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1. Introduction

Consider ASEP started in step initial data with one second class particle at the
origin (see Fig. 1). Specifically, at time ¢t = 0, each site j < —1 is occupied with a first
class particle, the site 7 = 0 is occupied by a second class particle, and all sites j > 0
are initially unoccupied and (for the definition of the dynamics which follows) will be
considered infinite class. First and second class particles have left jump rate L and right
jump rate R where we assume that R > L > 0 and R — L = 1. Jumps are subject to
the rule that when a class k particle tries to jump into a site with a class k' particle,
the particles switch places if and only if & < k' (otherwise, they stay put). We denote
this process by A; = (n,, X;) where n, € {0,1}Z are the occupation variables for the
first class particles and X is the location of the second class particle (we require that
1n,(X:) = 0 so there is no first class particle at the site of the second class particle).
Initially, n¢(j) = 1;<0 and X = 0.

Our main result, which is the positive resolution of [3, Conjecture 1.9], shows that in
large t, the trajectory of X (¢) is almost surely linear with slope uniform on [—1,1]. In
other words, the second class particle chooses a random direction in the rarefaction fan
uniformly and then proceeds asymptotically in that direction (see Fig. 1).

Theorem 1.1 (Conjecture 1.9 of [3]). The limit velocity U := tlim X/t of the second
—00

class particle Xy in Ay exists almost surely and its law is uniform on [—1,1].

The distributional limit of X/t (which we recall below) was known to be uniform
for L = 0 from [24], see equation (1.5). That was generalized to all L in [22, Theorem
2.1]. A different proof of the distributional limit was given in [28, Theorem 1.1], based
on color-position symmetries for multispecies ASEP discovered in [16] and [12].

U = i X,

- 1120000 .-

Fig. 1. Illustration of Theorem 1.1.
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Proposition 1.2 (/2/,22,28]). For any p € [0,1],

lim P[X,/t <1-2p| =p.

t—o0

Thus, the proof of Theorem 1.3 reduces to the following almost sure limit for X;/t.

Theorem 1.3. The limit U := tlim X/t exists almost surely.
— 00

Theorem 1.1 implies well-definedness of the ASEP speed process, confirming [6, Con-
jecture 8.1] and [3, Conjecture 1.10]. Consider multispecies ASEP where initially at
n € 7, we start with a class n particle. Let the particles evolve as indicated above: each
particle independently attempts to jump left and right with rates L and R; those at-
tempted jumps are achieved only if the destination is occupied with a higher class (hence
lower priority) particle. For each n € Z, the class n particle sees an initial condition which
is equivalent to a translation of the initial condition considered in Theorem 1.1. Thus
Theorem 1.1 applies for each particle, namely if we let X;(n) denote the location of the
particle that started in position n € Z at time ¢t > 0, we have (Xt(n) — n) /t converges
almost surely to random variable U(n) with distribution uniform on [—1,1]. Taking a
union over all particles implies that this holds simultaneously for all particles. Let pASEP
denote the joint law of all (U(n)), _,-

Corollary 1.4 (Conjecture 1.10 of [3]). The ASEP speed process measure u*SEY is well
defined and translation invariant with each U(n) uniform on [—1,1].

Having constructed this measure it is natural to investigate properties of it such as
the joint distributions of various U(n). We will not pursue this here, but we mention that
[31] establishes various results in this direction (for instance, related to the properties
of “convoys” of second class particles that move at the same limiting velocity) and [28]
probes the distribution of min (U(1),...,U(n)) as a function of n.

It is also worthwhile to note that the limiting speed of the second class particle is highly
sensitive to its initial position. Theorem 5.2 of [12] investigated the distributional limit of
the speed of the second class particle in ASEP started from a finite perturbation of step
initial data. For instance, Example 5.6 of [12] showed that if the second class particle
is initially placed behind a single first class particle, i.e., X¢ = —1, ny(j) = 1;<_1 and
19(j) = 1,=0, then the speed of the second class particle converges in distribution to
a mixture of a uniform and an inverted quadratic distribution on the interval [—1,1].
Leveraging the techniques for proving Theorem 1.3, it seems very much possible to
strengthen the mode of convergence in [12, Theorem 5.2] to almost sure convergence.
However we defer to pursue this direction in some other work.

In the remainder of this introduction we will discuss how our results fit with respect
to previous work, and then describe the heuristics and proof ideas. The proof that we
provide combines probabilistic ideas (i.e., couplings) with integrable tools (i.e., effective
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hydrodynamic bounds). The interplay of these two techniques allows us to prove a result
that we do not know how to attain with either separately.

Second class particles have been extensively studied with varying perspectives and
purposes. When such a particle is started at a shock, it tracks out a microscopic version
of the evolution of the shock [19,36]; when it is started in stationary initial data, it follows
the characteristic velocity [21,35] and displays super-diffusive scaling around that related
to the KPZ two-point distribution [33,26,7,1,34,9].

For step (sometimes called anti-shock) initial data, there is an entire rarefaction fan
in the hydrodynamic equation and thus a continuum of characteristics velocities [20].
The behavior of a second class particle started in such initial data (as we consider here)
was first taken up in [24] in the case L = 0. As noted above Proposition 1.2, they showed
the asymptotic uniformity of the location of the second class particle in the rarefaction

fan. They also proved that for any 0 < s < t fixed, lim._q (% - ):/tf) = 0 in

probability.

This convergence was strengthened a decade later in [32], which proved the almost
sure limit for the velocity of a second class particle (i.e., the L = 0 case of Theorem 1.1);
alternative proofs for the same result appeared in [25,23]. The starting point for [32]
is the coupling between L = 0 TASEP and exponential last passage percolation (LPP).
The almost sure limit relied on Seppéldinen’s microscopic variational formula for TASEP
[37] along with some LPP concentration results. This relation to LPP is valuable and
relates the second class particle to the competition interface [25]. TASEP gaps relate
to a totally asymmetric zero range process, leading to an understanding of second class
particles for that model [5,29].

When L > 0, the LPP variational formula no longer holds. Thus, a new set of ideas is
needed to establish Theorem 1.1. We will outline these below. The proof of Theorem 1.1
is given in Section 4, relying on all of the results developed in this paper.

Understanding the results in terms of hydrodynamics. The uniformity of X/t on [—1,1]
is a microscopic manifestation of an observation about the hydrodynamic limit of ASEP.
Recall that the evolution of the density p of particles on macroscopic time and space
scales in ASEP is governed by the weak entropy solution to the inviscid Burgers equa-
tion

atp(t’m) + 0s (p(tvx)(l - p(tax))) =0.

In particular, as ¢ — 0, the density field for the occupation process at time ¢/¢ in location
x /e should converge in a weak sense to the solution of this PDE (provided the initial data
converges likewise). If we start with step initial data p(0,z) = 1,<¢ versus shifted step-
initial data p(0,z) = 1,<_s, the difference of the solutions at time ¢ is a function that is
essentially uniform with value 6/(2t) between —t and ¢. By the basic coupling of ASEP
(see Section 2), the shift in initial data can be interpreted as the addition of many second
class particles to the left of the origin and the behavior of the hydrodynamic limit suggests
the uniform distribution of the velocity of those particles. The proof of the uniform
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Fig. 2. Left: The linear characteristic lines used to solve the inviscid Burgers equation from step initial data.
At time S the density is perturbed in the interval (—eS, 0) to match that of the left endpoint of the interval.
The subsequent characteristics show how this perturbation evolves in time via the inviscid Burger equation.
Right: The densities corresponding to the characteristics on the left. At time S the profile (thin line) is
augmented with the bold line to have density (14 ¢)/2 on the interval (—eS,0). The time 2S5 profile is then
shown (dotted lines transcribe the time S profile).

distribution in [24] uses the fact that ASEP reaches some form of local equilibrium. This
means that if the local density is p, then the local distribution of particles should be given
by Bernoulli product measure with parameter p. These measures are stationary for ASEP.

Assuming this local equilibrium behavior, we can start to understand why the second
class particle maintains its velocity. Based on the hydrodynamic theory for step initial
data, if X/t =1 — 2p for some p € (0,1) then the density around X; will be roughly p
and assuming local equilibrium, the occupation variables for first class particles around
X will be close to i.i.d. Bernoulli with parameter p. In this equilibrium situation, X
jumps left at rate Rp if position X; — 1 is occupied by a first class particle and rate
L(1 — p) if X; — 1 has a hole; similarly X; jumps rate at rate Lp if position X + 1
is occupied by a first class particle and rate R(1 — p) if X; 4+ 1 has a hole. Thus the
expected instantaneous velocity of X; is (R— L)(1 —2p) =1 —2p and so in expectation
X ; continues to move along the characteristic velocity 1 — 2p. This is not the same as
showing an almost sure limiting velocity. For infinite i.i.d. Bernoulli p initial data, [19]
showed exactly the latter.

Proof sketch Theorem 1.3 when L =0 (TASEP). Though we are interested in the L > 0
case, it is useful to first focus on L = 0. The proof we describe here is different than [32]
and does not rely on LPP. It also extends (using two additional ingredients) to L > 0.
We start by explaining an overly optimistic approach to the proof and then explain how
it can be modified to produce an actual proof.

For step initial data TASEP, at a large time S, we expect the density of particles will be
approximated by the solution to the Burgers equation which linearly interpolates between
density one to the left of —S and density zero to the right of S (see the rarefaction fan at
the intermediate time in Fig. 2). Assume for the moment that the occupation variables
at time S are independent Bernoulli with parameters given by this hydrodynamic profile,
and also assume that X g = 0 so it lies along a zero velocity characteristic. (If X g were
along another characteristic, we would need to work in a moving reference frame.)
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Under these assumptions, we can couple our time S system to another TASEP where
the Bernoulli parameter profile is augmented to the left of the origin (i.e., the location of
X ) as in Fig. 2. Under the basic coupling, this corresponds to adding extra second class
particles to the left of X g to create the augmented profile. Importantly, these additional
second class particles remain to the left of X; at all times ¢ > S. This fails when L > 0.

Using the above observation, we see that in order to lower-bound the motion of X
for ¢t > S, it suffices to control the locations of the extra second class particles. While
it is hard to control individual particles, we know how to control lots of them by use
of hydrodynamic limit theory. Consider adding in enough second class particles so as to
make a macroscopic change in the density profile. For example, on the interval (—&S,0)
we can change the density to equal (1+¢)/2, as depicted on the right of Fig. 2. At time
2S (top of Fig. 2) this perturbation will evolve as to only perturb the density on the
interval (—2¢S,0). This suggests that with high probability, of the O(S) added second
class particles, all but o(S) of them will be to the right of —2¢S and hence X g will be
to the right of —2¢S as well. Since € was arbitrary this suggests that X; should maintain
a velocity at least 0 (and by particle-hole symmetry, the opposite should follow too).

There are a number of issues above. The perturbation should really be on a spatial
interval of size o(S). This is because the above argument permits the velocity to drop
by € on the time increment S to 25, and if we repeat on doubling time intervals (2S5 to
4S5, etc) the net drop may compound to become unbounded. This can be remedied by
perturbing instead on an interval like (—S'=7,0) for some small v > 0. Assuming our
hydrodynamic results extend to this scale, we should be able to bound the total drop
in X, at times of the form S,, = 2"S for n = 0,1, .... However, at intermediate times
X could wander in a manner that would prevent the velocity from having a limit. To
remedy this, we instead consider a sequence of times that grows like S,, = SeV” (in fact,
by choosing S,+1 = Sp + Sn/log S,). By a Poisson bound (from the basic coupling) the
intermediate wandering of X; does not change the velocity much compared to the S,
times.

Besides these modifications, there is still the issue of justifying the simplistic assump-
tions we made based on hydrodynamic theory considerations. This is done by making use
of effective versions of hydrodynamic limit results that quantify with exponential decay
how close the actual number of particles is to the hydrodynamic limit profile on spatial
and fluctuation scales that are o(S). For example, for step initial data if we look at the
number of particles at time S in an interval [X,Y] with =5 < X <Y < S, we expect
that it will be approximately S times the integral from X/S to Y/S of the hydrodynamic
profile function (1 — z)/2. An effective hydrodynamic concentration inequality would say
that for some « € (0,1) the probability that the deviation of this number of particles
around what we expect it to be will exceed sS® is bounded above by ¢~te=¢ for some
¢ > 0. (The optimal « should be 1/3 and the decay should actually be faster than e~¢*
for any ¢ > 0, though we do not need or pursue this.) We also make use of similar
bounds for other types of initial data such as the perturbed one, though these can be
deduced from bounds for the class of step-Bernoulli initial data via coupling arguments.
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We use the exponential decay in these bounds when taking union bounds to control the
hydrodynamic comparison at each S,,.

The step initial data effective hydrodynamic result is present in the literature. We
quote [10, Theorem 13.2] and [27, Proposition 4.1 and Proposition 4.2] (see Lemma B.3
below) for this result. In fact, [10] essentially relies on [7] which uses Fredholm deter-
minantant asymptotics as well as Widom’s trick (introduced by Harold Widom in [40])
to establish the lower and upper tail bounds respectively. In general for determinantal
models like TASEP, one tail often follows directly from showing decay of the kernel of
the Fredholm determinant while the other is typically more complicated to demonstrate
and requires tools like Widom’s trick or Riemann-Hilbert problems [8].

Proving Theorem 1.3 when L > 0 (ASEP). It is easy to see (e.g. considering a two-
particle system) that the presence of additional second class particles to the left of X,
may effect its motion and hence the simple coupling used above for TASEP fails. In its
place, we make use of a more sophisticated coupling that was introduced in [36, Section
4] (see Proposition 2.4 below). It says that for ¢ > S, X can be stochastically lower
bounded by the motion of a random second class particle uniformly chosen among those
added to the left of X; at time ¢ = S. This enables us to implement for ASEP a similar
sort of hydrodynamic argument as given above for TASEP.

In addition to the above coupling, we also need to develop effective hydrodynamic
concentration inequalities for ASEP. Due to reduction and coupling arguments, it suffices
for us to demonstrate these in the case of step Bernoulli initial data. Distributional
limit theorems for step initial data ASEP go back to [39] and for step Bernoulli initial
data to [38] where the one-point distribution of the height function (which captures the
integrated occupation variables) was analyzed directly.

In [13] it was realized that the ASEP height function g-Laplace transform admits
a simpler form as a Fredholm determinant. The g¢-Laplace transform asymptotically
captures the tails of the probability distribution. Our effective hydrodynamic results
require both upper and lower tail control. As is typical in such formulas, one tail (typically
called the upper tail) is readily accessible from the Fredholm determinant formula via
decay of the kernel therein (see also [18] which derives the corresponding large deviation
principle for this tail). The other (lower) tail requires a different type of argument. As
mentioned earlier, in determinantal models, this is sometimes achieved via Widom’s
trick or Riemann-Hilbert problems, and in related random matrix theory contexts, other
tools like electrostatic variational problems or tridiagonal matrices can be used for such
bounds.

The first instance of a positive temperature model for which the lower tail was bounded
in a manner adapted to KPZ scaling was the KPZ equation. This was achieved in [17]
using a remarkable rewriting in [14] of the KPZ Laplace transform Fredholm determi-
nant formula proved in [4]. Through this formula the Laplace transform for the KPZ
equation was matched to a certain multiplicative functional of the determinantal Airy
point process. From this, [17] derived tail bounds by controlling the behavior of the Airy
points (something achievable through existing techniques).
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There is a similar identity from [15] which relates the g-Laplace transform for ASEP to
the expectation of a multiplicative functional of a certain discrete Laguerre determinantal
point process (see also [11] which proves a more general result higher in the hierarchy of
stochastic vertex models). From this identity is should be possible to extract fairly tight
lower tail bounds. However, we do not need to use the full strength of this identity. In
fact, the behavior of this multiplicative functional can be upper bounded by the behavior
of its lowest particle, which ends up being equal to the TASEP height function. Thus,
through this identity we can deduce the ASEP tail from existing knowledge of that of
TASEP.

Outline. Section 2 contains the definition of the basic coupling as well as key conse-
quences such as attractivity (Lemma 2.2), finite speed of propagation (Lemma 2.5) and
monotonicity (Lemma 2.6). We also recall as Proposition 2.4 the coupling from [36], the
proof of which is provided in Section A for completeness. Section 3 contains our effective
hydrodynamic concentration estimates that mainly stem from Proposition 3.4, such as
Proposition 3.6. Proposition 3.4 is proved in Appendix B and C.

Section 4 contains the proof of our main result, Theorem 1.3 (which combined with
Proposition 1.2 implies Theorem 1.1 immediately). Proposition 4.1 gives the main tech-
nical result that controls the motion of the second class particle between two times.
This result translates into Proposition 4.2 and then into Theorem 1.3. Section 5 proves
Proposition 4.1 by setting up a coupling as outlined in the proof sketch above and then
showing (as Proposition 5.4) that most of the additional second class particles move at
a speed close to that of the characteristic. Section 6 proves Proposition 5.4 by utilizing
the effective hydrodynamic concentration estimates from Section 3.

Notation. We fix R > L > 0 with R — L = 1. Unless specified otherwise we assume
all constants and parameters are real valued, with the exception of indices which are
obviously integer valued. When we introduce constants (the value of which may change
despite using the same symbol), we will generally specify upon which parameters they
depend by writing ¢ = ¢(---) with the dependence inside the parentheses. We do not
attempt to track constants through the paper or optimize our estimates (e.g. in concen-
tration inequalities) beyond what is needed to reach our main result. We will typically
use the sanserif font E for events and write E€ for complement of E and 1g for indicator
function which is 1 on the event E and 0 otherwise. We typically use 7, (, £ to denote
elements of {0, 1}Z , i.e., occupation variables. We will use bold-faced letters such as 7, X
to denote random variables. For real z < y define [z,y] := [|z], [y]] NZ; if # > y define
[x,y] = @, the empty set.

Acknowledgments. We thank Gidi Amir, Omer Angel, James B. Martin and Peter Nej-
jar for helpful comments. A.A. was partially supported by a Clay Research Fellowship
and gratefully acknowledges support from the Institute for Advanced Study through
the NSF grant DMS:1926686. 1.C was partially supported by the NSF through grants
DMS:1937254, DMS:1811143, DMS:1664650, as well as through a Packard Fellowship
in Science and Engineering, a Simons Fellowship, a Miller Visiting Professorship from
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and Engineering Grant. A.A, I.C. and P.G. also wish to acknowledge the NSF grant
DMS:1928930 which supported their participation in a fall 2021 semester program at
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2. Couplings

The (single class) ASEP can be described as a Markov process on occupation variables
or ordered particle location variables. The occupation process 1, = (77t(j))jeZ €{0,1}%
has infinitesimal generator £ which acts on local functions f(n) as

Lf) = (R-n(G)—nG+ 1)+ L0+ 1)1 =) (f(n7 ) = f(n)

JEZ

where 777 *! switches the value of n(j) and n(j + 1) (so n/9+1(i) = n(i) for i # j,j +
1, p99FY(5) = n(j + 1) and n9+1(j + 1) = n(j)). In words, particles jump left and
rate according to independent exponential clocks of rates L and R, provided that the
destination site is unoccupied. The sites j where 1,(j) = 1 are said to be occupied by
particles, and otherwise (when 7,(j) = 0) by holes. As mentioned previously, we will
always assume that R > L > 0 so that there is a net drift to the right.

Remark 2.1. Observe that the ASEP is preserved under interchanging particles and holes,
and by reversing all jump directions. Stated alternatively, suppose that n, is an ASEP
with left jump rate L and right jump rate R; then, the process 7, defined by setting
n.(j) =1—m,(—j) for all j € Z is also an ASEP with left jump rate L and right jump
rate R. This is sometimes referred to as particle-hole symmetry.

The basic coupling provides a single probability space upon which the evolution for
all initial data for ASEP can simultaneously be defined (see [30, VIII.2]). Moreover,
that coupling enjoys the properties of being attractive and monotone (these are recorded
below), and hence allows us to define second (and more general) class particles. This
construction is easily seen to match with the dynamics explained in the introduction.

The basic coupling comes from the graphical construction of ASEP which we now
recall (see also Fig. 3). To every site j € Z we associate two Poisson point processes
on [0,00), one which has rate L and one which has rate R. Call the rate L process
the left arrows and the rate R process the right arrows. All of these (between sites and
at the same site) will be independent. Above every site j € Z we draw a vertical line
representing time and draw left and right arrows out of j at heights corresponding to the
points in the left and right arrow point processes just defined. For any initial data 7,
we define the time evolution 7, in the following manner. Particles initially occupy sites
j where 19(j) = 1 and remain in place until they encounter an arrow out of their site.
At that time, they follow the arrow, provided that the destination site is unoccupied;
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Fig. 3. The graphical construction of ASEP. Arrows are given by Poisson point processes and particles follow
them provided the destination is unoccupied.

OO0 60— 60 0 @6 O —0&—0&—>

Fig. 4. Top: ASEP with first class particles (black bullets) and one second class particle (open disk). Bottom:
ASEP with four additional second class particles added to the left of the top figure’s second class particle.
Proposition 2.4 shows that we can couple the two versions of ASEP so the top second class particle stays
to the right of a uniformly randomly chosen particle among the second class particles in the bottom figure.

otherwise, they remain in their site until the next arrow. The basic coupling can also be
defined directly in terms of the generator of dynamics on multiple choices of initial data
— see Section A for such generators.

Lemma 2.2 (Attractivity). Let n, and ¢, denote two versions of ASEP with the same
Jump rates and with initial data such that ny(j) < o(J) for each j € Z. Then, under
the basic coupling, almost surely m,(j) < ,(j) for all j € Z and t > 0.

Attractivity allows us to define the first and second class particle process (1, &) by
the relation ¢, = 1, + oy (see Fig. 4). By attractivity, oy € {0,1}%, and hence can be
thought of as occupation variables for second class particles. We write P00 for the
probability measure associated to the (n,, ;) process with initial data (1, cg). When
there is a single second class particle (our particular interest), i.e., > . 7 c(i) = 1, we
denote its location at time ¢t by X (so that a;(X:) = 1 and a;(j) = 0 for all other
j) and write P70:X0 for the probability measure associated to the (n,, X ;) process with
initial data (19, Xo).

Remark 2.3. The particle-hole symmetry noted in Remark 2.1 extends to two-species
ASEP. In particle if we reverse all jump directions and swap first class particles and
holes, and keep second class particles as is, then the two-species ASEP is preserved.
Stated alternatively, suppose that (m,,a;) records the first and second class particle
occupation variables, then 7,(j) = 1 — n,(—7j) and & (j) = a.(—j) for all j € Z is also
a two-species ASEP with left jump rate L and right jump rate R.
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Forx € Z, ny € {0,1}% and N € Z>q, let AS(x,m,, N) denote the set of g € {0, 1}Z
such that > ..z ao(j) = N, ny + ag € {0, 1}2, ap(x) = 1, and op(w) = 1 only if
w < z (note that the “only if” is not “if and only 1f”). In words, this means that we
start with N second class particles relative to the first class particles at n,, with the
rightmost one at site x. Associate to ag € AS(x,m,, N) its ordered particle vector
Zy = (Zo(1) > --- > Zy(N)) so that a(w) = 1 if and only if w € {Z(1),...,Z(N)}.
Let Z, = (Z,(1) > --- > Z;(N)) be the ordered locations at time ¢ of .

The following result can be extracted from [36, Section 4] (we provide a proof of it
in Appendix A for completeness). It says that to control the location of a single second
class particle, we can introduce several second class particles to the left and control the
location of a typical (uniformly chosen) one of those (see the caption of Fig. 4).

Proposition 2.4. For any y € Z, Xo € Z and ng € {0,1}% with ny(Xo) = 0, and for
any N € Z>1 and ag € AS(X0,mg, N),

N
1
PRI, <) 5 3Pz <) 2

Another consequence of the graphical construction is ASEP’s finite speed of propaga-
tion.

Lemma 2.5. Let U <V, T > 0, and € and ¢ be two versions of ASEP (each with left
and right jump rates L and R, respectively). If £,(4) = Co(j) for each j € [U, V], then
under the basic coupling we have that &,(j) = ¢,(j) for each j € [U +4RT,V — 4RT]
and t € [0,T)], off of an event of probability at most 4e~T/3,

Proof. This follows from large deviation bounds on the sum of exponential random
variables which control how particles from outside an interval can effect the behavior far
inside it. O

The final general result we give from coupling is monotonicity. It deals with the in-
tegrated occupation variables, i.e., sometimes called the height function or current. Let
&, denote ASEP and identify the ordered particle locations by --- < Y (1) < Y(0) <
Y.(—1) < --- where the indexing is such that initially ¥¢(0) < 0 < Yo(—1) (sub-
sequently, the Y;(j) track these indexed particles as they jump). For any = € Z, we
define

bhe(z;€) = Z (Lyo(iy<oly,()>z — Lyo()>oly,(i)<z) (2.2)
icZ

and extend b;(x; &) to a continuous function in z by linear interpolation. For x,y € Z,
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be([z,yl: &) = be(z: ) — be(y:€) = Z &:(4) (2.3)

1=z+1

from which it is clear that for j € Z,

Et(j> = bt(j - 1?5) - ht(j;g)- (2-4)

In particular, if ¢ = 0 we will use the short-hand b(z; &) = ho(x; €) and have that

—iﬁo(z) ifx>1,
i=1
ba;€) = bo(z;€) = 4 0 if z =0, (2.5)
0
> &) ifw< -1,
i=x+1

At most one of the two summands on the right side of (2.2) is nonzero. Observe that
b (x; €) has the following combinatorial interpretation: Color all particles initially to the
right of 0 red, and all particles initially at or to the left of 0 blue. Then, b (x; &) denotes
the number of red particles at or to the left of x at time ¢ subtracted from the number
of blue particles to the right of = at time ¢.

The following shows that if we start with two height functions that are coupled so
that they are either ordered pointwise (up to a vertical shift by some H) or close to
each other (within K), then this property persists under the basic coupling. In the first
statement, the shift by H may be necessary since our height functions are zeroed out to
satisfy o (0; &) = 0; observe that the second statement of the below lemma follows from
the first.

Lemma 2.6 (Monotonicity). Let &, and ¢, be two ASEPs with the same jump rates.

1. If for some H € Z we have bho(x;€) + H > bo(x; ) for each x € Z, then under the
basic coupling we almost surely have bo(z;€) + H > ho(x;€) for allx € Z and t > 0.

2. If for some K € Z we have |bo(x;£) — bo(fU;C)‘ < K for each x € Z, then under the
basic coupling we almost surely have |ht(x;£) — be(x; C)| <K forallz €Z andt >0
(Fig. 5).

3. Some effective hydrodynamics concentration estimates

This section establishes uniform estimates that upper bound the maximal deviations
that ASEP height functions can have from their hydrodynamic limits. The key to es-
tablishing these concentration bounds is an understanding of the fluctuations under the
stationary measure (which just boils down to bounds on sums of i.i.d. Bernoulli random
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hg(l’, {) +H

Fig. 5. Two height functions are depicted. The grey one is determined by the values of ¢, while the black
one is determined by the values of . If the later is shifted by H it point-wise exceeds the former. Provided
this occurs at time 0, Lemma 2.6 shows that this property persists for all time.

variables) and under step-Bernoulli initial data. This later result is contained in Propo-
sition 3.4 and proved later in Section B. These are put together using attractivity of the
basic coupling.

We begin with the following definition describing random particle configurations dis-
tributed according to a product measure. Such configurations will often serve as initial
data for the versions of ASEP we consider. Throughout, all versions of ASEP will have
the same left jump rate L and right jump rate R, for R > L > 0 with R — L = 1.

Definition 3.1. Fix a finite interval I = [A, B] with integer endpoints A < B, as well as a
function ¢ : R — [0, 1]. We say that a particle configuration n = (n(x)) is @-distributed
on I if its coordinates {n(z)} are all mutually independent and

x
B-A

P[U(A—i—a:):l]:ap( ), for each x € ZN [0, B — A].
We say that n is p-distributed on Z if its coordinates m(z) are mutually independent
and

Pn(z) =1] = ¢(z), for each z € Z.

These two notations are somewhat at odds since the former (involving finite I) involves
rescaling while the latter does not. We hope the reader will excuse us for this.

When using Definition 3.1, we will often (although not always, for instance, see the
formulation of the lemma below) take I = [—K, K] for some integer K > 1 and ¢ to
be some piecewise linear function which takes value zero outside the interval [0, 1]. This
will guarantee that i only has particles on [—K, K]J.

The following is a concentration inequality for p-distributed particle configurations.

Lemma 3.2. Adopt the notation of Definition 5.1 and assume that I = Z. For any s €
R>q and X,Y € Z, we have

P Db(X;n) SLLEDEDY

Y
ga(j)’ > sV — X|1/2] <2 (3.1)
=X
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Now consider the case where I = [A, B] is finite and p(x) =0 for all x ¢ [0,1]. Then,

Y —A ,
P{X%Z\wx;n)b(nm > (25| deA)“ﬂ <AB- A1)
X<Y =X

(3.2)

Proof. Observe that (3.1) followed immediately from Hoeffding’s inequality and the fact
that m is p-distributed. Next, assume that I = [A, B] is a finite interval and that ¢
is supported on [0, 1]. Using the fact that for X, Y € I, we have |Y — X| < B — A,
Hoeffding’s inequality and a union bound yields

Y .

j—A 1/2 2 —s?

. _ . _ > — < — .

Pl [0 (i) j}xjs@(B_A)]_s(B 2] < 2B Ar e
X<Y =

The bound (3.2) follows from combining the above with the fact that since ¢ is supported
on [0,1] we have for X < A and Y > B that h(4;n) — h(X;n) = 0 = h(B;n) —
h(Yin). O

We now specify two choices we will commonly take for ¢ from Definition 3.1.

Definition 3.3. Fix real numbers 0 < A < p < 1. Define the piecewise constant function
2PN . R — [p, \] and the piecewise linear function Y : R — R by setting

<o P if 2<1—2p,
. 1Iz=U, .
20N (5) =P TEN) = (1-2)/2 if1-2p<2<1-2),
A if 2 >0, A\ o> 19\
1z - - .

We say that an ASEP 5, has (p; \)-Bernoulli initial data if n, is Z(PN-distributed
on Z. Observe in particular that (1;0)-Bernoulli initial data is equivalent to step initial
data, and that (p; p)-Bernoulli initial data is stationary for the ASEP; we call the latter
p-stationary initial data. The Y (PN -distributed initial data is meant to model the profile
that one gets after running Z(»»-distributed initial data for a long time (with a linear
interpolating rarefaction fan from density p to density A). The assumption A < p ensures
that the hydrodynamic limit does not have shocks.

The following is a key concentration estimate (p;0)-step Bernoulli initial data ASEP.
This estimate is not optimal, either in the error bound 72/3 or in the probability decay
e~ . (In the case of step initial data, we believe that the T'/3 scale is optimal, but the
decay is not.) Note that for our purposes, it is sufficient that we have a bound of the
form T* for some o < 1. A proof of this result is given in Section B.

Proposition 3.4. For any € > 0, there exists ¢ = c(g) > 0 such that the following holds.
Let p € [,1] and m be (p;0)-Bernoulli initial data ASEP. For any T > 1 and s € [0,T],
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p+s oY)
€]
p+ep
p Wi
p—€B
—3
0 +1-8 3 1

Fig. 6. @if’}a and Tép) (with slight vertical shifts to make it easier to distinguish).

YT
P X, Y];in)—T [ 1@ > sT?3| < ¢ 'Te . :
max P{br(X YT T [ Y00 2872 < ire. (33)
Y/T|<1-—¢ X/T

For step initial data (when p = 1) (3.3) holds with the term sT?/® replaced by sT/3.
The constants ¢ = c(g) can be chosen so as to weakly decrease as € decreases to 0.

The rest of this section establishes effective hydrodynamic concentration inequali-
ties for ASEP with initial data given by specific piecewise linear functions (though the
methods apply more generally) defined below and illustrated in Fig. 6.

Definition 3.5. Fix any ¢ € (0,1) and p € [¢,1 — &]. Define Y : R — [0,1] by

) () — p+e(3—2) ifzel0,1],
) {0 if z ¢ [0,1]. (34)

The function T§P ) is a suitable translation and scaling of the function YA from Def-
inition 3.3, where we additionally set it to 0 outside of the interval [0,1]. The function
Tgp ) is linear on its non-zero support. It will also be useful to consider versions of this
function that (continuously) transition from being linear to constant. To that end, for
any ¢, € (0, %) and p € [e,1 — ¢], define (I)il;)/)a : R — [0,1] by

pte(3—2) ifzel0,3-7],
e¥)(z)={p+ep it 2 e [L—8,1],
0 if = ¢ [0, 1].

The following proposition provides effective hydrodynamic concentration estimates
for the ASEP under either Té” )_distributed or @i’; g—distributed initial data.

Proposition 3.6. For any fized § € (O,ﬁ), there exists ¢ = c(0) > 0 such that the
Jfollowing holds. For any S, T € R>1 with S > 62T, 3 € (0, 1).e€ (46, D). pele,1—¢],
and k € [15,T]:
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1. ASEP n, with Y ) _distributed initial data on the interval [—eS,eS] satisfies

Y/T
(1-2p—2) 2/3 1930
P ‘ X,Y]:in) - T U=2p=2)T ‘ > 1§52/ ox,
[X;gagxm (XY Eim) =7 [ (p+ g )ae| = ns™%| < 715t
Y/S|<e/4 X/T

2. ASEP n, with @i?) -distributed initial data on the interval [—eS,eS] satisfies

Y/T
(-2 2T 23
: >
IP’[X/HSlaSXEM‘hT([[X,Y]], /max 38 +7) ,p—i—sﬁ}dz‘_nS
|v/S|<e/a X/T

< ¢ 183e0m,

Proof. The proofs of Proposition 3.6 (1) and (2) are very similar, so we only detail that
of (1). The idea will be to compare n, on the time interval ¢ € [0, 7] to another version of
ASEP ¢, that corresponds to step initial data ASEP, with all particles outside a specific
window destroyed at time S and then run for time ¢ € [S, S + T]. The window is chosen
so the step initial data hydrodynamic limit replicates the profile for the initial data of
No-

To this end, let &, denote ASEP under step initial data (to establish (2) we would in-
stead let &, denote an ASEP under two-sided (1; p+¢()-Bernoulli initial data and use the
particle-hole symmetry from Remark 2.1 to apply Proposition 3.4). By Proposition 3.4,
there exists ¢ = ¢(4) > 0 such that for any U > 1 and « € [1, U],

Y/U

. _ 11—z 2/3 -1 —ck
X/rg%_é]fb[’bU([[X,Y]],g) U / ( . )dz’ > kU } <cWe™ . (3.5)
Y/UI<1-5 XU

Now define ¢, to be an ASEP started from random initial data ¢, given by

@) = {gs(j +1(1=2p)S)) if j € [~eS,e8], (36)

0 if j ¢ [—eS,e95].

By Lemma 2.5, we may couple the ASEPs ¢,(j) and &g, (j+ [(1—2p)S]) so that for all
t € [0,T] they coincide with high probability on j € [—(eS — 4RT),eS — 4RT], namely

P[A] > 1 —4e" /3, (3.7)
where the event A is defined by

A= {(jt(j) = &gy, (j+(1-2p)]S) for all t € [0,T] and j € [[—(sS—4RT),eS—4RT]]}.
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By (2.3) it then follows that for X € [—(eS — 4RT),eS — 4RT],
1abi (X5 €) = 1a (B4 ([X + L(1 = 20)8), [(1 ~ 20)S]];€) ) (3.8)
Next, by applying (3.5) with (U; X,Y) equal to (S;X + [(1 —2p)S],[(1 — 2p)S]),
and using the matching from (3.6), we see that there exists ¢ = ¢(§) > 0 such that for
% € [6,6U],

P[B(k)] > 1 —c 'S% ", (3.9)

where the event B(k) is defined by

0
ho<X;c)—S/ (pg)dz\gﬁsg“}.

X/S

B(k) = { max
|x/S|<e

In order to apply (3.5) we used the fact that |[(1 —2p)S| +&S|] < S(1 — 0) as follows
from the restrictions we assumed on € and p.

Now, turning to 7, recall that it is T distributed on [—eS,eS] and hence by
Lemma 3.2 there exists ¢ > 0 such that for any x € [12,12U],

P[C(k)] > 1—2(25 4+ 1)%e " /14 > 1 — 152", (3.10)

where the event C(k) is defined by

0
poen) -~ [ (o= )
X

In applying Lemma 3.2 we use the fact that S1/2 < $2/3 for S > 1 and instead bound
C(k) with the term S2/? replaced by S'/2. The 1 on the right-hand side of the inequality
in C takes into account the potential effect of replacing the summation in (3.2) by the

2/3
C(k) = { max < Hfz +1}.

|X/S|<e

above integral. In our next deduction, however, we will use the fact that ”51'12/2 +1< “561 2
since we have assumed k > 15 and S > 1.

By definition, ny(x) = 0 = {y(x) for = ¢ [—eS,eS], thus combining (3.9) and (3.10)
yields that there exists ¢ = ¢(d) > 0 such that for all k € [12,65]

P[D(k)] >1—c 5% ", (3.11)

where the event D(k) is defined by

w52 } (3.12)

D(r) = { max bo(Xsm) = ho(X: )| < =5
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By the second part of Lemma 2.6, we may couple 1, and ¢, such that

H52/3
(H)Supmax bhe(X5m) — he(X5¢)| < 5
t>0

holds almost surely for all ¢ > 0. Combined this with (3.8), along with the fact that
[—2,28] C [—(eS —4RT),eS — ART] (as T~18 > 672 > 4e7 167! > 64c7 ' R) yields

/@52/3
1alp(x) e ‘UT(X,TI) —bsr ([X + [(1—20)S], [(1—-20)S]]; € ’ <
(3.13)
Finally, let us define the event
i) ={ e [hser (10 2005 + X, 20)51:¢) (3.14)
/ T (S +1)%3
+
T/(p+2(S—|—T)( 2pfz)dz’<712 }
X/8

From the (U; X,Y) = (S+ T, X + [(1 —2p)S], [ (1 —2p)S]) case of (3.5), we have that
there exists ¢ = ¢(d) > 0 such that for all x € [12,12(S5 + T)],

P[E(k)] >1—c'5% " (3.15)

In fact, when applying (3.5) we initially have (S 4+ T') on the right-hand side, but since
S > 072T by assumption, we can replace this by S up to a d-dependent constant.
Furthermore, in applying (3.5) we arrive at a slightly different form for the integral in
E(x), namely

L(A=2p)S]/(S+T)

0

1—w T

(S+1T) / (T)dw:T / (p+ m(lprfz))dz+Error
(L(A=2p)S]+X)/(S+T) X/T

where the equality is facilitated through the change of variables z = T-1(S + T)w —
T~ (1-2p)S]) and the error (which comes from replacing | (1—2p)S| by (1—2p)S after
the change of variables) is bounded in magnitude by 2(5—1-;-7“) That error term can be
absorbed, as in the case of C(k) in (3.10), via the triangle inequality. This yields (3.15).
Combining (3.13) with (3.14) and using Bonferroni’s inequality (and the fact that
under our assumptions (S + T)?/3/12 < kS?/3/6) we see the first inequality below

0
T kS2/3
M) — S — >
P[X/ngaga/JhT(X,n) T/ (p+2(s+T)(1 2~ 2))dz| ]
X/T
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>P[A]+P[D(x)] + P[E(r)] —2>1— ¢ 'S%e ",
while the second (which holds for some ¢ = ¢(§) > 0) uses (3.7), (3.11), and (3.15).

Proposition 3.6 (1) involves a maximum over both | X/S| < e/4 and |Y/S| < ¢/4. This
result follows from the above inequality by the triangle inequality and union bound. O

4. Linear trajectories of second class particles and proof of Theorem 1.3

Recall from the beginning of Section 1 that A; = (n,, X ) denotes ASEP started with
first class particles at every site of Z<_;, a single second class particle started at the
origin, and all other site empty. Let F, denote the o-algebra generated by A; up to and
including time s, for s € R>¢. For any event E, we will write P[E|A,] := E[1g|F;] for
the conditional probability of E given F,. In Section 5 we will prove the following.

Proposition 4.1. For any S > 2 let T = S(log S)~! and define the Fs-measurable random
variable pg € R by the relation 1 —2pg = S~' X g, the e-dependent event

Ps:={ps € (e,1 —¢)} (4.1)
and the Fgyr-measurable events
ES := {XS+T - Xs>(1—-2pg)T — 51*1/200},

Eg = {XSJrT - X5 < (1 —2PS)T+51_1/200},

and Es := E5 NE5. Then, for any ¢ € (0,1/4), there ewists ¢ = c¢(¢) > 0 and a Fs-
measurable event Hg such that and all S > 2 we have

P[Ps N (Hs)] < ¢ te 5" and P[Es|Fs] > (1—c 'S V%) 1nips.  (4.2)
The constants ¢ = c(e) can be chosen so as to weakly decrease as € decreases to 0.
The following is a corollary of Proposition 4.1.

Proposition 4.2. Define

. X X .
U”‘f:hminth, Us“p:limsuth, L. = {|JU™ - U™P| < }.

t—o00 t—00

Then, there exists ¢ > 0 such that for all e € (0,1/4), P[L¢] > 1 — ce.

Before proving this, let us see how this readily implies Theorem 1.3.
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Proof of Theorem 1.3. Observe that for ¢/ < ¢, L, C L,.,. In other words, as ¢ — 0 the
events increase. Their intersection L = N.¢(g,1/4)Le is equal to the event that U inf _ pysup
which is exactly the event that lim;_, % exists. By the aforementioned containment
and the bound P[L.] > 1—ce from Proposition 4.2 we see that P[L] = lim._,o(1—ce) = 1,

thus proving the almost limit, as desired. O

It remains to show how Proposition 4.2 follows from Proposition 4.1. The idea is to
work with a set of times S,,, that grows so that Sy,+1 = Sy +Sm/ 1og Sp,. Taking the first
time Sy large enough with probability like 1 —2¢ we have that pg = (1— St X s,)/2 lies
within (e, 1—¢) — this is the event Pg,. From Proposition 4.1 there exists a hydrodynamic
event Hg, which is exponentially likely on the event Pg, such that on Pg, and Hg,, the
event Eg holds with probability like 1 — ¢=1S~1/5. On the event Eg, we can bound how

much pg, and pg, can differ to be like Sy 1/200

. Then, we can iterate on each subsequent
time 51, S, and so on. Since the S, grow like V™, the total change in the pgs as well as
the total probabilistic error built up over each iteration can be made arbitrarily small.
This shows that on the sequence of times .S;,, we can show the claim of Proposition 4.2. For
intermediate times, we use a brutal Poissonian bound on the motion of ASEP particles
to show that wandering cannot change the velocity much there either.

Before proving Proposition 4.2 we introduce the set of times involved in our multi-scale

argument and some properties of functions of those times.

Definition 4.3. For any Sy € R4 define T,,,, S, € Ry inductively as follows. For each
m € Z>1, set Ty—1 = T(Sy—1) where T(S) := S(log S)~! and set Sy, = Sy—1 + Tn—1-
We will make use of the following two properties of T'(.5):

P; The function S +— S + T'(S) is increasing for S > 2.
Py T'(S) has a unique minimum for S > 2 at S = e in which case T'(e) = e and T'(S) is
increasing for S > e.

The following lemma provides a lower bound on each S,,,. It may be helpful to note that
the recursion for Sy, is a discrete version of solving the differential equation dS(m)/dm =
S(m)/log S(m) with S(0) = Sy, whose solution is S(m) = exp(1/2m + (log Sp)?).

Lemma 4.4. For each m € Z>1, we have that Sy, > eV, Moreover, for any real § > 0
and ¥ > 0, there exists D = D(6,9) > 1 such that if So > D, then

(a) i S0 <4, (b) i e VSm <4, (c) i e VT <.
m=0 m m

=0 =0

Proof. We establish the first statement of the lemma (that S,, > eV™) by induction
on m. The base case m = 1 is verified by using (P1) and (P3) to see that S + T'(S) is
minimal at S = 2 and exceeds 2 + e > e¥1 there. To show the induction in m, assume
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that S,,, > eV™ holds for m = k, for some k € Z>1. Then the induction follows from the
inequalities

Spi1 = Sk + Ty > eVF(1 + k~/2) > VAT,

The first equality is by definition; the next inequality uses P; and the k& = m induction
hypothesis; the final inequality follows since exp ((k + 1)/2 — kl/z) < exp (%%/2) <
1 4 k=12, Here, the first inequality relies upon writing (k + 1)%/2 — k¥/2 = k1/2(1 +
k=112 — k1/2 and the inequalities (1 4+ )Y/ < 1+ 2/2 and = < e® (both for 2 > 0);
the second inequality is equivalent to (2k'/2)~' < log(1 + k~'/2) which follows from
z/2 < log(l + z) for z € (0,1).

Turning to (a) and (b), observe that we now know that S, > max(Sy, eV™). Thus

) oo o] 00 o
E S;Lﬁ < E min (Saﬁ7 e*ﬁﬁ) § 67195',” < E efﬁmm(sme )
m=0 m=0 m=0 m=0

In both of these expressions it is clear that as Sy goes to infinity, each summand goes
to zero. Additionally, if we drop the Sy term each summation is finite. Hence, by the
dominated convergence theorem, each summation goes to zero as Sy, and thus taking
So large enough we can upper bound each sum by 0 as desired. The argument for (c)
follows similarly. Since Sy > 2, combining (P;) and (P2) we also see that for m € Z>q,
T, > So(log Sp)~t. On the other hand, we also know that the function S +~ T(.5)
monotonically increases as S increases and thus, by the first part of the lemma which
gives S,, > V™, we have that T, = T(Sm) > T(e‘/m) = e\/m/\/ﬁ. Using T,, >
max (So(log Sp)~*, evm/ v/m) and the dominated convergence theorem yields (c). O

Proof of Proposition 4.2. For the duration of this proof let P5 and Hg denote the events
Ps, and Hg coming from a particular value of ¢ (this dependence was implicit in the
notation used elsewhere). For a given Sy > 2 and €9 € (0,1/4), define recursively for
m € Zzl

Em = Em—1 — 5;1_/1200
For a given ¢ € (0,1/4), it follows from Lemma 4.4 that there exists D = D(e) > 0 such
that for all So > D

Z 5;1/200 < e/4, Z 6—1517—11/5 <e/2, Z 0—16_0571,{12 <e/2, Z e~ Tm < £/2,
m=0 m=0 m=0 m=0
(4.3)
where ¢ = ¢(¢) is given by Proposition 4.1. For k € Z>( define the event
B k-1
L (k) = () P& NHY" NEs, (4.4)

m=0
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with the convention that EES (0) = Q, the full sample space, and that [g = EES (00) is
0 0 0
the infinite intersection. We make two claims:

Claim 1. For all € € (0,1/4) there exists D = D(g) > 0 so that for all So > D,
PlLg,] > 1 4e. (4.5)

Claim 2. Let W§ 5 = {supgc,cy<g | Xs/s — X /s'| > €/2}. For all e € (0,1/4) there
exists D > D(g) > 0 so that for all So > D,

o0
Z PWg, s...] <& (4.6)

m=0

Assuming these claims, let us complete the proof of Proposition 4.2. Assume that
e =¢o € (0,1/4) is given and D = D(e) > 0 is suitably large so that for all Sy > D,
(4.3), (4.5) and (4.6) hold. This implies that

g (&
0N (We,s..) (4.7)
m=0

holds with probability at least 1 — 5. Assume below that this event (4.7) holds.
On the event Eg, , we have that

Xs,.,, Xs,

Smi1 S < 8,100 (4.8)

By (4.3), the right-hand side summed over m € Z>q is bounded above by ¢/4. Thus, on
the event in (4.7) it follows that

X Xs ,
sup ZSm 2 5m <e/2.
m,m’€Z>q Sm m/
This controls the maximal change in X ¢/.S on the set of times Sy, St, . . .. This is comple-

mented by the control on intermediate wiggling that is afforded to us by the intersection
c
of the events (Wg S ) . Combined, this implies that on the event in (4.7)

myPOm—+1

Xs Xs/

S S

sup
s,8'>D

/

This implies that on the event in (4.7), U™ and U differ by at most . Since the
probability of the event in (4.7) is at least 1 — 5¢, Proposition 4.2 follows.
What remains is to prove the two claims from above.
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Proof of Claim 1. Observe that

PILY] =P[PY] — P[PY N (HY) ] — P[PY NHY N (EL)T - > PLY N (PY) ]
k=1

oo

=N "PLYE NP N (HE )T =D PILYE NP NHE N (EL)).
k=1 k=1

Observe that P[PQ] > 1 — 3¢ provided Sp is large enough (as follows from the weak
convergence of p to a UJ0,1] random variable via Proposition 1.2). Observe now that
for any k > 1, P[Lg N (PY )] = 0. This is because the combination of the event P
and EES’;II implies the event Pg* (this follows from (4.8) which shows that |py, — pj,_;| <
S}:{mo = ep_1 — €). Observe that for any k > 0,

1/12

PLE NP N(HE )] <P[PE N(HY )] <clem

where the constant ¢ = ¢(gg) > 0 can be chosen the same for all k (as follows from the
final statement in Proposition 4.1). Similarly observe that for any k > 0,

~ . —1a-1/5
PILE NPY NHE N(EG)] =E [1[3; 1Pg’;ﬂH;’ZE[1(E;’Z)C|~FSk]:| <5

where, as above, the constant ¢ = ¢(gg) > 0 can be chosen the same for all k. The first
equality is evident from conditional expectations, while the second relies on the equality
].Psk HE IEI[ |‘FSk] = ].Pfk AHZ (1 —E I:].Egk' \fgk]) along with the second inequality
in (4 2) and thekﬁnal statement in Propositionkal.l.

Putting together the above deductions we see that

]P’[Eg%] >1—3¢ — Zcflefcsl/12 — 26715;1/5 >1—4eg
k=0 k=0

by the second and third inequalities in (4.3). This proves Claim 1.

Proof of Claim 2. We start by noting a brutal Poisson process bound on the second
class particle. Recall that this particle moves left into an unoccupied site at rate L, and
left into a site occupied by a first class particle at rate R (this is the rate at which the
first class particle moves right and switches places with the second class particle). Since
R > L by assumption, this implies that we can lower-bound the trajectory of X g by
a Poisson random walk that jumps to left at rate L + R < 2R. By similar reasoning,
we can upper-bound X g by another Poisson random walk that jumps to the right at
rate L + R < 2R. Recall that for a Poisson (A) random variable Z, if x > X then
P[Z > z] < (eN/z)%e™ ™.
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Now, observe that by the union bound and triangle inequality

XS771 XS
S s

-
i

€ WG Wa _
P[Wsm,5m+1] < 2P[Wsm75m+1] where WSnuSm+1 - sup
SE[Sm Sm+1]

Noting that

-X; s—-8S,
_ — m X
S s s + sSm, Sm

we see that

s—Sm
sSm

XSm _Xs
S

Sm

> 6} U { sup > 6}

8 SG[Sm.,Sm+1] 3 '
By the brutal Poisson bound above, there exists a D = D(e) > 0 such that for all
So > D,

~5
WS”maS”m+1 g { Sup
SG[Sm,Sm+1]

- X € Xs —X €
P [ sup Sm > —} <P [ sup Y log Sm] <e TIm,
SE[SVY‘L)S77‘L+1] S 8 sE[Sm,Serﬂ T'"L 8
Similarly, we see that
-8 € X €
IP’[ sup i X, | > —] < ]P’[ sup LN log Sm] < e Sm,
5€[SmsSumia) | 55m 8 s€[SmsSmia) | Sm | 8

Provided D is large enough, the sum over m of the above upper bounds e~ 7= and
e~%m are bounded above by £/2 which implies Claim 2 and completes the proof of

Proposition 4.2. 0O
5. Proving Proposition 4.1

To prove Proposition 4.1 (we focus on the Ef case as the Eg case follows immediately
from particle-hole symmetry as in Remark 2.3) we start in Definition 5.1 by coupling A
with a slightly different multi-species ASEP B obtained from A at time S by adding a
number of second class particles to the left of X g (Fig. 7). Appealing to Proposition 2.4,
we can control the behavior of X g7 in terms of the behavior of the bulk of the new
second class particles. That behavior can be controlled by hydrodynamic estimates. All
of this, however, requires that the time S density profile in A is close enough to its
hydrodynamic limit. This condition is encapsulated in the event Hg (see (6.17) in the
proof of Proposition 5.4).

Definition 5.1. Fix v = 1% (i.e., something close enough to 0). Recall that in Ag the

second class particle is denoted by X g. Given the state of Ag we define a new process
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X
Ag <—o—o—0—o—es—o—o—>
Z(](4) Z[](B) Z()(Q) Z[)(_l)
R .

—281=7 -1

B,

Fig. 7. The coupling between Ag and By from Definition 5.1. The second class particle (black circle) in Ag
moves to the origin and everything is translated relative to that, and additional second class particles (grey
circles) are added with probabilities given in (5.1).

B which is a multi-species ASEP with left jump rate L, right jump rate R, and the
following initial data. Each site j € Z is initially occupied in By by a first class particle
if and only if j + X g is occupied by a first class particle in Ag. Site 0 in By is initially
occupied by a second class particle and, furthermore, for each site j € [-2S5'77, —1]
with j + X g not occupied by a first class particle in Ag, By(j) contains a second class
particle independently and with probability

(Suig) <1ps+2{9>1. (5.1)

See Remark 5.2 for an explanation of the choice of these probabilities and Remark 5.3
regarding their positivity, and recall pg is defined in Proposition 4.1. Let M equal the
number of second class particles in B. Denote their tagged positions at any time ¢ > 0
by Z;(1) > - - > Z;(M), so that Zy(1) =0. Set {Z:} = {Zt(l), .. .,Zt(M)}.

Equivalent to the above description, we let B; = (1,,&;) and assume initial data
M0(j) = n(X g + j) for all j € Z, while for &y we assume that &(0) = 1, and that
for all j € [-25177, —1] with 7,(j) = 0, the éo(j) are independent Bernoulli random
variables with probability (5.1) of equaling 1. For all other choices of j set ao(j) = 0.
The Markov dynamics for (7, &) are those of first and second class particles under the
basic coupling.

It will be convenient, e.g. in Section 6, for us to use Bgl) to denote the occupation
variables for just the first class particles in B; and B§1U2> to denote the occupation
variables for the union of first and second class particles in By, i.e. B,(fl) = 7, and
B(luz) =7, + &

¢ up t

The above definition of B depends (i.e., is measurable with respect to Fg) on the
location X g of the second class particle in Ag and the associated hydrodynamic density
pg defined by the relation 1 —2pg = X g/S. We will also need notation where we define
a version of B relative to a specified choice of pg and hence also X g. Let

Ig={pe(e,1—¢):S(1—-2p) €eZ}, and for p € I¢ let X§ =S(1—-2p). (5.2)

These represent the potential values of the random variables pg and X g respectively.
For such a p € I§ and corresponding X%, define B” exactly as above but with pg
and X g replaced by the specified values p and X%. Similarly, let B and BUIV2»
respectively denote the first class particle process, and union of first and second class
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Particle density

—2817 §
Spatial location

Fig. 8. The average particle density versus spatial location for a typical instance of By, as explained Re-
mark 5.2. Since there are only second class particles in [— 281-7, 0], the densities only differ therein. The

upper line there corresponds to the density of the union of first and second class particles Bgluz) while the
lower line is just for first class particles Bél).

particle processes. In this notation, B = BPS where the variable p is replaced by the
random variable pg. Recall that we are using the convention that bold symbols are
random variables while their unbolded counterparts are deterministic variables.

Remark 5.2. Let us briefly explain the choice of the probabilities in (5.1). In view of
the hydrodynamic limit for the ASEP with step initial data (as in Proposition 3.4 with
p=1), the probability that a first class particle occupies a site j € [—&S5,eS] in By is
approximately pg — s%. Therefore, the probability that site j is empty should approx-
imately be 1 — pg + 55 S0, (5.1) essentially ensures that the density of either first or
second class particles in the interval [—-2S5'~7, —1] in By is approximately constant and
equal to pg + S77. In particular, the density of particles in By decreases linearly with
slope 55 on [-&S, —25177] to pg + 577 at —25'77, remains constant at pg + S~ on
[-251=7, —1], discontinuously decreases to pg at site 0, and then decreases linearly with
slope % on [[0,&S5], see Fig. 8.

Remark 5.3. Depending on the value of pg and S, the probabilities in (5.1) may exceed
1. However, for a given value of € we can choose ¢(¢) in the statement of Proposition 4.1
small enough so that for pg € (,1 — ), either the expressions in (5.1) remain bounded
in (¢/2,1—¢/2) for all relevant j, or 1 — ¢~ 1S~1/® < 0. In the former case, the Bernoulli
random variables are well-defined, while in the later case, the second claimed inequality
in (4.2) in Proposition 4.1 is trivially true (since the probability will always exceed 0).

Now observe that (2.1), from Proposition 2.4, implies that for any y € Z,

M
P(Xsir— Xs <ylFs] < — Z PB[Z7(j) < y]. (5.3)

The left-hand side of this inequality is measurable with respect to Fg while the right-
hand side is measurable with respect to the sigma algebra formed by Fs and the Bernoulli
random variables used to form By from Ag. In particular, for any choice of the Bernoulli
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random variables, the inequality holds. We can rephrase the inequality (5.3) in the fol-
lowing manner: Let K be uniformly distributed on {1,..., M}, then (5.3) is equivalent
to

P[X5+T >Xg+ y|]:s] > ]P[ZT(K) > y‘]‘—s} (5.4)

In light of (5.4), we see that in order to establish Proposition 4.1, it suffices to con-
trol the locations of most of the second class particles in B with high probability. The
following proposition achieves this aim.

Proposition 5.4. For any e € (0,1/4), there exists ¢ = c¢(g) > 0 and Fs-measurable events
Hs such that for all S > 2,

P[Psn (Hg)] < ¢ tee5"" (5.5)
where P is defined in (4.1) and

P[[{{ZT}} N [(1—2pg)T — 5%, 00)| > M(1 - §7%)

fs} > (1 — 67167651/12)1Hsmp5.
(5.6)

The constants ¢ = c¢(g) can be chosen so as to weakly decrease as € decreases to 0.
This will be proved in Section 6, but first we prove Proposition 4.1 assuming it.

Proof of Proposition 4.1. Let Hg and ¢ = ¢(¢) > 0 be given as in Proposition 5.4, in
which case the first inequality in (4.2) holds on account of (5.5). We argue here that

1 e/
PEZ|Fs] > (1—c e 5 ) 1pgnps. (5.7)

Assuming this, we can deduce the same bound with Eg. This is because after applying the
particle-hole symmetry (Remark 2.3) to our process, the initial data remains unchanged
< >
and the events Eg and EZ swap.
To show (5.7), assume that Hg N Pg holds and let (recall {Z 1} defined below (5.1))

A={Zr}n[(1-2pg)T - Sl_%,oo)
and define the events
Fs={Z7(K)>(1-2pg)T— S22}, and Ggs={|A|>MQ1-S"7)}
(recall that v = 1/100 and K is uniformly chosen on {1,..., M}). From (5.4) it follows

that P [EZ|Fs] > P [Fs|Fs]. Since M = [{Z7}], the event Gg says that the fraction
of particles in {Z7} which lie in [(1 — 2p5)T — T'~%,00) exceeds 1 — S~1/5. The
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event Fg is that a randomly chosen particle in {Z1} lies in [(1 —2pg)T — Sl_%,oo).
Thus, conditioned on Gg, the probability of Fg exceeds 1 — S~!/5. This implies that
IP’[FS|.7-"S] > P(Gg|Fs) — S~/% and by Proposition 5.4, P(Gg|Fs) > 1 — ¢~ le=es"?
Putting this all together shows that P [E§ |Fs] > 1— ¢ 15715 which yields the second
inequality in (4.2) as desired. The final sentence of Proposition 4.1 follows from that of
Proposition 5.4. 0O

6. Proof of Proposition 5.4: reduction to a hydrodynamic limit estimate

It remains to establish Proposition 5.4. To this end, we will start by comparing the
multi-class ASEP B from Definition 5.1 to two versions of ASEP in Definition 6.1 (B()
will be compared to 5(1) while BAY?) will be compared to £<1U2)). The idea, developed
in Proposition 6.2 is that the height function for !;“(()1) will be close (by close, we mean
at most order S3/% apart with probability at least 1 — 0_16_051/12) to that of B((Jl) (the
61u2) will be close to that
of Bélw) (the union of first and second class particles in Bg). This event of height

first class particles in Bp), while the height function for

function closeness is part of the hydrodynamic event Hg which appears in the statement
of Proposition 5.4. Proposition 6.2 then shows that the simpler 5(1) and £<1U2) processes
evolve over time T' = S/log S to be close to the same hydrodynamic limit in the region
(=00, (1 —2pg)T — S'=3). Since the number of second class particles is close to S'=2?
which is much larger than S3/4, this implies that most of the second class particles in
B are in the complementary region [(1 — 2pg)T — S'~2%,00) which is exactly what
we seek to show in Proposition 5.4.

The processes Bgl), BSUQ), gil) and £§1U2) all depend on the random variable pg
(recall from the beginning of Section 5). In order to make the comparisons mentioned

gl)’p, B§1U2),p, Egl)’p and £§1U2),p for deterministic values

above, we will instead consider B
of p € Ig (recall from (5.2)). Taking a union bound over all potential values of p we

establish that for random pg, the comparison likewise holds.

Definition 6.1. For p € (¢,1—¢), let 5,51” and {Elw)’p denote two versions of ASEP, each
with left and right jump rates L and R and initial data given as follows (see also Fig. 9).
For each j ¢ [—&S5,eS], we deterministically set E(()l)’p(j) =0= (()luz)’p(j). To define
Eél)’” elsewhere, for each j € [—&S9,eS], we define 5(()1)”’(]') according to independent
Bernoulli random variables with probabilities

T P R R IR Mt

In the language of Definition 3.1, this initial data is Tgp)—distributed on the inter-
val [—eS,eS]. We define ﬁélw)’p(j) for j € [—&S,eS] so for each j € [—€S5,e5] \
[-251=7, —1],

P[ (glUQ)’p(j) _ 1] — L P[ (glUQ)vP(j) :0} = 1—P+ ;_Sv
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Particle density

Spatial location

Fig. 9. Particles in &g”’p and £61U2)‘p (see Definition 6.1) are initially present according to independent
Bernoulli random variables with probabilities give by the plot shown here. The probabilities coincide for
ggl)’” and £élU2)’p, except in the window [725’177, —1] where the ﬁ[()lUQ)’p probability remains flat and the

5[()1)”’ probability decreases linearly.

while for each j € [—25'~7, —1],
Peg () =1]=p+57 P& () =0]=1-p-57".

Again, these choices are mutually independent over all j. Moreover, we assume that all
of these Bernoulli random variables are chosen independent of the state of By.
Finally, set 5§1) = Eil)’ps and §§1U2> = £§1U2)’ps, i.e., the processes just defined above

but with p replaced by pg determined by the location of the second class particle in Ag.
Under these choices, we have the following lemma, which essentially states that

!;“él) initially approximates B(()l) and .E(()lUQ) initially approximates Bélw) (recall Defi-

nition 5.1).

Proposition 6.2. For all e € (0,1/4), there exists ¢ = c(e) > 0 such that for

Ds(B,¢) = { max 00(j;B) —bo(j;€)| > ST}, Mg ={|M-5"2]> 5%}

and Pg as in (4.1), the following holds for any S > 2:

P[Ds(BY,¢W)nPg| < ¢l (6.2)
P [DS(B(1U2)7£(1U2)) N Ps] < C—1e—csl/12’ (6.3)
P[MgnPg] < ¢ lemo"™ (6.4)

The constants ¢ = c(e) can be chosen so as to weakly decrease as € decreases to 0.

Remark 6.3. Note that in Proposition 6.2, S comes into the definition of By since it
determines that time at which we observe and modify the state of \A; S comes into the
definition of 5(1) and 5(172) in determining the parameters of the Bernoulli occupation
variables; and S comes into the definition of pg since (1 —2p¢)S = X g. Also, note that
for any Sy > 2, by taking C' large enough and ¢ small enough, we can make the bounds
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in Proposition 6.2 trivial for S < Sy (i.e., make the right-hand side exceed 1). We will
use this in proving this result. Also, note that our proof of (6.2) and (6.3) applies for
S3/4 replaced by any power of S exceeding 2/3. We choose 3/4 as it is sufficient for our
purposes.

Proof. Equation (6.2) follows readily from the triangle inequality and a union bound
by combining Proposition 3.4 (which controls the deviations of the height function for
B(()l) around its hydrodynamic limit) and Lemma 3.2 (which controls the deviation of
the height function for E(l) around its hydrodynamic limit). The proof of (6.3) is more
involved since we need to track the effect of the additional particles added to go from
Bél) to B(()IUQ). We give the details below.

Recall I§ from (5.2) and observe that the event on the left-hand side of (6.3) satisfies

Ds(B!?), ¢ nPs C [ ] Ds(BI,612%)

pEL

Since |I§| is of order S, to establish (6.3) it suffices to show that there exists ¢ = ¢(e) > 0
such that for all p € I'g and S > 2

P [DS(B“UQ)’I), £(lu2),p)] < C—le—csl/lz . (65)

Observe that for any choice of function P(1V2)(5), we have
DS(B(1U2),p’€(1U2),p) C DS(B(1U2)7P) N DS(£(1U2)”’)
where (Dg(€1Y??) is likewise defined with €12 replacing B11V2)7)

Ds(B!2)7) = { max 0o (j; BE2 ) — pU2e ()| > 51 /21

Thus, to prove (6.5) it suffices to find P1Y2):2(5) such that there exists ¢ = c(e) > 0 so
that for all p € Ig and S > 2

P [Dgw)’p;’@] < clemest and P [ngIUQ))p;g] < clemest?, (6.6)

We make the natural choice (defining P(Y2)2([a,b]) = PUY2r(q) — P(IY22(h) for
a,beZ)

PU22(j) = E[ho(j; €199)]
from which the second inequality in (6.6) follows immediately from applying Hoeffding’s

inequality (in the spirit of Lemma 3.2). This gives a stronger bound with S3/* replace
by S/2, though we will not need this here.
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It remains to demonstrate the first bound in (6.6). This follows from showing that
there exists ¢ = c(e) > 0 such that for all p € I§ and S > 2

P _ ’h ("B(lw)’p) P(1U2),p( )‘ > 58/ P B
jefo.esy 10V J | <cle 7
_ 53/4 1/12

P ’ - B(1U2):0) _ p(1u2)p(; ’ ST o rges o
_je[[—2lg?§v,—1ﬂ f)o(] ) (4)| > 6 <c e (6.7)
- 1 (1u2) (1U2) 1 S3/4

]P ’ .7 72S - ,B Py P 5P ', 725 — ’ >
_jG[[ferr}%DQ(SI*W]] [70([[] ]] ) ([[] H) —6 :|

1 al/12
<ec 16 cS

b

where in the final inequality we recall the notation from (2.3). The first and third in-
equalities above are immediate from (6.2): For j € [0,eS] we have b (j;B(1U2)”’) =
ho(j;B(l)’p) and for j € [—eS,—2S5'77] we have ho([[j,fQS“V]];B(lw)’p) = ho(ﬂj,
—28517]; B(l),p)_

Thus, we are left to show the middle inequality in (6.7). To do this we will split the
interval [-251~7, —1] into pieces of size $?/3. On each of these we will control the number
of first class particles in BUY2+ 6 order S1/3 by using the final part of Proposition 3.4
(as we are dealing with step initial data), and then control the number of second class
particles by bounds on sums of Bernoulli random variables. This will yield an upper and
lower bound with error of order S*/3 on the number of first and second class particles
in B1Y2* within each interval. Summing over order S'/? such intervals introduces an
error of order S2/3 which is still much smaller than the S%/* allowed error.

Define Kg = [25'/3~7| and intervals Ij, = [—(k+1)S%/3, —kS?/3] for k € [0, Kg —1]
and I, = [-25'77, —K552/3ﬂ. Let jo,...,JKs denote the endpoints of these intervals,
i.e., I = [jk+1, k] and notice that the union of these intervals covers [-251~7, —1]. Since
bo (j,B(1U2) p) and P(1Y2)r(5) are both 1-Lipschitz functions and since S?/% <« $3/% it
suffices to show the following claim: there exist a constant ¢ > 0 such that for all p € Ig,
ke ]0,Kg] and S > 2

53/4

P |:'h0(jk;B(1U2)’p) - P(1U2)’p(jk)‘ > } <clemesV” (6.8)

This implies the middle equation in (6.7) since the most that o (j; BH2#) — PAU2)0(5)
can change over j € Iy is by 2|I;| = 28%/3. For large S, this is much smaller than S3/4/24
(while for small S, we can just choose ¢ small enough so that the right-hand side of the
middle equation in (6.7) exceeds 1, and hence the relation there trivially holds).

For each k € [0, Kg] define Firsty, = hO(Ik; B(l)’p) and the event

Fr(k) = {p52/3 2k + 151/3 k83 < Firsty, < pS¥3 + 2k + 151/3 /@'5'1/3}
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that the number of first class particles in Ij, is within xS'/? of the expected number
according to the hydrodynamic limit. Noting that the term pS?/3 + QlﬂT“Sl/?’ agrees
with the hydrodynamic limit profile for step initial data, we see that by the final part of
Proposition 3.4 there exists ¢, kg > 0 such that for all k € [0, Ks] and s € [ko, S*/3/2],
P[Fr(k)] < ¢ 'e™**. On the event Fj(x), we can bound the number of empty sites
Empty, := 52/3 — First;, for B at time zero in the interval I, by

2k+1
4

(1—p)S?#3 — SY/3 — kSY3 < Empty,, < (1 — p)S?/3 — 2k4—+151/3 + KSY/3,
As explained in Definition 5.1, in order to construct B2 from B™*)* on the interval
I;., we replace a hole at location j by a second class particle (independently over all
j € Ij) with the probability in (5.1). Let us denote this probability by Q(j). Observe
that Q(j) increases as j decreases, and thus we can lower bound the total number of
second class particles on Ij, by replacing Q(j) by Q(—kS?/3) for each j € I, and likewise
upper bound the number by using Q(—(k + 1)52/3). This shows that given Empty,,, the
expected number second class particles that will be added in the interval I will be
bounded between Empty, Q(—kS?/3) and Empty, Q(—(k + 1)S?/3). Call Second,, the

number of second class particles added in the interval I and define the event

Sk(k) == {Empty,~C . Q(—k‘SQ/S) — kS1/3 < Secondy,

< Emptyy, - Q(—(k +1)5%/3) + n51/3}.
By Hoeffding’s inequality there exists ¢, kg > 0 such that for all k € [0, Kg] and k > ko,
P[Sk(k)] < c te .
On the event that both Fy(x) and Sk(x) hold, it follows that
(p+577)82%/3 — 4kSY3 < Firsty, + Second, < (p+ S77)S?/3 + 4xSY/3

where we have expanded the terms Q(—kS?/3) and Q(—(k+1)S?/?) and absorbed errors
into the 4x5'/3 term. Recalling that POY2#(I},) = (p+S77)S%3 and b (I; BMY2*) =

First, + Secondy, and using the bounds above on P [Fy(x)] and P [Si(k)], we conclude
that there exists ¢, kg > 0 such that for all k& € [0, K5 and » € [ro/4, S%/3 /2],

P Uf)o(fk;B(lw)’p) _ P(1U2),p(Ik)‘ > K51/3:| < Lok, (6.9)

Taking x = S'/12/8 and a union bound over all k € [0, K] leads to (6.8), as desired.
The inequality, (6.4), follows from what we have shown in (6.7) above upon noting
that
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M = o([-25"7, =1]; BU?) —bo([-25"7, -1]; BY).

Notice that the centering of M by S'~27 is consistent with the hydrodynamic limit,
namely that the area of the triangle bounded between the two profiles in Fig. 9. O

Having established Proposition 6.2 we now know that the initial condition for the
height functions of BY and E(l) as well as for BV and 5(1U2) are, respectively, close to
order $3/4. The next result, Proposition 6.4, will show that the product form initial height
profiles for 5(1) and €(1U2) evolved over a time interval T" will be close to order at least
T3/* to their hydrodynamic limits (at least when focusing to the left of the characteristic
velocity 1 — 2pg). Proposition 5.4 follow then follow by combining Proposition 6.4 with
Proposition 6.2 and the monotonicity afforded to us by Lemma 2.6.

Proposition 6.4. For any € € (0,1/2), there exists ¢ = c(e) > 0 such that the following
holds for any S > 2 (recall T = S(log S)~!). Define the interval and function

S 1
jS7T,p: |:_ %a (1 - 2/))T - Sl_§:|7
B T(1—2p) Y2 - Xx?
o)~ (04 555 )0 =0+ sy

as well as the mazimal deviation of the height function and hydrodynamic limit function

DiffS 1(6,p) = _ max  (hr([X,Y];€) — Hsr,p(X,Y)),

X,YeTs,1,
Diffs (&, p) = X,YHE%}S{,T,,J b7 ([X,Y];€) — Hsr,o(X,Y)]
= max (Diff§ (¢, p), Diff 5 (€, p))
Then we have that
P [{Diffs,T(é(”,p) > 534 (V{ps € (e.1 - 5)}} <c eSS (6.10)

P [{Diffsj(g(w),p) > %4 (M {ps € (1 - 5)}} <c e (6.11)
The constants ¢ = c(e) can be chosen so as to weakly decrease as € decreases to 0.

Proof of Proposition 6.4. As in the proof of Proposition 6.2, we will demonstrate that
there exists ¢ = ¢(e) > 0 such that the following holds for all S > 2 and all p € I§ (recall

(5.2)):

P {Diffs,:r(é(l)”’,p) > 53/4} ¢ oo (6.12)

IN

P |:Diﬁ‘S7T(£(1U2),p’p) > 53/4} c—le—es'/1? (6.13)

IN
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Having shown this, the results in the statement of Proposition 6.4 follow by a union

bound (absorbing the resulting linear prefactor of S into the exponent ¢~ te™¢% 1/12).
By Definition 6.1, the initial data for €1 is T distributed (recall (3.4)) on

[—£S,eS]. Thus, (6.12) follows from the first statement of Proposition 3.6 (with x = S*/12

there), together with the fact that

Y/T

T / (p + ﬁ(l 9y z))dz = Hsr (X, Y).
X/T

To establish (6.13), first observe by Lemma 2.2 that 5(1)’p and é(luz)”’ can be coupled
so that b ([X, Y]; €1922) > b, ([X, Y]; €P)P), for each ¢ > 0, whenever X < Y. By this
and (6.12), there exists ¢ = ¢(e) > 0 such that for all S > 2 and all p € I (recall (5.2)):

P Diﬂ-gT(E(lLJQ),p’p) > S3/4:| <P |:DIH§T(€(1)”07P) > S3/4:| < 7167551/12'
So, it suffices to establish the complementary bound
P {DiHET(é(lLﬂ),p’p) > 53/4} < C—le—c51/12_ (6.14)
. . y ~(1U2)ap (p) . . . .y P .
To establish (6.14), let &, be @ 3-distributed (as in Definition 3.5) with 3 =

¢~1S77. Then,

5(()1u2) (z) > £(IU2 P(x), for each = € Z,

~(1U2),
and so by Lemma 2.2 we may couple the associated ASEPs €(1u2),p and 5( B2 such
that

(1U2),p

b ([U, V]];ﬁ(luz)’p) < br([U,V]; 3 ) for any integers U < V. (6.15)

Now, applying the second part of Proposition 3.6 yields

Y/T
~(1U2),p (1-2p—2)T _ 3/4
P X,Y]; ~-T S Y /
B br([X,Y];: € ) /maX{p+ 28+ T) p+S }z >S5
lY/S|<e/4 X/T
< ¢ lemest
(6.16)

Recall that we have assumed X,Y < (1 —2p)T — S'~2. For large enough S, we have
that (1 —2p)T — S'=3 < (1 —2p)T —25~7(S +T). In that case,
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Y/T ( ) Y/T ( )
1-2p—2)T — _ 1-2p—2)T
/max{p—l— 23S +T) P+ S }dz— / <p+72(S+T) )dz
X/T X/T
_ HS,T,p(X7Y)
=

Combining this with (6.15) and (6.16) yields (6.14), as desired. O

Proof of Proposition 5.4. We will start by defining the Fg-measurable event Hg (recall
that E€ is the complement of an event E):

Hg = Dg(BY, eM)e N DBV ¢1Y2ye q Mg (6.17)

where these events (all of which also depend on S but whose dependence is not explicit
in the notation) are defined in Proposition 6.2. Recalling the notation Pg from (4.1)
observe that by the union bound and then (6.2), (6.3) and (6.4) we have that there
exists ¢ = ¢(g) > 0 such that for all S > 2

P[Ps N (Hs)] < P[Ps N Ds(BW, M) + P[Ps N Ds(BM?, £1Y)] 4 P[Ps N Mg]

1 _.ql/12
16 cS )

IN

c

This shows (5.5). Thus, to prove Proposition 5.4 it now suffices to show that for the
choice of Hg in (6.17), (5.6) holds, namely there exists ¢ = ¢(¢) > 0 such that for all
S>2

P H{{ZTHO [(1_2PS)T—517%,00)’ > M(1-c¢157%)

4 q1j12
.7:5} > (170 lo=eS )leﬁPS'

In other words, to prove the above bound we must show that there exists ¢ = ¢(e) >
0 such that for any S > 2, assuming the event Pg N Hg holds, it follows that with
probability at least 1 — ¢ te=¢S " the number of second class particles in the interval
[(1—2pg)T — Si=3, 00) is at least M (1 — ¢~1575). Observe that on the event Hg NPg,

we have that |M — 51’27} < S1 holds and that

P H{{ZT} N ( — 0, —%} ‘ - 0} >1—cle8" (6.18)

P H{{ZT}} N (— %a (1—-2pg)T — 51_%}

< 45%} >1—cteS"" (6.19)

The first of these inequalities follows immediately from Lemma 2.5 (and does not de-
pend on the occurrence of Hg). This is because BY and B2 are the same at time
0 on the interval (—oo, —2S'77) and hence remain the same on the smaller interval
(=00, 28177 —4RT) at time T = S/ log S with probability at least 1 —4e~7/3. We can

find ¢ = ¢(¢) > 0 such that for all S > 2 either (—oo, —25*~" —4RT) C (—o0, —£] and
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1—4eT/3 >1— c_le_csl/m, or1l— c_le_csl/12 < 0. In the first case (which occurs
for large enough S) (6.18) follows, and in the second case (for small S) (6.18) follows
trivially as the right-hand side is negative.

The second inequality, (6.19), relies on Proposition 6.4. Observe that by the triangle
inequality, on the event that

{Diffs (€W, p) < $3/4} N {Diffs (612, p) < 53/} (6.20)
holds in addition to Hg N Pg, it follows that

or ([ 22, (1-2pg) 75" 1] B0 o ([ 22, (1-2pg) 75 1] BO) < 4574

(6.21)
Here we used the monotonicity from Lemma 2.6 to show that the S3/ closeness of
BY and €V, and of BMY? and €1V at time 0 (which holds on DS(B(l),ﬁ(l))C N
Dg (B2 £(U2))e) persists for all time. Then we used the fact that on the event in (6.20)
both & M and 13 (1Y2) have height functions that are within S/ of the same hydrodynamic
limit function Hs71,(X,Y). By Lemma 2.2 and equation (2.3), the left-hand side of
(6.21) is the event

’{{ZT]} N (— ?, (1-2pg)T — 51—%} < 453

whose probability we wish to control in (6.19). By Proposition 6.4 the probability of the
event in (6.20) (that, in conjunction with HgNPg, imply (6.21)) is at least 1—cte=es""
for some ¢ = ¢(¢) > 0. This establishes (6.19).

We can now show (5.6) holds. By (6.18) and (6.19), on the event Hg N Pg, we have

that
{){ZT}} N[(1—2p)T - 5173700)’ > M7453/4}

holds with probability at least 1 — 2¢=1e=eS"" On HsNPg we also have M > S'=27 —
53/4 which implies that there exists Sy > 0 such that

453/4
T gl-2y _ g3/4

Sz m(

M—4S3/4:M(1— )2M(1—S‘1/5).
This implies (5.6), provided S > Sy (for smaller S it follows by taking ¢ sufficiently
small).

All that remains to complete the proof of Proposition 5.4 is to show that the constants
¢ = c(e) in that statement can be chosen so as to weakly decrease as € decreases to 0.
However, this is easily seen to be the case due to the fact that all results upon which we
relied in this proof have a similar qualification on the constants. O
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Appendix A. Rezakhanlou’s coupling

We recall here a coupling which is presented in Section 4.1 of [36]. It is proved there,
though not stated as a quotable result, hence we also include a proof along the lines of
[36]. We will stick with the notation used in that paper to make the comparison there
simpler. This notation is a bit different than what we use in the main body of this paper,
hence we also explain how match to Proposition 2.4.

Let (1, x¢) denote the occupation variables for first class particles (7;) along with the
location of a single second class particle (z). Let p(1) = ¢ and p(—1) = p (and p(i) =0
for all other i) and assume p > gq. The state space for (n;, ;) is {(n,z) € {0,1}* x Z :
n(z) = 0} and the generator is specified by its action on local functions f as

Afmx) = > plo—wn(u)(1—n)[fn"",z) = f(n,z)]

u,vEZ\x

+ (p_ q)(l —U(x— 1)) [f(n»ff— 1) - f(nvx)]

+ (= n@+ D) [f"H" 2 +1) — f(n,2)]
+q[f(™" s+ 1) + f( e — 1) — 2f(n,x)].

Here n*¥(w) is equal to n(v) if w = w, n(u) if w = v and n(w) otherwise. Let P”* denote
the probability measure for this Markov process from initial data (7, x).

It is easy to check that A does, indeed, encode the desired jump rates. The first term
involves jumps which are separate from the second class particle. When there is a second
class particle at « and no (first class) particle at  — 1, the second line gives a jump rate
p — ¢ for the second class particle to move to x — 1, and the fourth line gives a jump
rate ¢, thus a total of rate p. If there is a second class particle at  and no particle at
x + 1, then only the fourth line contributes a jump rate of ¢q. Thus, the second class
particle behaves a expected. If there is a particle at x — 1 and second class particle at
x, then the two switch at rate ¢ from the fourth line, and if there is a particle at = + 1
and a second class particle at x, then the two switch with rate p — ¢ from the third line
and rate ¢ from the fourth line, hence rate p. This matches the dynamics one expects
for first/second particle pairs. This type of case-by-case verification of couplings can be
implemented for all of the other generators that we define below, though we will not go
through it there.

Consider two states 7o > ¢ in {0,1}? and let a be defined via {; = 7 + «, with
a € {0, 1}Z as well. These represent all of the second class particles. By the basic
coupling (and attractivity of ASEP) we can define the joint evolution (1, ay) of first and
second class particles started from ny = 1 and oy = a. We will not record the generator,
though note that it is given in [36, (4.4)]. Let P7* denote the probability measure for
this Markov process from initial data (7, «).

For z € Z, n € {0,1}% and N € Zs1, let AZ(z,m,N) equal the set of o € {0,1}%
such that 37,7 a; = N, n+a € {0, 1}%, a(r) = 1 and a(w) = 1 only if w > z (this is
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not an if and only if). In words, this means that we start with N second class particles
relative to the first class particles at i, with the left-most one at . Associate to such an
a, aset {z:(1),...,2:(N)} of locations for the second class particles.

Proposition A.1. For any x,y € 7, 2o € Z and n € {0,1}% with no(zo) = 0, and for any
N € Z>1 and ag € A= (29,10, N),

N
1 .
Pt 2 y) S 3 ) PT(l) 2 ) (A1)
j=
Proof. To prove this we will introduce a process z; = (z(1),...,2/(N)) which is com-

prised of the locations in «y, but for which the order of the labels can change. We
will then show that for any particular label j € {1,..., N}, there exists a coupling of
(e, z¢, ) such that xy < z;(j) for all ¢. Finally, since the uniform distribution on orders
for z; is preserved, marginally, for all ¢, we will be able to conclude that (A.1) holds.
We need a bit of notation. Let a(u;z) := a(u) = ly—:; for some je{1,...,n} denote the
indicator that there is a second class particle at position u, given location vector z; let
C(u;z) = n(u) + a(u; z) similarly denote the indicator for either a first or second class
particle at position wu.

We now define a coupling of 7; and the second class particle label process z;. Forgetting
about the labels, this reduces to the usual (basic) coupling of first and second class
particles. It should be noted that the labels in z; do not stay ordered. The state space
for (n:,z¢) is evident, and the generator is given by its actions on local functions f as

Bf(n,z) :=(p—q) Y _ n(u)(1 = C(u—1,2)) [f(""",2) - f(n,2)]

u€eZ
N
+(p—q) Y (1=C(z — L2) [f(n,2957") = f(n,2)]
j=1
N
+(p—q) Y _nlz+1) [fn=Th% 27257 — f(n,2)]

+q Y [fOeth et = f(n,2)]

ueZ

~
I
—

Here 2"V denotes the configuration resulting from exchanging the content of sites u and
v in z. In particular, if z; = u and z; = v, then Z = 2" has Z; = v and Z; = u (and
all other values unchanged). It is worth noting that the fourth line in B results in such
swapping of labels between second class particles.

Now, we will demonstrate that for any given j € {1,..., N} it is possible to construct
a coupling (1, z¢, x¢) such that if ¢ < 2z9(j), then x; < z:(j), for all . We have already
defined couplings of (n:, x¢) and (1, 2z:). So, to see that our desired triple coupling exists,
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we simply need to show that if, for some ¢, z; = 2z;(j) = u, then the jump rates for z;
and z¢(j) are ordered so x; jumps left with higher rate than z;(j) and jumps right with
lower rate than z;(j). This is shown by inspection of the generators: The left jump rate
for z; is (p — ¢)(1 — nt(u — 1)) 4+ ¢ while for z.(j) it is (p — ¢)(1 — {(u — 1)) + ¢. Since
ne(w — 1) = 1 implies (;(u — 1) = 1, the rates are ordered as desired; the right jump
rate for z; and z;(j) are both (p — ¢)n:(u+ 1) 4+ ¢. This proves that the desired coupling
exists. Let us denote the coupled probability measure started in state n,z, x by P"%*.

Now we can conclude with the proof of (A.1). For a given «, let zy denote a uniformly
random ordering on the elements of a. The dynamics on z; preserve the uniform ordering
in the sense that for any fixed ¢, the marginal distribution of the order of labels in z;
remains uniform. For any o € AZ(x,n, N), fix j = 1 and use the coupling from the
previous paragraph to see that

P (zy > y) = PP% (2 > y) <PT5%(2(1) > y) = P"%(2(1) > y)
N
LS pre(a) 2 ) (A2

J=1

The first equality is immediate from the coupling since including the z; process has no
baring on the event z; > y. The second inequality is because under the j = 1 version of
the coupling of (1, z¢, x¢), we have that z;(1) > a; provided zp(1) > zo. That inequality,
however, is implied by the assumption that o € AZ(x,n, N) (which means that zo = =
is the left-most particle in a and hence in z). The third equality is again immediate from
the coupling since now x; has no baring on the event z;(1) > y. The final equality is
because we have assumed that the order in z is uniformly chosen and this property holds
for all ¢. Thus, we must average over the events z;(j) > y as stated. O

Proof of Proposition 2.4. In order to match Proposition A.1 with Proposition 2.4 we
take R = p and L = ¢ and then reverse space. 0O

Appendix B. Proof of moderate deviation results and proof of Proposition 3.4

To prove Proposition 3.4, we will use the following proposition that provides upper
and lower tail bounds on h(X;n). These bounds are summarized in Fig. 10 and its
caption.

Proposition B.1. For any ¢ > 0, there exists ¢ = c(g) > 0 such that the following
holds. Let p € [e,1] and nn be ASEP under (p;0)-Bernoulli initial data. For any T > 1,
s > 0 letting Yo := (1 — 2p)T + T?/3 we have (recall from (2.3) that br([X,Y];n) =
br(X5n) —br(Y;n))

w + ST% < clte—cs fOT‘ X e [[_ (]- - 5)T7 (1 - 6)Tﬂ’ <B1)

P hr(X5n) > T
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1253

Yo

Fig. 10. The four bounds in Proposition B.1. The thin solid lines represent the initial hydrodynamic profile for
(p; 0)-Bernoulli initial data with p = 1/2 and step initial data, and the thick solid lines present the evolved
hydrodynamic profiles. The four dashed lines are labeled with the corresponding bounds in Proposition B.1
and the scale of the error bounds are noted as well.

Plhr(X;n) < % —sT3| < c e +eT), for X € [Yo,(1—e)T],
(B.2)
P [hr([X, Yol;m) > p(Yo — X) + ST%] < 26_%7 for X € [~ T.,Y] (B.3)

P[hr([X,Yol;n) < p(Yo — X) — sT%] < c_lT%(e_cs +e Ty for X € [-T,v5].
(B.4)

The constants ¢ = c(g) can be chosen so as to weakly decrease as € decreases to 0.

We will first provide a proof of (B.3) based on a simple coupling argument and con-
centration bound for sums of i.i.d. Bernoulli random variables. Then we will prove (B.4),
assuming (B.1) and (B.2). We then prove (B.1), relying upon a remarkable identity from
[15] that relates ASEP to the discrete Laguerre ensemble. Finally, we prove (B.2) through
asymptotics of a Fredholm determinant formula coming from [13,2].

A few remarks about the proposition are in order. While (B.1) gives an upper bound
on hr(X;n) for all X € [— (1-e)T,(1- 5)T], it is only useful for us (though the decay
is likely not as sharp as possible) for X € ((1 —2p)T, (1 — ¢)T). This is because the
approximation hr(X;n) ~ (Tlf)z holds with high probability if X € ((1 —2p)T, (1 —
e)T) but no longer does for X < (1 — 2p)T. Equation (B.2) gives an effective lower
bound on hr(X;n) for X € [Yy, (1 —&)T]. The reason for the T%/? offset in how we

define Y comes from the proof of this bound where it simplifies the analysis and choice

of contours in the Fredholm determinant used there. The Gaussian T7"/? order upper
bound in (B.3) should be close to tight, while the T%/3 order lower bound in (B.4) is not
tight. We expect the actual lower bound should involve T%/2 and a Gaussian tail as in
(B.3). Such a bound in place of (B.4) may be possible from the Fredholm determinant,
though we do not pursue it (see [2] for an example of such an analysis).

Assuming Proposition B.1, we can establish Proposition 3.4.
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Proof of Proposition 3.4. As in Proposition B.1, let Yy = (1 —2p)T 4 T2/3. Observe that
by combining (B.3) with (B.4) (for the first bound below) and (B.1) with (B.2) (for the
second bound below) we have that for any

P [[br (X, Yolim) = p(Yo = X)| > sT3| <c7'Te™™, i ~(1-&)T < X < Yy

(T - X)?

P
4T

br(X;m) —

Y

ST%] <c¢ e, ifYy <X <(1-¢oT.

This holds for any € > 0 (with ¢ = ¢(¢), p € [e,1], T > 1 and s € [0,7T]). We restrict
s € [0,7] (as opposed to s > 0) in order to bound ¢T3 (e=¢ + ¢~<T) < Te°* in (B.4).
Now observe that from the explicit form of T given by Definition 3.3, we have that

Y/T '
T/ 100 () dz — (T -X)?—(T-Y)?), if(1-20)T<X<Y<T,
o (Y — X)p, if X <Y < (1-2p)T.

Now (3.3) readily follows by combining this and the previous display.

The claim about step initial data follows immediately from (B.1) with (B.2) after
observing that for any fixed e, there is a Tp > 0 such that for all T > Tp, Yy /T < —(1—¢).
Thus, by choosing a small enough ¢, we can ensure that (3.3) holds for all T > 1 with
sT?/3 replaced by sT/3, as desired. O

Proof of equation (B.3)

We compare the ASEP 71 to a p-stationary ASEP €. Since we can clearly couple 7,
and & so that ny(5) < &,(j) for all j € Z, the attractivity in Lemma 2.2 yields a coupling
between n and & such that n,(j) < &,(j) for all ¢ > 0 and j € Z. It follows from (2.3)
that

Yo

> nr(i) = p(Yo — X) + T2
j=X+1

P [b7([X, Yol;m) > p(Yo — X) + sT%] =P

s

Yo
Z Er() > p(Yo — X) 4+ sT3 | < 27

J=X+1

<P

b

where to deduce the last bound we used the concentration estimate (3.1), together with
the fact that | X — Y| < 3T. This establishes (B.3).

Proof of equation (B.4) assuming equation (B.1) and equation (B.2)
We claim that for any A, X € Z such that A > 0 and X <Y}, and for any M € R

Phr([X, X + Al;m) < M| < P[hr([Yo, Yo + A;m) < M]. (B.5)
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This follows from a simple coupling argument. Let ¢ denote an ASEP whose initial data
¢ is obtained by setting ¢ (j) = 1o (j) for j < X — Yy and ¢y(j) = 0 otherwise. Notice
that ¢, is equal in distribution to ), shifted to left by a distance of magnitude | X —Yj|,
and that it is also coupled in such a way that ny(j) > (y(j) for all j € Z. By the
attractivity of ASEP from Lemma 2.2 we may couple 1 and ¢ so that n,(j) > ¢,(j) for
allt > 0 and j € Z. It follows then from (2.3) and the above considerations that

X+A X+A
Plor((X, X +Am) <M =P| > np(G)<M|<P| > ¢r(h) < M]
J=X+1 j=X+1
Yo+A
=P| > mp(j) < M| =P[or([Yo, Yo + Ain) < M],
j=Yo+1

where the inequality uses the attractive coupling and the penultimate equality holds
since (CT(j)>jeZ and (np(j + Yo — X>)jeZ have the same law.

Observe now that to show (B.4) we must show that the height difference hr([X, Yo]; 1)
compensated by the linear hydrodynamic profile p(Yg — X) is unlikely to dip more than
—sT5. The inequality in (B.5) shows that we can control the height changes to the left
of Yy by those at Yy. The bounds in (B.1) and (B.2) are effective in controlling the

. . . . (T-X)?
height changes around Y. However, they involve parabolic hydrodynamic terms ~~—%

whereas in (B.4) we are dealing with linear hydrodynamic terms p(Yy — X'). However, on
short enough spatial intervals, the parabolic term is approximately linear. In particular,
on the spatial scale T§, the parabolic effect is of order T3 which is of the order of
fluctuations. Thus, to establish the desired control in (B.4) we use (B.5) repeatedly on
spatial intervals of order T%. Each application introduces a fluctuation error of order
Ts. By a union bound over order T3 such spatial intervals, we arrive at the order T3
fluctuation error bound in (B.4) (this union bound also explains the T3 factor on the
right-hand side in (B.4)). The rest of this proof provides the details to the argument
sketched above.

Let us assume that A € [0,73] and X € Z such that X < Y. Letting M = pA—sT'3
in (B.5) we have that

Phr([X, X + A;n) < pA — sT3] <P [hr([Yo, Yo + A;n) < pA — sT5].  (B.6)
We now claim that there exists ¢ = ¢(g) > 0 such that for any 7> 1 and s > 0,
P [h7([Yo, Yo + Alin) < pA — sT5] < ¢ (e + 7). (B.7)
To prove this, we note that for s > 1,

{hT([YOaYO + Al;m) < pA - ST%} -
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_ 2 1
{bT(Yo;n)s ) 4TY°) —Sg }u{hT<Yo+A;n)z

(T Y, — A)2 + sTé
4T 8

as follows immediately from the inequality (also for s > 1) that

(T-Y)* (T-Yy-A)? 35T
4T 4T - ’

Thus, by the union bound along with the bounds in (B.1) and (B.2), we arrive at (B.7)
provided s > 1. For s € [0, 1], the result follows by choosing ¢ sufficiently close to zero.

Let us now apply (B.7) to conclude the desired bound in (B.4). Observe that for
X € [-T,Yp], the interval [X,Yp] can be covered by at most K = 2T'/? intervals (this
is an overestimate but suffices) each of length A € [0,73]. Call the endpoints of these
intervals X = Xy < X1 < -+ < Xg =Y. Then we have

sTs
2

P[br([X,Yo];m) < p(Yo — X —ST ZP[bT i—1, Xjlim) < pA—
< Ke™ (e—cs/2 _~_e—cT>.

The first inequality follows from the union bound while the second from combining (B.6)
(with X = X;_; and X + A = X;) with (B.7). Clearly, this implies (B.4) as desired.

B.1. Proof of equation (B.1)

The main result needed in this proof of Proposition B.2 (about step initial data ASEP)
from which (B.1) follows via the monotonicity result Lemma 2.6.

Proposition B.2. For any € > 0, there exists ¢ = c(g) > 0 such that the following
holds. Let & be ASEP under step initial data. Then, for any T > 1, s > 0 and X €
[- Q=27 (1-e)1],

|

Proof of Equation (B.1). Letting £ = (&(z)) denote an ASEP under step initial data,
we have ny(x) < &,(z) for each z € Z. Thus, ho(x;n) < ho(z; €), and so the monotonicity
result Lemma 2.6 yields a coupling between (n; €) such that hr(z;n) < hr(z; &) for each
T > 0 and = € Z. Hence the proposition follows from the fact that

(T - X)?

< -1 —cs. .
AT c e (B.8)

br(X;€) —

‘ 2 ST1/3

S C—le—cs’

P bp(X;n) — Tr-xy > sT1/3

4T 4T

<P lhT(X;g) — u > sT1/3

where in the last inequality we applied Proposition B.2. 0O
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The proof of Proposition B.2 relies on an identity [15, Theorem 10.2] (cited below
as Lemma B.6) which relates a g-Laplace transform for the step initial data ASEP
height function to a multiplicative statistic for the determinantal point process called
the discrete Laguerre ensemble. From this identity and existing asymptotics regarding
this ensemble, we are able to prove our tail bound. We remark that our tail bound
is suboptimal and we do not fully take advantage of the decay afforded to us by the
identity. However, the exponential decay we prove is sufficient for our purposes. We also
note that this style of result — using a g-Laplace transform identity with a determinantal
point process in order to prove tail bounds — goes back to work of [17] which uses a
similar identity relating the KPZ equation and Airy point process [14].

To prepare for the proof of Proposition B.2, we recall a few results. The first is the
fact that the statement in Proposition B.2 holds in the case of TASEP, when L = 0.
This result is implicitly due to [7] (in terms of an estimate on the Fredholm determinant
that determines this tail probability), though appears explicitly as a probabilistic tail
estimate (formulated in terms of exponential last passage percolation) as [10, Theorem
13.2] and [27, Proposition 4.1 and Proposition 4.2].

Lemma B.3. For any e > 0, there exists ¢ = c¢(g) > 0 such that the following holds. Let &
be TASEP (L = 0 temporarily) under step initial data. Then, for any T > 1, s > 0 and
Xe[-1-9T,(1-e)T],

(T - X)°

> sTY/3
ar |77

P < ¢ lemos,

hr(X;€) —

To establish Proposition B.2, we will make use of a determinantal point process,
introduced in [15], called the discrete Laguerre ensemble. We begin by recalling its
definition. In what follows, a configuration on Z>o is a subset 3 C Z>o of nonnega-
tive integers; we let Conf(Z>() denote the set of all configurations on Zxo. Given a
function K : Z>g x Z>9 — R, a determinantal point process on Conf(Z>o) with cor-
relation kernel K is a probability measure P on Conf(Z>() satistying the following
property. Letting 3 € Conf(Z>) denote a random configuration sampled under P, we
have P [J:l, To,..., T € 3] = det[K (z;,2;)]1<i,j<k for any distinct z1,29,..., 21 € Z>o.
Generic K will not define a probability measure.

Definition B.4. Fix § € R~¢. Laguerre polynomials are the orthogonal polynomials on
[0,00) under the weight measure t°~'e~*dt. The degree n polynomial in this ensemble,
with leading coefficient n!~!, is denoted by Lgﬁ ) (z). The discrete Laguerre kernel is
defined by

oo

xly! 1/2 1
K ] — LB LB (1B~ 1t
DLaguerre(r;3) (x,y) <F($ + B)F(y ¥ ﬂ)) / T (t) y (t)t € dta

(s
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for any z,y € Z>o. The discrete Laguerre ensemble DLaguerre(r; 3) is the determinantal
point process on Conf(Z>() with correlation kernel Kppaguerre(r;3)-

The following lemmas indicate our use of the discrete Laguerre ensemble. The first
shows that its smallest element match the TASEP height function in distribution (which
is accessible by Lemma B.3); the second explains its relation to the step initial data
ASEP.

Lemma B.5 (15, Corollary 10.3 and Theorem 3.7]). Adopt the notation of Proposi-
tion B.2, and assume that L = 0. Let 3 € Conf(Z>() denote a sample of the discrete
Laguerre ensemble DLaguerre™ (T, x 4 1). Then, br(x;€) has the same law as min 3.

Below, for any ¢,a € C and any integer k > 0 (possibly infinite, in which case we
assume that |g| < 1), the g-Pochhammer symbol is defined by (a;q)r = H?zo(l —ag’).

Lemma B.6 ([15, Theorem 10.2]). Fix any time T > 0, an integer spatial location x > 0
and let ¢ = % € (0,1). Let & denote ASEP, with left jump rate L and right jump rate R,
under step initial data and let 3 C Z>q denote a sample of DLaguerre™ ((1 -7,z + 1).
Then, for any ¢ € C\ {—¢%=<0} we have

1 1
El(Cq”T(If);q)w] :]E[H 1+ Cq?

zZ€3

; (B.9)

where the expectation on the left side is with respect to the ASEP &, and the expectation
on the right side is with respect to the discrete Laguerre configuration 3.

In order to make use of this lemma, we need to be able to translate between the above
g-Laplace transform type expectations and statements about probabilities.

Lemma B.7. Let A be a real-valued random variable, q € [0,1) and b € R. Then,

PlA<0] <2 (1-E[(~¢*0)]), (B.10)
E[(—¢*;¢)2] > /(@D . P[A > 1], (B.11)
E[(1+¢*) '] <P[A>—b]+¢" P[A < -b]. (B.12)

Proof. Observe that for any a € R we have

a — a\— 1a<0

—¢"0)5  Lasp > e’ /(a1 . 1o>0,

(
(14+¢") ' <1losp+ ¢ locp.
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Setting a = A and taking expectations yields the lemma. O
Now we can establish Proposition B.2.

Proof of Proposition B.2. By the particle-hole symmetry Remark 2.1, it suffices to ad-

dress the case X > 0. Let m = i(%){ and set ( = ¢~™T=T"* Ag in the statement

of Lemma B.6, let 3 € Conf(Z>() denote a sample of the discrete Laguerre ensemble
DLaguerre((1 — ¢)T; X + 1). Then, by Lemma B.6 we have that

E

o0

( - th(I?g)*mTfsTlﬁ; q)1] _E

I](+ q“"TSTW)I]. (B.13)

z€3

Let 3¢ denote the minimal element in 3. We claim that there exists ¢ = ¢(g) > 0 such
that

<E[(1+ g7

ElH (1 + qumTfsTl/?’)_l

2€3

sTl/S

<P |:30 >mT + :| +qu1/3/2 < C*lefcs'

The first inequality is immediate (dropping the other terms in the product only increases
the value), the second utilizes (B.12) (with A = 39 — mT — sT/3 and b = $T%/3), and
the third follows by combining Lemma B.5 with Lemma B.3.

Combining the above inequality with (B.13) and (B.11) (with A = hp(z;&) — mT —
sT'3 and b = 0), we find that

oo

P (o7 (2:€) = mT + sTV/3) < /00 l( - g€ mmT =T, q)ll

< el/(l—Q) ElH (1 + qz—mT—sT1/3)—1‘| < 61/(1_Q)C_16_CS.
Z€3

Modifying the value of ¢, this yields the upper bound on hp(z; &) in Proposition B.2.
It remains to prove the lower bound. Observe that there exists ¢ = ¢(¢) > 0 such that

E H (1_|_qz7mT+sT1/3)*1
z€3

>E|(= g THT ) ]

sTY/3 /2 T1/3
zexp<q : )'P[3oZmT—S 5 }
.

> (1 o 026—025T1/3) ) (1 . C2e—c2s) > 1— 20_16_05.
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The first inequality is immediate (inserting all missing terms in the product above the
minimal term only decreases its value), the second utilizes (B.11) (with A = 3o —mT +
sTY3 and b = %Tl/?’)7 and the third follows by combining Lemma B.5 and Lemma B.3.

Combining the above inequality with (B.13) (with —sT"/3 replaced there by sT/3)
and (B.10) (with A = bp(2;€) —mT + sT'/?), we find that

P [y (2;€) <mT — s3] < 2. (1 SB[ e, q)_lD

oo

=2- (1 —E |: H (]_ + quT+ST1/3)1:|> < 4C716708.

z€3

Modifying the value of ¢, this yields the lower bound on hr(z; &) in Proposition B.2. O
B.2. Proof of equation (B.2)

In this section we establish (B.2), which is based a Fredholm determinant identity
in the ASEP under (p;0)-Bernoulli initial data due to [13, Theorem 5.3]. This formula
also appears in [2, Proposition 5.1] where it is extended to a more general class of initial
data. We will utilize a number of estimates used in [2] to perform asymptotics on this
formula ([13, Appendix D] sketch some asymptotics from their formula, though without
going into details). Let us first recall the definition of a Fredholm determinant series.

Definition B.8. Fix a contour C C C in the complex plane, and let K : C x C — C be a
meromorphic function with no poles on C x C. We define the Fredholm determinant

o}

k
det (Id+K),, Z o ’“k'/ --/det [K(mi,xj)]ijzlndxj. (B.14)
c i=1

We next require the following identity for the g-Laplace transform (essentially the left
side of (B.9)) of ASEP with (p; 0)-Bernoulli initial data. In what follows, we recall that a
contour v C C is called star-shaped (with respect to the origin) if, for each real number
a € [—m, ], there exists exactly one complex number z, € v such that z,/|z,| = €'

Proposition B.9 ([13 Theorem 5.3], [2, Propositz'on 5.1]). Fix p € (0,1), z € Z, and
p € R. Denote ¢ = % € (0,1), and set 8 = . Let T' C C be a positively oriented,
star-shaped contour enclosmg 0, but leaving outszde —q and qB. Further let C C C be a
positively oriented, star-shaped contour contained inside ¢~ T, that encloses 0, —q, and
T, but that leaves outside qf3. For ASEP m with (p;0)-Bernoulli initial data, we have

E [( _ th(Xm)-&-P; q>;)1} = det (Id +K(P)> (B.15)

L2(c)’

where
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1 = X, T P=Lly=P d
K(p) (U}, wl) = 5 g % g(w,’ 7 ) . P . - .. 7 i )
2110gqj: g(v; X, T) sin (m(logv—logw+2m])) w —wv

e
(B.16)

and

_ qT 1
g(z; X, T) = 24 q)% 1exp( ) ——— .
( )=t+g z2+4q) (718712 oo

The following result captures the decay of the right side of (B.15) as p grows with a
suitable centering and scaling. Its proof closely follows [2, Section 6] and is provided in
Appendix C below. It is here that our choice that X > Yy = (1 — 2p)T 4 T?/? is used.
By making this assumption, the choices for the contours C and I" are simplified. It is
possible, as was done [2, Section 8], to address the case where X < Yy, though it involves
more complicated contours and since we have other ways to control that case (namely,
(B.3) and (B.4)) we forgo that additional complexity.

Proposition B.10. For any ¢ € (0,1/4), there exists ¢ = ¢(g) > 0 such that the following
holds. Adopt the notation of Proposition B.9, and set X = vT + 1. Assume that

p€[€71]7 Ve[f(li{':),l*dv p:p(T,l/,S):Sfl,Tl/sfmyT, 5207

where

2 2/3
m,,=<1;V> ) fV:(1_4y2> : (B.17)

Ifv>1—2p+ T3, then

‘det (Id+K®) , . — 1‘ < e 4 e=eT). (B.18)

L2(C)
Given Proposition B.10, we can quickly establish (B.2).

Proof of Equation (B.2). By (B.15) and (B.18) (and replacing s with f, !s in the latter),
we find that there exists ¢ = ¢(g) > 0 such that

E[( - g rXmmm Tt ) A > 1 = e (e 4 7T, (B.19)
This, together with (B.10) (applied with A = b (X;n)—m,T+sT/3), yields (B.2). O
Appendix C. Fredholm determinant estimates

In this section we establish Proposition B.10; we assume throughout that v > 1—2p+
T-1/3 and that p € [—(1—¢),1—¢]. We closely follow [2, Section 6], which asymptotically
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analyzed the Fredholm determinant det (Id +K (p)) L2(c)
s. In Section C.1 we recall from [2, Section 6.1] a useful choice of contours C and T', and
we then prove Proposition B.10 in Section C.2.

but did not control its decay in

C.1. Choosing the contours C and T’

In this section we recall from [2, Section 6.2.2] a choice of contours C and I" useful for
analyzing det (Id +K(p))L2(C).
in our notation below) K (w,w’) = K® (w,w’) from (B.16) as

To that end, we first rewrite the kernel (dropping the p

K(w,w') Z% an exp (T (G(w) - G(v))) ('8 v 9)o

m(logq)~t(27ij + logv — 1ogw)) (@187 'w; @)oo
(C.1)

T2 log q

)

(U)vaTl/s dv
x —

w v(w' —v)

where G(z) is given by

q
G(z) = —— +vl +q) +m, log z,
(2) +a vlog(z +q) +m, log 2

and m, and f, are given by (B.17). Observe that

G’(z):<y+1>2(z_¢)2, with g 2=V

2

Thus, v is a critical point of G, and

G (1) = 0; G"() (w417 (fu)3.

2 16¢3(1—v)

<

From a Taylor expansion, this implies that

6(e) 6w = & (PO (B2 o)) (©2)

where, uniformly in v € [e — 1,1 —¢], as |z — ¢| = 0,

R(@%f@)=G@w4nw—§(@ﬁjﬂ53=OW—wm. (€3)

Next we recall from [2] a choice contours C and I' satisfying the conditions of Propo-
sition B.9 such that Re (G(w) — G(v)) < 0 for w € C and v € I' both away from
1. To explain these contours, it will be useful to recall properties of the level lines of

ReG(z) = G(v).



50 A. Aggarwal et al. / Advances in Mathematics 422 (2023) 109004

Proposition C.1 (/2, Proposition 6.7]). There exist three simple, closed curves, L1, La,
and L3, that all pass through ¥ and satisfy the following properties.

1. For any z € C\ {q}, we have Re G(z) = G(¢) if and only if z € (L1 U L2 U L3)\ {¢}.

2. The level lines L1, Lo, and L3 are all star-shaped.

3. We have that LN Lo = LoNLs = L1N Ly = {¢}. Furthermore, L1\ {1} is contained
in the interior of Lo, and Lo\ {1} is contained in the interior of L3.

4. The level line L1 encloses 0 but not —q, the level line Lo encloses 0, and the level line
L3 encloses 0 and —q. Furthermore, —q lies on Lo.

5. The level line L1 meets the positive real axis (at ) at angles 5w /6 and —57/6, the
level line Lo meets the positive real azis (at ) at angles 7/2 and —m /2, and the level
line L3 meets the positive real azxis (at ) at angles /6 and —m/6.

6. For all z enclosed by Ly but outside of Ly, we have that Re (G(z) — G(¢)) > 0.

7. For all z enclosed by L3 but outside of L2, we have that Re (G(z) — G(¢)) < 0.

Remark C.2. By the continuity of G and % in v, the level lines £, Lo, and L3 vary
uniformly continuously in v € [-(1 —¢),1 —¢].

Now, let us explain how to select the contours C and I'. They will be the unions of two
contours, a “small piecewise linear part” near v, and a “large curved part” that closely
follows the level line £5. The former are given by the following definition.

Definition C.3 (/2, Definition 6.2]). For r € R and w > 0 (possibly infinite), let 20,

—mi/3

denote the piecewise linear curve in the complex plane that connects r + we to r

to r + we™/3. Similarly, let U, - denote the piecewise linear curve in the complex plane
—27i/3

that connects r + we to r to r + w?™/3. See Fig. 11 for depictions.

Definition C.4 and Definition C.5 define the piecewise linear and curved parts of the
contours C and I, respectively, and Definition C.6 defines the contours C and I'.

Definition C.4 (/2, Definition 6.3]). Let CV) = 20, , and I'V) = B,y poi7-1/3 5 Where

w is chosen to be sufficiently small (independently of T" and v) so that:

e The two conjugate endpoints of C(!) lie strictly between Lo and L3, so that their
distance from Lo and L3 is bounded away from 0, independently of T" > 1 and
vell—1,1-¢l.

e The two conjugate endpoints of I'™) are strictly between £; and Lo, so that their
distance from £; and L, is bounded away from 0, independently of 7" > 1 and
vell—1,1—¢l.

e We have |R(¢ 71 fu(z — )| < [fu(z —¥)/2¢]3, for all z € CH UTW, for R in (C.3).

o We have that |v/w| € (¢*/2,1) for all v € T™ and w € ).

Such a w > 0 is guaranteed to exist by part 5 of Proposition C.1 and (C.2).
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Fig. 11. To the left, the three level lines £1, L2, and L3 are depicted as dashed curves; the contours I" and
C are depicted as solid curves and are labeled. To the right are the two contours Q¢ o and U _; .

Definition C.5 (/2, Definition 6.4]). Let C®) denote a positively oriented contour from
the top endpoint ) + we™/? of C(V) to the bottom endpoint ¥ + we /3 of CM)| and let

1/3 27i/3

') denote a positively oriented contour from the top endpoint 1) —1 f; 1T~/3 +we

of 'V to the bottom endpoint o + 1 f ' T~1/3 4 we=2™/3 of T satisfying:

o The contour C? remains strictly between Lo and L3, so that the distance from C @ to
Lo and L3 remains bounded away from 0, independently of 7' > 1l and v € [e—1,1—¢].

o The contour I'® remains strictly between £, and L, so that the distance from C to
L1 and Lo remains bounded away from 0, independently of T' > 1l and v € [e—1,1—¢].

« The contour C™M UC® is star-shaped.

e The contour '™ UT®) is star-shaped and does not contain —gx.

e The contours C® and I'® are both sufficiently close to Lo so that the interior of
I'D UT® encloses the image of CM UC® under multiplication by q.

Such contours C® and I'® are guaranteed to exist by part 2 and 4 of Proposition C.1.

Definition C.6 (/2, Definition 6.5]). Set C = CD UCP and T' = TM UT®). Examples of
the contours C and I' are depicted in Fig. 11.

The following lemma states that C and I' satisfy their required conditions, and that
Re (G(w) — G(v)) < 0 for each w € C and v € T?).

Lemma C.7 (/2, Definition 6.6 and Lemma 6.13]). The contour T is positively oriented
and star-shaped; it encloses 0, but leaves outside —q and qB. Furthermore, C is a positively
oriented, star-shaped contour that is contained inside ¢~ 'T'; that encloses 0, —q and T';
but that leaves outside q3. Moreover, there exists a positive real number ¢ = c(e) > 0,
such that
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max ¢ sup Re(G(w) —G(v)), sup Re(G(w)—G(v)) p < —c.
weC wel @
ver® ver

The uniformity in v of the constant ¢ in Lemma C.7, was not explicitly stated in [2],
but it follows from Remark C.2.

C.2. Proof of Proposition B.10

We start by analyzing the contribution to the right side of (C.1) when w € C M and
v € TM that is, when both w and v are near . To that end, define K (w,w’) by the
same formula as used to define K (w,w’) in (C.1), but with the contour I" replaced by
', Now let us change variables, a procedure that will in effect “zoom into” the region
around 1. Denote o = ¢ f, 'T~1/3, and set

w=v+o0l, wW=t+0®, v=tp+00, K@ )=cK(wuw'). (CA4)

Also, for any contour D, set D = o1 (D —1), where 0! (D — v) denotes all numbers of
the form o~!(z — ¢) with z € D. In particular, from Definition C.3 and Definition C.4,
we fll\nd that ¢(1) = Wy, /o and ra = U_1 =)o The following lemma provides a bound
on K; its proof is similar to that of [2, Lemma 6.11].

Lemma C.8. There exists ¢ = c(e) > 0 such that for each ® € CY) and @' € C
o1

B @) < 7

exp (— @] — cs).

To establish this lemma, we first rewrite the kernel K. By (C.4) and the fact that
o= wfu’lel/S, we deduce that

R(@, ) = % 1(@,@';9)ds, (C.5)
T
where
1 @ — o
1@ 757) = o ( T (R ) - R(T—l/?’@)))
y ( 1+ wlcfa)”’”ls ('8 (¥ + 0D)sq)
1+¢~tow ('8~ (¥ + ow);q)
T o 1
logq . “= sin (logq (27ij + log(1 + v~109) — log(1 + z/rlmz))) '

(C.6)
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Lemma C.8 will follow from an estimate on I, given by the following lemma.

Lemma C.9. There ezists ¢ = c(e) > 0 such that

C—l

1+ ||

‘I(@ @’;ﬁ)‘ < exp (cs Re® — c(|@f® + |ﬁ|3)>, (C.7)

Jor all W € Wy /5, W' € CA, and V€ V_1 o/

Proof of Lemma C.8. This follows from Lemma C.9, (C.5), and the fact that Rev < —1
for each v € U_1 »/,. O

Proof of Lemma C.9. Observe that there exist ¢ = ¢(¢) > 0 such that the six inequalities

-1
1 1 1 ¢t 1+¢~tov woT s 4 R
< I
‘1+¢1aa SO = St ’1+¢1a@ < ¢ exp (esIm),
o 1 <l
ogal 75| sin (2 (2rij + log(1 + ¢=10%) — log(1 + v=10@)) ) |~
(7r¢10> 1 1
c 9
g6/ sin (. (log(1 + ¢~107) — log(1 + ¢~10@)) )
1 -1 ~
+ ov); R R
(q 16 1(¢ ,\) q)oo <c texp (c_1(|w| + |v|)),
(718~ (¢ + ow); q)
(C.8)

all hold for each @ € W /o, W' € C,and 7 € V_1w/o

Indeed, the first inequality holds since v = (1 + ¥ ~'0?) is bounded away from 0
for v € I'. The second inequality holds since ’@’ — ﬁ| > c1(Re? + 1) for @' € C and
v € U_y o/ The third inequality holds since 1 + ¥ low is bounded away from 0,
and since Re? < Rew, for w € C. The fourth inequality holds since o = O(T‘l/ 3),
Toeq (2mij +log(1 + ¢ ~1ov) — log(1 4+ ¢ ~'ow))) increases exponentially in |j|,
and since that term is also bounded away from 0 (the latter statement is true since j

since sin (

is nonzero). The fifth inequality follows from a Taylor expansion, the fact that v/w is
always bounded away from any integral power of ¢, and the fact that |177 @|71 < ¢t for
sufficiently small ¢ > 0. The sixth inequality is true since its left side grows polynomially
in |w| and |v|, while its right side grows exponentially in these two quantities. To see
this, recall that |[0] and |@| are at most w/o (by the assumptions of this lemma), which
in particular indicates that both the numerator and denominator on the left-hand side
of the sixth inequality are bounded above (since the arguments of those Pochhammer
symbols are bounded above). The concern is then that the denominator might be very
small. This can only happen if ¢ is close to gf. Observe that ¢ < ¢B(1 — '), for some
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¢ > 0 (by the definition of ¢ and the facts that v > 1 —2p — T7/3 and o ~ T71/3).
Thus it suffices to bound the ratio of

|(1—q '8~ (¢ +00))|
[(1—q~ 18- (¢ + ow))|’

as the remaining parts are bounded above and below by constants. Using the previously
mentioned bound ¥ < ¢B(1 — ¢’o), it follows that this ratio is bounded by a polynomial
in ¥ and @ (actually, linearly in ?), as claimed.

The estimates (C.8) address all terms on the right side of (C.6), except for the ex-
ponential term. To analyze this term, first recall |R(z)| < |2[*/8, for all z € COUTW;,
this was stipulated as the third part of Definition C.4. Thus, decreasing ¢ = ¢(g) > 0 if

necessary,
3 ~3 179 —1/3 .~ {U\g 173 513 ,@\3 9 P
’e%—%—&-T(R(T /34— R(T 1/%))’ I s s S By (LI N (e X°)!

In (C.9), the last estimate follows from the fact that @w? — % < 0, for sufficiently large
@€ CW and o€ T™, and that it decreases cubically in |@| and 7] as they tend to oo.

Now, the estimate (C.7) follows from the definition (C.6) of I, the six estimates (C.8),
and the exponential estimate (C.9). O

We next analyze the integral (C.1) defining K (w,w’) when either w or v is not close
to 1, that is, when either w € C® or v € I'®. In this case, we will see that the integral
decays exponentially in T'. Define

for each @, @' € C. From the change of variables (C.4), we have that

det (Id+K) = det (Id +K) (C.10)

L2(c) L2(C)

The following lemma indicates that |f, K | decays exponentially on the domain of K
and that | K| decays exponentially elsewhere. Although the uniformity in Corollary C.10
of the dependence of ¢ and C on v was not stated directly in [2], it follows from the
uniformity of the constant ¢ from Lemma C.7 in v.

Corollary C.10 (/2, Corollary 6.14]). There exist ¢ = c(e) > 0 so that

K (@,@) - R (@,)

< cflexp(fc(TJr \@|3)), (C.11)

for allw € CW and @' € CU Wo.00, and such that
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<clexp ( —c(T+ |@|3)), (C.12)
for all w € C® and @' € CU 0. 00 -

To show Proposition B.10, we will make use of the following lemma, which is the
K7 =0 case of [2, Lemma A.4] that approximates a Fredholm determinant with a small
kernel.

Lemma C.11 (/2, Lemma A.4]). Adopting the notation of Definition B.8, we have

1/2

=1

k

11

=1

1 k

>, 2khk/2 2
’det(Id+K)L2(C)—1‘ gzm/.../ = K i)
k=1 z z j=1

Now we can use Lemma C.8 and Corollary C.10 to establish Proposition B.10.
Proof of Proposition B.10. By Lemma C.8 and Corollary C.10,

K (@,)

Scflexp(fc}ﬂsfcs) +c*1exp<fc|@|sch) (C.13)

for some ¢ = ¢(¢) > 0. Thus, allowing constants to change between lines we see that

| det (14 +K®) o) = 1| = | det (104+K) 1 6 — 1]
0 okpk/2 k o 12 i
D i '//H IS B[P ] de
k=1 (k 1>' i=1 kj:l i=1

from which we deduce (B.18). Here, to deduce the first statement we used (C.10), to
deduce the second we used Lemma C.11, to deduce the third we used (C.13), and to
deduce the fourth we used the facts that [sexp ( — ¢1|@]?)dw is bounded above by a
constant and that (k — 1)! > 27%k! > 8= kkk. O
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