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Using transfer learning-based causality extraction to mine latent
factors for Sjogren’s syndrome from biomedical literature
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P. Thyvalikakath, Sunandan Chakraborty

e We propose a novel way of extracting information, such as factors re-
lated to a disease, through automatic detection of causality from text.

e We conduct an empirical analysis of neural network (NN) architectures
and data transfer strategies for causal relation extraction to test the
transferability of different NN architectures on biomedical literature.

e The proposed method will retrieve knowledge from biomedical liter-
ature that can help researchers and clinicians detect the presence of
conditions and diagnostic findings from electronic health record data
that may occur during the preclinical stage of a disease.
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Abstract

Understanding causality is a longstanding goal across many different do-
mains. Different articles, such as those published in medical journals, dis-
seminate newly discovered knowledge that is often causal. In this paper, we
use this intuition to build a model that leverages causal relations to unearth
factors related to Sjogren’s syndrome from biomedical literature. Sjogren’s
syndrome is an autoimmune disease affecting up to 3.1 million Americans.
Due to the uncommon nature of the illness, symptoms across different spe-
cialties coupled with common symptoms of other autoimmune conditions
such as rheumatoid arthritis, it is difficult for clinicians to diagnose the dis-
ease timely. Due to the lack of a dedicated dataset for causal relationships
built from biomedical literature, we propose a transfer learning-based ap-
proach, where the relationship extraction model is trained on a wide variety
of datasets. We conduct an empirical analysis of numerous neural network
architectures and data transfer strategies for causal relation extraction. By
conducting experiments with various contextual embedding layers and ar-
chitectural components, we show that an ELECTRA-based sentence-level
relation extraction model generalizes better than other architectures across
varying web-based sources and annotation strategies. We use this empirical
observation to create a pipeline for identifying causal sentences from liter-
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ature text, extracting the causal relationships from causal sentences, and
building a causal network consisting of latent factors related to Sjogren’s
syndrome. We show that our approach can retrieve such factors with high
precision and recall values. Comparative experiments show that this ap-
proach leads to 25% improvement in retrieval Fl-score compared to several
state-of-the-art biomedical models, including BioBERT and Gram-CNN. We
apply this model to a corpus of research articles related to Sjogren’s syndrome
collected from PubMed to create a causal network for Sjogren’s syndrome.
The proposed causal network for Sjogren’s syndrome will potentially help
clinicians with a holistic knowledge base for faster diagnosis.

Keywords: text mining, causal relationships, relationship extraction,
Sjogren’s syndrome

1. Introduction

Causal relationships depict important knowledge across many different
fields, including medicine and health. Researchers in these fields design and
conduct experiments to test causality between two events and publish their
findings in research articles. Thus, the academic literature records the discov-
ery of new causal relationships or conditions of existing relationships. In this
paper, we show how such causal relationships, extracted from the biomedi-
cal literature, can help in extracting factors related to a disease. For many
diseases, diagnosticians are unaware of all factors associated with a disease,
which might result in delayed diagnosis. An example of such a disease is
Sjogren’s syndrome. Sjogren’s syndrome is an autoimmune disorder where
the immune system destroys glands that produce tears and saliva [1, 2] and is
also associated with rheumatic disorders [3, 4, 5]. The primary symptoms for
Sjogren’s syndrome are spread across several domain areas, such as dentistry,
ophthalmology, and rheumatology. This distribution and the lack of conti-
nuity in the communication between dentists and physicians create a critical
gap in the proper understanding of the disease’s characteristics. Hence, it
becomes a challenge for clinicians to timely diagnose Sjogren’s syndromein
the absence of holistic knowledge. Mining factors from the biomedical text
will help create such a holistic knowledge base, allowing clinicians to diag-
nose such diseases faster. We hypothesize that disease-specific factors can be
mined from the biomedical text by extracting causal relationships.

There are numerous way causality can be expressed in natural language



text, as a result, extracting causal knowledge from text becomes a challenge.
Causality can be stated explicitly (e.g., mosquito bite causes malaria) where
the relationship is explicitly stated with a clear marker — causes [6, 7], as
well as implicitly (e.g., Last week temperature rose significantly, there were
several cases of heat stroke reported), without using causal markers. Due
to numerous forms and the presence of implicit causal sentences, extracting
causal relationships from text is not trivial. This seriously limits the applica-
tion of causal relationship extractions from biomedical literature, as given an
article, we observe diverse way of expressing causality. This paper proposes
a novel method of classifying any given sentence into causal and non-causal
sentences. We applied Walsh-Hadamard (WH) Transformation on the input
embeddings and added it along the BiLSTM sequence’s hidden states in ei-
ther direction. WH Transform is a non-sinusoidal, orthogonal, and reversible
function. It is widely applied in signal and image processing but has not
been applied to text data to the best of our knowledge. We compared the
performance of the WH-BiLLSTM model in classifying causal sentences with a
simple BiLLSTM baseline model, and our results show that the WH-BiLLSTM
model’s F1 score was 0.91 compared to the baseline model’s F'1 score of 0.37.

Identifying causal sentences from large documents is the first step toward
the holistic extraction of causal knowledge. Past works have used many ma-
chine, and deep learning-based approaches [8, 9, 7, 10, 11] but they only
target explicit causality. Furthermore, they ignore that text presents causal-
ity through multi-word expressions or phrases instead of just single words.
This paper addresses the root cause of the problem mentioned above; causal
relation extraction models are trained on disparate benchmark datasets that
vary significantly in lexical composition and annotation style. For exam-
ple, label sets may vary across data, making certain transferred predictions
impossible. In addition, the lack of any causal relationship dataset specifi-
cally for biomedical text further limits the application of this technique on
such text. To address this, our analysis examines transfer across six unique
causal relation datasets that span varying domains, annotation styles, and
implicit /explicit causality markups and deploy a novel causal relation ex-
traction model using transfer learning and entity normalization. We fine-
tune an ELECTRA-based sentence-level sequence tagging model on causal
sentences from several web-based sources. ELECTRA (Efficiently Learning
an Encoder that Classifies Token Replacements Accurately) [12] is a BERT
variant that uses discriminative pretraining instead of the usual generative
pretraining. We train the ELECTRA-based relation extraction model on



several datasets and prove its ability to generalize to unseen data, including
biomedical text. We apply the fine-tuned model to a set of causal sentences
and then use named entity recognition (NER) to identify entities of interest
in those phrases. This produces a causal knowledge graph where nodes are
entities, and edges are directed causal relationships between those entities.

We conduct an empirical analysis of architectural components, including
choice of input embedding, recurrent units, and attention mechanisms. Our
analysis showed that the use of attention does not significantly impact model
performance in the transfer setting. Thus, to avoid unnecessary parameters
and mitigate overfitting, we chose the GRU recurrent unit and forwent the
attention layer. Transformer-based embeddings perform well as a contextual
word embedding layer in causal relation extraction [13]. We chose ELECTRA
due to its superior language understanding capabilities over other transformer
models. It also has fewer parameters, reducing the risk of overfitting in the
transfer setting. ELECTRA rivals BERT’s language understanding abilities
with fewer parameters, yet not much work has examined ELECTRA’s causal
relation abilities.

We create a pipeline that classifies each sentence from a research article
into causal and non-causal sentences. We subsequently apply our causal rela-
tionship extraction model trained on the six datasets on the causal sentences.
We evaluated the performance of our model against several baseline models
from previous research and found that our F1 score is consistently better
(by 6%) compared to the other models. We apply this model to a corpus of
research article abstracts on Sjogren’s syndrome collected from PubMed and
manually annotated to identify factors related to Sjogren’s syndrome. In this
paper, we use Sjogren’s syndrome as an example application area. However,
our methods are not fine-tuned specifically for Sjogren’s syndrome and can
potentially be applied to biomedical text on other topics. In this study, we
limit our focus only to Sjogren’s syndrome and will explore the generaliz-
ability of our methods to other topics as part of future work. To evaluate
the performance of our model to extract Sjogren’s syndrome related factors,
we tested the approach on a hand-annotated dataset. The results show that
our method has significantly outperformed the baseline models. Finally, we
create a causal network using the extracted relationships, and the causal
network is shown to reveal new relationships using transitive relationships.



2. Background and Related Work

Researchers in many fields, design and conduct experiments using meth-
ods like, observational studies and randomized control trials to determine
whether two events are causally linked, and scholarly articles publish newly
discovered causal knowledge emerging from those studies. We see a broad
spectrum of work that attempts to retrieve such known causal relation-
ships from a large corpus of documents and apply them to problems like
question answering [14], medical education [15], and financial analytics [16],
among others. Expressing causality in a sentence may take several forms.
The majority of them are marked but maybe explicit or implicit. Explicit
causality has relations that are connected by: (a) causal links (e.g., hence,
therefore); (b) causative verbs (e.g., causes, leads to); (c¢) conditional (e.g.,
if...then...) [17]. The sentence: “mosquito bites cause malaria,” where the
word “cause” directly links the cause and effect [6, 7] is an example of ex-
plicit causality. Implicit causality involves using ambiguous connectives, e.g.,
as, after etc., as they are equally likely to be used in causal or non-causal con-
text. For example, “as” is used as a causal marker in the sentence: “There
was no debate as the Senate passed the bill on to the House” [6]. Some
causal sentences may not have any connectives, for example, the sentence:
“Last week temperature rose significantly, there were several cases of heat
stroke reported”), where the relationship rising temperature is the cause of
the heatstroke cases has no causal marker. These are called unmarked causal
sentences. Causal relationships may span across the sentence. For example,
the following two sentences depict a causal relationship [financial stress —
divorce]: “Being unfaithful can lead to divorce. On the other hand, financial
stress is another significant factor.” [18].

Past works that addressed this problem can be broadly divided into
three groups: rule-based, statistical machine learning(ML)-based, and deep
learning-based approaches. Earlier works were primarily rule-based, where
linguistic patterns were used to detect explicit causality [19, 20]. Girju et
al. [21, 22] devised a novel approach to a rule-based system, where linguis-
tic patterns were automatically learned instead of manually setting up the
rule base. Rule-based methods suffered from a major drawback that it is
infeasible to learn all possible rules, and can only extract marked causal sen-
tences, thus leading to poor recall. However, inspired by previous works that
used lexico-syntactic patterns to infer causation, a new suite of ML-based
methods emerged. The new ML-based methods improved upon the earlier



rule-based methods by making the models more generic and not restricted to
specific causality patterns. Meuller et al. [23] presented a novel approach and
a working prototype that automatically extracts causes and effects, as well
as signs, mediators, and conditions, from scientific papers. CausalTriad [24]
used a minimally supervised approach, using distributional similarity and
discourse connectives. Few other works exploited linguistic structures, such
as multi-word expressions [25], N-grams, topics and sentiments [26], lexical
patterns [27, 21].

With the emergence of deep learning methods, we observe their applica-
tion in extracting causal relationships from the text. Deep learning methods
are capable of learning directly from raw input data without requiring ex-
tensive feature engineering, at the same time can handle large-scale datasets
effectively. Deep neural networks can efficiently process massive amounts of
data. This scalability enables deep learning models to handle complex tasks
with enormous amounts of training data, allowing them to generalize well
and achieve high performance. As a result, we see more recent works on
causality detection from text use deep learning methods [8, 28, 29]. Xu et
al. [30] used LSTM to learn higher-level semantic and syntactic represen-
tations along the shortest dependency path, while Li et al. [31] combined
BiLSTM with multi-head self-attention to direct attention to long-range de-
pendencies between words. The latter showed significant improvement when
the cause-effect words had a greater separation. Some studies demonstrate
that attention, especially of the multi-attention mechanism, shows better
performance [31, 32]. Zhang et al. [33] combined LSTM with entity position-
aware attention to encode both semantic information and global positions
of the entities as a result. In recent times we have seen the application of
contextual word embeddings and large pre-trained language models in this
space. Kyriakakis et al. [10] used BERT [34] and ELMO [35] showed that
these models could improve previous state-of-the-art performance with large
datasets.

Although RNN-based architectures were producing state-of-the-art per-
formance, some researchers chose to use alternative architectures, such as
CNN. An example is by Wang et al. [32], who proposed a multi-level attention-
based CNN model to capture entity-specific and relation-specific information
and the use of graph-based deep learning models, such as GCN. Zhang et
al. [36] proposed a dependency tree-based GCN model to extract relation-
ships that leverages syntactical as well semantical features of the sentences.

SemEval-2010 and ADE datasets are among the most widely used datasets
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for extracting causality from the text. Many previous works have used the
same datasets and developed causal relationship extraction models. These
works have used a combination of statistical machine learning and deep
learning methods to identify causal relationships from the text. We iden-
tified the best-performing models from the literature for each dataset (Se-
mEval and ADE) [18] and compared our performance. Among the best-
performing model on SemFEval-2010 is a variant of BiLSTM proposed by Li
et al. [11]. They combined BiLSTM with multi-head self-attention to direct
attention to long-range dependencies between words. Wang et al. [32] also
used an attention-based model on CNN instead of BiLSTM. Presently, the
best-performing model trained on SemEval-2010 is by Kyriakakis et al. [37].
They used pre-trained language models, such as BERT [34] and ELMO [3§]
and used Bidirectional GRU with self-ATTention (BIGRUATT) as the base
model. Experimental results show that BERT model combined with BIGRU-
ATT performs better on most occasions and scales well with a larger dataset.
Among the best-performing models trained on the ADE, the corpus includes
the model proposed by Wang and Lu [39], which focuses on jointly model-
ing entities and relationships. They used a sequence and a table encoder
to help each other jointly learn the entities and relations. Zhao et al. [40]
used a similar joint modeling technique but proposed Cross-Modal Attention
Network (CMAN), has two attention units consisting of BiLSTM-enhanced
self-attention (BSA) and BiLSTM-enhanced label-attention (BLA) units.

This study aims to improve upon the limitations and drawbacks of ex-
isting methods. One major improvement is that our methods can detect
implicit sentences. Our approach do not assume any linguistic structure that
expresses causality, thus not dependent on explicit markers. In addition, the
proposed WH Transform-supported input embedding helped to identify de-
pendencies that are not detected by many other models. Finally, our model
was trained using a diverse dataset that contained many implicit sentences,
which improved the visibility of the model, thus making it more generalizable.
While our methods supported the detection of implicit sentences, extraction
of inter-sentence relationships was not targeted in this study.

3. Materials and Methods
3.1. Problem Definition

We define the problem of identifying causal relationships from natural
language text as a two-step process - (1) classify any sentence extracted from
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Renal tubular acidosis is a common cause of _ which can be idiopathic or secondary to systemic disorders such as Sjogren's syndrome.
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Figure 1: An example sentence’with a causal relationship that highlights a factor that
may lead to Sjogren’s syndrome
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Figure 2: Overview of the proposed pipeline

the research articles as causal and non-causal, and (2) extract the causal
relationships from the causal sentences. Figure 1 shows an example causal
sentence and the corresponding relationship: [“renal tubular acidosis” causes
“hypokalemia”]. We define relationship extraction as a sequence tagging
problem. In this example, the words ‘Renal’, ‘tubular’, and ‘acidosis’ will
have the label “C” (cause). The label of ‘hypokalemia’ will be “E” (effect).
“O” (others) will be assigned to the remaining words, such as ‘which’, ‘can’,
and ‘be’. Figure 2 presents an overview of the proposed methodology. The

conditional probability of our model can be depicted as

n

p(Y|X) = Hp(yi|£51...z‘, Yi=1..i-1)

i=1

https://www.ncbinlm.nih.gov/pmc/articles/PMC3822229/



3.2. Classification of causal sentences

Recurrent neural architectures, such as LSTMs, BiLSTMs, and GRUs,
work well for text classification and entity extraction problems. Even in
these models, there is an issue regarding dependencies of words if the dis-
tance between them is significant in long sentences. The attention mech-
anism is typically used for capturing dependencies in long sequences. But
the drawback is that it requires a large number of sequential computations.
So, we propose to use the Walsh-Hadamard (WH) transformation of input
embedding to get the context of the whole sentence. WH transformation is
a non-sinusoidal, orthogonal, and reversible function where an input signal

is decomposed into a set of basis functions called Walsh functions. It is de-
scribed by the following binary matrix: H = E _11} , a 2x 2 WH transform
Y of the vector X € R?is Y = WX = HX. In general, the WH trans-
form Y = W, X of a vector XR™ where m = 2*, k € N can be expressed
via the orthogonal Walsh matrix W), € R™*™ which is generated using the
Hadamard matrix and can be recursively constructed [41].

Previously, WH transform has been used in signal processing to reduce
the complexity of electronic signal [42], image processing [41] to replace com-
plex layers with a simpler version of WH, and it has been used in Genomics as
well [43] in determining different diseases based on DNA and RNA sequenc-
ing. These inputs (signals, DNA, RNA) are sequential data similar to text
data. So, it is likely that WH transform will have similar advantages for text
data. In NLP, for capturing context and dependencies in a long sequence,
typically attention mechanism works well but has a complex architecture that
ultimately becomes computationally expensive. Hence, we investigate how
the context of the whole sentence as input can be provided in a simpler way
without using attention mechanism. We used the Walsh-Hadamard trans-
formation to reduce the complexity of this input embedding. To the best of
our knowledge, this is the first example of applying WH transform in NLP.

The WHT can be used to extract specific features or patterns from the
text, allowing for the detection of causal relationships in implicit sentences
as well. By analyzing the transformed coefficients, it becomes possible to
identify the causal relationship between different parts of the sentences. We
combined this method with BiLSTM classification by initializing the hidden
state with Walsh Hadamard transformation of whole sentence embedding.
Figure 3 shows the application of WH transform on a base BiILSTM model to
build a binary classifier for causal sentences. An alternative method would

9



[PO, P1]

— L‘J
[ isrw | [ 5w | st A_
— e
Hlllflllll IIIIIfIIIH .
wl w2 w3

Figure 3: The overall architecture of the causal sentence classifier. The base is a BiLSTM
model with the full sentence matrix going through WH transform and fed into the bidi-
rectional sequence

have been to initialize the hidden state with WH transformation of whole
sentence embedding and apply WH transformation to intermediate outputs
between all LSTM nodes using the previous node’s output. The second
approach will require more computational resources, and we will explore
that as part of future work.

3.3. Causal Relationship Extraction

Despite recent advances in deep-learning-based NLP, an ongoing chal-
lenge in large-scale causal relation extraction from text is limited size and
lack of consistency across training datasets. Data used for benchmarking
and training vary significantly in domain and annotation style. Just a frac-
tion of sentences in the widely used SemEval 2010 benchmark dataset [44] are
biomedicine related, so using it can not be relied upon to develop a consistent
relationship extractor from BioMedical literature. The more recent MedCaus
dataset is built from “biomedical” Wikipedia articles [45], but annotations
in the dataset span most of the sentences, meaning a model trained on Med-
Caus alone would fail to isolate biomedical entities of interest. Very little
annotated training data is available for causal relation extraction specifically
from biomedical literature [46].

To overcome the compounding issues of data availability and annota-
tion discrepancies, we deploy a novel causal relation extraction model using
transfer learning and entity normalization. For our approach, we fine-tune
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an ELECTRA-based sentence-level sequence tagging model on causal sen-
tences from several web-based sources. ELECTRA (Efficiently Learning an
Encoder that Classifies Token Replacements Accurately) [12] is a pre-training
method for NLP models. It aims to improve the efficiency and effectiveness
of language models by focusing on the task of predicting replaced tokens
rather than predicting each token in a sequence. The architecture and train-
ing method of Electra offers several advantages over traditional pre-training
approaches.

In terms of architecture, Electra employs a generator-discriminator frame-
work. The generator is a standard transformer-based language model that
predicts each token in a sequence, while the discriminator is another trans-
former model that tries to distinguish between the original tokens and re-
placed tokens generated by the generator. This adversarial setup encourages
the generator to produce realistic replacements that are challenging for the
discriminator to identify. By focusing on the replacement task, Electra en-
ables more efficient training as it does not require the model to predict every
token in the input sequence.

The training method of Electra involves two phases: pre-training and
fine-tuning. During pre-training, the generator is trained on a large corpus of
unlabeled text by applying a masking strategy similar to BERT (Bidirectional
Encoder Representations from Transformers). However, instead of predicting
the masked tokens, the generator is trained to predict whether the tokens
have been replaced or not. In our case, in the fine-tuning phase, the generator
is further trained on labeled task-specific data. We added a classification head
on top of the Electra model. This head is an additional dense layer followed
by a softmax. such as text classification or named entity recognition.

This fine-tuning process allowed the model to adapt to our specific down-
stream tasks, which identified cause and effect phrases from the sentences. In
our case, fine-tuning was done via causal relationship extraction task using
our combined labeled dataset (Section 3.4). Causal relationship extraction is
classifying each token in the sentence into classes, such as “cause”, “effect”,
or “none” phrases. We anonymized target phrase entities in a sentence using
the pre-defined tags such as ##CAUSE## or ##EFFECT##. For exam-
ple, the sentence “prolonged smoking will lead to COPD” | will be represented
as “prolonged ##CAUSE## will lead to ##EFFECT##” and the model
is trained to predict the entities for each label in the sentence. Through this
fine-tuning step our goal is to improve the capability of causal understanding
within the underlying model.
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This training method of Electra has shown improved performance and
faster training compared to previous approaches, making it a compelling
choice for our application. ELECTRA rivals BERT’s language understand-
ing abilities with fewer parameters, yet not much work has examined ELEC-
TRA’s causal relation abilities. We train the ELECTRA-based relation ex-
traction model on several source datasets and prove its ability to generalize
to unseen data, including biomedical data. We apply the fine-tuned model
to a set of causal sentences, extracting cause and effect phrases from those
sentences. We then use named entity recognition (NER) to identify entities
of interest in those phrases. The above process produces a causal knowledge
graph where nodes are entities, and edges are directed causal relationships
between those entities.

3.4. Training Datasets

We gathered a variety of publicly available, sentence-level, annotated
causal relation extraction datasets. These data span several sizes and an-
notation strategies. To train the model on both explicit and (harder to
detect) implicit causality, we included data with various implicit-to-explicit
compositions, ranging from entirely explicit (CauseNet) to mostly implicit
(FinCausal2020, at 78.7% implicit). Furthermore, tagging schemes tend to
be inconsistent across datasets. Some datasets tag single word tokens as
cause/effect entities, while others might tag phrases, or even entire sentences,
as cause/effect entities. We include datasets with multiple tagging schemes so
that the trained model does not solely latch on to longer annotation phrases
which tend to be less informative when extracting relationships between en-
tities. The final combined dataset is larger (at 15,191 training sentences) and
more diverse than any causal relation extraction dataset that we are aware
of. These datasets are briefly described in Table 1.

3.4.1. MedCaus

MedCaus is a dataset consisting of causal sentences mined from “medical
articles” in Wikipedia that matched specific seed patterns. While we found
that many sentences in this dataset are medical or biological, some general
sentences (E.g., “The eastern water is saltier because of its proximity to
Mediterranean Water”) seem to be captured as well, so we have labeled
them as a “General” domain dataset.

12



Table 1: List of training datasets used. Sentences vary in size, the composition of implicit
sentences, and the annotation style.

Dataset Sentences Implicit Domain Mean tokens
per C/E
MedCaus[45] 8682 17% Medical ~ 8.41 / 7.68
CauseNet-noncause[47] 5000 0% General  1.61 / 1.5
CauseNet-cause[47] 5000 0% General  1.53 / 1.46
SemEval 2010 1003[44] 34% General — 1.06 / 1.02
CausalTimeBank|[48] 298 54.7% News 1/0.99
FinCausal2020[49] 1719 78.7% Financial 23.72 / 10.26
Total Train 15191
Total Test 6511

3.4.2. CauseNet

CauseNet is a large graph of explicit causal relations from ClueWeb12 and
Wikipedia. The CauseNet graph has a precision subset, which we use as a
source of explicit causal sentences. For our purposes, we subsampled a collec-
tion of 5,000 sentences that contain the explicit markers “cause”, “caused”,
“causing”, etc. (CauseNet-cause). The other subsample of CauseNet we used
is a collection of 5,000 sentences that do not contain variants of the “cause”
marker (CauseNet-noncause), which contains sentences with explicit causal
markers like “leads to”, “due to”, etc. Some preliminary results indicated
that causal relation extraction models trained on CauseNet do not improve
beyond data sizes of a few thousand, hence the cap of 5,000.

3.4.3. SemFwval 2010 Task 8

SemEval 2010 Task 8 [44] is a multi-way classification dataset. It has
widely been used as a general domain benchmark for evaluating relation
extraction tasks. Causal relation extraction literature has mainly focused on
the Cause-Effect relations in this data which represent 12.4% of the entire
dataset. We use only the Cause-Effect relations for our analysis.

3.4.4. Adverse Drug Effect

Adverse Drug Effect (ADE) [50, 51] contains sentences explaining the
adverse effects of drugs using causal sentences. It has been curated from
1,644 PubMed abstracts and contains 6,821 causal sentences. However, this
dataset has minimal variation in terms of syntax and vocabulary, and in
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all sentences, the causality is expressed through the verb “causes” and its
variation.

3.4.5. Causal-TimeBank

Causal-TimeBank [48] consists of causal annotations of the TempEval-3
corpus [52], which consists of news articles. We only consider sentence-level
relations for uniformity across other datasets, although Causal-TimeBank
also contains document-level relations.

3.4.6. FinCausal2020

The FinCausal2020 dataset is a benchmark for detecting and extracting
causal relations in financial text. For our purposes, FinCausal was limited
to relations contained in single sentences.

3.5. Model Training

The best performing sequence labeling-based causal relation extraction
models use a three-layer approach: (1) a contextual word embeddings layer,
(2) a bidirectional recurrent layer, followed by (3) an attention layer [31]. We
conducted experiments that found the particular choice of recurrent unit (i.e.,
LSTM vs. GRU) and the use of attention does not significantly impact model
performance in the transfer setting. Thus, to avoid unnecessary parameters
and mitigate overfitting, we choose the GRU recurrent unit and forgo the
attention layer. Transformer-based embeddings perform well as a contextual
word embedding layer in causal relation extraction [13]. We chose ELECTRA
due to its superior language understanding capabilities over other transformer
models. It also has fewer parameters, reducing the risk of overfitting in the
transfer setting.

Sentences from the data sources described in Table 1 were combined,
shuffled, and randomly assigned to a 70%-30% train-validation split. We
took a sequence labeling approach to relation extraction, as this allows for the
most compatibility across the various training datasets. We could simplify
all token labels to one of either “O”, “C”, or “E” (other, cause, and effect).
Contiguous output labels were combined to predict a single label. Model
architecture consisted of an ELECTRA tokenization and embedding layer,
which created contextual embeddings of each input token via a forward pass
of the ELECTRA model. This was followed by a BiGRU recurrent layer with
hidden and output states of size 256 that were concatenated to size 512. A
linear layer was used atop the output embedding layer, with an input size of

14



512 output size of 3 for each label. We used a softmax loss function as in our
case the downstream task is a multi-label classification task.

Hyperparameters used in training the ELECTRA-based sequence tag-
ger are as follows: Minibatch size was 16; Number of output labels was 3;
Maximum sequence length (number of tokens) was selected to be 256, which
accommodated all the training data and fit in the ELECTRA-Small model.
We found 10 training epochs to be sufficient in terms of loss minimization.
An ADAM optimizer was used with standard § = (0.9,0.999),¢ = le — 8.
The learning rate of 5e-5 was determined empirically. A linear layer was used
atop the output embedding layer, with an input size equal to the embedding
dimension (512 in our case) and an output size equal to the number of labels.
A softmax loss function was used.

3.6. Phrase Normalization

The datasets used to train the ELECTRA model varied in annotation
style. For example, in CauseNet, causes and effects may be labeled as a sin-
gle word or token, while Medcaus’ annotations are typically longer phrases
spanning several tokens. The variability in training annotation length meant
that the ELECTRA model’s predictions also varied in length. However, a
helpful knowledge graph should have normalized entities as nodes. To nor-
malize the predicted cause and effect phrases, we used a pretrained scientific
Named Entity Recognition (NER) model under the SciSpacy framework.
Notably, we used the en_ner_bcbedr_md model, trained on the BC5CDR cor-
pus, which has disease and chemical entity labels. Within each sentence, we
identified named entities that overlapped with the cause-and-effect phrases
predicted by our ELECTRA model. This produced normalized cause and
effect for each cause and effect phrase. This process is outlined in figure 4.

4. Results

We evaluate this work in two phases - (Task 1) evaluate the performance
of the causal relationship extraction model, and (Task 2) validate the findings
on a large biomedical literature dataset using transfer learning. In this paper,
we validate our findings on a set of research articles related to Sjogren’s
syndrome. We will explore the generalizability of our approach by replicating
our methods on other topics as part of future work.
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ELECTRA cause/effect | “...patients with pSS scored high on neuroticism and anxiety and _W
phrase annotations Cause Phrase Effect Phrase

Named entities from *...patients with - scored high on and and low on

SciSpacy:

Phrases are normalized pSS —s sociab lllty

to overlapping entities:

Figure 4: Example phrase normalization. First, cause and effect phrases are identified
with the fine-tuned ELECTRA model. Then the SciSpacy NER model is used to identify
“disease” entities. Phrases are normalized to any entities that overlap with the cause or
effect phrase, producing the final node used in the graph. ELECTRA identified a part
of the word “sociability” as the effect phrase due to the Wordpiece embedding used by
ELECTRA, which uses subword segmentation. This issue is resolved through the process
of phrase normalization.

4.1. Performance of the Causal Relationship Extraction Model

This task is further sub-divided into two phases - evaluation of (1) the
causal sentence classification, and (2) extraction of the causal relationships
from the causal sentences.

4.1.1. Causal Sentence Classifier

We implemented a BiLSTM-based model with the Walsh-Hadamard (WH)
value of the input sentence to identify causal sentences. We randomly sam-
pled 20,000 sentences from the combined dataset (Table 1) dataset for train-
ing the model and used another 2,000 for testing. The experimental results
are shown in Table 2. The BiLSTM model with the WH values outperformed
a baseline model, where the baseline model was the same BiLSTM network
without the WH-transformed input of the entire sentence. Given that the
only difference in this model is the WH transformed embeddings of the entire
sentence, we can infer that by initializing the hidden state with WH value, we
are giving the context of the whole sentence together, which can be helpful
for the classification of sentences. This eliminates the need for computation-
ally expensive attention weights to remember long dependencies. However,
to strengthen this claim, we need more experimental results with WH values
as inputs in other models to conclude that the WH values have merit in the
classification task. As this is not directly related to extracting factors for
Sjogren’s syndrome, we will explore this as part of future work.

4.1.2. Causal Relationship Extraction
We applied the final ELECTRA model trained on the combined dataset
on each dataset separately to observe the model’s transferability. We envision
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Table 2: Classification results for the causal sentence classifier with a baseline comparison.
Precision-recall is shown separately for each class - “0”: non-causal, “1”: causal and
average F'1 score is shown

Model Precision | Recall | F1 score (avg)
. 0.51 (0) | 0.98 (0)

BILSTM 0.65 (1) | 0.04 (1) 057
. . 0.87 (0) | 0.94 (0)

BiLSTM with WH Transform 0.95 (1) | 0.88 (1) 0.91

Table 3: Performance of the final ELECTRA model on each of the individual training
datasets

Dataset Precision | Recall | F1

SemEval 0.841 0.943 0.886
ADE 0.883 0.847 0.864
CausalTimeBank 0.807 0.884 0.842
CauseNet_cause 0.929 0.955 0.942
CauseNet_noncause | 0.929 0.952 0.941
MedCaus 0.924 0.924 0.924

that a model trained on a wide variety of datasets, encompassing different
domains, lexical compositions, and annotation styles, will help build a more
transferable and generalizable model. By testing, using the test set (not
seen during training) part of each dataset, we could measure under what
conditions and annotation styles the model performed well. Such a model
will also be more suitable for general relationship mining from biomedical
literature text. Figure 5 shows the performance variation over epoch count
across all the datasets combined. Although the accuracy value has consis-
tently increased with epoch count, other metrics have shown some variation.
For example, we see the precision reaches its peak at epoch 4 and then drop
down again to reach the same value (0.837) at epoch 8. Recall shows an
opposite trend, where it falls down to 0.790 and 0.792 at epochs 4 and 8,
respectively, before reaching the maximum value at epoch 10. Given that
the average Performance across all metrics was best at epoch 10, we decided
to use this version for all our analyses. The Performance might improve by
increasing the number of epochs, but we completed the training at 10 for
all the experiments reported in this paper. This choice is mainly due to the
time taken and the resources required to continue the training process.
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Figure 5: Performance on all datasets combined over epochs

The Performance of this model on each of the datasets (Section 3.4) is
shown in Table 3. The precision, recall, and F1 score for extracting causal
relationships have been more than or close to 90%. The lowest Performance
was on the CausalTimeBank, with an F1 score of 0.84. One plausible expla-
nation is that this dataset had the least number of sentences (298) compared
to other datasets with more than 1,000 sentences (ref: Table 1). Lesser num-
ber of sentences mean less variation in the data. As a result, the model
might underfit with respect to the data and might not generalize well to
unseen examples.

Many previous works have used the SemEval-2010 and ADE datasets
to develop causal relationship extraction models. We compared our results
on these datasets with the best-performing models from the literature [18].
While we have discussed these works in detail in Section 2, we present our
findings from this comparative analysis in Table 4. Our model outperformed
other top models trained on ADE. On the other hand, for SemEval-2010,
our model was marginally poorer than Kyriakakis et al. [37]. Considering
the performance across datasets, our model is likely to perform at par or
better than other models. The improved performance of our model can be
attributed to the fact that our model has seen much more variations in terms
of causal sentence type and how the relationship tokens (i.e., causes and ef-
fects) are annotated. As a result, our model generalizes better compared to
those models. In addition, using ELECTRA as the base model helped in ex-
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Table 4: Comparison of performance with selected related works

Dataset Model F1 Score

SemEval-2010 | Li et al. [11] 84.6
Wang et al. [32] 88.0
Kyriakakis et al. [37] | 90.6
Our approach 88.6

ADE Gurulingappa et al. [50] 70.0
Wang and Lu [39] 80.1
Zhao et al. [40] 81.1
Our approach 86.4

tracting these relationships better, as ELECTRA has demonstrated superior
language understanding capabilities

4.2. Latent factor identification from biomedical literature

There are no dedicated datasets for causality extraction based on biomed-
ical literature text. Thus, it is challenging to mine causal relationships with-
out a contextual training dataset. We used the model trained on several
datasets across different domains to show how transfer learning can help
alleviate this problem. We show that our model can be applied to a new
dataset for causal relationship extraction without the need to retrain the
model on the new dataset. In this second phase of evaluation, we apply the
causal relationship extraction model trained on the six datasets directly on a
corpus of biomedical literature (Sjogren’s syndrome dataset) (Section 4.2.1)
to identify causal sentences and the corresponding cause-and-effect phrases
to extract factors related to Sjogren’s syndrome.

4.2.1. Dataset

A basic PubMed search was used to produce an initial corpus of text
related to Sjogren’s syndrome. The search returned 2,350 abstracts compris-
ing 26,000 unique sentences. Some rule-based filtering was applied to these
sentences to retain sentences that contained the term Sjogren’s syndrome or
one of its variants (e.g., “SS”, “pSS”). This filtering process ensured that the
relationships we extract will provide information about Sjogren’s syndrome.
After applying the causal sentence classifier (Section 3.2),we identified 5,656
sentences from the abstracts as having at least a 90% probability of contain-
ing causal relationships.
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4.2.2. Findings

We extract the causal relationships from this text and claim that the
opposite label (either cause or effect) when the term “Sjogren’s syndrome” or
its variants is detected as cause or effect, to be the factor related to Sjogren’s
syndrome. We present a set of selected causal-effect pairs extracted through
our model in Table 5. In these examples, we see that Sjogren’s syndrome
can appear as a cause as well as an effect, which represents the possibility
of how factors associated with Sjogren’s syndrome are mentioned in the text
and the capability of our method to detect them. In these selected examples,
we see different factors, such as signs and symptoms (e.g., “loss of secretion”,
“xerophthalmia”) and associated conditions (e.g., “annular erythema”, “non-
Hodgkin’s lymphoma”).

We validated our findings with a manually annotated dataset with ground
truth labels. We selected a set of 1,058 sentences for annotation, and two an-
notators with a background in health informatics and experience in Sjogren’s
syndrome research were asked to annotate the sentences. The annotators
labeled relevant factors of Sjogren’s syndrome from those sentences. The
details of the annotation process is described in Appendix Section A. Then
we used precision, recall, and F1 score to compare the Performance of our
approach with several baseline models using the ground truth labels. Table
6 summarizes the findings. The baseline models were Named Entity Recog-
nizers (NER), and some of them, such as BioBERT and Gram-CNN, were
pre-trained on biomedical text.

The results (Table 6) show the central hypothesis of this work that causal
relations can be used to extract certain factors associated with Sjogren’s
syndrome holds. Retrieval performance is better than the baseline methods,
but on many occasions, factors are present in a sentence without any causal
semantics.

4.8. Causal Network from Biomedical Literature

We created a causal network by combining the individual cause-effect
pairs. In this network, each cause-effect pairs were represented as two nodes
connected by a directed edge from cause to effect. Then the nodes were
merged based on similarity (i.e., same names) to have connected components
combining the initially isolated pairs. This network provides additional infor-
mation through new components, such as a chain of transitive causal relation-
ships, mediators, and confounders of existing relationships through triangular
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Table 5: Selected examples of extracting factors by mining causal relationships

Sentence

Cause

Effect

Hypokalemic paralysis is a rare presentation of

1 Fanconi syndrome (FS) caused by Sjogren’s Syndrome. Sjogren’s Syndrome Hypokalemic paralysis
Primary Sjogren’s syndrome (pSS) is a chronic . .
; . . . . . , sicca symptoms, mainly
2 | systemic autoimmune disease that leads to sicca Primary Sjogren’s syndrome . .
. . . xerophthalmia and xerostomia
symptoms, mainly xerophthalmia and xerostomia.
sjogrens syndrome (SjS) is an autoimmune
3 | condition that primarily affects salivary and Sjogren’s syndrome loss of secretion
lacrimal glands, causing loss of secretion.
71-year-old woman in whom the diagnosis of possible
4 | causes of the development of annular erythema, development of annular erythema | primary Sjogren’s syndrome
led the team to identify primary Sjogren’s syndrome (SS).
Primary Sjogr.en’s syndr‘ome (pSS) is ch.aracterlzed . . decreased saliva and
5 | by lymphocytic infiltration of the exocrine glands Primary Sjogrens Syndrome .
. . . tear production
resulting in decreased saliva and tear production.
Development of non-Hodgkin’s lymphoma (NHL)
6 | is the major adverse outcome of Sjogren’s syndrome Sjogren’s syndrome non-Hodgkin’s lymphoma
affecting both morbidity and mortality.
7 | Enthesis zones are important in the formation of pain in Enthesis zones SS patients
the musculoskeletal system in SS patients
8 Some studies have reported that anti-moesin antibodies anti-moesin antibodies autoimmune diseases with
have been detected in autoimmune diseases with which which SS is closely associated
SS is closely associated.
9 Sjogren’s syndrome was suspected based on edentulous edentulous state Sjogren’s syndrome
state in a middle-aged woman with multisystem
involvement
10 | Autoimmune workup showed antinuclear antibodies with | antinuclear antibodies Sjogren’s syndrome

a titer of 1:400 and positive anti SSA (Ro) antibodies
that led to the diagnosis of Sjogren’s syndrome.

structures. Through this causal network, we have observed that Tubuloin-
terstitial nephritis is the most common renal disease caused by Sjogren’s
syndrome and may lead to renal tubular acidosis (RTA), which in turn may
cause osteomalacia [57, 58]. Even though the entire sequence chain was not
directly observed in the data we used, the network could weave the individ-
ual relationships and create a more holistic view of the knowledge. Figure 6

presents a part of the network.

4.8.1. Evaluation of the Causal Network
The final knowledge graph describes causal relationships between dis-
eases, conditions, and symptoms of Sjogren’s Syndrome. However, no com-
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Table 6: Comparative performance

Model Precision | Recall | F1-score
Bi LSTM 0.45 0.84 0.59
Glove Embeddings + CNN 0.47 0.72 0.56
Bi LSTM + CRF 0.05 0.4 0.1
BioWordVec + CNN [53, 54] 0.48 0.74 0.58
BioBERT [55] 0.39 0.55 0.46
Gram-CNN [56] 0.52 0.74 0.61
Our approach 0.89 0.84 0.86
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Figure 6: Nodes in the knowledge graph induced by the above method contain too many
nodes for a reasonable static visualization. To view important nodes in the graph, we
calculated the eigenvector centrality of each node, then pruned the graph to the nodes
with the highest 50 eigenvector centralities. The result is shown above.
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parable knowledge graph exists by which we can evaluate our final product.
Thus, we conducted a manual analysis to conduct the evaluated graph. Of
the 1,229 edges in the final knowledge graph, 500 were randomly chosen as
a more reasonably sized subsample for manual review. The 500 subsampled
edges were again randomly ordered for each of the two distinct reviewers.
Reviewers were presented with the cause and effect entities of each edge as
well as the source sentence. Reviewers were instructed to label each edge as
either having a relationship between entities or not. As measured by the F1
score, the agreement between reviewers was 0.823. Since we have no way of
determining false negatives, we must rely on precision as an accuracy metric
for our graph. According to reviewer 1, the precision was 75.2%, and for
reviewer 2, it was 94.4%.

Of the relationships identified, it was not always clear if the relationship
was strictly causal (i.e., could be formulated via contrapositive). This is
due to the presence of correlative relationships in the training data, but
additionally, sentence-level annotation extraction may lack the context to
make such a determination. Thus, we further labeled the true positives in
the subsampled edges as either “strictly causal” or “associative”. Of the 376
true positives, 169 (44.9%) were able to be identified as strictly causal.

We were interested in the subgraph of annotated relationships that were
identified as strictly causal. In the practical setting, such graphs could be
helpful to clinicians for diagnosis or prognosis or researchers for literature re-
view and hypothesis development. In the strictly causal Sjogren’s Syndrome
subgraph, clear clusters formed, as shown in Figure 7. A cluster of nephro-
logical signs and symptoms is highlighted. This shows a connection between
Sjogren’s syndrome and nephrology via renal tubular acidosis.

5. Discussion

One of the long-term goals of this work is to create a nearly exhaustive
list of factors about a disease by mining information from the biomedical
literature. In this paper, we investigate how a causal relationship extraction
model can help to work towards that goal. The factors associated with a
disease can be categorized into four classes — “signs and symptoms”, “risk
factors”, “associated conditions” and “diagnostic tests”. These classifica-
tions were provided by clinicians with experience in diagnosing and treating
patients with Sjogren’s syndrome. Examples of these labels as annotated by
the experts are shown in Appendix Table A.7. As we are using causality to
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mine information from text, we are likely to extract factors that are either
“signs and symptoms” or “associated condition”, as these two factors are
usually causally related to the disease. To illustrate the application of our
work, we chose Sjogren’s syndrome as an example and validated our results
on a corpus of research articles related to Sjogren’s syndrome.

Although we assume that causal relationships can be a useful tool to
retrieve disease factors, the present version of the causality extraction tool
has some limitations. It assumes that there is only one relationship pair in
the sentence. In reality, the sentences, particularly in scientific articles, are
much more complex, and one single sentence may have multiple relation-
ships in multiple formats — triangular, i.e., two causes leading to one effect or
same cause leading to two effects, transitive relations, and presence of condi-
tions that deems the relationship true. For example, the sentence “sjogrens
syndrome (SS) is a rare condition characterized by structural damage
and secretory dysfunction of the lacrimal and salivary glands that
leads to dryness, particularly xerophthalmia (eyes) and xerostomia
(mouth).”® demonstrates a transitive relation and “Sjogren’s syndrome
(SS) is an autoimmune disease, among the most common ones, that targets
mainly the exocrine glands as well as extra-glandular epithelial tis-
sues.”? has a triangular relation, where one event (Sjogren’s syndrome) is
causing two conditions. This work has not addressed identifying such rela-
tions from a single sentence. As part of future work, we will address these
limitations and build a more generic causal relationship extraction model
that can extract multiple relationships from a single sentence, if present,
furthermore, target inter-sentence causal relationships.

The results (Table 6) show the central hypothesis of this work that causal
relations can be used to extract certain factors associated with a disease
(Sjogren’s syndrome in this case) holds. It can retrieve several more factors
from the article text compared to other baseline methods. Still, on many
occasions, associated factors or signs and symptoms are present in a sentence
without any causal semantics. To achieve the long-term goals and improve
the recall of the model, it is essential to identify other relations that bind
these factors with the disease. For example, the sentence “Two years after
the presentation the patient developed dyspnea cough and xerostomia”

3https://pubmed.ncbi.nlm.nih.gov/28862467/
4https://pubmed.ncbi.nlm.nih.gov/29881381/
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contains symptoms, but due to the absence of a causal semantic, our present
model will add this to the list of false negatives. Similarly, our assumption
that the disease name (e.g., “Sjogren’s syndrome ”) will be present in the
sentence and be part of the cause-effect pair may fail, e.g., the above sentence
will not trigger any retrieval by our method. This rationale for using other
relations in the future will also help extract other types of factors. As part of
future work, we will investigate the relations that will help to discover those
factors.

From the clinical perspective, the results emerging from this study will po-
tentially have an important impact. Biomedical literature often contains in-
formation about potential factors associated with Sjogren’s syndrome. These
factors are measurable markers or indicators that can be used to identify and
diagnose a particular condition. By analyzing the literature, researchers and
clinicians can identify novel factors or gain insights into the significance of
known factors for Sjogren’s syndrome. These factors can then be used to
develop diagnostic tests or improve existing diagnostic methods. However,
due to the volume of the literature, manually solving this problem is infea-
sible. Hence, an automatic method, as presented in this study will help to
utilize the vast information available in the literature. This study presents a
framework to extract information and its ability to detect factors of Sjogren’s
syndrome from the literature. While this study shows that the above tasks
can be done with reasonable accuracy, a qualitative study evaluating the
utility of the extracted factors is beyond the scope of this paper. This quali-
tative evaluation will require a separate and larger study, involving clinicians
who have experience diagnosing and treating Sjogren’s syndrome patients.
This future study will help assess the quality of our framework’s findings and
help deploy the methods as a tool in clinical settings and have a real-world
impact.

6. Conclusion

This paper presents an innovative approach of using causality to extract
factors related to a disease from biomedical literature. We train our model
on six different causality datasets to show how transfer learning can help
detect causal relationships without any annotated, domain-specific dataset.
Using causal relationships, we aimed to extract latent factors about Sjogren’s
syndrome. Overall, our retrieval method has better precision, recall, and F1
score compared to several supervised baseline models.
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Although causal relations could effectively identify many factors, several
other types of relations bind the factors with a disease. In the future, to
improve retrieval performance, we will investigate other relations and build
models that can identify and extract these labels from the text. Furthermore,
we will improve our causal relationship extraction model to improve the
coverage of relationship extraction and be able to extract multiple causal
pairs from a single sentence, as well as discover inter-sentence relations.
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APPENDIX

Appendix A. Data Annotation

Appendiz A.1. Data Fxtraction and Preprocessing

We collected around 2,530 abstracts with 25,525 sentences. These ab-
stracts were extracted from the PubMed database using keywords ”Sjogren’s
Syndrome”, ”Sjogren” from 2016 to December 2020. Duplicates were re-
moved, and the abstracts were downloaded. The downloaded data had fur-
ther additional information such as PMID, Title, Authors, Citation, NIHMS
ID, DOI, and abstract text. The abstract text was further cleaned to ASCII
text to remove all non-Latin words and letters, and the resulting abstract
text was saved to an excel sheet for further usage. Each sentence of the
abstract was further broken down and converted into individual text files for
annotations. We selected a set of 1,058 sentences for annotation and to be
used in all the experiments.

Appendiz A.2. Annotations Guidelines and References Standards

We created annotation guidelines for manually annotating Sjogren’s Syn-
drome information that typically dentists seek for their diagnosis of the dis-
ease during patient care. We created these guidelines based on the existing
literature in dentistry and medicine

Appendiz A.3. Annotation Task

Practice Phase: For this phase, annotators A and B first selected a set of
100 sentences then 501 and lastly 200 from the given dataset and indepen-
dently annotated them based on the minimal guidelines created. After every
set Inter-Annotator Agreements (IAA) were calculated and disagreements
between the annotators were resolved through discussion and consensus, and
the guidelines were updated subsequently. After this phase concluded, the
first author analyzed each annotation set to identify annotation patterns.
This cycle continued till a good score of IAA was achieved thus represent-
ing an excellent agreement between the two researchers. The analysis results
were then discussed among the annotators and served to refine the guidelines.
Adjudication phase: Finally, the final set of annotations were adjudicated
and overseen by the annotator C. To create the gold standard to be used on
the remaining 2000 annotations. During this phase, annotator C was free and
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Table A.7: Labels with examples

Sjogren’s Syndrome Concepts | Examples of the literal text match
from the sentences.

Signs and Symptoms “xerostomia”, “xeropthalmia”, “dry eyes”,
“dry mouth”, “joint pain”

Associated Conditions “Rheumatoid arthritis”, “Systemic lupus
Erythematosus”,

“Squamous cell carcinoma,”
“Hodgkin’s lymphoma”

Diagnostic Tests “Schirmer Test”, “Rose Bengal Test”,
“Abnormal Flow rate”, “Scintigram”
Risk Factors “Women”, “Postmenopausal”,

“Mean age 407, “Rheumatic Disease”

discussed the annotations with the actual annotator to understand his/her
reasoning.

Results: After the first set of 100 and 501 sentences, the IAA score was
a fair 48.4% and 53.5% with a moderate increase of 5.5%. In discussing
the disagreements, the annotators’ existing domain knowledge and inference
were playing a key role in identifying the concepts. Therefore, for the next
set of 200 sentences, a strict ground rule was set, as ” The annotations should
be text-bound. The annotators domain knowledge and interpretation should
play a minimal role in annotation and the annotator should be only concerned
with what is explicitly stated in the text. The annotators should also provide
basis and justify the annotation and its concept”. Following this and the
updated guidelines IAA was recorded to be 90.7% (Figure A.8.
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Class and span matcher

Annotations match if they have same or overlapping spans, with same classes.

2-way IAA Results

1AA alculated on 200 documents.
allannotations = matches + non-matches
|1AA =matches / all annctations

For annotations between Annotator{Anushri] and Annotator[BC]:

Type IAA tehi
IAll selected classes  |90.7% 156 16

Conditi %

5

Risk Factors 185.7% /6 i
Diagnostic Tests 189.6%60 7
3

isigns and symptoms |94.3% |50

Figure A.8: Screenshot of eHOST tool summarizing the inter-annotator performance and
agreement
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