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Abstract

Predicting UV-visible absorption spectra is essential to understand photochemical
processes and design energy materials. Quantum chemical methods can deliver accurate
calculations of UV-visible absorption spectra, but they are computationally expensive,
especially for large systems or when one computes line shapes from thermal averages.
Here, we present an approach to predict UV-visible absorption spectra of solvated
aromatic molecules by quantum chemistry (QC) and machine learning (ML). We show
that a ML model, trained on the high-level QC calculation of the excitation energy of
a set of aromatic molecules, can accurately predict the line shape of the lowest-energy
UV-visible absorption band of several related molecules with less than 0.1 eV deviation
with respect to reference experimental spectra. Applying linear decomposition analysis
on the excitation energies, we unveil that our ML models probe vertical excitations of
these aromatic molecules primarily by learning the atomic environment of their phenyl
rings, which align with the physical origin of the m — 7* electronic transition. Our
study provides an effective workflow that combines ML with quantum chemical methods
to accelerate the calculations of UV-visible absorption spectra for various molecular

systems.

Introduction

Improving our understanding and ability to model light-matter interactions is essential
to several branches of chemical research, including biochemistry, environmental chemistry,
and renewable energy harvesting conversion. The accurate prediction of UV-visible light ab-
sorption spectra is often the first step in the design molecular chromophores, light-harvesting
complexes, organic photovoltaics, dyes for photoelectrochemical cells, photoresponsive ma-
terials, photocatalysts, and food dyes.?™®

Many-body quantum chemical approaches, such as the Bethe-Salpeter equation,? linear

response (LR) or equation of motion (EOM) coupled-cluster (CC) theories!'® provide exci-



tation energies with accuracy that approaches the golden standard reference of full config-
uration interaction calculations. "' However, the steep computational cost scaling of these
methods (e.g. O(N7) for LR-CC3, and O(N°) for EOM-CCSD, i.e. EOM-CC with singles
and doubles) '3 makes their applications to large molecular systems impractical. Moreover,
to accurately predict spectral line shapes at finite temperature, it is necessary to perform
statistical averages over several hundred or even thousands of configurations, thus further
increasing the computational demand. 423

Machine Learning (ML) is emerging as an invaluable tool to accelerate quantum chem-
istry (QC) calculations, providing accurate results at a fractional cost of electronic structure
calculations.?*?® Former studies applied ML to model electronic excitations in molecules
inferring structure-property relations from short-range representations of the molecular ge-
ometries.?0733 However, to the best of our knowledge, very few works have focused on ac-
curately predicting the line shapes of UV-visible absorption spectra from ML models. Ye
et al. used an artificial neural network with internal coordinates and Coulomb Matrices as
an input layer to fit the electronic absorption spectrum of N-methylacetamide using molec-
ular structures sampled from classical molecular dynamics (MD) trajectories.?' 3¢ Xue et
al. fitted the absorption cross-sections of benzene and 9-Dicyanomethylene using a kernel
ridge regression with the displacements from the equilibrium geometry as descriptors. 3738 A
similar approach, which employs linear fitting of excitation energies against molecular coor-
dinates, was used to improve the statistical sampling of the UV-visible absorption spectra of
phenol and guaiacol at the air-ice interface and in aqueous solutions.?? These works rely on
time-dependent density functional theory (TDDFT)3? calculations of the vertical excitation
energy (VEE) for several hundreds of molecular configurations to construct suitable training
sets, and fit one ML model for each molecule, in order to enhance the convergence of spec-
tral line shapes obtained via statistical averaging. The use of TDDFT limits the accuracy
of the VEE calculations, and fitting an ad hoc ML model for each molecule limits the gen-

eralibility and the predictivity of these approaches. Westermayr et al.“® stepped further to



model UV-Visible Absorption of CHoN Hy+ and CyHy molecules using deep neural-network
(DNN) based on the SchNarc! architecture and was able to generalize the DNN to predict
UV-Visible absorption for three other small molecules. However, extending this model may
not be straightforward, especially for larger molecules, due to the inherent complexity of
DNN.

Here, we devise a framework that overcomes these limitations and allows one to compute
spectral line shapes that are comparable to experimental measurements by coupling high-
level QC calculations with a ML model that can be applied to several different molecules.
To this scope, we adopt the bispectrum components (BC), an atomic environment descriptor

commonly used to develop ML interatomic potentials, 4245

as the input to a regularized re-
gression model to predict the UV-visible absorption spectra of a set of ten aromatic molecules
in aqueous solution. Even though our approach is based on linear regression, its high dimen-
sionality and the necessity to use regularization for feature selection makes it a proper ML
model. To pursue chemical accuracy we train the ML model on the EOM-CCSD excitation
energies of configurations from first-principles molecular dynamics (FPMD) trajectories. We
show that a single MLL model predicts the shape of the lowest-energy UV-visible absorption
bands of a set of similar molecules with an accuracy comparable to experimental measure-
ments. Furthermore, by training the ML model on a subset of seven molecules we test its
capability to retain its predictivity beyond the training set.

In the next section, we provide the outline of the multiscale modeling approach used
to compute the reference UV-visible absorption spectra, the features of the proposed ML
model, and its parameterization. In the following section we present the results obtained by
fitting a unified ML model over the full dataset of ten molecules. We then tested how this
ML approach would be generalized to predict the UV-visible spectra of the three molecules
left out of the training set. Finally, we establish a connection between the ML descriptors

and the electronic excitations, so to provide a chemical interpretation of the ML results. A

concluding section summarizes the key results and highlights future perspectives.



Methods and Models

Our development of a quantum chemically informed statistical learning method to com-

pute spectra line shapes consists of the following steps:

1. FPMD simulations of molecules in aqueous solutions with explicit water;

2. Quantum chemical calculation of the (first) excitation energies for a few hundred frames
extracted from the FPMD trajectory, in which the explicit solvent is replaced by a

polarizable continuum implicit solvation model;
3. Representation of the molecular geometries in BC;

4. Fit of a linear ML model of the excitation energies as a function of the molecular

configuration by regression with norm-one (¢;) regularization.

This approach is applied to a set of 10 molecules (Figure 1) consisting of a benzene ring with
different combinations of the following functional groups: —NHs (amine), -OH (hydroxyl),
~OCHj3; (methoxy).
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Figure (1) Schematics of the ten aromatic molecules used in this study.

First-Principles Molecular Dynamics

The calculation of the UV-visible absorption spectra follows a multiscale approach which

combines FPMD and excited state calculation. This approach accurately predict line shapes



as it includes both temperature and solvation effects, within the limits of the method used
to compute electronic excitations. 84647 Tn this work, density functional theory (DFT)
based FPMD simulations are performed using the mixed basis-set Quickstep approach, im-
plemented in the CP2K package. ¥4 We use the Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation (GGA) for the exchange and correlation functional® with D3 van
der Waals corrections.®! Valence Kohn-Sham orbitals are expanded in real space on a double-
¢ localized valence polarizable (DZVP) basis set,? the electron density in reciprocal space
is expanded in plane waves up to a cutoff energy of 300 Ry, and core states are treated
implicitly using Geodecker-Teter-Hutter norm-conserving pseudopotentials.® We run MD
simulations of each molecule in aqueous environment in cubic periodic cells with 128 wa-
ter molecules. FPMD runs were initialized from classical MD simulations in the constant
pressure canonical ensemble at ambient conditions, using the TIP4P /Ice model for water

and the generalized Amber force field (GAFF) for the organic molecules. 4%

These systems
were then equilibrated for 10 ps by FPMD at constant volume at 300 K. The frames used
for absorption spectra calculations were extracted from 100 ps long production runs in the
constant-volume canonical ensemble, enforced using the stochastic rescaling algorithm with

a coupling constant of 7 = 10 ps.®® The equations of motion were integrated with a timestep

of 0.5 fs.

Absorption Spectra Calculation

For each molecular geometry sampled from the FPMD simulations, VEEs were computed
by “domain-based local pair natural orbital similarity transformed equation of motion cou-
pled cluster singles and doubles” (DLPNO-STEOM-CCSD): an efficient coupled-cluster ap-
proach with O(N*) scaling.®” For the sake of efficiency, the explicit solvent was replaced by a
conductor-like polarizable continuum model (CPCM).%% %1 All electron DLPNO-STEOM-

CCSD calculations were performed with a triple-( valence polarized Karlsruhe basis set

LCPCM was used without Gaussian smearing. This method may lead to discontinuous solvation energies
and engender artifacts, which however do not seem to affect our QC results and the ML training set.



(def2-TZVP)%" using ORCA 4.2.1.%% For the excited state calculations, the resolution of
identity approximation for both Coulomb and exchange integrals was employed to speed
up the self-consistent calculation. For each molecule, the lowest-energy absorption band of
the UV-visible spectrum is simulated by summing Gaussian functions with a height corre-
sponding to the oscillator strength of the transition and a width of 0.027 eV centered on
the calculated VEE for 200 statistically independent configurations chosen from the FPMD
trajectory. redThis approach corresponds to the “ensemble method", which provides a rea-
sonable approximation of line widths but does not capture vibronic effects arising from

nuclear dynamics.?!

Bispectrum Components

In principle, an ML model for absorption spectra would need to predict both VEE and
oscillator strengths. Yet, as we observed that for our set of molecules the oscillator strengths
are geometry independent, we decided to use a constant oscillator strength model to calculate
the absorption spectra. The goal of our ML model is then to predict VEEs as a function of the
molecular coordinates, so to spare the computational burden of the QC calculations. To this
scope, we represent the molecular configuration in BC.*? While originally BC was proposed
as a descriptor to approximate the Born-Oppenheimer potential energy surface of single el-
ement systems,*? it has been applied to develop ML potential of multi-component systems
and predict material properties such as elastic constants, bulk modulus as well as vibrational
free energies and entropies of solids.4+63%4Compared to other atomic environment descrip-

29.65.66 and atom-centered symmetry

tors such as smooth overlap of atomic positions (SOAP)
functions (ACSF),?%57 BC is more keen at describing the nuances of atomic environments,
as it is projected to a more complete set of basis functions with higher dimensions. 3% Ad-
ditionally, in the development of spectral neighbor analysis potentials, BC was formulated to

retain a linear relation with the target property.4*** This development ensures the resulting

ML models to achieve robust performance using only a moderate amount of training data.



Such a trade-off between model complexity and size of the training data is the most critical
factor for us to bridge BC with linear regression.

Hereafter, we summarize the key formulations of BC to supplement the following param-
eterization of our ML model. As reported in the original works,*? the atomic environment

is expressed as the weighted atomic density (p;(r)):

pir) =6(r)+ Y feulrg)wp0(r —ryp), (1)

r <R
1% cut,it

where 7,/ is the interatomic distance between the central atom ¢ and the neighboring atom
i', fou is the cutoff function to smoothly decay the neighboring atomic density to 0 at the
pair-wised cutoff radius (R, ;7). R is computed by summing over cutoff radii pairs
between central and neighboring atoms. The dimensionless weighting factor (w,) is used
to differentiate the neighboring atoms. After expressed as a sum of ¢ functions, p;(r) is

expanded in hyperspherical harmonics (U;(0, ¢, 6y)):

o0

pi(r) =Y ;- Ui(0,9,60). (2)

J=0,3,1,...
In equation (2), u; is the Fourier expansion coefficient given by the inner product between
pi(r) and U;(0, ¢, 6p). In this implementation, j, j; and js are truncated so that j, ji,ja <
Jmaz tO ensure a finite spatial resolution of the weighted atomic density. 27,4, the even
integrable of j,.q., represents a hyperparameter to dictate the number of BC used to fit the

ML model. With wu;, the bispectrum components (B, j, ;) can be defined as:

1 *
le,jzd = muh ®j1j2j Ujy - (u]) ) (3)
where ®;,,,; represents a coupling product analogous to angular momentum coupling of

spherical harmonics. The 23_1+1 prefactor ensures B; ;, j, invariant under permutation of the

atom indices. In this work, BC were computed using the FitSNAP package. %



Machine Learning Model

The goal of our ML model is to predict the first VEE from the molecular geometry
with quantum chemical accuracy. For this purpose we train a linear model on the DLPNO-
STEOM-CCSD/def2-TZVP excited state calculations described above using BC as descrip-
tors of the molecular configurations. As described in the previous section and in former
works,*? the BC descriptor consists of projecting the local atomic environment on hyper-
spherical harmonics for each atomic species. As the BC descriptor is high-dimensional, we

apply the least absolute shrinkage and selection operator (LASSO),%

a linear regression
model with norm one (¢;) regularization. Training LASSO consists of minimizing the loss

function with respect to the set of coefficients (:

1
Bios(8) = 5 llears = cqcl + allBlh ()

where N is the number of molecular configurations extracted from the FPMD simulations,
« is the regularization parameter, and egc are the first excitation energies obtained from
the QC calculations. The performance of the ML model is assessed through two statistical

metrics: mean absolute error (MAE) and mean signed error (MSE). The latter, defined as:

1 N

MSE = N ;(agqi — EML,), (5)

is useful to spot the occurrence of systematic errors in the predicted VEEs. After training
the LASSO model, we compute the UV-visible absorption spectra by estimating e, for
5000 statistically independent configurations from the FPMD trajectories. The final ML
spectrum consists of the envelop of Gaussian functions centered on the e,,;, with a width
of 0.014 eV. Whereas our ML model is developed in close analogy with the approach used
to construct SNAP interatomic potentials,** the use of LASSO marks the main difference

between SNAP and our excited state model. In a forthcoming section, we discuss extensively



the importance of using a norm ¢; selection operator to shrink the space of ML parameters
and how it enhances the predictivity of the ML models beyond the set of molecules on which
it is trained.

A further advantage of using atomic descriptors and the LASSO model is that we can
compute the relative contribution of each atom or group of atoms to €,,z,, through a linear

decomposition analysis, such that:

Natoms Jmaz

evp=co+ Y Y, BBl =c+e, (6)

=1 k=j,j1,j2

where ¢, is the intercept of the LASSO model and ¢, represents prediction contributions
from the atom type 7 for atom i. As ey is a scalar quantity and the LASSO model is

linear, )7, can be partitioned with respect to different functional groups:

EML = €0+ ENH, + €on + €ocH; + ECiH, (7)
(enm, +€on +coc; + €cem,)
Bogroup = (8)
EML — €0

where enp,, cog and epcp, are the prediction contributions from the amine, hydroxyl and
methoxy groups. e¢,p, is the prediction contributions from carbon and hydrogen atoms
within a phenyl ring (n = 5 for phenol, anisole, aniline and n = 4 for 1,2-methoxyphenol,
1,4-aminophenol, 1,4-anisdine, 1,4-benzenediol and dimethoxybenzene isomers). Y%group is

used to express the prediction contributions by percentage.

Parameterization of the Machine Learning Model

First, to show the baseline performance of our ML approach, we fitted a model using
the full data set of ten molecules with 200 VEE per molecule. Then, to test model gen-
eralizability, we developed a 7-molecule model by leaving out of the QC calculations of

1,2-methoxyphenol, 1,4-aminophenol and 1,4-dimethoxybenzene from the training set. Be-
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fore optimizing the 7- and 10-molecule models, we set the parameters of the BC descriptor,
specifically the weights (waiom) and the cutoff radius for each atomic species (Reutatom)- TO
optimize Ryt atom, We fixed Reym = 1.2 A, and performed a grid search on R, for each
heavy atom between 2.6 and 3.2 A We simplified the choice of Ryt 4t0m parameter by set-
ting Reywt,c = Rewt,n = Rew and Reyr0 = 1.05R,,,;. Since carbon is the major building block
of these aromatic molecules, we set the weighting factor of carbon (w¢) to unity. For the
remaining weighting factors (wy,wo & wy), a constraint of wy < wy < wp was imposed.
After determining watom and Reutatom, We chose 2,4, based on the number of available
training samples. At 2j,,.. = 18, the total number of BC almost equals the number of
training samples (Ny.qin) used to develop the 7-molecule model. Thus, to retain a similar
number of input features and training samples, we chose 27, = 18. The hyperparameters
Rew: and wgyyom are optimized for the 7-molecule models and their value is used also for the
10-molecule model. In this process no information is used from the three molecules left out

of the training set. Table 1 summarizes the hyperparameters used to compute BC.

Table (1) Optimized hyperparameters used to compute BC

WH we WN wWo Rcut,H[A] Rcut,C [A] Rcut,N [A] Rcut,O [A]
075 1.0 0.8 09 1.20 2.80 2.80 2.94

™ 50 to prevent

The ¢, regularization in LASSO is designed to achieve feature elimination,
overfitting. From Table 2, we see that for both ML models, the number of non-zero features
is less than 25 % of the total number of input features (Nyeqtures). The 7- and 10-molecule
models retain similar fractions of non-zero features with respect to the size of the training

sets so that the model performance can be compared. A 10-fold cross validation was applied

to both models to avoid bias from a specific split of training and testing data sets.

Table (2) Hyperparameters and statistical metrics for the ML models

Model Nfeatures#O/Nfeatures Qjmaw « MAEa'ug & std [meV]
10-molecule 318/1544 18 5.8 x10~7 23.05 &+ 3.92
7-molecule 225/1544 18 1.2 x1076 23.33 + 4.13

11



As shown in Table 2, the testing MAE of our 10-molecule model, averaged from the
10-fold cross validation, is 23.05 £+ 3.92 meV. A similar MAE, 23.33 4+ 4.13 meV, is also
observed from the 7-molecule model. Besides MAE, we also introduced MSE to gauge if
our ML models systematically overestimate or underestimate excitation energies. As shown
in Figure 2, most of the molecules have MSE of less than 5 meV, which implies that no
noticeable overestimation or underestimation of excitation energies occurs, except for 1,4-
anisidine, for which the predicted excitation energies have MAE and MSE of 25.91 and 11.57
meV.Figure 3 illustrates the testing performance of the 7-molecule model. It can be noticed
that both 10 and 7-molecule models have similar testing MAE and MSE for molecules in
the training set. It is worth highlighting, from the 10-molecule model, that the predicted
excitation energies for every single molecule have MAE far below the intrinsic error of the
underlying EOM-CCSD method (70 meV).™ Even for the excitation energies interpolated
from the 7-molecule model, the MAE are merely around half of the 70 meV. Hence, no

significant error is introduced by both ML models.
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Figure (2) Testing performance for the 10-molecule model. ), is computed by averaging
¢ predictions from the 10-fold cross-validation. €g¢ is the quantum mechanically computed
excitation energies for the first state.
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Figure (3) Testing performance for the 7-molecule model. £, is computed by averaging
¢ predictions from the 10-fold cross-validation. egc is the quantum mechanically computed
excitation energies for the first state. Molecules used in model generalization are indicated
with blue panels.

Results and Discussion

Machine Learning Absorption Spectra

Table (3) Summaries of ¢,,,, from experiment, QC and ML spectra. Absolute
difference of ¢,,,, between experiment and QC as well as between experiment and
ML are indicated in the parenthesis. Molecules used in model-generalization are
indicated with blue and bold fonts.

Molecule Emazx,experiment [eV] Emaz,QC [eV] Emax,ML1ig_moi [GV] Emax,ML7_ ot [GV]
phenol 1573 4.548 (0.025) 4.568 (0.005) 4.560 (0.004)
anisole 4.645 4.560 (0.085) 4.553 (0.092) 4.556 (0.089)
aniline 4.466 4.423 (0.043) 4.424 (0.042) 4.421 (0.045)

1,4-benzenediol 4.201 4.231 (0.060) 4.265 (0.026) 4.260 (0.031)
1,4-aminophenol 4.239 4.163 (0.076) 4.184 (0.059) 4.162 (0.077)
1,2-methoxyphenol 4.535 4.481 (0.054)  4.479 (0.056) 4.451 (0.084)
1,4-anisdine 4.263 4.078 (0.185) 4.106 (0.157) 4.106 (0.157)
1,2-dimethoxybenzene 4.556 4.470 (0.086) 4.478 (0.078) 4.479 (0.077)
1,3-dimethoxybenzene 4.559 4.410 (0.149) 4.408 (0.151) 4.409 (0.150)
1,4-dimethoxybenzene 4.339 4.284 (0.055)  4.305 (0.034) 4.301 (0.038)
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Figure 4 compares the lowest-energy UV-visible absorption band computed by the multi-
scale quantum-chemical approach described in the methods section to experimental measure-
ments for each molecule in aqueous solution. %™ 7 The QC model is in excellent agreement
with experiments for 8 out of 10 molecules, with differences in the center of the peak within
less than 0.1 eV and nearly overlapping low-energy tails. Experimental bands tend to be
broader on the high energy side, possibly because they encompass the tails of higher excited
states. 1,4-anisidine and 1,3-dimethoxybenzene make an exception, with differences in peak
positions of 0.18 and 0.15 eV. A possible source of discrepancy is that the GGA functional
used in FPMD simulations leads to systematic errors in the geometry of the molecules. The
differences between the gas-phase excitation energies of 1,3-dimethoxybenzene computed for
geometries optimized with the PBE and PBE0™ functionals support this hypothesis (Table
S1). However, the cost of running FPMD with PBEO would be excessive for the purpose
of this study. Choosing a semilocal GGA functional strikes the desired balance between
the accuracy of computing spectra and a reasonable computational cost. Additionally, the
experimental conditions may be slightly different from those in the models. The absorp-
tion spectrum of 1,4-anisidine was measured at pH= 6.0, while in our FPMD simulations
molecules solvated in aqueous solution at neutral pH, and this difference may cause a shift
in the UV-visible absorption. %™

The QC spectra were obtained by averaging only a few hundred frames for each molecule.
Hence, the calculated spectra for some of these molecules, especially 1,4-dimethoxybenzene,
exhibit jagged line shapes (Figure S1). As shown in previous works, ML may be employed
to obtain smoother and more refined line shapes.??3® The same effect is achieved here, as
illustrated in Figure 4. The ML spectra are obtained by averaging over 5,000 frames for
each molecule, which guarantees smooth line shapes and converged statistical sampling. At
this point, convergence is limited only by the capability of FPMD simulations to sample the
configurational space of the molecules in aqueous solution. The main features of the ML

spectra obtained with this model are almost indistinguishable from the QC references as ML

14



predictions have the same level of accuracy as the training data. From Figures 2 and 4, we
can conclude that a unified ML model is able to accurately predict the excitation energies
and thus allowing us to compute the spectra for thousands of molecular configurations at

nearly no additional computational cost.
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Figure (4) UV-Visible absorption spectra for all 10 aromatic molecules. Thick lines repre-
sent the ML spectra predicted using the 10-molecule model and computed with the ensemble
method. Thin lines represent the experimental reference.®"? 7 Dashed lines represent the
calculated spectra using the multiscale quantum chemical method.

Transferability of the Machine Learning Model

Although useful to save computational time to compute the lowest energy band of the ab-
sorption spectra, the application of the MLL model described so far is limited to the molecules
comprised in the training set. Hereafter, we explore whether our approach can be used to
predict the absorption spectra of molecules that were not included in the training set, pro-
vided that these molecules are similar to those used to construct the ML model. To this
scope, we employ the LASSO model fitted with the excited state calculations of 7 molecules
to interpolate the excitation energies and the corresponding UV-Visible absorption spectra

for 1,2-methoxyphenol, 1,4-aminophenol and 1,4-dimethoxybenzene. These three molecules
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Figure (5) UV-Visible absorption spectra for all 10 aromatic molecules. Thick lines rep-
resent the ML spectra computed with the ensemble method (dashed) and with the third
order cumulant scheme (solid).?! Thin lines represent the experimental references. %776 The
spectra of the molecules not included in training set are highlighted with blue graph frames
and labels.

consist of a phenyl ring with side groups of the same kind (methoxy, hydroxyl and amine) as
the molecules included in the training set, but combined to form different isomers or different
molecules altogether. Table 3 and Figure 5 show that the peak positions and the absorption
line shapes for the seven molecules in the training set remain the same as those obtained with
the 10-molecule ML model. Figure 3 indicates an increase of both MAE and MSE for the
three molecules excluded from the training set. MAE, in particular, raises beyond 20 meV for
1,4-aminophenol and 1,2-methoxyphenol. A larger error for these molecules is expected, as
the side-group arrangements (e.g., ortho positioning of hydroxyl and methoxyl group, para
positioning of amine and hydroxyl group and of two methoxyl groups) are not explicitly
known by the ML model and their effects on the excitation energies are inferred from the
other seven molecules. Nevertheless, a close comparison between Figures 4 and 5 suggests
that the effect of these errors on the predicted UV-visible absorption spectra is small. In fact,

the model-generalized spectra remain very similar to those obtained with the 10-molecules
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ML model, are in excellent agreement with the reference QC spectra. The difference be-
tween €maz experiment AN Emaz arr 15 0.084 €V, 0.077 eV and 0.038 €V for 1,2-methoxyphenol,
1,4-aminophenol and 1,4-dimethoxybenzene. Considering that the 7-molecule model is de-
veloped without using any QC calculations of the three excluded molecules, less than 0.1 eV
differences are remarkable.

These results suggest that the 7-molecule model can properly interpolate the electronic
excitations of the molecules not included in the training set without further tuning the
hyperparameters of the BC descriptors and provide UV-visible absorption spectra in good
agreement with experiments. However, while the low-energy tail of the absorption band is
reproduced very well, our approach fails to reproduce the skewed experimental line shapes.
To improve the line shape predictions we have applied the dynamics-based third-order cu-
mulant scheme, using the fluctuations of the VEE estimated by the ML model along the
FPMD trajectory (Fig. 5 solid line). 218981 Whereas we get a minor systematic improvement
in the prediction of the line shapes with this approach, the theory still underestimates the
intensity of the high-energy part of the absorption band. This may be due to the fact that
nuclei are treated as classical particles in FPMD, thus neglecting nuclear quantum effects.

This result shows that local geometric descriptors are sufficient to predict very accu-
rately excitation energies of a group of molecules with similar features. This is a promising
starting point for future work on more complex molecules. It is somewhat surprising that
small changes in the molecular configurations are sufficient to fully capture solvation effects
on excitation energies and lineshapes. While this is auspicious for future works, it is not
guaranteed that this will be the case for different types of molecules in different solvation
environments. To extend the transferability of this approach to other classes of molecules,
given the non-local nature of electronic excitations in large molecules, it may turn out nec-
essary to supplement our approach by including richer physically-based descriptors, e.g.
electronic orbitals, and to compute excitation energies as the eigenvalues of ML effective

Hamiltonians. 82784

17



Effect of the /; Regularization

Hereafter, we analyze the features that make the ML model developed in this work
accurate and predictive. We first examine the importance of ¢; regularization. To this aim,
we built another 7-molecule model using ordinary least square (OLS)® as the underlying
ML model. BC for this model were computed using the hyperparameters as summarized
in Table S2. The 2j,,.. Was chosen to be 8 so that both 7-molecule models have similar
Nieatures#0- Table S2 shows that both 7-molecule models have very similar overall MAE.
The 7-molecule + OLS model even achieves lower standard deviation (std) in overall MAE
than the 7-molecule model. Surprisingly, two 7-molecule models show striking differences in
MAE with respect to each molecule. From Figure 3 and S2, one can see that the 7-molecule
model has lower MAE for 5 molecules in the training set. The 7-molecule model also records
8.93, 1.37 and 13.63 meV lower in MAE than the 7-molecule + OLS model when interpolating
the excitation energies for 1,2-methoxyphenol, 1,4-aminophenol and 1,4-dimethoxybenzene.
The std of MAE from the 7-molecule model (0.724 meV) is only about 12.5% of the std from
the 7-molecule + OLS model (5.76 meV) for the three model-generalized molecules. The 7-
molecule model is fitted against 225 BC selected from 1544 BC generated with 27, up to 18.
As shown in Figure S3, 2j,,.. = 18 is a sufficiently high order to generate BC with optimal
MAE. Meanwhile, feature elimination schemes, such as ¢; regularization, help capture the
essential features of the atomic environments and ensure little to no performance loss as the
final model is fitted on a carefully-chosen subset of the initial feature space.® Therefore,
these 225 BC are composed of comprehensive descriptions of the atomic environments at
resolution as high as 2j,,,, = 18. However, as no feature elimination is imposed in the
7-molecule + OLS model, its feature space can only be confined at lower order of 2j,,,, to
prevent overfitting. In particular, each of 224 BC generated with 27,,.. = 8 is used to fit the
7-molecule + OLS model. Thus, despite almost identical Neqtures0, the difference in the
detailed description of the atomic environment eventually leads to a drastic difference in the

capability for the two 7-molecule models. Whereas a more standard ¢, regularization may
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be used, the latter is prone to overfitting when the ratio between the number of samples and
features approaches unity. It is therefore very advantageous to impose the ¢, regularization
as it not only prevents overfitting, but it also enables the ML model to have a sufficiently
large initial feature space, which is critical for the model to be generalized to systems not

included in the training set.

Chemical Interpretation of Machine Learning Results

To trace how the ML models explore the structural similarity among these aromatic
molecules, we performed the linear decomposition analysis as formulated above in the meth-
ods section. Figures 6 and S4 show that, for €5, from both ML models, contributions from
the aromatic ring are predominant. This trend is common to all molecules. This result sug-
gests that the observed generalizability across the whole family of aromatic molecules lays
primarily on geometric variations of the aromatic ring during the FPMD simulations, and
that the primary effects of solvation are local and can be tracked down to configurational
changes in the solvated molecule.®” To interpret this result from a quantum mechanical
standpoint, we computed the Natural Transition Orbitals (NTOs)® % of all the aromatic
molecules using their equilibrium structures in aqueous solution. As shown in Figures S5,
the dominating NTOs for all these aromatic molecules exhibit the characteristics of a m — 7*
transition. Such excited state characters are mostly contributed by the aromatic ring, along
with a secondary participation of lone pairs on functional groups. Whereas relative contri-
butions of the hydroxyl and amine groups from the NTOs are noticeably larger than those
illustrated in the linear decomposition analysis, NTOs confirm the predominant relevance of
the carbon atoms in the aromatic ring. Quantitative differences in the relative contributions
of the functional groups indicate that the geometrical interpretation of the excitations from

ML is qualitative.
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Figure (6) Linear decomposition analysis from the 7-molecule model. %y, are computed
by averaging the excitation energy predictions of 5000 frames.

Machine Learning Higher Excited States

To explore the possibility of extending our machine learning method, we constructed
another model, using the same parameters as the 10-molecule model, to predict the second
excitation energies. From Figure 7, one can see that the MAE and MSE of the second
excited state are noticeably higher than the MAE and MSE of the first excited state but
still far below the 70 meV ™ limit of the deployed DLPNO-STEOM-CCSD method. With
both the first and second excited-state energies predicted concurrently, the resultant ML
absorption enrapture long-wavelength tails convoluted from both excited states. Since not
all the experimental spectra are available up to second excited states, we compared QC and
ML UV-visible absorption bands for the first two excited states in the space of oscillator
strength (Figure 8). Both Figures 7 and 8 prove that our ML methods can be promising in

predicting higher excited states.
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¢ predictions from the 10-fold cross-validation. egc is the quantum mechanically computed
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Figure (8) UV-Visible absorption spectra for all 10 aromatic molecules, including the first

two excited states. Thick lines correspond to the ML spectra predicted using the 10-molecule
model. Dotted lines represent the calculated spectra using the multiscale quantum chemical
method.

21



Conclusions

From the ML model performance and the corresponding UV-visible absorption spectra,
we have shown that our ML approach can be applied to predict the electronic transitions for
a class of solvated aromatic molecules. As a baseline, our 10-molecule model predicts the
excitation energies of solvated aromatic molecules with MAE well below the intrinsic error
of the underlying QC method. Our 7-molecule model proves that the atomic environment
represented by BC can be generalized to interpolate excitation energies for molecules that
are structurally similar to molecules in the training set. By applying our ML models over an
ensemble of configurations sampled from FPMD simulations, converged line shapes of the
lowest-energy absorption band can be readily attained. The linear decomposition analysis on
the predicted excitation energies suggests the aromatic ring to be the key motif to modulate
the electronic excitation, which can be explained by the m — 7* excited state character of
these aromatic molecules.

This work outlines an efficient strategy to model light absorption spectra for solvated
aromatic molecules by combining QC calculations and ML. We have shown that, thanks to
its modular nature, our workflow can be extended to predict excitation energies of higher-
energy states. Since QC-ML allows us to compute efficiently VEE for thousands of frames
along a trajectory, we obtained more accurate spectral line shapes combining it with the
cumulant expansion method.®! Further improved results may be achieved by taking into
account nuclear quantum effects in the MD trajectories, e.g., by using path-integral MD
and/or a quantum thermostat.?? It would also be possible to attain higher computational
efficiency by using accurate abinitio potentials, e.g. neural network potentials or extensions
of the MBpol model,?%* instead of FPMD simulations to sample the configurational space
of solvated molecules. Besides the computational advantage, some of these models are more
accurate than plain DFT with semilocal GGA functionals, as used in this work for FPMD. In
the realm of perspective applications, as the ML model identifies a direct dependence of the

excitation energies on the molecular configurations, it would be straightforward to apply this
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approach to different solvation environments, as shown in the calculation of bathochromic
shifts of molecules adsorbed in snow-packs.%"" Finally, given the accuracy and the generaliz-
ability of our ML approach, we envisage its extension to broader classes of organic molecules,
with potential applications in energy materials, such as organic photovoltaic and dyes for

photoelectrochemical systems. %%
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