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Abstract

Paenibacillus spp. RC334 and RC343 were isolated from heated soil in a long-term soil warming
experiment. Both genomes were 5.98 Mb and assembled as a single contig. We describe the assembly
and annotation of the two high quality draft genomes for these isolates here.

Running title

Paenibacillus spp. RC334 and RC343 genomes.

Corresponding author’s email address

#Address correspondence to Kristen DeAngelis, deangelis@cns.umass.edu

Announcement

Soil microbes have the potential to mitigate the impact of global warming, but we don’t
understand how they respond to long-term warming (1, 2). We sequenced bacterial genomes isolated
from the Harvard Forest soil warming experiment (2) to understand the genetic profile of these novel
species.

Paenibacillus spp. RC334 and RC343 were isolated in 2022 on Actinobacteria Isolation Agar (3)
with 100 mg L-1 cycloheximide from mineral soil from a heated soil plot (43.54N 72.18 W), collected
10cm below surface, at an elevation of 355m, using a steel corer. The isolates were streaked and single
colonies grown in 10% tryptone soy broth media at 30°C shaking at 150 rpm until OD of 0.5. gDNA was
extracted by CTAB (4) for RC343, and using the Blood & Tissue DNEasy Kit (Qiagen) following
manufacturer’s instructions for RC334. Libraries were prepared with the Ligation Sequencing Kit SQK-
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LSK-109 and samples were multiplexed using the Native Barcoding Expansion Kit EXP-NBD104. Oxford
Nanopore sequencing was performed at SeqCenter (Pittsburgh, PA) using R9 flow cells (R9.4.1). High
accuracy base calling with Guppy v4.5.4 was used to achieve Q20 performance.

The genomes were assembled, annotated, and analyzed as part of the Bioinformatics Lab
(MICROBIO 590B) course at University of Massachusetts Amherst (5). FiltLong (6) was run to remove low
quality reads and specified a 40X coverage for RC334 and for RC343. The genomes were assembled de
novo using Flye (7), then Minimap2 (8) mapped the genome and completed pairwise alignment. Racon
(9) created a genomic consensus, and Medaka (10) polished consensus sequences. Quast (11) and
CheckM (12) were then used to assess the quality of the assembly. The genome assemblies for RC334
and RC343 are both high quality (Table 1)(13).

Table 1. Genome Assembly Details From Quast
Features RC334 RC343
Total base pairs in the assembly (bp) 183,313,012 244,003,914
Assembled genome size (bp) 5,979,552 5,982,416
Fold-coverage (total bp/genome size) 30.6 40.8
Assembly N50 (bp) 5,979,552 5,982,416
Assembly N75 (bp) 5,979,552 5,982,416
Number of contigs 1 1
G+C content (%) 46.72 46.71
Completion (%) 99.12 96.8
Contamination (%) 0.07 0.07

The final assemblies were uploaded to KBase for analysis and annotation (14). All apps were run
on the default settings unless otherwise indicated. Genomes were annotated using Prokka (Annotate
Assembly and Re-annotate Genomes with Prokka - v1.14.5)(15) and classified using GTDB-Tk v1.7.0 (16)



51
52
53
54

95
56

57
58
59
60
61
62
63
64
65
66
67
68
69

70

71

72
73
74
75
76
7

78

79

80
81
82
83
84
85

86
87
88

89

90
91

92

which assigns a taxonomic classification to the organism using domain-specific, concatenated proteins.
Both genomes’ domain is Bacteria, the phylum is Firmicutes, the class is Bacilli, the order is
Paenibacillales, the family is Paenibacillaiceae, the genus is Paenibacillus and the species is Paenibacillus
terrae_A.

Figure 1. Phylogenetic Tree Based on 49 Core Genes. The phylogenetic tree was created on KBase
(Insert Genome into SpeciesTree)(17) using a set of 49 core, universal genes defined by

COG (clusters of Orthologous Groups).

The nearest neighbor for both genomes was identified to be Paenibacillus polymyxa SC2 using the
phylogenetic tree made with a comparison of 49 COG genes (Fig. 1). Compute ANI with FastANI v0.1.3
(18, 19) calculated the Average Nucleotide Identity between Paenibacillus polymyxa SC2 and RC334 and
RC343 to be 85.4% and 85.3%, respectively. RC334 and RC343 both had 94.2% ANI with a user
Paenibacillus terrae [GCF_000235585.1_assembly] genome assembly and annotation. When RC343 was
compared to RC334, the ANI estimate was 99.95%. Since the ANI number is less than 95%, it is likely that
these compared genomes are from different species than P. polymyxa and P. terrae. Further research
into these isolates may provide deeper insight into the role of Paenibacillus sp. in microbial climate
change responses.

Data Availability

The 16S rRNA gene sequence accession number for RC343 is 0Q547097. The 16S rRNA gene sequence
accession number for RC334 is 0Q547098. The raw whole genome sequence reads are available in
GenBank under the BioProject accession number PRINA949990. The BioSample accession number for
RC334 is SAMN33990111 and for RC343 is SAMN33990112. The Sequence Read Archive (SRA) accession
number for RC334 is SRR24019814 and for RC343 is SRR24019813. The draft genome reference number
for RC334 is NZ_CP125370.1 and for RC343 is CP125371.1.
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