to the motion distortion caused by camera
movements, the motion vectors for the person and stationary parked car are incorrect. (d) shows our
corrected optical flow motion vectors for the person and the stationary car.
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frame t frame t+ ⌧ optical flow

Figure 3: Some example frames of our annotated instructional activity dataset showing two consecutive
sampled frames of t and frame t+ ⌧ , and consequently, the computed optical flows.

ments in action videos.

• We collected a new large dataset including instructional activities from K-12 schools.

2. Related works

Two main related topics to our work are “Action Recognition”and “Temporal Action

Detection”. Action recognition aims to classify trimmed, and often short action sequences75

[8, 9]. In contrast, action detection intents to identify action instances in untrimmed, and

usually long videos [10, 11]. While action recognition is a single-label classification problem,

in action detection we can have multi-class labels for each action sequence [3, 8]. In this

literature review, we mainly focus on the action recognition and detection works that are

similar to ours in using both RGB images and optical flow. We also investigate the previous80

works that are based on the transformer network which is a state-of-the-art deep architecture

that utilizes an attention mechanism to capture the correlations among its selective inputs,

so-called tokens [12, 13].

2.1. Action recognition

[14] is one of the first deep architectures that use both RGB and optical flow images85

and suggested that combining optical flow and RGB images boosts the action recognition

performance. [15] improved such as a two-stream network by redesigning its architecture

such as the mechanisms for feature fusion and pooling.
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Later, some researchers proposed strategies to improve the utilization of optical flow

along with RGB images. For example, [16] exploited RGB and optical flow images to create90

more e↵ective fine-grained action descriptors which are located in informative small regions

in video frames. As another example, [17] proposed a multi-stream Convolutional Neural

Network that extracts e↵ective motion and spatial features which are concluded to be more

centralized on the human body. [18] concluded that combining trajectory descriptors and

optical flow can improve the action feature representation.95

Some other works have been conducted to resolve some general issues in action recogni-

tion using two modalities. [19] introduced a 3-D-convNet Fusion to deal with varying spatial

and temporal sizes of RGB and optical flow frames. [20] proposed a two-stream convolu-

tional network that takes advantage of spatial and motion modalities while improving the

e�ciency of motion feature extraction. [21] suggested a method to transfer the knowledge100

obtained from the dataset with a large volume of RGB and optical flow action frames to

smaller-scale real-world scenarios such as manufacturing.

2.2. Temporal action detection

To enhance the way the optical flow and RGB frames are used for temporal action de-

tection the researchers in the field suggested various strategies. For example, [22] suggested105

that focusing on local regions in RGB and optical flow images (by using a motion region

network) and stacking optical flow improves the modeling of actions. As another exam-

ple, [23] proposed to use of multiple object tracking and person detection to capture better

action proposals from the RGB and optical flow images. [24] suggested using appearance

and motion detectors to improve the temporal cuboid representation around subjects in the110

two spatial and temporal modalities. [25] performed the tasks of spatial-temporal local-

ization and action classification using a cross-stream cooperation strategy, where the RGB

and optical flow streams jointly improve these tasks. [26] proposed reducing the number of

optical flow and RGB frames needed for creating e↵ective spatial-temporal action features

utilizing long-term 3D CNNs. [27] suggested a two-stream network to distinguish between115

the actions and background in both RGB and optical flow frames which are weakly anno-

tated. [28] proposed a convolution autoencoder to extract spatial and temporal features and

e↵ectively simulate the optical flow information by using consecutive frames.
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2.3. Transformer network and attention

There have been some approaches that suggested using an attention mechanism or a120

transformer network for action recognition and detection. The attention mechanism has

been proposed to handle some existing problems. For example, [29] suggested a 3D CNN

with an attention agent to remove the redundant temporal information. [30] introduced

an e�cient action transformer network that combines the power of attention and recurrent

mechanisms to shorten the temporal window required for action recognition.125

The attention mechanism also has been used to improve the modeling of actions. [31] sug-

gested a self-attention module to capture the interactions between di↵erent spatial-temporal

feature maps. [32] proposed a video transformer network that utilizes a temporal attention

module to improve the spatial feature representation. [33] suggested a two-stream network

using LSTM and an attention module that focuses on selective e↵ective spatial-temporal130

input features. [34] proposed a Markov decision process to train an attention mechanism

that captures keyframes in action videos e↵ectively.

Following the literature, our temporal action detection method also utilizes both RGB

and optical flow modalities to e↵ectively incorporate spatial and motion information. To

improve the expressive power of spatial-temporal action features using RGB and optical135

flow images, we propose a transformer network with a multi-modal attention mechanism

and enhanced motion features.

3. Methodology

3.1. Overview and terminology

Fig. 4 indicates the overview of our proposed method. Given a set of RGB frame140

sequence, IS = {Isi , i = 0, 1, ..., T}, and corresponding optical flows IM
0
= {Im0

i , i =

0, 1, ..., T}, respectively, the goal is to find the action class scores, Ŷ C . Here, T is the

length of the temporal sequence. To do such, we first fix the motion distortion of the op-

tical modality using our Motion Distortion Correction algorithm. We first embedded the

features using [35], Our multi-modal transformer the corrected optical flows IM and IS to145

compute multi-modal attentions including motion-motion, spatial-motion, motion-spatial,

and spatial-spatial attentions, AttnM�M , AttnS�M , AttnM�S , and AttnS�S , respectively.

Then in the classification stage, after computing action class label scores for each frame

Ŷ C = {yi, i = 0, 1, ..., T}, we calculate the class labels cs for the sequence.
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Figure 4: The main pipeline of our proposed action detection algorithm using both RGB frames (IS) and

optical flows (IM
0
). Our motion distortion correction algorithm fixes the distorted optical flows (caused by

camera movements) and produces the corrected optical flows (IM ). The feature embedding network [35]
extracts spatial and motion features, XS , and XM , respectively. Our multi-modal transformer network
uses both spatial and corrected motion modalities to detect the action classes in videos. Using our multi-
modal attention mechanism we calculate motion-motion, spatial-motion, motion-spatial, and spatial-spatial
attentions, AttnM�M , AttnS�M , AttnM�S , and AttnS�S , respectively. Finally, we identify the action
sequence in the classification stage.
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3.2. Motion distortion correction algorithm150

In action videos captured in the wild such as that for popular action datasets (THU-

MOS14 [36] and ActivityNet [37]), camera movements happen often. Such camera move-

ments significantly distort the motion information depicted in the optical flow which is a

powerful and popular modality to represent actions. We previously showed some examples

of motion distortion caused by camera movements in Fig. 2. To solve such distortion caused155

by camera movements and to use the optical flow in our multi-modal transformer e↵ectively,

we propose a motion distortion correction algorithm.

Given the distorted optical flow image, IM
0
(x, y) and the corresponding motion vectors,

IV
0
(u0, v0), the goal of our motion distortion correction algorithm is to e↵ectively define a

function  so that  : IV
0
(u0, v0) ! IV (u, v), where IV (u, v) is the corrected motion vectors.160

Here, x and y are image pixels and u0 and v0 are distorted movement displacements between

the image pixels in the time t, as (x(t), y(t)), and the time t+ ⌧ , as (x(t+⌧), y(t+⌧)). u, and

v are the corrected movement displacements.

Our motion distortion correction algorithm includes three main steps: motion segmenta-

tion, background motion modeling, and motion restoration which are explained as follows:165

Motion segmentation. Assuming the distorted motion as IV
0
(u0, v0), we first segment

it to the background motion vectors, IV
0

B (u0, v0), and foreground motion vectors, IV
0

F (u0, v0),

using an person detection algorithm [38]. We assume that the most important moving

subjects are the persons in the scene as actions are often defined based on persons’ motions.

Persons also often have dominant movements and consequently can be considered as the170

foreground in action videos.

Background motion modeling. While the foreground’s motion is the consequence

of both the camera and local movements, the often static background is mainly a↵ected by

camera movements. So, modeling the background’s motion is an e↵ective way to interpret

the camera movements. We use the Gaussian Mixture Models (GMM) for modeling motion175

displacement vectors of the background. It is because even the most complex camera move-

ment is the result of several sub-random movements that a↵ect various sub-regions in the

images. Such sub-random movements can be e↵ectively modeled by the GMM.

For the distorted background motion vectors, assuming IV
0

B (s0) = {s0n, n 2 0, ..., H},

where s0 = (u0, v0), and H = h ⇥ w is the image size (with the height and length of h and180

w, respectively), the GMM with M distributions can be formulated as:
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P (s0) =
MX

m=1

⇡mN(s0|µm,⌃m), (1)

In the above, N(s0|µk,⌃m) is a sub-Gaussian density with the mean of µm and the

covariance of ⌃m, weighted with the mixing coe�cient of ⇡m. We model the distorted

background motion vectors IV
0

B (s0) = {s0n, n 2 0, ..., H} using the maximum likelihood

estimation of the GMM [39]. The algorithm is summarized as follows:185

1. Initializing µm, ⌃m, and ⇡m

2. Computing the posterior probability:

P (znm) =
⇡mN(s0n|µm,⌃m)

PM
i=1 ⇡iN(s0n|µm,⌃m)

, (2)

3. Re-estimating the model parameters:

µ̂m =
1

�k

HX

n=1

P (znm)s0n, ⌃̂m =
1

�k

HX

n=1

P (znm)(s0n�µ̂m)(s0n�µ̂m)T , ⇡̂m =
�k
H

,

(3)

where, �m =
PH

n=1 P (znm)

4. Obtaining the log-likelihood:

lnP (IV
0

B (s0)|µ,⌃,⇡) =
HX

n=1

ln(
MX

m=1

⇡mN(s0n|µm,⌃m)) (4)

5. Repeating (2) till reaching convergence190

Motion restoration. Previously, we modeled the camera movements using the GMM

which we call Mgmm. To restore the motions, we assume that each motion vector s0n 2 IV
0

is a↵ected by the camera movements’ average values µm, where sn is clustered as one of the

m 2 M distributions as mn = Mgmm(s0n). Here, we call such a clustered motion vector (to

distribution mn) as s
0(m)
n . The following shows how we formulate the motion restoration for195

each motion vector:

for s0(m)
n 2 IV

0
: sn = s0(m)

n � µm (5)
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In the above, sn 2 IV are the corrected motion vectors. As we discussed before, our

GMM model, Mgmm, is parameterized based on 2D variables s0n = (u0
n, v

0
n) 2 R2. So, the

mean variable for the distribution of m is also parameterized as µm = (µu0m, µv0m).

After converting the corrected motion vectors, IV to the corrected optical flow image,200

IM , we use it in the next step as a more e↵ective motion modality.

3.3. Multi-modal transformer

Fig. 5 shows the architecture of our multi-modal attention transformer network. The

embedding ⇢ maps the inputs IM and IS 2 RT⇥h⇥w⇥3 to XM and XS 2 RT⇥Z , where T

is the temporal length, Z is the embedding size, and h and w are frame sizes. ⇢ is a two-205

stream convolutional network [ref] that embeds spatial and temporal (motion) modalities

separately.

Figure 5: The architecture of our multi-modal transformer network includes the normalization layer (Norm),
Multi-Modal Attention, MLP, and the classification modules including the Conv and SoftMax layers.

We feed the embedded spatial and motion inputs, XM and XS to our multi-modal trans-

former network. Our transformer network includes several layers whose relations between

the consecutive layers l � 1 and l are defined as follows:210

Ôl = MMA(Norm(Ol�1)) +Ol�1, l 2 {2, ..., L}, (6)

Ol = MLP (Norm(Ôl)) + Ôl, l 2 {2, ..., L}, (7)

In the above, Ô is the intermediate layer output, O is the layer output, Norm is the

normalization layer, MMA is the Multi-Modal Attention, MLP is a Multilayer Perceptron

layer, and L is the total number of layers.

For the first layer we have:
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Ô1 = MMA(Norm(XS , XM )) +XS +XM , (8)

And for the final layer, we will have:215

Ŷ C = p(WF |XS , XM ) = Softmax(Conv(OL)), (9)

In the above, Ŷ C is the action prediction scores for each frame, WF is the transformer

network model parameters, Conv is a convolutional layer, where Conv : OL 2 RTL⇥Z !

OC 2 RC , where C is the number of classes, OC is the final output of the transformer before

the Softmax layer, and TL is the temporal length of the final layer.

3.3.1. Multi-modal attention220

The transformer is a state-of-the-art deep network for solving spatial-temporal problems

[12, 32]. One of the main advantages of the transformer network is the self-attention mecha-

nism that computes the correlative patterns among selective inputs. As we discussed before

in Section 1.1, finding the correlations among di↵erent spatial and motion modalities can

empower the feature representation of actions. Hence, we propose a multi-modal attention225

mechanism to calculate such correlative patterns among our selective inputs which are spa-

tial and motion modalities. Our multi-modal attention is illustrated in Fig. 6. An attention

mechanism is defined as finding the correlations between the selective input, Query (Q),

and other input candidates, Keys (K) which gives us the mapped correlative results, Values

(V ). To find the correlative patterns among each modality we introduce four attentions:230

(1) Spatial-spatial attention, AttnS�S computes the correlations between the spatial query,

QS , and spatial keys, KS , mapped to the spatial values, V S ; (2) The motion-motion atten-

tion (AttnM�M ) is obtained by mapping the correlations between motion query (QM ) and

motion keys (KM ) to motion values (V M ); (3) The spatial-motion attention (AttnS�M ) is

calculated by first finding the correlations between QS and KM , which then is mapped to235

V S ; (4) The motion-spatial attention (AttnM�S) is obtained similarly, but the query, keys,

and values for the two modalities are switched.

We formulate the query, keys, and values for both modalities as follows:

QS = XSWS
q , KS = XSWS

k , V S = XSWS
v , (10)
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Figure 6: Our Multi-Modal Attention mechanism to compute the correlative pattern among spatial (RGB
images) and motion (optical flow) modalities. It includes various multi-modal attentions such as motion-
motion (AttnM�M ), spatial-motion (AttnS�M ), motion-spatial (AttnM�S), and spatial-spatial (AttnS�S).

QM = XMWM
q , KM = XMWM

k , V M = XMWM
v , (11)

In the above WS
q 2 RZ⇥Zq is the spatial query projection weights, WS

k 2 RZ⇥Zk is the

spatial keys projection weights, and WS
v 2 RZ⇥Zv is the spatial values projection weights,240

and Zq, Zk, and Zv are the projection sizes for query, keys, and values, respectively. WM
q 2

RZ⇥Zq indicates the motion query projection weights, WM
k 2 RZ⇥Zk is the motion keys

projection weights, and WM
v 2 RZ⇥Zv is the motion values projection weights.

The four multi-modal attentions (following Fig. 6) are formulated as follows:

AttnS�S = Softmax(
QS(KS)Tp

Zm
)V S , (12)

AttnS�M = Softmax(
QS(KM )Tp

Zm
)V S , (13)

AttnM�S = Softmax(
QM (KS)Tp

Zm
)V M , (14)

14



AttnM�M = Softmax(
QM (KM )Tp

Zm
)V M , (15)

In the above, Zm is the model size. The details for all the aforementioned parameter245

values are explained in Section 3.4.

The final attention, AttnF is obtained as:

AttnF = Conv(Concat(AttnS�S , AttnS�M , AttnM�S , AttnM�M )), (16)

In the above Conv is a convolutional layer where Conv : R4⇥T⇥Z ! RT⇥Z and Concat

is a concatenation operator.

Our network’s loss function is shown as follows:

L = �
TX

t=1

CX

c=1

y(c)t logŷ(c)t + ↵LosstIOU (17)

In the above, y and ŷ are ground truth and predicted values for each video frame and250

class c and time t, respectively. LosstIOU is the temporal intersection loss that indicates the

similarities between the predicted video segment frames and positive ground truth frames

for the duration of 1  t  T . ↵ is a loss adjustment term.

3.4. Implementation details

Table 1 indicates the implementation details of our proposed pipeline.255

All the experiments are conducted using PyTorch 1.7 on a server PC with dual Nvidia

RTX 3090 GPUs (24GB VRAM), AMD Ryzen Threadripper 3990X 64-Core Processor, and

256GB of RAM.

4. Experimental Results

4.1. Datasets and experimental setup260

4.1.1. Public benchmarks

We used three THUMOS14 [36] ActivityNet [37], and our collected instructional activity

datasets. THUMOS14 and ActivityNet datasets are the most well-known untrimmed activ-

ity datasets that have been used widely for action detection. THUMOS14 consists of 413
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Table 1: Implementation details of our proposed pipeline with associated paper section references.

Parameter Value Section
Number of GMM distributions (M) 16 3.2

Spatial and Temporal Features Embedding Size (Z) 1024 3.3
Number of Transformer Layers (L) 6 3.3

Kernel Size for Conv 3 3.3
Learning Rate 1e�5 3.3

Number of Training Epochs 100 3.3
Optimizer ADAM 3.3

Weight Decay 1e�6 3.3
Maximum Temporal Window Length (T ) 2304 3.3

Projection Size for Query and Keys (Zq, and Zk) 512 3.3.1
Projection Size for Values (Zv) 1024 3.3.1

Number of MMA Heads 3 3.3.1
Model size (Zm) 512 3.3.1

Loss Adjustment Term (↵) 1 3.3.1

untrimmed videos of 20 action classes. Following [40, 41, 42], we used 200 videos for train-265

ing and 213 videos for testing. ActivityNet consists of 20,000 videos of 200 action classes.

Following [40, 41, 42], we used 10,024 videos for training and 4,926 videos for testing.

4.1.2. Instructional activity dataset

We created a dataset of instructional activities recorded from K-12 schools. We anno-

tated 240 hours of instructional activity videos with a professional team of 9 annotators.270

Our 24 instructional activity class labels are shown in Fig. 7. Some frame examples of our

instructional activity dataset are shown in Fig. 8. The public link to download our dataset

will be on our website [43] when it is available online. In this experiment, we used 50 hours

of our videos with training and testing set proportions of 80% and 20%, respectively.

4.1.3. Evaluation Metric275

We used the mean average precision (mAP) at di↵erent thresholds of temporal intersec-

tion over union (tIoU) which is the most used metric in action detection. For the THU-

MOS14 and ActivityNet, we reported the results for the threshold sets of {0.3, 0.4, 0.5,

0.6, 0.7} and {0.5, 0.75, 0.95}, respectively. The aforementioned thresholds are the most

common ones that have been used for these two datasets in the literature [40, 41, 42].280
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Figure 7: Acivity class labels of our instructional activity dataset.

Figure 8: Some example frames of our instructional activity dataset.
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4.2. Comparative results on public datasets

We compared our methods with the state-of-the-art strategies including AF (ECCV

2022) [44], ReAct (ECCV 2022), [45], TadTR (TIP 2022) [46], AFSD (CVPR 2021)

[40], VSGN (ICCV 2021) [40], BMN-CSA (ICCV 2021 [47], TCANet (CVPR

2021) [48], MUSES (CVPR 2021) [49], TSA-Net (CVPR 2021) [48], RTD-Net285

(ICCV 2021) [50] , TAL-MR (ECCV 2020) [51], A2Net (TIP 2020) [52], BMN

(ICCV 2019), [53], and P-GCN (ICCV 2019) [42]. The comprative results for the

THUMOS14 and ActivityNet datasets are shown in Table 2 and Table 3, respectively. As

can be seen, our method outperformed the state-of-the-art approaches on these two public

benchmarks based on di↵erent mAP thresholds.290

Table 2: Comparison of our method, and the state-of-the-art methods on the THUMOS14 dataset.

Team (Year) Method maP@0.3 maP@0.4 maP@0.5 maP@0.6 maP@0.7 Avg
[52] (2020) A2Net 58.6 54.1 45.5 32.5 17.2 41.6
[51] (2020) TAL-MR 53.9 50.7 45.4 38.0 28.5 43.3
[50] (2021) RTD-Net 68.3 62.3 51.9 38.8 23.7 49.0
[42] (2019) P-GCN 69.1 63.3 53.5 40.4 26.0 50.5
[48] (2021) TSA-Net 60.6 53.2 44.6 36.8 26.7 44.3
[46] (2022) TadTR 62.4 57.4 49.2 37.8 26.3 46.6
[49] (2021) MUSES 68.9 64.0 56.9 46.3 31.0 —
[53] (2019) BMN 56.0 47.4 38.8 29.7 20.5 38.5
[48] (2021) TCANet 60.6 53.2 44.6 36.8 26.7 44.3
[47] (2021) BMN-CSA 64.4 58.0 49.2 38.2 27.8 47.7
[41] (2021) VSGN 66.7 60.4 52.4 41.0 30.4 50.2
[40] (2021) AFSD 67.3 62.4 55.5 43.7 31.1 52.0
[45] (2022) ReAct 69.2 65.0 57.1 47.8 35.6 55.0
[44] (2022) AF 82.1 77.8 71.0 59.4 43.9 66.8

We Ours(MMNet) 85.2 80.0 73.4 61.7 45.3 68.5

4.3. Ablation study

We conducted an ablation study to evaluate the impact of the constituent components

of our proposed method on the overall action detection performance.

Table 4 shows the impact of various multi-modal attentions on the overall action detec-

tion performance. As can be seen, the spatial-spatial attention, AttnS�S , slightly led to a295

better performance than the motion-motion attention, AttnM�M . On the other hand, the

cross-modality attentions, spatial-motion AttnS�M , and motion-spatial AttnM�S , resulted

in competitive performance compared to other attentions. Using all the attentions jointly,

however, led to the maximum overall action detection performance.
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Table 3: Comparison of our method, and the state-of-the-art methods on the ActivityNet dataset.

Team (Year) Method maP@0.5 maP@0.75 maP@0.95 Avg
[52] (2020) A2Net 43.6 28.7 3.7 27.8
[51] (2020) TAL-MR 43.5 33.9 9.2 30.2
[50] (2021) RTD-Net 47.2 30.7 8.6 30.8
[42] (2019) P-GCN 48.3 33.2 3.3 31.1
[48] (2021) TSA-Net 48.7 32.0 9.0 31.9
[46] (2022) TadTR 49.1 32.6 8.5 32.3
[49] (2021) MUSES 50.0 35.0 6.6 34.0
[53] (2019) BMN 50.1 34.8 8.3 33.9
[48] (2021) TCANet 52.3 36.7 6.9 35.5
[40] (2021) AFSD 52.4 35.3 6.5 34.4
[41] (2021) VSGN 52.4 36.0 8.4 35.1
[47] (2021) BMN-CSA 52.4 36.2 5.2 35.4
[45] (2022) ReAct 49.6 33.0 8.6 32.6
[44] (2022) AF 54.7 37.8 8.4 36.6

We Ours(MMNet) 58.1 39.5 9.1 39.0

Table 4: Impact of di↵erent types of attention and their combinations on the overall action detection
performance. Multi-modal attentions are motion-motion AttnM�M , spatial-motion AttnS�M , motion-
spatial AttnM�S , and spatial-spatial AttnS�S

Attention type maP@0.3 maP@0.4 maP@0.5 maP@0.6 maP@0.7 Avg
AttnS�S 80.6 76.5 70.6 58.3 41.8 64.7
AttnM�M 80.3 76.2 70.3 58.0 41.5 64.4
AttnS�M 83.4 78.3 71.7 60.5 43.8 65.9
AttnM�S 83.3 78.4 71.5 60.2 43.3 65.4

AttnS�S + AttnM�M 83.6 78.7 72.1 60.9 44.2 66.4
AttnS�S + AttnM�M + 85.2 80.0 73.4 61.7 45.3 68.5

AttnS�M + AttnM�S
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Table 5 illustrates the impact of our motion distortion correction algorithm on the over-300

all action detection performance. As can be seen, using our motion distortion correction

algorithm resulted in higher performance.

Table 5: Impact of our motion distortion correction algorithm on the overall action detection performance.

Option maP@0.3 maP@0.4 maP@0.5 maP@0.6 maP@0.7 Avg
Without motion 83.5 79.1 71.9 60.7 44.2 66.6

distortion correction
With motion 85.2 80.0 73.4 61.7 45.3 68.5

distortion correction

4.4. Experimental results on instructional activity dataset

Table 6 shows the comparative results on our instructional activity dataset based on

the average performance. As can be seen, our method outperformed the other methods by305

a large margin. Fig. 9 indicates the average performance of our proposed method on our

instructional activity dataset separated for each class label.

Table 6: Comparison of our proposed method with the state-of-the-art approaches on our instructional
activity dataset.

Method MLAD [54] SE [55] BF [40] GA [56] LST [57] COLA [58] Ours (MMNet)

Avg 45.2 36.7 25.3 26.0 42.0 34.1 68.1

5. Conclusions

This paper proposed a novel transformer network for detecting actions in untrimmed

videos. Our transformer network utilizes a new multi-modal attention mechanism to capture310

the correlative patterns between spatial (RGB) and motion (optical flow) features. Such

correlative features improve the expressive power of action modeling. To be able to use

the motion (optical flow) inputs more e↵ectively, we also suggested a motion distortion

correction algorithm to handle camera movements that can severely distort the motion

vectors represented in the optical flow. We also introduced a new instructional activity315

dataset captured from K-12 schools. Our proposed method outperformed the state-of-

the-art approaches on two public benchmarks, THUMOS14 and ActivityNet as well our

instructional activity dataset.
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Figure 9: Average performance of our proposed method per action class evaluated on our instructional
activity dataset.

Our study is beneficial for other researchers in the field as we are the first to suggest

capturing the correlative patterns between RGB and optical flow using an e↵ective multi-320

modal attention mechanism. Moreover, our novel motion distortion correction algorithm

is highly advantageous in dealing with camera movement which is common in real-world

scenarios and in the wild.

Future works. While our motion distortion algorithm is highly e↵ective in dealing

with camera movements, it still depends on a person detection algorithm to segment the325

background and foreground. We suggest modeling the background preferably within the

action detection network itself. Moreover, for our multi-modal transformer, we suggest

separating the semantics (both RGB and optical flow) in the scene to capture the correlative

patterns among local objects/subjects instead of the whole action frames.
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