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Abstract

It is well known that vortex patches are wellposed in C1,α if 0 < α < 1. In
this paper, we prove the illposedness of C2 vortex patches. The setup is to consider
the vortex patches in Sobolev spaces W 2,p where the curvature of the boundary
is L p integrable. In this setting, we show the persistence of W 2,p regularity when
1 < p < ∞ and construct C2 initial patch data for which the curvature of the
patch boundary becomes unbounded immediately for t > 0, though it regains
C2 regularity precisely at all integer times without being time periodic. The key
ingredient is the evolution equation for the curvature, the dominant term in which
turns out to be linear and dispersive.

1. Introduction

1.1. Vortex patches

Vortex patches are an important family of weak solutions to the 2D Euler equa-
tions. We recall that the 2D Euler equation in the vorticity form is given by

∂tω + (v · ∇)ω = 0. (1.1)

At each time t , the velocity field u is determined by the Biot-Savart law

v(x, t) = K � ω(x, t) := 1

2π

∫
R2

(x − y)⊥

|x − y|2 ω(y, t) dy, (1.2)

where x⊥ = (−x2, x1) for any x ∈ R
2.

A vortex patch is a solution to (1.1) of the form

ω(t, x) = χ�(t), (1.3)
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where χ�(t) denotes the characteristic function of a connected bounded domain
�(t) ⊂ R

2 that evolves according to (1.2).Note that in the literature, the termvortex
patch solution often refers to a solution of the form ω = ∑

1≤i≤N θi (x, t)χ�i (t)

with �i being mutually disjoint bounded domains and θi (x, t) being the profiles
of vorticity. In this paper, we consider only the case of a single patch in R

2 with a
constant vorticity 2π .

Given an initial patch data ω0(x) = χ�0(x), there exists the unique patch
solution ω = χ� thanks to the Yudovich theory [26] of L1 ∩ L∞ weak solutions.
The Yudovich theory only implies that�(t) remains a bounded domain whose area
is constant in time, but does not address the regularity of �(t), which in this case
refers to the smoothness of the patch boundary ∂�. The question of whether the
smoothness of the patch boundary breaks down in finite timewas a subject of debate
[5,8] in numerical analysis. However, this controversy was settled by Chemin [6]
in 1993 who proved that the patch boundary remains smooth for all times if it is
smooth initially.

A key step towards understanding global regularity for smooth vortex patches
is the global wellposedness of patches in C1,α for 0 < α < 1 (see e.g. [16]). The
restriction 0 < α < 1 and the recent illposedness result of Bourgain-Li [4] for the
2D and 3D Euler equations in the smooth setting for ω0 ∈ Ck with integer k ≥ 1
suggest that the patch problem may also be ill-posed in Ck for integer k ≥ 1. The
main purpose of this paper is twofold. First, we confirm this conjecture by showing
that the vortex patch problem is indeed illposed inC2 orC1,1. Second, our approach
to this question involves an analysis of the evolution equation for the curvature of
the patch. Essentially, the equations for intrinsic geometric parameters of the patch,
the curvature and arc-length, can be viewed as an alternative formulation for the
patch evolution problem. Such a type of reformulation using intrinsic quantities
has been used before in the context of fluids mechanics in a variety of models
[11,12,19], and we refer interested readers to references therein. In our case, the
resulting equations do not contain information on patch orientation or position but
otherwise recapture the patch precisely (and the former details can be recovered by
solving simple ODEs if needed). Interestingly, using this reformulation allows us
to see the illposedness inC2 on the conceptual level quite directly (notwithstanding
the technical estimates one needs to carry out). We believe that this approach can
be useful in further analysis of finer features of patch dynamics.

1.2. Historical development

As we mentioned above, the study of vortex patch dynamics reduces to the
analysis of the patch boundary evolution. If the patch boundary is at least piece-
wiseC1, then one can derive a 1D equation for the parametrization of the boundary.
This equation, known as the contour dynamics equation (CDE), first appeared in
[27] and [15]:

∂tγ (ξ, t) =
∫
T

γ̇ (η, t) ln |γ (ξ, t) − γ (η, t)| dη. (CDE)

Here γ : T× [0, T ] → R
2 is a parametrization of the patch boundary at each time

t ∈ [0, T ]. In this paper, T := R/2πZ denotes the 1-dimensional torus which we
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identify with an interval of length 2π with periodic boundary condition. The local
wellposedness of (CDE) in the framework of Ck,α patches was proved by Bertozzi
in [2] (see also [16]).

After the work of Chemin, several different proofs of global regularity for Euler
patches appeared: by Serfati [23] and by Bertozzi and Constantin [1] (see also more
recent [25] for patches of other active scalar equations). We should emphasize that
these works consider the patch regularity problem in theCk,α setting for k ∈ N and
0 < α < 1, and more importantly, the 2D dynamics of the patches are used in an
essential way. In other words, we are not aware of a proof of global regularity for
vortex patch using only the contour dynamics (CDE).

Our interest in the ill-posedness patch problem was partly motivated by the
recent significant developments on the Cauchy problem of the Euler equations
(both in 2D and 3D in the non-patch setting) with initial data in integer Hölder
spaces Ck or in critical Sobolev spaces [3,4,9,17]. In particular, it has been shown
by Bourgain and Li [3,4] that the Euler equations (in 2D and 3D) are illposed for

vorticity in critical Sobolev spaces ω0 ∈ W
d
p ,p for 1 ≤ p < ∞ and integer Hölder

spaces ω0 ∈ Ck with k ≥ 0. In contrast to the illposeness results in the smooth
setting, the following question has remained open for patches:

Is the vortex patch problem illposed in Ck or Ck−1,1 with integer k ≥ 1?

Even whether Sobolev regularity of the patch boundary, say Wk,p for k ≥ 2,
persists globally or locally in time was not known. In this paper, we show global
well-posedness inW 2,p with 1 < p < ∞, and prove that the vortex patch problem
is ill-posed in C2 (and also C1,1).

Anothermotivation for ourwork are beautiful simulations byScott andDritschel
[21,22] on singularity formation for SQG patches. Rigorously, singularity forma-
tion for α-SQG patches has only been proved for small α in the half-plane [10,13].
We think that curvature/arc-length equations can be useful for further analysis of
singular scenarios in the α−SQG patch without boundary setting.

1.3. Main results

We now present the main results of this paper. To streamline the presentation,
we introduce the definition of Ck,α (and Wk,p) domains and refer to the domain
�(t) as a patch solution.

Definition 1.1. Let � ⊂ R
2 be a simply-connected bounded domain. We say � is

Ck,α (respectivelyWk,p) if the arc-length parametrization γ : L
2π T → R

2 satisfies
γ ∈ Ck,α( L

2π T) (resp. Wk,p( L
2π T)) where L is the length of γ and L

2π T = R/LZ.
We say �(t) is a Ck,α (respectively Wk,p) patch solution (or vortex patch) on

a time interval I ⊂ R if

• The characteristic function χ�(t) is a solution of (1.1)–(1.3);
• The domain �(t) is Ck,α (respectively Wk,p) for all t ∈ I .

Our first main result is the wellposedness of W 2,p patch solutions, which is
needed to show the C2 illposedness.
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Theorem 1.2. Let 1 < p < ∞ and �0 ⊂ R
2 be a W 2,p domain. Then the unique

patch solution �(t) with initial data �0 is a W 2,p patch solution for all t > 0.

Remark 1.3. (1) This W 2,p regularity result does not follow from simple modifi-
cation of the arguments in [1,6] for the C1,α patches.

(2) We use the contour equation (CDE) to establish the local wellposedness ofW 2,p

patches. The global wellposedness ofW 2,p patches follows from a continuation
criterion based on known global regularity for C1,α patches.

(3) The result generalizes to higher order Sobolev spaces Wk,p for all k ≥ 2 and
1 < p < ∞ in a straightforward (though highly computational) manner.

In contrast to the wellposedness of W 2,p patch solutions when 1 < p < ∞,
we show that the patch problem is ill-posed in C2.

Theorem 1.4. There exist C2 domains �0 ⊂ R
2 and T > 0 such that the unique

patch solution �(t) with initial data �0 is not W 2,∞ for any t ∈ (0, T ].
Remark 1.5. A few remarks concerning Theorem 1.4.

(1) It follows that the patch problem is illposed in C2 and C1,1 thanks to the
equvalence C1,1(T) = W 2,∞(T).

(2) The illposedness mechanism is based on a certain dispersion effect in the evo-
lution of the curvature which is purely linear. We discuss this in detail in the
coming subsection.

(3) In fact, one can show that the constructed patch solution �(t) in our ill-
posedness example is C2 if and only if t ∈ Z, and for other times t ∈ R \ Z,
�(t) is only W 2,p for all p < ∞. See Theorem 5.9 for details.

(4) Using our setup it should be possible to prove the illposedness of the patch
problem in Ck for any integer k ≥ 2. The case C1 seems to be out of reach at
the moment.

1.4. Outline of the proof

Our proof for both the wellposedness and illposedness is Lagrangian in its heart
and based on the contour equation (CDE) γ : T × [0, T ] → R

2.
The existence of W 2,p vortex patches follows from a standard Banach fixed-

point argument. The key step is to show the contraction estimates in this setup. It
is known that for the vortex patch the velocity gradient is not continuous in R

2,
specifically across the patch boundary. However, we show that in the Lagrangian
variable, the velocity field v is W 2,p along the patch boundary. This can be used to
establish local well-posedness. Once we have the local existence for W 2,p vortex
patches, the global regularity follows from the well-known C1,α global regularity.

As expected, theW 2,p wellposedness argument breaks down at p = 1 and p =
∞, but for different reasons. The case p = 1 is due to a lack of regularity/control
and seems to be out of reach of the techniques in the current paper. The case p = ∞
fails due to the unboundedness of certain singular operator appearing in the second-
order derivative of the velocity v, indicative of the illposedness of the patch problem
in L∞-based spaces.
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Toprove theC2 illposedness,we do not use the contour equation (CDE) directly.
Instead, we track the evolution of the (signed) curvature κ : T × [0, T ] → R of
the patch boundary. A careful examination of the curvature equation reveals that it
has the structure

∂tκ = (−∂sv · T + πH)κ + l.o.t, (1.4)

whereH is the periodic Hilbert transform andT is the tangent vector. The rest of the
terms entering the equation are strongly nonlinear but can be shown to have higher
(Hölder) regularity. This type of equations is known to be illposed in L∞-based
spaces, such as C2 or W 2,∞ (see e.g. [9]).

These observations together allow us to pick fairly explicit initial data with
curvature κ0 ∈ C(T) such that the unique solution κ(t) ∈ L p for all p < ∞
but κ(t) �∈ L∞ on 0 < t < T for some T > 0. The claim in Remark 1.5 about
the patch being C2 only for t ∈ Z follows from the explicit formula of the group
etπH = cos(π t) Id+ sin(π t)H which follows fromH2 = −1 identity.

1.5. Organization of the paper

The rest of the paper is as follows:

(1) In Sect. 2, we establish the (local) wellposedness for W 2,p. The proof is based
on W 2,p Sobolev estimates of the velocity field along the patch boundary.

(2) In Sect. 3, we show how to obtain the global W 2,p regularity of vortex patches
by using known C1,α regularity results, thus proving Theorem 1.2.

(3) In Sect. 4, we introduce some preliminary geometric calculations and then de-
rive the evolution equation for the (signed) curvature of the patch boundary.
We also discuss the arc-length/curvature system as an alternative formulation
of patch evolution.

(4) In Sect. 5, we use the curvature equation to show that the vortex patch problem
is ill-posed in C2.

2. Existence of W 2,p Vortex Patches

In this section, we prove the existence ofW 2,p vortex patches using the contour
equation (CDE). The proof is based on a fixed-point argument in a suitable Sobolev
setting. Compared to the C1,α local existence result [16], we emphasize geometric
quantities such as tangent vector, arc-length metric, and curvature. Such an empha-
sis allows us not only to prove the local existence of vortex patches in the Sobolev
spaces W 2,p but also to reveal the dispersive characteristics in the evolution that
we will exploit in Sect. 5 for the illposedness.

As a general comment, throughout the paper, the time variable t will often be
suppressed, and the evolution equations are understood at each fixed time t .
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2.1. Preliminaries

Themotion of a vortex patch is given by a parametric curve γ : T×[0, T ] → R
2

∂tγ (ξ, t) = v(γ (ξ, t), t). (2.1)

where the velocity field v : R2 × [0, T ] → R
2 is defined by the Biot-Savart law,

v(γ (ξ, t), t) =
∫
T

γ̇ (η) ln |γ (ξ) − γ (η)| dη. (2.2)

Here the factor 1
2π is dropped from (1.2) since we consider a single patch with

constant vorticity 2π .
Throughout the paper, we also view the parameterization γ : T×[0, T ] → R

2

as a time-dependent 2π -periodic function on R; we denote the arc-length metric
by g = |γ̇ |, where the dot on top indicates ∂ξ = ∂

∂ξ
, i.e. the usual differentiation;

we use ∂s = 1
g ∂ξ to indicate the derivative with respect to the arc-length parameter

s = �(ξ) : ξ �→ �(ξ) = ∫ ξ

0 g(η) dη.
We consider the usual counterclockwise orientation of the curve γ , and let T

be the unit tangent vector and N = −T⊥ be the outer unit normal vector for the
curve γ . More precisely, in the Lagrangian coordinates we write T(ξ, t) or just
T(ξ) for the tangent vector at a point γ (ξ) and time t . The (signed) curvature
κ : T × [0, T ] → R of γ is defined via

{
∂sT = −κN,

∂sN = κT.
(2.3)

Here and inwhat follows,we sometimes switch between agivenparametrization
T 
 ξ �→ γ (ξ) and an arc-length parametrization L

2π T 
 s �→ γ (s) and still use
the same notation γ, κ,T,N . . . for the position γ , curvature κ , tangent T, normal
N etc, except that we use arguments s and s′ as the arc-length parameters instead
of ξ, η and τ for Lagrangian labels.

2.2. Functional setup

In this subsection, we set up functional spaces for the parametric curves. To en-
sure aC1 function γ : T → R

2 parameterizes a simple curve (no self-intersection),
we need to consider the so-call arc-chord �, defined by

�(γ ) = sup
ξ,η∈T, ξ �=η

|ξ − η|
|γ (ξ) − γ (η)| , (2.4)

where the choice of distance |ξ − η| is inessential for our purposes—it can be the
distance on the torus or the Euclidean one when viewing ξ, η as points in an interval
of R. To show the existence of W 2,p patches, let us consider an open subset X p of
the Banach space W 2,p(T)

X p := {γ : T → R
2 : γ ∈ W 2,p(T) such that � < ∞},
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which includes all proper parametrizations of the boundaries of all W 2,p simply-
connected bounded domains since � < ∞ implies g = |γ̇ | > 0.

To run the Banach fixed point argument, we need a complete metric space in
X p. For any M > 1, we consider a closed set BM

p ⊂ X p

BM
p := {γ ∈ X p : |γ |W 2,p(T) ≤ M, |g|∗ ≤ M, � ≤ M}, (2.5)

where for g ∈ W 1,p(T) the functional | · |∗ is defined by

|g|∗ := max{|1/g|L∞(T), |g|L∞(T)}. (2.6)

(in particular, it is not a norm).
For any M > 1, BM

p is a subset of simple closed W 2,p curves, i.e with L p

curvature, and X p = ⋃
M>0 B

M
p . Next, we show that BM

p is a complete metric
space with the natural norm | · |W 2,p(T), which is necessary for the Banach fixed
point argument later.

Lemma 2.1. For any 1 < p ≤ ∞ and M > 1, BM
p is a complete metric space with

metric d(γ1, γ2) = |γ1 − γ2|W 2,p(T).

Proof. Let γn ∈ BM
p be a Cauchy sequence in the metric d. Then there is γ ∈

W 2,p(T) such that γn → γ . We need to show that in fact γ ∈ BM
p .

Apparently, |γ |W 2,p(T) ≤ M , so it remains to verify the bounds for g and �.
Due to the Sobolev embedding W 1,p(T) ⊂ C(T) for p > 1 and the inequality

gn − |gn − g|L∞(T) ≤ g ≤ gn + |gn − g|L∞(T),

we have that

1/M − ε < g < M + ε for any ε > 0,

which concludes that |g|∗ ≤ M .
For the arc-chord �, we see that for any η, ξ ∈ T, η �= ξ and any n ∈ N,

|ξ − η|
|γ (ξ) − γ (η)| ≤ |ξ − η|

|γn(ξ) − γn(η)| − 4π |γ̇ − γ̇n|L∞(T)

.

Since |γ̇ − γ̇n|L∞(T) ≤ Cp|γ − γn|W 2,p(T) → 0 as n → ∞, for any ε > 0, we can
choose n sufficiently large depending on ξ, η, M , and ε such that

|ξ − η|
|γ (ξ) − γ (η)| ≤ M + ε.

Since ε > 0 is arbitrary, this implies �(γ ) ≤ M . We conclude that γ ∈ BM
p . ��
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2.3. Basic estimates of W 2,p curves

In this subsection, we derive suitable Sobolev estimates for the W 2,p curves.
These estimates will rely on L p-boundedness of the maximal function, for which
we recall the necessary definitions here.

Given any f ∈ L1(T), we denote by M f : T → R the maximal function of
f ,

M f (ξ) = sup
0<ε<4π

1

2ε

∫ ξ+ε

ξ−ε

| f (η)| dη. (2.7)

The restriction of ε < 4π is non-essential and the boundedness of M on L p(T)

for 1 < p ≤ ∞ follows from the standard R
d results [24].

In the remainder of this paper, we denote by CM a positive constant depending
only onM and p that may change from line to line.We also recall the big O notation
X = O(Y ) for a quantity X such that |X | ≤ CY for some absolute constantC > 0.

Now we state a few basic estimates that we will use as the building blocks.

Lemma 2.2. Let 1 < p ≤ ∞, α = 1− 1
p , and γ ∈ BM

p . For any ξ, η ∈ T, we have

T(ξ) · T(η) = 1 + O(CM |ξ − η|2α) (2.8a)

T(ξ) − T(η) = O(CM |ξ − η|α) (2.8b)

T(η) · N(ξ) = O(CM |ξ − η|α) (2.8c)

(γ (ξ) − γ (η)) · N(ξ) = O(CM |ξ − η|1+α) (2.8d)

(T(ξ) − T(η)) · T(ξ) = O(CM |ξ − η|2α) (2.8e)

|γ (ξ) − γ (η)|−1 = O(CM |ξ − η|−1) (2.8f)

and for any ζ ∈ T such that |η − ζ |, |ξ − ζ | ≤ |ξ − η|, the maximal estimates
T(η) · N(ξ) = O(CMMκ(ζ )|ξ − η|) (2.9a)

T(η) · T(ξ) = 1 + O(CMMκ(ζ )|ξ − η|1+α) (2.9b)

(γ (ξ) − γ (η)) · N(ξ) = O(CMMκ(ζ )|ξ − η|2) (2.9c)

T(ξ) · [T(ξ) − T(η)] = O(CMMκ(ζ )|ξ − η|1+α) (2.9d)[
(γ (ξ) − γ (η)

] · [T(ξ) − T(η)] = O(CMMκ(ζ )|ξ − η|2+α). (2.9e)

Finally,

(γ (ξ) − γ (η)) · T(ξ) = g(ζ )(ξ − η) + O(CM |ξ − η|1+α). (2.10)

Proof. Let us consider the first set of estimates. (2.8f) is a consequence of the
assumption γ ∈ BM

p .
Bounds (2.8b) and (2.8c) follow from the fundamental theorem of calculus and

the assumption γ ∈ BM
p . For instance,

T(η) · N(ξ) ≤ |
∫ ξ

η

κ(τ )g(τ )N(τ ) · N(η) dτ | ≤ |κ|L p(T)|g|L∞(T)|ξ − η|α
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and due to g ∈ W 1,p(T) with |g|∗ ≤ M we have |κ|L p(T)|g|L∞(T) ≤ CM .
The fundamental theorem of calculus with (2.8c) implies (2.8a) and (2.8e).

Indeed, we have

(T(ξ) − T(η)) · T(ξ) = −
∫ ξ

η

κ(τ )g(τ )N(τ ) · T(ξ) dτ = O(CM |ξ − η|2α).

At last, (2.8d) follows from (2.8c), and the estimate (2.8a) together with the
Hölder continuity of g also imply the last identity (2.10).

Now we focus on the second set of estimates (2.9a)–(2.9e) involving maximal
function. These estimates rely on the simple bound

∫ ξ

η

|κ(τ)g(τ )| dτ ≤ 2|ξ − η|Mκ(ζ )|g|L∞(T) (2.11)

for any ζ ∈ T such that |ζ − ξ |, |ζ − η| ≤ |ξ − η|.
We demonstrate how to obtain (2.9a) and (2.9c), as the rest follows mutatis

mutandis. By the fundamental theorem of calculus,

T(η) · N(ξ) = −
∫ ξ

η

N(τ ) · N(ξ)g(τ )κ(τ ) dτ = O

(
CM

∫ ξ

η

|κ(τ)| dτ
)

,

so (2.9a) follows from the bound (2.11). For (2.9c), we use the fundamental theorem
of calculus twice:

(γ (ξ) − γ (η)) · N(ξ) =
∫ ξ

η

T(τ ) · N(ξ)g(τ ) dτ

=
∫ ξ

η

∫ ξ

τ

N(τ ′) · N(ξ)κ(τ ′)g(τ ′) dτ ′g(τ ) dτ.

Hence, for any ζ lying between ξ and η,

∣∣∣(γ (ξ) − γ (η)) · N(ξ)

∣∣∣ ≤ CM

∫ ξ

η

∫ ξ

η

|κ(τ ′)| dτ ′ dτ = O(CMMκ(ζ )|ξ − η|2).

��

The next result will be crucial for both the wellposedness and ill-posedness
results.

Corollary 2.3. Let 1 < p ≤ ∞, α = 1− 1
p , and γ ∈ BM

p . For any ξ, η ∈ T, ξ �= η

and any ζ ∈ T such that |ζ − ξ |, |ζ − η| ≤ |ξ − η|, there holds
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 = ξ − η

g(ζ )|ξ − η|2 + O(CM |ξ − η|α−1).
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Proof. Taylor expansion shows that for any M > 1, there exists a small εM > 0
such that for any 0 < |ξ − η| ≤ εM we have

|ξ − η|2
|γ (ξ) − γ (η)|2 = 1

g(ξ)2
+ O(CM |ξ − η|α); (2.12)

this follows from Hölder regularity of g and T. Then due to the arc-chord � ≤ M ,
we also have that (2.12) holds in the regime |ξ −η| ≥ εM as well (for a sufficiently
largeCM > 0). The conclusion then follows from the estimate (2.10) in Lemma 2.2
and the assumption γ ∈ BM

p . ��

2.4. Differentiablity of the velocity field

Akey ingredient in the existence proof is the differentiability of the velocity field
along the patch boundary. In this subsection, we show that if γ is a simple closed
W 2,p(T) parametric curve, i.e. γ ∈ BM

p , then the velocity v(γ ) defined according
to the Biot-Savart law (2.2) is alsoW 2,p(T). Note that the argument below proving
L p bounds of ∂2s v fails when p = ∞, which suggests the C2 illposedness of the
vortex patch.

The main result of this subsection is the following. Note that we specifically
use arc-length derivatives as these formulas will be used in Sect. 5.

Proposition 2.4. Let 1 < p < ∞ and γ ∈ BM
p for some M > 1. Then the velocity

v = v(γ ) defined according to (2.2) satisfies v ∈ W 2,p(T). In particular, v is
differentiable a.e with arc-length derivative

∂sv(γ (ξ)) = P.V .

∫
T

T(η)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η) dη, (2.13)

and ∂sv is a.e. differentiable with arc-length derivative

∂2s v(γ (ξ)) = −P.V .

∫
T

κ(η)N(η)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η) dη

+
∫

γ

T(η)

[
(T(ξ) − T(η)) · T(ξ) − κ(ξ)(γ (ξ) − γ (η)) · N(ξ)

]
|γ (ξ) − γ (η)|2 g(η) dη

− 2
∫

γ

T(η)

(
(γ (ξ) − γ (η)) · T(ξ)

)(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4 g(η) dη,

(2.14)
where the right-hand side of (2.13) and (2.14) arewell-defined functions inW 1,p(T)

and L p(T) respectively.
In addition, for any M > 1 there exists a constant CM such that

|v|W 2,p(T) ≤ CM . (2.15)

Proof. We proceed in several steps: first, show the expressions for derivatives are
W 1,p and L p functions; next, show that they are derivatives of the velocity in the
distributional sense; then, conclude that velocity is differentiable a.e.with derivative
equal to those expressions.
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Step 1: bounds of (2.13)
Let us first show that the right-hand side of (2.13) is a well-defined function in

L∞(T). Appealing to Corollary 2.3 and the bound (2.8b), we have

P.V .

∫
T

T(η)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η) dη

= P.V .

∫
T

T(ξ)
ξ − η

g(η)|ξ − η|2 g(η) dη +
∫
T

O(CM |ξ − η|−1+α) dη

=
∫
T

O(CM |ξ − η|−1+α) dη ≤ CM ;

(2.16)

the first term in the penultimate line is zero due to the odd symmetry.
Step 2: W 1,p differentiability of v

To justify the formal differentiation under the integral, we define Dε(ξ), a
function on T, by

Dε(ξ) = g(ξ)

∫
|ξ−η|≥ε

T(η)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η) dη,

such that limε→0+ Dε(ξ) equals to the right hand side of (2.13) times g(ξ). In fact,
the proof of (2.16) above implies that |Dε(ξ)| ≤ CM for any ξ ∈ T uniformly
for 0 < ε ≤ 1. So by the dominated convergence, it suffices to show that for any
ϕ ∈ C∞(T) we have

lim
ε→0+

∫
T

Dεϕ dξ = −
∫
T

vϕ′ dξ. (2.17)

By Fubini for all ε > 0 we have

∫
T

Dεϕ dξ =
∫
T

∫
|ξ−η|≥ε

g(ξ)T(η)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 ϕ(ξ) dξ g(η)dη.

Since, in the region |ξ −η| ≥ ε, we have g(ξ)
(γ (ξ)−γ (η))·T(ξ)

|γ (ξ)−γ (η)|2 = ∂ξ ln |γ (ξ)−γ (η)|,
we can integrate by parts in the variable ξ , and the conclusion would follow if we
can show that the boundary terms vanish:

ϕ(ξ) ln |γ (ξ) − γ (η)|
∣∣∣ξ=η+ε

ξ=η−ε
→ 0 uniformly as ε → 0. (2.18)

This is not hard to show by using the W 2,p, p > 1 regularity of γ . Indeed, let
α = 1 − 1

p > 0 be such that W 2,p(T) ⊂ C1,α(T). Then the mean value theorem

with γ ∈ BM
p implies that

|γ (η) − γ (η + ε)| ≤ g(η)ε + CMε1+α

|γ (η) − γ (η − ε)| ≥ g(η)ε − CMε1+α.
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With these bounds, we can show (2.18). Indeed, we have∣∣∣∣ϕ(ξ) ln |γ (ξ) − γ (η)|
∣∣∣ξ=η+ε

ξ=η−ε

∣∣∣∣
=

∣∣∣∣
[
ϕ(η + ε) − ϕ(η − ε)

]
ln |γ (η + ε) − γ (η)|

+ ϕ(η − ε) ln
∣∣∣γ (η + ε) − γ (η)

γ (η − ε) − γ (η)

∣∣∣
∣∣∣∣

� ε|ϕ′|L∞(T)

(
1 + | ln ε|) + ln

∣∣∣1 + CMεα

1 − CMεα

∣∣∣ → 0 as ε → 0+.

With (2.18) proved, the integration by parts is justified and we have established
(2.17). Thus v ∈ W 1,p(T) and (2.13) holds.
Step 3: bounds of (2.14)

For simplicity, let us still denote by ∂2s v the right-hand side of (2.14). To show
that this object is in L p(T), we consider the decomposition

∂2s v(ξ) =
∑

1≤i≤4

Ki (ξ)

where the terms Ki are explicitly defined as follows:

K1 = −P.V .

∫
T

κ(η)N(η)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η) dη

K2 =
∫
T

T(η)
(T(ξ) − T(η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η) dη

K3 = −κ(ξ)

∫
T

T(η)
(γ (ξ) − γ (η)) · N(ξ)

]
|γ (ξ) − γ (η)|2 g(η) dη

K4 = −2
∫
T

T(η)

(
(γ (ξ) − γ (η)) · T(ξ)

)(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4 g(η) dη.

Estimate of K1:
By Corollary 2.3,

|K1|L p(T) ≤
[∫

T

∣∣∣∣
∫
T

κ(η)N(η)
(ξ − η)

g(η)|ξ − η|2 g(η) dη

∣∣∣∣
p

dξ

] 1
p

+ O

(
CM

∫
T

∣∣∣∣
∫
T

|κ(η)||ξ − η|α−1 dη

∣∣∣∣
p

dξ

) 1
p

.

Since 1 < p < ∞ and |κ|L p(T) ≤ M , the L p-boundedness of the Hilbert transform
and Young’s inequality imply that |K1|L p(T) ≤ CM .
Estimate of K2:

By the maximal estimate (2.9d) from Lemma 2.2 with ζ = ξ ,

|K2(ξ)| ≤
∫
T

∣∣∣ (T(ξ) − T(η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η)

∣∣∣ dη
≤ CM

∫
T

Mκ(ξ)|ξ − η|−1+α dη,
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so Young’s inequality implies that |K2|L p(T) ≤ CM .
Estimate of K3:

Since |κ|L p(T) ≤ CM , it suffices to show that

sup
ξ

∣∣∣
∫
T

T(η)
(γ (ξ) − γ (η)) · N(ξ)

]
|γ (ξ) − γ (η)|2 g(η) dη

∣∣∣ < ∞.

Thanks to (2.8d), we have

sup
ξ

∣∣∣
∫
T

T(η)
(γ (ξ) − γ (η) · N(ξ)

]
|γ (ξ) − γ (η)|2 g(η) dη

∣∣∣ ≤ CM sup
ξ

∫
T

|ξ − η|−1+α dη,

and thus the bound for K3 is established.
Estimate of K4:

For K4, we apply absolute value to the integrand and then the estimate (2.9e)
to obtain

K4(ξ) ≤ CM

∫
T

∣∣∣∣∣
(
(γ (ξ) − γ (η)) · T(ξ)

)(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4

∣∣∣∣∣ dη.

≤ CM

∫
T

∣∣∣∣ (γ (ξ) − γ (η)) · (T(ξ) − T(η))

|γ (ξ) − γ (η)|3
∣∣∣∣ dη

≤ CM

∫
T

Mκ(ξ)|ξ − η|−1+α dη.

Since |κ|L p(T) ≤ CM , we conclude that |K4|L p(T) ≤ CM .
We have thus shown the right-hand side of (2.14) defines a function in L p(T).

Step 4: W 2,p differentiability of v

To establish (2.14), we will rewrite the integrals involved in the arc-length pa-
rameter and differentiate in s. This will reduce computations compared to working
in Lagrangian labels. Consider the arc-length s = �(ξ) ≡ ∫ ξ

0 g(τ ) dτ of the curve,
and we are going to denote γ (s) the same curve in the arc-length variable s and
similarly for its tangent T(s), normal N(s), curvature κ(s), and the velocity v(s).
In this parametrization, the right-hand side of (2.14) becomes

− lim
ε→0

∫
|�−1(s)−�−1(s′)|≥ε

κ(s′)N(s′) (γ (s) − γ (s′)) · T(s)

|γ (s) − γ (s′)|2 ds′

+
∫

γ

T(s′)
[
(T(s) − T(s′)) · T(s) − κ(s)(γ (s) − γ (s′)) · N(s)

]
|γ (s) − γ (s′)|2 ds′

− 2
∫

γ

T(s′)
(
(γ (s) − γ (s′)) · T(s)

)(
(γ (s) − γ (s′)) · (T(s) − T(s′))

)
|γ (s) − γ (s′)|4 ds′,

(2.19)
where �−1 is the inverse of the map ξ �→ �(ξ). Now we show that the first term
in (2.19) is the Cauchy principal value integral in s. Since the inverse map �−1 is
C1,α with α = 1 − 1

p > 0, the (symmetric) difference of the sets

Dε := {s′ : |s − s′| ≥ ε}�{s′ : |�−1(s) − �−1(s′)| ≥ g(�−1(s))ε}
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has Lebesguemeasure at mostCMε1+α , uniformly in s. Indeed, by the fundamental
theorem of calculus and C1,α regularity of �−1, for all sufficiently small ε, the set
Dε can be covered by two intervals of length CMε1+α centered at s ± ε. This
smallness condition on ε can be made uniformly in s since we are on a compact set.
Hence, we have that the difference between the first term in (2.19) (with modulated
approximation parameter ε

g(�−1(s))
) and its counterpart of theCauchyprincipal value

satisfies

∣∣∣
∫
Dε

κ(s′)N(s′) (γ (s) − γ (s′)) · T(s)

|γ (s) − γ (s′)|2 ds′
∣∣∣ ≤ CM

∫
Dε

|κ(s′)||s − s′|−1

≤ CMεα
[Mκ(s − ε) + Mκ(s + ε)

]

where we have used the definition of the maximal function and the bound |s −
s′|−1 ≤ CMε−1 on Dε . Since κ ∈ L p, this term converges to 0 in L p as ε → 0.
Therefore, thefirst term in (2.19) is equal to−P.V .

∫
γ

κ(s′)N(s′) (γ (s)−γ (s′))·T(s)
|γ (s)−γ (s′)|2 ds′

almost everywhere s ∈ L
2π T. A similar reasoning also shows that in the arc-length

(2.13) becomes ∂sv = P.V .
∫
γ
T(s′) (γ (s)−γ (s′))·T(s)

|γ (s)−γ (s′)|2 ds′. Hence to verify (2.14), it
suffices to show that

∂s(∂sv) = − P.V .

∫
γ

κ(s′)N(s′) (γ (s) − γ (s′)) · T(s)

|γ (s) − γ (s′)|2 ds′

+
∫

γ

T(s′)
[
(T(s) − T(s′)) · T(s) − κ(s)(γ (s) − γ (s′)) · N(s)

]
|γ (s) − γ (s′)|2 ds′

− 2
∫

γ

T(s′)
(
(γ (s) − γ (s′)) · T(s)

)(
(γ (s) − γ (s′)) · (T(s) − T(s′))

)
|γ (s) − γ (s′)|4 ds′.

(2.20)

Since Step 3 above also shows the right-hand side of (2.20) is L p, it suffices to
show that for any ϕ ∈ C∞(γ ),

lim
ε→0+

∫
γ

∫
|s−s′|≥ε

T(s′) (γ (s) − γ (s′)) · T(s)

|γ (s) − γ (s′)|2 ds′∂sϕ(s) ds = −
∫

γ

(2.20)ϕ(s) ds.

(2.21)
We proceed to a proof of (2.21). Reparametrizing the inner integral via s′ �→ s+ s′
and then applying Fubini yield

lim
ε→0+

∫
γ

∫
|s−s′|≥ε

T(s′) (γ (s) − γ (s′)) · T(s)

|γ (s) − γ (s′)|2 ds′∂sϕ(s) ds

= lim
ε→0+

∫
γ

∫
|s′|≥ε

T(s + s′) (γ (s) − γ (s + s′)) · T(s)

|γ (s) − γ (s + s′)|2 ds′∂sϕ(s) ds

= lim
ε→0+

∫
|s′|≥ε

∫
γ

T(s + s′) (γ (s) − γ (s + s′)) · T(s)

|γ (s) − γ (s + s′)|2︸ ︷︷ ︸
a.e. differentiable with respect tos

∂sϕ(s) ds ds′. (2.22)
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Since γ is a simpleW 2,p curve, for each fixed |s′| ≥ ε, the inner integrand in (2.22)
is a.e. differentiable with respect to s, with derivative

− κ(s + s′)N(s + s′) (γ (s) − γ (s + s′)) · T(s)

|γ (s) − γ (s + s′)|2

+ T(s + s′)
[
(T(s) − T(s + s′)) · T(s) − (γ (s) − γ (s + s′)) · κ(s)N(s)

]
|γ (s) − γ (s + s′)|2

− 2
T(s + s′)

(
(γ (s) − γ (s + s′)) · T(s)

)(
(γ (s) − γ (s + s′)) · (T(s) − T(s + s′))

)
|γ (s) − γ (s + s′)|4 .

(2.23)

As a result, based on the L p estimates we proved earlier, we can integrate by parts
in the s variable in (2.22) and use Fubini once again to obtain that

lim
ε→0+

∫
γ

∫
|s−s′|≥ε

T(s′) (γ (s) − γ (s′)) · T(s)

|γ (s) − γ (s′)|2 ds′∂sϕ(s) ds

= − lim
ε→0+

∫
|s′|≥ε

∫
γ

(2.23)ϕ(s) ds ds′

= − lim
ε→0+

∫
γ

∫
|s′|≥ε

(2.23)ϕ(s) ds′ ds.

We reparametrize back s′ + s �→ s′ and compare the above to (2.21) to obtain

lim
ε→0+

∫
γ

∫
|s−s′|≥ε

T(s′) (γ (s) − γ (s′)) · T(s)

|γ (s) − γ (s′)|2 ds′∂sϕ(s) ds

= −
∫

γ

∂2s vϕ(s) ds + lim
ε→0+

∫
γ

ϕ(s)
∫

|s−s′|<ε

Z(s, s′) ds′ dds

where the integrand Z(s, s′) corresponds to the last two lines of (2.23) (since the
principal value term cancels by definition) and is given by

Z(s, s′) := − T(s′)
[
(T(s) − T(s′)) · T(s) − κ(s)(γ (s) − γ (s′)) · N(s)

]
|γ (s) − γ (s′)|2

+ 2T(s′)
(
(γ (s) − γ (s′)) · T(s)

)(
(γ (s) − γ (s′)) · (T(s) − T(s′))

)
|γ (s) − γ (s′)|4 .

To show (2.21) holds, we need to show that the error vanishes:∫
γ

ϕ

∫
|s−s′|<ε

Z(s, s′) ds′ ds → 0 as ε → 0. (2.24)

This is essentially done in Step 3, and here we present a proof of (2.24) using
Lemma 2.2 for completeness. Observe that (2.9d), (2.8d), and (2.8f) imply

∣∣∣T(s′)
[
(T(s) − T(s′)) · T(s)

]
|γ (s) − γ (s′)|2

∣∣∣ ≤ CMMκ(s)|s − s′|−1+α (2.25)

∣∣∣T(s′)
κ(s)(γ (s) − γ (s′)) · N(s)

]
|γ (s) − γ (s′)|2

∣∣∣ ≤ CMκ(s)|s − s′|−1+α, (2.26)
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while (2.9e) and (2.8f) imply

∣∣∣T(s′)
(
(γ (s) − γ (s′)) · T(s)

)(
(γ (s) − γ (s′)) · (T(s) − T(s′))

)
|γ (s) − γ (s′)|4

∣∣∣
≤ CMMκ(s)|s − s′|−1+α. (2.27)

These estimates (2.25)–(2.27) imply for all s′ �= s the bound

∣∣Z(s, s′)
∣∣ ≤ CM

(
Mκ(s)|s − s′|−1+α + κ(s)|s − s′|−1+α

)
. (2.28)

By (2.28), the Hölder inequality, and the boundedness of the maximal function in
L p for p > 1, we have that

lim
ε→0+

∣∣∣∣
∫

γ

ϕ(s)
∫

|s−s′|<ε

Z ds′ ds
∣∣∣∣

≤ CM |ϕ|L∞ lim
ε→0+

∫
|s|<ε

|s|−1+α ds = 0.

Now that (2.21) is established, we have that ∂2s v ∈ L p and (2.20) holds, and thus
in the original label, (2.14) holds as well. ��

2.5. Contraction estimates of the solution map

The last ingredient for the Banach fixed-point argument is the Lipschitz conti-
nuity for the nonlinear map γ �→ v(γ ) in the Sobolev spaceW 2,p. The main results
are Proposition 2.7 and Proposition 2.8 below.

We fix 1 < p < ∞ in this subsection and let γi ∈ BM
p for i = 1, 2. We use the

notation gi , Ti , Ni and κi to denote the arc-length, tangent, normal, and curvature
of the curve γi . In addition vi : T → R

2 denotes the velocity associated to γi , and
∂svi = 1

gi
v̇i denotes the corresponding differentiation in arc-length on the curve

γi .
Since we will be frequently taking difference between functions defined by γ1

and γ2, we introduce the notation � [ fi ] := f1 − f2 for any functions fi defined
by γi on T. For instance, �[γi ](ξ) = γ1(ξ) − γ2(ξ) and � [Ti (ξ) − Ti (η)] =
[T1(ξ) − T1(η)]−[T2(ξ) − T2(η)].Wewill frequently use the telescoping formula

�[ fi gi ] = �[ fi ]g1 + f2�[gi ]. (2.29)

For brevity, we denote by δ ≥ 0 the distance between two sets of data in X p:

δ = |γ1 − γ2|W 2,p(T). (2.30)

These conventions allow for a more streamlined argument.
Again,we startwith a fewbasic estimates thatwill serve as the “building blocks”

in the estimation below. Recall that α := 1 − 1
p and CM > 0 denotes a constant

depending on M and p that may change from line to line.
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The assumption on γi and the definition of δ imply directly the estimates

|�[Ti ]|L∞(T) ≤ CMδ (2.31a)

|�[gi ]|L∞(T) ≤ C |�[gi ]|W 1,p ≤ CMδ. (2.31b)

|�[κi ]|L p(T) ≤ CMδ, (2.31c)

which by the fundamental theorem of calculus and simple telescoping further im-
plies the following set of estimates∣∣� [

γi (ξ) − γi (η)
] ∣∣ ≤ CMδ|ξ − η| (2.32a)∣∣� [Ti (ξ) − Ti (η)]
∣∣ ≤ CMδ|ξ − η|α (2.32b)∣∣� [gi (ξ) − gi (η)]
∣∣ ≤ CMδ|ξ − η|α. (2.32c)

The following lemma is our main building block for proving the Lipschitz
continuity for the map γ �→ v(γ ) in W 2,p(T):

Lemma 2.5. Let γi ∈ BM
p , i = 1, 2. For any ξ, η ∈ T,

�
[
(γi (ξ) − γi (η)) · Ti (ξ)

] = �[gi ](ξ)(ξ − η) + O(CMδ|ξ − η|1+α) (2.33a)

�
[(

γi (ξ) − γi (η)
) · Ni (ξ)

] = O(CMδ|ξ − η|1+α) (2.33b)

and there exists a bounded function |Cδ(ξ)| ≤ CMδ such that

�

[
1

|γi (ξ) − γi (η)|2
]

= Cδ(ξ)

|ξ − η|2 + O(CMδ|ξ − η|−2+α). (2.34)

In addition, for any ξ, η ∈ T and any ζ ∈ T such that |η − ζ |, |ξ − ζ | ≤ |ξ − η|
we have the maximal estimates

|� [(Ti (ξ) − Ti (η)) · Ti (ξ)]|
≤ CM |ξ − η|1+α

(
δmax

i
Mκi (ζ )) + M�[κi ](ζ )

)
, (2.35a)

∣∣� [
(γi (ξ) − γi (η)) (Ti (ξ) − Ti (η))

]∣∣
≤ CM |ξ − η|2+α

(
δmax

i
Mκi (ζ )) + M�[κi ](ζ )

)
. (2.35b)

Proof. We prove these one by one using repeatedly the fundamental theorem of
calculus, (2.31a)–(2.31c), and (2.32a)–(2.32c).
Estimate for (2.33a).

We first rewrite the left-hand side by the telescoping formula (2.29)

�
[(

γi (ξ) − γi (η)
) · Ti (ξ)

] =
∫ ξ

η

� [Ti (τ )gi (τ ) · Ti (ξ)] dτ

=
∫ ξ

η

(
�

[(
Ti (τ ) − Ti (ξ)

)
gi (τ ) · Ti (ξ)

] + �[gi ](τ )
)
dτ

= �[gi ](ξ)(ξ − η) +
∫ ξ

η

(
�

[(
Ti (τ ) − Ti (ξ)

)
gi (τ ) · Ti (ξ)

]

+ � [gi (τ ) − gi (ξ)]) dτ.
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By (2.31a), (2.31b), and (2.32b),

|� [(
Ti (τ ) − Ti (ξ)

)
gi (τ ) · Ti (ξ)

] | = O(CMδ|ξ − τ |α),

so this and (2.32c) prove (2.33a):

�
[(

γi (ξ) − γi (η)
) · Ti (ξ)

] = �[gi ](ξ)(ξ − η) + O(CMδ|ξ − η|1+α).

Estimate for (2.33b).
We use the fundamental theorem of calculus twice to obtain

�
[(

γi (ξ) − γi (η)
) · Ni (ξ)

] = �

[∫ ξ

η

∫ ξ

τ

κi (τ
′)gi (τ ′)Ni (τ

′) · Ni (ξ)gi (τ ) dτ ′ dτ
]

.

(2.36)

Distributing � in (2.36) gives

�
[(

γi (ξ) − γi (η)
) · Ni (ξ)

] =
∫ ξ

η

∫ ξ

τ

�
[
κi (τ

′)
]
g1(τ

′)N1(τ
′) · N1(ξ)g1(τ ) dτ ′ dτ

+
∫ ξ

η

∫ ξ

τ

κ2(τ
′)�

[
gi (τ

′)Ni (τ
′) · Ni (ξ)gi (τ )

]
dτ ′ dτ.

We can estimate the first term by its absolute value and the second term by using the
pointwise bound |�[gi (τ ′)Ni (τ

′) ·Ni (ξ)gi (τ )]| ≤ CMδ thanks to (2.31a)–(2.31c).
These considerations along with the assumption |κ|L p(T) ≤ M and the Hölder
inequality imply

�
[(

γi (ξ) − γi (η)
) · Ni (ξ)

] = O(CM |�[κi ]|L p(T)|ξ − η|1+α)

+ O

(
CMδ

∫ ξ

η

∫ ξ

τ

|κ2(τ ′)| dτ ′ dτ
)

= O(CMδ|ξ − η|1+α).

Estimate for (2.34).
We start with

�

[
1

|γi (ξ) − γi (η)|2
]

= �[γi (ξ) − γi (η)] · (γ1(ξ) − γ1(η) + γ2(ξ) − γ2(η))

|γ1(ξ) − γ1(η)|2|γ2(ξ) − γ2(η)|2 .

(2.37)

Observe that

�
[
γi (ξ) − γi (η)

] = �
[
γ̇i (ξ)

]
(ξ − η) + O(CMδ|ξ − η|1+α). (2.38)

Also, as in (2.12), for any ξ, η ∈ T with ξ �= η, we have

|ξ − η|2
|γi (ξ) − γi (η)|2 = 1

gi (ξ)2
+ O(CM |ξ − η|α). (2.39)
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Thus, by (2.37), (2.38), and (2.39), we have for some bounded function |Cδ(ξ)| ≤
CMδ that

�

[
1

|γi (ξ) − γi (η)|2
]

=
[
�

[
γ̇i (ξ)

]
(ξ − η) + O(CMδ|ξ − η|1+α)

]
|g1(ξ)|2|g2(ξ)|2|ξ − η|4

×
[
(γ̇1(ξ) + γ̇2(ξ))(ξ − η) + O(CM |ξ − η|1+α)

]

+ O(CMδ|ξ − η|−2+α)

= Cδ(ξ)

|ξ − η|2 + O(CMδ|ξ − η|α−2).

Estimate for (2.35a).
By the telescoping formula (2.29),

� [(Ti (ξ) − Ti (η)) · Ti (ξ)] = −
∫ ξ

η

� [Ni (τ ) · Ti (ξ)κi (τ )gi (τ )] dτ

= −
∫ ξ

η

� [Ni (τ ) · Ti (ξ)] κ1(τ )g1(τ ) dτ

−
∫ ξ

η

N2(τ ) · T2(ξ)� [κi (τ )] g1(τ ) dτ

−
∫ ξ

η

N2(τ ) · T2(ξ)κ2(τ )� [gi (τ )] dτ.

We use (2.8c), the difference bounds (2.32a)–(2.32c) to obtain that

� [(Ti (ξ) − Ti (η)) · Ti (ξ)] = O

(
CMδ|ξ − η|α

∫ ξ

η

|κ1(τ )| dτ
)

+ O

(
CM |ξ − η|α

∫ ξ

η

∣∣� [κi (τ )]
∣∣ dτ

)

+ O

(
CMδ|ξ − η|α

∫ ξ

η

∣∣κ2(τ )
∣∣ dτ

)
,

so, by the definition of maximal function we have

� [(Ti (ξ) − Ti (η)) · Ti (ξ)] = O(CMδ|ξ − η|1+α max
i

Mκi (ζ ))

+ O(CM |ξ − η|1+αM�[κi ](ζ )).

Estimate for (2.35b)
Since, by the fundamental theorem of calculus,

�
[
(γi (ξ) − γi (η)) (Ti (ξ) − Ti (η))

]

= −
∫ ξ

η

∫ ξ

η

�
[
gi (τ )Ti (τ ) · Ni (τ

′)κi (τ ′)gi (τ ′)
]
dτ ′dτ,

the bound follows from the same argument for (2.35a). The extra power of |ξ − η|
is given by the extra layer of integration. ��



57 Page 20 of 49 Arch. Rational Mech. Anal. (2023) 247:57

Thanks to (2.34) and (2.33a), we have the following estimate for the differences
of factors with linear dispersion in ∂2s v:

Corollary 2.6. Let γi ∈ BM
p , i = 1, 2. There exists a bounded function |Cδ(ξ)| ≤

CMδ such that for all ξ, η ∈ T, we have

�

[
(γi (ξ) − γi (η)) · Ti (ξ)

|γi (ξ) − γi (η)|2
]

= Cδ(ξ)
ξ − η

|ξ − η|2 + O(CMδ|ξ − η|1−α). (2.40a)

With all the preparations, we first show the Lipschitz continuity of γ → v(γ ) in
BM
p with a norm depending onM . As before, we will frequently use the telescoping

formula

�[ fi gi ] = �[ fi ]g1 + f2�[gi ].
Proposition 2.7. Let γi ∈ BM

p , i = 1, 2. Denote the distance between them in X p

by δ = |�[γi ]|W 2,p(T). The map γ �→ v(γ ) satisfies

|v(γ1) − v(γ2)|L∞(T) ≤ CMδ. (2.41)

Proof.

�
[
v(γi )

] =
∫
T

� [Ti (η)gi (η)] ln |γ1(ξ) − γ1(η)| dη

+
∫
T

T2(η)g2(η)�
[
ln |γi (ξ) − γi (η)|] dη.

For the first term, since γi ∈ BM
p , we have C−1

M |ξ − η| ≤ |γi (ξ) − γi (η)| ≤
CM |ξ −η|. This implies the bound

∣∣ ln |γi (ξ)−γi (η)|∣∣ ≤ CM +|ln |ξ − η||. It then
follows from (2.31a) and (2.31b) that∣∣∣∣
∫
T

� [Ti (η)gi (η)] ln |γ1(ξ) − γ1(η)| dη
∣∣∣∣ ≤ CMδ

∫
T

∣∣ ln |γ1(ξ)−γ1(η)|∣∣ dη ≤ CMδ.

(2.42)

For the second term, without loss of generality we assume
∣∣∣ γ1(ξ)−γ1(η)
γ2(ξ)−γ2(η)

∣∣∣ ≥ 1.

We start with an elementary inequality ln(1 + x) ≤ x for x > 0:

∣∣� [
ln |γi (ξ) − γi (η)|]∣∣ = ln

∣∣∣∣γ1(ξ) − γ1(η)

γ2(ξ) − γ2(η)

∣∣∣∣
≤ ln

(
1 +

∣∣∣∣∣
�

[
γi (ξ) − γi (η)

]
γ2(ξ) − γ2(η)

∣∣∣∣∣
)

≤
∣∣∣∣∣
�

[
γi (ξ) − γi (η)

]
γ2(ξ) − γ2(η)

∣∣∣∣∣ .

Since the definition of δ and assumptions γi ∈ BM
p imply that

∣∣� [
ln |γi (ξ) − γi (η)|]∣∣ ≤ CMδ,

we have the bound for the second part:∣∣∣∣
∫
T

T2(η)g2(η)�
[
ln |γi (ξ) − γi (η)|] dη

∣∣∣∣ ≤ CMδ. (2.43)
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Combining the two parts (2.42) and (2.43), we conclude that∣∣� [
v(γi )

]∣∣
L∞(T)

≤ CMδ.

��
Next, we estimate the second-order derivative for the map γ �→ v(γ ) as the

bound of the first-order derivative can be recovered by interpolation.

Proposition 2.8. Let γi ∈ BM
p , i = 1, 2. Denote the distance between them in X p

by δ = |�[γi ]|W 2,p(T). The map γ �→ v(γ ) satisfies
∣∣∣∂2s v(γ1) − ∂2s v(γ2)

∣∣∣
L p(T)

≤ CMδ. (2.44)

Proof. We apply the difference� to each term in ∂2s v (2.14) and obtain the decom-
position:

�[∂2s v(γi )] :=
∑

1≤n≤4

Hn(ξ),

with

H1(ξ) := −P.V .

∫
T

�

[
κi (η)Ni (η)

(γi (ξ) − γi (η)) · Ti (ξ)

|γi (s) − γi (η)|2 gi (η)

]
dη

H2(ξ) :=
∫
T

�

[
Ti (η)

[
(Ti (ξ) − Ti (η)) · Ti (ξ)

]
|γi (ξ) − γi (η)|2 gi (η)

]
dη

H3(ξ) := −�

[
κi (ξ)

∫
T

Ti (η)

[
(γi (ξ) − γi (η)) · Ni (ξ)

]
|γi (ξ) − γi (η)|2 gi (η)

]
dη

and

H4(ξ) := − 2
∫
T

�
[
Ti (η)

(
(γi (ξ) − γi (η)) · Ti (ξ)

)
(
(γi (ξ) − γi (η)) · (Ti (ξ) − Ti (η))

)
|γi (ξ) − γi (η)|4 gi (η)

]
dη.

Estimates of H1:
We first telescope and obtain a further decomposition

H1(ξ) = P.V .

∫
T

� [κi (η)gi (η)Ni (η)]
(γ1(ξ) − γ1(η)) · T1(ξ)

|γ1(s) − γ1(η)|2 dη

+ P.V .

∫
T

κ2(η)g2(η)N2(η)�

[
(γi (ξ) − γi (η)) · Ti (ξ)

|γi (s) − γi (η)|2
]
dη

:= H11(ξ) + H12(ξ).

By Corollary 2.3, the first term is equal to

H11(ξ) = P.V .

∫
T

� [κi (η)gi (η)Ni (η)]

(
ξ − η

g1(η)|ξ − η|2 + O(CM |ξ − η|α−1)

)
dη.
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Thus by the L p boundedness of the Hilbert transform and Young’s inequality, we
get

|H11|L p(T) ≤ CM |� [κiNi gi ]|L p(T) ≤ CMδ,

where in the last step we have used bounds (2.31a)–(2.31c).
For the second term H12, we apply Corollary 2.6 to obtain that

|H12|L p(T) ≤
(∫

T

∣∣∣∣|Cδ(ξ)|P.V .

∫
T

κ2(η)N2(η)g2(η)
ξ − η

|ξ − η|2 dη
∣∣∣∣
p

dξ

) 1
p

+ CMδ

(∫
T

∣∣∣∣
∫
T

κ2(η)|ξ − η|α−1 dη

∣∣∣∣
p

dξ

) 1
p

.

Then by the L p boundedness of the Hilbert transform and |Cδ(ξ)| ≤ CMδ we get
the same bound as H11 for H12.
Estimates of H2:

As before, we further split H2:

H2(ξ) =
∫
T

� [Ti (η)gi (η)]

[
(T1(ξ) − T1(η)) · T1(ξ)

]
|γ1(ξ) − γ1(η)|2 dη

+
∫
T

T2(η)g2(η)�

[[
(Ti (ξ) − Ti (η)) · Ti (ξ)

]
|γi (ξ) − γi (η)|2

]
dη

:= H21(ξ) + H22(ξ).

We first look at the term H21. By (2.31a) and (2.31b),

� [Ti (η)gi (η)] = O(CMδ),

while (2.8f) and (2.9d) from Lemma 2.2 imply that
[
(T1(ξ) − T1(η)) · T1(ξ)

]
|γ1(ξ) − γ1(η)|2 = O(CMMκ1(ξ)|ξ − η|α−1).

From these bounds, it follows that

|H21|L p(T) ≤ CMδ

[∫
T

∣∣∣
∫
T

Mκ1(ξ)|ξ − η|α−1 dη
∣∣∣p dξ

] 1
p ≤ CMδ,

where we have used again the L p boundedness of the maximal function.
Next, we similarly bound H22. As before, we first telescope,

�

[[
(Ti (ξ) − Ti (η)) · Ti (ξ)

]
|γi (ξ) − γi (η)|2

]

= �
[[

(Ti (ξ) − Ti (η)) · Ti (ξ)
]] 1

|γ1(ξ) − γ1(η)|2

+ [
(T2(ξ) − T2(η)) · T2(ξ)

]
�

[
1

|γi (ξ) − γi (η)|2
]

.

(2.45)
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Let us consider terms in (2.45) one by one. By (2.35a) from Lemma 2.5 and (2.8f)
from Lemma 2.2,

�
[[

(Ti (ξ) − Ti (η)) · Ti (ξ)
]]

|γ1(ξ) − γ1(η)|2 = O(CMδ|ξ − η|−1+α max
i

Mκi (ξ))

+ O(CM |ξ − η|−1+αM�[κi ](ξ))

(2.46)

and by (2.9d) and (2.34),

[
(T2(ξ) − T2(η)) · T2(ξ)

]
�

[
1

|γi (ξ) − γi (η)|2
]

= O(CMMκ2(ξ)|ξ − η|−1+αCδ(ξ)) + O(CMδMκ2(ξ)|ξ − η|−1+2α).

(2.47)
Therefore, combining (2.46) and (2.47) we obtain

∣∣H22(ξ)
∣∣ ≤ CMδmax

i
Mκi (ξ))

∫
T

|ξ − η|α−1 dη + CMM�[κi ](ξ)

∫
T

|ξ − η|α−1 dη,

and integrating in ξ gives |H21|L p(T) ≤ CMδ.

Estimates of H3:
To show |H3|L p(T) ≤ CMδ, it suffices to obtain the bound

sup
ξ

∫
T

∣∣∣∣∣Ti (η)gi (η)�

[[
(γi (ξ) − γi (η)) · Ni (ξ)

]
|γi (ξ) − γi (η)|2

]∣∣∣∣∣ dη ≤ CMδ (2.48)

since when the difference � applies to κi (ξ) or Ti (η)gi (η), the bound of the re-
sulting terms follows from (2.8d) and the definition of δ.

To show (2.48), we first telescope

�

[[
(γi (ξ) − γi (η)) · Ni (ξ)

]
|γi (ξ) − γi (η)|2

]

= �
[
(γi (ξ) − γi (η)) · Ni (ξ)

]
|γ1(ξ) − γ1(η)|2

+ [
(γ2(ξ) − γ2(η)) · N2(ξ)

]
�

[
1

|γi (ξ) − γi (η)|2
]

and then apply (2.33b) and (2.8f) to obtain that

�
[
(γi (ξ) − γi (η)) · Ni (ξ)

]
|γ1(ξ) − γ1(η)|2 = O(CMδ|ξ − η|−1+α), (2.49)

and (2.8d) and (2.34) to obtain that

[
(γ2(ξ) − γ2(η)) · N2(ξ)

]
�

[
1

|γi (ξ) − γi (η)|2
]

= O(CMδ|ξ − η|−1+α).

(2.50)

The bound (2.48) follows from (2.49) and (2.50) by a direct integration.
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Estimates of H4:

H4 = −2
∫
T

�[Ti (η)gi (η)]((γ1(ξ) − γ1(η)) · T1(ξ)
)

(
(γ1(ξ) − γ1(η)) · (T1(ξ) − T1(η))

)
|γi (ξ) − γi (η)|4 dη

− 2
∫
T

T2(η)g2(η)�

[(
(γi (ξ) − γi (η)) · Ti (ξ)

)
|γi (ξ) − γi (η)|4

× (
(γi (ξ) − γi (η)) · (Ti (ξ) − Ti (η))

)]
dη

:= H41 + H42.

We first claim that it suffices to consider the term H42 since the estimates for K4
in Proposition 2.4 together with the simple bound |�[Ti (η)gi (η)]| ≤ CMδ imply
the estimate for H41.

For H42, applying absolute value, let us further consider the decomposition

H42(ξ) ≤CM (H421(ξ) + H422(ξ))

where H421 and H422 are respectively

H421(ξ) :=
∫
T

∣∣∣∣∣�
[(

(γi (ξ) − γi (η)) · Ti (ξ)
)

|γi (ξ) − γi (η)|2
]∣∣∣∣∣∣∣∣∣∣

(
(γ1(ξ) − γ1(η)) · (T1(ξ) − T1(η))

)
|γ1(ξ) − γ1(η)|2

∣∣∣∣∣ dη

H422(ξ) :=
∫
T

∣∣∣∣∣
(
(γ2(ξ) − γ2(η)) · T2(ξ)

)
|γ2(ξ) − γ2(η)|2

∣∣∣∣∣∣∣∣∣∣�
[(

(γi (ξ) − γi (η)) · (Ti (ξ) − Ti (η))
)

|γi (ξ) − γi (η)|2
]∣∣∣∣∣ dη.

For H421, we use Corollary 2.6 and (2.9e) to obtain that

H421(ξ) ≤ O(CM max
i

Mκi (ξ)δ|ξ − η|1−α), (2.51)

and Young’s inequality implies that |H421|L p(T) ≤ CMδ.
For H422, we first bound the first factor by Corollary 2.3,

H422(ξ) ≤ CM

∫
T

|ξ − η|−1

∣∣∣∣∣�
[(

(γi (ξ) − γi (η)) · (Ti (ξ) − Ti (η))
)

|γi (ξ) − γi (η)|2
]∣∣∣∣∣ dη.

(2.52)
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By (2.35b), (2.34) and also (2.9e), we telescope again and infer the bound

�

[(
(γi (ξ) − γi (η)) · (Ti (ξ) − Ti (η))

)
|γi (ξ) − γi (η)|2

]

= CM |ξ − η|α
(
δmax

i
Mκi (ξ)) + M�[κi ](ξ)

)
. (2.53)

So combining (2.52) and (2.53) we obtain

|H422|L p(T)

≤ CM

[∫
T

[ ∫
T

CM |ξ − η|−1+α
(
δmax

i
Mκi (ξ) + M�[κi ](ξ)

)
dη

]p
dξ

] 1
p ≤ CMδ

where we have used the L p-boundedness of the maximal function and Young’s
inequality.

Since all the terms in H4 have been estimated, we conclude that

|H4|L p(T) ≤ CMδ.

��

2.6. The fixed-point argument

To run the fixed point argument, we will rewrite (CDE) in integral form:

γ (ξ, t) = γ0(ξ) +
∫ t

0
v(γ (ξ, t ′), t ′) dt ′. (2.54)

Now we prove that the integral equation (2.54) is suited for a fixed-point argument.

Proposition 2.9. For any 1 < p < ∞ and M > 1, there exist T = T (M, p) > 0

such that the followingholds.Givenγ0 ∈ B
M
2
p , the solutionmap S : C([0, T ]; BM

p ) →
C([0, T ]; BM

p )

γ �→ S(γ ) = γ0(ξ) +
∫ t

0
v(γ (ξ, t ′), t ′)dt ′ (2.55)

is well-defined and is a contraction on C([0, T ]; BM
p ), namely

‖S(γ )‖C([0,T ];BM
p ) ≤ ρ‖γ ‖C([0,T ];BM

p ),

with the contracting factor ρ ≤ CMT < 1.
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Proof. Let us first show that the map S isC([0, T ]; BM
p ) → C([0, T ]; BM

p ). Given
γ (ξ, t), denote by γ̃ (ξ, t) the image, γ̃ = S(γ ). By (2.55), for any t, t0 ∈ [0, T ],
we have

|γ̃ (t) − γ̃ (t0)|W 2,p(T) ≤ |t − t0| sup
t ′∈[0,T ]

|v(γ )|W 2,p(T) ≤ |t − t0|C(M, p).

So supt∈[0,T ] |γ̃ |W 2,p(T) ≤ M if we choose T = T (M, p) sufficiently small. We
also have the continuity of the map in the norm | · |W 2,p(T).

It remains to show |̃g|∗ ≤ M and �(γ̃ ) ≤ M . The bound |̃g|∗ ≤ M follows
from the embedding W 1,p(T) ⊂ C(T) by the following argument. Since

∣∣̃g − g0
∣∣ ≤ T sup

t ′∈[0,T ]

∫ t

0

∣∣∂sv(γ (ξ, t ′), t ′)g(ξ, t)
∣∣
L∞(T)

dt ′ ≤ TC(M, p) ≤ 1

2M
,

and 2
M ≤ g0 ≤ M

2 , we can choose T > 0 sufficiently small depending on M and
p such that 1

M ≤ g̃ ≤ M .
The bound �(γ̃ ) ≤ M follows from �(κ0, g0) ≤ M/2 and arguing similarly

to Lemma 2.1. Indeed, for any t ∈ [0, T ] and any ξ �= η, by (2.55) and the mean
value theorem we have

|γ̃ (ξ, t) − γ̃ (η, t)| ≥ |γ0(ξ) − γ0(η)| −
∫ t

0

∣∣∣v(γ (ξ, t ′), t ′) − v(γ (η, t ′), t ′)
∣∣∣dt ′

≥ |γ0(ξ) − γ0(η)| − MT |ξ − η| sup
t∈[0,T ]

∣∣∣∂sv(γ (·, t), t)
∣∣∣
L∞(T)

So if T > 0 is sufficiently small depending on M , then by Proposition 2.4 and the

assumption γ0 ∈ B
M
2
p

|ξ − η|
|γ̃ (ξ, t) − γ̃ (η, t)| ≤ 1

|γ0(ξ)−γ0(η)|
|ξ−η| − CMT

≤ 1
2
M − CMT

≤ M.

We have thus shown the solution map S : C([0, T ]; BM
p ) → C([0, T ]; BM

p ) is
well-defined.

Finally, we show the contraction property of S on C([0, T ]; BM
p ), which will

followdirectly from theLipschitz continuity estimates of ∂sv and ∂2s v fromProposi-
tion 2.7 and 2.8. Let γi ∈ C([0, T ]; BM

p ) and denote by γ̃i = S(γi ) their respective
images. Then by (2.55)

|� [
γ̃i

] |CW 2,p ≤ T sup
t

|� [vi (·, t)]|W 2,p(T)

By taking sufficiently small T > 0, using Proposition 2.7 and interpolations, it
suffices to show

sup
t

∣∣∣�
[
∂2ξ vi (·, t)

]∣∣∣
L p(T)

≤ CMδ. (2.56)
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Since ∂ξ = g−1
i ∂s on each γi , we have that

�
[
∂2ξ vi (·, t)

]
= �

[
−ġi
g2i

∂svi + ∂2s vi

g2i

]
.

Since supt |�[gi ]|W 1,p(T) ≤ CMδ and gi ≥ 1
M , (2.56) holds thanks to Proposi-

tion 2.8.
��

Proposition 2.9 yields the local wellposedness for W 2,p patches.

Theorem 2.10. Let 1 < p < ∞. For any γ0 ∈ X p, there is a unique local solution
γ to (CDE) in C([0, T ]; X p) for some T > 0 satisfying γ (0) = γ0.

The continuity in time with values in X p is understood in the sense of W 2,p

norm.Moreover, due toW 2,p bounds on v fromProposition 2.4 and Proposition 2.8,
it follows from (2.54) that the solution is actually in C1([0, T ];W 2,p(T)) as we
show in the next section.

3. Global Wellposedness in W 2,p from C1,α

In this section, we explain how to use the global C1,α regularity to obtain the
global W 2,p regularity for the vortex patches.

3.1. Improved estimates assuming C1,α

The key ingredient we need is the following proposition, which is a direct
consequence of the local well-posedness of the CDE in C1,α combined with the
global regularity of C1,α patches.

Proposition 3.1. Let 1 < p < ∞. For any γ0 ∈ X p, the unique solution γ ∈
C([0, T ]; X p(T)) to (CDE) on some [0, T ] can be uniquely continued for all times
as a C1,α solution to (CDE) satisfying

sup
t∈[0,T1]

(|g|∗ + |T|Cα(T) + � + |∂sv|L∞(T)

) ≤ C(γ0, T1) < ∞. (3.1)

Proof. By the embedding W 2,p(T) ⊂ C1,α(T), we have that γ0 ∈ C1,α(T). The
result then immediately follows from the estimates for the contour equation and
the global C1,α regularity in [16, Sect. 8.3]. ��

In the remainder of this section, we consider a fixed vortex patch solution
γ ∈ C([0, T ]; X p) with initial data γ0. To show global regularity in X p, it suffices
to show γ ∈ C([0,∞); Ẇ 2,p(T)) as the rest of the information is encoded in the
global C1,α regularity.

The constant C0 > 0 below is a positive constant depending only on the initial
data γ0, T > 0, and p > 1 that may change from line to line. Its existence is
ensured by Proposition 3.1. Using the additional bounds in (3.1), we have the
improved building blocks estimates, analogous to Lemma 2.2.
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Lemma 3.2. Let γ ∈ C([0, T ]; X p) be a solution of (CDE) with initial data γ0.
Let α = 1 − 1

p . For any t ∈ [0, T ] and any ξ, η ∈ T, we have

T(ξ) · T(η) = 1 + O(C0|ξ − η|2α) (3.2a)

T(ξ) − T(η) = O(C0|ξ − η|α) (3.2b)

T(η) · N(ξ) = O(C0|ξ − η|α) (3.2c)

(γ (ξ) − γ (η)) · N(ξ) = O(C0|ξ − η|1+α) (3.2d)

(T(ξ) − T(η)) · T(ξ) = O(C0|ξ − η|2α) (3.2e)

|γ (ξ) − γ (η)|−1 = O(C0|ξ − η|−1) (3.2f)

and for any ζ ∈ T lying between η and ξ , the maximal estimates

T(η) · N(ξ) = O(C0Mκ(ζ )|ξ − η|) (3.3a)

T(η) · T(ξ) = 1 + O(C0Mκ(ζ )|ξ − η|1+α) (3.3b)

(γ (ξ) − γ (η)) · N(ξ) = O(C0Mκ(ζ )|ξ − η|2) (3.3c)

T(ξ) · [T(ξ) − T(η)] = O(C0Mκ(ζ )|ξ − η|1+α) (3.3d)[
(γ (ξ) − γ (η)

] · [T(ξ) − T(η)] = O(C0Mκ(ζ )|ξ − η|2+α). (3.3e)

Finally,

(γ (ξ) − γ (η)) · T(ξ) = g(ζ )(ξ − η) + O(C0|ξ − η|1+α). (3.4)

The proof of Lemma 3.2 follows the same argument as Lemma 2.2: we just
need to replace the constant CM there by C0.

We are ready to prove the improved Sobolev estimate for v(γ ).

Proposition 3.3. Let 1 < p < ∞. If γ ∈ C([0, T ]; X p) is a solution of (CDE),
then

|∂2s v|L p(T) ≤ C0|γ |W 2,p(T) (3.5)

for all 0 ≤ t ≤ T .

Proof. The key is the linear appearance of |γ |W 2,p(T) in (3.5). We use the same
decomposition as in Proposition 2.4,

∂2s v(ξ) =
∑

1≤i≤4

Ki (ξ)

with

K1 = −P.V .

∫
T

κ(η)N(η)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η) dη

K2 =
∫
T

T(η)
(T(ξ) − T(η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η) dη

K3 = −
∫
T

T(η)
κ(ξ)(γ (ξ) − γ (η)) · N(ξ)

]
|γ (ξ) − γ (η)|2 g(η) dη

K4 = −2
∫
T

T(η)

(
(γ (ξ) − γ (η)) · T(ξ)

)(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4 g(η) dη.
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The proof goes almost identically to Proposition 2.4, so we only sketch the
details for K1.

|K1|L p(T) ≤
[∫

T

∣∣∣∣
∫
T

κ(η)N(η)
(ξ − η)

g(η)|ξ − η|2 g(η) dη

∣∣∣∣
p

dξ

] 1
p

+ O

(
C0

∫
T

∣∣∣∣
∫
T

|κ(η)||ξ − η|α−1 dη

∣∣∣∣
p

dξ

) 1
p

.

By the L p-boundedness of the Hilbert transform and Young’s inequality imply that
|K1|L p(T) ≤ C0|κ|L p(T).

Oncewe have |∂2s v|L p(T) ≤ C0|κ|L p(T), the conclusion follows, since by Propo-
sition 3.1 we have uniform control of |g|∗ and thus |κ|L p(T) ≤ C0|γ |W 2,p(T) for all
t ∈ [0, T ]. ��

3.2. Global W 2,p regularity

With the previous proposition, we obtain the global W 2,p regularity for vortex
patches.

Theorem 3.4. Let 1 < p < ∞. For any γ0 ∈ X p, there is a unique global solution
γ to (CDE) in C([0,∞); X p) ∩ C1([0,∞);W 2,p(T)) satisfying γ (0) = γ0.

Proof. Let γ be the unique local solution given by Theorem 2.10. Since γ is a
global C1,α patch solution for α = 1− 1

p satisfying (3.1) for all t ≥ 0, γ ceases to

be a W 2,p patch solution if and only if |γ (t)|W 2,p(T) blows up at some finite time
T > 0.

We show that supt∈[0,T ) |γ (t)|W 2,p(T) ≤ C(γ0, T ) < ∞, arriving at a contra-
diction due to local W 2,p wellposedness. For any t < T , we have

|γ (t)|W 2,p(T) ≤ |γ0|W 2,p(T) +
∫ t

0
|v(γ (·, t), t)|W 2,p(T). (3.6)

By Proposition 3.3 and Proposition 3.1,

|v(γ (·, t), t)|W 2,p(T) ≤ |v|L∞(T) + |∇v|L∞(T) + |∂2ξ v|L p(T)

≤ C(γ0, T ) + C(γ0, T )|γ (·, t)|W 2,p(T). (3.7)

By Grönwall’s inequality, it then follow from (3.6) and (3.7) that

|γ (t)|W 2,p(T) ≤ CeCt ,

and we conclude that γ remains a W 2,p patch solution up to T .
The above augment shows that γ ∈ C([0,∞);W 2,p). We now show the reg-

ularity C1([0,∞);W 2,p(T)) using the integral formulation of ∂tγ = v(γ ). By
Proposition 2.8, for any t1, t2 ∈ [0,∞), we have

|v(γ (·, t1), t1) − v(γ (·, t2), t2)|W 2,p(T) � |γ (·, t1) − γ (·, t2)| → 0 as |t1 − t2| → 0.

Sov(γ ) ∈ C([0,∞);W 2,p) and this in turn implies the regularityγ ∈ C1([0,∞);W 2,p).
��
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4. The Curvature Equation and Equivalent Formulation of Patch Evolution

In this section, we derive the equations for the evolution of geometric quantities
such as the tangent vector, arc-length metric, and curvature of the vortex patches
according to (CDE). To this end, we first sketch the derivation of these equations
for general velocity fields, which is a classical topic in differential geometry, see
e.g. [14,20]. Then we justify the computation for W 2,p vortex patches.

4.1. Derivation of the curvature equation

In our derivations in this section, we assume that all occurring objects are
sufficiently regular. Later we will make the regularity assumptions more precise in
Proposition 4.2.

4.1.1. Evolution of the Arc-Length Since the evolution of the curve γ is enabled
by the velocity v, we project the vector field v in (2.1) to the tangent and normal
vectors on the curve γ so that

∂tγ = (v · T)T + (v · N)N

= vτT + vnN,

where vτ and vn are respectively the tangent and normal component of the velocity
on the curve γ .

To simply the derivation, we denote by θ the angle between x1-axis and the
tangent, namelyT = (cos(θ), sin(θ)) andN = (sin(θ),− cos(θ)). Then the signed
curvature κ can be computed by

κ = −∂sT · N = ∂sθ. (4.1)

Next, we derive the evolution of the arc-length g := |γ̇ |. Using (2.3) we obtain

∂t g
2 = 2γ̇ · ∂t γ̇ = 2gT · ∂ξ (vτT + vnN) = 2g(v̇τ + vnκg).

Since by definition and (2.3),

v̇τ = v̇ · T − vnκg,

we have

∂t g
2 = 2gv̇ · T = 2g2∂sv · T.

Then we have the evolution of the metric g :

∂t g = g∂sv · T. (4.2)
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4.1.2. Evolutionof theTangent,Normal andCurvature Toderive the curvature
equation, we need to make use of the commutation identity:

∂t∂s = − (∂sv · T) ∂s + ∂s∂t , (4.3)

which follows from (4.2) and ∂s = g−1∂ξ by a routine application of product rule.
Using (4.3) we obtain the evolution of the tangent T,

∂tT = − (∂sv · T)T + ∂sv = (∂sv · N)N. (4.4)

Since

0 = ∂t (N · T) = ∂tN · T + N · ∂tT,

for the normal N, we have by (4.4)

∂tN = − (∂sv · N)T. (4.5)

Finally, using (4.1) and (4.3), we have

∂tκ = ∂t∂sθ = − (∂sv · T) ∂sθ + ∂s (−∂sv · N) (4.6)

which yields the curvature evolution equation

∂tκ = −2κ∂sv · T − ∂2s v · N. (4.7)

4.2. The curvature equation of vortex patches

The next lemma can be used to simplify the right-hand side of (4.7).

Lemma 4.1. For γ ∈ X p, the following identity holds:

∂sv · T = −
∫
T

T(η) · N(ξ)
(γ (ξ) − γ (η)) · N(ξ)

|γ (ξ) − γ (η)|2 g(η) dη. (4.8)

Proof. Denote by � the domain with γ as the boundary. In this proof, we write
everything in arc-length parametrization. Recall (2.13) and note that T(s) ·T(s′) =
N(s) · N(s′). We apply the divergence theorem (not difficult to justify rigorously)
to obtain

∂sv · T = P.V .

∫
γ

N(s) · N(s′) (γ (s) − γ (s′)) · T(s)

|γ (s) − γ (s′)|2 ds′

= P.V .

∫
�

divy

(
N(s)

(γ (s) − y) · T(s)

|γ (s) − y|2
)

dy

= −2P.V .

∫
�

(γ (s) − y) · N(s)(γ (s) − y) · T(s)

|γ (s) − y|4 dy. (4.9)

On the other hand, the right-hand side of (4.8) is equal to
∫

γ

N(s′) · T(s)
(γ (s) − γ (s′)) · N(s)

|γ (s) − γ (s′)|2 ds′,
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which after integration by parts is equal to

−2P.V .

∫
�

(γ (s) − y) · N(s)(γ (s) − y) · T(s)

|γ (s) − y|4 dy.

��
Based on the previous derivations (4.2) and (4.7) and the integrals for derivatives

∂sv and ∂2s v in Proposition 2.4, we introduce the system for arc-length g and
curvature κ evolution equations:

{
∂tκ = K (g, κ)

∂t g = G(g, κ)
(4.10)

where K (g, κ) and G(g, κ) are the nonlinear functionals given by (in part due to
Lemma 4.1)

K (g, κ) = −κ(ξ)∂sv · T(ξ)

+ P.V .

∫
T

κ(η)N(η) · N(ξ)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η)dη

−
∫
T

T(η) · N(ξ)

[
(T(ξ) − T(η)) · T(ξ)

]
|γ (ξ) − γ (η)|2 g(η)dη

+ 2
∫
T

T(η) · N(ξ)

(
(γ (ξ) − γ (η)) · T(ξ)

)(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4 g(η)dη

(4.11)
and

G(g, κ) = g(ξ)∂sv · T(ξ). (4.12)

We remark that the nonlinear functionals K (g, κ) and G(g, κ) are well-defined
in the sense that their values can be computed using only arc-length g and curvature
κ of the curve γ. In particular, they do not depend on the orientation or location of
the patch.

4.3. Equivalence of the arc-length/curvature system and vortex patch evolution

In this subsection, we show that a solution (g, κ) ∈ C([0, T ];W 1,p(T) ×
L p(T))of (4.10) corresponds to theuniqueEuler patch solutionγ ∈ C([0, T ];W 2,p(T))

of (CDE) and vice versa.

Proposition 4.2. Let γ0 ∈ W 2,p(T) be a proper parametrization of a simple closed
curve and let (g0, κ0) ∈ W 1,p(T) × L p(T)) be the corresponding arc-length and
curvature. Then the following statements are true.

(1) If γ ∈ C([0, T ]; X p) is a solution of (CDE) with initial data γ0, then its arc-
length g and curvature κ of γ must satisfy the equations (4.10) with initial data
g0 and κ0.



Arch. Rational Mech. Anal. (2023) 247:57 Page 33 of 49 57

(2) If (g, κ) ∈ C([0, T ];W 1,p(T)×L p(T)) as the arc-length and curvature defines
a simple closed curve and satisfies the equations (4.10) with initial data g0 and
κ0, then there exist a solution γ ∈ C([0, T ];W 2,p(T)) of (CDE) with initial
data γ0 such that (g, κ) is the arc-length and curvature of γ .

Before proving the proposition, we remark that the condition of (g, κ) defining a
closed curve in at each time t ∈ [0, T ] is equivalent to the conditions

∫
T

(cos(θ(ξ)), sin(θ(ξ)))g(ξ) dξ = 0

with θ(ξ) = ∫ ξ

0 κ(η)g(η) dη and
∫
T

κ(ξ)g(ξ) dξ = 2π for every t ∈ [0, T ].
Proof. (4.2) ⇒ (4.2):

Since γ ∈ C([0, T ]; X p), it satisfies the assumptions of Proposition 2.4 on
[0, T ] for a sufficiently largeM . ByTheorem3.4wealsohaveγ ∈ C1([0, T ];W 2,p).

ThisC1([0, T ];W 2,p) regularity ofγ implies the regularity g ∈ C1([0, T ];W 1,p),
T ∈ C1([0, T ];W 1,p) and κ ∈ C1([0, T ]; L p) thanks to the fact that g = |γ̇ | > 0
uniformly on T × [0, T ]. Such regularity in turn allows us to derive the arc-length
equation (4.2) using the (now rigorous) computation in (4.1.1). The derivations of
the evolution of tangent (4.4) and curvature (4.6) are also justified following (4.3).
(4.2) ⇒ (4.2):

Let us define the tangent vectors T(ξ, t)

T(ξ, t) = (cos θ(ξ, t), sin θ(ξ, t)), θ(ξ, t) = θ(0, t) +
∫ ξ

0
κ(η, t)g(η, t) dη,

(4.13)
and the curve

γ (ξ, t) = γ (0, t) +
∫ ξ

0
T(η, t)g(η, t) dη, (4.14)

with θ(0, t) and γ (0, t) to be determined. By the assumptions on (g, κ), γ is a well-
defined simple closed curve, andγ ∈ C([0, T ];W 2,p(T))provided θ(0, t), γ (0, t) ∈
C([0, T ]). Therefore, we only need to show how to determine θ(0, t) and γ (0, t)
so that γ solves (CDE).

Thanks to the invariance of translation and rotation in the definition of nonlinear
functionals K (g, κ) and G(g, κ), we can use (4.13) and (4.14) to evaluate the
equations (4.11) and (4.12). In particular, we know that the quantities ∂2s v · N,
∂sv · T are known functions on T × [0, T ] given by g and κ , but ∂sv and v are to
be determined along with T, N, and γ .

Differentiating (4.13) in time, we find that

∂tT(ξ, t) = −
(∫ ξ

0
∂t (κg) dη + ∂tθ(0, t)

)
T⊥(ξ, t). (4.15)

Since (g, κ) is a solution of (4.10)

∂t (κg) = −∂s(∂sv · N)g. (4.16)
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Using (4.16), we find that the expression in the bracket in (4.15) is equal to

−(∂sv · N)(ξ, t) + (∂sv · N)(0, t) + ∂tθ(0, t).

Let us now define θ(0, t) to be the solution of{
∂tθ(0, t) = −(∂sv · N)(0, t),

θ(0, 0) = θ0(0),
(4.17)

where θ0(ξ) the initial angle is computed using the initial data γ0. Note that the
right-hand side of (4.17) is a known function in terms of g and κ since ∂sv ·N only
involves relative angles and relative distance by (4.13) and (4.14). Then by (4.13)
and (4.15) we arrive at

∂tT(ξ, t) = −(∂sv · N)(ξ, t)T⊥(ξ, t). (4.18)

Now that we have determined the tangent T and normal N, we have

∂ξ v = g(∂sv · T)T + g(∂sv · N)N (4.19)

is also determined. Furthermore, since v = ∫
T
T(η)g(η) ln |γ (ξ) − γ (η)| dη does

not depend on γ (0, t) in (4.14), we have fully determined the velocity v on γ as a
function T × [0, T ] → R

2.
Next, we will determine the curve γ by solving for γ (0, t), and show that γ is

a solution of (CDE). Let us differentiate (4.14) in time. We obtain

∂tγ (ξ, t) = ∂tγ (0, t) +
∫ ξ

0
∂t (T(η, t)g(η, t)) dη.

Using (4.18), (4.2), and N = −T⊥, we find that the expression under the integral
is equal to

−(∂sv · N )T⊥g + Tg(∂sv · T) = (∂ξ v · T)T + (∂ξ v · N)N = ∂ξ v.

Therefore, γ satisfies the equation

∂tγ (ξ, t) = v(γ (ξ, t), t) − v(γ (0, t), t) + ∂tγ (0, t).

Define γ (0, t) by solving ∂tγ (0, t) = v(γ (0, t), t), thenwe see that γ (ξ, t) satisfies
the Euler patch equation (CDE). ��

5. Illposedness of C2 Patches

In this section,wewill prove themain illposedness results based on the curvature
equation. The proof goes in several steps.

(1) The first step is to rewrite the curvature equation (4.7) into (5.3) by isolating
the linear dispersion effect.

(2) We then show that in the W 2,p setting, namely when γ ∈ X p for p large, the
linear term in (5.3) is the dominant term.

(3) The last step is to use Duhamel’s principle and pick initial data to show the
evolution group induces the norm inflation |κ|L p(T) → ∞ as p → ∞ over a
fixed time interval [0, T ] that is independent of p.



Arch. Rational Mech. Anal. (2023) 247:57 Page 35 of 49 57

5.1. Reformulation of the curvature equation

We start by recasting the curvature equation. Denote byH the Hilbert transform
on T, namely

H f (ξ) = 1

2π
P.V .

∫
T

f (η) cot

(
ξ − η

2

)
dη.

Note that the kernel is obtained by periodizing the Hilbert transform on the real
line,

1

2π
cot

( x
2

)
= 1

πx
+ 1

π

∑
n≥1

1

x + 2πn
+ 1

x − 2πn
. (5.1)

It is classical [7] (see also e.g. [18] for an easy reference) that the periodic Hilbert
transform is bounded on L p(T) for 1 < p < ∞ and on Cα(T) for 0 < α < 1.
Here we recall the periodic Hölder space Cα(T) is equipped with the norm

| f |Cα(T) = | f |L∞(T) + sup
ξ �=η

| f (ξ) − f (η)|
|ξ − η| . (5.2)

We will now further analyze the curvature equation (4.10), (4.11) to obtain the
following:

Theorem 5.1. Suppose that γ ∈ C([0, T ]; BM
p ), p > 2, and set α = 1 − 1

p ,

β = 1 − 2
p . Then on the time interval [0, T ], the curvature κ satisfies

∂κ

∂t
= a(ξ, t)κ + πH(κ)(ξ, t) + F(ξ, t), (5.3)

where a ∈ Cα(T) and F ∈ Cβ(T) uniformly in t ∈ [0, T ] with norms depending
on T and M.

Here a = −∂sv ·T(ξ, t) and we will split F := FL + FN as shown below. The
two error terms FL and FN are defined respectively by

FL(ξ) := −πH(κ) + P.V .

∫
T

κ(η)N(η) · N(ξ)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η)dη

(5.4)
and

FN (ξ) = −
∫
T

T(η) · N(ξ)

[
(T(ξ) − T(η)) · T(ξ)

]
|γ (ξ) − γ (η)|2 g(η)dη

+2
∫
T

T(η) · N(ξ)
(
(γ (ξ) − γ (η)) · T(ξ)

)

×
(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4 g(η)dη. (5.5)
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The driving mechanism of C2 illposedness is the dispersion of the Hilbert
transform in (5.3). In fact, sinceH2 = − Id, one has the following formula

etπH =
∑
n

(tπH)n

n! = cos(π t) Id+ sin(π t)H. (5.6)

To exploit the above dispersion of the Hilbert transform, we first need to establish
suitable estimates for a and F . Then by a simple application of theDuhamel formula
(namely (5.24) below), we can establish norm inflation for a suitable new variable
that implies C2 illposedness.

5.2. Hölder estimates of coefficients

We first show that F is Hölder if p > 2 with a Hölder exponent β = 1 − 2
p .

Before we proceed, recall that CM denotes a positive constant depending only
on M, p that may change from line to line and the big O notation X = O(Y ) for a
quantity X such that |X | ≤ CY for some absolute constant C > 0.

Proposition 5.2. Let 2 < p ≤ ∞ and β = 1 − 2
p . If γ ∈ C([0, T ]; BM

p ) for some
M > 1, then the error term FL defined by (5.4) satisfies the estimate

|FL |Cβ(T) ≤ CM .

Proof. Let us write FL in abbreviation

FL = P.V .

∫
T

κ(η)QL(ξ, η) dη +
∫
T

κ(η)QS(ξ, η), dη. (5.7)

where the first term with the kernel QL is the main term

QL(ξ, η) = − 1

ξ − η
+ N(η) · N(ξ)

(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η) (5.8)

while the second term has a smoothing kernel QS(ξ, η) = −∑
n≥1(ξ − η +

2πn)−1 − (ξ − η − 2πn)−1.

It suffices to show the bound only for the first term in (5.7). Similarly to the
earlier arguments and with slight abuse of notation, let us denote �δ f (ξ) = f (ξ +
δ) − f (ξ). We have

�δP.V .

∫
T

κ(η)QL(ξ, η) dη =
∫

|ξ−η|<2δ
κ(η)

(
QL(ξ + δ, η) − QL(ξ, η)

)
dη

+
∫

|ξ−η|≥2δ
κ(η)

(
QL(ξ + δ, η) − QL(ξ, η)

)
dη

:= F1(ξ) + F2(ξ).

The rest of the proof is devoted to proving |Fi (ξ)| ≤ CMδβ .
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For the inner region |ξ −η| < 2δ, by Corollary 2.3 and (2.8a) from Lemma 2.2
for each η ∈ T, there exists a bounded function Cη(ξ) with |Cη(ξ)| ≤ CM such
that for all ξ �= η

|QL(ξ, η)| =
∣∣∣∣ ξ − η

|ξ − η|2 − N(η) · N(ξ)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2 g(η)

∣∣∣∣
= Cη(ξ)|ξ − η|−1+α.

We then apply absolute value to the integrand in F1 and use the bound on Cη(ξ) to
obtain that

|F1(ξ)| ≤ CM

∫
|ξ−η|<2δ

|κ(η)|
(
|ξ + δ − η|−1+α + |ξ − η|−1+α

)
dη.

By Hölder’s inequality with p′ being the Hölder dual of p, it follows that

|F1(ξ)| ≤ CM |κ|L p

[∫
|ξ−η|<4δ

|ξ − η|(−1+α)p′
dη

] 1
p′ = C(M, p)|κ|L pδ

1− 2
p .

Here in the last step we have used (−1 + α)p′ = − 1
p−1 > −1 when p > 2.

For the outer region |ξ − η| ≥ 2δ, QL is a.e. differentiable in ξ , and we first
derive a bound for ∂ξ QL . Differentiating (5.8) in ξ gives

∂ξ QL(ξ, η) =
( 1

|ξ − η|2 + N(η) · N(ξ)
g(ξ)

|γ (ξ) − γ (η)|2 g(η)

− 2N(η) · N(ξ)

[
(γ (ξ) − γ (η)) · T(ξ)

]2
g(ξ)

|γ (ξ) − γ (η)|4 g(η)
)

+ κ(ξ)g(ξ)
(
N(η) · T(ξ)

(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2
− N(η) · N(ξ)

(γ (ξ) − γ (η)) · N(ξ)

|γ (ξ) − γ (η)|2
)
g(η).

We now use the estimates in Lemma 2.2 to obtain the bounds on each summand in
∂ξ QL : for instance, (2.8a), (2.12) and the Cα continuity of g yield

−N(η) · N(ξ)
g(ξ)

|γ (ξ) − γ (η)|2 g(η) = −1

|ξ − η|2 + O(CM |ξ − η|−2+α); (5.9)

(2.8a), Corollary 2.3, and the Cα continuity of g yield

2N(η)·N(ξ)

[
(γ (ξ) − γ (η)) · T(ξ)

]2
g(ξ)

|γ (ξ) − γ (η)|4 g(η) = 2

|ξ − η|2 +O(CM |ξ −η|−2+α);
(5.10)

and similarly ∣∣∣∣N(η) · T(ξ)
(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|2
∣∣∣∣ ≤ CM |ξ − η|−1+α,

∣∣∣∣N(η) · N(ξ)
(γ (ξ) − γ (η)) · N(ξ)

|γ (ξ) − γ (η)|2
∣∣∣∣ ≤ CM |ξ − η|−1+α.

(5.11)
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Then it follows from (5.9), (5.10), and (5.11) that for ξ, η ∈ T such that |ξ−η| ≥ 2δ,
we have

∂ξ QL(ξ, η) = O(CM |ξ − η|−2+α) + κ(ξ)O(CM |ξ − η|−1+α). (5.12)

By the fundamental theorem of calculus and (5.12), for any δ > 0 and any η ∈ T

with |ξ − η| ≥ 2δ we have

∣∣∣QL (ξ + δ, η) − QL (ξ, η)

∣∣∣ ≤
∫ ξ+δ

ξ

∣∣∣∂ξ QL (ξ ′, η)

∣∣∣ dξ ′

≤ CM

∫ ξ+δ

ξ

(|ξ ′ − η|−2+α + |κ(ξ ′)||ξ ′ − η|−1+α
)
dξ ′.

(5.13)

Now we compute the integral on the right-hand side above. Since |ξ −η| ≥ 2δ,
we have |ξ ′ − η| ≤ 2|ξ − η| in the above integral, and it follows from (5.13),
|κ|L p(T) ≤ CM , and Hölder’s inequality that

∣∣∣QL (ξ + δ, η) − QL (ξ, η)

∣∣∣ ≤ CM

(
δ|ξ − η|−2+α + |ξ − η|−1+α

∫ ξ+δ

ξ

|κ(ξ ′)| dξ ′
)

≤ CM
(
δ|ξ − η|−2+α + δα |ξ − η|−1+α

)
. (5.14)

Now that we have a good bound on the finite difference of QL , it follows from
(5.14) that

|F2(ξ)| ≤ CM

∫
|ξ−η|≥2δ

κ(η)

∣∣∣QL(ξ + δ, η) − QL(ξ, η)

∣∣∣ dη

≤ CM

∫
|ξ−η|≥2δ

κ(η)(δ|ξ − η|−2+α + δα|ξ − η|−2+α) dη

≤ CMδ

[∫
|ξ−η|≥2δ

|ξ − η|(−2+α)p′
dη

] 1
p′

+ CMδα

[∫
|ξ−η|≥2δ

|ξ − η|(−1+α)p′
dη

] 1
p′

≤ CMδ
1− 2

p ,

where we have used that |κ|L p(T) ≤ CM together with the Hölder inequality. ��
Next, we show that the other error term FN is also Hölder continuous in space.

Proposition 5.3. Let T > 0. For any 3
2 < p ≤ ∞, if γ ∈ C([0, T ]; BM

p ) for some
M > 1, then the nonlinear error term FN defined by (5.5) satisfies the estimate

|FN |Cα(T) ≤ CM ,

where as before α = 1 − 1
p .
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Proof. Let us introduce the shorthand notation

FN (ξ) =
∫
T

RN (ξ, η) dη.

As before denote by �δ the difference of forward spacing δ > 0. We have

�δFN (ξ) =
∫

|ξ−η|<2δ

(
RN (ξ + δ, η) − RN (ξ, η)

)
dη

+
∫

|ξ−η|≥2δ
RN (ξ + δ, η) − RN (ξ, η)

)
dη

:= F3(ξ) + F4(ξ).

We need to show |Fi (ξ)| ≤ CMδα .
For the inner region, |ξ − η| ≤ 2δ, we first show the bound

|RN (ξ, η)| ≤ CMMκ(η)|ξ − η|−1+2α. (5.15)

Indeed, as in the proof of Proposition 2.4, by (2.8c), (2.9d), and (2.9e)

|RN (ξ, η)| ≤ CM

∣∣∣T(η) · N(ξ)
(
(γ (ξ) − γ (η)) · T(ξ)

)(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4

∣∣∣

+ CM

∣∣∣T(η) · N(ξ)

[
(T(ξ) − T(η)) · T(ξ)

]
|γ (ξ) − γ (η)|2

∣∣∣
≤ CM |ξ − η|α|ξ − η|Mκ(η)|ξ − η|2+α|ξ − η|−4

+ CM |ξ − η|αMκ(η)|ξ − η|1+α|ξ − η|−2

≤ CMMκ(η)|ξ − η|−1+2α.

Then, by (5.15) and the Hölder’s inequality with p′ = p
p−1 ,

|F3(ξ)| ≤ CM

∫
|ξ−η|<2δ

Mκη
[
|ξ + δ − η|−1+2α + |ξ − η|−1+2α

]
dη

≤ CM

( ∫
|ξ−η|<4δ

|ξ − η|(−1+2α)p′
dη

) 1
p′

,

This is integrable since (1−2α)p′ = p−2
p−1 ∈ (−1, 1]when p > 3

2 , and we compute

the integral to find that |F1(ξ)| ≤ CMδ
2− 3

p , which is more than we need.
Next, we consider the outer region |ξ − η| ≥ 2δ. We use the same strategy as

in the previous proposition. As RN (ξ, η) is a.e. differentiable in ξ in this region,
we first derive a bound for the ∂ξ RN . Differentiating in ξ gives

∂ξ RN (ξ, η) = κ(ξ)g(ξ)
( − I1 + I2 + 2I3 − 2I4 − 2I5

)
+ g(ξ)

(
2J1 + 2J2 + 2J3 − 8J4

) (5.16)
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where the terms Ii are

I1 : = T(η) · T(ξ)

[
(T(ξ) − T(η)) · T(ξ)

]
|γ (ξ) − γ (η)|2 g(η)

I2 : = T(η) · N(ξ)

[
(T(ξ) − T(η)) · N(ξ)

]
|γ (ξ) − γ (η)|2 g(η)

I3 : = T(η) · T(ξ)

(
(γ (ξ) − γ (η)) · T(ξ)

)(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4 g(η)

I4 : = T(η) · N(ξ)

(
(γ (ξ) − γ (η)) · N(ξ)

)(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4 g(η)

I5 : = T(η) · N(ξ)

(
(γ (ξ) − γ (η)) · T(ξ)

)(
(γ (ξ) − γ (η)) · N(ξ)

)
|γ (ξ) − γ (η)|4 g(η)

and terms Ji ’s are

J1 : = T(η) · N(ξ)
(T(ξ) − T(η)) · T(ξ)(γ (ξ) − γ (η)) · T(ξ)

|γ (ξ) − γ (η)|4 g(η) dη

J2 : = T(η) · N(ξ)
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

|γ (ξ) − γ (η)|4 g(η) dη

J3 : = T(η) · N(ξ)

(
(γ (ξ) − γ (η)) · T(ξ)

)(
T(ξ) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4 g(η)

J4 : = T(η) · N(ξ)

(
(γ (ξ) − γ (η)) · T(ξ)

)2(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|6 g(η).

Next, we will derive the bound
∣∣∂ξ RN (ξ, η)

∣∣ ≤ CM
(|κ(ξ)| + Mκ(ξ)

)Mκ(η)|ξ − η|−1+α. (5.17)

By the structure of ∂ξ RN given by (5.16), it suffices to show for Ii ’s the bound
∣∣Ii (ξ, η)

∣∣ ≤ CMMκ(η)|ξ − η|−1+α (5.18)

and for Ji ’s the bound∣∣Ji (ξ, η)
∣∣ ≤ CMMκ(ξ)Mκ(η)|ξ − η|−1+α. (5.19)

Estimates of Ii ’s:
For each Ii term, we use one of the maximal bounds in Lemma 2.2.
By (2.9d),

∣∣T(η) · T(ξ)(T(ξ) − T(η)) · T(ξ)
∣∣ ≤ CMMκ(η)|ξ − η|1+α,

so I1 satisfies (5.18).
By (2.8b) and (2.9a),

∣∣T(η) · N(ξ)
∣∣∣∣(T(ξ) − T(η)) · N(ξ)

∣∣ ≤ CMMκ(η)|ξ − η|1+α,

so I2 satisfies (5.18).
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By (2.9e),
∣∣(γ (ξ) − γ (η)) · (T(ξ) − T(η))

∣∣ ≤ CMMκ(η)|ξ − η|2+α

so I3 satisfies (5.18).
By (2.8c), (2.8d), and (2.9e),

∣∣T(η) · N(ξ)
(
(γ (ξ) − γ (η)) · N(ξ)

)(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)∣∣
≤ CMMκ(η)|ξ − η|3+3α

so I4 satisfies (5.18).
By (2.8c) and (2.9c),

∣∣T(η) · N(ξ)
(
(γ (ξ) − γ (η)) · T(ξ)

)(
(γ (ξ) − γ (η)) · N(ξ)

)∣∣
≤ CMMκ(η)|ξ − η|3+α

so I5 satisfies (5.18).
Estimates of Ji :

Next, we look at the Ji terms. Each of these requires using twomaximal bounds
from Lemma 2.2.

By (2.9a) and (2.9d), J1 satisfies (5.19):

|J1(ξ, η)| ≤
∣∣∣T(η) · N(ξ)

(T(ξ) − T(η)) · T(ξ)

|γ (ξ) − γ (η)|3
∣∣∣

≤ CMMκ(ξ)Mκ(η)|ξ − η|−1+α.

By (2.9a) and (2.9e), J2 satisfies (5.19):

|J2(ξ, η)| ≤ CM

∣∣∣T(η) · N(ξ)
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

|γ (ξ) − γ (η)|4 g(η)

∣∣∣
≤ CMMκ(ξ)Mκ(η)|ξ − η|−1+α.

By (2.9a) and (2.9d), J3 satisfies (5.19):

|J3(ξ, η)| ≤ CM

∣∣∣T(η) · N(ξ)

(
T(ξ) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|3

∣∣∣
≤ CMMκ(ξ)Mκ(η)|ξ − η|−1+α.

By (2.9a) and (2.9e), J4 satisfies (5.19):

|J4(ξ, η)|

≤ CM

∣∣∣T(η) · N(ξ)

(
(γ (ξ) − γ (η)) · T(ξ)

)2(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|6

≤ CM

∣∣∣T(η) · N(ξ)

(
(γ (ξ) − γ (η)) · (T(ξ) − T(η))

)
|γ (ξ) − γ (η)|4

∣∣∣
≤ CMMκ(ξ)Mκ(η)|ξ − η|−1+α.
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Combining the bounds for Ii and Ji , we have established (5.17). Since ξ+δ �= η

in the region |ξ − η| ≥ 2δ, by the fundamental theorem of calculus, (5.17), and the
bound |ξ ′ − η| ≤ 2|ξ − η| for all ξ ′ ∈ [ξ, ξ + δ], we have

|RN (ξ + δ, η) − RN (ξ, η)| ≤
∫ ξ+δ

ξ

∣∣∂ξ RN (ξ ′, η)
∣∣ dξ ′

≤ CMMκ(η)

∫ ξ+δ

ξ

|ξ ′ − η|−1+α (κ(ξ) + Mκ(ξ)) dξ ′

≤ CM |ξ − η|−1+αMκ(η)

∫ ξ+δ

ξ

(κ(ξ) + Mκ(ξ)) dξ ′

≤ CMδα|ξ − η|−1+αMκ(η).

Inserting this above into F2, by Hölder’s inequality we have

|F2(ξ)| ≤ CMδα

∫
|ξ−η|≥2δ

|ξ − η|−1+αMκ(η) dη ≤ CMδα

where we have used that |ξ − η|−1+α ∈ L p′
(T) when p > 3

2 . ��
We recall that the multiplicative coefficient a = −∂sv · T is also Hölder con-

tinuous, with an exponent α = 1 − 1
p by Proposition 2.4.

Lemma 5.4. Let 1 < p ≤ ∞, and assume γ ∈ C([0, T ]; BM
p ), then the coefficient

a = −∂sv · T satisfies the estimate

|a|Cα(T) ≤ CM .

5.3. A Commutator estimate

The last ingredient we need for the C2 illposedness is

Lemma 5.5. Let 1 < p < ∞ and 1
p < σ ≤ 1. Suppose that f ∈ L p(T) and

h ∈ Cσ (T). Then the commutator satisfies the estimate

|[H, h] f |Cβ(T) ≤ C(p, σ )|h|Cσ (T)| f |L p(T)

for β = σ − 1
p .

Proof. This follows from a standard computation in PDE and we sketch the details
here. Denote by H(ξ) the kernel of the periodic Hilbert transform. We have

[H, h] f (ξ) =
∫
T

[h(η) − h(ξ)] f (η)H(ξ − η) dη.

Since H(ξ−η) ∼ (ξ−η)−1 for small |ξ−η| > 0 and |h(η)−h(ξ)| ≤ |h|Cσ |ξ−η|σ ,
we have |[H, h] f |L∞ � | f |L p |h|Cσ .

Next, we show the Hölder continuity with exponent β = σ − 1
p . Denote by �δ

the difference operator of spacing δ, namely�δ f = f (ξ +δ)− f (ξ). Without loss
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of generality we assume δ > 0 and aim to prove |�δ[H, h] f | � δβ |h|Cσ | f |L p . We
split the integral �δ[H, h] f in the following way:

�δ[H, h] f =
∫
T

[(
h(η) − h(ξ + δ)

)
H(ξ − η + δ)

−
(
h(η) − h(ξ)

)
H(ξ − η)

]
f (η) dη

:= I1 + I2.

Here I1 is the integral on |ξ − η| < 2δ and I2 on |ξ − η| ≥ 2δ.
Case 1: |ξ − η| < 2δ

In this case, we first use the σ -Hölder continuity of h to obtain that

I1 ≤
∣∣∣∣
∫

|ξ−η|<2δ

[(
h(η) − h(ξ + δ)

)
H(ξ − η + δ)

−
(
h(η) − h(ξ)

)
H(ξ − η)

]
f (η) dη

∣∣∣
≤ |h|Cσ

∫
|ξ−η|<2δ

(
|ξ − η + δ|σ−1 + |ξ − η|σ−1

)
| f (η)| dη.

Since −1 < σ − 1 ≤ 0, a direct computation using the Hölder inequality and the
bound |ξ − η| < 2δ gives

I1 � |h|Cσ | f |L p

[∫
|ξ−η|<4δ

|ξ − η|( p
p−1 )(σ−1) dη

] p−1
p

.

Since (
p

p−1 )σ − 1 > −1, we can evaluate the integral and obtain that

I1 � |h|Cσ | f |L pδ
σ−1+ p−1

p = |h|Cσ | f |L pδβ.

Case 2: |ξ − η| ≥ 2δ
In this case, we first rearrange the terms as

I2 ≤
∣∣∣
∫

|ξ−η|≥2δ

[(
h(η) − h(ξ)

)(
H(ξ − η + δ) − H(ξ − η)

)

+ (
h(ξ) − h(ξ + δ)

)
H(ξ − η + δ)

]
f (η) dη

∣∣∣.
Recall that for the kernel H(ξ) = 1

2π cot( ξ
2 ), we have for all |ξ − η| ≥ 2δ the

bounds

|H(ξ − η + δ) − H(ξ − η)| � δ

|ξ − η|2
|H(ξ − η + δ)| � 1

|ξ − η| .
(5.20)

It then follows from (5.20) and the σ -Hölder continuity of h that

I2 � |h|Cσ

(
δ

∫
|ξ−η|≥2δ

|ξ − η|σ−2 f (η) dη + δσ

∫
|ξ−η|≥2δ

|ξ − η|−1 f (η) dη

)

� |h|Cσ δσ

∫
|ξ−η|≥2δ

|ξ − η|−1 f (η) dη.
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From here we can apply Hölder’s inequality (since p < ∞) and use the condition
β = σ − 1

p to conclude that

I2 � |h|Cσ | f |L pδσ
( ∫

|ξ−η|≥2δ
|ξ − η|− p

p−1

) p−1
p = |h|Cσ | f |L pδβ.

��

5.4. Proof of C2 illposedness

In what follows, we restrict ourselves to the case 4 ≤ p ≤ ∞ (away from
p = 2) so that there exists a fixed small β > 0 with the following property.

In the remainder of this section, we denote by C(M, T ) a large constant de-
pending only on M and T but not p that may change from line to line.

Lemma 5.6. Fix β = 1
2 . For any M > 1 and T > 0, there is a large constant

C = C(M, T ) depending only on M and T such that for any γ ∈ C([0, T ]; BM
4 )

the uniform Hölder estimates hold

sup
t∈[0,T ]

|F |Cβ(T) + sup
t∈[0,T ]

|a|Cβ(T) ≤ C(M, T ), (5.21)

and

sup
t∈[0,T ]

|[H, e− ∫ t
0 a]κ|Cβ(T) ≤ C(M, T ). (5.22)

Proof. Since 1 − 2
4 = 1

2 , (5.21) follows directly from Propositions 5.2, 5.3 and
Lemmas 5.4, 5.5.

Lemma 5.5 with σ = 3/4 and p = 4 implies that

|[H, e− ∫ t
0 a]κ|

C
1
2 (T)

≤ C |κ|L4(T)|e− ∫ t
0 a |

C
3
4 (T)

≤ C(M, T ),

where we have used a = ∂sv · T ∈ C([0, T ];C 3
4 (T)) with |a|

C
3
4 (T)

≤ CM due to

γ ∈ C([0, T ]; BM
4 ) and also x �→ e−x is smooth. ��

With Lemma 5.6, we are in position to prove C2 illposedness. Define a new
variable using a variation of parameters

K (ξ, t) = e− ∫ t
0 a(ξ,τ )dτ κ(ξ, t), (5.23)

then by (5.3) it satisfies the equation

∂t K = πHK − π [H, e− ∫ t
0 a]κ + F̃,

where F̃ := e− ∫ t
0 a F and [A, B] := AB − BA denote the commutator.
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By Duhamel’s principle, we recast the equation for K into the integral form

K (t) = etπHκ0 +
∫ t

0
e(t−t ′)πH

(
−π [H, e− ∫ t ′

0 a]κ + F̃

)
dt ′, (5.24)

By Lemma 5.6, for any M > 1 and T > 0 we have the following uniform bound
for any p ≥ 4,

|K (t)|L p(T) ≤ c(M, T )|κ(t)|L p(T) for all t ∈ [0, T ],

so it suffices to show the inflation for K as p → ∞.
For some suitable initial data γ0 ∈ C2(T) with κ0 ∈ C(T), we will see that the

linear dispersion yields |etπHK0|L p(T) → ∞ as p → ∞. So the task is to verify
the integral terms in (5.24) are well-controlled.

Lemma 5.7. For M > 1 and any T > 0, there exists a constant C(M, T ) > 0
such that for any γ ∈ C([0, T ]; BM

p ), 4 ≤ p ≤ ∞, we have

sup
t∈[0,T ]

∣∣∣∣
∫ t

0
e(t−t ′)πH

(
−π [H, e− ∫ t ′

0 a]κ + F̃

)
dt ′

∣∣∣∣
C1/2(T)

≤ C(M, T ).

Proof. Observe that

∣∣∣∣
∫ t

0
e(t−t ′)πH

(
−π [H, e− ∫ t ′

0 a]κ + F̃

)
dt ′

∣∣∣∣
C1/2(T)

≤T sup
t

∣∣∣[H, e− ∫ t
0 a]κ

∣∣∣
C1/2(T)

+ T sup
t

|F̃ |C1/2(T),

where in the first step we have used that the free evolution etπH is bounded on
Cσ (T) for any 0 < σ < 1 by (5.6).

Then by (5.21) and (5.22) we have

sup
t∈[0,T ]

∣∣∣∣
∫ t

0
e(t−t ′)πH

(
−π [H, e− ∫ t ′

0 a]κ + F̃

)
dt ′

∣∣∣∣
C1/2(T)

≤ C(M, T ).

��
Then we choose the initial configuration such that the free linear evolution

inflates, or more precisely |etπHK0|L p(T) → ∞ as p → ∞.

Lemma 5.8. There exists initial data γ0 ∈ C2(T) which is a simple closed curve
with curvature κ0 ∈ C(T) such that the following holds: for any t ∈ (0, 1),

∣∣∣etπHκ0

∣∣∣
L p(T)

≥ C0 max{t (1 − t)
√
p, 1} for all p < ∞,

where C0 > 0 is a constant depending only on the initial data γ0.
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Proof. It is well-known that the Hilbert transform is not boundedC(T) → L∞(T),
and we may pick γ0 ∈ C2 with k0 ∈ C(T) such that |Hκ0|L p(T) ∼ √

p as p → ∞.
In fact, the rate of divergence in p can be arbitrarily close to p (and exactly p for
a function that is just bounded), but we choose a simple explicit κ0 for simplicity.
Let us sketch this argument for the sake of completeness. For instance, one can take
ε > 0 small and a curve γ0 whose curvature κ0 satisfies

κ0(ξ) =
{

(ln |ξ |−1)− 1
2 ξ ∈ [0, ε]

−(ln |ξ |−1)− 1
2 ξ ∈ [−ε, 0]. (5.25)

Such initial data γ0 ∈ C2(T) exists since (5.25) is a local continuity condition near
ξ = 0. One can take a function κ0 satisfying (5.25) and then smoothly extend it on
[ε, π ] ∪ [−π,−ε] to obtain a curve γ0 ∈ C2(T) with κ0 ∈ C(T) as its curvature.
For any ξ ∈ (0, ε/2], we have

πHκ0(ξ) =
∫ ξ

0

κ0(η)

ξ − η
dη +

∫ 2ξ

ξ

κ0(η)

ξ − η
dη

+
∫ 0

−ε

κ0(η)

ξ − η
dη +

∫ ε

2ξ

κ0(η)

ξ − η
dη + RH (ξ),

where |RH (ξ)| ≤ C |κ0|L∞(T) ln ε−1.Since κ0 is increasing on [0, ε], the sumof the
first two terms is negative. The third and fourth terms are also negative. Therefore,
for any ξ ∈ (0, ε/2],

π |Hκ0(ξ)| ≥
∫ ε

2ξ

κ0(η)

η − ξ
dη − C |κ0|L∞(T) ln ε−1

≥ κ0(2ξ) ln ξ−1 − C |κ0|L∞(T) ln ε−1.

Thus by our choice (5.25), there exists a scale 0 < ε1 ≤ ε so that |Hκ0(ξ)| ≥
c(ln ξ−1)1/2 for ξ ∈ (0, ε1] (one can take ε1 = εn with sufficiently large n depend-
ing on C and |κ0|L∞(T)). Then

|Hκ0|L p �
(∫ ε1

0
| ln ξ−1|p/2dξ

)1/p

=
(∫ ∞

ln ε1

z p/2e−z dz

)1/p

� (�(p/2))1/p � √
p.

With the initial data κ0 chosen as above, we have

etπHκ0 =
∑
n

(tπH)n

n! κ0 = cos(π t)κ0 + sin(π t)Hκ0,

and the conclusion follows immediately since sin(π t) ∼ t when t ∈ (0, 1
2 ] and

sin(π t) ∼ 1 − t when t ∈ [ 12 , 1). ��
These two lemmas, combined with the global W 2,p regularity, yield the main

C2 and C1,1 illposedness result.
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Theorem 5.9. There exists initial data γ0 ∈ C2(T) which is a simple closed curve
with curvature κ0 ∈ C(T) such that the following holds. The unique solution γ of
(CDE) with initial data γ0 satisfies γ ∈ C([0,∞); X p) for all p < ∞ and

|κ(t)|L∞(T) = ∞ for all t ∈ [0,∞) \ Z.

Proof. We only demonstrate how to show |κ(t)|L∞(T) = ∞ for 0 < t < 1 as the
rest of the cases t ∈ R\Z are similar.

First of all, since γ0 ∈ X∞, by Theorem 3.4, the unique solution γ belongs to
C([0,∞); X p) for any p < ∞.

We proceed with a proof by contradiction. Suppose |κ(t∗)|L∞(T) < ∞ for some
t∗ ∈ (0, 1), then one must have

lim sup
p→∞

|κ(t∗)|L p(T) < ∞,

and hence for the new variable K introduced in (5.23),

lim sup
p→∞

|K (t∗)|L p(T) < ∞. (5.26)

Then by (5.24), for all p ≥ 4 we have that

|K (t∗)|L p(T) ≥
∣∣∣et∗πHκ0

∣∣∣
L p(T)

− 2π

∣∣∣∣∣
∫ t∗

0
e(t∗−t ′)πH

(
−π [H, e− ∫ t ′

0 a]κ + F̃

)
dt ′

∣∣∣∣∣
L∞(T)

.

It follows from Lemma 5.7 that there exists a constant 0 < C < ∞ independent of
p such that

|K (t∗)|L p(T) ≥
∣∣∣et∗πHκ0

∣∣∣
L p(T)

− C for all p ≥ 4.

which is a contradiction to (5.26) by Lemma 5.8, since t∗ ∈ (0, 1). ��
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