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The Impacts of Unreliable Autonomy in
Human-Robot Collaboration on Shared and
Supervisory Control for Remote Manipulation

Tsung-Chi Lin

Abstract—This work compared human-robot shared and su-
pervisory control of remote robots for dexterous manipulation,
and examined how the reliability of robot autonomy affects hu-
man operator performance, workload, and preference for robot
assistance. Specifically, we implemented two human-robot collab-
oration (HRC) paradigms for remote manipulation: (1) shared
control, where humans controlled gross manipulation and the
robot autonomy controlled precise manipulation actions, and (2)
supervisory control, where the robot autonomy controlled both
gross and precise manipulation actions but relied on humans to
detect and correct errors. We conducted two user studies: one to
compare the effectiveness of the two HRC paradigms when
assistive autonomy is reliable, and the other to examine the impact
of error type and frequency on tasks and human operators in the
two HRC paradigms when assistive autonomy is unreliable. Our
results show that: (1) the interface with a higher level of reliable
autonomy yields significantly better performance, lower workload,
and higher user preference but lower engagement, and (2) the
frequency and type of the error have significant impacts on the
task performance and human workload but only partially affects
the operator’s preference and usage of autonomy.

Index Terms—Telerobotics and teleoperation, human factors
and human-in-the-loop, human-centered automation.

I. INTRODUCTION

ELEOPERATION via human motion tracking interfaces

(e.g., motion capture systems, exoskeletons, hand-held
controllers) enables humans to efficiently and intuitively con-
trol remote manipulator robots to perform dexterous, freeform
manipulations. Robot autonomy is utilized to reduce operator
workload by providing perception and action assistance, such as
object detection and recognition, intent inference, motion plan-
ning, and control. Assistive autonomy improves human-robot
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Fig. 1. Shared vs supervisory control for assisted remote robot manipulation.

collaboration (HRC) in remote control by providing varying
levels (ranging from shared to supervisory control) and types
(from perception to action) of assistance. However, the robot
autonomy may not be consistently reliable due to the perception
and action uncertainty of the robots, and the complexity of the
manipulation tasks. It is still unclear how the level and type of
robot assistance be adjusted if the reliability of the robot
autonomy may vary.

This paper aims to investigate how to adjust HRC when the
robot autonomy is reliable to different extents (with respect to
the task). We focus on unstructured dexterous manipulation tasks
that rely on general-purpose gross and precise manipulation
actions to approach, move, grasp, and place objects. Unstruc-
tured tasks demand flexibility, adaptability, and reasoning as
they often entail manipulating unknown objects or moving a
robot arm through cluttered or unfamiliar environments. This
requires human involvement at action levels, e.g., moving the
end-effector close to the object to be manipulated during the
task, or selecting the sequence of objects and manipulation
actions to be executed later under supervisory control. They may
also require humans to detect errors (e.g., due to the incorrect
choice of object or action, low precision of autonomous action
execution) using the remote camera visual feedback, and correct
them using the control at the action or motion level.

Shown in Fig. 1, we implemented two HRC paradigms to
effectively assist humans to control robots to perform these dex-
terous manipulation tasks using a motion tracking interface. (1)
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The shared control paradigm allows robot autonomy to control
precise manipulation actions but relies on humans for gross
manipulation control and error correction; (2) The supervisory
control paradigm allows robot autonomy to control both the
gross and precise manipulation actions and only relies on hu-
mans for error correction. The shared control paradigm inte-
grates robot autonomy, including: (1) human goal infent infer-
ence based on human gaze, robot status, and task states; (2) au-
tonomous actions for precise manipulation which tend to cause
high cognitive and physical workload for human control (e.g.,
object grasping and placing actions [1]). The design of assistive
autonomy, including intent inference, autonomous actions, and
methods for estimating human engagement and workload, can
be readily applied to various other remote manipulation tasks.
We conducted a user study to evaluate the effectiveness of
the proposed HRC paradigms when the autonomy is reliable
(User Study I). We also investigated how the unreliable assistive
autonomy (User Study II) that results in errors of different types
and frequencies during the tasks may influence the performance,
workload, human preference, and usage of autonomy for the
two HRC paradigms. Shown in the control flow in Fig. 1, the
errors may happen to the autonomous actions triggered by the
operator, at the action-level (e.g., picking up the wrong object) or
the motion-level (e.g., missing to grasp an object). The operator
needs to switch to manual control to correct the error. Our results
show that: (1) When the autonomy is reliable, the supervisory
control is the easiest to use for remote manipulation because it
leads to the best performances, workloads, and preferences
despite the lowest engagement. (2) For both shared and supervi-
sory control with unreliable autonomy, higher error frequency
leads to worse performance and workload, but may not increase
user preference or usage of lower autonomy levels; users also
prefer to use the robot autonomy if the effort for error correction
is lower. This work contributes: (1) a comparison of HRC
paradigms that integrate various types and levels of autonomy
for effective control of freeform, dexterous manipulation; (2) a
simple and effective implementation of intent inference for
guiding robot autonomy; (3) an assessment of the impact of
unreliable assistive autonomy on users’ autonomy preferences;
and (4) offer new knowledge about leveraging the design of
HRC paradigms to mitigate the adverse impacts of unreliable
autonomy.

II. RELATED WORK

A. Autonomy to Assist Motion Tracking Teleoperation

Human motion tracking interfaces enable human operators to
control the dexterous manipulation of remote robots (e.g., ma-
nipulators [2], mobile manipulators [3] and humanoid robots [4])
using the natural motion coordination of their body, arms,
and hands. These motion tracking interfaces include various
motion capture systems (vision-based [5] vs IMU-based [6]),
stylus/joysticks [7], exoskeletons (soft [8] and rigid [9], pas-
sive [10] vs actuated [11]), virtual reality systems (hand-held
controllers [2]), and the custom integration of multimodal con-
trol interfaces [12]. Our prior research shows that, while motion
mapping interfaces are more effective and intuitive for dexterous
manipulation control than gamepad control or stylus inputs [1],
assistive autonomy is still required to improve precision and
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reduce workload for human operators. Among all human-robot
collaboration paradigms (refer to different levels of autonomy
in[13]), shared autonomy [1], [14] and supervisory control [15],

[16] are both proven to be effective for handling complex, un-
structured and error-prone manipulation tasks. However, during
comprehensive manipulation, the operator’s preference for the
level of assistive autonomy may vary based on the reliability of
the autonomy specifically for “the current sub-task” of the
dexterous manipulation task. Investigating how this preference
varies with the reliability of the autonomy will enable us to
adjust the human-robot collaboration paradigms (more shared or

supervisory control) to provide ideal assistance to the operator.

B. Causes and Effects of Unreliable Autonomy

Related work in the literature has analyzed the causes and
effects of the failures in human-robot interactions and how to
mitigate possible negative impacts (see the review in [17]). In
general, robot failures may differ in their functional severity,
social severity, relevance to general or specific robot systems,
frequency, condition (when the failure happens), and symptoms
(that indicate the failure). The failures of robots may affect
task performance (e.g., task completion time), human work-
load and comfort, and human perception of robot intelligence,
transparency, safety, and influence human’s trust, satisfaction,
impression, and attitude toward robots. When failures happen,
robots are preferred to communicate the errors to help humans
to better perceive and comprehend the failures, and to leverage
human help to resolve the failures. In this work, we focus on
the failures common to general-purpose robot manipulation
tasks, and common to both shared or supervisory control. At
high-level, the robot may apply the wrong action to the wrong
object, due to errors in the prediction of goal or action intent [ 18],
[19], [20], or detection of object-action affordance [21], [22],
[23]. At low-level, the robot may not successfully perform the
manipulation motions (e.g., missing to grasp or place an object)
due to errors in perception, motion planning, and execution.
Thus far, it is still unclear how the types and frequency of
errors may affect human performance, workload, perception,
and preference for the level of autonomy for assistance This
work aims to identify the factors that should inform the adaptive
shared autonomy for dexterous manipulation.

III. ASSISTED TELE-MANIPULATION SYSTEM WITH
UNRELIABLE AUTONOMY

Remote Manipulation System: Fig. 2 shows the tele-
manipulation system we integrated to perform the pick-and-
place task. We used the hand-held controller of the HTC virtual
reality system to track human hand motion to control a 7-DOF
(degrees of freedom) Kinova Gen 3 robotic manipulator with a
two-fingered Robotiq gripper. The scaling of human-to-robot
motion mapping is 5:3:3 for the linear velocity in x-, y- and z-
axes to provide more manipulability to the front of the robot arms
where most of the manipulation is performed. We constrained
the robot’s rotational motions because this work focuses on
investigating the impact of unreliable robot autonomy instead of
the controllability of teleoperation. A desktop monitor displayed
a graphical user interface (GUI) of Unity 3D window (1440 x
1080 pixel) to stream the video from the workspace cameras
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Fig. 2.  Assisted Tele-manipulation System.
TABLE I
HUMAN-ROBOT COLLABORATION PARADIGMS

Autonemy Pcerception Decision Motion Planning
fLevel) (Option) {Selection) (Action)
Manual Human Human Human
Shared Human/Rebot Human Robot/Human

Supervisory Rabaot Robot/Human Robot

(back and side views, using picture-in-picture display to trivial-
ize the impact of the loss of depth information) at 30 Hz frame
rate. The GUI also used overlay text to indicate the control sta-
tus (“TELEOPERATING”, “EXECUTING”, “PAUSED”) and
sequence of objects to manipulate.

Shared and Supervisory Control: Table I shows the three HRC
paradigms we implemented for remote robot control based on
task allocation between human and robot for sensing the en-
vironment, making action decisions, and executing the planned
motion [13]. In the supervisory control mode, the robot performs
all aspects of the task which autonomously picks and places the
object following a pre-planned sequence based on the general
procedure to perform this type of task. The human operator who
supervised the robot can confirm the robot’s selected actions if
they are appropriate, or control the robot’s actions and motions
to correct any errors. In shared control mode, humans can use
hand motions to control the robot to reach the target object and to
move it close to the desired location, and can trigger a button to
control the robot’s actions to precisely grasp and place an object.
This HRC paradigm, which was implemented and evaluated in
our prior work in [1], enables humans and robots to complement
each other’s skills and strength to perform unstructured remote
manipulation tasks. While humans can intuitively and efficiently
control the robot’s freeform manual and shared control gross
manipulation motions to navigate the robot across a cluttered
workspace and approach targets. On the other hand, robot au-
tonomy performs precise manipulation actions, which can place
a considerable workload on humans, based on inferred human
goals and action intent.

We infer human goals and action intents, by tracking human
gaze fixation (using Tobii Pro Nano eye tracking device) and
robot states (i.e., distances to each object and container in the
workspace, the opening and closing of the gripper). Specifically,
the location where the gaze is fixated for a duration longer than
0.1 seconds is inferred as the object/box the operator intends to
manipulate. When the end-effector is close enough to the
target object (identified by gaze fixation) to pick or location to
place (within 50 mm for our task), the robot will determine
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Fig. 3. (Top) Task and action sequence in each user studies; (Bottom)
Sequence and grasp/place errors.

the appropriate autonomous action and execute it after the op-
erator triggers a button on the hand-held controller to approve
autonomous action. The object is identified to have been grasped
or placed based on whether the gripper is opened or closed.
We trivialize object detection by pre-defining the object and
container locations. To correct errors, humans can press the
menu button on the controller to undo a completed action or
switch to manual control mode in order to directly control the
robot’s motions.

Unreliability of Robot Autonomy: We manipulated the re-
liability of the robot autonomy by introducing errors at the
action- and motion-level that are common to manipulation tasks
(see Fig. 3 (Bottom)). When a sequence error happens, robot au-
tonomy may pick up a wrong object (given the pre-defined object
manipulation sequence) or place it into a container that does
not match its color. When a grasp/place error happens, robot
autonomy may miss grasping an object or placing the object
with an offset from the desired location. Once a sequence error
(picking up the wrong object in the sequence) or a grasp/place
error (missing the grasp or placing the object) occurs and is
allowed to complete, it becomes irrecoverable and cannot be
corrected. We also manipulated the frequency of errors that occur
(as seen in Section IV).

IV. EXPERIMENT

Participants and Task: We conducted two user studies (with
the same 13 participants, 10 males, 3 females, age = 26+4) to
investigate the effectiveness of the two implemented HRC
paradigms and evaluate the influence of different types and
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Fig.4.  Experimental conditions for User Study I and II. The circles and squares

represent reach-to-grasp actions and move-to-place actions respectively. Orange
(blue) highlights denote the sequence (grasp/place) errors.

frequencies of the error on the tasks and human operators.
The experimental protocol was approved by WPI’s Institutional
Review Board (IRB-21-0004). As shown in Fig. 3 (Top), partic-
ipants were required to perform a general-purpose multi-object
manipulation task in which they collected objects and placed
them in the correspondingly colored box following the sequence

of green-yellow-red (User Study I) and red-green-yellow (User
Study II). Note that each object in the workspace requires 2
actions: reach-and-grasp (i.e., Al, A3, AS5) and move-to-place
(i.e., A2, A4, A6).

Experimental Procedure: Before the user studies, the exper-
imenter explained and demonstrated how to control a robot
manipulator using the motion tracking controller and how to
trigger robot autonomy. In the study, participants were asked to
practice single object pick-and-place tasks using three different
interfaces: manual control, shared control, and supervisory con-
trol. Each participant had a maximum of 10 minutes to practice
with each interface. The participants were then asked to look at
a blank screen for 30 seconds and had their pupil diameters
recorded for the calibration required to estimate their cognitive
workload. After User Study I and II, the participants answered
generic surveys (the NASA-TLX and System Usability Scale)
and reported their preferred control interfaces via a customized
questionnaire.

a) User Study I: The first user study aims to investigate the
effectiveness of the two HRC paradigms. Participants performed
a multi-object sorting task, in which they controlled the remote
robot manipulator to grasp and place the objects in the box
following the green-yellow-red color sequence. The order of the
interfaces was randomized of manual, shared, and supervisory
control to minimize the impact of the learning effect. Note
that the autonomy in this user study is reliable without errors.
The participants performed a total of 6 trials (3 interfaces x 2
repetitions). Repeating the task helps eliminate the variation and
ensure consistency.

b) User Study II: We further manipulated the reliability of
robot autonomy by varying the type and frequency of the errors
and evaluated their influence on the tasks and human operators.
Participants performed the same multi-object sorting task in a
red-green-yellow color sequence by using the randomized order
of the shared and supervisory control. Shown in Fig. 4, we
implemented at least one and up to three errors in 6 actions for
both the sequence (orange marks) and grasp/place type errors
(blue marks). The participants are allowed to correct the errors
only before the confirmation of the grasping and placing action.
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If a participant made a sequence error during the task and
mistakenly picked up the wrong object, the subsequent placing
box should match the color of the wrongly grasped object. After
placing the object, a new color sequence would be assigned
based on the priority of the original red-green-yellow sequence.
The participants performed a total of 12 trials (2 interfaces x 3
frequencies of the error x 2 types of the error).

Evaluation Metrics: Inboth user studies, we measured the task
performance using task completion time and the length of the
trajectory traveled by the robot end-effector (which indicates the
motion efficiency). Additionally, the task success was measured
by the number of times a participant successfully grasped/placed
an object, picked the wrong object in the sequence or placed the
object in the wrong box. A task was considered to be a failure if
any of the above errors occurred due to autonomy or manual
control.

We measured the users’ utilization in the robot autonomy
objectively using how many of the tasks the participants com-
pleted with autonomy and how many times the participants
switched from autonomy to manual control, assuming fewer
human interventions indicated more trust.

We also analyzed how participants’ behaviors change due
to varying robot autonomy to estimate their levels of engage-
ment in visual perception and actions to control robots. Shown
in Fig. 5 (Left), we tracked human eye movements using Tobii
Pro Nano and calculated the percentage of the task for which
the gaze fixation was in the area of interest (i.e., targets and
picture-in-picture) to estimate visual engagement. To estimate
the action engagement (level of activity), we tracked the posi-
tions of the two handheld controllers and 6 body trackers (Vive
Tracker 3.0) attached to the operator’s upper arms, forearms,
chest and waist. The locations of the handheld controllers and
body trackers were used to measure the shoulder and elbow
joint angles (namely, shoulder abduction ¥sa on the frontal
plane, shoulder flexion Jsf on the sagittal plane and elbow
flexion ¥¢r ) using the inner product formula. Our prior work [1]
shows that: the muscle efforts of the anterior, lateral deltoid, and
bicep muscle groups, caused by shoulder flexion, abduction, and
elbow flexion, contributes most to the physical workload when
human controls tele-manipulation using their arm and hand
motions. Fig. 5 (Right) shows the gesture demonstrations and the

threshold we defined for the low level of activity given the motion
range of each joint angle (0° < ¥sa < 120°,0° < ¥sf < 150°,
0 < Uer < 150 ). User feedback indicated that humans have
more relaxed arm postures and are less ready for robot control.

To estimate the physical workload, we utilized a predictive
model that we had developed in a separate research project [24].

The model contains the learned mapping between joint angle and
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muscle effort. The muscle effort was calculated based on surface
Electromyography (EMG) measurements. Specifically, we cal-
culated the shoulder muscle efforts by taking a weighted sum of
the anterior and lateral deltoids, with a ratio of 3:4 based on their
force generation capabilities [25]. The elbow effort was based
on bicep flexion. The overall physical workload was estimated
by averaging the shoulder and elbow muscle efforts for each arm
and taking a weighted sum of the dominant and non-dominant
arms (at the ratio of 9:1), for tasks that required extensive
movement of the dominant arm for robot motion control. We also
estimated the cognitive workload caused by stress (Cs¢r) and
error complexity (Cerr) from the operator’s pupil diameter, gaze
fixation, and movements. We tracked variation in the operator’s
pupil diameter and estimated the cognitive workload caused by
stress as the difference between average pupil diameter during a
task and the operator’s calibrated pupil diameter calculated
before the task’s start. Pupil diameter is expected to increase
with the increase in stress [26]. This result was normalized
with respect to the maximum cognitive workload across all
the trials for that subject. The cognitive workload caused by
error complexity (Cerr) was computed as the ratio between the
average distance in pixels of the operator’s gaze fixation motion
(Stsk) and the maximum distance of fixation motion across all
the trials for the participant (Smax). Complex errors are expected
to result in greater gaze motion distances as they are assumed to
use other visual cues to compensate. The overall workload
(Ctask) of the entire task is the average of the workloads caused
by stress and error complexity.

For each user study, we collected the subjective feedback
from the participants using a NASA-TLX questionnaire on a
scale from 1 to 20 and the System Usability Scale (SUS)
survey on a scale of 0 to 100. The NASA-TLX score is cal-
culated as the overall workload by weighting six sub-scales
(mental demand=5, physical demand=4, temporal demand=0,
performance=2, effort=3, frustration=1). The weighting coeffi-
cients were generated by choosing from a series of pairs of ratin
g scale factors that were deemed to be important based on the
official instructions. Participants also answered our customized
questionnaire on the preferred interfaces considering different
factors (i.e., reliability of robot autonomy, frequency, and type
of error) at the end of the user study.

Evaluation Hypotheses: Our user studies aim to evaluate the
following hypotheses: /H1/-When the autonomy is reliable, the
supervisory control interface will have the best task perfor-
mance, the lowest workload, and the highest user preference,
even with a loss of engagement; /H2/-When the robot auton-
omy is unreliable, a higher error frequency will lead to worse
performance and higher workload, and increases the operator’s
preference and usage of a lower level autonomy. /H3/-When the
robot autonomy is unreliable, users will not lose the preference
for using the robot autonomy if the effort to correct the error is
lower.

V. RESULTS

This section will present the results obtained from the com-
parison between different factors: (1) levels of robot autonomy,
(2) error frequency, and (3) error types. For all the comparisons,
we analyzed data from all evaluation metrics using one-way
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repeated-measures analysis variance (ANOVA), including HRC
paradigms for User Study I, and error frequency and type for
User Study II, as a within-participants variable. All pairwise
comparisons used Holm-Bonferroni correction to control for
Type I error in multiple comparisons. In all the figures, p < .05, p
< .01, and p < .001 are represented by one star (*), two (**), and
three (***) stars respectively.

A. User Study I: Effectiveness of HRC Paradigms

Fig. 6 compares the manual, reliable shared, and supervisory
control in terms of task completion time (on average 116+44,
83#12, and 4442 seconds), traveled trajectory lengths (on aver-
age4.520.9,3.140.6, and 1.9#0.02 meters), physical workload
(on average 76#21, 58#10, and 26#10 percent), cognitive
workload (on average 77#19, 50#13, and 33#12 percent),
NASA-TLX (on the average score of 65+15, 37413, and 742),
SUS (on the average score of 57421, 77410, and 9347), visual
engagement (on average 7123, 63#11, and 48#12 percent),
and action engagement (on average 76+13, 82+17, and 19411
percent). Post hoc comparisons showed that the supervisory
control outperformed both shared and manual control with a
significantly faster task completion time (both with p < .001),
shorter traveled trajectory (both with p < .001), lower physical
(both with p < .001), cognitive (p < .01 and p < .001), and
subjective overall workload (both with p < .001), and higher
system usability score (both with p < .001). However, super-
visory control exhibited a notably lower percentage of visual
and action engagement compared to shared (both withp < .001)
and manual (both with p < .001) control, implying that constant
visual attention and control focus were not necessary. Subjective
results (Fig. 8) indicated that 12 out of 13 participants rated
supervisory control as the most preferred interface. Overall, the
findings from User Study I support H/ even if it leads to reduced
engagement.

B. User Study II: Impacts of Unreliable Autonomy

Out of the 78 trials each of shared and supervisory control
across the 13 participants, 5 and 7 trials were unsuccessful when
using shared and supervisory control respectively. We summa-
rize the findings of our data analysis, comparing different error
frequencies and types under shared and supervisory control. A
written summary of the results is provided below with the
statistical details presented in Fig. 7 and Table. II.

Impacts of Error Frequency: The analysis indicates signifi-
cantly longer completion time, traveled trajectory, and higher
physical workload with the 3 sequence errors condition for
both shared and supervisory control and 3 grasp/place errors
condition for supervisory control. We found no significant dif-
ference in cognitive workload across the different frequency of
errors for both shared and supervisory control. In Fig. 8, 12
out of 13 participants reported they preferred the supervisory
control if errors occurred occasionally. However, when errors
happened frequently, 5/13 participants prefer manual control and
5/13 participants prefer supervisory control, which indicates that
some people still try to use a high level of autonomy even with
frequent errors. We further analyzed the correlation between the
usage of robot autonomy and manual intervention. We noticed
that participants tend to let robot autonomy perform most of the
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Fig. 7. User study II: comparison of completion time, trajectory, the physical and cognitive workload for shared and supervisory control with different error

frequencies and types. The black and green lines indicate significant differences between different error frequencies and types of errors, respectively.

TABLE II
DESCRIPTIVE STATISTICS AND RESULTS OF SIGNIFICANT COMPARISON FOR
ALL MEASURES

Time (s) Trajectory (m) Physical (o) Cognifive (o)

Paradigms P1 P2 P1 P2 P1 P2 P1 P2

Descriptive Statistics (M / SD)
1 Seq 94¢24) 70 (15) 43(0.9) 2.8(04) 70 (I8) 46(15) 55(15) 61(12)
2 Seq oy 83 (15) 48109y 33 10.6) 7919 6114 5715 61(15)
3 Seq 134(27) 88 (12) 6.3(L.0) 3805 959  63(M 6314 69 (%)
1G/P 90 (15) 65 (14) 3.810.9) 23 10.2) 68 (10) 45(15) 57(15) 55(13)
2 G/P 102716) 71 (18) 4007y 25103y 73(13) 4919 59(013) 61(15)
3 G/P 100(21) 88 (25) 42105y 3.1 0.7y 69 (16) 598 5707 671w
Pairwise Comparisons (P-value)

1-2 8eq 1316 .0406 2030 .0092 2162  .0247  .6573 8731
1-3 Seq <.001 .0037 <.001 <.001 <.001 .0025 1592 2047
2-3 Seq 0437 3669  .0012  .0639  .0231 6978 3411 2812
1-2 G/P .0858 2860 4466  .0785 2677 4458 6380  .2630
1-3 G/P 1904 .0082 2071  <.001 .8831 0150 9916  .0752
2-3 G/P .0984  .0493 57920075  .1641 0140  .6627 4359
1 5cq- 1 G/P .0698 3530 1523  <.001 7767 8984 7476 2592
2 Seq—2 G/P 3753 .0885  .0249 <.001 3739 0320 7273 9702
3 8eq-3G/P .0026  .9847  <.001 0135 <.001 2209 3157 7810

P1 and P2 denote shared and supervisory control. respectively.

actions (5-6 out of 6 actions) and only switch to manual control
(1-3 depending on the frequency of the error) to correct the error
if necessary while using supervisory control. The correlation for
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Fig. 8.  The subjective feedback.

shared control in fewer errors condition is similar to supervisory

control. This observation confirms that the participants might
still utilize the high levels of autonomy for reducing operational
effort even with frequent errors. However, certain participants
tended to give up on the usage of autonomy (use autonomy for 1-
2 out of 6 actions) and manually completed the task if errors
were frequent. To sum up, we found H2 was partially supported:

the lower error frequency tended to show better performance,
lower workload, higher preference and usage in high levels of
autonomy; however, the user’s preference and usage in the lower

level of autonomy does not necessarily increase with the error
frequency. This might be because operators tend to be more
relaxed (minimal workload and engagement) if the tasks are not
time sensitive or not extremely unreliable. As the participants
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commented: "...would like to use supervisory control to mitigate
the control effort unless the success rate is very low.” and
”...higher autonomy levels is preferred since I can focus on other
duties even if the robot is unreliable”.

Impacts of Error Types: We also compared the impacts of error
types across all the error frequencies for both shared and super-
visory control. The analysis showed the sequence error results
in a significantly longer traveled trajectory and higher physical
workload for both shared and supervisory control in most of
the error frequencies which aligned with our assumption that
the effort to correct sequence errors is higher than grasp/place
errors. The subjective feedback (Fig. 8) also indicated that 12/13
participants have a higher preference in the usage of robot
autonomy (shared and supervisory control) if the error is the
grasp/place error instead of the sequence error because it takes
less effort to correct. This supports A3 which predicts users’
preference for usage of autonomy could be better retained if the
effort for error correction is lower.

VI. DISCUSSION: CONTRIBUTIONS, AND LIMITATIONS

A. Comparing HRC for Unstructured Remote Manipulation

The work in this paper compared two HRC paradigms (shared
and supervisory control) that provide different levels of auton-
omy to assist humans to control unstructured remote robotic
manipulation tasks. The supervisory control paradigm provides
ahigher level of assistive autonomy to plan and execute the entire
task, but allows humans to use freeform reaching and moving
motions to re-select the target location and objects during the
task, and the action to apply. The shared control paradigm
provides a lower level of assistive autonomy to perform the
human-intended precise manipulation actions which tend to be
difficult for human control, while the human operators use their
hand pose to control the freeform gross manipulation. Our user
studies discovered new knowledge about the effectiveness of
HRC paradigms for unstructured remote manipulation: while
the supervisory control paradigm with a higher level of assistive
autonomy was more effective than the shared control paradigm
for unstructured remote manipulation, some participants rated
both paradigms similarly. This was because they felt more
engaged and better able to detect and respond to robot errors
with the shared control. We also found the intent inference
based multi-modal inputs (human gaze, task, and robot states)
to be simple and effective, and can be applied to various remote
robot control and supervision compared to using these inputs
individually ([27], [28]) or alternative inputs (user behavior [29],
robot pose [30]).

While our user studies compared two HRC paradigms (shared
and supervisory control), we are aware of the various levels of
robot autonomy and human-robot collaboration paradigms (see
the review in [13]) to be examined in future work. The
levels of assistive autonomy may be adjustable or even adaptive,
which implies the dynamic role arbitration in the human-robot
collaboration [31]. Our user studies are also limited because
most participants are experienced video game players. A further
study with users of diverse backgrounds, ages, gaming, and VR
interfaces is necessary for a holistic evaluation of the impacts of
unreliable autonomy.
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B. Influences of Unreliable Assistive Autonomy

In this work, we manipulated the error type and frequency and
evaluate the impacts of unreliable autonomy on performance,
workload, and user preference. We found that in general, more
frequent and severe errors have more significant impacts on task
performance, human workload, and the operator’s preference to
use autonomy (which may imply the user’s trust). Particularly,
we noticed that humans still prefer to use unreliable autonomy if
the errors are easy to correct, which implies that an effec-tive
mechanism for error recovery may significantly improve the
resilience and usability of robot autonomy. Thus the HRC
paradigms must enable the operator to avoid errors. For instance,
Augmented Reality (AR) prompts can indicate the autonomy’s
reliability in success, allowing the operator to make informed
decisions on whether to use autonomy or not. Additionally,
teleoperators can improve the reliability of the system and
enhance their confidence by participating in the decision-making
loop of the robot autonomy, which involves mitigating potential
sources of errors. For instance, participants can mitigate the
impact of errors in the object sorting task by indicating the colors
of each object, which eliminates the need for object detection to
locate the objects in the workspace. In the event of an error
occurring, the HRC paradigm must allow participants the ability
to easily correct the errors. For example, in the event of minimal
corrective motion picking/placing errors in the user study, an
interface that allows for discrete small motions (such as the
trackpad of a handheld controller) can assist the operator in
easily correcting the errors of robot autonomy within the HRC
paradigm and minimize the impact of unreliable autonomy. We
also noticed that compared to the shared control, supervisory
control has significantly higher (p < .05) task performance and
physical workload but comparable cognitive workload. Because
the robot control in our task heavily relied on remote camera
visual feedback, it is likely that a mor¢ unreliable robot auton-
omy has more adverse impacts on th¢ cognitive workload (to
track the task more carefully and defect the errors) than the
physical workload (to correct the errofs). Higher frequency of
errors (> 50% of the task) could havq a greater impact on the
preference for autonomy and will be explored in future work.

Besides error types and frequency, other factors may influence
the users’ perception of robot autonomy, and preference to use a
higher level of autonomy. Our post-study survey shows that the
participants preferred supervisory control (higher level of
assistive autonomy) when it is reliable, but only occasionally if
the autonomy is unreliable. We also found most participants (9
out of 13) prefer using a higher level of robot autonomy if the
errors happened at a later stage of the task, which implies the
perception of the robot autonomy depends not only on the
frequency and types of errors but also when the errors are likely
to happen. Moreover, some participants (3 out of 13) indicated
not preferring a higher level of robot autonomy since it is tedious
to switch to a lower level of autonomy when they have to correct
an error. Our future work will address the limitation of this
work by examining the influence of these additional factors as
well as the influence of the type of interface, workspace
environment, and user background on human perception and
trust in robot autonomy. Because trust is a complex construct
that needs iterative establishment over time, we will choose
objective measurements to assess trust levels. Moreover, we will
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refer to the related work that summarizes the attributes of robot
autonomy (see the review in [32]), consider a more systematic
approach to manipulate the errors, and consider errors caused
by unreliable robot perception, decision-making, and action.

VII. CONCLUSION

This work investigated how unreliable autonomy affects the
operator’s performance, workload, and preference in the shared
and supervisory control of unstructured remote manipulation
tasks. We found that when the robot autonomy is reliable,
supervisory control is the most effective despite low operator
engagement. With unreliable autonomy, performance and work-
load becomes worse as the error frequency increases, yet the
operator may still not prefer to reduce the level of autonomy
due to the increasing efforts for robot control. Moreover, users
may still prefer to use unreliable autonomy if'it is easy to correct
the errors. This paper also compared two HRC paradigms to
effectively assist humans to control unstructured, error-prone
remote robot manipulation, and proposed novel methods for the
accurate intent inference for assistive autonomy. Our future work
will evaluate the proposed approaches with a diverse participant
population, and manipulate other attributes of robot autonomy.
We also aim to consider vision-based remote manipulation tasks
that involve more complex actions and motion control, and
remote perception using dynamic viewpoint and multi-cameras.

REFERENCES

[1] T.-C. Lin, A. U. Krishnan, and Z. Li, “Intuitive, efficient and ergonomic
tele-nursing robot interfaces: Design evaluation and evolution,” ACM
Trans. Hum.-Robot Interact., vol. 11, no. 3, pp. 1-41, 2022.

[2] A. Unni Krishnan, T.-C. Lin, and Z. Li, “Design interface mapping for
efficient free-form tele-manipulation,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2022, pp. 6221-6226.

[3] B.Bejczyetal., “Mixedreality interface for improving mobile manipulator
teleoperation in contamination critical applications,” Procedia Manuf.,
vol. 51, pp. 620-626, 2020.

[4] Z. Li, P. Moran, Q. Dong, R. J. Shaw, and K. Hauser, “Develop-ment
of a tele-nursing mobile manipulator for remote care-giving in
quarantine areas,” in Proc. IEEE Int. Conf. Robot. Automat., 2017, pp.
3581-3586.

[5] Y. Chen, B. Zhang, J. Zhou, and K. Wang, “Real-time 3D unstructured
environment reconstruction utilizing VR and kinect-based immersive tele-
operation for agricultural field robots,” Comput. Electron. Agriculture,
vol. 175, 2020, Art. no. 105579.

[6] L. Penco, N. Scianca, V. Modugno, L. Lanari, G. Oriolo, and S. Ivaldi,
“A multimode teleoperation framework for humanoid loco-manipulation:
An application for the iCub robot,” IEEE Robot. Automat. Mag., vol. 26,
no. 4, pp. 73-82, Dec. 2019.

[71 T.-C.Lin, A. U.Krishnan, and Z. Li, “Comparison of haptic and augmented
reality visual cues for assisting tele-manipulation,” in Proc. Int. Conf.
Robot. Automat., 2022, pp. 9309-9316.

[8] C.Rognon, A. R. Wu, S. Mintchev, A. Ijspeert, and D. Floreano, “Haptic
guidance with a soft exoskeleton reduces error in drone teleoperation,”
in Proc. Int. Conf. Hum. Haptic Sens. Touch Enabled Comput. Appl.,
Springer, 2018, pp. 404—415.

[9] C. G. Welker, V. L. Chiu, A. S. Voloshina, S. H. Collins, and A. M. Oka-

mura, “Teleoperation of an ankle-foot prosthesis with a wrist exoskeleton,”

IEEE Trans. Biomed. Eng., vol. 68, no. 5, pp. 1714-1725, May 2021.

F. Falck, K. Larppichet, and P. Kormushev, “DE VITO: A dual-arm,

high degree-of-freedom, lightweight, inexpensive, passive upper-limb ex-

oskeleton for robot teleoperation,” in Proc. Annu. Conf. Towards Auton.

Robot. Syst., Springer, 2019, pp. 78-89.

[10]

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 8, AUGUST 2023

[11] P.Herbinand M. Pajor, “The torque control system of exoskeleton ExoArm
7-DOF used in bilateral teleoperation system,” in Proc. AIP Conf. Proc.,
2018, vol. 2029, Art. no. 020020.

[12] E. Triantafyllidis, C. Mcgreavy, J. Gu, and Z. Li, “Study of multimodal
interfaces and the improvements on teleoperation,” /EEE Access, vol. 8,
pp. 78213-78227, 2020.

[13] J.M.Beer, A. D. Fisk, and W. A. Rogers, “Toward a framework for levels of

robot autonomy in human-robot interaction,” J. Hum.-Robot Interact., vol.

3, no. 2, pp. 74-99, 2014.

S. Javdani, H. Admoni, S. Pellegrinelli, S.S. Srinivasa, and J. A.

Bagnell, “Shared autonomy via hindsight optimization for teleopera-

tion and teaming,” Int. J. Robot. Res., vol. 37, no. 7, pp. 717-742,

2018.

[15] P. Schmaus et al., “Knowledge driven orbit-to-ground teleoperation of a

robot coworker,” /[EEE Robot. Automat. Lett., vol. 5, no. 1, pp. 143-150,

Jan. 2020.

J. Chen et al., “Supervised semi-autonomous control for surgical robot

based on banoian optimization,” in Proc. IEEE/RSJ Int. Conf- Intell. Robots

Syst., 2020, pp. 2943-2949.

S. Honig and T. Oron-Gilad, “Understanding and resolving failures in

human-robot interaction: Literature review and model development,”

Front. Psychol., vol. 9, 2018, Art. no. 861.

R. M. Aronson and H. Admoni, “Gaze complements control input for goal

prediction during assisted teleoperation,” in Robot. Sci. Syst., 2022.

C. Phillips-Grafflin et al., “From autonomy to cooperative traded control

of humanoid manipulation tasks with unreliable communication: Applica-

tions to the valve-turning task of the darpa robotics challenge and lessons

learned,” J. Intell. Robot. Syst., vol. 82, pp. 341-361, 2016.

J. L. Wright, J. Y. Chen, and S. G. Lakhmani, “Agent transparency and

reliability in human—robot interaction: The influence on user confidence

and perceived reliability,” IEEE Trans. Human-Mach. Syst., vol. 50, no. 3,

pp. 254-263, Jun. 2020.

[21] D. Rakita, B. Mutlu, and M. Gleicher, “An autonomous dynamic camera

method for effective remote teleoperation,” in Proc. ACM/IEEE 13th Int.

Conf. Hum.-Robot Interact., 2018, pp. 325-333.

S. S. White, K. W. Bisland, M. C. Collins, and Z. Li, “Design of a

high-level teleoperation interface resilient to the effects of unreliable

robot autonomy,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,

pp. 11519-11524.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D.

Mané, “Concrete problems in Al safety,” 2016, arXiv:1606.06565.

[24] T.-C.Lin, A. U. Krishnan, and Z. Li, “Perception and action augmentation

for teleoperation assistance in freeform fele-manipulation,” ACM Trans.

Hum.-Robot Interact., submitted for publfcation.

G. M. Kontakis, K. Steriopoulos, J. Damilakis, and E. Michalodimitrakis,

“The position of the axillary nerve in |the deltoid muscle: A cadav-

eric study,” Acta orthopaedica Scandindvica, vol. 70, no. 1, pp. 9-11,

1999.

[26] K. Krejtz, A. T. Duchowski, A. Niedzielska, C. Biele, and I. Krejtz, “Eye
tracking cognitive load using pupil diamefer and microsaccades with fixed
gaze,” PLoS One, vol. 13, no. 9, 2018, Arf. no. €0203629.

[27] X. Yang, K. Sreenath, and N. Michael, “4 framework for efficient teleop-

eration via online adaptation,” in Proc. IEEE Int. Conf. Robot. Automat.,

2017, pp. 5948-5953.

Q. Wang, B. He, Z. Xun, C. Xu, and F. Gao, “GPA-teleoperation: Gaze en-
hanced perception-aware safe assistive aerial teleoperation,” IEEE Robot.
Automat. Lett., vol. 7, no. 2, pp. 5631-5638, Apr. 2022.

L. Wang, Q. Li, J. Lam, Z. Wang, and Z. Zhang, “Intent inference in

shared-control teleoperation system in consideration of user behavior,”

Complex Intell. Syst., vol. 8, pp. 2971-2981, 2022.

S.Li, M. Bowman, H. Nobarani, and X. Zhang, “Inference of manipulation
intent in teleoperation for robotic assistance,” J. Intell. Robot. Syst.,vol. 99,
pp. 29-43, 2020.

D. P. Losey, C. G. McDonald, E. Battaglia, and M. K. O’Malley, “A

review of intent detection, arbitration, and communication aspects of

shared control for physical human-robot interaction,” Appl. Mechanics

Rev., vol. 70, no. 1, 2018, Art. no. 010804.

[32] S. A. Mostafa, M. S. Ahmad, and A. Mustapha, “Adjustable autonomy: A
systematic literature review,” Artif. Intell. Rev., vol. 51, pp. 149-186,
2019.

[14]

[16]

[17]

[18]
[19]

[20]

[22]

(23]

[25]

(28]

[29]

[30]

[31]

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on August 29,2023 at 10:55:34 UTC from IEEE Xplore. Restrictions apply.



