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1. Introduction

Consider ASEP started in step initial data with one second class particle at the 
origin (see Fig. 1). Specifically, at time t = 0, each site j ≤ −1 is occupied with a first 
class particle, the site j = 0 is occupied by a second class particle, and all sites j > 0
are initially unoccupied and (for the definition of the dynamics which follows) will be 
considered infinite class. First and second class particles have left jump rate L and right 
jump rate R where we assume that R > L ≥ 0 and R − L = 1. Jumps are subject to 
the rule that when a class k particle tries to jump into a site with a class k′ particle, 
the particles switch places if and only if k < k′ (otherwise, they stay put). We denote 
this process by At = (ηt, Xt) where ηt ∈ {0, 1}Z are the occupation variables for the 
first class particles and Xt is the location of the second class particle (we require that 
ηt(Xt) = 0 so there is no first class particle at the site of the second class particle). 
Initially, η0(j) = 1j<0 and X0 = 0.

Our main result, which is the positive resolution of [3, Conjecture 1.9], shows that in 
large t, the trajectory of X(t) is almost surely linear with slope uniform on [−1, 1]. In 
other words, the second class particle chooses a random direction in the rarefaction fan 
uniformly and then proceeds asymptotically in that direction (see Fig. 1).

Theorem 1.1 (Conjecture 1.9 of [3]). The limit velocity U := lim
t→∞

Xt/t of the second 

class particle Xt in At exists almost surely and its law is uniform on [−1, 1].

The distributional limit of Xt/t (which we recall below) was known to be uniform 
for L = 0 from [24], see equation (1.5). That was generalized to all L in [22, Theorem 
2.1]. A different proof of the distributional limit was given in [28, Theorem 1.1], based 
on color-position symmetries for multispecies ASEP discovered in [16] and [12].

Fig. 1. Illustration of Theorem 1.1.
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Proposition 1.2 ([24,22,28]). For any ρ ∈ [0, 1],

lim
t→∞

P
[
Xt/t ≤ 1 − 2ρ

]
= ρ.

Thus, the proof of Theorem 1.3 reduces to the following almost sure limit for Xt/t.

Theorem 1.3. The limit U := lim
t→∞

Xt/t exists almost surely.

Theorem 1.1 implies well-definedness of the ASEP speed process, confirming [6, Con-
jecture 8.1] and [3, Conjecture 1.10]. Consider multispecies ASEP where initially at 
n ∈ Z, we start with a class n particle. Let the particles evolve as indicated above: each 
particle independently attempts to jump left and right with rates L and R; those at-
tempted jumps are achieved only if the destination is occupied with a higher class (hence 
lower priority) particle. For each n ∈ Z, the class n particle sees an initial condition which 
is equivalent to a translation of the initial condition considered in Theorem 1.1. Thus 
Theorem 1.1 applies for each particle, namely if we let Xt(n) denote the location of the 
particle that started in position n ∈ Z at time t ≥ 0, we have 

(
Xt(n) − n

)
/t converges 

almost surely to random variable U(n) with distribution uniform on [−1, 1]. Taking a 
union over all particles implies that this holds simultaneously for all particles. Let μASEP

denote the joint law of all 
(
U(n)

)
n∈Z

.

Corollary 1.4 (Conjecture 1.10 of [3]). The ASEP speed process measure μASEP is well 
defined and translation invariant with each U(n) uniform on [−1, 1].

Having constructed this measure it is natural to investigate properties of it such as 
the joint distributions of various U(n). We will not pursue this here, but we mention that 
[31] establishes various results in this direction (for instance, related to the properties 
of “convoys” of second class particles that move at the same limiting velocity) and [28]
probes the distribution of min

(
U(1), . . . , U(n)

)
as a function of n.

It is also worthwhile to note that the limiting speed of the second class particle is highly 
sensitive to its initial position. Theorem 5.2 of [12] investigated the distributional limit of 
the speed of the second class particle in ASEP started from a finite perturbation of step 
initial data. For instance, Example 5.6 of [12] showed that if the second class particle 
is initially placed behind a single first class particle, i.e., X0 = −1, η0(j) = 1j<−1 and 
η0(j) = 1j=0, then the speed of the second class particle converges in distribution to 
a mixture of a uniform and an inverted quadratic distribution on the interval [−1, 1]. 
Leveraging the techniques for proving Theorem 1.3, it seems very much possible to 
strengthen the mode of convergence in [12, Theorem 5.2] to almost sure convergence. 
However we defer to pursue this direction in some other work.

In the remainder of this introduction we will discuss how our results fit with respect 
to previous work, and then describe the heuristics and proof ideas. The proof that we 
provide combines probabilistic ideas (i.e., couplings) with integrable tools (i.e., effective 
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hydrodynamic bounds). The interplay of these two techniques allows us to prove a result 
that we do not know how to attain with either separately.

Second class particles have been extensively studied with varying perspectives and 
purposes. When such a particle is started at a shock, it tracks out a microscopic version 
of the evolution of the shock [19,36]; when it is started in stationary initial data, it follows 
the characteristic velocity [21,35] and displays super-diffusive scaling around that related 
to the KPZ two-point distribution [33,26,7,1,34,9].

For step (sometimes called anti-shock) initial data, there is an entire rarefaction fan 
in the hydrodynamic equation and thus a continuum of characteristics velocities [20]. 
The behavior of a second class particle started in such initial data (as we consider here) 
was first taken up in [24] in the case L = 0. As noted above Proposition 1.2, they showed 
the asymptotic uniformity of the location of the second class particle in the rarefaction 
fan. They also proved that for any 0 < s < t fixed, limε→0

(Xs/ε

s/ε − Xt/ε

t/ε

)
= 0 in 

probability.
This convergence was strengthened a decade later in [32], which proved the almost 

sure limit for the velocity of a second class particle (i.e., the L = 0 case of Theorem 1.1); 
alternative proofs for the same result appeared in [25,23]. The starting point for [32]
is the coupling between L = 0 TASEP and exponential last passage percolation (LPP). 
The almost sure limit relied on Seppäläinen’s microscopic variational formula for TASEP 
[37] along with some LPP concentration results. This relation to LPP is valuable and 
relates the second class particle to the competition interface [25]. TASEP gaps relate 
to a totally asymmetric zero range process, leading to an understanding of second class 
particles for that model [5,29].

When L > 0, the LPP variational formula no longer holds. Thus, a new set of ideas is 
needed to establish Theorem 1.1. We will outline these below. The proof of Theorem 1.1
is given in Section 4, relying on all of the results developed in this paper.
Understanding the results in terms of hydrodynamics. The uniformity of Xt/t on [−1, 1]
is a microscopic manifestation of an observation about the hydrodynamic limit of ASEP. 
Recall that the evolution of the density ρ of particles on macroscopic time and space 
scales in ASEP is governed by the weak entropy solution to the inviscid Burgers equa-
tion

∂tρ(t, x) + ∂x

(
ρ(t, x)(1 − ρ(t, x))

)
= 0.

In particular, as ε → 0, the density field for the occupation process at time t/ε in location 
x/ε should converge in a weak sense to the solution of this PDE (provided the initial data 
converges likewise). If we start with step initial data ρ(0, x) = 1x≤0 versus shifted step-
initial data ρ(0, x) = 1x≤−δ, the difference of the solutions at time t is a function that is 
essentially uniform with value δ/(2t) between −t and t. By the basic coupling of ASEP 
(see Section 2), the shift in initial data can be interpreted as the addition of many second 
class particles to the left of the origin and the behavior of the hydrodynamic limit suggests 
the uniform distribution of the velocity of those particles. The proof of the uniform 
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Fig. 2. Left: The linear characteristic lines used to solve the inviscid Burgers equation from step initial data. 
At time S the density is perturbed in the interval (−εS, 0) to match that of the left endpoint of the interval. 
The subsequent characteristics show how this perturbation evolves in time via the inviscid Burger equation. 
Right: The densities corresponding to the characteristics on the left. At time S the profile (thin line) is 
augmented with the bold line to have density (1 + ε)/2 on the interval (−εS, 0). The time 2S profile is then 
shown (dotted lines transcribe the time S profile).

distribution in [24] uses the fact that ASEP reaches some form of local equilibrium. This 
means that if the local density is ρ, then the local distribution of particles should be given 
by Bernoulli product measure with parameter ρ. These measures are stationary for ASEP.

Assuming this local equilibrium behavior, we can start to understand why the second 
class particle maintains its velocity. Based on the hydrodynamic theory for step initial 
data, if Xt/t = 1 − 2ρ for some ρ ∈ (0, 1) then the density around Xt will be roughly ρ
and assuming local equilibrium, the occupation variables for first class particles around 
Xt will be close to i.i.d. Bernoulli with parameter ρ. In this equilibrium situation, Xt

jumps left at rate Rρ if position Xt − 1 is occupied by a first class particle and rate 
L(1 − ρ) if Xt − 1 has a hole; similarly Xt jumps rate at rate Lρ if position Xt + 1
is occupied by a first class particle and rate R(1 − ρ) if Xt + 1 has a hole. Thus the 
expected instantaneous velocity of Xt is (R − L)(1 − 2ρ) = 1 − 2ρ and so in expectation 
Xt continues to move along the characteristic velocity 1 − 2ρ. This is not the same as 
showing an almost sure limiting velocity. For infinite i.i.d. Bernoulli ρ initial data, [19]
showed exactly the latter.

Proof sketch Theorem 1.3 when L = 0 (TASEP). Though we are interested in the L > 0
case, it is useful to first focus on L = 0. The proof we describe here is different than [32]
and does not rely on LPP. It also extends (using two additional ingredients) to L > 0. 
We start by explaining an overly optimistic approach to the proof and then explain how 
it can be modified to produce an actual proof.

For step initial data TASEP, at a large time S, we expect the density of particles will be 
approximated by the solution to the Burgers equation which linearly interpolates between 
density one to the left of −S and density zero to the right of S (see the rarefaction fan at 
the intermediate time in Fig. 2). Assume for the moment that the occupation variables 
at time S are independent Bernoulli with parameters given by this hydrodynamic profile, 
and also assume that XS = 0 so it lies along a zero velocity characteristic. (If XS were 
along another characteristic, we would need to work in a moving reference frame.)
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Under these assumptions, we can couple our time S system to another TASEP where 
the Bernoulli parameter profile is augmented to the left of the origin (i.e., the location of 
XS) as in Fig. 2. Under the basic coupling, this corresponds to adding extra second class 
particles to the left of XS to create the augmented profile. Importantly, these additional 
second class particles remain to the left of Xt at all times t > S. This fails when L > 0.

Using the above observation, we see that in order to lower-bound the motion of Xt

for t > S, it suffices to control the locations of the extra second class particles. While 
it is hard to control individual particles, we know how to control lots of them by use 
of hydrodynamic limit theory. Consider adding in enough second class particles so as to 
make a macroscopic change in the density profile. For example, on the interval (−εS, 0)
we can change the density to equal (1 + ε)/2, as depicted on the right of Fig. 2. At time 
2S (top of Fig. 2) this perturbation will evolve as to only perturb the density on the 
interval (−2εS, 0). This suggests that with high probability, of the O(S) added second 
class particles, all but o(S) of them will be to the right of −2εS and hence X2S will be 
to the right of −2εS as well. Since ε was arbitrary this suggests that Xt should maintain 
a velocity at least 0 (and by particle-hole symmetry, the opposite should follow too).

There are a number of issues above. The perturbation should really be on a spatial 
interval of size o(S). This is because the above argument permits the velocity to drop 
by ε on the time increment S to 2S, and if we repeat on doubling time intervals (2S to 
4S, etc) the net drop may compound to become unbounded. This can be remedied by 
perturbing instead on an interval like (−S1−γ , 0) for some small γ > 0. Assuming our 
hydrodynamic results extend to this scale, we should be able to bound the total drop 
in Xt at times of the form Sn = 2nS for n = 0, 1, . . .. However, at intermediate times 
Xt could wander in a manner that would prevent the velocity from having a limit. To 
remedy this, we instead consider a sequence of times that grows like Sn = Se

√
n (in fact, 

by choosing Sn+1 = Sn + Sn/ log Sn). By a Poisson bound (from the basic coupling) the 
intermediate wandering of Xt does not change the velocity much compared to the Sn

times.
Besides these modifications, there is still the issue of justifying the simplistic assump-

tions we made based on hydrodynamic theory considerations. This is done by making use 
of effective versions of hydrodynamic limit results that quantify with exponential decay 
how close the actual number of particles is to the hydrodynamic limit profile on spatial 
and fluctuation scales that are o(S). For example, for step initial data if we look at the 
number of particles at time S in an interval [X, Y ] with −S < X < Y < S, we expect 
that it will be approximately S times the integral from X/S to Y/S of the hydrodynamic 
profile function (1 −z)/2. An effective hydrodynamic concentration inequality would say 
that for some α ∈ (0, 1) the probability that the deviation of this number of particles 
around what we expect it to be will exceed sSα is bounded above by c−1e−cs for some 
c > 0. (The optimal α should be 1/3 and the decay should actually be faster than e−cs

for any c > 0, though we do not need or pursue this.) We also make use of similar 
bounds for other types of initial data such as the perturbed one, though these can be 
deduced from bounds for the class of step-Bernoulli initial data via coupling arguments. 
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We use the exponential decay in these bounds when taking union bounds to control the 
hydrodynamic comparison at each Sn.

The step initial data effective hydrodynamic result is present in the literature. We 
quote [10, Theorem 13.2] and [27, Proposition 4.1 and Proposition 4.2] (see Lemma B.3
below) for this result. In fact, [10] essentially relies on [7] which uses Fredholm deter-
minantant asymptotics as well as Widom’s trick (introduced by Harold Widom in [40]) 
to establish the lower and upper tail bounds respectively. In general for determinantal 
models like TASEP, one tail often follows directly from showing decay of the kernel of 
the Fredholm determinant while the other is typically more complicated to demonstrate 
and requires tools like Widom’s trick or Riemann-Hilbert problems [8].
Proving Theorem 1.3 when L > 0 (ASEP). It is easy to see (e.g. considering a two-
particle system) that the presence of additional second class particles to the left of Xt

may effect its motion and hence the simple coupling used above for TASEP fails. In its 
place, we make use of a more sophisticated coupling that was introduced in [36, Section 
4] (see Proposition 2.4 below). It says that for t > S, Xt can be stochastically lower 
bounded by the motion of a random second class particle uniformly chosen among those 
added to the left of Xt at time t = S. This enables us to implement for ASEP a similar 
sort of hydrodynamic argument as given above for TASEP.

In addition to the above coupling, we also need to develop effective hydrodynamic 
concentration inequalities for ASEP. Due to reduction and coupling arguments, it suffices 
for us to demonstrate these in the case of step Bernoulli initial data. Distributional 
limit theorems for step initial data ASEP go back to [39] and for step Bernoulli initial 
data to [38] where the one-point distribution of the height function (which captures the 
integrated occupation variables) was analyzed directly.

In [13] it was realized that the ASEP height function q-Laplace transform admits 
a simpler form as a Fredholm determinant. The q-Laplace transform asymptotically 
captures the tails of the probability distribution. Our effective hydrodynamic results 
require both upper and lower tail control. As is typical in such formulas, one tail (typically 
called the upper tail) is readily accessible from the Fredholm determinant formula via 
decay of the kernel therein (see also [18] which derives the corresponding large deviation 
principle for this tail). The other (lower) tail requires a different type of argument. As 
mentioned earlier, in determinantal models, this is sometimes achieved via Widom’s 
trick or Riemann-Hilbert problems, and in related random matrix theory contexts, other 
tools like electrostatic variational problems or tridiagonal matrices can be used for such 
bounds.

The first instance of a positive temperature model for which the lower tail was bounded 
in a manner adapted to KPZ scaling was the KPZ equation. This was achieved in [17]
using a remarkable rewriting in [14] of the KPZ Laplace transform Fredholm determi-
nant formula proved in [4]. Through this formula the Laplace transform for the KPZ 
equation was matched to a certain multiplicative functional of the determinantal Airy 
point process. From this, [17] derived tail bounds by controlling the behavior of the Airy 
points (something achievable through existing techniques).
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There is a similar identity from [15] which relates the q-Laplace transform for ASEP to 
the expectation of a multiplicative functional of a certain discrete Laguerre determinantal 
point process (see also [11] which proves a more general result higher in the hierarchy of 
stochastic vertex models). From this identity is should be possible to extract fairly tight 
lower tail bounds. However, we do not need to use the full strength of this identity. In 
fact, the behavior of this multiplicative functional can be upper bounded by the behavior 
of its lowest particle, which ends up being equal to the TASEP height function. Thus, 
through this identity we can deduce the ASEP tail from existing knowledge of that of 
TASEP.
Outline. Section 2 contains the definition of the basic coupling as well as key conse-
quences such as attractivity (Lemma 2.2), finite speed of propagation (Lemma 2.5) and 
monotonicity (Lemma 2.6). We also recall as Proposition 2.4 the coupling from [36], the 
proof of which is provided in Section A for completeness. Section 3 contains our effective 
hydrodynamic concentration estimates that mainly stem from Proposition 3.4, such as 
Proposition 3.6. Proposition 3.4 is proved in Appendix B and C.

Section 4 contains the proof of our main result, Theorem 1.3 (which combined with 
Proposition 1.2 implies Theorem 1.1 immediately). Proposition 4.1 gives the main tech-
nical result that controls the motion of the second class particle between two times. 
This result translates into Proposition 4.2 and then into Theorem 1.3. Section 5 proves 
Proposition 4.1 by setting up a coupling as outlined in the proof sketch above and then 
showing (as Proposition 5.4) that most of the additional second class particles move at 
a speed close to that of the characteristic. Section 6 proves Proposition 5.4 by utilizing 
the effective hydrodynamic concentration estimates from Section 3.
Notation. We fix R > L ≥ 0 with R − L = 1. Unless specified otherwise we assume 
all constants and parameters are real valued, with the exception of indices which are 
obviously integer valued. When we introduce constants (the value of which may change 
despite using the same symbol), we will generally specify upon which parameters they 
depend by writing c = c(· · · ) with the dependence inside the parentheses. We do not 
attempt to track constants through the paper or optimize our estimates (e.g. in concen-
tration inequalities) beyond what is needed to reach our main result. We will typically 
use the sanserif font E for events and write Ec for complement of E and 1E for indicator 
function which is 1 on the event E and 0 otherwise. We typically use η, ζ, ξ to denote 
elements of {0, 1}Z, i.e., occupation variables. We will use bold-faced letters such as η, X
to denote random variables. For real x ≤ y define �x, y� := [

�x�, �y	
]

∩Z; if x > y define 
�x, y� = ∅, the empty set.
Acknowledgments. We thank Gidi Amir, Omer Angel, James B. Martin and Peter Nej-
jar for helpful comments. A.A. was partially supported by a Clay Research Fellowship 
and gratefully acknowledges support from the Institute for Advanced Study through 
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DMS:1937254, DMS:1811143, DMS:1664650, as well as through a Packard Fellowship 
in Science and Engineering, a Simons Fellowship, a Miller Visiting Professorship from 
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2. Couplings

The (single class) ASEP can be described as a Markov process on occupation variables 
or ordered particle location variables. The occupation process ηt =

(
ηt(j)

)
j∈Z

∈{0, 1}Z
has infinitesimal generator L which acts on local functions f(η) as

Lf(η) =
∑
j∈Z

(
R · η(j)(1 − η(j + 1)) + L · η(j + 1)(1 − η(j))

)(
f(ηj,j+1) − f(η)

)
where ηj,j+1 switches the value of η(j) and η(j + 1) (so ηj,j+1(i) = η(i) for i �= j, j +
1, ηj,j+1(j) = η(j + 1) and ηj,j+1(j + 1) = η(j)). In words, particles jump left and 
rate according to independent exponential clocks of rates L and R, provided that the 
destination site is unoccupied. The sites j where ηt(j) = 1 are said to be occupied by 
particles, and otherwise (when ηt(j) = 0) by holes. As mentioned previously, we will 
always assume that R > L ≥ 0 so that there is a net drift to the right.

Remark 2.1. Observe that the ASEP is preserved under interchanging particles and holes, 
and by reversing all jump directions. Stated alternatively, suppose that ηt is an ASEP 
with left jump rate L and right jump rate R; then, the process η̌t defined by setting 
η̌t(j) = 1 − ηt(−j) for all j ∈ Z is also an ASEP with left jump rate L and right jump 
rate R. This is sometimes referred to as particle-hole symmetry.

The basic coupling provides a single probability space upon which the evolution for 
all initial data for ASEP can simultaneously be defined (see [30, VIII.2]). Moreover, 
that coupling enjoys the properties of being attractive and monotone (these are recorded 
below), and hence allows us to define second (and more general) class particles. This 
construction is easily seen to match with the dynamics explained in the introduction.

The basic coupling comes from the graphical construction of ASEP which we now 
recall (see also Fig. 3). To every site j ∈ Z we associate two Poisson point processes 
on [0, ∞), one which has rate L and one which has rate R. Call the rate L process 
the left arrows and the rate R process the right arrows. All of these (between sites and 
at the same site) will be independent. Above every site j ∈ Z we draw a vertical line 
representing time and draw left and right arrows out of j at heights corresponding to the 
points in the left and right arrow point processes just defined. For any initial data η0, 
we define the time evolution ηt in the following manner. Particles initially occupy sites 
j where η0(j) = 1 and remain in place until they encounter an arrow out of their site. 
At that time, they follow the arrow, provided that the destination site is unoccupied; 
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Fig. 3. The graphical construction of ASEP. Arrows are given by Poisson point processes and particles follow 
them provided the destination is unoccupied.

Fig. 4. Top: ASEP with first class particles (black bullets) and one second class particle (open disk). Bottom: 
ASEP with four additional second class particles added to the left of the top figure’s second class particle. 
Proposition 2.4 shows that we can couple the two versions of ASEP so the top second class particle stays 
to the right of a uniformly randomly chosen particle among the second class particles in the bottom figure.

otherwise, they remain in their site until the next arrow. The basic coupling can also be 
defined directly in terms of the generator of dynamics on multiple choices of initial data 
– see Section A for such generators.

Lemma 2.2 (Attractivity). Let ηt and ζt denote two versions of ASEP with the same 
jump rates and with initial data such that η0(j) ≤ ζ0(j) for each j ∈ Z. Then, under 
the basic coupling, almost surely ηt(j) ≤ ζt(j) for all j ∈ Z and t ≥ 0.

Attractivity allows us to define the first and second class particle process (ηt, αt) by 
the relation ζt = ηt + αt (see Fig. 4). By attractivity, αt ∈ {0, 1}Z, and hence can be 
thought of as occupation variables for second class particles. We write Pη0,α0 for the 
probability measure associated to the (ηt, αt) process with initial data (η0, α0). When 
there is a single second class particle (our particular interest), i.e., 

∑
i∈Z α0(i) = 1, we 

denote its location at time t by Xt (so that αt(Xt) = 1 and αt(j) = 0 for all other 
j) and write Pη0,X0 for the probability measure associated to the (ηt, Xt) process with 
initial data (η0, X0).

Remark 2.3. The particle-hole symmetry noted in Remark 2.1 extends to two-species 
ASEP. In particle if we reverse all jump directions and swap first class particles and 
holes, and keep second class particles as is, then the two-species ASEP is preserved. 
Stated alternatively, suppose that (ηt, αt) records the first and second class particle 
occupation variables, then η̌t(j) = 1 − ηt(−j) and α̌t(j) = αt(−j) for all j ∈ Z is also 
a two-species ASEP with left jump rate L and right jump rate R.
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For x ∈ Z, η0 ∈ {0, 1}Z and N ∈ Z≥1, let A≤(x, η0, N) denote the set of α0 ∈ {0, 1}Z
such that 

∑
j∈Z α0(j) = N , η0 + α0 ∈ {0, 1}Z, α0(x) = 1, and α0(w) = 1 only if 

w ≤ x (note that the “only if” is not “if and only if”). In words, this means that we 
start with N second class particles relative to the first class particles at η0, with the 
rightmost one at site x. Associate to α0 ∈ A≤(x, η0, N) its ordered particle vector 
Z0 = (Z0(1) > · · · > Z0(N)) so that α(w) = 1 if and only if w ∈ {Z(1), . . . , Z(N)}. 
Let Zt = (Zt(1) > · · · > Zt(N)) be the ordered locations at time t of αt.

The following result can be extracted from [36, Section 4] (we provide a proof of it 
in Appendix A for completeness). It says that to control the location of a single second 
class particle, we can introduce several second class particles to the left and control the 
location of a typical (uniformly chosen) one of those (see the caption of Fig. 4).

Proposition 2.4. For any y ∈ Z, X0 ∈ Z and η0 ∈ {0, 1}Z with η0(X0) = 0, and for 
any N ∈ Z≥1 and α0 ∈ A≤(X0, η0, N),

Pη0,X0 [Xt ≤ y] ≤ 1
N

N∑
j=1

Pη0,α0 [Zt(j) ≤ y]. (2.1)

Another consequence of the graphical construction is ASEP’s finite speed of propaga-
tion.

Lemma 2.5. Let U ≤ V , T ≥ 0, and ξ and ζ be two versions of ASEP (each with left 
and right jump rates L and R, respectively). If ξ0(j) = ζ0(j) for each j ∈ �U, V �, then 
under the basic coupling we have that ξt(j) = ζt(j) for each j ∈ �U + 4RT, V − 4RT �
and t ∈ [0, T ], off of an event of probability at most 4e−T/3.

Proof. This follows from large deviation bounds on the sum of exponential random 
variables which control how particles from outside an interval can effect the behavior far 
inside it. �

The final general result we give from coupling is monotonicity. It deals with the in-
tegrated occupation variables, i.e., sometimes called the height function or current. Let 
ξt denote ASEP and identify the ordered particle locations by · · · < Y t(1) < Y t(0) <
Y t(−1) < · · · where the indexing is such that initially Y 0(0) ≤ 0 < Y 0(−1) (sub-
sequently, the Y t(j) track these indexed particles as they jump). For any x ∈ Z, we 
define

ht(x; ξ) =
∑
i∈Z

(
1Y 0(i)≤01Y t(i)>x − 1Y 0(i)>01Y t(i)≤x

)
(2.2)

and extend ht(x; ξ) to a continuous function in x by linear interpolation. For x, y ∈ Z,
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ht([x, y]; ξ) := ht(x; ξ) − ht(y; ξ) =
y∑

i=x+1
ξt(i) (2.3)

from which it is clear that for j ∈ Z,

ξt(j) = ht(j − 1; ξ) − ht(j; ξ). (2.4)

In particular, if t = 0 we will use the short-hand h(x; ξ) = h0(x; ξ) and have that

h(x; ξ) = h0(x; ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
x∑

i=1
ξ0(i) if x ≥ 1,

0 if x = 0,
0∑

i=x+1
ξ0(i) if x ≤ −1.

(2.5)

At most one of the two summands on the right side of (2.2) is nonzero. Observe that 
ht(x; ξ) has the following combinatorial interpretation: Color all particles initially to the 
right of 0 red, and all particles initially at or to the left of 0 blue. Then, ht(x; ξ) denotes 
the number of red particles at or to the left of x at time t subtracted from the number 
of blue particles to the right of x at time t.

The following shows that if we start with two height functions that are coupled so 
that they are either ordered pointwise (up to a vertical shift by some H) or close to 
each other (within K), then this property persists under the basic coupling. In the first 
statement, the shift by H may be necessary since our height functions are zeroed out to 
satisfy h0(0; ξ) = 0; observe that the second statement of the below lemma follows from 
the first.

Lemma 2.6 (Monotonicity). Let ξt and ζt be two ASEPs with the same jump rates.

1. If for some H ∈ Z we have h0(x; ξ) + H ≥ h0(x; ζ) for each x ∈ Z, then under the 
basic coupling we almost surely have h0(x; ξ) + H ≥ h0(x; ζ) for all x ∈ Z and t ≥ 0.

2. If for some K ∈ Z we have 
∣∣h0(x; ξ) − h0(x; ζ)

∣∣ ≤ K for each x ∈ Z, then under the 
basic coupling we almost surely have 

∣∣ht(x; ξ) − ht(x; ζ)
∣∣ ≤ K for all x ∈ Z and t ≥ 0

(Fig. 5).

3. Some effective hydrodynamics concentration estimates

This section establishes uniform estimates that upper bound the maximal deviations 
that ASEP height functions can have from their hydrodynamic limits. The key to es-
tablishing these concentration bounds is an understanding of the fluctuations under the 
stationary measure (which just boils down to bounds on sums of i.i.d. Bernoulli random 
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Fig. 5. Two height functions are depicted. The grey one is determined by the values of ζ0 while the black 
one is determined by the values of ξ0. If the later is shifted by H it point-wise exceeds the former. Provided 
this occurs at time 0, Lemma 2.6 shows that this property persists for all time.

variables) and under step-Bernoulli initial data. This later result is contained in Propo-
sition 3.4 and proved later in Section B. These are put together using attractivity of the 
basic coupling.

We begin with the following definition describing random particle configurations dis-
tributed according to a product measure. Such configurations will often serve as initial 
data for the versions of ASEP we consider. Throughout, all versions of ASEP will have 
the same left jump rate L and right jump rate R, for R > L ≥ 0 with R − L = 1.

Definition 3.1. Fix a finite interval I = �A, B� with integer endpoints A < B, as well as a 
function ϕ : R → [0, 1]. We say that a particle configuration η =

(
η(x)

)
is ϕ-distributed

on I if its coordinates 
{

η(x)} are all mutually independent and

P
[
η(A + x) = 1

]
= ϕ

(
x

B − A

)
, for each x ∈ Z ∩ [0, B − A].

We say that η is ϕ-distributed on Z if its coordinates η(x) are mutually independent 
and

P
[
η(x) = 1

]
= ϕ(x), for each x ∈ Z.

These two notations are somewhat at odds since the former (involving finite I) involves 
rescaling while the latter does not. We hope the reader will excuse us for this.

When using Definition 3.1, we will often (although not always, for instance, see the 
formulation of the lemma below) take I = �−K, K� for some integer K ≥ 1 and ϕ to 
be some piecewise linear function which takes value zero outside the interval [0, 1]. This 
will guarantee that η only has particles on �−K, K�.

The following is a concentration inequality for ϕ-distributed particle configurations.

Lemma 3.2. Adopt the notation of Definition 3.1 and assume that I = Z. For any s ∈
R≥1 and X, Y ∈ Z, we have

P

[∣∣∣h(X; η) − h(Y ; η) −
Y∑

ϕ(j)
∣∣∣ ≥ s|Y − X|1/2

]
≤ 2e−s2

. (3.1)

j=X
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Now consider the case where I = �A, B� is finite and ϕ(x) ≡ 0 for all x /∈ [0, 1]. Then,

P

[
max

X,Y ∈Z
X≤Y

∣∣∣h(X; η) − h(Y ; η) −
Y∑

j=X

ϕ
( j − A

B − A

)∣∣∣ ≥ s(B − A)1/2
]

≤ 2(B − A + 1)2e−s2
.

(3.2)

Proof. Observe that (3.1) followed immediately from Hoeffding’s inequality and the fact 
that η is ϕ-distributed. Next, assume that I = �A, B� is a finite interval and that ϕ

is supported on [0, 1]. Using the fact that for X, Y ∈ I, we have |Y − X| ≤ B − A, 
Hoeffding’s inequality and a union bound yields

P

[
max

X,Y ∈�A,B�
X≤Y

∣∣∣h(X; η) −h(Y ; η) −
Y∑

j=X

ϕ
( j − A

B − A

)∣∣∣ ≥ s(B − A)1/2
]

≤ 2(B − A + 1)2e−s2
.

The bound (3.2) follows from combining the above with the fact that since ϕ is supported 
on [0, 1] we have for X < A and Y > B that h(A; η) − h(X; η) = 0 = h(B; η) −
h(Y ; η). �

We now specify two choices we will commonly take for ϕ from Definition 3.1.

Definition 3.3. Fix real numbers 0 ≤ λ ≤ ρ ≤ 1. Define the piecewise constant function 
Ξ(ρ;λ) : R → [ρ, λ] and the piecewise linear function Υ(ρ;λ) : R → R by setting

Ξ(ρ;λ)(z) =
{

ρ if z ≤ 0,

λ if z > 0,
Υ(ρ;λ)(z) =

⎧⎪⎪⎨⎪⎪⎩
ρ if z ≤ 1 − 2ρ,

(1 − z)/2 if 1 − 2ρ ≤ z ≤ 1 − 2λ,

λ if z ≥ 1 − 2λ.

We say that an ASEP ηt has (ρ; λ)-Bernoulli initial data if η0 is Ξ(ρ;λ)-distributed 
on Z. Observe in particular that (1; 0)-Bernoulli initial data is equivalent to step initial 
data, and that (ρ; ρ)-Bernoulli initial data is stationary for the ASEP; we call the latter 
ρ-stationary initial data. The Υ(ρ;λ)-distributed initial data is meant to model the profile 
that one gets after running Ξ(ρ;λ)-distributed initial data for a long time (with a linear 
interpolating rarefaction fan from density ρ to density λ). The assumption λ ≤ ρ ensures 
that the hydrodynamic limit does not have shocks.

The following is a key concentration estimate (ρ; 0)-step Bernoulli initial data ASEP. 
This estimate is not optimal, either in the error bound T 2/3 or in the probability decay 
e−cs. (In the case of step initial data, we believe that the T 1/3 scale is optimal, but the 
decay is not.) Note that for our purposes, it is sufficient that we have a bound of the 
form T α for some α < 1. A proof of this result is given in Section B.

Proposition 3.4. For any ε > 0, there exists c = c(ε) > 0 such that the following holds. 
Let ρ ∈ [ε, 1] and η be (ρ; 0)-Bernoulli initial data ASEP. For any T > 1 and s ∈ [0, T ],
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Fig. 6. Φ(ρ)
ε;β and Υ(ρ)

ε (with slight vertical shifts to make it easier to distinguish).

max
|X/T |≤1−ε
|Y/T |≤1−ε

P

[∣∣∣∣hT (�X, Y �; η) − T

Y/T∫
X/T

Υ(ρ;0)(z)dz

∣∣∣∣ ≥ sT 2/3

]
≤ c−1Te−cs. (3.3)

For step initial data (when ρ = 1) (3.3) holds with the term sT 2/3 replaced by sT 1/3. 
The constants c = c(ε) can be chosen so as to weakly decrease as ε decreases to 0.

The rest of this section establishes effective hydrodynamic concentration inequali-
ties for ASEP with initial data given by specific piecewise linear functions (though the 
methods apply more generally) defined below and illustrated in Fig. 6.

Definition 3.5. Fix any ε ∈
(
0, 12

)
and ρ ∈ [ε, 1 − ε]. Define Υ(ρ)

ε : R → [0, 1] by

Υ(ρ)
ε (z) =

{
ρ + ε( 1

2 − z) if z ∈ [0, 1],
0 if z /∈ [0, 1].

(3.4)

The function Υ(ρ)
ε is a suitable translation and scaling of the function Υ(ρ;λ) from Def-

inition 3.3, where we additionally set it to 0 outside of the interval [0, 1]. The function 
Υ(ρ)

ε is linear on its non-zero support. It will also be useful to consider versions of this 
function that (continuously) transition from being linear to constant. To that end, for 
any ε, β ∈

(
0, 12

)
and ρ ∈ [ε, 1 − ε], define Φ(ρ)

ε;β : R → [0, 1] by

Φ(ρ)
ε;β(z) =

⎧⎪⎪⎨⎪⎪⎩
ρ + ε( 1

2 − z) if z ∈ [0, 1
2 − β],

ρ + εβ if z ∈ [ 1
2 − β, 1],

0 if z /∈ [0, 1].

The following proposition provides effective hydrodynamic concentration estimates 
for the ASEP under either Υ(ρ)

ε -distributed or Φ(ρ)
ε;β-distributed initial data.

Proposition 3.6. For any fixed δ ∈
(
0, 1

16R

)
, there exists c = c(δ) > 0 such that the 

following holds. For any S, T ∈ R≥1 with S ≥ δ−2T , β ∈
(
0, 14

)
, ε ∈

(
4δ, 12

)
, ρ ∈ [ε, 1 −ε], 

and κ ∈ [15, T ]:
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1. ASEP ηt with Υ(ρ)
ε -distributed initial data on the interval �−εS, εS� satisfies

P

[
max

|X/S|≤ε/4
|Y/S|≤ε/4

∣∣∣hT (�X, Y �; η) − T

Y/T∫
X/T

(
ρ + (1 − 2ρ − z)T

2(S + T )

)
dz

∣∣∣ ≥ κS2/3
]

≤ c−1S3e−cκ;

2. ASEP ηt with Φ(ρ)
ε;β-distributed initial data on the interval �−εS, εS� satisfies

P

[
max

|X/S|≤ε/4
|Y/S|≤ε/4

∣∣∣hT (�X, Y �; η) − T

Y/T∫
X/T

max
{

ρ + (1 − 2ρ − z)T
2(S + T ) , ρ + εβ

}
dz

∣∣∣≥ κS2/3
]

≤ c−1S3e−cκ.

Proof. The proofs of Proposition 3.6 (1) and (2) are very similar, so we only detail that 
of (1). The idea will be to compare ηt on the time interval t ∈ [0, T ] to another version of 
ASEP ζt that corresponds to step initial data ASEP, with all particles outside a specific 
window destroyed at time S and then run for time t ∈ [S, S + T ]. The window is chosen 
so the step initial data hydrodynamic limit replicates the profile for the initial data of 
η0.

To this end, let ξt denote ASEP under step initial data (to establish (2) we would in-
stead let ξt denote an ASEP under two-sided (1; ρ +εβ)-Bernoulli initial data and use the 
particle-hole symmetry from Remark 2.1 to apply Proposition 3.4). By Proposition 3.4, 
there exists c = c(δ) > 0 such that for any U > 1 and κ ∈ [1, U ],

max
|X/U |≤1−δ
|Y/U |≤1−δ

P

[∣∣∣hU (�X, Y �; ξ) − U

Y/U∫
X/U

(1 − z

2

)
dz

∣∣∣ > κU2/3
]

< c−1Ue−cκ. (3.5)

Now define ζt to be an ASEP started from random initial data ζ0 given by

ζ0(x) =
{

ξS

(
j + �(1 − 2ρ)S�

)
if j ∈ �−εS, εS�,

0 if j /∈ �−εS, εS�. (3.6)

By Lemma 2.5, we may couple the ASEPs ζt(j) and ξS+t

(
j +�(1 −2ρ)S�

)
so that for all 

t ∈ [0, T ] they coincide with high probability on j ∈ �−(εS − 4RT ), εS − 4RT �, namely

P [A] ≥ 1 − 4e−T/3, (3.7)

where the event A is defined by

A =
{

ζt(j) = ξS+t

(
j +�(1−2ρ)�S

)
for all t ∈ [0, T ] and j ∈ �−(εS −4RT ), εS −4RT �}.
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By (2.3) it then follows that for X ∈ �−(εS − 4RT ), εS − 4RT �,
1Aht(X; ζ) = 1A

(
hS+t

(�
X + �(1 − 2ρ)S�, �(1 − 2ρ)S�

�
; ξ

))
. (3.8)

Next, by applying (3.5) with (U ; X, Y ) equal to 
(
S; X + �(1 − 2ρ)S�, �(1 − 2ρ)S�

)
, 

and using the matching from (3.6), we see that there exists c = c(δ) > 0 such that for 
κ ∈ [6, 6U ],

P
[
B(κ)

]
≥ 1 − c−1S2e−cκ, (3.9)

where the event B(κ) is defined by

B(κ) =
{

max
|X/S|≤ε

∣∣∣h0(X; ζ
)

− S

0∫
X/S

(
ρ − z

2

)
dz

∣∣∣ ≤ κS2/3

6

}
.

In order to apply (3.5) we used the fact that 
∣∣�(1 − 2ρ)S� ± εS

∣∣] ≤ S(1 − δ) as follows 
from the restrictions we assumed on ε and ρ.

Now, turning to η0, recall that it is Υ(ρ)
ε distributed on �−εS, εS� and hence by 

Lemma 3.2 there exists c > 0 such that for any κ ∈ [12, 12U ],

P
[
C(κ)

]
≥ 1 − 2(2S + 1)2e−κ2/144 ≥ 1 − c−1S2e−cκ, (3.10)

where the event C(κ) is defined by

C(κ) =
{

max
|X/S|≤ε

∣∣∣h0(X; η) −
0∫

X

(
ρ − z

2S

)
dz

∣∣∣ ≤ κS2/3

12 + 1
}

.

In applying Lemma 3.2 we use the fact that S1/2 < S2/3 for S > 1 and instead bound 
C(κ) with the term S2/3 replaced by S1/2. The 1 on the right-hand side of the inequality 
in C takes into account the potential effect of replacing the summation in (3.2) by the 
above integral. In our next deduction, however, we will use the fact that κS1/2

12 +1 ≤ κS1/2

6
since we have assumed κ > 15 and S > 1.

By definition, η0(x) = 0 = ζ0(x) for x /∈ �−εS, εS�, thus combining (3.9) and (3.10)
yields that there exists c = c(δ) > 0 such that for all κ ∈ [12, 6S]

P
[
D(κ)

]
≥ 1 − c−1S2e−cκ, (3.11)

where the event D(κ) is defined by

D(κ) =
{

max
X∈Z

∣∣∣h0(X; η) − h0(X; ζ)
∣∣∣ ≤ κS2/3

3

}
. (3.12)
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By the second part of Lemma 2.6, we may couple ηt and ζt such that

1D(κ) sup
t≥0

max
X∈Z

∣∣∣ht(X; η) − ht(X; ζ)
∣∣∣ ≤ κS2/3

3 ,

holds almost surely for all t > 0. Combined this with (3.8), along with the fact that [
− εS

4 , εS
4
]

⊆ [−(εS − 4RT ), εS − 4RT ] (as T −1S ≥ δ−2 ≥ 4ε−1δ−1 ≥ 64ε−1R) yields

1A1D(κ) max
|X/S|≤ε/4

∣∣∣hT (X; η) − hS+T

(�
X + �(1 − 2ρ)S�, �(1 − 2ρ)S�

�
; ξ

)∣∣∣ <
κS2/3

3 .

(3.13)

Finally, let us define the event

E(κ) =
{

max
|X/T |≤ε/4

∣∣∣hS+T

(�(1 − 2ρ)S + X, (1 − 2ρ)S�; ξ
)

(3.14)

− T

0∫
X/S

(
ρ + T

2(S + T ) (1 − 2ρ − z)
)

dz
∣∣∣ ≤ κ(S + T )2/3

12

}
.

From the (U ; X, Y ) =
(
S + T, X + �(1 − 2ρ)S�, �(1 − 2ρ)S�

)
case of (3.5), we have that 

there exists c = c(δ) > 0 such that for all κ ∈ [12, 12(S + T )],

P
[
E(κ)

]
≥ 1 − c−1S2e−cκ. (3.15)

In fact, when applying (3.5) we initially have (S + T ) on the right-hand side, but since 
S ≥ δ−2T by assumption, we can replace this by S up to a δ-dependent constant. 
Furthermore, in applying (3.5) we arrive at a slightly different form for the integral in 
E(κ), namely

(S + T )
	(1−2ρ)S
/(S+T )∫

(	(1−2ρ)S
+X)/(S+T )

(1 − w

2

)
dw = T

0∫
X/T

(
ρ + T

2(S + T ) (1 − 2ρ − z)
)

dz + Error

where the equality is facilitated through the change of variables z = T −1(S + T )w −
T −1�(1 −2ρ)S�) and the error (which comes from replacing �(1 −2ρ)S� by (1 −2ρ)S after 
the change of variables) is bounded in magnitude by T

2(S+T ) . That error term can be 
absorbed, as in the case of C(κ) in (3.10), via the triangle inequality. This yields (3.15).

Combining (3.13) with (3.14) and using Bonferroni’s inequality (and the fact that 
under our assumptions κ(S + T )2/3/12 < κS2/3/6) we see the first inequality below

P

[
max

|X/S|≤ε/4

∣∣∣hT (X; η)−T

0∫ (
ρ + T

2(S + T ) (1 − 2ρ − z)
)

dz
∣∣∣ ≥ κS2/3

2

]

X/T
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≥ P [A] + P
[
D(κ)

]
+ P

[
E(κ)

]
− 2 ≥ 1 − c−1S2e−cκ,

while the second (which holds for some c = c(δ) > 0) uses (3.7), (3.11), and (3.15).
Proposition 3.6 (1) involves a maximum over both |X/S| ≤ ε/4 and |Y/S| ≤ ε/4. This 

result follows from the above inequality by the triangle inequality and union bound. �
4. Linear trajectories of second class particles and proof of Theorem 1.3

Recall from the beginning of Section 1 that At = (ηt, Xt) denotes ASEP started with 
first class particles at every site of Z≤−1, a single second class particle started at the 
origin, and all other site empty. Let Fs denote the σ-algebra generated by At up to and 
including time s, for s ∈ R≥0. For any event E, we will write P [E|As] := E[1E|Fs] for 
the conditional probability of E given Fs. In Section 5 we will prove the following.

Proposition 4.1. For any S > 2 let T = S(log S)−1 and define the FS-measurable random 
variable ρS ∈ R by the relation 1 − 2ρS = S−1XS, the ε-dependent event

PS := {ρS ∈ (ε, 1 − ε)} (4.1)

and the FS+T -measurable events

E≥
S :=

{
XS+T − XS ≥ (1 − 2ρS)T − S1−1/200

}
,

E≤
S :=

{
XS+T − XS ≤ (1 − 2ρS)T + S1−1/200

}
,

and ES := E≥
S ∩ E≤

S . Then, for any ε ∈ (0, 1/4), there exists c = c(ε) > 0 and a FS-
measurable event HS such that and all S > 2 we have

P [PS ∩ (HS)c] ≤ c−1e−cS1/12
and P [ES |FS ] ≥ (1 − c−1S−1/5)1HS∩PS

. (4.2)

The constants c = c(ε) can be chosen so as to weakly decrease as ε decreases to 0.

The following is a corollary of Proposition 4.1.

Proposition 4.2. Define

U inf = lim inf
t→∞

Xt

t
, U sup = lim sup

t→∞

Xt

t
, Lε =

{
|U inf − U sup| < ε

}
.

Then, there exists c > 0 such that for all ε ∈ (0, 1/4), P [Lε] > 1 − cε.

Before proving this, let us see how this readily implies Theorem 1.3.
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Proof of Theorem 1.3. Observe that for ε′ < ε, Lε ⊆ Lε′ . In other words, as ε → 0 the 
events increase. Their intersection L = ∩ε∈(0,1/4)Lε is equal to the event that U inf = U sup

which is exactly the event that limt→∞
Xt

t exists. By the aforementioned containment 
and the bound P [Lε] > 1 −cε from Proposition 4.2 we see that P [L] = limε→0(1 −cε) = 1, 
thus proving the almost limit, as desired. �

It remains to show how Proposition 4.2 follows from Proposition 4.1. The idea is to 
work with a set of times Sm that grows so that Sm+1 = Sm +Sm/ log Sm. Taking the first 
time S0 large enough with probability like 1 −2ε we have that ρS0

= (1 −S−1
0 XS0)/2 lies 

within (ε, 1 −ε) – this is the event PS0 . From Proposition 4.1 there exists a hydrodynamic 
event HS0 which is exponentially likely on the event PS0 such that on PS0 and HS0 , the 
event ES holds with probability like 1 − c−1S−1/5. On the event ES, we can bound how 
much ρS1

and ρS0
can differ to be like S−1/200

0 . Then, we can iterate on each subsequent 
time S1, S2 and so on. Since the Sm grow like e

√
m, the total change in the ρS as well as 

the total probabilistic error built up over each iteration can be made arbitrarily small. 
This shows that on the sequence of times Sm we can show the claim of Proposition 4.2. For 
intermediate times, we use a brutal Poissonian bound on the motion of ASEP particles 
to show that wandering cannot change the velocity much there either.

Before proving Proposition 4.2 we introduce the set of times involved in our multi-scale 
argument and some properties of functions of those times.

Definition 4.3. For any S0 ∈ R≥2 define Tm, Sm ∈ R>0 inductively as follows. For each 
m ∈ Z≥1, set Tm−1 = T (Sm−1) where T (S) := S(log S)−1 and set Sm = Sm−1 + Tm−1. 
We will make use of the following two properties of T (S):

P1 The function S �→ S + T (S) is increasing for S ≥ 2.
P2 T (S) has a unique minimum for S ≥ 2 at S = e in which case T (e) = e and T (S) is 

increasing for S > e.

The following lemma provides a lower bound on each Sm. It may be helpful to note that 
the recursion for Sm is a discrete version of solving the differential equation dS(m)/dm =
S(m)/ log S(m) with S(0) = S0, whose solution is S(m) = exp(

√
2m + (log S0)2).

Lemma 4.4. For each m ∈ Z≥1, we have that Sm ≥ e
√

m. Moreover, for any real δ > 0
and ϑ > 0, there exists D = D(δ, ϑ) > 1 such that if S0 > D, then

(a)
∞∑

m=0
S−ϑ

m < δ, (b)
∞∑

m=0
e−ϑSm < δ, (c)

∞∑
m=0

e−ϑTm < δ.

Proof. We establish the first statement of the lemma (that Sm ≥ e
√

m) by induction 
on m. The base case m = 1 is verified by using (P1) and (P2) to see that S + T (S) is 
minimal at S = 2 and exceeds 2 + e ≥ e

√
1 there. To show the induction in m, assume 
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that Sm ≥ e
√

m holds for m = k, for some k ∈ Z≥1. Then the induction follows from the 
inequalities

Sk+1 = Sk + Tk ≥ e
√

k(1 + k−1/2) ≥ e
√

k+1.

The first equality is by definition; the next inequality uses P1 and the k = m induction 
hypothesis; the final inequality follows since exp

(
(k + 1)1/2 − k1/2) ≤ exp

( 1
2k1/2

)
≤

1 + k−1/2. Here, the first inequality relies upon writing (k + 1)1/2 − k1/2 = k1/2(1 +
k−1)1/2 − k1/2 and the inequalities (1 + x)1/2 < 1 + x/2 and x < ex (both for x > 0); 
the second inequality is equivalent to (2k1/2)−1 ≤ log(1 + k−1/2) which follows from 
x/2 < log(1 + x) for x ∈ (0, 1).

Turning to (a) and (b), observe that we now know that Sm ≥ max(S0, e
√

m). Thus

∞∑
m=0

S−ϑ
m ≤

∞∑
m=0

min
(
S−ϑ

0 , e−√
mϑ

) ∞∑
m=0

e−ϑSm ≤
∞∑

m=0
e−ϑ min(S0,e

√
m).

In both of these expressions it is clear that as S0 goes to infinity, each summand goes 
to zero. Additionally, if we drop the S0 term each summation is finite. Hence, by the 
dominated convergence theorem, each summation goes to zero as S0, and thus taking 
S0 large enough we can upper bound each sum by δ as desired. The argument for (c)
follows similarly. Since S0 ≥ 2, combining (P1) and (P2) we also see that for m ∈ Z≥1, 
Tm ≥ S0(log S0)−1. On the other hand, we also know that the function S �→ T (S)
monotonically increases as S increases and thus, by the first part of the lemma which 
gives Sm ≥ e

√
m, we have that Tm = T (Sm) ≥ T (e

√
m) = e

√
m/

√
m. Using Tm ≥

max
(
S0(log S0)−1, e

√
m/

√
m
)

and the dominated convergence theorem yields (c). �
Proof of Proposition 4.2. For the duration of this proof let Pε

S and Hε
S denote the events 

PS , and HS coming from a particular value of ε (this dependence was implicit in the 
notation used elsewhere). For a given S0 > 2 and ε0 ∈ (0, 1/4), define recursively for 
m ∈ Z≥1

εm = εm−1 − S
−1/200
m−1 .

For a given ε ∈ (0, 1/4), it follows from Lemma 4.4 that there exists D = D(ε) > 0 such 
that for all S0 > D

∞∑
m=0

S−1/200
m < ε/4,

∞∑
m=0

c−1S−1/5
m < ε/2,

∞∑
m=0

c−1e−cS1/12
m < ε/2,

∞∑
m=0

e−Tm < ε/2,

(4.3)
where c = c(ε) is given by Proposition 4.1. For k ∈ Z≥0 define the event

L̃ε0
S0

(k) =
k−1⋂

Pεm

Sm
∩ Hεm

Sm
∩ ESm

(4.4)

m=0
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with the convention that L̃ε
S0

(0) = Ω, the full sample space, and that L̃ε
S0

:= L̃ε
S0

(∞) is 
the infinite intersection. We make two claims:

Claim 1. For all ε ∈ (0, 1/4) there exists D = D(ε) > 0 so that for all S0 > D,

P [L̃ε
S0

] ≥ 1 − 4ε. (4.5)

Claim 2. Let Wε
S,S′ =

{
supS≤s<s′≤S′ |Xs/s − Xs′/s′| > ε/2}. For all ε ∈ (0, 1/4) there 

exists D > D(ε) > 0 so that for all S0 > D,

∞∑
m=0

P [Wε
Sm,Sm+1

] < ε. (4.6)

Assuming these claims, let us complete the proof of Proposition 4.2. Assume that 
ε = ε0 ∈ (0, 1/4) is given and D = D(ε) > 0 is suitably large so that for all S0 > D, 
(4.3), (4.5) and (4.6) hold. This implies that

L̃ε
S0

∩
∞⋂

m=0

(
Wε

Sm,Sm+1

)c

(4.7)

holds with probability at least 1 − 5ε. Assume below that this event (4.7) holds.
On the event ESm

, we have that∣∣∣∣XSm+1

Sm+1
− XSm

Sm

∣∣∣∣ ≤ S−1/200
m . (4.8)

By (4.3), the right-hand side summed over m ∈ Z≥0 is bounded above by ε/4. Thus, on 
the event in (4.7) it follows that

sup
m,m′∈Z≥0

∣∣∣∣XSm

Sm
− XSm′

Sm′

∣∣∣∣ ≤ ε/2.

This controls the maximal change in XS/S on the set of times S0, S1, . . .. This is comple-
mented by the control on intermediate wiggling that is afforded to us by the intersection 

of the events 
(

Wε
Sm,Sm+1

)c

. Combined, this implies that on the event in (4.7)

sup
s,s′≥D

∣∣∣∣Xs

s
− Xs′

s′

∣∣∣∣ ≤ ε.

This implies that on the event in (4.7), U inf and U sup differ by at most ε. Since the 
probability of the event in (4.7) is at least 1 − 5ε, Proposition 4.2 follows.

What remains is to prove the two claims from above.
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Proof of Claim 1. Observe that

P [L̃ε0
S0

] =P [Pε0
S0

] − P [Pε0
S0

∩ (Hε0
S0

)c] − P [Pε0
S0

∩ Hε0
S0

∩ (Eε0
S0

)c] −
∞∑

k=1

P [L̃εk

Sk
∩ (Pεk

Sk
)c]

−
∞∑

k=1

P [L̃εk

Sk
∩ Pεk

Sk
∩ (Hεk

Sk
)c] −

∞∑
k=1

P [L̃εk

Sk
∩ Pεk

Sk
∩ Hεk

Sk
∩ (Eεk

Sk
)c].

Observe that P [Pε0
S0

] > 1 − 3ε0 provided S0 is large enough (as follows from the weak 
convergence of ρ to a U [0, 1] random variable via Proposition 1.2). Observe now that 
for any k ≥ 1, P [L̃ε

Sk
∩ (Pεk

Sk
)c] = 0. This is because the combination of the event Pεk−1

Sk−1

and Eεk−1
Sk−1

implies the event Pεk

Sk
(this follows from (4.8) which shows that |ρk − ρk−1| ≤

S
−1/200
k−1 = εk−1 − εk). Observe that for any k ≥ 0,

P
[
L̃εk

Sk
∩ Pεk

Sk
∩ (Hεk

Sk
)c
]

≤ P
[
Pεk

Sk
∩ (Hεk

Sk
)c
]

≤ c−1e−cS
1/12
k

where the constant c = c(ε0) > 0 can be chosen the same for all k (as follows from the 
final statement in Proposition 4.1). Similarly observe that for any k ≥ 0,

P
[
L̃εk

Sk
∩ Pεk

Sk
∩ Hεk

Sk
∩ (Eεk

Sk
)c
]

= E
[
1L̃εk

Sk

1Pεk
Sk

∩Hεk
Sk

E
[
1(Eεk

Sk
)c |FSk

]]
≤ c−1S

−1/5
k

where, as above, the constant c = c(ε0) > 0 can be chosen the same for all k. The first 
equality is evident from conditional expectations, while the second relies on the equality 
1Pεk

Sk
∩Hεk

Sk

E
[
1(Eεk

Sk
)c |FSk

]
= 1Pεk

Sk
∩Hεk

Sk

(
1 −E

[
1Eεk

Sk

|FSk

])
along with the second inequality 

in (4.2) and the final statement in Proposition 4.1.
Putting together the above deductions we see that

P [L̃ε0
S0

] ≥ 1 − 3ε0 −
∞∑

k=0

c−1e−cS1/12 −
∞∑

k=0

c−1S
−1/5
k ≥ 1 − 4ε0

by the second and third inequalities in (4.3). This proves Claim 1.

Proof of Claim 2. We start by noting a brutal Poisson process bound on the second 
class particle. Recall that this particle moves left into an unoccupied site at rate L, and 
left into a site occupied by a first class particle at rate R (this is the rate at which the 
first class particle moves right and switches places with the second class particle). Since 
R > L by assumption, this implies that we can lower-bound the trajectory of XS by 
a Poisson random walk that jumps to left at rate L + R ≤ 2R. By similar reasoning, 
we can upper-bound XS by another Poisson random walk that jumps to the right at 
rate L + R ≤ 2R. Recall that for a Poisson (λ) random variable Z, if x > λ then 
P [Z > x] ≤ (eλ/x)xe−λ.
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Now, observe that by the union bound and triangle inequality

P [Wε
Sm,Sm+1

] ≤ 2P [W̃ε
Sm,Sm+1

] where W̃ε
Sm,Sm+1

=
{

sup
s∈[Sm,Sm+1]

∣∣∣∣XSm

Sm
− Xs

s

∣∣∣∣ >
ε

4

}
.

Noting that

XSm

Sm
− Xs

s
= XSm

− Xs

s
+ s − Sm

sSm
XSm

we see that

W̃ε
Sm,Sm+1

⊆
{

sup
s∈[Sm,Sm+1]

∣∣∣∣XSm
− Xs

s

∣∣∣∣ >
ε

8

}
∪
{

sup
s∈[Sm,Sm+1]

∣∣∣∣s − Sm

sSM
XSm

∣∣∣∣ >
ε

8

}
.

By the brutal Poisson bound above, there exists a D = D(ε) > 0 such that for all 
S0 > D,

P

[
sup

s∈[Sm,Sm+1]

∣∣∣∣XSm
− Xs

s

∣∣∣∣ >
ε

8

]
≤ P

[
sup

s∈[Sm,Sm+1]

∣∣∣∣XSm
− Xs

Tm

∣∣∣∣ >
ε

8 log Sm

]
≤ e−Tm .

Similarly, we see that

P

[
sup

s∈[Sm,Sm+1]

∣∣∣∣s − Sm

sSm
XSm

∣∣∣∣ >
ε

8

]
≤ P

[
sup

s∈[Sm,Sm+1]

∣∣∣∣XSm

Sm

∣∣∣∣ >
ε

8 log Sm

]
≤ e−Sm .

Provided D is large enough, the sum over m of the above upper bounds e−Tm and 
e−Sm are bounded above by ε/2 which implies Claim 2 and completes the proof of 
Proposition 4.2. �
5. Proving Proposition 4.1

To prove Proposition 4.1 (we focus on the E≥
S case as the E≤

S case follows immediately 
from particle-hole symmetry as in Remark 2.3) we start in Definition 5.1 by coupling A
with a slightly different multi-species ASEP B obtained from A at time S by adding a 
number of second class particles to the left of XS (Fig. 7). Appealing to Proposition 2.4, 
we can control the behavior of XS+T in terms of the behavior of the bulk of the new 
second class particles. That behavior can be controlled by hydrodynamic estimates. All 
of this, however, requires that the time S density profile in A is close enough to its 
hydrodynamic limit. This condition is encapsulated in the event HS (see (6.17) in the 
proof of Proposition 5.4).

Definition 5.1. Fix γ = 1
100 (i.e., something close enough to 0). Recall that in AS the 

second class particle is denoted by XS . Given the state of AS we define a new process 
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Fig. 7. The coupling between AS and B0 from Definition 5.1. The second class particle (black circle) in AS

moves to the origin and everything is translated relative to that, and additional second class particles (grey 
circles) are added with probabilities given in (5.1).

B which is a multi-species ASEP with left jump rate L, right jump rate R, and the 
following initial data. Each site j ∈ Z is initially occupied in B0 by a first class particle 
if and only if j + XS is occupied by a first class particle in AS . Site 0 in B0 is initially 
occupied by a second class particle and, furthermore, for each site j ∈ �−2S1−γ , −1�
with j + XS not occupied by a first class particle in AS , B0(j) contains a second class 
particle independently and with probability

(
S−γ + j

2S

)(
1 − ρS + j

2S

)−1

. (5.1)

See Remark 5.2 for an explanation of the choice of these probabilities and Remark 5.3
regarding their positivity, and recall ρS is defined in Proposition 4.1. Let M equal the 
number of second class particles in B. Denote their tagged positions at any time t ≥ 0
by Zt(1) > · · · > Zt(M), so that Z0(1) = 0. Set { {Zt} } =

{
Zt(1), . . . , Zt(M)

}
.

Equivalent to the above description, we let Bt = (η̃t, α̃t) and assume initial data 
η̃0(j) = η(XS + j) for all j ∈ Z, while for α̃0 we assume that α̃0(0) = 1, and that 
for all j ∈ �−2S1−γ , −1� with η̃0(j) = 0, the α̃0(j) are independent Bernoulli random 
variables with probability (5.1) of equaling 1. For all other choices of j set α̃0(j) = 0. 
The Markov dynamics for (η̃t, α̃t) are those of first and second class particles under the 
basic coupling.

It will be convenient, e.g. in Section 6, for us to use B(1)
t to denote the occupation 

variables for just the first class particles in Bt and B(1∪2)
t to denote the occupation 

variables for the union of first and second class particles in Bt, i.e. B(1)
t = η̃t and 

B(1∪2)
t = η̃t + α̃t.
The above definition of B depends (i.e., is measurable with respect to FS) on the 

location XS of the second class particle in AS and the associated hydrodynamic density 
ρS defined by the relation 1 − 2ρS = XS/S. We will also need notation where we define 
a version of B relative to a specified choice of ρS and hence also XS . Let

Iε
S = {ρ ∈ (ε, 1 − ε) : S(1 − 2ρ) ∈ Z} , and for ρ ∈ Iε let Xρ

S = S(1 − 2ρ). (5.2)

These represent the potential values of the random variables ρS and XS respectively. 
For such a ρ ∈ Iε

S and corresponding Xρ
S , define Bρ exactly as above but with ρS

and XS replaced by the specified values ρ and Xρ
S . Similarly, let B(1),ρ and B(1∪2),ρ

respectively denote the first class particle process, and union of first and second class 
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Fig. 8. The average particle density versus spatial location for a typical instance of B0, as explained Re-
mark 5.2. Since there are only second class particles in [−2S1−γ , 0], the densities only differ therein. The 
upper line there corresponds to the density of the union of first and second class particles B(1∪2)

0 while the 
lower line is just for first class particles B(1)

0 .

particle processes. In this notation, B = BρS where the variable ρ is replaced by the 
random variable ρS . Recall that we are using the convention that bold symbols are 
random variables while their unbolded counterparts are deterministic variables.

Remark 5.2. Let us briefly explain the choice of the probabilities in (5.1). In view of 
the hydrodynamic limit for the ASEP with step initial data (as in Proposition 3.4 with 
ρ = 1), the probability that a first class particle occupies a site j ∈ �−εS, εS� in B0 is 
approximately ρS − j

2S . Therefore, the probability that site j is empty should approx-
imately be 1 − ρS + j

2S . So, (5.1) essentially ensures that the density of either first or 
second class particles in the interval �−2S1−γ , −1� in B0 is approximately constant and 
equal to ρS + S−γ . In particular, the density of particles in B0 decreases linearly with 
slope 1

2S on �−εS, −2S1−γ� to ρS + S−γ at −2S1−γ , remains constant at ρS + S−γ on 
�−2S1−γ , −1�, discontinuously decreases to ρS at site 0, and then decreases linearly with 
slope 1

2S on �0, εS�, see Fig. 8.

Remark 5.3. Depending on the value of ρS and S, the probabilities in (5.1) may exceed 
1. However, for a given value of ε we can choose c(ε) in the statement of Proposition 4.1
small enough so that for ρS ∈ (ε, 1 − ε), either the expressions in (5.1) remain bounded 
in (ε/2, 1 − ε/2) for all relevant j, or 1 − c−1S−1/5 < 0. In the former case, the Bernoulli 
random variables are well-defined, while in the later case, the second claimed inequality 
in (4.2) in Proposition 4.1 is trivially true (since the probability will always exceed 0).

Now observe that (2.1), from Proposition 2.4, implies that for any y ∈ Z,

P
[
XS+T − XS ≤ y|FS

]
≤ 1

M

M∑
j=1

PB0
[
ZT (j) ≤ y

]
. (5.3)

The left-hand side of this inequality is measurable with respect to FS while the right-
hand side is measurable with respect to the sigma algebra formed by FS and the Bernoulli 
random variables used to form B0 from AS . In particular, for any choice of the Bernoulli 
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random variables, the inequality holds. We can rephrase the inequality (5.3) in the fol-
lowing manner: Let K be uniformly distributed on {1, . . . , M}, then (5.3) is equivalent 
to

P
[
XS+T ≥ XS + y|FS

]
≥ P

[
ZT (K) ≥ y|FS

]
. (5.4)

In light of (5.4), we see that in order to establish Proposition 4.1, it suffices to con-
trol the locations of most of the second class particles in B with high probability. The 
following proposition achieves this aim.

Proposition 5.4. For any ε ∈ (0, 1/4), there exists c = c(ε) > 0 and FS-measurable events 
HS such that for all S > 2,

P [PS ∩ (HS)c] ≤ c−1e−cS1/12
(5.5)

where P is defined in (4.1) and

P
[∣∣{{ZT }} ∩

[
(1 − 2ρS)T − S1− γ

2 , ∞
)∣∣ ≥ M(1 − S− 1

5 )
∣∣∣FS

]
≥

(
1 − c−1e−cS1/12)

1HS∩PS
.

(5.6)

The constants c = c(ε) can be chosen so as to weakly decrease as ε decreases to 0.

This will be proved in Section 6, but first we prove Proposition 4.1 assuming it.

Proof of Proposition 4.1. Let HS and c = c(ε) > 0 be given as in Proposition 5.4, in 
which case the first inequality in (4.2) holds on account of (5.5). We argue here that

P [E≥
S |FS ] ≥ (1 − c−1e−cS1/12

)1HS∩PS
. (5.7)

Assuming this, we can deduce the same bound with E≤
S . This is because after applying the 

particle-hole symmetry (Remark 2.3) to our process, the initial data remains unchanged 
and the events E≤

S and E≥
S swap.

To show (5.7), assume that HS ∩ PS holds and let (recall { {ZT } } defined below (5.1))

Λ = {{ZT }} ∩
[
(1 − 2ρS)T − S1− γ

2 , ∞
)

and define the events

FS =
{

ZT (K) ≥ (1 − 2ρS)T − S1− γ
2
}

, and GS =
{

|Λ| ≥ M(1 − S−1/5)
}

(recall that γ = 1/100 and K is uniformly chosen on {1, . . . , M}). From (5.4) it follows 
that P

[
E≥

S |FS

]
≥ P

[
FS |FS

]
. Since M = |{ {ZT } }|, the event GS says that the fraction 

of particles in { {ZT } } which lie in [(1 − 2ρS)T − T 1− γ
2 , ∞) exceeds 1 − S−1/5. The 
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event FS is that a randomly chosen particle in { {ZT } } lies in 
[
(1 − 2ρS)T − S1− γ

2 , ∞
)
. 

Thus, conditioned on GS , the probability of FS exceeds 1 − S−1/5. This implies that 
P
[
FS |FS

]
≥ P (GS |FS) − S−1/5 and by Proposition 5.4, P (GS |FS) ≥ 1 − c−1e−cS1/12 . 

Putting this all together shows that P
[
E≥

S |FS

]
≥ 1 − c−1S−1/5 which yields the second 

inequality in (4.2) as desired. The final sentence of Proposition 4.1 follows from that of 
Proposition 5.4. �
6. Proof of Proposition 5.4: reduction to a hydrodynamic limit estimate

It remains to establish Proposition 5.4. To this end, we will start by comparing the 
multi-class ASEP B from Definition 5.1 to two versions of ASEP in Definition 6.1 (B(1)

will be compared to ξ(1) while B(1∪2) will be compared to ξ(1∪2)). The idea, developed 
in Proposition 6.2 is that the height function for ξ(1)

0 will be close (by close, we mean 
at most order S3/4 apart with probability at least 1 − c−1e−cS1/12) to that of B(1)

0 (the 
first class particles in B0), while the height function for ξ

(1∪2)
0 will be close to that 

of B(1∪2)
0 (the union of first and second class particles in B0). This event of height 

function closeness is part of the hydrodynamic event HS which appears in the statement 
of Proposition 5.4. Proposition 6.2 then shows that the simpler ξ(1) and ξ(1∪2) processes 
evolve over time T = S/ log S to be close to the same hydrodynamic limit in the region 
(−∞, (1 − 2ρS)T − S1− γ

2 ). Since the number of second class particles is close to S1−2γ

which is much larger than S3/4, this implies that most of the second class particles in 
B(1∪2) are in the complementary region [(1 − 2ρS)T − S1− γ

2 , ∞) which is exactly what 
we seek to show in Proposition 5.4.

The processes B(1)
t , B(1∪2)

t , ξ
(1)
t and ξ

(1∪2)
t all depend on the random variable ρS

(recall from the beginning of Section 5). In order to make the comparisons mentioned 
above, we will instead consider B(1),ρ

t , B(1∪2),ρ
t , ξ(1),ρ

t and ξ(1∪2),ρ
t for deterministic values 

of ρ ∈ Iε
S (recall from (5.2)). Taking a union bound over all potential values of ρ we 

establish that for random ρS , the comparison likewise holds.

Definition 6.1. For ρ ∈ (ε, 1 −ε), let ξ(1),ρ
t and ξ(1∪2),ρ

t denote two versions of ASEP, each 
with left and right jump rates L and R and initial data given as follows (see also Fig. 9). 
For each j /∈ �−εS, εS�, we deterministically set ξ(1),ρ

0 (j) = 0 = ξ
(1∪2),ρ
0 (j). To define 

ξ
(1),ρ
0 elsewhere, for each j ∈ �−εS, εS�, we define ξ

(1),ρ
0 (j) according to independent 

Bernoulli random variables with probabilities

P
[
ξ

(1),ρ
0 (j) = 1

]
= ρ − j

2S
, P

[
ξ

(1),ρ
0 (j) = 0

]
= 1 − ρ + j

2S
. (6.1)

In the language of Definition 3.1, this initial data is Υ(ρ)
ε -distributed on the inter-

val �−εS, εS�. We define ξ
(1∪2),ρ
0 (j) for j ∈ �−εS, εS� so for each j ∈ �−εS, εS� \

�−2S1−γ , −1�,
P
[
ξ

(1∪2),ρ
0 (j) = 1

]
= ρ − j ; P

[
ξ

(1∪2),ρ
0 (j) = 0

]
= 1 − ρ + j

,
2S 2S
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Fig. 9. Particles in ξ
(1),ρ
0 and ξ

(1∪2),ρ
0 (see Definition 6.1) are initially present according to independent 

Bernoulli random variables with probabilities give by the plot shown here. The probabilities coincide for 
ξ

(1),ρ
0 and ξ(1∪2),ρ

0 , except in the window [−2S1−γ , −1] where the ξ(1∪2),ρ
0 probability remains flat and the 

ξ
(1),ρ
0 probability decreases linearly.

while for each j ∈ �−2S1−γ , −1�,
P
[
ξ

(1∪2),ρ
0 (j) = 1

]
= ρ + S−γ P

[
ξ

(1∪2),ρ
0 (j) = 0

]
= 1 − ρ − S−γ .

Again, these choices are mutually independent over all j. Moreover, we assume that all 
of these Bernoulli random variables are chosen independent of the state of B0.

Finally, set ξ(1)
t = ξ

(1),ρS
t and ξ(1∪2)

t = ξ
(1∪2),ρS
t , i.e., the processes just defined above 

but with ρ replaced by ρS determined by the location of the second class particle in AS .

Under these choices, we have the following lemma, which essentially states that 
ξ

(1)
0 initially approximates B(1)

0 and ξ
(1∪2)
0 initially approximates B(1∪2)

0 (recall Defi-
nition 5.1).

Proposition 6.2. For all ε ∈ (0, 1/4), there exists c = c(ε) > 0 such that for

DS(B, ξ) =
{

max
|j|≤εS

∣∣h0
(
j; B

)
− h0(j; ξ)

∣∣ > S
3
4
}

, MS =
{∣∣M − S1−2γ

∣∣ > S
3
4
}

and PS as in (4.1), the following holds for any S > 2:

P
[
DS(B(1), ξ(1)) ∩ PS

]
< c−1e−cS1/12

, (6.2)

P
[
DS(B(1∪2), ξ(1∪2)) ∩ PS

]
< c−1e−cS1/12

, (6.3)

P
[
MS ∩ PS

]
< c−1e−cS1/12

. (6.4)

The constants c = c(ε) can be chosen so as to weakly decrease as ε decreases to 0.

Remark 6.3. Note that in Proposition 6.2, S comes into the definition of B0 since it 
determines that time at which we observe and modify the state of A; S comes into the 
definition of ξ(1) and ξ(1,2) in determining the parameters of the Bernoulli occupation 
variables; and S comes into the definition of ρS since (1 − 2ρS)S = XS . Also, note that 
for any S0 > 2, by taking C large enough and c small enough, we can make the bounds 
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in Proposition 6.2 trivial for S < S0 (i.e., make the right-hand side exceed 1). We will 
use this in proving this result. Also, note that our proof of (6.2) and (6.3) applies for 
S3/4 replaced by any power of S exceeding 2/3. We choose 3/4 as it is sufficient for our 
purposes.

Proof. Equation (6.2) follows readily from the triangle inequality and a union bound 
by combining Proposition 3.4 (which controls the deviations of the height function for 
B(1)

0 around its hydrodynamic limit) and Lemma 3.2 (which controls the deviation of 
the height function for ξ(1) around its hydrodynamic limit). The proof of (6.3) is more 
involved since we need to track the effect of the additional particles added to go from 
B(1)

0 to B(1∪2)
0 . We give the details below.

Recall Iε
S from (5.2) and observe that the event on the left-hand side of (6.3) satisfies

DS(B(1∪2), ξ(1∪2)) ∩ PS ⊆
⋃

ρ∈Iε
S

DS(B(1∪2),ρ, ξ(1∪2),ρ)

Since |Iε
S | is of order S, to establish (6.3) it suffices to show that there exists c = c(ε) > 0

such that for all ρ ∈ Iε
S and S > 2

P
[
DS(B(1∪2),ρ, ξ(1∪2),ρ)

]
≤ c−1e−cS1/12

. (6.5)

Observe that for any choice of function P (1∪2),ρ(j), we have

DS(B(1∪2),ρ, ξ(1∪2),ρ) ⊆ DS(B(1∪2),ρ) ∩ DS(ξ(1∪2),ρ)

where (DS(ξ(1∪2),ρ) is likewise defined with ξ(1∪2),ρ replacing B(1∪2),ρ)

DS(B(1∪2),ρ) =
{

max
|j|≤εS

∣∣h0(j; B(1∪2),ρ) − P (1∪2),ρ(j)
∣∣ > S

3
4 /2

}
.

Thus, to prove (6.5) it suffices to find P (1∪2),ρ(j) such that there exists c = c(ε) > 0 so 
that for all ρ ∈ Iε

S and S > 2

P
[
D(1∪2),ρ;β

S

]
≤ c−1e−cS1/12

and P
[
D(1∪2),ρ;ξ

S

]
≤ c−1e−cS1/12

. (6.6)

We make the natural choice (defining P (1∪2),ρ([a, b]) = P (1∪2),ρ(a) − P (1∪2),ρ(b) for 
a, b ∈ Z)

P (1∪2),ρ(j) = E
[
h0(j; ξ(1∪2),ρ)

]
from which the second inequality in (6.6) follows immediately from applying Hoeffding’s 
inequality (in the spirit of Lemma 3.2). This gives a stronger bound with S3/4 replace 
by S1/2, though we will not need this here.
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It remains to demonstrate the first bound in (6.6). This follows from showing that 
there exists c = c(ε) > 0 such that for all ρ ∈ Iε

S and S > 2

P

[
max

j∈�0,εS�

∣∣∣h0
(
j; B(1∪2),ρ

)
− P (1∪2),ρ(j)

∣∣∣ >
S3/4

6

]
≤ c−1e−cS1/12

,

P

[
max

j∈�−2S1−γ ,−1�

∣∣∣h0
(
j; B(1∪2),ρ

)
− P (1∪2),ρ(j)

∣∣∣ >
S3/4

6

]
≤ c−1e−cS1/12

, (6.7)

P

[
max

j∈�−εS,−2S1−γ�

∣∣∣h0
(�j, −2S1−γ�; B(1∪2),ρ

)
− P (1∪2),ρ(�j, −2S1−γ�)∣∣∣ >

S3/4

6

]
≤ c−1e−cS1/12

,

where in the final inequality we recall the notation from (2.3). The first and third in-
equalities above are immediate from (6.2): For j ∈ �0, εS� we have h0

(
j; B(1∪2),ρ

)
=

h0
(
j; B(1),ρ

)
and for j ∈ �−εS, −2S1−γ� we have h0

(�j, −2S1−γ�; B(1∪2),ρ
)

= h0
(�j,

−2S1−γ�; B(1),ρ
)
.

Thus, we are left to show the middle inequality in (6.7). To do this we will split the 
interval �−2S1−γ , −1� into pieces of size S2/3. On each of these we will control the number 
of first class particles in B(1∪2),ρ to order S1/3 by using the final part of Proposition 3.4
(as we are dealing with step initial data), and then control the number of second class 
particles by bounds on sums of Bernoulli random variables. This will yield an upper and 
lower bound with error of order S1/3 on the number of first and second class particles 
in B(1∪2),ρ within each interval. Summing over order S1/3 such intervals introduces an 
error of order S2/3 which is still much smaller than the S3/4 allowed error.

Define KS = �2S1/3−γ� and intervals Ik = �−(k + 1)S2/3, −kS2/3� for k ∈ �0, KS − 1�
and IkS

= �−2S1−γ , −KSS2/3�. Let j0, . . . , jKS
denote the endpoints of these intervals, 

i.e., Ik = [jk+1, jk] and notice that the union of these intervals covers �−2S1−γ, −1�. Since 
h0

(
j; B(1∪2),ρ

)
and P (1∪2),ρ(j) are both 1-Lipschitz functions and since S2/3 � S3/4 it 

suffices to show the following claim: there exist a constant c > 0 such that for all ρ ∈ Iε
S , 

k ∈ �0, KS� and S > 2

P

[∣∣∣h0
(
jk; B(1∪2),ρ

)
− P (1∪2),ρ(jk)

∣∣∣ >
S3/4

8

]
≤ c−1e−cS1/12

. (6.8)

This implies the middle equation in (6.7) since the most that h0
(
j; B(1∪2),ρ

)
−P (1∪2),ρ(j)

can change over j ∈ Ik is by 2|Ik| = 2S2/3. For large S, this is much smaller than S3/4/24
(while for small S, we can just choose c small enough so that the right-hand side of the 
middle equation in (6.7) exceeds 1, and hence the relation there trivially holds).

For each k ∈ �0, KS� define Firstk = h0
(
Ik; B(1),ρ

)
and the event

Fk(κ) :=
{

ρS2/3 + 2k + 1
S1/3 − κS1/3 ≤ Firstk ≤ ρS2/3 + 2k + 1

S1/3 + κS1/3
}

4 4
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that the number of first class particles in Ik is within κS1/3 of the expected number 
according to the hydrodynamic limit. Noting that the term ρS2/3 + 2k+1

4 S1/3 agrees 
with the hydrodynamic limit profile for step initial data, we see that by the final part of 
Proposition 3.4 there exists c, κ0 > 0 such that for all k ∈ �0, KS� and κ ∈ [κ0, S2/3/2], 
P
[
Fk(κ)

]
≤ c−1e−cκ. On the event Fk(κ), we can bound the number of empty sites 

Emptyk := S2/3 − Firstk for B(1),ρ at time zero in the interval Ik by

(1 − ρ)S2/3 − 2k + 1
4 S1/3 − κS1/3 ≤ Emptyk ≤ (1 − ρ)S2/3 − 2k + 1

4 S1/3 + κS1/3.

As explained in Definition 5.1, in order to construct B(1∪2),ρ from B(1),ρ on the interval 
Ik, we replace a hole at location j by a second class particle (independently over all 
j ∈ Ik) with the probability in (5.1). Let us denote this probability by Q(j). Observe 
that Q(j) increases as j decreases, and thus we can lower bound the total number of 
second class particles on Ik by replacing Q(j) by Q(−kS2/3) for each j ∈ Ik, and likewise 
upper bound the number by using Q(−(k + 1)S2/3). This shows that given Emptyk, the 
expected number second class particles that will be added in the interval Ik will be 
bounded between EmptykQ(−kS2/3) and EmptykQ(−(k + 1)S2/3). Call Secondk the 
number of second class particles added in the interval Ik and define the event

Sk(κ) :=
{

Emptyk · Q(−kS2/3) − κS1/3 ≤ Secondk

≤ Emptyk · Q(−(k + 1)S2/3) + κS1/3
}

.

By Hoeffding’s inequality there exists c, κ0 > 0 such that for all k ∈ �0, KS� and κ ≥ κ0,

P
[
Sk(κ)

]
≤ c−1e−cκ.

On the event that both Fk(κ) and Sk(κ) hold, it follows that

(ρ + S−γ)S2/3 − 4κS1/3 ≤ Firstk + Secondk ≤ (ρ + S−γ)S2/3 + 4κS1/3

where we have expanded the terms Q(−kS2/3) and Q(−(k+1)S2/3) and absorbed errors 
into the 4κS1/3 term. Recalling that P (1∪2),ρ(Ik) = (ρ +S−γ)S2/3 and h0

(
Ik; B(1∪2),ρ

)
=

Firstk + Secondk, and using the bounds above on P
[
Fk(κ)

]
and P

[
Sk(κ)

]
, we conclude 

that there exists c, κ0 > 0 such that for all k ∈ �0, KS� and κ ∈ [κ0/4, S2/3/2],

P

[∣∣∣h0
(
Ik; B(1∪2),ρ

)
− P (1∪2),ρ(Ik)

∣∣∣ > κS1/3
]

≤ c−1e−cκ. (6.9)

Taking κ = S1/12/8 and a union bound over all k ∈ �0, KS� leads to (6.8), as desired.
The inequality, (6.4), follows from what we have shown in (6.7) above upon noting 

that
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M = h0(�−2S1−γ , −1�; B(1∪2)) − h0(�−2S1−γ , −1�; B(1)).

Notice that the centering of M by S1−2γ is consistent with the hydrodynamic limit, 
namely that the area of the triangle bounded between the two profiles in Fig. 9. �

Having established Proposition 6.2 we now know that the initial condition for the 
height functions of B(1) and ξ(1) as well as for B(1∪2) and ξ(1∪2) are, respectively, close to 
order S3/4. The next result, Proposition 6.4, will show that the product form initial height 
profiles for ξ(1) and ξ(1∪2) evolved over a time interval T will be close to order at least 
T 3/4 to their hydrodynamic limits (at least when focusing to the left of the characteristic 
velocity 1 − 2ρS). Proposition 5.4 follow then follow by combining Proposition 6.4 with 
Proposition 6.2 and the monotonicity afforded to us by Lemma 2.6.

Proposition 6.4. For any ε ∈ (0, 1/2), there exists c = c(ε) > 0 such that the following 
holds for any S > 2 (recall T = S(log S)−1). Define the interval and function

JS,T,ρ =
[
− εS

4 , (1 − 2ρ)T − S1− γ
2

]
,

HS,T,ρ(X, Y )=
(

ρ + T (1 − 2ρ)
2(S + T )

)
(Y − X)+ Y 2 − X2

4(S + T ) ,

as well as the maximal deviation of the height function and hydrodynamic limit function

Diff±
S,T (ξ, ρ) = max

X,Y ∈JS,T,ρ

±
(
hT (�X, Y �; ξ) − HS,T,ρ(X, Y )

)
,

DiffS,T (ξ, ρ) = max
X,Y ∈JS,T,ρ

∣∣hT (�X, Y �; ξ) − HS,T,ρ(X, Y )
∣∣

= max
(
Diff+

S,T (ξ, ρ), Diff−
S,T (ξ, ρ)

)
Then we have that

P
[{

DiffS,T (ξ(1), ρ) ≥ S3/4}⋂{
ρS ∈ (ε, 1 − ε)

}]
< c−1e−cS1/12

, (6.10)

P
[{

DiffS,T (ξ(1∪2), ρ) ≥ S3/4}⋂{
ρS ∈ (ε, 1 − ε)

}]
< c−1e−cS1/12

. (6.11)

The constants c = c(ε) can be chosen so as to weakly decrease as ε decreases to 0.

Proof of Proposition 6.4. As in the proof of Proposition 6.2, we will demonstrate that 
there exists c = c(ε) > 0 such that the following holds for all S > 2 and all ρ ∈ Iε

S (recall 
(5.2)):

P
[
DiffS,T (ξ(1),ρ, ρ) ≥ S3/4

]
≤ c−1e−cS1/12

, (6.12)

P
[
DiffS,T (ξ(1∪2),ρ, ρ) ≥ S3/4

]
≤ c−1e−cS1/12

. (6.13)
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Having shown this, the results in the statement of Proposition 6.4 follow by a union 
bound (absorbing the resulting linear prefactor of S into the exponent c−1e−cS1/12).

By Definition 6.1, the initial data for ξ(1),ρ is Υ(ρ)
ε -distributed (recall (3.4)) on 

[−εS, εS]. Thus, (6.12) follows from the first statement of Proposition 3.6 (with κ = S1/12

there), together with the fact that

T

Y/T∫
X/T

(
ρ + T

2(S + T ) (1 − 2ρ − z)
)

dz = HS,T,ρ(X, Y ).

To establish (6.13), first observe by Lemma 2.2 that ξ(1),ρ and ξ(1∪2),ρ can be coupled 
so that ht(�X, Y �; ξ(1∪2),ρ) ≥ ht(�X, Y �; ξ(1),ρ), for each t ≥ 0, whenever X ≤ Y . By this 
and (6.12), there exists c = c(ε) > 0 such that for all S > 2 and all ρ ∈ Iε

S (recall (5.2)):

P
[
Diff−

S,T (ξ(1∪2),ρ, ρ) ≥ S3/4
]

≤ P
[
Diff−

S,T (ξ(1),ρ, ρ) ≥ S3/4
]

≤ c−1e−cS1/12
.

So, it suffices to establish the complementary bound

P
[
Diff+

S,T (ξ(1∪2),ρ, ρ) ≥ S3/4
]

≤ c−1e−cS1/12
. (6.14)

To establish (6.14), let ξ̃
(1∪2),ρ

0 be Φ(ρ)
ε;β-distributed (as in Definition 3.5) with β =

ε−1S−γ . Then,

ξ̃
(1∪2),ρ

0 (x) ≥ ξ
(1∪2),ρ
0 (x), for each x ∈ Z,

and so by Lemma 2.2 we may couple the associated ASEPs ξ(1∪2),ρ and ξ̃
(1∪2),ρ

such 
that

hT

(�U, V �; ξ(1∪2),ρ
)

≤ hT

(�U, V �; ξ̃
(1∪2),ρ)

, for any integers U ≤ V . (6.15)

Now, applying the second part of Proposition 3.6 yields

P

[
max

|X/S|≤ε/4
|Y/S|≤ε/4

∣∣∣∣hT (�X, Y �; ξ̃
(1∪2),ρ

) − T

Y/T∫
X/T

max
{

ρ + (1 − 2ρ − z)T
2(S + T ) ,ρ + S−γ

}
dz

∣∣∣∣>S3/4

]

< c−1e−cS1/12
.

(6.16)

Recall that we have assumed X, Y ≤ (1 − 2ρ)T − S1− γ
2 . For large enough S, we have 

that (1 − 2ρ)T − S1− γ
2 ≤ (1 − 2ρ)T − 2S−γ(S + T ). In that case,
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Y/T∫
X/T

max
{

ρ + (1 − 2ρ − z)T
2(S + T ) , ρ + S−γ

}
dz =

Y/T∫
X/T

(
ρ + (1 − 2ρ − z)T

2(S + T )

)
dz

= HS,T,ρ(X, Y )
T

.

Combining this with (6.15) and (6.16) yields (6.14), as desired. �
Proof of Proposition 5.4. We will start by defining the FS-measurable event HS (recall 
that Ec is the complement of an event E):

HS = DS(B(1), ξ(1))c ∩ DS(B(1∪2), ξ(1∪2))c ∩ Mc
S (6.17)

where these events (all of which also depend on S but whose dependence is not explicit 
in the notation) are defined in Proposition 6.2. Recalling the notation PS from (4.1)
observe that by the union bound and then (6.2), (6.3) and (6.4) we have that there 
exists c = c(ε) > 0 such that for all S > 2

P [PS ∩ (HS)c] ≤ P
[
PS ∩ DS(B(1), ξ(1))

]
+ P

[
PS ∩ DS(B(1∪2), ξ(1∪2))

]
+ P

[
PS ∩ MS

]
≤ c−1e−cS1/12

.

This shows (5.5). Thus, to prove Proposition 5.4 it now suffices to show that for the 
choice of HS in (6.17), (5.6) holds, namely there exists c = c(ε) > 0 such that for all 
S > 2

P
[∣∣∣{{ZT }}∩

[
(1−2ρS)T −S1− γ

2 , ∞
)∣∣∣ ≥ M(1−c−1S− 1

5 )
∣∣∣FS

]
≥

(
1−c−1e−cS1/12)

1HS∩PS
.

In other words, to prove the above bound we must show that there exists c = c(ε) >
0 such that for any S > 2, assuming the event PS ∩ HS holds, it follows that with 
probability at least 1 − c−1e−cS1/12 the number of second class particles in the interval [
(1 − 2ρS)T − S1− γ

2 , ∞
)

is at least M(1 − c−1S− 1
5 ). Observe that on the event HS ∩ PS , 

we have that 
∣∣M − S1−2γ

∣∣ ≤ S
3
4 holds and that

P
[∣∣∣{{ZT }} ∩

(
− ∞, −εS

4

]∣∣∣ = 0
]

≥ 1 − c−1e−cS1/12
, (6.18)

P
[∣∣∣{{ZT }} ∩

(
− εS

4 , (1 − 2ρS)T − S1− γ
2

]∣∣∣ < 4S
3
4

]
≥ 1 − c−1e−cS1/12

. (6.19)

The first of these inequalities follows immediately from Lemma 2.5 (and does not de-
pend on the occurrence of HS). This is because B(1) and B(1∪2) are the same at time 
0 on the interval (−∞, −2S1−γ) and hence remain the same on the smaller interval 
(−∞, −2S1−γ − 4RT ) at time T = S/ log S with probability at least 1 − 4e−T/3. We can 
find c = c(ε) > 0 such that for all S > 2 either (−∞, −2S1−γ − 4RT ) ⊂ (−∞, − εS ] and 
4
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1 − 4e−T/3 ≥ 1 − c−1e−cS1/12 , or 1 − c−1e−cS1/12
< 0. In the first case (which occurs 

for large enough S) (6.18) follows, and in the second case (for small S) (6.18) follows 
trivially as the right-hand side is negative.

The second inequality, (6.19), relies on Proposition 6.4. Observe that by the triangle 
inequality, on the event that

{
DiffS,T (ξ(1), ρ) < S3/4} ∩

{
DiffS,T (ξ(1∪2), ρ) < S3/4} (6.20)

holds in addition to HS ∩ PS , it follows that

hT

(�
− εS

4 , (1−2ρS)T −S1− γ
2

�
; B(1∪2)

)
−hT

(�
− εS

4 , (1−2ρS)T −S1− γ
2

�
; B(1)

)
≤ 4S3/4.

(6.21)
Here we used the monotonicity from Lemma 2.6 to show that the S3/4 closeness of 
B(1) and ξ(1), and of B(1∪2) and ξ(1∪2), at time 0 (which holds on DS(B(1), ξ(1))c ∩
DS(B(1∪2), ξ(1∪2))c) persists for all time. Then we used the fact that on the event in (6.20)
both ξ(1) and ξ(1∪2) have height functions that are within S3/4 of the same hydrodynamic 
limit function HS,T,ρ(X, Y ). By Lemma 2.2 and equation (2.3), the left-hand side of 
(6.21) is the event

∣∣∣{{ZT }} ∩
(

− εS

4 , (1 − 2ρS)T − S1− γ
2

]∣∣∣ < 4S
3
4

whose probability we wish to control in (6.19). By Proposition 6.4 the probability of the 
event in (6.20) (that, in conjunction with HS ∩PS , imply (6.21)) is at least 1 −c−1e−cS1/12

for some c = c(ε) > 0. This establishes (6.19).
We can now show (5.6) holds. By (6.18) and (6.19), on the event HS ∩ PS , we have 

that {∣∣∣{{ZT }} ∩
[
(1 − 2ρS)T − S1− γ

2 , ∞
)∣∣∣ ≥ M − 4S3/4

}
holds with probability at least 1 − 2c−1e−cS1/12 . On HS ∩ PS we also have M > S1−2γ −
S3/4 which implies that there exists S0 > 0 such that

M − 4S3/4 = M
(

1 − 4S3/4

M

)
≥ M

(
1 − 4S3/4

S1−2γ − S3/4

)
≥ M(1 − S−1/5).

This implies (5.6), provided S > S0 (for smaller S it follows by taking c sufficiently 
small).

All that remains to complete the proof of Proposition 5.4 is to show that the constants 
c = c(ε) in that statement can be chosen so as to weakly decrease as ε decreases to 0. 
However, this is easily seen to be the case due to the fact that all results upon which we 
relied in this proof have a similar qualification on the constants. �
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Appendix A. Rezakhanlou’s coupling

We recall here a coupling which is presented in Section 4.1 of [36]. It is proved there, 
though not stated as a quotable result, hence we also include a proof along the lines of 
[36]. We will stick with the notation used in that paper to make the comparison there 
simpler. This notation is a bit different than what we use in the main body of this paper, 
hence we also explain how match to Proposition 2.4.

Let (ηt, xt) denote the occupation variables for first class particles (ηt) along with the 
location of a single second class particle (xt). Let p(1) = q and p(−1) = p (and p(i) = 0
for all other i) and assume p ≥ q. The state space for (ηt, xt) is {(η, x) ∈ {0, 1}Z × Z :
η(x) = 0} and the generator is specified by its action on local functions f as

Af(η, x) :=
∑

u,v∈Z\x

p(v − u)η(u)
(
1 − η(v)

)[
f(ηu,v, x) − f(η, x)

]
+ (p − q)

(
1 − η(x − 1)

)[
f(η, x − 1) − f(η, x)

]
+ (p − q)η(x + 1)

[
f(ηx+1,x, x + 1) − f(η, x)

]
+ q

[
f(ηx,x+1, x + 1) + f(ηx,x−1, x − 1) − 2f(η, x)

]
.

Here ηu,v(w) is equal to η(v) if w = u, η(u) if w = v and η(w) otherwise. Let Pη,x denote 
the probability measure for this Markov process from initial data (η, x).

It is easy to check that A does, indeed, encode the desired jump rates. The first term 
involves jumps which are separate from the second class particle. When there is a second 
class particle at x and no (first class) particle at x − 1, the second line gives a jump rate 
p − q for the second class particle to move to x − 1, and the fourth line gives a jump 
rate q, thus a total of rate p. If there is a second class particle at x and no particle at 
x + 1, then only the fourth line contributes a jump rate of q. Thus, the second class 
particle behaves a expected. If there is a particle at x − 1 and second class particle at 
x, then the two switch at rate q from the fourth line, and if there is a particle at x + 1
and a second class particle at x, then the two switch with rate p − q from the third line 
and rate q from the fourth line, hence rate p. This matches the dynamics one expects 
for first/second particle pairs. This type of case-by-case verification of couplings can be 
implemented for all of the other generators that we define below, though we will not go 
through it there.

Consider two states η0 ≥ ζ in {0, 1}Z and let α be defined via ζ0 = η + α, with 
α ∈ {0, 1}Z as well. These represent all of the second class particles. By the basic 
coupling (and attractivity of ASEP) we can define the joint evolution (ηt, αt) of first and 
second class particles started from η0 = η and α0 = α. We will not record the generator, 
though note that it is given in [36, (4.4)]. Let Pη,α denote the probability measure for 
this Markov process from initial data (η, α).

For x ∈ Z, η ∈ {0, 1}Z and N ∈ Z≥1, let A≥(x, η, N) equal the set of α ∈ {0, 1}Z
such that 

∑
j∈Z αj = N , η + α ∈ {0, 1}Z , α(x) = 1 and α(w) = 1 only if w ≥ x (this is 
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not an if and only if). In words, this means that we start with N second class particles 
relative to the first class particles at η, with the left-most one at x. Associate to such an 
α, a set {zt(1), . . . , zt(N)} of locations for the second class particles.

Proposition A.1. For any x, y ∈ Z, x0 ∈ Z and η ∈ {0, 1}Z with η0(x0) = 0, and for any 
N ∈ Z≥1 and α0 ∈ A≥(x0, η0, N),

Pη0,x0(xt ≥ y) ≤ 1
N

N∑
j=1

Pη,α(zt(j) ≥ y). (A.1)

Proof. To prove this we will introduce a process zt =
(
zt(1), . . . , zt(N)

)
which is com-

prised of the locations in αt, but for which the order of the labels can change. We 
will then show that for any particular label j ∈ {1, . . . , N}, there exists a coupling of 
(ηt, zt, xt) such that xt ≤ zt(j) for all t. Finally, since the uniform distribution on orders 
for zt is preserved, marginally, for all t, we will be able to conclude that (A.1) holds. 
We need a bit of notation. Let α(u; z) := α(u) = 1u=zj for some j∈{1,...,N} denote the 
indicator that there is a second class particle at position u, given location vector z; let 
ζ(u; z) = η(u) + α(u; z) similarly denote the indicator for either a first or second class 
particle at position u.

We now define a coupling of ηt and the second class particle label process zt. Forgetting 
about the labels, this reduces to the usual (basic) coupling of first and second class 
particles. It should be noted that the labels in zt do not stay ordered. The state space 
for (ηt, zt) is evident, and the generator is given by its actions on local functions f as

Bf(η, z) :=(p − q)
∑
u∈Z

η(u)(1 − ζ(u − 1, z))
[
f(ηu,u−1, z) − f(η, z)

]

+ (p − q)
N∑

j=1
(1 − ζ(zj − 1; z))

[
f(η, zzj ,zj−1) − f(η, z)

]

+ (p − q)
N∑

j=1
η(zj + 1)

[
f(ηzj+1,zj , zzj ,zj+1) − f(η, z)

]
+ q

∑
u∈Z

[
f(ηu,u+1, zu,u+1) − f(η, z)

]
.

Here zu,v denotes the configuration resulting from exchanging the content of sites u and 
v in z. In particular, if zi = u and zj = v, then z̃ = zu,v has z̃i = v and z̃j = u (and 
all other values unchanged). It is worth noting that the fourth line in B results in such 
swapping of labels between second class particles.

Now, we will demonstrate that for any given j ∈ {1, . . . , N} it is possible to construct 
a coupling (ηt, zt, xt) such that if x0 ≤ z0(j), then xt ≤ zt(j), for all t. We have already 
defined couplings of (ηt, xt) and (ηt, zt). So, to see that our desired triple coupling exists, 
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we simply need to show that if, for some t, xt = zt(j) = u, then the jump rates for xt

and zt(j) are ordered so xt jumps left with higher rate than zt(j) and jumps right with 
lower rate than zt(j). This is shown by inspection of the generators: The left jump rate 
for xt is (p − q)(1 − ηt(u − 1)) + q while for zt(j) it is (p − q)(1 − ζt(u − 1)) + q. Since 
ηt(u − 1) = 1 implies ζt(u − 1) = 1, the rates are ordered as desired; the right jump 
rate for xt and zt(j) are both (p − q)ηt(u + 1) + q. This proves that the desired coupling 
exists. Let us denote the coupled probability measure started in state η, z, x by Pη,z,x.

Now we can conclude with the proof of (A.1). For a given α, let z0 denote a uniformly 
random ordering on the elements of α. The dynamics on zt preserve the uniform ordering 
in the sense that for any fixed t, the marginal distribution of the order of labels in zt

remains uniform. For any α ∈ A≥(x, η, N), fix j = 1 and use the coupling from the 
previous paragraph to see that

Pη,x(xt ≥ y) = Pη,z,x(xt ≥ y) ≤ Pη,z,x(zt(1) ≥ y) = Pη,z(zt(1) ≥ y)

= 1
N

N∑
j=1

Pη,α
(
zt(j) ≥ y

)
. (A.2)

The first equality is immediate from the coupling since including the zt process has no 
baring on the event xt ≥ y. The second inequality is because under the j = 1 version of 
the coupling of (ηt, zt, xt), we have that zt(1) ≥ xt provided z0(1) ≥ x0. That inequality, 
however, is implied by the assumption that α ∈ A≥(x, η, N) (which means that x0 = x

is the left-most particle in α and hence in z). The third equality is again immediate from 
the coupling since now xt has no baring on the event zt(1) ≥ y. The final equality is 
because we have assumed that the order in z is uniformly chosen and this property holds 
for all t. Thus, we must average over the events zt(j) ≥ y as stated. �
Proof of Proposition 2.4. In order to match Proposition A.1 with Proposition 2.4 we 
take R = p and L = q and then reverse space. �
Appendix B. Proof of moderate deviation results and proof of Proposition 3.4

To prove Proposition 3.4, we will use the following proposition that provides upper 
and lower tail bounds on hT (X; η). These bounds are summarized in Fig. 10 and its 
caption.

Proposition B.1. For any ε > 0, there exists c = c(ε) > 0 such that the following 
holds. Let ρ ∈ [ε, 1] and η be ASEP under (ρ; 0)-Bernoulli initial data. For any T > 1, 
s ≥ 0 letting Y0 := (1 − 2ρ)T + T 2/3 we have (recall from (2.3) that hT ([X, Y ]; η) :=
hT (X; η) − hT (Y ; η))

P

[
hT (X; η) ≥ (T − X)2

+ sT
1
3

]
≤ c−1e−cs for X ∈

�
− (1 − ε)T, (1 − ε)T

�
, (B.1)
4T
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Fig. 10. The four bounds in Proposition B.1. The thin solid lines represent the initial hydrodynamic profile for 
(ρ; 0)-Bernoulli initial data with ρ = 1/2 and step initial data, and the thick solid lines present the evolved 
hydrodynamic profiles. The four dashed lines are labeled with the corresponding bounds in Proposition B.1
and the scale of the error bounds are noted as well.

P

[
hT (X; η) ≤ (T − X)2

4T
− sT

1
3

]
≤ c−1(e−cs + e−cT ), for X ∈

�
Y0, (1 − ε)T

�
,

(B.2)

P
[
hT ([X, Y0]; η) ≥ ρ(Y0 − X) + sT

1
2
]

≤ 2e− s2
4 , for X ∈

�
− T, Y0

�
(B.3)

P
[
hT ([X, Y0]; η) ≤ ρ(Y0 − X) − sT

2
3
]

≤ c−1T
1
3 (e−cs + e−cT ) for X ∈

�
− T, Y0

�
.

(B.4)

The constants c = c(ε) can be chosen so as to weakly decrease as ε decreases to 0.

We will first provide a proof of (B.3) based on a simple coupling argument and con-
centration bound for sums of i.i.d. Bernoulli random variables. Then we will prove (B.4), 
assuming (B.1) and (B.2). We then prove (B.1), relying upon a remarkable identity from 
[15] that relates ASEP to the discrete Laguerre ensemble. Finally, we prove (B.2) through 
asymptotics of a Fredholm determinant formula coming from [13,2].

A few remarks about the proposition are in order. While (B.1) gives an upper bound 
on hT (X; η) for all X ∈

[
− (1 − ε)T, (1 − ε)T

]
, it is only useful for us (though the decay 

is likely not as sharp as possible) for X ∈
(
(1 − 2ρ)T, (1 − ε)T

)
. This is because the 

approximation hT (X; η) ≈ (T −X)2

4T holds with high probability if X ∈
(
(1 − 2ρ)T, (1 −

ε)T
)

but no longer does for X < (1 − 2ρ)T . Equation (B.2) gives an effective lower 
bound on hT (X; η) for X ∈

[
Y0, (1 − ε)T

]
. The reason for the T 2/3 offset in how we 

define Y0 comes from the proof of this bound where it simplifies the analysis and choice 
of contours in the Fredholm determinant used there. The Gaussian T 1/2 order upper 
bound in (B.3) should be close to tight, while the T 2/3 order lower bound in (B.4) is not 
tight. We expect the actual lower bound should involve T 1/2 and a Gaussian tail as in 
(B.3). Such a bound in place of (B.4) may be possible from the Fredholm determinant, 
though we do not pursue it (see [2] for an example of such an analysis).

Assuming Proposition B.1, we can establish Proposition 3.4.



A. Aggarwal et al. / Advances in Mathematics 422 (2023) 109004 41
Proof of Proposition 3.4. As in Proposition B.1, let Y0 = (1 −2ρ)T +T 2/3. Observe that 
by combining (B.3) with (B.4) (for the first bound below) and (B.1) with (B.2) (for the 
second bound below) we have that for any

P
[∣∣hT ([X, Y0]; η) − ρ(Y0 − X)

∣∣ ≥ sT
2
3

]
≤ c−1Te−cs, if −(1 − ε)T ≤ X ≤ Y0;

P

[∣∣∣∣hT (X; η) − (T − X)2

4T

∣∣∣∣ ≥ sT
2
3

]
≤ c−1Te−cs, if Y0 ≤ X ≤ (1 − ε)T .

This holds for any ε > 0 (with c = c(ε), ρ ∈ [ε, 1], T > 1 and s ∈ [0, T ]). We restrict 
s ∈ [0, T ] (as opposed to s ≥ 0) in order to bound c−1T

1
3 (e−cs + e−cT ) ≤ Te−cs in (B.4). 

Now observe that from the explicit form of Υ(ρ;0) given by Definition 3.3, we have that

T

Y/T∫
X/T

Υ(ρ;0)(z)dz =
{

1
4T

(
(T − X)2 − (T − Y )2), if (1 − 2ρ)T ≤ X ≤ Y ≤ T ,

(Y − X)ρ, if X ≤ Y ≤ (1 − 2ρ)T .

Now (3.3) readily follows by combining this and the previous display.
The claim about step initial data follows immediately from (B.1) with (B.2) after 

observing that for any fixed ε, there is a T0 > 0 such that for all T > T0, Y0/T < −(1 −ε). 
Thus, by choosing a small enough c, we can ensure that (3.3) holds for all T > 1 with 
sT 2/3 replaced by sT 1/3, as desired. �
Proof of equation (B.3)

We compare the ASEP η to a ρ-stationary ASEP ξ. Since we can clearly couple η0
and ξ0 so that η0(j) ≤ ξ0(j) for all j ∈ Z, the attractivity in Lemma 2.2 yields a coupling 
between η and ξ such that ηt(j) ≤ ξt(j) for all t ≥ 0 and j ∈ Z. It follows from (2.3)
that

P
[
hT ([X, Y0]; η) ≥ ρ(Y0 − X) + sT

1
2
]

= P

[
Y0∑

j=X+1
ηT (j) ≥ ρ(Y0 − X) + sT

1
2

]

≤ P

[
Y0∑

j=X+1
ξT (j) ≥ ρ(Y0 − X) + sT

1
2

]
≤ 2e− s2

4 ,

where to deduce the last bound we used the concentration estimate (3.1), together with 
the fact that |X − Y0| ≤ 3T . This establishes (B.3).

Proof of equation (B.4) assuming equation (B.1) and equation (B.2)

We claim that for any A, X ∈ Z such that A ≥ 0 and X ≤ Y0, and for any M ∈ R

P
[
hT ([X, X + A]; η) ≤ M

]
≤ P

[
hT ([Y0, Y0 + A]; η) ≤ M

]
. (B.5)



42 A. Aggarwal et al. / Advances in Mathematics 422 (2023) 109004
This follows from a simple coupling argument. Let ζ denote an ASEP whose initial data 
ζ0 is obtained by setting ζ0(j) = η0(j) for j ≤ X − Y0 and ζ0(j) = 0 otherwise. Notice 
that ζ0 is equal in distribution to η0, shifted to left by a distance of magnitude |X −Y0|, 
and that it is also coupled in such a way that η0(j) ≥ ζ0(j) for all j ∈ Z. By the 
attractivity of ASEP from Lemma 2.2 we may couple η and ζ so that ηt(j) ≥ ζt(j) for 
all t ≥ 0 and j ∈ Z. It follows then from (2.3) and the above considerations that

P
[
hT ([X, X + A; η) ≤ M

]
= P

[
X+A∑

j=X+1
ηT (j) ≤ M

]
≤ P

[
X+A∑

j=X+1
ζT (j) ≤ M

]

= P

[
Y0+A∑

j=Y0+1
ηT (j) ≤ M

]
= P

[
hT ([Y0, Y0 + A; η) ≤ M

]
,

where the inequality uses the attractive coupling and the penultimate equality holds 
since 

(
ζT (j)

)
j∈Z

and 
(
ηT (j + Y0 − X)

)
j∈Z

have the same law.
Observe now that to show (B.4) we must show that the height difference hT ([X, Y0]; η)

compensated by the linear hydrodynamic profile ρ(Y0 − X) is unlikely to dip more than 
−sT

2
3 . The inequality in (B.5) shows that we can control the height changes to the left 

of Y0 by those at Y0. The bounds in (B.1) and (B.2) are effective in controlling the 

height changes around Y0. However, they involve parabolic hydrodynamic terms (T −X)2

4T

whereas in (B.4) we are dealing with linear hydrodynamic terms ρ(Y0 −X). However, on 
short enough spatial intervals, the parabolic term is approximately linear. In particular, 
on the spatial scale T

2
3 , the parabolic effect is of order T

1
3 which is of the order of 

fluctuations. Thus, to establish the desired control in (B.4) we use (B.5) repeatedly on 
spatial intervals of order T

2
3 . Each application introduces a fluctuation error of order 

T
1
3 . By a union bound over order T 1

3 such spatial intervals, we arrive at the order T 2
3

fluctuation error bound in (B.4) (this union bound also explains the T
1
3 factor on the 

right-hand side in (B.4)). The rest of this proof provides the details to the argument 
sketched above.

Let us assume that A ∈ �0, T
2
3 � and X ∈ Z such that X ≤ Y0. Letting M = ρA −sT

1
3

in (B.5) we have that

P
[
hT ([X, X + A]; η) ≤ ρA − sT

1
3
]

≤ P
[
hT ([Y0, Y0 + A]; η) ≤ ρA − sT

1
3
]
. (B.6)

We now claim that there exists c = c(ε) > 0 such that for any T > 1 and s ≥ 0,

P
[
hT ([Y0, Y0 + A]; η) ≤ ρA − sT

1
3
]

≤ c−1(e−cs + e−cT ). (B.7)

To prove this, we note that for s ≥ 1,{
hT ([Y0, Y0 + A]; η) ≤ ρA − sT

1
3

}
⊂
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{
hT (Y0; η) ≤ (T − Y0)2

4T
− sT

1
3

8

}
∪
{
hT (Y0 + A; η) ≥ (T − Y0 − A)2

4T
+ sT

1
3

8

}
as follows immediately from the inequality (also for s ≥ 1) that

(T − Y0)2

4T
− (T − Y0 − A)2

4T
≥ ρA − 3sT

1
3

4 .

Thus, by the union bound along with the bounds in (B.1) and (B.2), we arrive at (B.7)
provided s ≥ 1. For s ∈ [0, 1], the result follows by choosing c sufficiently close to zero.

Let us now apply (B.7) to conclude the desired bound in (B.4). Observe that for 
X ∈ �−T, Y0�, the interval [X, Y0] can be covered by at most K = 2T 1/3 intervals (this 
is an overestimate but suffices) each of length A ∈ �0, T

2
3 �. Call the endpoints of these 

intervals X = X0 < X1 < · · · < XK = Y0. Then we have

P
[
hT ([X, Y0]; η) ≤ ρ(Y0 − X) − sT

2
3
]

≤
K∑

j=1
P

[
hT ([Xj−1, Xj ]; η) ≤ ρA − sT

1
3

2

]
≤ Kc−1(e−cs/2 + e−cT ).

The first inequality follows from the union bound while the second from combining (B.6)
(with X = Xj−1 and X + A = Xj) with (B.7). Clearly, this implies (B.4) as desired.

B.1. Proof of equation (B.1)

The main result needed in this proof of Proposition B.2 (about step initial data ASEP) 
from which (B.1) follows via the monotonicity result Lemma 2.6.

Proposition B.2. For any ε > 0, there exists c = c(ε) > 0 such that the following 
holds. Let ξ be ASEP under step initial data. Then, for any T > 1, s ≥ 0 and X ∈�

− (1 − ε)T, (1 − ε)T
�
,

P

[∣∣∣∣hT (X; ξ) − (T − X)2

4T

∣∣∣∣ ≥ sT 1/3

]
≤ c−1e−cs. (B.8)

Proof of Equation (B.1). Letting ξ =
(
ξt(x)

)
denote an ASEP under step initial data, 

we have η0(x) ≤ ξ0(x) for each x ∈ Z. Thus, h0(x; η) ≤ h0(x; ξ), and so the monotonicity 
result Lemma 2.6 yields a coupling between (η; ξ) such that hT (x; η) ≤ hT (x; ξ) for each 
T ≥ 0 and x ∈ Z. Hence the proposition follows from the fact that

P

[
hT (X; η) − (T − X)2

4T
≥ sT 1/3

]
≤ P

[
hT (X; ξ) − (T − X)2

4T
≥ sT 1/3

]
≤ c−1e−cs,

where in the last inequality we applied Proposition B.2. �
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The proof of Proposition B.2 relies on an identity [15, Theorem 10.2] (cited below 
as Lemma B.6) which relates a q-Laplace transform for the step initial data ASEP 
height function to a multiplicative statistic for the determinantal point process called 
the discrete Laguerre ensemble. From this identity and existing asymptotics regarding 
this ensemble, we are able to prove our tail bound. We remark that our tail bound 
is suboptimal and we do not fully take advantage of the decay afforded to us by the 
identity. However, the exponential decay we prove is sufficient for our purposes. We also 
note that this style of result – using a q-Laplace transform identity with a determinantal 
point process in order to prove tail bounds – goes back to work of [17] which uses a 
similar identity relating the KPZ equation and Airy point process [14].

To prepare for the proof of Proposition B.2, we recall a few results. The first is the 
fact that the statement in Proposition B.2 holds in the case of TASEP, when L = 0. 
This result is implicitly due to [7] (in terms of an estimate on the Fredholm determinant 
that determines this tail probability), though appears explicitly as a probabilistic tail 
estimate (formulated in terms of exponential last passage percolation) as [10, Theorem 
13.2] and [27, Proposition 4.1 and Proposition 4.2].

Lemma B.3. For any ε > 0, there exists c = c(ε) > 0 such that the following holds. Let ξ
be TASEP (L = 0 temporarily) under step initial data. Then, for any T > 1, s ≥ 0 and 
X ∈

�
− (1 − ε)T, (1 − ε)T

�
,

P

[∣∣∣∣hT (X; ξ) − (T − X)2

4T

∣∣∣∣ ≥ sT 1/3

]
≤ c−1e−cs.

To establish Proposition B.2, we will make use of a determinantal point process, 
introduced in [15], called the discrete Laguerre ensemble. We begin by recalling its 
definition. In what follows, a configuration on Z≥0 is a subset Z ⊆ Z≥0 of nonnega-
tive integers; we let Conf(Z≥0) denote the set of all configurations on Z≥0. Given a 
function K : Z≥0 × Z≥0 → R, a determinantal point process on Conf(Z≥0) with cor-
relation kernel K is a probability measure P on Conf(Z≥0) satisfying the following 
property. Letting Z ∈ Conf(Z≥0) denote a random configuration sampled under P , we 
have P

[
x1, x2, . . . , xk ∈ Z

]
= det[K(xi, xj)]1≤i,j≤k for any distinct x1, x2, . . . , xk ∈ Z≥0. 

Generic K will not define a probability measure.

Definition B.4. Fix β ∈ R>0. Laguerre polynomials are the orthogonal polynomials on 
[0, ∞) under the weight measure tβ−1e−tdt. The degree n polynomial in this ensemble, 
with leading coefficient n!−1, is denoted by L

(β)
n (x). The discrete Laguerre kernel is 

defined by

KDLaguerre(r;β)(x, y) =
(

x!y!
Γ(x + β)Γ(y + β)

)1/2 ∞∫
r

L(β)
x (t)L(β)

y (t)tβ−1e−tdt,
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for any x, y ∈ Z≥0. The discrete Laguerre ensemble DLaguerre(r; β) is the determinantal 
point process on Conf(Z≥0) with correlation kernel KDLaguerre(r;β).

The following lemmas indicate our use of the discrete Laguerre ensemble. The first 
shows that its smallest element match the TASEP height function in distribution (which 
is accessible by Lemma B.3); the second explains its relation to the step initial data 
ASEP.

Lemma B.5 ([15, Corollary 10.3 and Theorem 3.7]). Adopt the notation of Proposi-
tion B.2, and assume that L = 0. Let Z ∈ Conf(Z≥0) denote a sample of the discrete 
Laguerre ensemble DLaguerre+(T, x + 1). Then, hT (x; ξ) has the same law as minZ.

Below, for any q, a ∈ C and any integer k ≥ 0 (possibly infinite, in which case we 
assume that |q| < 1), the q-Pochhammer symbol is defined by (a; q)k =

∏k
j=0(1 − aqj).

Lemma B.6 ([15, Theorem 10.2]). Fix any time T > 0, an integer spatial location x ≥ 0
and let q = L

R ∈ (0, 1). Let ξ denote ASEP, with left jump rate L and right jump rate R, 
under step initial data and let Z ⊂ Z≥0 denote a sample of DLaguerre+(

(1 − q)T, x + 1
)
. 

Then, for any ζ ∈ C \ {−qZ≤0} we have

E

[
1(

− ζqhT (x;ξ); q
)

∞

]
= E

[ ∏
z∈Z

1
1 + ζqz

]
, (B.9)

where the expectation on the left side is with respect to the ASEP ξ, and the expectation 
on the right side is with respect to the discrete Laguerre configuration Z.

In order to make use of this lemma, we need to be able to translate between the above 
q-Laplace transform type expectations and statements about probabilities.

Lemma B.7. Let A be a real-valued random variable, q ∈ [0, 1) and b ∈ R. Then,

P [A ≤ 0] ≤ 2 ·
(

1 − E
[
(−qA; q)−1

∞
])

, (B.10)

E
[
(−qA; q)−1

∞
]

≥ eqb/(q−1) · P [A ≥ b], (B.11)

E
[
(1 + qA)−1] ≤ P [A > −b] + qb · P [A ≤ −b]. (B.12)

Proof. Observe that for any a ∈ R we have

(−qa; q)−1
∞ ≤ (1 + qa)−1 ≤ 1 − 1a≤0

2 ,

(−qa; q)−1
∞ ≥ (−qb; q)−1

∞ · 1a≥b ≥ eqb/(q−1) · 1a≥b,

(1 + qa)−1 ≤ 1a>−b + qb · 1a≤−b.
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Setting a = A and taking expectations yields the lemma. �
Now we can establish Proposition B.2.

Proof of Proposition B.2. By the particle-hole symmetry Remark 2.1, it suffices to ad-
dress the case X ≥ 0. Let m = 1

4
(

T −X
T

)2, and set ζ = q−mT −sT 1/3 . As in the statement 
of Lemma B.6, let Z ∈ Conf(Z≥0) denote a sample of the discrete Laguerre ensemble 
DLaguerre

(
(1 − q)T ; X + 1

)
. Then, by Lemma B.6 we have that

E

[(
− qhT (x;ξ)−mT −sT 1/3

; q
)−1

∞

]
= E

[ ∏
z∈Z

(
1 + qz−mT −sT 1/3)−1

]
. (B.13)

Let Z0 denote the minimal element in Z. We claim that there exists c = c(ε) > 0 such 
that

E

[ ∏
z∈Z

(
1 + qz−mT −sT 1/3)−1

]
≤ E

[(
1 + qZ0−mT −sT 1/3)−1

]

≤ P

[
Z0 ≥ mT + sT 1/3

2

]
+ qsT 1/3/2 ≤ c−1e−cs.

The first inequality is immediate (dropping the other terms in the product only increases 
the value), the second utilizes (B.12) (with A = Z0 − mT − sT 1/3 and b = s

2T 1/3), and 
the third follows by combining Lemma B.5 with Lemma B.3.

Combining the above inequality with (B.13) and (B.11) (with A = hT (x; ξ) − mT −
sT 1/3 and b = 0), we find that

P
[
hT (x; ξ) ≥ mT + sT 1/3] ≤ e1/(1−q) · E

[(
− qhT (x;ξ)−mT −sT 1/3

; q
)−1

∞

]

≤ e1/(1−q) · E
[ ∏

z∈Z

(
1 + qz−mT −sT 1/3)−1

]
≤ e1/(1−q)c−1e−cs.

Modifying the value of c, this yields the upper bound on hT (x; ξ) in Proposition B.2.
It remains to prove the lower bound. Observe that there exists c = c(ε) > 0 such that

E

[ ∏
z∈Z

(
1 + qz−mT +sT 1/3)−1

]
≥ E

[(
− qZ0−mT +sT 1/3

; q
)−1

∞

]

≥ exp
(

qsT 1/3/2

q − 1

)
· P

[
Z0 ≥ mT − sT 1/3

2

]
≥

(
1 − C2e−c2sT 1/3) · (1 − C2e−c2s) ≥ 1 − 2c−1e−cs.
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The first inequality is immediate (inserting all missing terms in the product above the 
minimal term only decreases its value), the second utilizes (B.11) (with A = Z0 − mT +
sT 1/3 and b = s

2T 1/3), and the third follows by combining Lemma B.5 and Lemma B.3.
Combining the above inequality with (B.13) (with −sT 1/3 replaced there by sT 1/3) 

and (B.10) (with A = hT (x; ξ) − mT + sT 1/3), we find that

P
[
hT (x; ξ) ≤ mT − sT 1/3] ≤ 2 ·

(
1 − E

[(
− qhT (x;ξ)−mT +sT 1/3

; q
)−1

∞

])

= 2 ·
(

1 − E

[ ∏
z∈Z

(
1 + qz−mT +sT 1/3)−1

])
≤ 4c−1e−cs.

Modifying the value of c, this yields the lower bound on hT (x; ξ) in Proposition B.2. �
B.2. Proof of equation (B.2)

In this section we establish (B.2), which is based a Fredholm determinant identity 
in the ASEP under (ρ; 0)-Bernoulli initial data due to [13, Theorem 5.3]. This formula 
also appears in [2, Proposition 5.1] where it is extended to a more general class of initial 
data. We will utilize a number of estimates used in [2] to perform asymptotics on this 
formula ([13, Appendix D] sketch some asymptotics from their formula, though without 
going into details). Let us first recall the definition of a Fredholm determinant series.

Definition B.8. Fix a contour C ⊂ C in the complex plane, and let K : C × C → C be a 
meromorphic function with no poles on C × C. We define the Fredholm determinant

det
(

Id +K
)

L2(C) = 1 +
∞∑

k=1

1
(2πi)kk!

∫
C

· · ·
∫
C

det
[
K(xi, xj)

]k

i,j=1

k∏
j=1

dxj . (B.14)

We next require the following identity for the q-Laplace transform (essentially the left 
side of (B.9)) of ASEP with (ρ; 0)-Bernoulli initial data. In what follows, we recall that a 
contour γ ⊂ C is called star-shaped (with respect to the origin) if, for each real number 
a ∈ [−π, π], there exists exactly one complex number za ∈ γ such that za/|za| = eia.

Proposition B.9 ([13, Theorem 5.3], [2, Proposition 5.1]). Fix ρ ∈ (0, 1), x ∈ Z, and 
p ∈ R. Denote q = L

R ∈ (0, 1), and set β = ρ
1−ρ . Let Γ ⊂ C be a positively oriented, 

star-shaped contour enclosing 0, but leaving outside −q and qβ. Further let C ⊂ C be a 
positively oriented, star-shaped contour contained inside q−1Γ, that encloses 0, −q, and 
Γ, but that leaves outside qβ. For ASEP η with (ρ; 0)-Bernoulli initial data, we have

E
[(

− qhT (X;η)+p; q
)−1

∞

]
= det

(
Id +K(p))

L2(C), (B.15)

where
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K(p)(w, w′) = 1
2i log q

∞∑
j=−∞

∮
Γ

g(w; X, T )
g(v; X, T )

vp−1w−p

sin
(

π
log q (log v − log w + 2πij)

) dv

w′ − v
,

(B.16)

and

g(z; X, T ) = (z + q)X−1 exp
(

qT

z + q

)
1

(q−1β−1z; q)∞
.

The following result captures the decay of the right side of (B.15) as p grows with a 
suitable centering and scaling. Its proof closely follows [2, Section 6] and is provided in 
Appendix C below. It is here that our choice that X ≥ Y0 = (1 − 2ρ)T + T 2/3 is used. 
By making this assumption, the choices for the contours C and Γ are simplified. It is 
possible, as was done [2, Section 8], to address the case where X < Y0, though it involves 
more complicated contours and since we have other ways to control that case (namely, 
(B.3) and (B.4)) we forgo that additional complexity.

Proposition B.10. For any ε ∈ (0, 1/4), there exists c = c(ε) > 0 such that the following 
holds. Adopt the notation of Proposition B.9, and set X = νT + 1. Assume that

ρ ∈ [ε, 1], ν ∈ [−(1 − ε), 1 − ε], p = p(T, ν, s) = sfνT 1/3 − mνT, s ≥ 0,

where

mν =
(

1 − ν

2

)2

, fν =
(

1 − ν2

4

)2/3

. (B.17)

If ν ≥ 1 − 2ρ + T −1/3, then∣∣∣det
(

Id +K(p))
L2(C) − 1

∣∣∣ ≤ c−1(e−cs + e−cT ). (B.18)

Given Proposition B.10, we can quickly establish (B.2).

Proof of Equation (B.2). By (B.15) and (B.18) (and replacing s with f−1
ν s in the latter), 

we find that there exists c = c(ε) > 0 such that

E
[(

− qhT (X;η)−mν T +sT 1/3
; q
)−1

∞

]
≥ 1 − c−1(e−cs + e−cT ). (B.19)

This, together with (B.10) (applied with A = hT (X; η) −mνT +sT 1/3), yields (B.2). �
Appendix C. Fredholm determinant estimates

In this section we establish Proposition B.10; we assume throughout that ν > 1 −2ρ +
T −1/3 and that ρ ∈ [−(1 −ε), 1 −ε]. We closely follow [2, Section 6], which asymptotically 
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analyzed the Fredholm determinant det
(

Id +K(p))
L2(C) but did not control its decay in 

s. In Section C.1 we recall from [2, Section 6.1] a useful choice of contours C and Γ, and 
we then prove Proposition B.10 in Section C.2.

C.1. Choosing the contours C and Γ

In this section we recall from [2, Section 6.2.2] a choice of contours C and Γ useful for 
analyzing det

(
Id +K(p))

L2(C). To that end, we first rewrite the kernel (dropping the p

in our notation below) K(w, w′) = K(p)(w, w′) from (B.16) as

K(w, w′) = 1
2i log q

∑
j∈Z

∮
Γ

exp
(
T
(
G(w) − G(v)

))
sin

(
π(log q)−1(2πij + log v − log w)

) (q−1β−1v; q)∞
(q−1β−1w; q)∞

×
( v

w

)sfνT 1/3
dv

v(w′ − v) ,

(C.1)

where G(z) is given by

G(z) = q

z + q
+ ν log(z + q) + mν log z,

and mν and fν are given by (B.17). Observe that

G′(z) =
(

ν + 1
2

)2 (z − ψ)2

z(z + q)2 , with ψ = q(1 − ν)
1 + ν

.

Thus, ψ is a critical point of G, and

G′′(ψ) = 0; G′′′(ψ)
2 = (ν + 1)5

16q3(1 − ν) =
(

fν

ψ

)3

.

From a Taylor expansion, this implies that

G(z) − G(ψ) = 1
3

(
fν(z − ψ)

ψ

)3

+ R

(
fν;(z − ψ)

ψ

)
(C.2)

where, uniformly in ν ∈ [ε − 1, 1 − ε], as |z − ψ| → 0,

R

(
fν(z − ψ)

ψ

)
= G(z) − G(ψ) − 1

3

(
fν(z − ψ)

ψ

)3

= O
(
|z − ψ|4

)
. (C.3)

Next we recall from [2] a choice contours C and Γ satisfying the conditions of Propo-
sition B.9 such that Re

(
G(w) − G(v)

)
< 0 for w ∈ C and v ∈ Γ both away from 

ψ. To explain these contours, it will be useful to recall properties of the level lines of 
Re G(z) = G(ψ).
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Proposition C.1 ([2, Proposition 6.7]). There exist three simple, closed curves, L1, L2, 
and L3, that all pass through ψ and satisfy the following properties.

1. For any z ∈ C \ {q}, we have Re G(z) = G(ψ) if and only if z ∈ (L1 ∪ L2 ∪ L3) \ {q}.
2. The level lines L1, L2, and L3 are all star-shaped.
3. We have that L1 ∩L2 = L2 ∩L3 = L1 ∩L3 = {ψ}. Furthermore, L1 \{ψ} is contained 

in the interior of L2, and L2 \ {ψ} is contained in the interior of L3.
4. The level line L1 encloses 0 but not −q, the level line L2 encloses 0, and the level line 

L3 encloses 0 and −q. Furthermore, −q lies on L2.
5. The level line L1 meets the positive real axis (at ψ) at angles 5π/6 and −5π/6, the 

level line L2 meets the positive real axis (at ψ) at angles π/2 and −π/2, and the level 
line L3 meets the positive real axis (at ψ) at angles π/6 and −π/6.

6. For all z enclosed by L2 but outside of L1, we have that Re
(
G(z) − G(ψ)

)
> 0.

7. For all z enclosed by L3 but outside of L2, we have that Re
(
G(z) − G(ψ)

)
< 0.

Remark C.2. By the continuity of G and ψ in ν, the level lines L1, L2, and L3 vary 
uniformly continuously in ν ∈ [−(1 − ε), 1 − ε].

Now, let us explain how to select the contours C and Γ. They will be the unions of two 
contours, a “small piecewise linear part” near ψ, and a “large curved part” that closely 
follows the level line L2. The former are given by the following definition.

Definition C.3 ([2, Definition 6.2]). For r ∈ R and � > 0 (possibly infinite), let Wr,�

denote the piecewise linear curve in the complex plane that connects r + �e−πi/3 to r
to r + �eπi/3. Similarly, let Vr,� denote the piecewise linear curve in the complex plane 
that connects r + �e−2πi/3 to r to r + �2πi/3. See Fig. 11 for depictions.

Definition C.4 and Definition C.5 define the piecewise linear and curved parts of the 
contours C and Γ, respectively, and Definition C.6 defines the contours C and Γ.

Definition C.4 ([2, Definition 6.3]). Let C(1) = Wψ,� and Γ(1) = Vψ−ψf−1
ν T −1/3,�, where 

� is chosen to be sufficiently small (independently of T and ν) so that:

• The two conjugate endpoints of C(1) lie strictly between L2 and L3, so that their 
distance from L2 and L3 is bounded away from 0, independently of T ≥ 1 and 
ν ∈ [ε − 1, 1 − ε].

• The two conjugate endpoints of Γ(1) are strictly between L1 and L2, so that their 
distance from L1 and L2 is bounded away from 0, independently of T ≥ 1 and 
ν ∈ [ε − 1, 1 − ε].

• We have 
∣∣R(

ψ−1fν(z − ψ)
)∣∣ < |fν(z − ψ)/2ψ|3, for all z ∈ C(1) ∪ Γ(1), for R in (C.3).

• We have that |v/w| ∈ (q1/2, 1) for all v ∈ Γ(1) and w ∈ C(1).

Such a � > 0 is guaranteed to exist by part 5 of Proposition C.1 and (C.2).
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Im z

Re z

C

Γ

−q−qκ qβ

W0,∞V−1,∞

Fig. 11. To the left, the three level lines L1, L2, and L3 are depicted as dashed curves; the contours Γ and 
C are depicted as solid curves and are labeled. To the right are the two contours W0,∞ and V−1,∞.

Definition C.5 ([2, Definition 6.4]). Let C(2) denote a positively oriented contour from 
the top endpoint ψ + �eπi/3 of C(1) to the bottom endpoint ψ + �e−πi/3 of C(1), and let 
Γ(2) denote a positively oriented contour from the top endpoint ψ−ψf−1

ν T −1/3 +�e2πi/3

of Γ(1) to the bottom endpoint ψ + ψf−1
ν T −1/3 + �e−2πi/3 of Γ(1), satisfying:

• The contour C(2) remains strictly between L2 and L3, so that the distance from C(2) to 
L2 and L3 remains bounded away from 0, independently of T ≥ 1 and ν ∈ [ε −1, 1 −ε].

• The contour Γ(2) remains strictly between L1 and L2, so that the distance from C(2) to 
L1 and L2 remains bounded away from 0, independently of T ≥ 1 and ν ∈ [ε −1, 1 −ε].

• The contour C(1) ∪ C(2) is star-shaped.
• The contour Γ(1) ∪ Γ(2) is star-shaped and does not contain −qκ.
• The contours C(2) and Γ(2) are both sufficiently close to L2 so that the interior of 

Γ(1) ∪ Γ(2) encloses the image of C(1) ∪ C(2) under multiplication by q.

Such contours C(2) and Γ(2) are guaranteed to exist by part 2 and 4 of Proposition C.1.

Definition C.6 ([2, Definition 6.5]). Set C = C(1) ∪ C(2) and Γ = Γ(1) ∪ Γ(2). Examples of 
the contours C and Γ are depicted in Fig. 11.

The following lemma states that C and Γ satisfy their required conditions, and that 
Re

(
G(w) − G(v)

)
< 0 for each w ∈ C and v ∈ Γ(2).

Lemma C.7 ([2, Definition 6.6 and Lemma 6.13]). The contour Γ is positively oriented 
and star-shaped; it encloses 0, but leaves outside −q and qβ. Furthermore, C is a positively 
oriented, star-shaped contour that is contained inside q−1Γ; that encloses 0, −q and Γ; 
but that leaves outside qβ. Moreover, there exists a positive real number c = c(ε) > 0, 
such that
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max

⎧⎪⎨⎪⎩ sup
w∈C

v∈Γ(2)

Re
(
G(w) − G(v)

)
, sup

w∈C(2)

v∈Γ

Re
(
G(w) − G(v)

)⎫⎪⎬⎪⎭ < −c.

The uniformity in ν of the constant c in Lemma C.7, was not explicitly stated in [2], 
but it follows from Remark C.2.

C.2. Proof of Proposition B.10

We start by analyzing the contribution to the right side of (C.1) when w ∈ C(1) and 
v ∈ Γ(1), that is, when both w and v are near ψ. To that end, define K̃(w, w′) by the 
same formula as used to define K(w, w′) in (C.1), but with the contour Γ replaced by 
Γ(1). Now let us change variables, a procedure that will in effect “zoom into” the region 
around ψ. Denote σ = ψf−1

ν T −1/3, and set

w = ψ + σŵ, w′ = ψ + σŵ′, v = ψ + σv̂, K̂(ŵ, ŵ′) = σK̃(w, w′). (C.4)

Also, for any contour D, set D̂ = σ−1(D − ψ
)
, where σ−1(D − ψ) denotes all numbers of 

the form σ−1(z − ψ) with z ∈ D. In particular, from Definition C.3 and Definition C.4, 
we find that C(1) = W0,�/σ and Γ(1) = V−1,�/σ. The following lemma provides a bound 
on K̂; its proof is similar to that of [2, Lemma 6.11].

Lemma C.8. There exists c = c(ε) > 0 such that for each ŵ ∈ Ĉ(1) and ŵ′ ∈ Ĉ

∣∣K̂(ŵ, ŵ′)
∣∣ ≤ c−1

1 + |ŵ′| exp
(

− c|ŵ|3 − cs).

To establish this lemma, we first rewrite the kernel K̂. By (C.4) and the fact that 
σ = ψf−1

ν T −1/3, we deduce that

K̂(ŵ, ŵ′) = 1
2πi

∫
Γ̂(1)

I
(
ŵ, ŵ′; v̂

)
dv̂, (C.5)

where

I
(
ŵ, ŵ′; v̂

)
= 1(

1 + ψ−1σv̂
)(

ŵ′ − v̂
) exp

(
ŵ3 − v̂3

3 + T
(
R(T −1/3ŵ) − R(T −1/3v̂)

))

×
(

1 + ψ−1σv̂

1 + ψ−1σŵ

)ψσ−1s
(
q−1β−1(ψ + σv̂); q

)
∞(

q−1β−1(ψ + σŵ); q
)

∞

× πψ−1σ

log q

∞∑
j=−∞

1
sin

(
π

log q

(
2πij + log(1 + ψ−1σv̂) − log(1 + ψ−1σŵ)

)) .

(C.6)



A. Aggarwal et al. / Advances in Mathematics 422 (2023) 109004 53
Lemma C.8 will follow from an estimate on I, given by the following lemma.

Lemma C.9. There exists c = c(ε) > 0 such that

∣∣∣I(ŵ, ŵ′; v̂
)∣∣∣ ≤ c−1

1 + |ŵ′| exp
(

cs Re v̂ − c
(
|ŵ|3 + |v̂|3

))
, (C.7)

for all ŵ ∈ W0,�/σ, ŵ′ ∈ Ĉ, and v̂ ∈ V−1,�/σ.

Proof of Lemma C.8. This follows from Lemma C.9, (C.5), and the fact that Re v̂ ≤ −1
for each v̂ ∈ V−1,�/σ. �
Proof of Lemma C.9. Observe that there exist c = c(ε) > 0 such that the six inequalities

∣∣∣∣ 1
1 + ψ−1σv̂

∣∣∣∣ < c−1,
1

v̂ − ŵ′ <
c−1

1 + |ŵ′| ,
∣∣∣∣ 1 + ψ−1σv̂

1 + ψ−1σŵ

∣∣∣∣ψσ−1s

≤ c−1 exp
(
cs Im v̂

)
,

πψ−1σ∣∣ log q
∣∣ ∑

j 
=0

∣∣∣∣∣∣ 1
sin

(
π

log q

(
2πij + log(1 + ψ−1σv̂) − log(1 + ψ−1σŵ)

))
∣∣∣∣∣∣ ≤ c−1T −1/3,

∣∣∣∣∣∣
(

πψ−1σ

log q

)
1

sin
(

π
log q

(
log(1 + ψ−1σv̂) − log(1 + ψ−1σŵ)

))
∣∣∣∣∣∣ < c−1,

∣∣∣∣∣
(
q−1β−1(ψ + σv̂); q

)
∞(

q−1β−1(ψ + σŵ); q
)

∞

∣∣∣∣∣ < c−1 exp
(

c−1(|ŵ| + |v̂|
))

,

(C.8)

all hold for each ŵ ∈ W0,�/σ, ŵ′ ∈ Ĉ, and v̂ ∈ V−1,�/σ.
Indeed, the first inequality holds since v = ψ(1 + ψ−1σv̂) is bounded away from 0

for v ∈ Γ. The second inequality holds since 
∣∣ŵ′ − v̂

∣∣ ≥ c1(Re v̂ + 1) for ŵ′ ∈ Ĉ and 
v̂ ∈ V−1,�/σ. The third inequality holds since 1 + ψ−1σŵ is bounded away from 0, 
and since Re v̂ < Re ŵ, for ŵ ∈ Ĉ. The fourth inequality holds since σ = O

(
T −1/3), 

since sin
(

π
log q

(
2πij + log(1 + ψ−1σv̂) − log(1 + ψ−1σŵ)

))
increases exponentially in |j|, 

and since that term is also bounded away from 0 (the latter statement is true since j
is nonzero). The fifth inequality follows from a Taylor expansion, the fact that v/w is 
always bounded away from any integral power of q, and the fact that 

∣∣v̂ − ŵ
∣∣−1

< c−1 for 
sufficiently small c > 0. The sixth inequality is true since its left side grows polynomially 
in |ŵ| and |v̂|, while its right side grows exponentially in these two quantities. To see 
this, recall that |v̂| and |ŵ| are at most �/σ (by the assumptions of this lemma), which 
in particular indicates that both the numerator and denominator on the left-hand side 
of the sixth inequality are bounded above (since the arguments of those Pochhammer 
symbols are bounded above). The concern is then that the denominator might be very 
small. This can only happen if ψ is close to qβ. Observe that ψ < qβ(1 − c′σ), for some 
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c′ > 0 (by the definition of ψ and the facts that ν ≥ 1 − 2ρ − T −1/3 and σ ∼ T −1/3). 
Thus it suffices to bound the ratio of

|(1 − q−1β−1(ψ + σv̂))|
|(1 − q−1β−1(ψ + σŵ))| ,

as the remaining parts are bounded above and below by constants. Using the previously 
mentioned bound ψ < qβ(1 − c′σ), it follows that this ratio is bounded by a polynomial 
in v̂ and ŵ (actually, linearly in v̂), as claimed.

The estimates (C.8) address all terms on the right side of (C.6), except for the ex-
ponential term. To analyze this term, first recall 

∣∣R(z)
∣∣ < |z|3/8, for all z ∈ Ĉ(1) ∪ Γ̂(1); 

this was stipulated as the third part of Definition C.4. Thus, decreasing c = c(ε) > 0 if 
necessary,

∣∣e ŵ3
3 − v̂3

3 +T (R(T −1/3ŵ)−R(T −1/3v̂))∣∣ = e
ŵ3

3 − v̂3
3 + |v̂|3

8 + |ŵ|3
8 < c−1e− 1

5 (|ŵ|3+|v̂|3). (C.9)

In (C.9), the last estimate follows from the fact that ŵ3 − v̂3 < 0, for sufficiently large 
ŵ ∈ Ĉ(1) and v̂ ∈ Γ̂(1), and that it decreases cubically in |ŵ| and |v̂| as they tend to ∞.

Now, the estimate (C.7) follows from the definition (C.6) of I, the six estimates (C.8), 
and the exponential estimate (C.9). �

We next analyze the integral (C.1) defining K(w, w′) when either w or v is not close 
to ψ, that is, when either w ∈ C(2) or v ∈ Γ(2). In this case, we will see that the integral 
decays exponentially in T . Define

K
(
ŵ, ŵ′) = σK(w, w′) = 1

2πi

∫
Γ̂

I
(
ŵ, ŵ′; v̂

)
dv̂,

for each ŵ, ŵ′ ∈ Ĉ. From the change of variables (C.4), we have that

det
(

Id +K
)

L2(C) = det
(

Id +K
)

L2(Ĉ). (C.10)

The following lemma indicates that 
∣∣K −K̂

∣∣ decays exponentially on the domain of K̂
and that |K| decays exponentially elsewhere. Although the uniformity in Corollary C.10
of the dependence of c and C on ν was not stated directly in [2], it follows from the 
uniformity of the constant c from Lemma C.7 in ν.

Corollary C.10 ([2, Corollary 6.14]). There exist c = c(ε) > 0 so that∣∣∣K(
ŵ, ŵ′) − K̂

(
ŵ, ŵ′)∣∣∣ < c−1 exp

(
− c

(
T + |ŵ|3

))
, (C.11)

for all ŵ ∈ Ĉ(1) and ŵ′ ∈ Ĉ ∪ W0,∞, and such that
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∣∣∣K(
ŵ, ŵ′)∣∣∣ < c−1 exp

(
− c

(
T + |ŵ|3

))
, (C.12)

for all ŵ ∈ Ĉ(2) and ŵ′ ∈ Ĉ ∪ W0,∞.

To show Proposition B.10, we will make use of the following lemma, which is the 
K1 = 0 case of [2, Lemma A.4] that approximates a Fredholm determinant with a small 
kernel.

Lemma C.11 ([2, Lemma A.4]). Adopting the notation of Definition B.8, we have

∣∣∣det
(

Id +K
)

L2(C) − 1
∣∣∣ ≤

∞∑
k=1

2kkk/2

(k − 1)!

∫
C

· · ·
∫
C

k∏
i=1

∣∣∣∣∣1
k

k∑
j=1

∣∣K(xi, xj)
∣∣2∣∣∣∣∣

1/2 k∏
i=1

dxi.

Now we can use Lemma C.8 and Corollary C.10 to establish Proposition B.10.

Proof of Proposition B.10. By Lemma C.8 and Corollary C.10,∣∣∣K(
ŵ, ŵ′)∣∣∣ ≤ c−1 exp

(
− c

∣∣ŵ∣∣3 − cs
)

+ c−1 exp
(

− c
∣∣ŵ∣∣3 − cT

)
(C.13)

for some c = c(ε) > 0. Thus, allowing constants to change between lines we see that∣∣∣ det
(

Id +K(p))
L2(C) − 1

∣∣∣ =
∣∣∣ det

(
Id +K

)
L2(Ĉ) − 1

∣∣∣
≤

∞∑
k=1

2kkk/2

(k − 1)!

∫
Ĉ

· · ·
∫
Ĉ

k∏
i=1

∣∣∣∣∣1
k

k∑
j=1

∣∣K(xi, xj)
∣∣2∣∣∣∣∣

1/2 k∏
i=1

dxi

≤
∞∑

k=1

2kkk/2

(k − 1)!

(
c−1(e−cs + e−cT )

∫
Ĉ

exp
(

− c1|ŵ|3
)
dŵ

)k

≤
∞∑

k=1

16k

kk/2 (c−1)k(e−cs + e−cT )k ≤ c−1(e−cs + e−cT ),

from which we deduce (B.18). Here, to deduce the first statement we used (C.10), to 
deduce the second we used Lemma C.11, to deduce the third we used (C.13), and to 
deduce the fourth we used the facts that 

∫
Ĉ exp

(
− c1|ŵ|3

)
dŵ is bounded above by a 

constant and that (k − 1)! ≥ 2−kk! ≥ 8−kkk. �
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