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Abstract. Discovering causal knowledge is an important aspect of much scientific
research and such findings are often recorded in scholarly articles. Automatically
identifying such knowledge from article text can be a useful tool and can act as
an impetus for further research on those topics. Numerous applications, including
building a causal knowledge graph, making pipelines for root cause analysis,
discovering opportunities for drug discovery, and overall, a scalable building
block towards turning large pieces of text into organized information can be built
following such an approach. However, it requires robust methods to identify and
aggregate causal knowledge from a large set of articles. The main challenge in
designing new methods is the absence of a large labeled dataset. As a result,
existing methods trained on existing datasets with limited size and variations in
linguistic pattern, are unable to generalize well on unseen text. In this paper, we
explore multiple unsupervised approaches, including a reinforcement learning-
based model that learns to identify causal sentences from a small set of labeled
sentences. We describe and discuss in detail our experiments for each approach
to further encourage exploration of methods that can be re-utilized for different
tasks as well, as opposed to simply exploring a supervised learning process which
although superior in performance lacks the versatility to be re-purposed for slightly
different tasks. We evaluate our methods on a custom-created dataset and show
unique techniques to extract cause-effect relationships from the English language.
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1 Introduction

Causal relationships depict important knowledge across many different fields, including
medicine, health, economics, and public policy. Researchers in these fields design and
conduct experiments to verify causality between two events and publish their findings in
research articles. Such research articles record the discovery of new causal relationships
or some new conditions of existing causal relationships providing new knowledge in
the field. Causal relationships expressed in the text provide a unique opportunity to
discover new causal knowledge and capture the fundamentally dialogic and dynamic
nature of knowledge. New research findings may refute existing causal relationships,
or new conditions may redefine such relationships. Thus, mining such relationships
from peer-reviewed articles will help to create a knowledge of causal relationships, that
may include, conflicting findings, inconsistent discoveries, refutations, contradictions,
reinforcements, or confirmations, all changing over time [1,2]. Hence, such a knowledge
base can help to help to capture the dynamism exhibited by causal relations. An example



2 Pranav Gujarathi

of a causal relationship is expressed in text is shown in Fig. 1. Extracting such relations
from text, however, is not trivial, as expressing causality through natural language may
take many different forms. For example, for two events A and B the causal relationships
between A and B can be expressed using active voice (e.g. “A causes B”), using passive
voice (“B is caused by A”) or using synonymous expressions (e.g. “A leads to B”)and
so on.

Fig. 1. An example of a causal relationship in text

This paper focuses on the self-learning method of detection and extraction of causal
relationships from the open-domain text for analytical and predictive applications. Hu-
mans are predisposed to understand counterfactual and situational information by infer-
ring cause-and-effect patterns from statements. In articles, documents, and many other
text resources, causal reasonings generally appear in the form of descriptive, inductive,
or abductive associations between the agent and the act. These variations in the strength
of connections make it challenging for machine-based techniques to extract association
effects using any particular supervised or rule-based method. To illustrate this further,
we can say that sometimes the information indicators are clear or explicit by the usage of
words like- caused by, led to, influences, etc. in the text which leads to an easy discovery
of the association. But during other times, this relationship has more implicit or ambigu-
ous indications. For instance, words like show that, trigger, arose, etc. can have multiple
connotations which can only be apprehended using complex and self-learned methods.

Operationally, causal relationships denote how different events and entities should
be perceived in relation to each other and can be linguistically modeled by discovering
the type of reasoning- common cause-effect, causal chains, or homeostasis, between the
statements. By assessing the type of dependence, covariance, or dynamism in the text,
we can try to find out how models can learn these modes distinctly and apply them to
new samples passed to it.
There are many challenges in extracting causal relationships from the text. A simple
method can be to use a pre-trained dependency parser and a rule-based system that
captures causal relationships through grammatical constructs. However, multiple experi-
ments later, it is found that generalizing a rule-based formula from the dependencies is
not possible and a deeper understanding of the grammatical structure of the language is
necessary, as well as understanding the flow of context.

Through the course of our work, we explored multiple approaches, both supervised
and unsupervised (refer Fig. 2). While unsupervised methods lack the pinpoint accuracy
and ability to be deployed in a practical application without further development, these



Causal Relationships 3

approaches provide a template for building NLP solutions without the need for hand-
annotated data halting the progress. This is a significant improvement from previous
work [12], where all such models were trained on existing causal relationship datasets,
such as SemEval-2010 [3] and Adverse Drug Effect (ADE) [4] with several limitations,
such as small size and minimal variation in how the relationship is expressed. As a result,
these models’ performance drops when they are applied to real-world sentences.

On the other hand, unsupervised approaches can be scaled to multiple different
applications and are a step in the direction of generalized artificial intelligence. In
this paper, we propose four unsupervised approaches that can be applied to larger and
more generic text to detect causal relations and overcome the limitations of the existing
datasets. In one of our unsupervised approaches, we have tried the Actor-Critic (A2C)
Reinforcement Learning (RL) [7] method where a reward function that evaluated the
quality of predictions is optimized to improve the predictions from a state of random
walk toward convergence. In our exploration of related work, we found that our approach
to setting up the RL problem in a Natural Language scenario was unique and can be
repurposed to many other various NLP problems. We compare our unsupervised methods
with two more supervised methods that are similar in terms of the annotated dataset used,
the challenges, and pre-processing of the text, but differ in finer aspects of setting up the
training process vis-a-vis the dependent and independent variable. Both the supervised
approaches utilize light transformer-based AlBert [10] architecture while adding a few
additional layers depending on the dimensions of input and output variables.

Fig. 2. A hierarchical representation of different approaches explored to extract causal relationships
from text

2 Related Work

Several combinations of linguistic, rule-based, machine and deep learning techniques
have been used in the past to detect causal semantics from text. These past works can
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be considered as the criterion to further explore and modify potentially well perform-
ing areas to achieve better results. Bayesian methods [14] used to extract and filter
cause-effect pairs by accounting for lexical and semantic features that analyze most
frequent relations in dependency trees of sentences resulting into precision as high as
71% for SemEval dataset. Another similar Information theory Bayesian approach [15]
calculates probabilities on likelihood between drugs and their harm and then learns
parameters using Artificial Neural Networks. Egami et al (2018) presents a generaliz-
able Codebook function(g) [16] fitting onto several models, to establish a link between
higher dimensional text to lower dimensional representation and group them for making
inferences and estimations of treatment effects. A scenario based Supervised method
[17] probabilistically extracts binary semantic relation features to constitute for event
causality scores ranked by SVM.

Lexical models with task-specific causal embeddings [19] relate answers to questions
by comparing noun phrases to causal mentions using Causal Convolutional Neural Net-
works is another way to use causal inferencing in QA applications. Software prototypes
[20] to extract cause, effects, interaction signs built with NLP on annotated corpuses of
research papers using hypothesis parsing and a set of rules have resulted in a significant
F1 score between 0.71 to 0.90. As an extension of this method, extraction of a list of
multiword expressions [21] is possible based on lexico-syntactic patterns and coreference
relations, and estimate causal relations using statistical state-of-the-art Pointwise Mutual
Information metric on Choice of Possible Alternatives (COPA) with an accuracy of 72%.
The CausalTriads model is a more comprehensive approach on capturing transitive de-
pendencies [22] to discover unseen causal relations and generate new causal hypothesis.
It uses four structures to represent the rules of causal transitivity laid out by a factor
graph model. An interesting and novel method to address explanations of a causal event
is by using time series [23] to search relations between cause-effect and construct a chain
between them to generate an explanation. The prior work of feature extractions, such as
n-grams, sentiments, topic, etc., is translated into a CGraph of sequential causal entities
requiring commonsense causative knowledge base with efficient reasoning. Also, by
describing a causal word to be of simple, resultative, or instrumental can be helpful in
structuring the relational rules and semantic constraints on parts-of-speech mappings
in sentences as discussed in the paper for text mining [24]. An approach similar to
the one presented in this paper, includes lexical pair probabilities [25] and cue phrases
learned from raw corpus in an unsupervised manner to extract events followed by their
relation extraction using simple Naı̈ve Bayes classifiers and Expectation-Maximization
optimization. The Causal and Temporal Relations Scheme (CaTeRS) [26] introduces a
narrative structure to stories by specializing annotating large sentences in a couple of
words to benefit from the rich inferential capabilities that structured knowledge about
events can provide using temporal tags.

In recent times, we see the use of deep learning in addressing this problems. Li et
al (2021) [18] utilizes cartesian products of entity-mention tags and relation-type tags
produced with tag2triplet algorithm that detect causal triplets of two event entities and the
relation between them. This is implemented using BiLSTM-CRF and multiheaded self-
attention mechanism to capture long-range dependencies outperforming other methods
with F-score of 83-85% on different datasets. Causality extraction based on extraction
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of lexical semantics and document-clause frequencies [27] from specific literatures
make it easier to adopt schemes that determine direction and strengths for the relational
frequencies in causal disease network. Another approach [28] uses Deep RL with a
CNN and Tree-LSTM networks that model relations during the initial and transition
states followed by a penalizing step which increases the penalties for decision-making
errors to reduce the problems of unbalanced corpus. The Q-learning algorithm then
computes the control policy over that action resulting in a final F1score of up to 78% for
the ACE news dataset. Another paper [29] mentions on similar lines, an inference based
inductive or deductive causal reasoning algorithm with causal rules which transform
start states to next states using and controlling factors generating non-optimal solutions
optimized by AI reinforcement learning by varying the learning rate and discount
factor at the expense of reduced speed. Alternative to the traditional approaches, the
Graph Convolutional Networks for Semantic Role Labeling [30] focuses on annotating
sentences using semantic and syntactic dependencies by parsing its structure to model
any type of relationship.

Comparison between ML and non-ML paradigms contrast the annotation and hand-
coding of linguistic texts to extract features to automated ML techniques involving
WordNets, FrameNets for broader coverage areas are discussed in this survey [31].
Techniques for filtering confounding causal estimates [32] simplifies the confounding
bias using Doubly-robust algorithms, causal-driven representation learning, regression
adjustments, etc. Reinforcement Learning uses external evidence [33] to improve extrac-
tion accuracy in domains by using Markov decision process which includes a space of
possible states, actions, a reward, and a transition function to dynamically extract causal
pairs. Multivariate time series analysis (non-parametric) [34] for graphical modelling
efficiently handle non-linear directed acyclic graphs by replacing conditional orthog-
onality by conditional independence leading to strong Ganger causality. Extraction of
explicit and implicit causal relations [35] is a problem for sparse texts, an approach to
alleviate this is through explicit causal patterns for explicit cases and associating causal
events with causal-agents to generate an evaluative causal valence.

3 Unsupervised Approaches

3.1 Approach I : Using Pre-trained models for inference

Before experimenting with manually annotated data, we explored the possibility of
labeling the data using pre-trained models. The HuggingFace library in recent times
has not only provided easy to implement transformer models, but also a vast library of
pre-trained models, ready to be used as Natural Language Inference tools. For instance,
one of the very successfully trained models is the DistillBert [5] Question Answer
model trained on the Squad [6] dataset. The unlabeled data is scraped from Pubmed
articles based on the occurrence of a list of ’cause phrases’ ( caused by, lead to, affects,
resulting in, etc). It is important to note here, that while one of these words exists in
these sentences, it may not imply a causal relationship.

It is also important to define noun phrases in the context of our paper. Noun phrases
are a continuous sequence of words within a sentence that are compound noun-like
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Fig. 3. Examples of Noun Phrases within two sentences. As we can see, there can exist various
Noun Phrases within a sentence, ranging from a single noun to a collection of named entities
joined by prepositions. We also see that there can be an overlap between Noun Phrases, and one
noun phrase can even be a collection of two or more.

entities or complex collections of words, which can be regarded as standalone objects.
For instance, consider the sentence - ”The illness caused by deficiency of vitamin D is
called scurvy”. Here while named entities like [deficiency, vitamin D, scurvy, etc] are
regarded as noun phrases, the complex phrase The illness caused by deficiency of vitamin
D is also a noun phrase, since it refers to a single object/entity and can be replaced by
the noun scurvy in a sentence. Fig. 3 presents a sentence with all possible overlapping
noun phrases and Fig. 4 shows how we use all the combinations to build candidate noun
phrases to identify cause/effect phrases.

We assume that if one of the phrases, cause or effect is known, we can frame
questions to infer the other. Thus, for every cause phrase, we define question templates.
For instance, for the cause word ’causes’ the set of possible questions will be [What
causes {1}?, What does {0} cause?, Does {0} cause {1}?]. We know that both cause
and effect belong to the set of noun phrases and that if they occupy the places by
{0} and {1} respectively, the questions can be answered with high confidence. For
example, the sentence - “the subjects were exposed to UV irradiation causing a local
tissue inflammation”. We extract all noun phrases, and permute all combinations - some
questions have only one input word, some have two, we make sure all cases are covered
and as many combinations as possible are made with no regard to whether or not the
sentence makes any logical sense). Let us say we make ω template questions. The
pre-trained QA model takes in two inputs - question and context and returns two inputs -
answer phrase and confidence score. Hence for every sentence, we feed in ω different
sets of inputs (same context, different question), and finally pick the one with the best
confidence score. In this case, the constructed sentence What is causing local tissue
inflammation? gave the best confidence score with the answer uv radiation, and hence
we assign uv radiation and local tissue inflammation respectively as cause and effect.
Fig 5 illustrates this process.

We found a few limitations in this approach. First, the noun phrase extraction may
not be perfect, and may often just give named entities as opposed to correct noun phrases.
Thus the error further carries forward to the next step, affecting overall performance.
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Fig. 4. For Approach I, we first extract all the N noun phrases from the sentence. From this set of
N noun phrases, we cycle through

(N
1
)

combinations of taking one phrase at a time as well as all
the

(N
2
)

combinations taking 2 phrases at a time, generate a sentence from the phrase/phrases and
infer if there exists a cause-effect relationship

Fig. 5. Illustration of how generated sentences and scores from pre-trained models can distin-
guished between correctly and incorrectly extracted cause effect phrases, and since the search
space is limited (since there are limited noun phrases), this comparative approach can be used for
cause effect extraction.
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The overall performance is also dependent upon the performance of the QA model. A
QA model can answer questions correctly only when the context is provided, however,
the way some noun phrases are extracted this may not be true. Additionally, the data
extracted may not even have a causal relationship, to begin with as mentioned earlier,
resulting in more errors. Upon manual evaluation of the input, less than 20% of the causal
sentences were identified correctly, and the performance drops further for uncommon
cause words (accelerates, increases, contributes to, etc).

3.2 Approach II: Reinforcement Learning-based approach

With the emergence of transformer models and pre-trained language models, fitting a
model on an annotated dataset becomes a trivial task, however, this may be infeasible
considering such annotated data is not available. Hence, exploring unsupervised methods
has an additional advantage - they open an avenue for a discussion where neatly annotated
data is not a necessary blocker to get started with creating a valuable natural language
asset. Many domains often require subject experts to annotate properly, and cannot be
outsourced to popular annotation services.

Deep Reinforcement Learning in recent times has emerged as a promising approach
that can utilize popular deep learning architectures, such as transformers, CNNs, LSTMs,
etc., while also going a step further than function approximation toward generalized
Artificial Intelligence. This is possible due to the way RL tasks are formulated as an
optimization strategy, where we simulate an agent playing a finite sequential game to
gradually improve the reward obtained at each step. The key difference is that this scalar
reward neither needs ground truth labels nor has to be differentiable - as long as the
reward magnitudes reflect the agent behaving favorably.

We propose an unsupervised framework for the causality extraction from sentences
using the A2C or Actor Advantage Critic Method [7]. The advantage of this framework
is that even though we lack ground-truth labels, essential for supervised learning, we
can creatively use pre-trained models to assign a ’score’ or evaluate our predictions. We
use a combination of pre-trained models and hypotheses to formulate the score (µt).
The basic idea behind this is, that if the predictions are correct, certain conditions must
hold. For instance, if the predicted cause and effect are correct, firstly these entities
should be noun phrases and secondly, if we frame a new sentence using these entities,
this ‘conclusion’ sentence should be consistent or ‘agree’ with the premise sentence. We
present the notations of our RL model in Table 1.

Reinforcement Learning Steps A typical RL problem consists of the following setup: a
sequential task, where an agent starts at a initial position(s0), and has to navigate through
different steps to eventually reach an end point(sT ), which is referred to as completing
an episode. At every step, the agent receives feedback on the decisions taken. Based
on the feedback, at time t it tries to take an action(at ) that will maximize the reward(rt ).
Eventually, after multiple simulations of an episode and using an optimization algorithm,
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Table 1. Notation for Approach II (refer to this for all the equations and formulations discussed in
this approach

Notation Description

t Time step ‘t’
T Maximum time steps in an episode.
υ a random sub-sample of input sentences
θt Given υ , represents predictions at time t
st State at time step t(subject to definition)
at Action taken at time step t. Action may not not be necessarily

be the same as predictions, although they directly lead us to the
prediction - for instance action can be something like softmax
scores or probabilities, while θt are the actual textual prediction
inferred from it.

µt Given an υ and corresponding θ , this represents the score of the
prediction or how good it is.

rt Represents reward at time step

the objective is to maximize the cumulative reward or ∑
T
t=0 rt for an episode. We use

this setup and define st ,rt and at to ensure that maximizing ∑
T
t=0 rt will improve the

prediction accuracy of labeling words in a sentence as cause and effect.

Fig. 6. Setup for using RL to extract cause-effect pairs

3.3 RL Task Description

For a particular episode, we pick a random subsample(υ) of sentences. At every step,
the agent(in our case a neural network), takes st as an input and predicts at , also giving
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Fig. 7. µt i.e Scoring method explained

us θt . We score this prediction and assign value µt to it. Accordingly, since we want to
use previous feedback and results to guide current action, we define the state(st) as a
collection of a time-invariant variable (input sentence) as well as two-time dependent
variables (previous state and scores) incorporating the information of the trajectory after
the start.

st = [υ , .at−1,µt−1]

Since RL algorithms optimize ∑
T
t=0 rt , we define our reward as

rt = µt −µt−1

Thus, ∑
T
t=0 rt is µt −µ0, meaning optimizing cumulative reward is the same as improving

the prediction score compared to random walk (based on our definition). Fig. 6 explains
the RL steps and Fig. 7 the scoring method used in this approach.

As mentioned earlier, we can leverage RL algorithms for unsupervised learning
since there are ways to use pre-trained models creatively in a way that allows us to
automatically assign a score to a cause-effect prediction. Similar to how we built ques-
tion ‘templates’ based on which cause words occurring in the sentence, we can build
templates of ’conclusion’ sentences for every cause word. For instance, for the cause
word ‘accelerates’, the list of conclusion sentences are [0 accelerates 1.,1 is accelerated
by 0., Acceleration of 1 is caused by 0].

Actor Advantage Critique Algorithm (A2C) The actor critique algorithm is based on
Deep Q-learning Network (DQN) [8] algorithm. This RL framework is used along with
actions and rewards designed based on our NLP tasks to extract cause and effect pairs.
This network uses Value function and Q-values at each state to compute the usefulness
and quality of the state. At each state st consisting of υ , at−1 and µt−1 where sentence
stays constant where as at−1 and µt−1 are the feedback terms. The µt−1 is a scalar output
and at−1 is a vector of 4× maxlen(υ). We fix that the maximum length of a sentence
is 80 words for our experimentation and we estimate the probability of every word to
be a cause or an effect word. The output vectors for each word will have a size of four
and each element will represent the probability of the word to be start of a cause phrase
φ s(κ), probability of the word to be end of a cause phrase φ e(κ), probability of the word
to be start of a effect phrase φ s(ε), and probability of the word to be end of a effect
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phrase φ e(ε) respectively. Based on this probability distribution start and end indices of
cause and effect phrases are determined.

Fig. 8. Architecture for ”Actor” portion of Approach II

Architecture and Setup The goal of our model to identify cause and effect phrases is
shown in Figure 8 at each iteration of the state a sentence of length len(di) is passed
through Albert [10] a lighter version of BERT [9] based transformer model with 12
million parameters to generate sentence embeddings of size (len(di),768). This output is
then batch normalized [11] and is reduced by taking a mean across the length l resulting
in vector of size (1,768). Then the action at −1 output from previous state of size (80, 4)
is reduced to (1,128) and batch normalized. This output a|t−1 and µt−1 are combined to
one single vector of size (1, 896), this output is further reduced and normalized to (1,
128) and combined with the scalar epsilon from previous state εt−1.

The RL approach seems promising from a theoretical perspective, in the sense that it
eliminates the need for annotation, it does suffer from some practical issues. While we
carried out training on the A2C model and managed to improve the reward by 30 percent,
it did seem to saturate at that point. The reason is that our currently defined evaluation
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function does not completely recreate the correct required evaluation, and suffers from
error. Additionally, typically RL algorithms navigate in a more simplistic action space
(discrete low dimensional action space), hence without 80×4 large dimensional as well
as continuous action, the algorithm was not able to navigate properly[13]. While this can
be fixed by altering the algorithm or using other variants of the Q learning base equation,
it is outside the computational scope due to the sheer size of the Albert model parameters
and our available resources.

4 Supervised Approaches

We will refer to the notations in Table 3 to formulate methodologies for both approaches
III and IV

4.1 Annotated Dataset

After exploring unsupervised approaches, we move on to conventional supervised learn-
ing which would require annotated datasets. We used a combination of two datasets, each
with annotation identifying multiple cause-effect entities in a dataset - the SemEval-2010
dataset [3] and the dataset used by [18]. The combined dataset had a total of 6832 unique
sentences.

Challenges Investigating a few examples, we see that there is no recognizable pattern
that links noun phrases and that exhibits a cause-effect relationship
Furthermore, there is a deep ambiguity when trying to understand the relationships even
manually. Consider the following example - the strong earthquake caused a blackout on
the sound stage and short-circuited some of the neon-tubed violins.
Here ’the strong earthquake’ is the cause phrase, the effect phrase being either ‘blackout’
or ‘neon-tubed violins’. Hence within a single sentence, there are multiple cause-effect
pairs. Moreover, the collection of words ‘blackout on the sound stage’ can also be
interpreted as one large noun phrase, which further adds to the ambiguity. This one-many
characteristic, in particular, is important to note since it guided the design of our super-
vised approaches to a great extent.

From these examples, we learn that there does not exist a simplistic one-one mapping
for the prediction, and simply picking a state-of-art transformer architecture like BERT[9]
and fitting a supervised model will not work. Additionally, there seems to be a lot of
these kinds of sentence structures, hence it cannot be altogether regarded as an outlier or
a corner case. To summarize, the basic idea behind a Supervised approach is to predict
cause effect as a direct sub-sequence of the input sentence sequence, using annotated
cause-effect data as the basis for the same.

Data Pre-processing We implemented a rudimentary pre-processing on the annotated
text such as the removal of non-alphanumeric characters and lower-casing. We then
carefully extracted all the annotated pairs per sentence expanding the selection to get
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data points where each point consists of a triplet of sentence, cause effect respectively.
Due to the use of the transformer model and associated tokenizer, there is no need for
stemming or lemmatization.
Pre-processing is important both before modeling and for extracting the noun phrases.

Noun Phrase (NP) extraction While comprehensive Noun Phrase (NP) extraction
remains a complicated and ambiguous task, we attempt to capture as many noun phrases
as possible, like other types of NPs’ which are modeled to predict similar cause-effect
pairs from a pool of candidates, rather than being deterministic for a given input sentence.
We use a combination of noun chunk extraction and Spacy library’s[36] noun phrase
extraction to retrieve the Noun Phrases. Special care is taken to avoid repetition of
the occurrence of two phrases in the noun phrases that mostly overlap each other. For
instance, a noun phrase extractor will label both ‘earthquake’ and ‘the earthquake’ as
possible noun phrases, however, we will omit the smaller one to avoid repetition.

4.2 Approach III : Using Siamese model for supervised prediction

Fig. 9. Overview of the supervised Siamese approach

In this approach we use Siamese triplets for prediction. This means we use a model
ξ to predict the probability

Pξ

i = P(θ j
i = θ̂

j
i |xi = {di, θ̂

j
i })

where a triplet is di,κi,εi (for the full list of notations used refer Table 2). Here, it is easy
to populate a collection of probable solutions or sample solutions θ̂i. We extract a list of
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Table 2. Notation for Approach III and IV (refer to these notation chart for all the equations and
formulations in these approaches)

Notation Description

xi ith input data point in supervised prediction.
di ith Document (Input sentence) . It is important to note that while

in earlier works di would be the same as xi, we are dealing
with a one-to-many relation as far as document-entity pairs are
concerned, hence xi can be a combination of multiple entities as
we shall see later.

ηi,Ni Set and count of noun phrases respectively for sentence di
θi Cause-effect entity solution set for di

θ
j

i = {κ
j

i ,ε
j

i } One pair of correct solution for di, with {κ
j

i ,ε
j

i } being the jth
cause and effect entities respectively.

φ s(κ
j

i ) Probability distribution for the ’start’ index of κ
j

i . In vector
form this will be an array of the same length as di, with each
element representing the probability that κ

j
i starts at that position

within di. Similary, φ e(κ
j

i ) stands for end index distribution, and
φ e(ε

j
i ) for ’effect’ entity probabilities. We typically estimate the

predicted index by argmax(φ s))
ξ Neural Network extractor and prediction function, hence ξ (xi) =

θi

Pξ

i Probability value of our prediction, ie, the confidence at which

we can claim a predicted potential solution θ̂
j

i ∈ θi. As we will
dive further into methodologies later, we can formulate our out-
puts to predict this very probability.

ˆ Indicates a predicted or potential value, which might or might
not be the ground truth value.

len() Operator that return length of single dimensional vector input
M Total number of labelled sentences.
ℓ maximum length of sentence. As per experimentation, distribu-

tion of data and computational availability, this value is currently
set to 40.
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noun phrases or compound word entities from the sentence (we assume that the cause and
effect entities will always belong to ηi), and then proceed to get all

(Ni
2

)
combinations of

possible pairs from ηi. Based on each probable solution being accurate as per ground
truth annotation or not, we accordingly assign positive and negative labels respectively.
We then attempt to fit a binary classification model using start-of-art BERT architecture.
During prediction, we extract those with a probability above a certain threshold. Fig. 9
presents an overview of the Siamese approach.

Experimentation revealed that the model did barely outperform a random walk
prediction (< 50% correct predictions). We concluded that two possible reasons behind
the low performance of this approach. Firstly, the formulation has a huge inherent
class imbalance issue, since the number of negative triplets will be comparatively quite
high. Secondly, we noticed that we need an architecture where each element in xi has
interaction with the other, and this interaction needs to be extracted by ξ , and not
treated as individual features. This is expected since typical architectures while they
calculate self-attention, they do not consider attention from amongst multiple separate
text documents within a single input. This second reason behind the failure of this model
is important to keep in mind moving ahead.

4.3 Approach IV : Using sentence-entity pair for supervised prediction

To address the issues faced earlier, both in terms of class imbalance as well as architecture,
we utilize ξ to instead predict ˆ{φ s(ε j

i ), φ̂
e(ε j

i )} with xi = {di, κ̂
j

i }. We thus indirectly
predict the probability

Pξ

i = P(ε j
i = ε̂

j
i |xi = {di,κ

j
i })

where ε̂
j

i is determined by the list of words (in order) starting with index argmax(φ̂ s(ε j
i ))

and ending with index argmax(φ̂ e(ε j
i )) from di in vector form (for the full list of

notations used refer Table 2). Hence, instead of populating a collection of probable pairs,
we only populate a collection of probable ‘cause’ entities from the collection of noun
phrases. We also utilize a slightly different Albert architecture which calculates relative
attention weights from amongst the two separate entities in xi and predicts the probability
distribution of the start end indices directly, removing any imbalance issues. Please

note that keeping the same architecture, we can alternatively model with xi = {di, ε̂
j

i }
as well, with the same methodology and architecture. The choice to predict effect and
train on sentence + cause was based on experimentation and subsequent results. It is also
important to note that by predicting indices, and not using a seq-to-seq or generative
model, we turn this into a deterministic exercise. This way, we have a shorter search
space and we can have better predictions. This was also evident from our experiments
using alternative methods.

Architecture ALBERT [10] is a transformer architecture based on BERT [9] but with
much fewer parameters. It achieves this through two parameter reduction techniques. The
first is a factorized embeddings parameterization. By decomposing the large vocabulary
embedding matrix into two small matrices, the size of the hidden layers is separated
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Fig. 10. Architecture of Approach IV

from the size of the vocabulary embedding. This makes it easier to grow the hidden size
without significantly increasing the parameter size of the vocabulary embeddings. The
second technique is cross-layer parameter sharing. This technique prevents the parameter
from growing with the depth of the network. Since we received a sequential output,
instead of reducing the dimension directly (taking mean or sum), we reduce it by using
linear neural networks before reducing the size to that of the output (refer to Fig. 10).
The particular Albert model in question takes in a pair of sentences as input, this way
attention between the two sentences (first being the main input sentence and the second
being the cause entity), is also taken into consideration and is the key contributor to
achieving higher performance.

Training Consider the input sentence di = ‘the distraction caused by the students,
coupled with limited vision down the track, caused the incident to occur.’ (refer to Table
3). As per annotation, len(θi) = 3, meaning we have 3 distinct cause-effect pairs which
are θ 0

i = {‘limited vision’ ,‘the incident’}, θ 1
i = {‘the students’,‘the distraction’} θ 2

i =
{‘the distraction’,‘the incident’}. This would mean the total number of data points are
∑

M
i=0 len(θi)

– Tokenization: We tokenize pairs of sentences and cause entities. Tokenization
consists of assigning a finite integer token for every unique word, punctuation as
well special tokens like ‘sentence start’, ‘sentence end’, and ‘padding’ tokens. The
start and end tokens tell the model to not consider anything other than the the part of
sequence between these two tokens when calculating the loss function. Hence post
tokenization, len(di) = ℓ ∀i

– Training convergence: As the output for prediction is a multi-dimensional categor-
ical variable (start and end index), it was trained until convergence of the validation
cross entropy loss. It should be noted that there can exist multiple data points per
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sentence, since a sentence has more than one cause-effect pair. To prevent data
leakage, we took care to make sure that

– Output probability distribution: As mentioned before, the model is trained for
multi-class classification, the output being of dimension 2 ∗ ℓ , each dimension
representing vectors φ s(ε j

i ) and φ e(ε j
i ) respectively. Consequently the probability

Pξ

i will be formulated by

P(ε j
i = ε̂

j
i |xi = {di,κ

j
i }) = max(φ s(ε j

i ))∗max(φ e(ε j
i ))

It is important to note that due to the nature of the dataset, while the training data
utilizes both di and κ

j
i , the prediction part would only have di as input, hence

looking at the probability distribution is important as we formulate the prediction
process. We observed from the distribution that majority of the distribution lies
below approximately 0.8.

Prediction

– Creating Noun Phrase set: We have already covered how we extract noun phrases,
furthermore it should be noted that there is an assumption to be made that all
potential cause phrases belong to this set of noun phrases, ie, κ

j
i ∈ Ni∀i.. Hence

during prediction, we take the input sentences and create test data points such that

we have Ni data points, where xi = {di, κ̂
j

i } and κ̂
j

i is basically an iteration over
every element in ηi. This also means the predicted number of cause-effect pairs, as
per our assumption will be lesser than the number of noun phrases, ie len(θ̂i)≤ Ni.
For instance, for the example sentence mentioned above, the set of noun phrases are
{‘the distraction’, ‘the students’, ‘limited vision’, ‘the track’, ‘the incident’}. An
important point to note here is that, during evaluation, we take special care to make
sure that even partially predicted phrase is accepted as long as there is a significant
overlap. This means if the ground truth phrase is ‘limited vision’ and our network
predicts ‘vision’, it is considered acceptable or correct prediction, and the rule holds
vice versa too. Similarly, we also compensate for missing or additional articles,
hence ‘the students’ is equivalent to ‘students’.

– Prediction: We predict ˆ
φ s(ε j

i ) and ˆ
φ e(ε j

i ) using the trained ξ giving us potential
Ni pairs for every sentence, which we filter down based on probability cutoff as
mentioned in the training process, giving us the final list of predictions.

5 Evaluation

5.1 Evaluation Plan and strategy

The four approaches presented in the previous section provided the inference and insights
for the next. Beginning with Approach I, we learn that although transformer-based pre-
trained models can learn complicated natural language information, they still do not
quite have sufficient task-specific understanding to be used as-is for our task. However,
they do give a fair comparable insight, that is, provided two different sets of predictions,
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the confidence score or loss returned by a pre-trained model does inform us which set
of predictions is better. This formed our intuition for designing the reward function for
Approach II. Solving RL problems, however, requires a huge amount of experimentation
and computational demand. Not only does it require exponentially more amount of
training simulations (each involving multiple epochs), it also requires an extensive
search of the hyper-parameter space which was beyond our scope in terms of building a
robust, cost-efficient, and deployment-ready solution. However, there is promise in the
experiment design and formulation of the RL approach, and there is scope to pursue this
as an engineering challenge. All the experiments were was conducted on a variable RAM
(ranging from 16GB to 64GB) virtual machine with a single Tesla P100 or V100 GPU.
Fig. 11 presents the memory and computing resources consumed during the training
process.

Fig. 11. Overview of memory consumption for CPU and GPU

As we move on to Supervised approaches, the nuances and challenges of the dataset
need to be kept in mind as we explore this further. As discussed before, a sentence
can have more than cause-effect pair, hence rather than having each data point just one
sentence, each data point is a unique collection of (sentence, cause, effect).
Once again, based on our assumption that cause-effect entities will belong to the larger
set of noun phrases from a sentence, we can cycle through all the combinations and
see if we can train a model to predict the correct ones. This was Approach III - a
binary classification model which predicted if this collection or triplet represented a
correct cause-effect relationship. The binary labels allowed for simplistic logistic loss
and standard statistical performance metrics of Precision, Recall, and F1. However, not
only did it have a class imbalance (since only 2 or 3 out of

(N
2

)
combinations will be

‘True’ label, rest will be ‘False’ labels for every sentence), it also looked at the 3 textual
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entities as independent features in the Neural Network. This means although the neural
network is capable of extracting information from within the entities, it is difficult to
detect the relationship amongst them.

To resolve both the problems, the final architecture and approach i.e approach IV
was formulated which treated pairs of the sentence and one entity as input sequence - this
means that it is ultimately treated as a single input and allows for self-attention between
sentence and the causal entity. If the input is the sentence and the cause phrase, the output
will be the effect phrase, represented by its start and end word index. Predicting the
output phrase using indices rather than approximating the output text based on predicted
embedding is an important decision as well because it means a much smaller search
space. For the neural network loss function, a logistic loss is calculated for both the start
and end index separately and added for training. Both predicted and actual entities are
reflected as sequences (words from a start index to end index) and we find the length
of intersection of these sequences. Accordingly, we use the following equations for
precision, recall, and F1 Score for every data point in the validation set and then average

Precision =
length of intersection

length of predicted entity

Recall =
length of intersections
length of actual entity

F1 Score =
2∗Precision∗Recall

Precision+Recall

For both the supervised approaches, training was done using the Adam optimization
algorithm with early stopping if validation loss does not reduce more than 5%. The
Python-based Optuna Framework [37] was used for tuning to see if different hyperparam-
eters (learning rate, batch size, dropout, etc.) yielded better results however it resulted in
less than 5% in performance which was also around the variance found in running the
models on different random seed, hence can be attributed to noise. Due to the dataset not
being exceedingly vast, a hyper-parameter search was not necessarily expected to give
improved results.

Table 3. Description of the training and validation setup for Approach III and IV

Measure Approach III Approach IV
Size of training dataset 11284 5184
Size of validation dataset 4710 2211
Loss function Binary cross entropy Cross Entropy

5.2 Results

In the following section, we present the detailed results from all of our approaches.
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Unsupervised methods - Approach I and II Evaluating unsupervised methods, in
particular, is a challenge considering that we have considered it as a complete end-to-end
unsupervised process, that is, no labeled dataset was used from formulation to evaluation.
Nonetheless, we have some qualitative evaluations from each approach that informed
the previous approaches. It was obvious from the results of Approach I that pre-trained
models tend to perform exceedingly well the more similar the domain of the dataset and
characteristics are to the original dataset it was originally trained upon. For instance,
DistillBERT (which is the parameter reduced version of BERT) performs well with
shorter sentences but exceedingly worse with longer sentences, and vice-versa applies
to BERT. Pre-trained models also couldn’t perform well with large technical words or
especially with sentences with pairs of cause-effect relationships in the sentence. Hence
although this approach failed, it gave an important conclusion which is that modern
supervised algorithms although achieve near-human accuracy, their learning is more
task-driven and not generalized understanding of the English language and grammar.
The same applies to Approach II, where although we were successful in increasing the
reward to a level of 30% improvement before convergence, reward optimization did not
necessarily result incorrectly extracted cause-effect pairs, as the reward is still based on
pre-trained models.

5.3 Supervised methods - Approach III and IV

Although previous works achieve an appreciable level of performance, the assumptions
and over-simplifications involved, such as only one unique pair of cause-effect per
sentence, the entities limited to 1-2 words, non-overlapping noun phrases, etc make
them less viable in practical application. Our work makes few assumptions and caters
more comprehensively to so-called edge cases. The setup for these two approaches is
described in Table 3 and their performance is shown in Table 4.

Table 4. Comparison between the Supervised methods - Approach III and IV. It is evident that
although both methods utilize the same dataset and a transformer based architecture, Approach IV
is pretty superior in performance. The performance and learnings from Approach III informed our
key modifications in the architecture. Our final approach’s performance gives a conclusive ground
for proof of concept of the architecture and training setup.

Metric Approach III Approach IV
Precision 47 70
Recall 53 80
F1 Score 50 73

6 Conclusion

Cause-Effect extraction is a very nuanced and complex exercise that not only requires
grammatical understanding but also data-specific considerations for any model to predict.
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Using pre-trained models directly or indirectly through reinforcement learning has huge
potential for unsupervised extraction – and this approach can be expanded and repurposed
to multiple other tasks. However, reinforcement learning also requires clearly defined and
quantifiable reward functions, as well as comparatively superior computational capacities
to complete experiments. In the case of Supervised models, we were able to handle the
complication of multiple pairs within a sentence as well as build an architecture that
can learn and converge successfully. Although this method outperforms all the others, it
still depends on investment in procuring annotated (labeled data), and also the utility is
limited to the same or slightly different tasks.
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