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Abstract

It is well known that vortex patches are wellposed in C'* if 0 < & < 1. In
this paper, we prove the illposedness of C? vortex patches. The setup is to consider
the vortex patches in Sobolev spaces W2? where the curvature of the boundary
is L? integrable. In this setting, we show the persistence of W2” regularity when
1 < p < oo and construct C? initial patch data for which the curvature of the
patch boundary becomes unbounded immediately for + > 0, though it regains
C? regularity precisely at all integer times without being time periodic. The key
ingredient is the evolution equation for the curvature, the dominant term in which
turns out to be linear and dispersive.

1. Introduction

1.1. Vortex patches

Vortex patches are an important family of weak solutions to the 2D Euler equa-
tions. We recall that the 2D Euler equation in the vorticity form is given by

drw + (v-V)w =0. (1.1)
At each time ¢, the velocity field u is determined by the Biot-Savart law

1 (x =y
U(X, t) =K *a)(x, [) = E e Wa)(y, t) dy, (12)

where x+ = (—x3, x1) for any x € R2,
A vortex patch is a solution to (1.1) of the form

w(t, X) = XQ@)> (1.3)
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where xq () denotes the characteristic function of a connected bounded domain
Q (1) C R?thatevolves according to (1.2). Note that in the literature, the term vortex
patch solution often refers to a solution of the form w = >, _; oy 0i (x, 1) X, (1)
with ©; being mutually disjoint bounded domains and 6; (x, ) being the profiles
of vorticity. In this paper, we consider only the case of a single patch in R? with a
constant vorticity 2.

Given an initial patch data wo(x) = xgq,(x), there exists the unique patch
solution w = xq thanks to the Yudovich theory [26] of L' N L™ weak solutions.
The Yudovich theory only implies that €2 (¢) remains a bounded domain whose area
is constant in time, but does not address the regularity of €2(¢), which in this case
refers to the smoothness of the patch boundary d<2. The question of whether the
smoothness of the patch boundary breaks down in finite time was a subject of debate
[5,8] in numerical analysis. However, this controversy was settled by Chemin [6]
in 1993 who proved that the patch boundary remains smooth for all times if it is
smooth initially.

A key step towards understanding global regularity for smooth vortex patches
is the global wellposedness of patches in C'* for 0 < o < 1 (see e.g. [16]). The
restriction 0 < « < 1 and the recent illposedness result of Bourgain-Li [4] for the
2D and 3D Euler equations in the smooth setting for wy € C* with integer k > 1
suggest that the patch problem may also be ill-posed in C¥ for integer k > 1. The
main purpose of this paper is twofold. First, we confirm this conjecture by showing
that the vortex patch problem is indeed illposed in CZ or C!-!. Second, our approach
to this question involves an analysis of the evolution equation for the curvature of
the patch. Essentially, the equations for intrinsic geometric parameters of the patch,
the curvature and arc-length, can be viewed as an alternative formulation for the
patch evolution problem. Such a type of reformulation using intrinsic quantities
has been used before in the context of fluids mechanics in a variety of models
[11,12,19], and we refer interested readers to references therein. In our case, the
resulting equations do not contain information on patch orientation or position but
otherwise recapture the patch precisely (and the former details can be recovered by
solving simple ODEs if needed). Interestingly, using this reformulation allows us
to see the illposedness in C? on the conceptual level quite directly (notwithstanding
the technical estimates one needs to carry out). We believe that this approach can
be useful in further analysis of finer features of patch dynamics.

1.2. Historical development

As we mentioned above, the study of vortex patch dynamics reduces to the
analysis of the patch boundary evolution. If the patch boundary is at least piece-
wise C!, then one can derive a 1D equation for the parametrization of the boundary.
This equation, known as the contour dynamics equation (CDE), first appeared in
[27] and [15]:

3t7/(§7f):/TJ)(UJ)UIW(&J)—V(U,f)|d77- (CDE)

Here y : T x [0, T] — R? is a parametrization of the patch boundary at each time
t € [0, T]. In this paper, T := R/27Z denotes the 1-dimensional torus which we
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identify with an interval of length 27 with periodic boundary condition. The local
wellposedness of (CDE) in the framework of C¥¢ patches was proved by Bertozzi
in [2] (see also [16]).

After the work of Chemin, several different proofs of global regularity for Euler
patches appeared: by Serfati [23] and by Bertozzi and Constantin [1] (see also more
recent [25] for patches of other active scalar equations). We should emphasize that
these works consider the patch regularity problem in the CX¢ setting for k € N and
0 < a < 1, and more importantly, the 2D dynamics of the patches are used in an
essential way. In other words, we are not aware of a proof of global regularity for
vortex patch using only the contour dynamics (CDE).

Our interest in the ill-posedness patch problem was partly motivated by the
recent significant developments on the Cauchy problem of the Euler equations
(both in 2D and 3D in the non-patch setting) with initial data in integer Holder
spaces C k or in critical Sobolev spaces [3,4,9,17]. In particular, it has been shown
by Bourgain and Li [3,4] that the Euler equations (in 2D and 3 D) are illposed for

4 . "
vorticity in critical Sobolev spaces wyg € W»'¥ for 1 < p < oo and integer Holder
spaces wp € CK with k > 0. In contrast to the illposeness results in the smooth
setting, the following question has remained open for patches:

Is the vortex patch problem illposed in C* or C*=11 with integer k > 1?7

Even whether Sobolev regularity of the patch boundary, say W57 for k > 2,
persists globally or locally in time was not known. In this paper, we show global
well-posedness in W>? with 1 < p < oo, and prove that the vortex patch problem
is ill-posed in C? (and also C11).

Another motivation for our work are beautiful simulations by Scott and Dritschel
[21,22] on singularity formation for SQG patches. Rigorously, singularity forma-
tion for ¢-SQG patches has only been proved for small « in the half-plane [10, 13].
We think that curvature/arc-length equations can be useful for further analysis of
singular scenarios in the « —SQG patch without boundary setting.

1.3. Main results

We now present the main results of this paper. To streamline the presentation,
we introduce the definition of C¥% (and W*-?) domains and refer to the domain
€2(t) as a patch solution.

Definition 1.1. Let Q@ C R? be a simply-connected bounded domain. We say €2 is
Ck- (respectively W¥?) if the arc-length parametrization y : %’]I‘ — R? satisfies
y € CH¥ (£ T) (resp. W57 (£ T)) where L is the length of y and =T = R/LZ.

We say Q(t)isa C ko (respectively wk.p) patch solution (or vortex patch) on
atime interval I C R if

o The characteristic function xq(s) is a solution of (1.1)—(1.3);
e The domain Q(7) is Ck-® (respectively wkryforallr e 1.

Our first main result is the wellposedness of W2? patch solutions, which is
needed to show the C? illposedness.
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Theorem 1.2. Let 1 < p < oo and Qo C R? be a W>P domain. Then the unique
patch solution Q(t) with initial data Qq is a W>P patch solution for all t > 0.

Remark 1.3. (1) This W>? regularity result does not follow from simple modifi-
cation of the arguments in [1,6] for the C1¢ patches.

(2) We use the contour equation (CDE) to establish the local wellposedness of W27
patches. The global wellposedness of W2 patches follows from a continuation
criterion based on known global regularity for C* patches.

(3) The result generalizes to higher order Sobolev spaces W57 for all k > 2 and
1 < p < oo in a straightforward (though highly computational) manner.

In contrast to the wellposedness of W2 patch solutions when 1 < p < oo,
we show that the patch problem is ill-posed in C2.

Theorem 1.4. There exist C* domains Qo C R? and T > 0 such that the unique
patch solution Q2(t) with initial data Qq is not W2’°°f0r anyt € (0, T].

Remark 1.5. A few remarks concerning Theorem 1.4.

(1) It follows that the patch problem is illposed in C? and C'! thanks to the
equvalence C11(T) = W2°°(T).

(2) The illposedness mechanism is based on a certain dispersion effect in the evo-
lution of the curvature which is purely linear. We discuss this in detail in the
coming subsection.

(3) In fact, one can show that the constructed patch solution €2(¢) in our ill-
posedness example is C? if and only if # € Z, and for other times 7 € R \ Z,
Q(¢) is only W2P for all p < co. See Theorem 5.9 for details.

(4) Using our setup it should be possible to prove the illposedness of the patch
problem in C* for any integer k > 2. The case C! seems to be out of reach at
the moment.

1.4. Outline of the proof

Our proof for both the wellposedness and illposedness is Lagrangian in its heart
and based on the contour equation (CDE) y : T x [0, T] — R2.

The existence of WP vortex patches follows from a standard Banach fixed-
point argument. The key step is to show the contraction estimates in this setup. It
is known that for the vortex patch the velocity gradient is not continuous in R?,
specifically across the patch boundary. However, we show that in the Lagrangian
variable, the velocity field v is W27 along the patch boundary. This can be used to
establish local well-posedness. Once we have the local existence for W27 vortex
patches, the global regularity follows from the well-known C'¢ global regularity.

As expected, the W ? wellposedness argument breaks down at p = 1 and p =
oo, but for different reasons. The case p = 1 is due to a lack of regularity/control
and seems to be out of reach of the techniques in the current paper. The case p = oo
fails due to the unboundedness of certain singular operator appearing in the second-
order derivative of the velocity v, indicative of the illposedness of the patch problem
in L°°-based spaces.



Arch. Rational Mech. Anal. (2023) 247:57 Page 5 of 49 57

To prove the C? illposedness, we do not use the contour equation (CDE) directly.
Instead, we track the evolution of the (signed) curvature ¥ : T x [0, T] — R of
the patch boundary. A careful examination of the curvature equation reveals that it
has the structure

9k = (=050 - T+ 7H)k + Lo.t, (1.4)

where H is the periodic Hilbert transform and T is the tangent vector. The rest of the
terms entering the equation are strongly nonlinear but can be shown to have higher
(Holder) regularity. This type of equations is known to be illposed in L°°-based
spaces, such as C2 or W2 (see e.g. [9]).

These observations together allow us to pick fairly explicit initial data with
curvature k9 € C(T) such that the unique solution x(t) € L? for all p < oo
but k(¢) ¢ L on0 < ¢ < T for some T > 0. The claim in Remark 1.5 about
the patch being C? only for t € Z follows from the explicit formula of the group
™" = cos(rt) Id + sin(rr £ )H which follows from H2 = —1 identity.

1.5. Organization of the paper

The rest of the paper is as follows:

(1) In Sect.2, we establish the (local) wellposedness for WP The proof is based
on WP Sobolev estimates of the velocity field along the patch boundary.

(2) In Sect.3, we show how to obtain the global W7 regularity of vortex patches
by using known C* regularity results, thus proving Theorem 1.2.

(3) In Sect.4, we introduce some preliminary geometric calculations and then de-
rive the evolution equation for the (signed) curvature of the patch boundary.
We also discuss the arc-length/curvature system as an alternative formulation
of patch evolution.

(4) In Sect.5, we use the curvature equation to show that the vortex patch problem
is ill-posed in C2.

2. Existence of W2? Vortex Patches

In this section, we prove the existence of W2 vortex patches using the contour
equation (CDE). The proof is based on a fixed-point argument in a suitable Sobolev
setting. Compared to the C'-* local existence result [16], we emphasize geometric
quantities such as tangent vector, arc-length metric, and curvature. Such an empha-
sis allows us not only to prove the local existence of vortex patches in the Sobolev
spaces W27 but also to reveal the dispersive characteristics in the evolution that
we will exploit in Sect. 5 for the illposedness.

As a general comment, throughout the paper, the time variable ¢ will often be
suppressed, and the evolution equations are understood at each fixed time 7.
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2.1. Preliminaries

The motion of a vortex patch is given by a parametric curve y : Tx [0, T] — R?

dyE. 1) =v(yE,1),1). 2.0

where the velocity field v : R? x [0, T] — R? is defined by the Biot-Savart law,
v(y(é,t),t)=/1;)'/(n)ln|y(é)—y(n)ldn. (2.2)

Here the factor % is dropped from (1.2) since we consider a single patch with
constant vorticity 2.

Throughout the paper, we also view the parameterization y : T x [0, T] — R?
as a time-dependent 27 -periodic function on R; we denote the arc-length metric
by g = |y|, where the dot on top indicates d¢ = %, i.e. the usual differentiation;

we use dy = éag to indicate the derivative with respect to the arc-length parameter

s=0E) & LE) = [§ g dy.

We consider the usual counterclockwise orientation of the curve y, and let T
be the unit tangent vector and N = —T- be the outer unit normal vector for the
curve y. More precisely, in the Lagrangian coordinates we write T(&, ¢) or just
T (&) for the tangent vector at a point y(§) and time . The (signed) curvature
k: T x [0, T] — R of y is defined via

(2.3)

9sT = —kN,
osN =«T.

Here and in what follows, we sometimes switch between a given parametrization
T > & — y(&) and an arc-length parametrization %T > 5 > y(s) and still use
the same notation y, x, T, N ... for the position y, curvature «, tangent T, normal
N etc, except that we use arguments s and s’ as the arc-length parameters instead
of &, n and t for Lagrangian labels.

2.2. Functional setup

In this subsection, we set up functional spaces for the parametric curves. To en-
sure a C! function y : T — R? parameterizes a simple curve (no self-intersection),
we need to consider the so-call arc-chord I', defined by

roy= sip — 0

—_—, (2.4)
£neT, 0 1V (&) — ¥ ()]

where the choice of distance |§ — 7| is inessential for our purposes—it can be the
distance on the torus or the Euclidean one when viewing &, 1 as points in an interval
of R. To show the existence of W2 ? patches, let us consider an open subset X pof
the Banach space W2P(T)

X, ={y:T—R*:yeW>P(T) such that I' < oo},
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which includes all proper parametrizations of the boundaries of all W>? simply-
connected bounded domains since I' < oo implies g = |y| > 0.

To run the Banach fixed point argument, we need a complete metric space in
X . Forany M > 1, we consider a closed set B,I:’I c X,

B :={y € X, :lylworm <M, lgls <M, T < M}, (2.5)
where for g € W17 (T) the functional | - |, is defined by

lgls :=max{|1/g|re(m), |g|Lo(m)}- (2.6)

(in particular, it is not a norm).
For any M > 1, Bg” is a subset of simple closed W27 curves, i.e with L?

curvature, and X, = U M0 Bg’l . Next, we show that Bll,” is a complete metric
space with the natural norm | - |25 (T), Which is necessary for the Banach fixed
point argument later.

Lemma 2.1. Foranyl < p <ocoand M > 1, BQ’I is a complete metric space with
metric d(y1, v2) = Y1 — v2lw2r(T)-

Proof. Let y, € Bg’[ be a Cauchy sequence in the metric d. Then there is y €
W?2P(T) such that y, — . We need to show that in fact y € Bg’l.

Apparently, |y w2,y < M, so it remains to verify the bounds for g and T
Due to the Sobolev embedding WP (T) ¢ C(T) for p > 1 and the inequality

8n — |gn - g|L°°(']I‘) <g8=&n + |gn - g|L°0(’]I‘)7
we have that
I/M —€e <g<M+e€ foranye > 0,

which concludes that |g|. < M.
For the arc-chord I', we see that for any 1, & € T, n # & and any n € N,

§—ml  _ |& —n
ly &) =y = 1¥a&) — vaD| — 47|y — Yulrooer)

Since |y — Yulrom < Cply — Yalw2rm — 0asn — oo, for any € > 0, we can
choose n sufficiently large depending on &, 1, M, and € such that

1§ —nl

_— M .
&y =T

Since € > 0 is arbitrary, this implies I'(y) < M. We conclude that y € B;,VI . O
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2.3. Basic estimates of WP curves

In this subsection, we derive suitable Sobolev estimates for the W2? curves.
These estimates will rely on L?”-boundedness of the maximal function, for which
we recall the necessary definitions here.

Given any f € L'(T), we denote by M f : T — R the maximal function of

I

1 E+e
Mf(E)= sup % Lf () dn. 2.7)
O<e<dm <€ Je—e
The restriction of € < 47 is non-essential and the boundedness of M on L?(T)
for I < p < oo follows from the standard R? results [24].

In the remainder of this paper, we denote by C); a positive constant depending
only on M and p that may change from line to line. We also recall the big O notation
X = O(Y) for a quantity X such that | X| < CY for some absolute constant C > 0.

Now we state a few basic estimates that we will use as the building blocks.

Lemma 2.2. Letl < p <oo,a =1 —%, andy € B;,V’.Foranyé, n € T, we have

T()-T() =1+ O(Cylé — n**) (2.8a)

TE) —T@) = O(Culé —nl*) (2.8b)

T(n) -NE) = 0(Culé —nl*) (2.80)

(y (&) —ym) -N@&) = 0(Culs —nl'™) (2.8d)
(TE) —T@) - TE) = O(Culé —n*) (2.8¢)
ly@& -yl = oCuls —nl™"h (2.8f)

and for any ¢ € T such that |n — ¢|, 1€ — ¢| < |& — n|, the maximal estimates

T(m) -NE) = O(CuMk(5)1§E —nl) (2.92)

T(p) - T) =14 0(CuMx(@)IE — ') (2.9b)

(&) —ym) - NE) = 0(CyuMxk ()€ —nl*) (2.9¢)

T() - [TE) — T(p] = O(CyuMc(©)E — n|'™) (2.9d)

(Y& —y] [TE) — T] = O(CyMx ()& = n*t*). (2.9¢)
Finally,

(Y& —ym) - TE) = g(0)E — 1) + O(Culg —nl'**). (2.10)

Proof. Let us consider the first set of estimates. (2.8f) is a consequence of the
assumption y € BII:’I.

Bounds (2.8b) and (2.8c) follow from the fundamental theorem of calculus and
the assumption y € Bg” . For instance,

§
T(n) -N(§) =< I/ k(1)g(DN(T) - N dt| < |«|Lr(m)lglLee(m)lé — nl*
n
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and due to g € WP (T) with |g|« < M we have |« |.r(1)|g]LoT) < Cum.

The fundamental theorem of calculus with (2.8c) implies (2.8a) and (2.8e).
Indeed, we have

3
(T(E) =T@) - TE) = —/ K (T)g(DN(T) - T(§) dr = O(CulE — nl*).
n

At last, (2.8d) follows from (2.8c), and the estimate (2.8a) together with the
Holder continuity of g also imply the last identity (2.10).

Now we focus on the second set of estimates (2.9a2)—(2.9¢) involving maximal
function. These estimates rely on the simple bound

§
/ lk(T)g(v)dr < 2|& — n| Mk (§)[g]LocT) 2.11)
n

for any ¢ € T such that |¢ — &1, [¢ —nl < |§ —nl.
We demonstrate how to obtain (2.9a) and (2.9¢), as the rest follows mutatis
mutandis. By the fundamental theorem of calculus,

3 3
T(n) -N@¢) = —f N(7) -N()g()k(r)dr = O <CM/ IK(T)Idf),
n

n

so (2.9a) follows from the bound (2.11). For (2.9¢), we use the fundamental theorem
of calculus twice:

£
(&) —ym) - -NE) = / T(z) -N(&)g(r)dr

n

& r&
= f / N(z') - N(&)k (t')g(z") d'g(r) dr.
n Jr

Hence, for any ¢ lying between & and 7,

& ré
(€ —ym)- N(E)‘ =< CM/ f ()| dt’ dT = O(Cu Mk (Q)IE —nl).
n n

O

The next result will be crucial for both the wellposedness and ill-posedness
results.

Corollary 2.3. Let 1 < p <00, a = 1—%, andy € Bg”. Forany&,neT, & #n
and any ¢ € T such that | — &|, | — n| < |& — n|, there holds

@ -y -TE _  &-n
ly (&) =y g(0)IE —

o T OCuls = n*h.
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Proof. Taylor expansion shows that for any M > 1, there exists a small €y > 0
such that for any 0 < |§€ — | < e) we have

& —nl? _
ly@& —ymP>  g)?

this follows from Holder regularity of g and T. Then due to the arc-chord I' < M,
we also have that (2.12) holds in the regime |£€ — 1| > €, as well (for a sufficiently
large Cps > 0). The conclusion then follows from the estimate (2.10) in Lemma 2.2
and the assumption y € B)'. O

+ 0(Culé —nl*): (2.12)

2.4. Differentiablity of the velocity field

A key ingredient in the existence proof is the differentiability of the velocity field
along the patch boundary. In this subsection, we show that if y is a simple closed
W?2P(T) parametric curve, i.e. y € BY then the velocity v(y) defined according

to the Biot-Savart law (2.2) is also W27 (T). Note that the argument below proving
L? bounds of 8S2v fails when p = oo, which suggests the C? illposedness of the
vortex patch.

The main result of this subsection is the following. Note that we specifically
use arc-length derivatives as these formulas will be used in Sect. 5.

Proposition 2.4. Let 1 < p <ocoandy € Bg” for some M > 1. Then the velocity

v = v(y) defined according to (2.2) satisfies v € W>P(T). In particular, v is

differentiable a.e with arc-length derivative

(y@&) —ym) - TE)
ly &) —ymI?

and v is a.e. differentiable with arc-length derivative

(Y& —v@m)-TE)
ly () —y(m)I?

dsv(y(§) = P-V-/TT(U) g () dn, (2.13)

02u(y (§)) = —P.V. fT ()N g d

[(TE) — T(n) - TE) — k&) (¥ (&) — y () - N@)]
T d
+/y o v ® -y sondn
(&) — v () - TE) (&) — v () - (TE) — T(m))
-2 T dn,
/y o v © -yl g dn
(2.14)

where the right-hand side of (2.13) and (2.14) are well-defined functions in wlp(T)
and LP(T) respectively.
In addition, for any M > 1 there exists a constant Cyy such that

lvlw2r ) = Cum- (2.15)

Proof. We proceed in several steps: first, show the expressions for derivatives are
WL.P and LP? functions; next, show that they are derivatives of the velocity in the
distributional sense; then, conclude that velocity is differentiable a.e. with derivative
equal to those expressions.
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Step 1: bounds of (2.13)
Let us first show that the right-hand side of (2.13) is a well-defined function in
L°°(T). Appealing to Corollary 2.3 and the bound (2.8b), we have

(&) — 7)) - T(@)
PV. | T d
/T D@ —yme Y

- P.v./T@)L”zg(n)dH/ O(Culs =l dn  (2.16)
T gml§ —nl T

=/;T0(CM|5 — )y dy < Cag:

the first term in the penultimate line is zero due to the odd symmetry.
Step 2: W7 differentiability of v

To justify the formal differentiation under the integral, we define D (), a
function on T, by

T
DXCETTOY M O Ra-tamt AURELY

dn,
P DGR e

such that lim,._, g+ D¢ () equals to the right hand side of (2.13) times g(&). In fact,
the proof of (2.16) above implies that |D. ()| < Cy for any & € T uniformly
for 0 < € < 1. So by the dominated convergence, it suffices to show that for any
@ € C°°(T) we have

lim | D.pdé = —/ v’ dE. (2.17)
T T

e—0F

By Fubini for all € > 0 we have

_ T
[ oewas=[ | c@T L E 1D T ) 4 g pan.
T 2 Jie—ize Y ® — 7l

Since, in the region |& —7| > €, we have g(E)W =0:In|y &) —y ),

we can integrate by parts in the variable &, and the conclusion would follow if we
can show that the boundary terms vanish:

-
o) Inly &) v (|, " 5 0 uniformly ase —> 0. (2.18)
=n—e

This is not hard to show by using the W>?, p > 1 regularity of y. Indeed, let
a=1-— % > 0 be such that W27 (T) ¢ C®(T). Then the mean value theorem

with y € B, implies that

ly(m) —y(n+€)| < g(n)e + Cpe't®
ly(n) — y(n —e)| = g(ne — Cpre' .
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With these bounds, we can show (2.18). Indeed, we have

§=n+e
P (&) In [y (€) - y(n)|)§:“‘

= ‘[tp(n +€)—gpm—e]lnly(n+e) —yml

+ ot —e)n yin+e)—ym ”
y(n—e€) —y@)

+ Cye”
el
With (2.18) proved, the integration by parts is justified and we have established
(2.17). Thus v € W-P(T) and (2.13) holds.

Step 3: bounds of (2.14)
For simplicity, let us still denote by Bszv the right-hand side of (2.14). To show
that this object is in L?(T), we consider the decomposition

d2vE) = Y Ki(®)

1<i<4

— 0 ase — 0T,

S el@|Loem (1 + [In€l) + In

where the terms K; are explicitly defined as follows:

(v () —y(m) - T()

Ki=—P.V. N d
1 /Tlc(n) () V& =y E g(mdn
(T(E) —T() - T(§)
Kr=| T d
’ / D@y S
(y(&) —ym) -N©)]
K3 =— T d
’ ”(S)f D e —ymr P
- T - (TE)—T

K4=_2/T(n)((y(é) y(m) - TE))((r () yin)) (T() (n)))g(n)dn-

T ly () —vml
Estimate of K:
By Corollary 2.3,

1

- r }"
Kilrr Nnp)—— d d
IKilL (TmM‘fTK(n) ()P g | ds

1

p P

+o<ch ‘/ lie (1€ —n*dn d%‘)
TI1JT

Since 1 < p < ooand |k|rr(Ty < M, the L?-boundedness of the Hilbert transform
and Young’s inequality imply that |[K{|.r(T) < Cpm.
Estimate of K»:

By the maximal estimate (2.9d) from Lemma 2.2 with ¢ = &,

(T(E) — T(p) - T(E)
K
IK28) = /T V& -y P

< chTMx(sns e gy,

g(m|d
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so Young’s inequality implies that |K|z»(T) < Cpy.
Estimate of K3:
Since |« | (1) < Cp, it suffices to show that

(&) — () -N@)]
T d .
S‘ép‘/qr D= e —yme ™ 1] < oo

Thanks to (2.8d), we have

— .N
sup’/T(n)(y(S) y () g‘?)]g(n)dn( <Cu sup/ i — o~ dy,
g Jr ly (&) —yml e Jx

and thus the bound for K3 is established.
Estimate of K4:

For K4, we apply absolute value to the integrand and then the estimate (2.9¢)
to obtain

- -T - (TE) =T
K4(§)§CM/ (Y& —ym) - TE)((r & yin)) (T() m))
T ly (&) —y |
&) —ym) - (TE) —Tm)

<C
= qur y &) — P
- cM/TMK(sns ey,

dn.

dn

Since |« |r(T)y < Cym, we conclude that [K4|pr(T) < Cpr.

We have thus shown the right-hand side of (2.14) defines a function in L?” (T).
Step 4: W27 differentiability of v

To establish (2.14), we will rewrite the integrals involved in the arc-length pa-
rameter and differentiate in s. This will reduce computations compared to working
in Lagrangian labels. Consider the arc-length s = £(§) = f(f g(t) drt of the curve,
and we are going to denote y (s) the same curve in the arc-length variable s and
similarly for its tangent T(s), normal N(s), curvature « (s), and the velocity v(s).
In this parametrization, the right-hand side of (2.14) becomes

— lim K (5HN(s") (y(s) — )/(S’))/' 12"(S) ds’
€=0 J1e=1(s)—£=1(s")|ze€ ly(s) —y(s)|
" f T(s) [(T(s) = T(s) - T(s) — K(s)(y(zs) —y(s) - N()]
y ly (s) — v (s)]
_ 2/ (s ((Y(s) = y(s)) - T(®))((r () = y(s") - (T(s) — T(s")))
14

ds’

ds’,
(2.19)
where ¢~! is the inverse of the map & +— £(&). Now we show that the first term

in (2.19) is the Cauchy principal value integral in s. Since the inverse map £~ is
CM witha = 1 — % > 0, the (symmetric) difference of the sets

ly(s) =y (sHI*

Dei={s":|s —s'| = e}Als : [£7(s) — €7 (s))] = gt (5))e}
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has Lebesgue measure at most Cyse '+, uniformly in 5. Indeed, by the fundamental
theorem of calculus and C1-¢ regularity of £, for all sufficiently small e, the set
D, can be covered by two intervals of length Cje!™ centered at s & €. This
smallness condition on € can be made uniformly in s since we are on a compact set.
Hence, we have that the difference between the first term in (2.19) (with modulated
approximation parameter ) and its counterpart of the Cauchy principal value
satisfies

S
gt 1)

/ V() =) -T@)
N d
‘/DE"(” O e —yer @
< CME“[MK(S —€)+ Mk (s + e)]

< ch e(s)lls — /|
D¢

where we have used the definition of the maximal function and the bound |s —
s’|’1 < CME’1 on De. Since k € LP, this term converges to 0 in L? as € — 0.

Therefore, the firsttermin (2.19) isequalto — P. V. fy K (s")N(s") W ds’

almost everywhere s € %']I‘. A similar reasoning also shows that in the arc-length

— ny©=yH)TE) 50 ; :
(2.13) becomes d;v = P.V. fy T(s") Iy &)=y P ds’. Hence to verify (2.14), it
suffices to show that

(y(s) —y(s") - T(s) §

05 (05v) = — P.V./ Kk (s")N(s")

y ly(s) = y(sHI?
n / (") [(T(s) = T(s") - T(s) — x(s)(y (s) = y(s")) - N(s)] ds’
¥ ly(s) = y(sHI?

ds’.
(2.20)

2/ T(s' () =y - T@®)((r(s) = y(s)) - (T(s) — T(s")))
- (s7)
y ly(s) —y(sHI*

Since Step 3 above also shows the right-hand side of (2.20) is L?, it suffices to
show that for any ¢ € C*®°(y),

lim // (s Y =¥ 'Tz(s) ds'd,0(s) ds = _/(2.20)<p(s)ds.
=07 Jy Jis—s'|z€ ly(s) —y(s)] y
2.21)

We proceed to a proof of (2.21). Reparametrizing the inner integral via s’ > s + s
and then applying Fubini yield

i () =y () -T(s)
: T ds'd(s) d
653+/yfs—s/|ze O e e PArOE

L ) =y +s)) - TG)
_Gli)rg+/}’/Lv’l>eT(s+S) y® —yGFsp T heE)ds

_ () —y(s+5))-T(s) .
_elirng /s’ze/)/T(s+S) ) — 76+ 5P dsp(s)dsds’. (2.22)

a.e. differentiable with respect tos
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Since y is a simple W7 curve, for each fixed |s’| > €, the inner integrand in (2.22)
is a.e. differentiable with respect to s, with derivative

(y(s) —y(s+5)) - T(s)
ly(s) —y(s +5)?
[(T(s) = T(s + ")) - T(s) — (¥ (s) — ¥ (s + ") - k ($)N(s)]
ly(s) —y(s +5)?
ZT(S + ) () —y(s+5)) - T©)((r(s) = y(s +5)) - (T(s) — T(s +5)))
ly(s) —y(s +s)* )

— k(s +s)N(s +5)

+T(s +s)

(2.23)

As a result, based on the L” estimates we proved earlier, we can integrate by parts
in the s variable in (2.22) and use Fubini once again to obtain that

- L (y(s) —y()) - Tes)
: T ds'dsp(s) d
JﬁaAA;HX O e WA E

= — lim / /(2.23)¢(s)dsds'
e~0" Jig'|ze Jy

= — lim // (2.23)p(s) ds’ ds.
e—>0F y J|s'|>e€

We reparametrize back s" + s — s’ and compare the above to (2.21) to obtain

lim // T(s,)(y(s)—y(s’))-T(s) ds' 9,0 (s) ds
y JlIs—s'|>e€

e—>0+ ly(s) —y(HI?
=— f Zvp(s)ds + lim | ¢(s) Z(s,s") ds’ dds
y e=0% Jy Is—s'|<e

where the integrand Z (s, s”) corresponds to the last two lines of (2.23) (since the
principal value term cancels by definition) and is given by

[(T(s) — T(s")) - T(s) — k()(¥ (s) — ¥ (s")) - N(s)]
ly(s) =y (s"I?
(y() =y ")) - T®)((r () = ¥ - (T(s) = T("))
ly(s) —y(sHI* ‘
To show (2.21) holds, we need to show that the error vanishes:

Z(s,s") == —=T(s)

+2T(s")

/ (p/ Z(s,s)ds'ds - 0 ase — 0. (2.24)
y |s—s'|<€

This is essentially done in Step 3, and here we present a proof of (2.24) using
Lemma 2.2 for completeness. Observe that (2.9d), (2.8d), and (2.8f) imply

[(T(s) = T(s") - T(s)]
ly(s) =y (|2
k() (y(s) — y(s") - N(s)]

ly(s) — y(s")|?

‘T(s/) ‘ < CyMi(s)ls — ']~ 1+ (2.25)

T(s) | = Cuko)ls =517, (2.26)



57 Page 16 of 49 Arch. Rational Mech. Anal. (2023) 247:57

while (2.9¢) and (2.8f) imply

(v () = y(s) - T)((y(s) = y(s) - (T(s) — T(s))) ‘
ly(s) — y(sHI*
< CyMi(s)|s —s'|71Fe. (2.27)

‘T(s’)(

These estimates (2.25)—(2.27) imply for all s” # s the bound
|25, 5| < CM(MK(S)|S 5T ()]s — s’|—1+“). (2.28)

By (2.28), the Holder inequality, and the boundedness of the maximal function in
L? for p > 1, we have that

lim f o(s) Zds' ds
e—0t y Is—s'| <€
< Cumlplr> lim ls| 1 *ds = 0.
€~ |s|<e

Now that (2.21) is established, we have that 831) € L? and (2.20) holds, and thus
in the original label, (2.14) holds as well. O

2.5. Contraction estimates of the solution map

The last ingredient for the Banach fixed-point argument is the Lipschitz conti-
nuity for the nonlinear map y — v(y) in the Sobolev space W>?. The main results
are Proposition 2.7 and Proposition 2.8 below.

We fix 1 < p < oo in this subsection and let y; € Bg/l fori =1, 2. We use the
notation g;, T;, N; and «; to denote the arc-length, tangent, normal, and curvature
of the curve y;. In addition v; : T — R? denotes the velocity associated to y;, and
05V = év’i denotes the corresponding differentiation in arc-length on the curve
Vi-

Since we will be frequently taking difference between functions defined by y;
and y», we introduce the notation A [ f;] := f1 — f» for any functions f; defined
by y; on T. For instance, A[y;1(§) = yi(§) — y2(§) and A[T;(§) — Ti(n)] =
[T1(&) — Ti(m]—[T2(&) — Ta2(n)]. We will frequently use the telescoping formula

Alfigil = Alfilg1 + f2Algil- (2.29)

For brevity, we denote by § > 0 the distance between two sets of data in X :

d=1y1— 7/2|W2,p(11‘). (2.30)

These conventions allow for a more streamlined argument.

Again, we start with a few basic estimates that will serve as the “building blocks”
in the estimation below. Recall that o« := 1 — L and Cuy > 0 denotes a constant
depending on M and p that may change from line to line.



Arch. Rational Mech. Anal. (2023) 247:57 Page 17 of 49 57

The assumption on y; and the definition of § imply directly the estimates

[A[T;]|Lo(Ty < Cpmd (2.31a)
[AlgillLe(T) < ClAlgillw1r < Cumé. (2.31b)
[Alki]lLr(my < Cumd, (2.31c)

which by the fundamental theorem of calculus and simple telescoping further im-
plies the following set of estimates

|A[yi&) —vi]| = Cudlg —nl (2.32a)
|AIT; (&) = Ty | < Cudlg —nl* (2.32b)
|A[gi(§) — g (]| < CudlE —nl*. (2.32¢)

The following lemma is our main building block for proving the Lipschitz
continuity for the map y — v(y) in W2P(T):

Lemma 2.5. Let y; € Bg’[, i=1,2 Forany&,n €T,
A[i ) —vi(n) - Ti(®)] = Algil(€)(E — n) + O(CudlE — ') (2.33a)
Al(yi&) = vi(m) -Ni(®)] = O(Cudlg — n|'*) (2.33b)

and there exists a bounded function |Cs(&)| < Cp8 such that

! Cs(&) e
A = O(Cydle — . 234
[Iw(&)—yf(n)lz] g g T OCudlE =l (2.34)

In addition, for any &, n € T and any ¢ € T such that \n — ¢|, 1§ — ¢| < |& — 7]
we have the maximal estimates

IA[(Ti(§) — Ti(n)) - Ti(§)]]
< Culg = nl™ (S max Mi;(0) + MAIIQ)).  (2.350)
A [i®) = v () (T3 (§) = Ti ()]
= Culg = 0> (8 max Mii (£) + MAIKI@)).  (235b)
Proof. We prove these one by one using repeatedly the fundamental theorem of
calculus, (2.31a)—(2.31c¢), and (2.32a)—(2.32¢).

Estimate for (2.33a).
We first rewrite the left-hand side by the telescoping formula (2.29)

§
Af(ri®) —vim) - Ti(©)] =f A[Ti(v)gi(r) - T;(§)] dr
n
§
= f (A[(Ti(@) = Ti(€))8i (0) - Ti(®)] + Algi)(1) dr
n

&
— AlgilE)E — )+ / (A[(T:(0) = T5(®)) i (1) - T3(8)]

n
+ Algi(r) — gi(§)]) dr.
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By (2.31a), (2.31b), and (2.32b),
IA[(Ti(2) = T;(©))gi (v) - Ti(§)] | = O(CumélE —T|),

so this and (2.32c) prove (2.33a):

Al(ri® —yi(m) - Ti(®)] = Algil(§)(E — ) + O(CudlE —nl'™).

Estimate for (2.33b).
We use the fundamental theorem of calculus twice to obtain

& pé&

A[(m(é)—y,-(m)-Ni(s)]=A[ / / Ki<r/)gi(r’)Ni<r/)-N,~<s)gi(r)dr’dr].
n Jt

(2.36)

Distributing A in (2.36) gives

& ré
Al(yi®) —vi(m) -Ni(®)] =/ / Afki(x)] g1 (N1(2)) - Ni(§)gi () dr’ de

n T

& ré
+/ / i2(t)A [ (T)N; () - Ni (§)gi(r)] dr’dr.
n Jr

We can estimate the first term by its absolute value and the second term by using the
pointwise bound |A[g; (t)N; (/) - N; (§)gi (7)]] < Cp8 thanks to (2.31a)—(2.31c).
These considerations along with the assumption |k | r(ry < M and the Holder
inequality imply

Al —vi() -Ni(®)] = O(CulAlkillLr(my & — nl'™)

§ r&
+ 0 <CM8/ / 12 ()| dr’dr)
n Jt

= 0(Cudlg — n|'t).

Estimate for (2.34).
We start with

A[ 1 }_ Alyi€) = yi]- (&) — yi() +y2(6) — ya(m)

i) —yim2] Y1) — iP1y2(8) — ya()|?

(2.37)
Observe that
Alyi®) —vim] = A[y®] & —n) + 0(CudlE —nl'™™). (2.38)
Also, as in (2.12), for any &, n € T with £ # n, we have
—nl? 1
Emal L ol — . (2.39)

Vi) —vi > gi(§)?



Arch. Rational Mech. Anal. (2023) 247:57 Page 19 of 49 57

Thus, by (2.37), (2.38), and (2.39), we have for some bounded function |Cs(§)| <
C 6 that
A [ ! } _[A[n@®]E = + 0CudlE — ")
lyi (&) — yi ()2 1g1(8)121g2(6) 1216 — n|*
x [01©) + 72©)E = + OCul — 11|
+ O(CydlE — n|~>)
Cs5(8)

= F—p T OCudlé - nl“=).

Estimate for (2.35a).
By the telescoping formula (2.29),

&
A[(T; ) —Ti(m) - T;(§)] = —/ AN;(7) - Ti(§)ki(r)gi(r)] dt
7

3
. / AN (D) - To(®) 1 (D)1 (7) d

n

§
—/ Nao(7) - T2 () A [xi(T)] g1 (7) dT
n

&
- / Na(t) - TaE)ica(1) A [gi (0)] dr.
n

We use (2.8c¢), the difference bounds (2.32a)—(2.32¢) to obtain that

&
A[(Ti ) —Ti(m) - Ti(6)] = O (CM6|E - nl“f |x1(r>|dr>
n
S
+0 (cms —n|“/ !A[K,-(r)ndr)
n

+0 <CM8|$ -l /: |2 (1) dt) ,
80, by the definition of maximal function we have
AL(Ti(€) = Ti(m) - Ti(€)] = O(Cudlé — 1| max Mx; (¢))
+ 0(Culg — " MA[Ki1(©)).

Estimate for (2.35b)
Since, by the fundamental theorem of calculus,

A& —yi(m) (Ti () — Ti(n) ]
§ ré
= —/ / Algi(OTi(r) - Ni(r)ki () gi(r))] dr'dr,
n JIn

the bound follows from the same argument for (2.35a). The extra power of |§€ — 7|
is given by the extra layer of integration. O
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Thanks to (2.34) and (2.33a), we have the following estimate for the differences
of factors with linear dispersion in 92v:

Corollary 2.6. Let y; € B g” , i = 1, 2. There exists a bounded function |Cs(§)| <
Cy6 such that for all €, n € T, we have

A[(Vi(é)—yi(n))Ti(é) §—n
yi ) = vi(m)? & —nl?
With all the preparations, we first show the Lipschitz continuity of y — v(y)in

B [Il’l with a norm depending on M. As before, we will frequently use the telescoping
formula

} = Cs(8) +O(CudlE —nl'™*). (2.40a)

Alfigil = Al filg1 + f2Algil.

Proposition 2.7. Let y; € Bﬁ” , 1 =1, 2. Denote the distance between them in X
by 8 = |Alyillw2p ). The map y + v(y) satisfies

(1) = v(¥2)l o) < Cmd. (241)
Proof.
N /T AT (g (110 [11(€) — y1 ()l dn

+ /T Ta()g2(nA [In 113 &) — (] di.

For the first term, since y; € B;,V’, we have C;,I1|.§ =l = i) —vim| <
Cum|& —n|. This implies the bound ] In |y,-(§)—yi(n)|| < Cpy +|In|& — n||. It then

follows from (2.31a) and (2.31b) that

’ /T AT (g (110 [11(€) — y1 ()] dn

< cMaf |10 11 &)~ ()| di < Ca.
T

(2.42)

n@®-nw| 5 4

For the second term, without loss of generality we assume nE—nm| =

We start with an elementary inequality In(1 4+ x) < x for x > O:

yi(§) —y1(n)
)-

Allnly;(§) —yi(m]]| =1In
& [in ol y2(&) — y2(n)
y2(8) — y2(n)
Since the definition of § and assumptions y; € B 11;/1 imply that

<In (1 + Alyi®) —vim]

Alyi®) —yvim]
nE) —nm |

|A[In]y; &) — vil]| < Cud,

we have the bound for the second part:

‘/TTz(n)gz(n)A [In [y (&) — vi()] dn| < Cué. (2.43)
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Combining the two parts (2.42) and (2.43), we conclude that

|A [U(yi)]|Loo(T) = CM8
0

Next, we estimate the second-order derivative for the map y +— v(y) as the
bound of the first-order derivative can be recovered by interpolation.

Proposition 2.8. Let y; € B g’ , 1 =1, 2. Denote the distance between them in X
by 8 = |Alyillw2r ). The map y + v(y) satisfies

2 Y
v = )|, < Cwd. (2.44)

Proof. We apply the difference A to each term in 3S2U (2.14) and obtain the decom-
position:

AlZv(y)] == Y Ha(&),
1<n<4
with
i) —yi(m) - Ti(§)
lyi(s) — yi(m)|?
[(Ti(é) —-Ti(n) ~Ti(§)]
) | d
® — P S|
i (€) —yi(m) - Ni(©)]
lvi (§) — vi()|?

Hi(§) = —P.V. /T A [K,-(mN,-(n) gi(n)} dn

H(§) = f A |:Ti(77)
T

H3(§) == —A [Ki(g)[ETi(ﬂ)[ gi(n)} dn

and

Hy(§) :==— Z/T A[Ti(n)((yz’(é) —vi(m) - Ti(§))

(i &) = yi(m) - (T;(€) — T; (1))
vi (&) — vi(m*

gi(n)]dn-

Estimates of H;:
We first telescope and obtain a further decomposition

1) —yi(m) - T1(§)
lyi(s) — yi(m|?
vi§) —yi(m) - Ti(é)i| J
i (s) — vi(m)|?

H() = P.V. /T A lici (g (DN ()]

% /T /cz(n)gz(n)Nz(n)A[

= Hp1(§) + Hiz2(8).
By Corollary 2.3, the first term is equal to

§—n

—gl(n)lg— g + O(Culé — U|“1)> dn.

Hiy(€) = P.V. /T A ki (g (DNi ()] (
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Thus by the L? boundedness of the Hilbert transform and Young’s inequality, we
get
|Hitlormy < Cum |A[kiNigillpr )y < Cmd,

where in the last step we have used bounds (2.31a)—(2.31c¢).
For the second term Hj, we apply Corollary 2.6 to obtain that

P\
dé)

[Hiz|Lr(T) S( ‘|CS(§)|P V. sz(n)Nz(ﬂ)gz(ﬂ) 5 =

n
d
E—nP "
+ Cyd </ ‘/ (g —nl*dy
T I[JT

ds) ’

Then by the L” boundedness of the Hilbert transform and |Cs(£)| < Cp/8 we get
the same bound as Hy; for Hy,.
Estimates of H,:

As before, we further split Hy:

[(Ti (&) —Ti() - T1(§)]
H. = A[T; i
2(§) /T [Ti(mgi ()] @ = P

Ti _Ti 'Ti
+ /T Ta(n)g2(NA [[( &) — Ti(m) <f>]} a

vi (&) — vi(m|?
= Hp1(§) + Hx(8).
We first look at the term H»;. By (2.31a) and (2.31b),
A[Ti(mgi(m] = O(Cpd),
while (2.8f) and (2.9d) from Lemma 2.2 imply that

[(T1&) — Ti(m) - T1(8)]
Iy1(6) — y1())?

From these bounds, it follows that

= O(CyuMx1(E)|E —n*Y).

1
p
Haluren = €| [ | [ v —ne ol ae | < cus,
T'JT

where we have used again the L” boundedness of the maximal function.
Next, we similarly bound H»,. As before, we first telescope,

A [[(Ti &) —T;(n) - Ti(®)] ]

Vi (&) — vi()I?

1
=AM =T T©]] s (2.45)

1
ToE) — To() - To(®]A | ———— |
+[(T2) = T2(0)) - T2(8)] [Im(é)—n(n)lJ
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Let us consider terms in (2.45) one by one. By (2.35a) from Lemma 2.5 and (2.8f)
from Lemma 2.2,

A[[Ti&) —Tim) - Ti(9)]]

= 0(CydlE — nI~ " max Mx; (€))

IY1(E) — ()2 (2.46)
+ 0(CulE — T MA[K;1(E))
and by (2.9d) and (2.34),
1
T —-T - T Al ——
(06 =Tat) - T2(6)] [m@ = yl-(n>|2}
= O(CyMia(&)|E — 0|~ C5(8)) + O(Cyd Mica(§)|E — 0|~ 2.
(2.47)

Therefore, combining (2.46) and (2.47) we obtain

[Ha(§)] < Card max Mici (£)) fT 1§ — 0" dn + CuMAK1E) /T & — nl* " dn,

and integrating in & gives |Ho1|rr(T) < Cpm0.
Estimates of Hj:
To show |H3|1r(T) < Cmd, it suffices to obtain the bound

/ (&) — vi()) - Ni(®)] }
sup
& T

i (€) — vi(n)|?
since when the difference A applies to «;(§) or T;(n)gi(n), the bound of the re-
sulting terms follows from (2.8d) and the definition of §.
To show (2.48), we first telescope

A [ &) — yi() - Ni(®)]
i (€) — vi ()|
_A[(i®) =) -Ni(®)]
B 1y1(&) —yi(m)?

1
_ .N Al —————
+[026) — () - N2(6)] [|y,~(s)—mn>|2}

dn < Cyé (2.48)

Ti(mgi(mA |:

and then apply (2.33b) and (2.8f) to obtain that

Ali) —vim) - Ni(®)]
@& —nm?
and (2.8d) and (2.34) to obtain that

= 0(Cydlg —n|~'*%), (2.49)

= O(CydlE —n|~ 1),
(2.50)

1
_ N®OA | ————
[(72(8) — va() - Na(§)] [Iw(é) —vi(? }

The bound (2.48) follows from (2.49) and (2.50) by a direct integration.



57 Page 24 of 49 Arch. Rational Mech. Anal. (2023) 247:57

Estimates of Hy:

Hy = —Z/TA[Ti Mg MI((r1&) — yi(m) - T1(§))
(11 (&) = yi() - (T1(§) — T1(n)))

dn

lvi (§) — yvi(m|*
(i) —vi(m) - Ti(®))
-2 T A
fqr 2(mg2t) [ lvi (6) — vi(m)|*
x (i (&) —vi(m) - (Ti(€) — T; (77)))] dn
= Hy + Hyp.

We first claim that it suffices to consider the term Hyy since the estimates for K4

in Proposition 2.4 together with the simple bound |A[T;(7)gi ()] < Cpyd imply
the estimate for Hy.

For Hy, applying absolute value, let us further consider the decomposition

Hyp (&) <Cp(Hg1(§) + Hax(§))

Hyp(8) :/T A 1y (€) — vi(m)I?

(1) = yi(m) - (T1(E) — Ti(n))
1(€) —yi(I?

(2 — y2(m) - T2(5))
[y2(8) — ya()I?

A [((y,» &) —yi() - (T;(€) — T (n)))}

where Hap1 and Hapo are respectively
[((n & —yi() - T;()) ]‘

dn

Hyx(§) = /

T

dn.
i (&) — 7 ()2 1

For Hyp1, we use Corollary 2.6 and (2.9¢) to obtain that
Hao1(§) < O(Cy max M (€)81€ — n]'™*), (2.51)

and Young’s inequality implies that | 21|z (1) < Cp6.
For Hypp, we first bound the first factor by Corollary 2.3,

Hyp(8) < CM/TIE — ! dn.

A (&) —yim) - (Ti (&) — Ti(n)))
lvi (§) — vi(|?

(2.52)
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By (2.35b), (2.34) and also (2.9e), we telescope again and infer the bound

(i) — vi() - (Ti(€) — Ti(n))
lvi () — yvi(I?

= Cirlg = nl*(8 max Mi (§)) + MALK1(®))- (2.53)
So combining (2.52) and (2.53) we obtain
| Hazz2|Lr(T)

1

<cu| [[[ [ cute =t (smax e + Mata1o)an] o | < cus
T T t

where we have used the L?-boundedness of the maximal function and Young’s
inequality.
Since all the terms in H4 have been estimated, we conclude that

[Hylpp(my) < Cué.

0
2.6. The fixed-point argument
To run the fixed point argument, we will rewrite (CDE) in integral form:
13
Y& 1) =r() +/0 v(y (&, 1), 1) dr’. (2.54)

Now we prove that the integral equation (2.54) is suited for a fixed-point argument.

Proposition 2.9. Forany 1 < p < ocoand M > 1, there exist T = T(M, p) > 0

M
such that the following holds. Given yy € sz , the solutionmap S : C([0, T1]; Bg’l) —
C(0,TT; B)H

t

y > S() = y0(E) + fo oy (6. 1), )t 2.55)

is well-defined and is a contraction on C ([0, T]; Bg/l ), namely

ISlleqo,r:8y = PIYIicqo,r1:8)s

with the contracting factor p < CyT < 1.
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Proof. Let us first show that the map S is C ([0, T]; B;"’) — C([0, T]; B;,”). Given
y (&, 1), denote by Y (&, t) the image, ¥ = S(y). By (2.55), for any ¢, 1y € [0, T],
we have

V(@) — ¥ lwarery <1t —tol sup [v(¥)lw2r) < |t —10|C(M, p).
1'€[0,T]

So sup(o.77 1V w21y < M if we choose T = T (M, p) sufficiently small. We
also have the continuity of the map in the norm | - [y2.p ().
It remains to show |g|x < M and I'(y)) < M. The bound |g|, < M follows

from the embedding W!-7(T) c C(T) by the following argument. Since

Fosl =7 s / 9000 €. 1, )86, D) gy di' < TCM, p) < 0

and % <go < %, we can choose 7' > 0 sufficiently small depending on M and
p such that ﬁ <g<M.

The bound I'(¥) < M follows from I'(ko, go) < M /2 and arguing similarly
to Lemma 2.1. Indeed, for any ¢t € [0, T] and any & # n, by (2.55) and the mean
value theorem we have

U(V@, t/)v t/) - U(V(n, '

t
17 & 1) =Y, 0] = 1y(E) — nm)| — A

= 10(&) = | = MT1E =] sup_ |00y (.1).1)

1€[0.T) Le(T)

Soif T > 0 is sufficiently small depending on M, then by Proposition 2.4 and the
M

assumption yy € B}

-l !
P& 0-yonnl - W=l e, 7
-
R
——CMT

We have thus shown the solution map S : C ([0, T']; Bg”) — C([0, TT; Bg”) is
well-defined.

Finally, we show the contraction property of S on C ([0, T']; B;” ), which will
follow directly from the Lipschitz continuity estimates of d;v and Bszv from Proposi-
tion 2.7 and 2.8. Let y; € C([0, T]; B,’;’I) and denote by y; = S(y;) their respective
images. Then by (2.55)

|A [771] lcwzr < T sup|A[v; (., f)]|W2.p(']1‘)
'

By taking sufficiently small 7 > 0, using Proposition 2.7 and interpolations, it
suffices to show

< Cms. (2.56)

A[32 t]
sup|a [92u (0],
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Since 0z = g; ! ds on each y;, we have that

. 2
—8&i 05 v
A[azv-(-,t)]zA L UPINR L
I3 gZ s g2

i i

Since sup, [ALgillwirr) < Cmd and g; > ﬁ (2.56) holds thanks to Proposi-
tion 2.8.
O

Proposition 2.9 yields the local wellposedness for W?” patches.

Theorem 2.10. Let 1 < p < oo. For any yy € X, there is a unique local solution
y to (CDE) in C([0, T]; Xp) for some T > 0 satisfying y (0) = yp.

The continuity in time with values in X, is understood in the sense of w2p
norm. Moreover, due to W2? bounds on v from Proposition 2.4 and Proposition 2.8,
it follows from (2.54) that the solution is actually in C'([0, T']; W>?(T)) as we
show in the next section.

3. Global Wellposedness in W27 from C !¢

In this section, we explain how to use the global C!¢ regularity to obtain the
global W2 P regularity for the vortex patches.

3.1. Improved estimates assuming C-*

The key ingredient we need is the following proposition, which is a direct
consequence of the local well-posedness of the CDE in C'% combined with the
global regularity of C!* patches.

Proposition 3.1. Let 1 < p < oo. For any yo € X, the unique solution y €
C([0, T]; X,(T)) to (CDE) on some [0, T] can be uniquely continued for all times
as a CY solution to (CDE) satisfying

sup (Igl« + I Tlcery + T + [05v]o(m)) < C(yo, T1) <00.  (3.1)

1€[0,T11
Proof. By the embedding W>?(T) c C'*(T), we have that yy € C"%(T). The
result then immediately follows from the estimates for the contour equation and
the global C+ regularity in [16, Sect. 8.3]. O

In the remainder of this section, we consider a fixed vortex patch solution
vy € C(|0, T]; X ) with initial data yy. To show global regularity in X, it suffices
to show y € C([0, 00); WZ*I’(T)) as the rest of the information is encoded in the
global C'* regularity.

The constant Cy > 0 below is a positive constant depending only on the initial
data y9, T > 0, and p > 1 that may change from line to line. Its existence is
ensured by Proposition 3.1. Using the additional bounds in (3.1), we have the
improved building blocks estimates, analogous to Lemma 2.2.
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Lemma 3.2. Let y € C([0, T]; Xp) be a solution of (CDE) with initial data yy.
Letow =1 — %. Foranyt € [0, T] and any &, n € T, we have

T() - T() = 14 0(Colé —n**) (3.2a)
T() —T(n) = 0(Colé —nl*) (3.2b)
T(n) -N) = 0(Col& —nl*) (3.2¢)
(¥ (&) — y(m) -NE) = 0(Colg — n|'™) (3.2d)
(TE) —T() - T) = O(Cole — n|**) (3.2¢)
ly &) -y~ = 0(Cole —nI™") (3.2f)
and for any ¢ € T lying between n and &, the maximal estimates
T(n) - NE§) = O(CoMx(5)IE —nl) (3.32)
T(n) - T(€) = 1 + O(CoMi (9)|E — n|'™) (3.3b)
(¥ &) — y(m) -NE) = 0(CoMx (0)|§ — nI*) (3.3¢)
TE) - [TE) — T()] = O(CoMx ()& — n|'™™) (3.3d)
[((y&) —y] - [TE) — T()] = O(CoMk (0)IE — nl**™). (3.3¢)

Finally,
(Y& —ym) - TE) = gQ)(E —n) + O(Colg — nl'™™). 3.4

The proof of Lemma 3.2 follows the same argument as Lemma 2.2: we just
need to replace the constant Cy, there by Cy.
We are ready to prove the improved Sobolev estimate for v(y).

Proposition 3.3. Let 1 < p < co. If y € C([0, T]; Xp) is a solution of (CDE),
then

|07 vlLrry < Colylwan ) (3.5)
forall0 <t <T.

Proof. The key is the linear appearance of [y |2, ) In (3.5). We use the same
decomposition as in Proposition 2.4,

opuE) = Y Ki(®)

1<i<4
with
Ky=—P.V. /T «GDN() (’/f/)@_) y_(’)’/)()n')?;@)g(n)dn
R SCHE S
oo [rg 0 o N

(Y& —ym) -TE)((y &) —ym) - (TE) —T(x))
ly &) —ymI*

Ky = —2/TT(17) g(n) dn.
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The proof goes almost identically to Proposition 2.4, so we only sketch the
1)
IN() |2g(n) ]

details for K.
1
» 1
d&'}
g(n)lé

+0 (Co/ ’/ lic(m)]1& — n|* ! dn‘ dé>p
TIJT

By the L?-boundedness of the Hilbert transform and Young’s inequality imply that
IK1lLrery < Colk|Lr(T).

Once we have |832v [Lr(m) < Colk|Lr(T), the conclusion follows, since by Propo-
sition 3.1 we have uniform control of |g|, and thus |« |Lr (1) < Coly [y2.p(T) for all
te[0,T]. O

IKilLr(Ty < [

3.2. Global W*P regularity

With the previous proposition, we obtain the global W7 regularity for vortex
patches.

Theorem 3.4. Let 1 < p < oo. Forany yy € Xf there is a unique global solution
y to (CDE) in C([0, c0); X,) N Cl([O, o0); W2P(T)) satisfying y (0) = yp.

Proof. Let y be the unique local solution given by Theorem 2.10. Since y is a
global C1-¢ patch solution for o = 1 — % satisfying (3.1) for all # > 0, y ceases to

be a W27 patch solution if and only if [y (1)l w2.p(T) blows up at some finite time
T > 0.

We show that sup, .o 7y [V () |lw2r (1) < C(y0, T) < 00, arriving at a contra-
diction due to local W>? wellposedness. For any ¢ < T, we have

ly Olw2r ) =< IYolw2rm) + /OI (1), Dlw2r - (3.6)
By Proposition 3.3 and Proposition 3.1,
[y ¢, 1), Dlwrry < VLo + [Vvlrem + |3§v|m(1r)
< C0.T)+Cu. DIy . Dlyorry- B0
By Gronwall’s inequality, it then follow from (3.6) and (3.7) that
ly Olw2pr) < Ce',

and we conclude that y remains a W2 ? patch solution up to 7.

The above augment shows that y € C ([0, 00); W2P). We now show the reg-
ularity C'([0, 00); W2P(T)) using the integral formulation of 9,y = v(y). By
Proposition 2.8, for any #1, t> € [0, 00), we have

oy G, 1), 1) — vy (¢ ), ) lwerm S v e ) — v )| — 0 as|t — 6] — 0.

Sov(y) € C([0, oo); W*P) and this in turn implies the regularity y € C' ([0, c0); W>P).
O
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4. The Curvature Equation and Equivalent Formulation of Patch Evolution

In this section, we derive the equations for the evolution of geometric quantities
such as the tangent vector, arc-length metric, and curvature of the vortex patches
according to (CDE). To this end, we first sketch the derivation of these equations
for general velocity fields, which is a classical topic in differential geometry, see
e.g. [14,20]. Then we justify the computation for W27 vortex patches.

4.1. Derivation of the curvature equation

In our derivations in this section, we assume that all occurring objects are
sufficiently regular. Later we will make the regularity assumptions more precise in
Proposition 4.2.

4.1.1. Evolution of the Arc-Length Since the evolution of the curve y is enabled
by the velocity v, we project the vector field v in (2.1) to the tangent and normal
vectors on the curve y so that

9y =@w-T)T+ (v-N)N
= v T + v;N,

where v; and v, are respectively the tangent and normal component of the velocity
on the curve y.

To simply the derivation, we denote by 6 the angle between xj-axis and the
tangent, namely T = (cos(#), sin(f)) and N = (sin(0), — cos(0)). Then the signed
curvature « can be computed by

k = —09;T-N = 0,6. 4.1
Next, we derive the evolution of the arc-length g := |y |. Using (2.3) we obtain
98> =2y - 9y = 2¢T - 3 (v, T + v,N) = 2g(Vr + vukg).
Since by definition and (2.3),
vy =0T — kg,
we have
9% =2g0-T =2g*3v-T.

Then we have the evolution of the metric g :

0rg = gosv - T. 4.2)
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4.1.2. Evolution of the Tangent, Normal and Curvature To derive the curvature
equation, we need to make use of the commutation identity:

005 = — (0sv - T) 95 + 059y, (4.3)

which follows from (4.2) and d; = g_lag by a routine application of product rule.
Using (4.3) we obtain the evolution of the tangent T,

;T =—(9;v-T) T+ d5v = (dsv-N)N. (4.4)
Since
0=0(N-T)=0N-T+N-0oT,
for the normal N, we have by (4.4)
N =—(sv-N)T. 4.5)
Finally, using (4.1) and (4.3), we have
Ok = 0,056 = — (35v - T) 950 + 95 (—d5v - N) (4.6)
which yields the curvature evolution equation

dk = —2kd5v-T —d2v - N, 4.7

4.2. The curvature equation of vortex patches
The next lemma can be used to simplify the right-hand side of (4.7).
Lemma 4.1. For y € X, the following identity holds:
(y@&) —ym) -NE)
ly (& —ymI?

Proof. Denote by 2 the domain with y as the boundary. In this proof, we write
everything in arc-length parametrization. Recall (2.13) and note that T(s) - T(s") =
N(s) - N(s”). We apply the divergence theorem (not difficult to justify rigorously)
to obtain

o5v-T= —/TT(TI) -N(&) g(m) dn. (4.8)

8SU'T= PV/N(S)N(S/)(V(S)_y(S/))T(S) /
y ly(s) =y (sHI?

. (y(s) —y)- T(S))
=PV. | d N(@)——————=]d
fsz W ( O e P
_ oy / ¢6) =y NOG© =» T6) 4
Q ly(s) — yl
On the other hand, the right-hand side of (4.8) is equal to
(y(s) —y(s") -N@s)
ly(s) —y(s)?

(4.9)

3

/ N(s') - T(s)
Y
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which after integration by parts is equal to

—2P.V./ (@) —y) Ny (s) —y)-T(s) dy.
Q ly(s) — y*

O

Based on the previous derivations (4.2) and (4.7) and the integrals for derivatives
dsv and 831) in Proposition 2.4, we introduce the system for arc-length g and
curvature « evolution equations:

(4.10)

aIK = K(g’ K)
g = G(g,x)

where K (g, k) and G (g, k) are the nonlinear functionals given by (in part due to
Lemma 4.1)

K(g. k) = —(€)dsv - T(E)
v © —ym) - TE)
* P‘V’/TK(")N(") NO= o o

[(T(E) —T)) - T(S)]
ly (&) —ym)?

g(mdn

- /T T(p) - NE) ¢(n)dn

+2/TT(77)~N(E)
(Y@ —ym) - TE)((y &) —ym) - (1) — T(n))

d
v &) —ym* g(n)dn
“.11)
and
G(g.k) = g(&)dsv - T(E). (4.12)

We remark that the nonlinear functionals K (g, k) and G (g, k) are well-defined
in the sense that their values can be computed using only arc-length g and curvature
k of the curve y. In particular, they do not depend on the orientation or location of
the patch.

4.3. Equivalence of the arc-length/curvature system and vortex patch evolution

In this subsection, we show that a solution (g, k) € C([0, T]; WLP(T) x
L?(T)) of (4.10) corresponds to the unique Euler patch solutiony € C([0, T]; W2P(T))
of (CDE) and vice versa.

Proposition 4.2. Let yo € WP (T) be a proper parametrization of a simple closed
curve and let (g9, ko) € WHP(T) x LP(T)) be the corresponding arc-length and
curvature. Then the following statements are true.

(1)Ify € C([0, T1]; X}) is a solution of (CDE) with initial data yy, then its arc-
length g and curvature k of y must satisfy the equations (4.10) with initial data
go and k.
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(2) If (g, k) € C([0, T1; WhP(T) x LP(T)) as the arc-length and curvature defines
a simple closed curve and satisfies the equations (4.10) with initial data g and
Ko, then there exist a solution y € C([0, T]; W>P(T)) of (CDE) with initial
data yy such that (g, k) is the arc-length and curvature of y .

Before proving the proposition, we remark that the condition of (g, x) defining a
closed curve in at each time ¢ € [0, T'] is equivalent to the conditions

/1;(008(9(5)), sin(0(£)))g(§)ds =0

with 6(£) = fog «(n)g(n) dn and [k (§)g(§)dé =2 forevery 1 € [0, T].

Proof. (4.2) = (4.2):

Since y € C([0, T]; X)), it satisfies the assumptions of Proposition 2.4 on
[0, T]for asufficiently large M. By Theorem 3.4 we alsohave y € c! ([0, T1; Wz’p).

This Cl([O, T1; Wz’p)regularity of y implies the regularity g € Cl([O, TI; Wl’p),
T e C'([0,T]; WhP) and k € C'([0, T]; L) thanks to the fact that g = |y| > 0
uniformly on T x [0, T']. Such regularity in turn allows us to derive the arc-length
equation (4.2) using the (now rigorous) computation in (4.1.1). The derivations of
the evolution of tangent (4.4) and curvature (4.6) are also justified following (4.3).
4.2) = 4.2):

Let us define the tangent vectors T (&, t)

§
T, 1) = (cosO(§,1),sin0(&, 1)), 0(,1)=6(0,1) +/0 «(n, 1)g(n, 1) dn,

(4.13)

and the curve
&

y(&. 1) =y, t)+/0 T(n,1)g(n, 1)dn, (4.14)

with 0(0, ) and y (0, ¢) to be determined. By the assumptions on (g, «), y is a well-
defined simple closed curve,and y € C([0, T']; WP (T)) provided6(0, t), y (0, 1) €
C([0, T']). Therefore, we only need to show how to determine 6(0, ¢) and y (0, 1)
so that y solves (CDE).

Thanks to the invariance of translation and rotation in the definition of nonlinear
functionals K (g, x) and G(g, k), we can use (4.13) and (4.14) to evaluate the
equations (4.11) and (4.12). In particular, we know that the quantities 8‘30 - N,
dsv - T are known functions on T x [0, T'] given by g and «, but d;v and v are to
be determined along with T, N, and y.

Differentiating (4.13) in time, we find that

£
T, 1) =— </0 0 (kg) dn + 9,6 (0, t)) TL(E, 1). (4.15)

Since (g, k) is a solution of (4.10)

0;(kg) = —0ds(dsv - N)g. (4.16)



57 Page 34 of 49 Arch. Rational Mech. Anal. (2023) 247:57

Using (4.16), we find that the expression in the bracket in (4.15) is equal to
—(05v - N)(&, 1) + (3sv - N)(0, 1) + 0,6(0, 1).

Let us now define 6(0, t) to be the solution of

{a,e(o, 1) = — (3 -N)O, 1),

4.17)
6(0,0) = 6p(0),

where 6y (&) the initial angle is computed using the initial data yy. Note that the
right-hand side of (4.17) is a known function in terms of g and « since d;v - N only
involves relative angles and relative distance by (4.13) and (4.14). Then by (4.13)
and (4.15) we arrive at

HT(E, 1) = —(5v - N)(E, OTHE, 1). (4.18)
Now that we have determined the tangent T and normal N, we have
dv = g(@5v-T)T + g(3;v - N)N (4.19)

is also determined. Furthermore, since v = fT Tmegm In|y(E) — y(n)|dn does
not depend on y (0, ¢) in (4.14), we have fully determined the velocity v on y as a
function T x [0, T] — R2.

Next, we will determine the curve y by solving for y (0, ¢), and show that y is
a solution of (CDE). Let us differentiate (4.14) in time. We obtain

3
By (6. 1) = 3y (0.1) + fo 8,(T(n, g (n, 1)) dn.

Using (4.18), (4.2), and N = —T", we find that the expression under the integral
is equal to

—(@5v- N)TLg + Tg(d5v - T) = (0zv - T)T + (0sv - N)N = 9z v.
Therefore, y satisfies the equation

dyE 1) =v(y @, 1,0 —vy©,0),1) +9y(0,1).

Define y (0, ¢) by solving 9,y (0, t) = v(y (0, t), ), then we see that y (£, t) satisfies
the Euler patch equation (CDE). O

5. Tllposedness of C? Patches

In this section, we will prove the main illposedness results based on the curvature
equation. The proof goes in several steps.

(1) The first step is to rewrite the curvature equation (4.7) into (5.3) by isolating
the linear dispersion effect.

(2) We then show that in the W>? setting, namely when y € X p for p large, the
linear term in (5.3) is the dominant term.

(3) The last step is to use Duhamel’s principle and pick initial data to show the
evolution group induces the norm inflation |k |z r(T) — 00 as p — o0 over a
fixed time interval [0, T'] that is independent of p.
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5.1. Reformulation of the curvature equation

We start by recasting the curvature equation. Denote by 7 the Hilbert transform
on T, namely

1 §—n
Hf(E):—P.V./f(n)cot —— | dn.
2 T 2
Note that the kernel is obtained by periodizing the Hilbert transform on the real
line,

1 X 1 1 1 1
—cot ( = — + — . 5.1
27TCO <2) nx+n;x+2nn+x—2nn -1

It is classical [7] (see also e.g. [18] for an easy reference) that the periodic Hilbert
transform is bounded on L?(T) for I < p < oo and on C*(T) for0 < @ < 1.
Here we recall the periodic Holder space C*(T) is equipped with the norm

[ flee(my = | f|Loo(T) + sup M (5.2)
g4y 1§ —n

We will now further analyze the curvature equation (4.10), (4.11) to obtain the
following:

Theorem 5.1. Suppose that y € C([0, T]; B;,W), p > 2, and seta = 1 — %,
B=1-— % Then on the time interval [0, T], the curvature k satisfies

dK

—=al Dk +7HK)E 1)+ FE, 1), (5.3)

at

where a € C*(T) and F € CP(T) uniformly int € [0, T with norms depending
onT and M.

Here a = —dsv - T(&, t) and we will split F' := F; + Fy as shown below. The
two error terms F;, and Fy are defined respectively by

(&) —ym)-TE)
ly (&) —y(mI?

g(mdn
(5.4)

FL(§) := —TH(x) + P.V. /T K (MN() - N(E)

and

[(T&) —T®m) - T®)]
ly (&) —y(m?

+2/TT(17) NE(yE) —ym) - T®))

_ (TE)-T
_— |;<(g)))—(y<f>)|4 2 cian. o

Fy () = —/TT(U) -N(&) g(n)dn
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The driving mechanism of C? illposedness is the dispersion of the Hilbert
transform in (5.3). In fact, since HZ = — Id, one has the following formula

TH — Z w = cos(mt) Id + sin(wt)H. (5.6)
n!

To exploit the above dispersion of the Hilbert transform, we first need to establish
suitable estimates for a and F'. Then by a simple application of the Duhamel formula
(namely (5.24) below), we can establish norm inflation for a suitable new variable
that implies C? illposedness.

5.2. Holder estimates of coefficients

We first show that F is Holder if p > 2 with a Holder exponent 8 = 1 — 2

Before we proceed, recall that C), denotes a positive constant depending only
on M, p that may change from line to line and the big O notation X = O(Y) fora
quantity X such that |X| < CY for some absolute constant C > 0.

Proposition 5.2. Let2 < p <ocoand f =1 — %. Ify e C([0,TT; Blﬁ’[)for some
M > 1, then the error term F defined by (5.4) satisfies the estimate

[Frlcs) < Cum.

Proof. Let us write Fy, in abbreviation
FL="PV. AK(U)QL(E, n)dn + /TK(U)QS(E, n, dn. (5.7)
where the first term with the kernel Q; is the main term

| (¢® — y) - TE)
) =-T N .N
Qi = =g N NO G o

gm (5.8

while the second term has a smoothing kernel Qs(§,7) = — ) ,-;(§ —n +
2rn)~l — (& —n—2an)~ L

It suffices to show the bound only for the first term in (5.7). Similarly to the
earlier arguments and with slight abuse of notation, let us denote As f(§) = f(§ +
8) — f(§). We have

AgP.V./TK(U)QL(é,ﬂ)dU =/|

E—n|<2§

k) (0L +8.m — 0u.m) dn

# (0w +am - Qi) dn
|E—n|=28
=R + F).

The rest of the proof is devoted to proving | F; (§)| < Cps8P.
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For the inner region |£€ — n| < 24, by Corollary 2.3 and (2.8a) from Lemma 2.2
for each n € T, there exists a bounded function C; (&) with |C;(§)| < Cpy such
that for all £ # n

£ (&) — y() - TE)
, = —N -N
QL& m)] ‘|s o NN P

= Cy(&)|E — |11

We then apply absolute value to the integrand in /7 and use the bound on C,,(§) to
obtain that

Ry () sch

|§—n|<28

g(n)‘

kD118 +8 = I~ 4 1g — 71 ) diy,

By Holder’s inequality with p’ being the Holder dual of p, it follows that

1

’ / _2
|F1(£)| < Culclpe U & — | 1Ter dn}p = C(M, p)lk|rd' 7.
&

|E—n|<46

Here in the last step we have used (—1 + o) p’ = —%1 > —1 when p > 2.

For the outer region |§ — n| > 2§, Qy is a.e. differentiable in &, and we first
derive a bound for d: Q; . Differentiating (5.8) in & gives

g(&)
y® -y
(&) —ym) - T®] &) )
& —yml 1

Y E) —ym) - TE)
N(p - T
+ k()8 (N - T®) & =y (T

&) —vm) -N(%‘))g(n)
ly (&) —y(mI? ’

We now use the estimates in Lemma 2.2 to obtain the bounds on each summand in
g Q: for instance, (2.8a), (2.12) and the C¥ continuity of g yield

g) ) =
@& —ym2® E

(2.8a), Corollary 2.3, and the C* continuity of g yield
[(y(&) -y () -T(E)]2g(§)

1
%QLE = (= + N NE)

—2N() - N(§)

—N(@) -N(§)

-1 —2+ay.
—N(n) - N(§) R + O0(Cuml§ —nl )i (5.9)

2N()-N = O(Cyple—n| =21,
(m)-N(&) & — 7P g(m) T (Cumlg—=n""")
(5.10)
and similarly
_ .T
‘N(n)-T(S)(V@ y(m) 2(%‘) < Cule — n- 1+,
ly () —vyml 5.11)

(¥ (&) —yv(m) -NE&)
ly (&) —ymI?

‘N(n) -N(&) < Cyle — |71
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Then it follows from (5.9), (5.10), and (5.11) thatfor &, n € T such that |&§ —n| > 26,
we have

¥ OLE, ) = O(CylE — 172 +1(E)O(CylE — I~ H). (5.12)

By the fundamental theorem of calculus and (5.12), forany § > Oandany n € T
with |§ — n] > 2§ we have

&+
016 +om-euen|s [ 0w n|a

E+6
< CM/é (16 = 172 + (@) lIE — I~ 5.
(5.13)
Now we compute the integral on the right-hand side above. Since | — n| > 26,

we have |§' — 5| < 2|&é — n| in the above integral, and it follows from (5.13),
|« |Lr(my < Cum, and Holder’s inequality that

£E48
QL +8.1) = QL& m)| = Ciy <5|%‘ =T g - n|—‘+“fé |x<s’)|ds’)

< Cy (818 — |72 +8%|& — y|~11). (5.14)

Now that we have a good bound on the finite difference of Qp, it follows from
(5.14) that

F2(6)] < Cu /
[E—n]=>

< CM/ I — I~ 4 57| — |2 dn
|E—n|>28

< Cuys [ f & — p|"2r¥ dn}
[E—n]=>25
1

+ Cyd” [ / & — | 1HP dn} ’
[E—n|>25

1-2
<Cyd »,

L EOD|QLE +8.m) = 016 | dn

~ |

where we have used that |«|.» (1) < Cp together with the Holder inequality. O
Next, we show that the other error term F is also Holder continuous in space.

Proposition 5.3. Let T > 0. For any % <p=<ooifyeC(0,T]; Bg”)for some
M > 1, then the nonlinear error term Fy defined by (5.5) satisfies the estimate

|Fnlcer) < Cum,

where as before o« = 1 — %.
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Proof. Let us introduce the shorthand notation

Fy (&) = fTRN(s, ) dn.

As before denote by Ajs the difference of forward spacing § > 0. We have

AsFn (&) =/
&

# R +sn - Rutem)an
|§—n|=28

= F3(8) + F4(8).

(R 8. = (&) d
e

We need to show | F;(§)| < Cp8©.
For the inner region, |§ — n| < 2§, we first show the bound

|RN (&, m)] < CyMic(n)|g —n| =2 (5.15)

Indeed, as in the proof of Proposition 2.4, by (2.8c), (2.9d), and (2.9¢)

(Y& —ym) - (TE) —T())

|RN(E, M| = CM‘T(YI) “NE(( @) —ym)-TE)

[(TE) - T() - T(®)]
CuylT -N
+Cu[T0) - N©) P& — P |

< Cylé — 01 — nlMi (g — n|* ™| —n|™
+ Cule — nl* Mic (g — nl' & — =2
< CuMu(n)|g —n|~ 1+

ly (&) —yml*

Then, by (5.15) and the Holder’s inequality with p’ = %,

@) < CM/ My [ 1§ 46 = 0742 4 g — 1712 ] ay
§—nl<28
1
1§ —nl <43

This is integrable since (1 —2a)p’ = Z—j € (—1,1]when p > %, and we compute

the integral to find that |F1(§)| < C MBQ_%, which is more than we need.

Next, we consider the outer region |§ — n| > 25. We use the same strategy as
in the previous proposition. As Ry (&€, n) is a.e. differentiable in & in this region,
we first derive a bound for the 9 Ry . Differentiating in & gives

RN E M) =k@EE(— N + L +213 — 214 —2I5)

(5.16)
+g&) (21 + 20> +2J3 — 8J4)
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where the terms /; are

[(T&) —Tm) - TE)]

I :=Tm) T
1 () - T(&) V) — 7R g(m)
[(TE) —T@m) -N©)]
L =T - N
2 () - N(&) V& =y R g(m)
— -T — (TE)-T
13:=T(n).T(§)((y(§) ym) - TE)((r &) J/in)) (T() (n)))g(ﬂ)
ly(§) —y(m)l
— -N — (TE)-T
14:=T(n)~N($)(()/(S) y(m) - N@E) (v an)) (T() (n)))g(n)
ly () —y )l
— .T — "N
15:=T(n)-N($)((y(g) Y (m) («‘E))((V(E)4 y(m) (S))g(n)
ly(€) —yml
and terms J;’s are
TE)—-T -T — -T
J1:=T(n)-N($)( (é) (1)) (E)(V($)4 y () (é)g(n)dn
ly (&) —y ()l
(y(&) —ym) - (TE) —T())
Jo:=Tm) -N d
2 () -N©&) VE) )P g(mdn
— -T TE) - (TE)-T
J3:=T(n)-N($)((y($) y(m) - T(©)(T(E) 4( é) (n)))g(n)
ly (&) —yml
2
- -T — (TE)-T
J4:=T(n)~N($)((y($) ym)-T©E) ((r©) J/6(77)) (T() (n)))g(n)~
ly (&) —y )l
Next, we will derive the bound
|3 Ry (&, m)| < Cu (I (©)] + M (&) Mr()|& — |~ . (5.17)
By the structure of 9z Ry given by (5.16), it suffices to show for /;’s the bound
|15, m)| < CuMic(plg — ="+ (5.18)
and for J;’s the bound
|Ji &, )| < CyuMr (@) M ()] —nl~ ' (5.19)

Estimates of I;’s:
For each I; term, we use one of the maximal bounds in Lemma 2.2.
By (2.9d),

[T() - TE(TE) —T) - TE)| < CuMr(mE —nl'*,

so I satisfies (5.18).
By (2.8b) and (2.9a),

IT() - N@)|[(TE) — T(m) - NE©)| < CyMr (g —n|'*,
so I, satisfies (5.18).
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By (2.9¢),

|y &) —ym) - (TE) —T®))| < CuMr(m)|s — >

so I3 satisfies (5.18).
By (2.8c¢), (2.8d), and (2.9e),

IT() - NE) (v (&) —ym) - NE)((y &) — y(m) - (TE) = T(n)))|
< CuMic(plg — P+

so 14 satisfies (5.18).

By (2.8¢) and (2.9¢),

IT(m) - NE (&) —y ) - TE)((r (&) — y () -N©))|
< CuMicm)g —nl***

so I5 satisfies (5.18).
Estimates of J;:

Next, we look at the J; terms. Each of these requires using two maximal bounds

from Lemma 2.2.
By (2.9a) and (2.9d), J; satisfies (5.19):

(T(€) —T(n)) - T()
& | = [Ta) N Y& —ymP

< CyMr(EMim)|E —nl~ e

By (2.9a) and (2.9e), J; satisfies (5.19):

_ (TE) —T
& m] < Cu[Tan) - N T E J((g)))_(y(% o)

< Cy Mk E)Mic ()& — =1

g(n)‘

By (2.9a) and (2.9d), J3 satisfies (5.19):

T (T -T
|36 ] = Cur|T() Ny @';(E() (—E)ﬂn)én)))‘

< CyMicEMr(m)|E —n|~' .
By (2.9a) and (2.9e), J4 satisfies (5.19):

| Ja(&, m)|

(@& —ym)- T(é))z((y(é) —ym) - (TE) —T®m))
ly (&) —y(mI°
(@& —ym) - (TE) —T(n))
CylTen - N
= Cu[T( - N@) @ — 7l |

< CyMic(E) Mic()|& — =1,

< Cu|T() - N®)
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Combining the bounds for /; and J;, we have established (5.17). Since £ 46 #
in the region |§ — 1| > 2§, by the fundamental theorem of calculus, (5.17), and the
bound |§' — n| < 2|& — n| forall &’ € [, & + 5], we have

E+6
Ry (& +8.1) — R(E.m)| < /g 19 R (€. )| &’

46
< CMMK(n)/g & — 0|~ (e (&) + Mk (§)) dE'

E+6
< Cyle — nl~"H Mic(n) /s k(&) + Me(©)) de’
< Cud%1E — ™" M ().

Inserting this above into F>, by Holder’s inequality we have

B© < Cus® [ = nl T M) di = Cus”
|§—n|=28
where we have used that |§ — 5|~!*® € L?'(T) when p > % i
We recall that the multiplicative coefficient a = —dsv - T is also Holder con-

tinuous, with an exponent o = 1 — % by Proposition 2.4.

Lemma 5.4. Let 1 < p < oo, and assume y € C([0, T]; BII,VI), then the coefficient
a = —osv - T satisfies the estimate

lalce(ry < Cum-

5.3. A Commutator estimate

The last ingredient we need for the C? illposedness is

Lemma5.5. Let 1 < p < o© and% < o < 1. Suppose that f € LP(T) and
h € C°(T). Then the commutator satisfies the estimate

I[H, h1flcsery < C(p, o)lhlcomlflLe )
— 1
forB =0 -

Proof. This follows from a standard computation in PDE and we sketch the details
here. Denote by H (§) the kernel of the periodic Hilbert transform. We have

[H,hlf (&) = /T[h(n) —h@&1fHE —n)dn.

Since H(§—n) ~ (—n)~" forsmall |§ —n| > Oand |k(7)—h(€)| < |hlca|E =7,
we have [[H, 2l flre S| flerlhlce.

Next, we show the Holder continuity with exponent 8 = o — L. Denote by As
the difference operator of spacing 6, namely As f = f(§ +6) — f (). Without loss
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of generality we assume 8 > 0 and aim to prove |As[H, h]f]| < 8P |hlco | flLr. We
split the integral As[H, h]f in the following way:

aatthf = [ [(nn = nte +9) 1 =0 +5)

~(htn = n®)HE = m ] rop an
=10 + 1.

Here I is the integral on |§ — n| < 28 and I, on |£€ — n| > 26.
Casel1: |§ —n| <26
In this case, we first use the o-Holder continuity of / to obtain that

I <

[ [(hen b+ ) ~n+ 0

|§—nl<2é

~(ntn = n®)HE =m ] £ an|

<thles [ (lg=n+or o ls =) Lo
1§—nl<28

Since —1 < 0 — 1 < 0, a direct computation using the Holder inequality and the
bound |§ — n| < 24 gives

p—1
P

L) (o—1
I S lhleo) £l U & — |- )dn}
|&—n|<4s

Since (%)o — 1 > —1, we can evaluate the integral and obtain that

_qap=t
I S hleo | f1oed” ™07 = |hlco | flLrdP.

Case2: |£€ — n| = 26
In this case, we first rearrange the terms as

S N (OB ICER R R
—nl=

+(h®) ~ hE +O)HE —n+8)| £ dn].

Recall that for the kernel H(§) = % cot(%), we have for all |§ — n| > 26 the
bounds

|HE —n+8) —HE -

& —nl?
1
|HE —n+9)| < .
& —nl
It then follows from (5.20) and the o-Holder continuity of /4 that

I < Ihles (a/ & —n|“—2f<n>dn+5"/ & —nl_lf(n)dn)
|E—n|=26 |E—n|>25

(5.20)

< |hlces® / & — 0~ Fn) dn.
[E—n]>28
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From here we can apply Holder’s inequality (since p < 00) and use the condition
B=0— % to conclude that

__r_ el
B er s ([ =) = e 1w,

|E—n|=25

5.4. Proof of C? illposedness

In what follows, we restrict ourselves to the case 4 < p < oo (away from
p = 2) so that there exists a fixed small g > 0 with the following property.

In the remainder of this section, we denote by C (M, T) a large constant de-
pending only on M and T but not p that may change from line to line.

Lemma 5.6. Fix 8 = % Forany M > 1 and T > 0, there is a large constant
C = C(M, T) depending only on M and T such that for any y € C([0, T]; Bi”)
the uniform Holder estimates hold

sup |Flepery + sup lalesry < C(M, T), (5.21)
€0, 7] t€[0,T1]
and
t
sup |[H, e 00| cppy < C(M, T). (5.22)
t€l0,7T]

Proof. Since 1 — % = %, (5.21) follows directly from Propositions 5.2, 5.3 and
Lemmas 5.4, 5.5.
Lemma 5.5 with 0 = 3/4 and p = 4 implies that

4 't
I[H, e_foa]KIC%(T) < Clicl aqpyle o

=CM.,T),

3
Cc4(T)

where we have useda = d;,v - T € C([0, T]; C%(T)) with la'C%(T) < Cpy due to

y e C(0,TI; Bi”) and also x — e~* is smooth. |

With Lemma 5.6, we are in position to prove C? illposedness. Define a new
variable using a variation of parameters

K@ 1) =e ha@0dr e (5.23)
then by (5.3) it satisfies the equation
K =nHK —7[H,e o + F,

where F := e’fOt“F and [A, B] := AB — BA denote the commutator.
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By Duhamel’s principle, we recast the equation for K into the integral form

K(t) = ™My + /

[ ’
t—1TH <—JT[H, e*f(; i + F) dtr’, (5.24)
0

By Lemma 5.6, forany M > 1 and T > 0 we have the following uniform bound
forany p > 4,

IK@®)|Lrery < cM, T)|k()|Lrery forallt [0, T],

so it suffices to show the inflation for K as p — oo.

For some suitable initial data y € C%(T) with kg € C(T), we will see that the
linear dispersion yields |e’”HK0|Lp(qr) — 00 as p — 00. So the task is to verify
the integral terms in (5.24) are well-controlled.

Lemma 5.7. For M > 1 and any T > O, there exists a constant C(M,T) > 0
such that for any y € C([0, T]; Bg”), 4 < p < 00, we have

sup
t€l0,T]

<CM,T).

4 1 ~
/ e—TH (—JT[H, e o e + F) dr’
0

CI/Z(T)

Proof. Observe that

t ’
/ et =TH (—n[H, el 9 4 F) dr’
0

<T sup ‘[H, e*f(g“]/c
t

C]/2(T) CI/Z(T)

+ T Sup |ﬁ|cl/2(’]r),
t

" is bounded on

where in the first step we have used that the free evolution e
C?(T) forany 0 < o0 < 1 by (5.6).

Then by (5.21) and (5.22) we have

t t ~
/ t—1HTH (_H[H’ e‘fo e + F) dt’
0

sup
t€l0,T]

<CM,T).

Cl/Z('ﬂ‘)

O

Then we choose the initial configuration such that the free linear evolution
inflates, or more precisely |e’”HK0|Lp(qr) — 0o as p — 0.

Lemma 5.8. There exists initial data yy € C 2(T) which is a simple closed curve
with curvature kg € C(T) such that the following holds: for any t € (0, 1),

e’”HKo’LP(T) > Comax{r(1 —1)/p, 1} forallp < oo,

where Co > 0 is a constant depending only on the initial data yy.
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Proof. 1tis well-known that the Hilbert transform is not bounded C(T) — L°°(T),
and we may pick yy € C? with kg € C(T) such that |Hiolrr(ry ~ /P as p — o0.
In fact, the rate of divergence in p can be arbitrarily close to p (and exactly p for
a function that is just bounded), but we choose a simple explicit ko for simplicity.
Let us sketch this argument for the sake of completeness. For instance, one can take
€ > 0 small and a curve yp whose curvature « satisfies

nf&™H72  £e0,€]

5.25
—(nlg|")"2 £ e[—e, 0. 62

Kko(§) = {

Such initial data yy € C2(T) exists since (5.25) is a local continuity condition near
& = 0. One can take a function «g satisfying (5.25) and then smoothly extend it on
[e, m] U [—m, —€] to obtain a curve yy € C*(T) with kg € C(T) as its curvature.
For any & € (0, €/2], we have

£ 2%
wa© = [ 0+ [y
0 €
n ko () dn + ko (1) dn + Ry (6).
—<&—n wéE—n

where |[Ry (§)] < Clkolroo(T) In e~ 1. Since kg is increasing on [0, €], the sum of the
first two terms is negative. The third and fourth terms are also negative. Therefore,
for any & € (0, €/2],

€ ko(n)
en—§&
> k0(26) In&~" — Clico|poe(ry Ine ™.

d?] — C|K0|Loo('1[‘) In 671

| Hico(6)] = /2

Thus by our choice (5.25), there exists a scale 0 < €1 < € so that |Hko(§)| >
c(Iné~H12 for & € (0, €1] (one can take €; = €" with sufficiently large n depend-
ing on C and |«p|zo(T)). Then

€] 1/1’
HiolLr > (/ |1nsl|"/2ds)
0

[ele] 1/17
= < f ZP2e? dz> > (T(p/20V7 = /p.
1

ne

With the initial data «¢ chosen as above, we have

twH)"
™My = Z ( ’ ) Ko = cos(mt)kg + sin(mwt) Hro,
n!

n
and the conclusion follows immediately since sin(;r¢) ~ t when ¢t € (0, %] and

sin(wt) ~1—twhent € [%, 1). O

These two lemmas, combined with the global W27 regularity, yield the main
C? and C!! illposedness result.
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Theorem 5.9. There exists initial data yy € C 2(T) which is a simple closed curve
with curvature ko € C(T) such that the following holds. The unique solution y of
(CDE) with initial data yy satisfies y € C([0, 00); X}) for all p < oo and
|K(t)|L00('JI‘) = o0 fOl’ allt € [0, 00) \Z.

Proof. We only demonstrate how to show [k (¢)|pcc(T) = oo for 0 < ¢ < 1 as the
rest of the cases ¢ € R\Z are similar.

First of all, since yy € X0, by Theorem 3.4, the unique solution y belongs to
C ([0, 00); X ) forany p < oo.

We proceed with a proof by contradiction. Suppose |k (1*)| (1) < oo for some
t* € (0, 1), then one must have

lim sup |« (t*)|Lr(T) < 00,
p—>00

and hence for the new variable K introduced in (5.23),

lim sup |K (t*)|r(T) < 00. (5.26)

[J—)OO
Then by (5.24), for all p > 4 we have that

"
tn'HK

K@) LrT) = |e 0

LP(T)

t ¢ ~
— 27 / e —1HTH <—JT[H, e—fo e + F) dt’
0

L (T)
It follows from Lemma 5.7 that there exists a constant 0 < C < oo independent of
p such that

X
tn'HK

—C forallp > 4.
LP(T)

which is a contradiction to (5.26) by Lemma 5.8, since t* € (0, 1). |

K () Lr(T) = )e 0
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