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success (Parolini et al. 2017; Eastwood et al. 2019), and 
lifespan (Heidinger et al. 2012). Telomere length has been 
linked to developmental conditions such as brood size (Net-
tle et al. 2016), parasite load (Asghar et al. 2015), body size 
(Ringsby et al. 2015), weather (e.g., Pérez et al. 2016; Sauve 
et al. 2021), parental care (Brown et al. 2021), and growth 
rate (Salmón et al. 2021), making telomere measures poten-
tially useful as a proxy for individual state during and after 
early life development (Monaghan 2010). While many fac-
tors have been found to be related to telomere length, the 
relative importance of each factor in determining early life 
telomere length and dynamics requires further clarification.

Telomere length changes over the life of an organism, 
and this change is a balance of shortening and lengthen-
ing processes (Monaghan et al. 2010). Shortening can result 
from two processes: a gradual reduction in telomere length 
from cellular replication, and oxidative damage caused by 
an abundance of free radicals in the cellular environment 
(von Zglinicki 2002; Reichert and Stier 2017; Armstrong 
and Boonekamp 2023). To prevent oxidative telomere short-
ening, organisms produce or consume antioxidants that can 
neutralize oxidative free radicals (e.g., Badás et al. 2015; 
Pérez-Rodríguez et al. 2019). Furthermore, the protein tel-
omerase can actively lengthen telomeres, serving as a mech-
anism to maintain and restore telomere length; however, 
telomerase expression is typically restricted to germline 
and stem cells (Jafri et al. 2016). Telomerase expression 
in the bone marrow (the site of blood cell production) of 
passerine birds is relatively high in the nestling phase, but 
typically drops off by fledging and remains low for the rest 
of the organism's life (Haussmann et al. 2007). The limits 
on telomerase expression combined with the damage that 
telomeres consistently accrue typically result in the shorten-
ing of telomeres over an organism's lifetime.

For most organisms, early life development is character-
ized by the energetically demanding processes of extensive 
growth and tissue maturation. Oxidative damage appears to 
be the cause of the majority of telomere shortening (Hauss-
mann and Marchetto 2010), and damage may be further 
exacerbated by the increased metabolic demands of early 
life growth. Therefore, both increased size (e.g., Ringsby 
et al. 2015) and growth rate (e.g., Grunst et al. 2019; Salmón 
et al. 2021) are associated with greater telomere shortening 
in nestling birds. However, there is also evidence that larger 
body size (Nettle et al. 2016) and increased growth rates 
(e.g., Voillemot et al. 2012; Costanzo et al. 2017; Vedder 
et al. 2017; Wolf and Rosvall 2021) are unrelated to—or 
are positively associated with—less telomere shortening in 
certain conditions. These differences suggest that growing in 
favorable conditions can be less costly in terms of telomere 
shortening, but there can also be conditions where energy 
dedicated toward growth comes at the cost of telomere main-
tenance (Nettle et al. 2016; Vedder et al. 2017).

Brood size may be an important factor predicting early 
life telomere length and dynamics, as larger broods can have 
increased sibling competition, which can result in reduced 
per-individual resources and increased social stress. Larger 
brood sizes can lead to reduced telomere length by the end 
of development because there might be less energy available 
to allocate toward telomere maintenance processes such as 
telomerase expression or endogenous antioxidant synthe-
sis (e.g., Boonekamp et al. 2014; Young et al. 2017; Gil 
et al. 2019). Sibling competition can also increase baseline 
circulating glucocorticoid levels (Quirici et al. 2016; Gil 
et al. 2019), which can increase the generation of reactive 
oxygen species and decrease the production and efficacy of 
antioxidant defenses, resulting in increased oxidative dam-
age to telomeres (Haussmann and Marchetto 2010). Experi-
mental brood size reductions and enlargements have pro-
vided causational evidence for the negative consequences 
of larger broods on telomere length (e.g., Voillemot et al. 
2012; Boonekamp et al. 2014; Young et al. 2017; Gil et al. 
2019), but the relative importance of resource availability or 
social stress in determining telomere length and dynamics 
remains less clear.

Telomere length may also be determined by an interaction 
between brood size and body size, where the relative mass 
of an individual with respect to its nestmates has implica-
tions for telomere length. Nettle et al. (2013, 2015) sug-
gest that position within the brood size hierarchy can affect 
telomeres differently than just brood size alone. Having 
more relatively heavy nestmates can lead to shorter telom-
eres in the relatively lighter individuals, potentially due to 
increased social stress and competition for resources (Nettle 
et al. 2013, 2015, 2016). However, there is also evidence that 
being a relatively heavy individual in a small brood results 
in shortened telomeres (Nettle et al. 2016), suggesting that 
there may be a cost to growing larger than nestmates that 
may not be ameliorated by a competitive advantage.

While some aspects of telomere dynamics and their 
molecular causes are well documented in the literature, the 
relative contribution of the ontogenetic factors that modulate 
telomere length and dynamics is less clearly understood. 
We collected data on several ontogenetic variables (brood 
size, nestling size, growth rate, developing plumage color, 
ectoparasite intensity, corticosterone (CORT) level) that 
may affect telomere length and dynamics and then assessed 
the relative influence of each in explaining variation in barn 
swallow (Hirundo rustica erythrogaster) nestling telomere 
length and dynamics. This 2-year study consisted of an ini-
tial year of data collection with no manipulation followed by 
a year with a brood-size reduction in a subset of nests aimed 
at increasing the total number of small broods in the dataset. 
In the second year, we measured CORT levels to determine 
the relationship between telomere measures, brood size, and 
CORT.
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Ocean Insight Flame spectrometer (Dunedin, FL, USA) 
and a pulsed xenon light (PX-2, Ocean Insight) or a deu-
terium–tungsten-halogen light (DH-MINI, Ocean Optics) 
(Jenkins et al. 2013; Levin et al. 2018). Reflectance meas-
urements were standardized against both a white and a 
dark background and were recorded using the OceanView 
software (v2.0 Ocean Insight). Three measurements were 
recorded per feather cluster, and average brightness, hue, 
and chroma values were generated using the R package Pavo 
(Maia et al. 2013). Hue values from 2020 were not reliable 
because of deuterium interference in the spectra, and there-
fore not included in the 2020 analyses.

DNA extraction

DNA was extracted from 200 μL of lysis buffer containing 
blood using a Qiagen DNEasy Blood and Tissue kit (Qia-
gen, MD USA). DNA was eluted twice in 50 μL of elution 
buffer each time for a total of 100 μL of concentrated DNA 
stored at – 20 ℃ until analyses. The purity and concentration 
of DNA were measured using a Take3 Micro-Volume Plate 
in an Epoch 2 microplate reader (BioTek, VT, USA), with 
260/280 > 1.75 as a cut-off for inclusion in analyses.

Nestling sex determination

Previously verified primers targeting the sex chromosomes 
of male and female birds P2 (5'-TCT​GCA​TCG​CTA​AAT​
CCT​TT-3') and P8 (5'-CTC​CCA​AGG​ATG​AGR​AAY​TG-3') 
were used to determine nestling sex (Griffiths et al. 1998). 
PCR was performed in a BioRad T100 thermal cycler (Her-
cules, CA) using OneTaq Quick-Load 2 × Master Mix (New 
England BioLabs, MA, USA). The PCR cycle times and 
temperatures were as follows: initial denaturation at 94 °C 
for 1 min; followed by 35 cycles of 94 °C for 45 s, 48 °C 
for 45 s, and 68 °C for 45 s; followed by a final extension at 
68 °C for 5 min. PCR products were run on a 1.5% agarose 
gel and females, being the heterogametic sex, were identified 
by the presence of two bands.

Quantification of relative telomere length

We quantified relative telomere length as a ratio of telomeric 
DNA to the single copy, non-telomeric gene glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) using qPCR. While 
there are interstitial telomeres located in interior regions of 
chromosomes, previous research found no evidence for long 
interstitial sequences in barn swallows (Parolini et al. 2015). 
Short sequences should not affect relative telomere quan-
tification, as they are likely to be ubiquitous but relatively 
constant in the species. Furthermore, previous studies have 
found high correlations between absolute measures (e.g., 
telomere restriction fragment method) of telomere length 

and estimates obtained in those same individuals by qPCR 
(Cawthon et al. 2009; Criscuolo et al. 2009; Parolini et al 
2015). Telomere primers were telg (5’-ACA​CTA​AGG​TTT​
GGG​TTT​GGG​TTT​GGG​TTT​GGG​TTA​GTGT-3’) and telc 
(5’-TGT​TAG​GTA​TCC​CTA​TCC​CTA​TCC​CTA​TCC​CTA​
TCC​CTA​ACA​-3’) and GAPDH primers were GAPDH-F 
(5'-AAC​CAG​CCA​AGT​ACG​ATG​ACAT-3') and GAPDH-
R (5'-CCA​TCA​GCA​GCA​GCC​TTC​A-192 3') diluted to 
final concentrations of 0.25 μM for telc/telg and 0.05 μM 
for GAPDH. Individuals (duplicate) as well as standards 
(triplicate) were run in the same positions in 96-well plates 
for telomere and GAPDH quantification (USA Scientific, 
FL, USA) and an individual’s d6 and d12 samples were 
always run on the same plate. Individuals from the same 
nest were almost always run on the same plate. We analyzed 
a total of 23 plates (plus 23 for GAPDH), and samples were 
analyzed at similar intervals from sampling in both years 
(within 2–6 months). Standards consisted of the same set 
of pooled d12 nestlings (n = 10) that were diluted once and 
split into separate aliquots, sealed and frozen. We used an 
ABI 7500 Real-Time qPCR System (ThermoFisher, MA, 
USA) and SsoAdvanced Universal SYBR Green Supermix 
reagents (BioRad, CA, USA). Total reaction volume was 
20μL, and the final concentration of DNA per reaction was 
0.125 ng/μL. PCR conditions for telc/telg were: 95 °C for 
15 min, followed by two cycles of 94 °C for 15 s and 49 °C 
for 15 s, and 30 cycles of 94 °C for 15 s, 62 °C for 10 s, and 
74 °C for 15 s with signal acquisition. The program ended 
with a melt curve run from 62 to 95 °C with 0.3 °C incre-
ments each for 5 s to check for non-specific amplification 
and primer-dimer artifacts. GAPDH PCR conditions were 
as follows: 95 °C for 15 s followed by 40 cycles of 95 °C for 
15 s, 60 °C for 30 s, and 72 °C for 30 s with signal acquisi-
tion. The program ended with the same melt curve described 
above. In both reactions, the number of PCR cycles (Ct) 
necessary to accumulate a sufficient fluorescent signal to 
cross a threshold was measured; individuals with relatively 
short telomeres are characterized by more cycles to cross 
that threshold. In addition to the 40 samples on each plate, 
we also ran 5 standards at concentrations 10 ng, 5 ng, 2.5 ng, 
1.25 ng, 0.625 ng, each run in triplicate. Any sample that 
had a Ct standard deviation of > 0.5 for the duplicate set was 
reanalyzed.

Relative telomere length was expressed as the ratio of 
telomere to single copy (T/S) amplicon. The T/S ratio was 
calculated using this formula: 2∆∆Ct, ∆∆Ct = (Ct

Telomere—
Ct

GAPDH) reference—(Ct
Telomere—Ct

GAPDH) focal sample 
(Cawthon 2002). The reference was the 2.5 ng standard, or 
the “golden sample”, which was a dilution of ten pooled 
barn swallow nestlings run on all plates. The average qPCR 
efficiencies were 99.76% for GAPDH and 91.21% for telc/
telg. The intra-assay repeatability for T/S was R = 0.996 
(± 0.0003). Our golden sample (the pooled set of individuals 
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indicating that the size hierarchy of individuals was similar 
across brood sizes despite average mass varying substantially 
(Table S5). Corticosterone levels were unrelated to brood 
size (β = -0.02 ± 1.02, p = 0.98). Nest mites were highly 
variable between nests in both years (2020: range = 0–330. 
2021: range = 0–533). There was no difference in telomere 
length (β2020 = − 0.05 ± 0.08, p = 0.50; β2021 = − 0.04 ± 0.05, 
p = 0.41) or dynamics (β2020 = − 0.02 ± 0.05, p = 0.74; 
β2021 = 0.006 ± 0.04, p = 0.874) between the sexes.

Relative telomere length and dynamics

Relative telomere length measures on d6 and d12 were 
correlated within individuals in 2020 (r = 0.86) and 2021 
(r = 0.78) (Fig. S2), and relative telomere length on d12 
was more variable in 2020 (T/S = 1.03 ± 0.64) than in 
2021 (T/S = 0.75 ± 0.42) (Fig. 1; Levene's test, p = 0.002). 
On average, relative telomere length increased from d6 to 
d12 in both years of study (one sample t test, t2020 = 4.62, 
df2020 = 152, p2020 < 0.0001, n = 153; t2021 = 3.03, df2021 = 181, 
p2021 = 0.003, n = 182; Fig. 1). The increase was more sub-
stantial in 2020 (an average 13.7% increase) than in 2021 
(8.1% increase) (two samples t test, t = 2.23, df = 217.34, 
p = 0.03, n = 364; Fig. 1).

Predictors of telomere length and dynamics: 2020

Brood size, average daily mass gain, growth rate, and d6 
relative mass were common predictors in the top models 

explaining telomere length and dynamics in 2020 (Table 1, 
S6). Individuals in smaller broods had longer telomeres on 
both d6 and d12 while also experiencing more telomere 
lengthening (Fig. 2A, C, E). Nestlings that had a larger 
average daily mass gain between the two sampling periods 
had more telomere lengthening (Table 1). While absolute 
mass was not a predictor of telomere length or dynamics, 
individuals that were heavy relative to their siblings (i.e., 
grew faster than their nest mates prior to d6) had increased 
telomere shortening (Table 1). Growth rate was retained in 
some top model sets, but did not provide additional explana-
tion for variation in d12 relative telomere length and dynam-
ics. Hatch date, nest mite intensity, feather brightness and 
chroma, and sex did not predict telomere length or dynamics 
in 2020. No interaction terms were retained in the top set of 
models. Full top model sets can be found in Table S7. Note 
that in some cases (d6 length, change in length), the null 
model appears in the top model sets.

Predictors of telomere length and dynamics: 2021

Models with telomere dynamics as a response variable were 
run with and without the reduced broods, and we found no 
change in the top model set. Contrary to findings from 2020, 
6-day old nestlings in small broods had shorter telomeres 
in 2021; however, the null model was included within the 
top model set (Table 2, Tables S6, S7, Fig. 2B). Brood 
size was not related to relative telomere length on d12 or 
telomere dynamics (Table 2, Fig. 2D, E). For d12 relative 

Fig. 1   Changes in nestling barn swallow telomere length from day 6 
to day 12 post-hatching in 2020 (a) and 2021 (b). Telomere lengthen-
ing occurred in both years, but was more pronounced in 2020 than 

in 2021 (t test, t = 2.23, df = 217.34, p = 0.03, n = 364). Boxplots show 
median values, with the boundaries of the boxes indicating quartiles 
and the points illustrating outliers (1.5 × IQR)
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(Newell and Schaffner 1950) might also contribute to the 
apparent telomere lengthening. Populations of RBCs expand 
substantially during the periods of rapid growth in chick-
ens (Prinzinger et al. 2015), pigeons (Gayathri et al. 2004), 
and storm petrels (Kostelecka-Myrcha and Myrcha 1989). 
Passerine RBCs have an average lifespan of approximately 
17–21 days (Bauchinger and McWilliams 2009), and new 
RBCs—from potentially different hematopoietic sources—
could increase the average telomere length in the population 
of erythrocytes. Because we sampled all individuals twice, 
we cannot quantify whether blood sampling on d6 affected 

our results due to an increase in blood volume beyond what 
is typical during development.

Shorter telomeres in individuals reared in larger broods 
are consistent with most previous research (e.g., Boonekamp 
et al. 2014; Cram et al. 2017; Costanzo et al. 2017). Indi-
viduals with shorter telomeres may live shorter lives and 
have reduced fitness (Heidinger et al. 2012; Eastwood et al. 
2019). This relationship may partly explain why the most 
common brood size in our populations is five, but the largest 
broods we observe are six to seven individuals. The cliff-
edge hypothesis suggests that the average brood size will 

Fig. 2   The effect of brood size on day 6 telomere length (a, c), day 
12 telomere length (b, d), and dynamics (e, f) of nestling barn swal-
lows in 2020 (a, c, e) and 2021 (b, d, f). Brood size was negatively 
related to telomere dynamics in 2020, but positively related in 2021. 
Boxplots show median values, with the boundaries of the boxes indi-

cating quartiles and the points illustrating outliers (1.5 × IQR). Sam-
ple sizes by brood in 2020 were 2 (n = 11), 3 (n = 14), 4 (n = 36), 5 
(n = 80), 6 (n = 12) and in 2021 were 2 (n = 12), 3 (n = 41), 4 (n = 30), 
5 (n = 81), 6 (n = 11), 7 (n = 7)
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be less than the maximum due to asymmetrically poor sur-
vivorship in large broods (Mountford et al. 1968; Morris 
et al. 1992). However, we found no negative relationship 
between telomere length and brood size in 2021, driven by 
the longest telomeres in broods of five individuals. It may 
be that the impact of brood size on nestling telomere length 
and dynamics depends on the quality and physiological state 
of the parents and how much energy they can dedicate to 
nestling provisioning (Morris et al. 1996; Bauch et al. 2013; 
Heidinger et al. 2016; Brown et al. 2021). Under favorable 
environmental conditions, parents can invest in larger brood 
sizes such that there is little to no cost to long-term somatic 
maintenance, whereas trade-offs may occur in more environ-
mentally challenging years. Warmer days (with maximum 
temperatures above 18℃) and lower precipitation has con-
sistently been related to increased nestling survival in aerial 
insectivores like barn swallows (Weegman et al. 2017; Cox 
et al. 2020; Garrett et al. 2022), and favorable environmental 
conditions in 2021 could have eliminated the stratification 
in telomere length that occurs between brood sizes when 
breeding conditions are more challenging. We observed a 
50% reduction in mortality from 2020 to 2021, and favorable 
environmental conditions in 2021 could explain why broods 
of five nestlings included individuals with the longest tel-
omeres in 2021.

CORT levels were unrelated to brood size or relative 
telomere length, which is in contrast to our prediction that 
larger broods would have higher CORT levels and relatively 
shorter telomeres, a pattern found in other systems (Pegan 
et al. 2019; Powolny et al. 2020). However, other studies 
have concluded that CORT is unrelated to telomere length 
(e.g., Ouyang et al. 2016; Gil et al. 2019), suggesting that 
the relationship between CORT and telomere length is not 
straightforward. It is possible that the favorable environ-
mental conditions in 2021 mitigated any negative effects 

of higher CORT on nestling telomere length. Our CORT 
measures must be cautiously interpreted, as we did detect an 
effect of sampling order on CORT levels; however, account-
ing for sampling order did not qualitatively change model 
outputs. Nestlings who had a longer latency until sampling 
(based on sampling order) tended to have higher CORT, as 
expected due to stress of handling and removal from the 
nest.

In 2020, individuals that were relatively large compared 
to their nestmates on d6 had more telomere shortening from 
d6 to d12, but nestlings that grew more from d6 to d12 expe-
rienced more telomere lengthening. Barn swallows grow 
two and a half times faster from hatching to d6 than from 
d6 to d12 (Stoner 1935), and from this we might infer that 
the relatively fast growth barn swallows experience early 
in development (pre-d6) is more costly than the relatively 
slower growth later in development (between d6 and d12). 
Relatively fast growth rates are often associated with more 
telomere shortening (e.g., Hall et al. 2004; Herborn et al. 
2014; Noguera et al. 2015; Stier et al. 2015; Salmón et al. 
2021) but there is also evidence for longer telomeres in indi-
viduals that grow faster (Monaghan and Ozanne 2018; Wolf 
and Rosvall 2021). It may be that the possible competitive 
advantage associated with rapidly growing to a relatively 
large size early in development requires a trade-off with 
telomere maintenance mechanisms. With this interpreta-
tion, telomeres would shorten because telomere mainte-
nance cannot keep pace with the extensive damage of peak 
growth. When growth slows down, telomere length increases 
because maintenance would outpace damage, at least in 
high-quality individuals that have sufficient resources to 
grow well in the first place. Alternatively, it is feasible that 
as new hematopoietic tissue is activated throughout devel-
opment (Orkin and Zon 2008), these new cell lines begin 
to produce RBCs that have long telomeres, increasing the 
average telomere length of the sample. Depending on the 
time point that telomeres are measured, rapid growth may 
either shorten the telomeres of an older hematopoietic line 
(Friedrich et al. 2001) or stimulate the initiation of a new 
line sooner, resulting in shorter or longer observed telomeres 
depending on when sampling occurs. Measures of telomere 
length at multiple, different time points would help clarify 
how hematopoietic patterns during development might 
explain changes in telomere length.

Generally, the lack of consistent relationships between 
brood size, growth, and telomere length indicates that tel-
omere length and dynamics may be at least partially contin-
gent on the developmental context of the individual. Large 
sample size studies in natural populations are imperative to 
determine the generalizability of studies that have focused 
on captive organisms or smaller scale experiments. Many 
studies where brood size is manipulated lack large numbers 
of control nests that span the natural range of brood sizes, 

Table 2   Model-averaged predictors of relative telomere length and 
dynamics of nestling barn swallows in 2021

Coefficients were calculated using conditional averaging of linear 
mixed models that had a delta AICc < 2. The fixed effects shown 
are the only predictors that were retained in top model set for each 
response variable, Table  S4 lists all the predictors included in the 
models. Growth rate is based on the change in tarsus length, while 
average daily mass gain is used as an alternative way to look at 
change in size between sampling points. Bolding indicates significant 
model-averaged predictors. Sample size is 182 nestlings

Response variable Model-
averaged 
predictors

β SE p

Day 6 telomere length Intercept 0.59 0.13  < 0.001
Brood size 0.07 0.03 0.02

Day 12 telomere length Intercept 0.72 0.08  < 0.001
Change in telomere length Intercept 0.06 0.02 0.003
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