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We develop a theory of symmetry in open quantum systems. Using the operator-state mapping, we char-
acterize symmetry of Liouvillian superoperators for the open quantum dynamics by symmetry of operators
in the double Hilbert space and apply the 38-fold internal-symmetry classification of non-Hermitian oper-
ators. We find rich symmetry classification due to the interplay between symmetry in the corresponding
closed quantum systems and symmetry inherent in the construction of the Liouvillian superoperators. As
an illustrative example of open quantum bosonic systems, we study symmetry classes of dissipative quan-
tum spin models. For open quantum fermionic systems, we develop the Z, classification of fermion parity
symmetry and antiunitary symmetry in the double Hilbert space, which contrasts with the Zg classifica-
tion in closed quantum systems. We also develop the symmetry classification of open quantum fermionic
many-body systems—a dissipative generalization of the Sachdev-Ye-Kitaev (SYK) model described by
the Lindblad master equation. We establish the periodic tables of the SYK Lindbladians and elucidate the
difference from the SYK Hamiltonians. Furthermore, from extensive numerical calculations, we study its

complex-spectral statistics and demonstrate dissipative quantum chaos enriched by symmetry.
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I. INTRODUCTION

Symmetry underlies a variety of phenomena and plays a
pivotal role in physics. Spontaneous breaking of symmetry
characterizes phases of matter and enables the universal
description of phase transitions and critical phenomena
[1-3]. In general, Hermitian operators are classified by
tenfold internal symmetry classes based on time reversal,
charge conjugation (particle-hole transformation), and chi-
ral transformation [4—6]. These tenfold symmetry classes
also lead to the classification of Anderson transitions [7]
and topological insulators and superconductors [8—10] in
closed quantum systems. Even in the many-body case,
symmetry protects and enriches topological phases of mat-
ter. Another prime application of symmetry is the charac-
terization of quantum chaos [11], which is fundamentally
relevant to the foundations of statistical mechanics [12]. In
a number of model calculations, the spectrum of a noninte-
grable quantum system obeys the random-matrix statistics
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[13], while the spectrum of an integrable quantum sys-
tem obeys the Poisson statistics [14]. Here, the universal-
ity classes of the random-matrix statistics are determined
solely by the tenfold symmetry and do not rely on any
specific details of the system. Recently, the Sachdev-Ye-
Kitaev (SYK) model has attracted widespread interest as
a prototype that exhibits quantum chaotic behavior [15—
23]. The symmetry classification of the SYK model was
developed in terms of the number N of fermion flavors
and the number g of many-body interactions [24-31].
This symmetry classification is also closely related to the
Zg classification of fermionic topological phases in one
dimension [32,33].

Meanwhile, recent years have seen remarkable devel-
opment in the physics of open quantum systems. In
contrast to closed quantum systems, open quantum sys-
tems are coupled to the external environment and are
no longer described by Hermitian Hamiltonians [34-36].
Even though dissipation can destroy quantum coherence
and wash out quantum phenomena, engineered dissipa-
tion was shown to be useful in quantum computation and
state preparation [37-39]. Researchers have also found
rich phenomena in the physics of non-Hermitian Hamil-
tonians [40—42], which effectively describe open quantum
systems subject to continuous monitoring and postselec-
tion of the null measurement outcome [43—45], as well
as open classical systems. For example, non-Hermiticity
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gives rise to new types of Anderson transitions [46—54]
and topological phases [55,56] that have no analogs in
closed quantum systems. Notably, non-Hermiticity also
changes the nature of symmetry. While Hermitian opera-
tors are classified according to the tenfold internal symme-
try [6], non-Hermitian operators are classified according
to the 38-fold internal symmetry [57—59]. In a similar
manner to closed quantum systems, this 38-fold symme-
try determines the universality classes of non-Hermitian
random matrices, as well as the Anderson transitions and
topological phases of non-Hermitian systems.

Furthermore, the characterization of chaotic behavior
in open quantum systems has attracted growing atten-
tion [60—75]. Similarly to quantum chaos in closed sys-
tems, the complex spectra of several nonintegrable open
quantum systems were numerically shown to obey the
spectral statistics of non-Hermitian random matrices [11,
76,77], while the integrable counterparts were shown to
obey the Poisson statistics for complex numbers. Thus,
complex-spectral statistics give a measure to quantify
dissipative quantum chaos. Several recent works have
proposed prototypes of open quantum many-body sys-
tems that exhibit dissipative quantum chaos, such as ran-
dom bosonic Lindbladians [63,68]. Furthermore, as pro-
totypical open quantum systems of strongly correlated
fermions, non-Hermitian SYK Hamiltonians (i.e., SYK
Hamiltonians with complex-valued parameters) [78—81]
and SYK Lindbladians (i.e., SYK Hamiltonians coupled
to Markovian reservoirs described by the Lindblad master
equation) [82,83] have been proposed. While the sym-
metry classification of non-Hermitian SYK Hamiltonians
was recently developed [81], the symmetry classification
of SYK Lindbladians has yet to be developed. Corre-
spondingly, symmetry-enriched behaviors of dissipative
quantum chaos have been largely unexplored.

In general, the dynamics of open quantum systems is
described by Liouvillian superoperators that map a density
operator to another density operator [34—36]. Symmetry of
such Liouvillian superoperators was formulated [84—89].
Liouvillian superoperators can respect unitary symmetry
and possess conserved charges, which are relevant to the
open quantum dynamics and steady-state properties [84—
86]. In addition to unitary symmetry, antiunitary symmetry
of Liouvillian superoperators was recently studied [87,88].
In these previous works, however, only a part of the 38-
fold symmetry classification [57—59] was shown to appear
as symmetry of Liouvillian superoperators. It is still elu-
sive whether all the 38 symmetry classes of non-Hermitian
operators can appear in Liouvillian superoperators. This
issue is relevant to a wide range of open quantum phenom-
ena, including dissipative quantum chaos and topological
phenomena.

In this work, we develop a theory of symmetry in
open quantum systems. To identify unitary and antiunitary
symmetry of open quantum systems, we map Liouvillian

superoperators for the open quantum dynamics to non-
Hermitian operators in the double Hilbert space. After this
operator-state mapping, we apply the 38-fold symmetry
classification of non-Hermitian operators to characterize
the symmetry of the open quantum system. Our approach
is similar to the analysis of unitary symmetry in Refs. [84—
86], but different from the analysis of antiunitary symmetry
in Refs. [87,88], which enables us to find the symmetry
classes that were shown not to appear in Refs. [87,88].
We find rich symmetry classification of Liouvillian super-
operators. On the one hand, Liouvillians respect symme-
try that is reminiscent of symmetry in the corresponding
closed quantum systems isolated from the environment.
On the other hand, Liouvillians respect additional symme-
try inherent in their construction. Furthermore, we develop
the Z4 classification of fermion parity symmetry and antiu-
nitary symmetry in the double Hilbert space of open quan-
tum systems, which contrasts with the corresponding Zg
classification in closed quantum systems [32,33]. This Z,4
symmetry classification should also be fundamental for the
topological classification of open quantum systems.

As an illustrative example of open quantum fermionic
many-body systems, we develop the symmetry classifica-
tion of SYK Lindbladians. We establish the periodic tables
(Tables II and III) of SYK Lindbladians and elucidate
how they differ from the periodic tables of SYK Hamil-
tonians. Owing to their many-body nature, SYK Lind-
bladians respect symmetry that cannot appear in nonin-
teracting (quadratic) Lindbladians [87]. Furthermore, with
extensive numerical calculations, we study the complex-
spectral statistics and demonstrate dissipative quantum
chaos enriched by symmetry. Our results provide a general
theory of symmetry in open quantum systems and lead to a
unified understanding of open quantum physics including
dissipative quantum chaos. While we focus on open quan-
tum systems described by the Lindblad master equation,
our theory is also applicable to a variety of open quantum
systems, such as non-Markovian Liouvillians and discrete
quantum channels.

The rest of this work is organized as follows. In Secs. 11
and III, we provide the general symmetry analysis of open
quantum systems of bosons and fermions, respectively.
On the basis of the operator-state mapping, we apply the
38-fold symmetry classification of non-Hermitian opera-
tors to Liouvillian superoperators for the open quantum
dynamics. We elucidate modular conjugation symmetry
that is inherent in the construction of Liouvillian superop-
erators. As typical examples of open quantum bosonic sys-
tems, we study symmetry classes of dissipative quantum
spin models. Furthermore, we develop the Z, classifica-
tion of fermion parity symmetry and antiunitary symmetry
in the double Hilbert space of open quantum systems
(Table I). In Sec. IV, we develop the symmetry clas-
sification of SYK Lindbladians as a prototype of open
quantum fermionic many-body systems. Our symmetry
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classification is summarized in periodic tables (Tables II
and III). In Sec. V, we numerically study the complex-
spectral statistics of SYK Lindbladians and demonstrate
their dissipative quantum chaos for several different sym-
metry classes. In Sec. VI, we conclude this work with
several outlooks. In Appendix A, we summarize the 38-
fold symmetry classification of non-Hermitian operators.
In Appendix B, we discuss the level statistics of non-
Hermitian random matrices with time-reversal symmetry
in a similar manner to the Wigner surmise. In Appendix C,
we describe the symmetry classification of SYK Hamilto-
nians.

I1. BOSONIC OPEN QUANTUM SYSTEMS

We discuss the general strategy to identify unitary and
antiunitary symmetry of open quantum systems. In this
section, we focus on open quantum bosonic systems. We
begin with mapping a Liouvillian superoperator for the
open quantum dynamics to a non-Hermitian operator in
the double Hilbert space, as explained in Sec. Il A. Then,
we apply the symmetry classification of non-Hermitian
operators [57—59] to characterize the symmetry of open
quantum systems. Open quantum systems respect addi-
tional antiunitary symmetry of modular conjugation that
arises from its construction, as discussed in Sec. II B. In
Sec. IIC, we clarify the role of unitary symmetry and
corresponding conserved quantities. Moreover, since Lind-
bladians are required to be contractive, the real part of the
complex spectrum is always negative. As a consequence
of this constraint, a constant shift of the Lindbladians
is important, as discussed in Sec. IID. In Sec. IIE, as
prototypical open quantum bosonic systems, we study dis-
sipative quantum spin models and identify their symmetry
classes.

A. Operator-state mapping

In general, an operation of an open quantum system
is described by a superoperator @ that maps a density
operator p to another density operator p’ = ®(p) [34-36]:

o= p = ®(p). (1)

The superoperator @ contains all information about the
open quantum system in a similar manner to Hamiltoni-
ans for closed quantum systems. Thus, symmetry of the
open quantum system is described by symmetry of the
superoperator ®. In particular, if the open quantum dynam-
ics is Markovian and time homogeneous, it is generally
described by the Lindblad master equation [90,91]

dp

i L(p), 2)

where the superoperator £ is defined by
.1
L(p) = —i[H LupLt — —{L' L., p}|. 3
(p) = —i ,p]+;[ pLy, — AL} p}] 3)

Here, H is a Hermitian Hamiltonian that describes the
coherent dynamics and L,,’s are dissipators that describe
the dissipative coupling to the external environment.
While our discussions below are generally applicable to
a wide variety of open quantum systems, including non-
Markovian Liouvillians and discrete time evolution of the
Kraus representation [34—36], we here focus on symmetry
of open quantum systems described by the Lindbladians L.

In contrast to Hamiltonians for closed quantum sys-
tems, Lindbladians £ are superoperators. To resolve the
difficulty in analyzing superoperators, it is useful to dou-
ble the Hilbert space and map £ and p to an operator
and a state, respectively. We first map the density opera-
tor p =Y, py |i) /| to a pure state |p) = 3, oy ) |j)
in the double Hilbert space. Through this mapping, the
identity operator /, which can also be considered to be
the thermal equilibrium state with infinite temperature, is
mapped to the maximally entangled state /) = ), |i) |7).
Similarly, we map superoperators that act on the density
operator p to operators that act on state |p) in the double
Hilbert space. This vectorization procedure p — |p) can
also be stated as

lp) = p I, “

where OF denotes an operator acting on the ket and bra
spaces, respectively, defined from an arbitrary operator O
acting on the original Hilbert space. Then, the Lindblad
equation in Egs. (2) and (3) reads

9
Y lo) = L|p) %)

and
L=—-iHQI —ITQH%)
1 1
Ly®LS — (LT L, 1) — —~(ITQLLL*
+Z[ ® Ly, = 5L ln ®17) = 5 ®mm>]
(6)

with the identity operators /T and /= in the ket and
bra spaces, respectively. Through this operator-state map-
ping, the Lindblad equation effectively reduces to the
Schrodinger equation with the non-Hermitian Hamiltonian
iL. In this representation, while the Hamiltonian part acts
only on the individual ket or bra space, the dissipation
term couples these two spaces. We can generally iden-
tify symmetry of Lindbladians by considering symmetry
of the corresponding non-Hermitian operators in the dou-
ble Hilbert space. Such an operator-state mapping is also
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useful to find exact solutions of integrable open quan-
tum systems [92,93] and characterize topological phases
of anomalous unitary operators [94].

B. Modular conjugation

Lindbladian £ in the double Hilbert space is not an
arbitrary non-Hermitian operator as it descends from a
quantum channel, which is completely positive and trace
preserving [95]. We now discuss constraints (symmetries)
inherent in the construction of Lindbladians. First, it can
be readily checked that L£T|I) = (/|£ = 0. This implies
the trace-preserving condition, (/|£|p) = 0 or (I|e'*|p) =
(I|p(®)) = trp(?) = 1. Second, the Lindbladian should pre-
serve Hermiticity of the density operator, p(f) = p(f)' =
[e“(p(0))]". The Hermiticity condition leads to antiuni-
tary symmetry of Lindbladians based on modular conju-
gation. Modular conjugation is an antiunitary, involutive
operation, and satisfies

Joty = 0N, (7

as its defining relation [96-98]. Hermiticity of the density
operator p then implies that |p) is invariant under 7,

Jlp) =lp). ®)

It then follows for any ¢ that

o) =Tlp®)

= Je*p(0))
=Je T T1p(0)
= Je“ T p(0)), ©)
which implies Je’* 7! = ¢'* and hence symmetry
JLIT ' =L. (10)

This modular conjugation symmetry is respected for arbi-
trary Lindbladians. It is also respected for more generic
superoperators as long as they preserve Hermiticity of
density operators.
For bosonic operators, modular conjugation 7 is explic-
itly constructed by
JARBJT ' =Bed4, JzJ '=z, (1)
which exchanges the ket and bra spaces (z € C). Then, all
bosonic Lindbladians in Eq. (6) are invariant under modu-
lar conjugation regardless of the details of the Hamiltonian
H and the dissipators L,,. This symmetry can effectively be
considered to be time-reversal symmetry (or, equivalently,
particle-hole symmetry® for i£) in the 38-fold symmetry
classification of non-Hermitian operators (see Appendix A

for details) [58]. As a result of this symmetry, eigenvalues
generally form complex-conjugate pairs, and a number of
real eigenvalues can appear in the complex spectrum of the
Lindbladians £ (see Appendix B for details).

C. Conserved quantities

Suppose that a Lindbladian £ is invariant under a
unitary operation U:

ULU ! =L. (12)

Then, £ is block diagonalized into different subspaces
characterized by the different conserved charges of .
Prime examples of such conserved charges include the par-
ticle number. In the presence of such unitary symmetry,
we need to consider the subspace with a fixed conserved
charge to study the symmetry classification and the spec-
tral statistics. In fact, if we study, for example, the statistics
of the entire spectrum of the Lindbladian £ even in the
presence of the unitary symmetry in Eq. (12), we only have
the Poisson statistics since the different subspaces with dif-
ferent conserved charges are independent of each other.
We note that such unitary symmetry is not included in
the internal-symmetry classification for Hermitian [6,7,10]
and non-Hermitian [57—59] operators.

It is also notable that Lindbladians can be invariant even
under a unitary operation in each ket or bra space, i.e.,

UL LU = L, (13)

where Uy is the unitary operator that belongs only to the
ket or bra space. The symmetry condition in Eq. (13) is
stricter than that in Eq. (12), and hence Egs. (12) and (13)
were respectively called weak symmetry and strong sym-
metry in Ref. [84]. For bosonic operators, unitary sym-
metry that commutes with Lindbladians, as well as its
consequence on the open quantum dynamics, was also
studied in Ref. [85].

In addition to unitary operators, antiunitary operators
can also act on Lindbladians and the double Hilbert space.
With an antiunitary operator, Lindbladians can be sym-
metric in the form of time reversal or time reversal’
in the terminology of the 38-fold classification of non-
Hermitian operators [58]. To discuss antiunitary symmetry,
we need a proper shift of Lindbladians, as we discuss
momentarily. In passing, we note that we can combine
an antiunitary operator and modular conjugation to form a
unitary operator. This type of unitary operator (symmetry)
is called the Kubo-Martin-Schwinger (KMS) symmetry
[99—-102]. The KMS symmetry was also utilized to diag-
nose topological properties and quantum anomalies of
time-reversal-symmetric Floquet systems [94].
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D. Shifted Lindbladian

In addition to the trace-preserving and Hermiticity-
preserving conditions, Lindbladians are required to be con-
tractive by construction. The real part of the Lindbladian
spectrum is constrained to be negative, which appears to
be incompatible with some internal symmetry. For exam-
ple, if a Lindbladian £ respected time-reversal symmetry
T (iL)T ! = iL with an antiunitary operator 7, the com-
plex spectrum of £ would be required to be symmetric
around the imaginary axis. This would be incompatible
with the aforementioned constraint unless the Lindbladian
L does not include dissipation and its spectrum is pure
imaginary. For this reason, quadratic noninteracting Lind-
bladians were argued to fall into only the tenfold symmetry
class (Altland-Zirnbauer! symmetry class in Table VII in
Appendix A) out of the 38-fold symmetry class for generic
non-Hermitian operators [87]. However, this constraint can
be lifted by introducing a constant shift tr £/tr] < 0 to
the Lindbladian spectrum so that it will be traceless. Here,
I = I ® I is the identity operator in the double Hilbert
space. When the Hamiltonian H and the dissipators L,, are
traceless, we have

trL=—(tr1*) ) tr[L} L] <0. (14)

m

This constant shift tr £/tr I does not affect the eigenvectors
of L, and if we focus on the shifted Lindbladian

(15)

instead of £, we can in principle reproduce all the
38-fold symmetry, including time-reversal symmetry
TGL)T ' =iLl. One may think that this constant shift of
the spectrum is similar to a constant shift of Fermi energy
in Hermitian Hamiltonians, by which particle-hole trans-
formations can be introduced. Such a constant shift of the
Lindbladian spectrum is important for parity-time sym-
metry [103—106] and sublattice symmetry [107] in open
quantum systems. In the following sections, we show sym-
metry of shifted Lindbladians for the dissipative quantum
spin models and the SYK Lindbladians.

E. Examples: dissipative quantum spin models

As prototypical examples of open quantum bosonic sys-
tems, we study symmetry classes of dissipative quantum
spin models described by the Lindblad master equation in
Egs. (2) and (3).

1. Dissipative quantum Ising model

The Hamiltonian is chosen to be the quantum Ising
model

H=-Y"J;ZiZ; = Y (KX, +FKZ),  (16)
ij i

where X;, ¥;, and Z; are Pauli matrices at site i, J; € R
is the interaction strength between the quantum spins at
sites i and j, and #/® € R is the magnetic field along the
x (z) direction at site i. Since the discussions below are
concerned only with internal symmetry, the sites 7,j in the
sum ), ; can be arbitrary. The dissipators are chosen to be
dephasing,

L = vz, (17)
or damping,
(Xi +1Y;
L= @, (18)

where y; > 0 is the dissipation strength at site i [34-36].
Similar dissipative spin models and their complex spectral
statistics were recently studied [65—67].

Through the operator-state mapping in Eq. (6), the
above Lindbladian is represented as a non-Hermitian oper-
ator £ in the double Hilbert space, which enables us to
study its symmetry. First, as discussed in Sec. IIB, L is
invariant under modular conjugation in Eq. (11). This sym-
metry can be considered as time-reversal symmetry, or
equivalently particle-hole symmetry’ (see Appendix A for
details) [58], which changes the level statistics around and
on the real axis [74,76].

In addition to modular conjugation symmetry, Lindbla-
dian £ respects time-reversal symmetry"

LT '=C (19)
for the dephasing in Eq. (17). Here, the antiunitary opera-
tor 7 is chosen to be complex conjugation /C. In contrast to
time-reversal symmetry discussed above, this symmetry is
relevant to the level statistics of generic complex eigenval-
ues even away from the real axis [65]. On the other hand,
the damping in Eq. (18) breaks this symmetry, resulting in
the local spectral correlations same as the Ginibre ensem-
ble of non-Hermitian random matrices [76]. Consequently,
the above dissipative spin model belongs to class BDI' for
the dephasing in Eq. (17) and class Al (or, equivalently,
class DY) for the damping in Eq. (18).

2. Dephasing XYZ model with magnetic fields

More symmetry classes appear in different dissipative
quantum spin models. As another example, we study the
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XYZ model with a magnetic field

H = =Y UiXX, + I VY, +T522) = ) kX,
ij -

1

(20)

where J;;, Jlf ,J;; € R are the interaction strength between
the quantum spins at sites i and j . The XYZ model respects
time-reversal symmetry

THT '=H (21)
with 7= K. In addition, it is also invariant under the
global spin flip and hence respects the Z, unitary symmetry

U:= HX

i

UHU ' =H, (22)

Now, let us add dephasing in Eq. (17) and investigate
symmetry of the Lindbladian. The dissipation term reads

1 1
D:Z[Li@)ﬁ 5 (L:Li®17)_ 3 (1+®LZL?)}

=Y nz'z; - (Z %)I,

i

(23)

where Z! and Z are the Pauli matrices in the ket and
bra spaces, respectively. Symmetry of this model was also
investigated in Ref. [108]. As discussed above, Lindbla-
dian £ is invariant under modular conjugation because
of its Hermiticity-preserving nature. In addition, symme-
try in the original XYZ model can survive even in the
presence of dissipation. In fact, time-reversal symmetry of
the XYZ model in Eq. (21) survives, and the Lindbladian
L respects time-reversal symmetry’ in Eq. (19). Further-
more, similarly to the Z, unitary symmetry in Eq. (22), the
Lindbladian £ is invariant under the global spin flip in the
double Hilbert space and respects

ULU™ = L,

u:=[]xx". (24)

By contrast, the dephasing in Eq. (17) breaks the spin-flip
symmetry in the individual ket or bra space. Nevertheless,
under the combination of the spin flip and time reversal,
the Lindbladian respects

(U*K) (c Yy y,»)wiicrl - —(L Y y,») ()

with the spin flip U* := ]—[iXijE in the individual ket
or bra space. This symmetry is considered as particle-
hole symmetry" (or, equivalently, time-reversal symmetry)

in the 38-fold symmetry classification of non-Hermitian
operators. The constant shift tr £/tr] = — ), y; is needed
to capture this symmetry, as discussed in Sec. II D.

In summary, the XYZ model with the dephasing respects
modular conjugation symmetry in Eq. (10), time-reversal
symmetry' in Eq. (19), and particle-hole symmetry’ in
Eq. (25). Notably, this Lindbladian is invariant under the
global spin flip in the double Hilbert space [i.e., Eq. (24)],
and we should consider symmetry in the subspace of this
Z, unitary symmetry. Since all the above antiunitary sym-
metries commute with this Z, unitary symmetry, they
remain symmetries in this subspace. Consequently, the
dephasing XYZ model belongs to class BDIT + S, in the
38-fold symmetry classification of non-Hermitian opera-
tors (or, equivalently, class BDI + S, ; see Appendix A
for the definitions of the symmetry classes).

Symmetry manifests itself in the complex spectrum.
We obtain the complex spectrum of the dephasing XYZ
chain, as shown in Fig. 1(a). Here, we consider the XYZ
spin chain on the one-dimensional lattice with periodic
boundaries that only has the nearest-neighbor coupling.
The complex spectrum is symmetric about the real axis,
which originates from modular conjugation symmetry. In
addition, because of particle-hole symmetry" in Eq. (25),
it is also symmetric about the line ReA =tr L/tr [ =
— Y. . As a combination of these two antiunitary sym-
metries, the complex spectrum forms a cross. Owing to
the nonintegrable nature of the XYZ model, the level
repulsion around these symmetric lines is observed (see
Appendix B for details) [74]. To clarify the role of particle-
hole symmetry", we also investigate the complex spectrum
of the same dephasing XYZ model with an additional mag-
netic field — )", A7Z; [Fig. 1(b)]. Such a magnetic field
along the z direction breaks particle-hole symmetry’ in
Eq. (25), and the model now belongs to class BDI' instead
of class BDI' + S,,. While some complex eigenvalues
remain in the symmetric line Re A = —) . y;, the sym-
metry of the complex spectrum about this line is broken.
In addition, the level repulsion around the symmetric line

(a) 20 (b) 20
10 10
~< ~< :
g o g O
-10 -10
"0 T 3 2 11 0 "0 T 3 52 1 o
Re A Re A
FIG. 1. Dissipative XYZ model in one dimension with peri-

odic boundaries and nearest-neighbor coupling (L = 6, J;; = 1.0,
J,f =0.7,J; =0.9,y; = 0.5). (a) Complex spectrum in the pres-
ence of a magnetic field 47 = 0.2. (b) Complex spectrum in the

presence of magnetic fields 7 = 0.2, k7 = 0.4.

030328-6



SYMMETRY OF OPEN QUANTUM SYSTEMS...

PRX QUANTUM 4, 030328 (2023)

disappears, which also indicates the absence of particle-
hole symmetry®. It is also notable that similar cross-shaped
complex spectra of Lindbladians due to parity-time sym-
metry were studied [103—105]. Since the cross-shaped
complex spectra in Refs. [103—105] rely on the com-
bination of spatial-inversion symmetry and time-reversal
symmetry, they are sensitive to disorder. On the other hand,
the cross-shaped complex spectrum in our model, as well
as the model in Ref. [108], relies only on internal (i.e.,
nonspatial) symmetry and is robust against disorder that
preserves particle-hole symmetry”.

3. Dephasing XYZ model with Dzyaloshinskii-Moriya
interactions

In the previous dephasing XYZ model, time-reversal
symmetry (or, equivalently, particle-hole symmetry®) in
Eq. (25) appears, the sign of which is +1. In general,
antiunitary symmetry with the sign —1 can also appear.
As an example, we consider the XYZ model with the
Dzyaloshinskii-Moriya (DM) interactions

H ==Y (;XX; +J} V.Y, +J; 2:7;)
ij
+ ) Dy(XiZ; — ZX)), (26)

i

where Dj; € R describes the strength of the DM interac-
tions. The DM interactions break the Z, unitary symmetry
in Eq. (22). Still, this spin model respects another Z;
unitary symmetry

UHU™ ' =H, U:=]]¥ (27)

Similarly to the previous case, let us add dephasing in
Eq. (17). Modular conjugation symmetry in Eq. (10)
and time-reversal symmetry” in Eq. (19) remain to be
respected. On the other hand, the Lindbladian £ no longer
respects the Z, unitary symmetry in Eq. (24) but rather
respects

ucu =L,  U:=[[xv. (28)

In addition, under the combination of the spin flip and time
reversal, the Lindbladian respects Eq. (25) with U* :=
I th A distinctive feature of this antiunitary symmetry
is that its sign can be either +1 and —1, depending on
whether the number N of sites is even or odd:

(UFK)? = (—=DV. (29)

Consequently, this dephasing XYZ model with the DM
interactions belongs to class BDIT + S, | for even N and

class CI' + S, _ for odd N (or, equivalently, class BDI +
S+ and class BDI + S_, respectively; see Appendix A
for the definitions of the symmetry classes). Owing to this
antiunitary symmetry for odd N, complex eigenvalues on
the symmetric line Re A = tr L/tr[ exhibit the Kramers
degeneracy while generic complex eigenvalues away from
it do not.

Antiunitary symmetry with sign —1 also appears in
SYK Lindbladians with the odd number p of dissipa-
tors (see Table II in Sec. IV). We study the consequent
complex-spectral statistics in Sec. V B.

I1I1. FERMIONIC OPEN QUANTUM SYSTEMS

In this section, we generally analyze symmetry of open
quantum fermionic systems. In contrast to the bosonic
case discussed in Sec. II, the operator-state mapping is
intricate in fermionic open quantum systems because of
the fermionic nature of the Hilbert space; we clarify the
operator-state mapping of open quantum fermionic sys-
tems in Sec. III A. As a general feature of open quan-
tum fermionic systems, we discuss the importance of
fermion number parity in Sec. III B. Similarly to open
quantum bosonic systems, generic fermionic Lindbladi-
ans are invariant under modular conjugation, as shown in
Sec. III C. Finally, in Sec. III D, we develop the Z, alge-
braic structure of fermion parity symmetry and antiunitary
symmetry in the double Hilbert space of open quantum
fermionic systems.

A. Operator-state mapping

In contrast to bosonic systems, the operator-state map-
ping is intricate for fermionic open quantum systems
because we have to reproduce the fermionic anticommuta-
tion relations in the double Hilbert space. Here, we follow
the fermionic operator-state mapping in Refs. [109,110].
Let us consider a fermionic Lindbladian £, which is
generally described by Majorana fermions ;’s in the
Hilbert (Fock) space. We can also construct the fermionic
operator-state mapping by complex fermions in a similar
manner. To develop the operator-state mapping, we dou-
ble the Hilbert space and introduce two types of fermions,
¥;" and v, that belong to the ket and bra spaces, respec-
tively. The Majorana fermions ;" and v, are required to
satisfy the fermionic anticommutation relations

W) = 858 (30)

for s,s" € {+, —}. While the fermion operators 1/fl~+ imple-
ment the action on the density operator p from the left, the
fermion operators v; implement the action on p from the
right. Notably, ;" and v, are required to anticommute
with each other as a consequence of the fermionic nature
of the Hilbert space. For the introduction of ¥, and ¥,
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we begin with mapping the identity operator: / — |I). The
fermion operators ;" and v, are connected to each other
through this reference state |7),

Vi) = =iy 1), (€2Y)

which is compatible with v;/ = I, in the original Hilbert
space. The factor “—i” in Eq. (31) ensures the fermionic
anticommutation relation between ;" and ;. The refer-
ence state |/) plays a role of a reflector that maps operators
in the ket space to those in the bra space, and vice versa.
Using the reference state |/), we can map operators to
states in the double Hilbert space. In particular, the density
operator p is mapped to the state

lp) == pTII). (32)

Then, we multiply the Lindblad equation in Egs. (2)
and (3) from the right on |/) and convert the fermions act-
ing on the density operator from the right to the fermions
Y, that belong to the bra space. In this manner, generic
fermionic Lindbladians can also be effectively recast as the
Schrodinger equation (5) with non-Hermitian fermionic
operators.

For example, if we consider the one-body dissipators
Ly=yVYn (y eR, m=1,2,...,M), the Lindbladian £
is written as the non-Hermitian operator

M 2
M
L=—i®Y ¥iv, - VTM*, (33)
m=1

where the fermion parity of the density operator is assumed
to be even. If we consider the two-body dissipators

Lm = VWme+l (]/ € R, m = 1:27 ce aM: ¢M+l = Wl),
the Lindbladian L is written as

M )/2 M
L=y Y UiV — 17T (34)

m=1
Below, we focus on symmetry of open quantum many-
body systems described by fermionic Lindbladians and
develop their symmetry classification based on the 38-
fold internal symmetry of non-Hermitian operators (see
Appendix A for details) [58].

B. Fermion number parity

In open quantum fermionic systems, the particle num-
ber can be preserved, for example, when dissipation only
results in dephasing. However, in typical situations, includ-
ing the SYK Lindbladians discussed in the subsequent
sections, dissipation breaks the conservation of the parti-
cle number. Even in such a case, Lindbladians £ always

consist of the even number of fermion operators in the dou-
ble Hilbert space, and hence total fermion parity (—1)7 is
preserved. The symmetry operation acts as

D7 YE=DT =~y (35)

for each fermion, and the Lindbladian £ is invariant under
this Z unitary operation:

D7 LT =L. (36)

As discussed in Sec. IIC, we may also define fermion
parity (—1)F * in each ket or bra space by

(D Y= (=D =~y 37)
(DY F(=DF = yF. (38)

However, such strong versions of fermion parity symme-
try may not be necessarily respected in general, while the
weak version in Eq. (36) is always respected. In Sec. 1V,
we explicitly construct the weak and strong fermion parity
symmetry and show that it leads to the rich symme-
try classification of open quantum many-body fermionic
systems.

C. Modular conjugation

For open quantum fermionic systems, we cannot
straightforwardly introduce the antiunitary swap operation
in Eq. (11) because of the fermionic anticommutation rela-
tion. We can still find modular conjugation by demanding
that (i) it exchanges ¥ and ¥ ~; (ii) it is antiunitary; and
(iii) it leaves the reference state invariant. We are thus led
to introduce modular conjugation by

JviT =y, T, T =), J:T =2,
(39)

for each fermion ¢ and z € C. Under this fermionic mod-
ular conjugation, we also have Eq. (7) for arbitrary bosonic
operators O" (i.e., arbitrary operators that consist of the
even number of fermionic operators). Since arbitrary den-
sity operators consist of the even number of fermionic
operators, fermionic Lindbladians £ are generally invari-
ant under modular conjugation:

JLIT ' '=L. (40)

As discussed in Sec. III B, total fermion parity (—1)7 in
the double Hilbert space is always conserved. Thus, we

can introduce another type of modular conjugation J by

TvrT ==y, Ju T = -y, J T =2,
(41)

satisfying j o (—1)% J. Generic fermionic Lindbladians
are also invariant under this type of modular conjugation
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(e, JLT ' = L). In the subspace with fixed fermion
parity (—1)7, the two antiunitary operators 7 and J
are equivalent to each other. On the other hand, fermion
parity (—1)F * in the individual ket or bra space is not
necessarily conserved, as discussed in Sec. III B. Conse-
quently, the products of 7 and (—1)F * do not necessar-
ily give rise to symmetry of Lindbladians in contrast to
J and j .

In Sec. IV, we explicitly construct fermionic modular
conjugation in Egs. (39) and (41). Furthermore, in Sec. V,
we demonstrate that modular conjugation symmetry is
relevant to the complex-spectral statistics and dissipative
quantum chaos of SYK Lindbladians. It is also notable
that, while all fermionic Lindbladians respect Eq. (40),
modular conjugation J does not necessarily commute with
fermion parity (—1)7 * in the individual ket or bra space.
Hence, when 7 and (—1)" * anticommute with each other,
modular conjugation symmetry J is not respected in the
subspace with fixed (—1)% *We demonstrate this breaking
of modular conjugation symmetry for SYK Lindbladians
with N = 2 (mod 4) and even p.

D. Projective symmetry analysis: Z4 periodicity

We now discuss the algebraic properties of total fermion
parity and modular conjugation in more detail. For Her-
mitian Majorana fermion systems, which can be thought
of as being realized as a boundary of (1 4 1)-dimensional
topological superconductors, it is known that symmetry
actions are realized projectively [32,33]. Specifically, there
is an eightfold algebraic structure of fermion parity and
time-reversal symmetry (see also Appendix C).

In the double Hilbert space, modular conjugation 7 and
total fermion parity (—1)” realize a linear representation,
i.e., modular conjugation J always satisfies J2 = 41
and commutes with (—1)7 for any N. This can be seen
by explicitly constructing these operators in the double
Hilbert space. For even N, they are constructed explicitly
as

N/2
(07 =T @iy vhHQivs_ s, (42)
i=1
N/2

T =W =D @s+ivs)C. (43)

i=1
Similarly, for odd N,

N=-1)/2

<—1>f=[ I1 <2iw;_1w;><2iw2:_lwg>}
i=1

x iyyvy), (44)

N-1)/2
J:[ I (wzt_lwﬁ_l)(iw;—iwzi)}

i=1

x (Y K. (45)

Here, N is the total number of fermion operators, and we
choose v; with odd i to be real and symmetric and v; with
even i to be pure imaginary and antisymmetric,

KiK. = iy, Kyl = =i, (46)
with complex conjugation /C, so that the correspond-
ing complex fermion operators will be real. From these
representations, we verify the relations

TJ=+41, JEHF =177 (47)

On the other hand, once we add an antiunitary symme-
try, a fourfold algebraic structure emerges. In addition to
total fermion parity and modular conjugation, let us con-
sider, similarly to time reversal, an antiunitary operation
‘R that acts as

RYyFR™ =y F, RzR =z* (48)

for z € C. Notably, while the action of this antiunitary
operation R is similar to time reversal 7 in closed quan-
tum systems, R does not necessarily describe physical
time reversal in open quantum systems. In fact, while
Te HIT=1 = ¢H(THT D gives the time-reversed dynam-
ics of the unitary dynamics e~ the open quantum
counterpart Re“"R~1 = ¢RER™D does not give the time-
reversed dynamics of the Lindbladian dynamics e*. Still,
the antiunitary symmetry R gives constraints on open
quantum systems. Total fermion parity symmetry (—1)”
and antiunitary symmetry R, as well as modular conju-
gation symmetry 7, also play a central role in the sym-
metry classification of SYK Lindbladians, as discussed in
Sec. IV. There, fermion parity (—1)* * in the individual ket
and bra spaces, and other types of antiunitary symmetry P,
Q, S are also relevant.

As before, we explicitly construct the symmetry opera-
tion R and obtain their algebraic structure (Table I). For
even N, the antiunitary operator R satisfying Eq. (48) is

N/2
R = (Hz(iw;;)(iwz—i))lc. (49)
i=1
From this representation, we verify
N/2

R = [T4Gy) (s @) () = (=DY2 - (50)

i=1
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TABLE 1. Fourfold algebraic structure of total fermion par-
ity symmetry (—1)7, modular conjugation symmetry 7, and
antiunitary symmetry R in the double Hilbert space of open
quantum fermionic systems. Here, a € {+1,—1} specifies the
commutation or anticommutation relation between (—1)¥ and
R[i.e., R(—=1D7 = a(—1)"R]; b € {+1, —1} specifies the com-
mutation or anticommutation relation between J and R (i.e.,

RJ = bJR).

N (mod 4) 0 1 2 3
a +1 —1 +1 -1
b +1 +1 -1 -1
R? +1 +1 -1 —1

and the relations
R(-1" = (-D7R, (51)
RT = (-D"?JR. (52)
Similarly, for odd N, R is constructed as

N-1)/2

R= ( I1 2(iz/f;><iw;,-))ic, (53)
i=1
leading to
RZ — (_1)(]\/71)/2’ (54)
R(-1DT = —(-1)"R, (55)
RT = (DN D2TR, (56)

These algebraic structures are summarized as Table 1. The
algebraic relation between J and R (i.e., b € {+1,—1}
with RJ = bJR) is equivalent to the sign R? of the
antiunitary symmetry for arbitrary N.

TABLE II.

Importantly, the algebraic structure of total fermion
parity (—1)7, modular conjugation 7, and antiunitary
symmetry R is fourfold periodic in N (Table 1), which
contrasts with the eightfold periodicity for closed quan-
tum systems [32,33]. Consequently, the classification of
SYK Lindbladians is also fourfold periodic in terms of
N, as shown in Sec. IV. The different periodicity is a
direct consequence of the operator-state mapping. As men-
tioned above, the eightfold periodicity of the algebraic
structure of symmetry is closely related to the Zg topolog-
ical classification of interacting Majorana fermions with
time-reversal symmetry [32,33]. Similarly, our fourfold
periodicity of the algebraic structure of symmetry should
be relevant to the topological classification of open quan-
tum fermionic systems. Finally, it is worthwhile noting that
the real structures on spectral triplets in noncommutative
geometry are similarly classified with eightfold periodicity
[111]. In these works, the case of modular conjugation that
squares to —1 is also considered.

IV. SYMMETRY CLASSIFICATION OF
SACHDEV-YE-KITAEV LINDBLADIANS

As a prototypical example of open quantum many-body
fermionic systems, we now develop the symmetry clas-
sification of the dissipative SYK model described by the
Lindblad master equation [82,83]. The results are sum-
marized in the periodic tables (Tables II and III). In the
absence of dissipation, the SYK model is classified by
two types of antiunitary symmetry (see Appendix C for
details) [24—31]. We generalize them to SYK Lindbladians
and investigate whether they remain symmetry even in the
presence of dissipation (Fig. 2). In addition to the antiuni-
tary symmetry that is reminiscent of the symmetry of SYK
Hamiltonians, SYK Lindbladians respect modular conju-
gation symmetry, as discussed in Sec. III C. Furthermore,

Periodic table of Sachdev-Ye-Kitaev (SYK) Lindbladians with linear dissipators p = 1 for ¢ = 0,2 (mod 4) and the

number N (mod 4) of Majorana fermions. See Appendix A for the detailed definitions of the symmetry classes. For the antiunitary
symmetry operators J, P, Q, R, S, the entries 1 mean the presence of the symmetry and its sign, and the entries 0 mean the absence

of the symmetry. Additional symmetry can be present for KK, ;

€ R. For odd p > 3, the antiunitary symmetry operators P, R are

no longer respected, while the antlunltary symmetry operators Q S remain to be respected; for arbitrary odd p > 3 and N, we have
class Al (or, equivalently, class DY) for ¢ = 0 with KiK. ¢ Rand g = 2, and class BDI' for ¢ = 0 with K,,,K*.. € R.

myj

N (mod 4) 0 1 2 3
Fermion parity (—1)7 7 Zy Zy Zy
Modular conjugation J +1 +1 +1 +1

P +1 0 —1 0

Q +1 +1 +1 +1
R +1 0 -1 0

S +1 +1 +1 +1

q =0 (mod 4) (K,; K}, ¢ R) AI=Df Al =Df AI=D' AI=D'

BDI+ S, + BDI+S_; +

q =0 (mod 4) (K, Ky, € R) _BDI' + 5., BDI —Cr S, BDI

g =2 (mod 4) BDI Al =D CI Al=Df
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TABLE III.

Periodic table of Sachdev-Ye-Kitaev (SYK) Lindbladians with the even number p of dissipators for ¢ = 0, 2 (mod 4) and

the number N (mod 4) of Majorana fermions. See Appendix A for the detailed definitions of the symmetry classes. For the antiunitary
symmetry operators 7, P, Q, R, S, the entries +1 mean the presence of the symmetry and its sign, and the entries 0 mean the absence

of the symmetry. Additional symmetry can be present for K,,;;K,

€ R. For even N, we assume even fermion parity ~DF =+1in

the double Hilbert space, which is relevant to the presence of modular conjugation symmetry 7 in the subspace with fixed (—1)7 -,

N (mod 4) 0 1 2 3
Fermion parity (=7, (—I)Fi Ly x o Zy Ly X D 7y
Modular conjugation J +1 +1 0 +1
P +1 0 0 0
Q +1 +1 0 +1
R +1 0 0 0
S +1 +1 0 +1
g =0 (mod 4) (K,;K,; ¢ R), g =2 (mod4) Al =Dt Al =Dt A AI=Df
g = 0 (mod 4) (KiK., € R) BDI BDI' A+n=All BDI'

as also discussed in Sec. III B, we need to consider the
subspace with fixed fermion parity to study symmetry and
spectral statistics. Taking everything into consideration,
we obtain the periodic tables of SYK Lindbladians hav-
ing dissipators with the odd and even numbers of fermion
operators (Tables II and III, respectively). The period of
this symmetry classification is 4 in terms of the number
N of Majorana fermions while that of SYK Hamiltonians
is 8. This is a consequence of the operator-state map-
ping and also consistent with the symmetry analysis in
Sec. III D. SYK Lindbladians exhibit several unique sym-
metry classes. Some of such symmetry classes were not
argued to appear in noninteracting quadratic Lindbladi-
ans [87] and arise from the many-body nature of SYK
Lindbladians.

A. Model

The Hamiltonian H of the SYK Lindbladian [82,83] is
defined as the g-body SYK model

Z JiteigWiy -

1<ij<--<ig<N

H =i Vi (57

where ¢ is even and Jiy iy ATE the real-valued random
coupling drawn from the Gaussian distribution satisfying

IR
=

J: (58)
where the overlines denote the disorder average. This
Hamiltonian includes N Majorana fermions that are
defined to satisfy

Wit =8, v = (59)
We add the Markovian dissipation described by Egs. (2)

and (3) to the SYK Hamiltonian H. The dissipators
L,’s are chosen to be generic all-to-all p-body Majorana

fermion operators

L, = Z Koy, Uiy -+ ¥, (60)
I<ij<--<ip<N
for m=1,2,...,M. Here, Kinsiy - 4, are the complex-

valued random coupling drawn from the Gaussian distri-
bution satisfying

p_!KZ

Km;il ..... i, — Oa NP

p

Koy ..y |2 = (61)
with a constant K > 0. Previously, the complex-spectral
properties of the SYK Lindbladian were investigated for
linear dissipators p = 1 [83] and quadratic dissipators p =
2 [82,83], mainly for large N and M. It is also notable that
Ref. [112] investigated the stochastic dynamics of the four-
body SYK Hamiltonian, which is equivalent to the SYK
Lindbladian with p = g = 4. Here, we study the symmetry
classification and dissipative quantum chaos for finite N
and M.

As discussed in Sec. II A, it is useful for the symmetry
analysis to vectorize the Lindblad equation on the basis
of the operator-state mapping. The SYK Lindbladian is
mapped to the non-Hermitian many-body operator

L = —iH +i(—i)'H™ + D. (62)
Here, the Hamiltonians H* and H~ are SYK Hamilto-
nians described by the Majorana fermions %™ and v~
that belong to the ket and bra spaces, respectively. The
dissipation term D that couples ¥ and v~ is given as

* + — —
D= KuK; < Pty
m,i,j
1 + + +
_E jp ‘//11 i
L - _
— 3V, ,1---1#,,,) (63)
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for odd p and

D:ZKM;,.K;;J< Fewty v

m,i,j
Lty
2V Vi Vi ip
1 _ S -
_Ewip...v/il jl.uwjp> (64)

for even p, with ), := Zlgl<m<ip§N and K, :=
Kinsiy .. - The trace of the SYK Lindbladian is obtained as

1 2
tr L= = ; |Kpil* < 0. (65)

Furthermore, the Hermitian conjugate of D is given as

D=} KpiKn <_"1/’1T"'Vfi: i Vi

m,i,j

Ly
2 Ip nrn Jp

1 o -
_51/,], e il...%p) (66)

for odd p and

T = * N Ty
D' = Km;iKm;] i1 ip T J1 Jp
m,i,j
gy
2 Ip nrn Jp

1 - _
-3 Y, n‘“%) (67)

for even p. Notably, for K,,,;,-K;‘;l;j =K, Kn; (e,
Km;,-l(,’;;j € R), including the real-valued coupling K,,; €

R and the pure-imaginary coupling K,,; € iR, the dissipa-
tion term D is Hermitian for arbitrary p:

Dt =D. (68)

This additional property is relevant to the symmetry clas-
sification, as discussed in the following. We also note that
Eq. (63) assumes even fermion parity (—1)” = +1 of the
density operator p. When the fermion parity of the density
operator p is odd, (—1)” = —1, and p is odd, we instead

have

D= Z KK (+,¢; . w; PRER s

mi,j
I S SRt
2 Jp J1 i ip
I _ o _
_Ewip...wilel...%p)‘ (69)

Since this difference does not change the symmetry clas-
sification, we below study Eq. (63) for even fermion

parity.

B. Fermion parity symmetry

As also discussed in Sec. IIIB, total fermion parity
(—=1)” defined by Eq. (35) is always conserved in the
double Hilbert space because of the operator-state map-
ping. Here, we explicitly construct total fermion parity
(—1)7 for both even and odd N. For even p, fermion par-
ity (=1)F * in the individual ket and bra spaces defined
by Egs. (37) and (38) is also relevant. We also explicitly
construct (—1)F * for even and odd N and discuss their
relationship. Relevant fermion parity symmetry for each
N and p is summarized in Table IV.

1. Even N

For even N, total fermion parity (—1)” in Eq. (35) is
given as [i.e., Eq. (42)]

N/2

07 =[[ews vhH@ivy v, (70)

i=1

Generic fermionic Lindbladians, including the SYK Lind-
bladian, respect total fermion parity symmetry in Eq. (36)
for any case because it consists of the even number of
fermion operators. To study the symmetry and spectral
statistics, we consider the symmetry operations in the
subspace with fixed total fermion parity (—1)7.

Fermion parity operators (—1)7 * in the individual ket
and bra spaces defined by Eqs. (37) and (38) are also

TABLE IV. Fermion parity symmetry for Sachdev-Ye-Kitaev
(SYK) Lindbladians. Total fermion parity (—1)7 is always con-
served and gives rise to Z, unitary symmetry in the double
Hilbert space. For even N and even p, fermion parity (—1)F *
is conserved even in the individual ket and bra spaces. While the
total fermion parity commutes with complex conjugation /C for
even N, it anticommutes with K for odd N.

Even N Odd N
0dd p Zo; (=D, K]=0 Zo; (=T, K} =0
Evenp | Zox Zo;[(=DF,K1=0  Zy {(-1)F,K} =0
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constructed as

N/2

D" =T v, (71)
i=1
N/2

D" =T]@ivy_ v (72)

i=1

The product of (—1)" and (—1)F gives total fermion
parity (—1)7 in the double Hilbert space:

=D (=D = (=17 (73)

For odd p, these unitary operators do not give rise to sym-
metry of SYK Lindbladians since the dissipation term D
contains the odd number of Majorana fermions in each
space. For even p, on the other hand, the dissipation term
D contains the even number of Majorana fermions, and
these operators individually give Z; unitary symmetry of
the SYK Lindbladian.

2. 0dd N

For odd N, total fermion parity defined by Eq. (35) is
constructed as [i.e., Eq. (44)]

(N-1)/2

(—1)f=[ I1 <2iw;1w;)<2iwz:lwz:>}
i=1

X QiYwvy). (74)

Even for odd N, the SYK Lindbladian respects total
fermion parity symmetry in Eq. (36). Notably, the addi-
tional term 21'@0;} Yy is not invariant under complex con-
jugation with our choice of Majorana fermion operators in
Eq. (46). Consequently, total fermion parity symmetry for
odd N anticommutes with complex conjugation:
K-D7K = —(=D7. (75)
This property changes the algebra between the symme-
try operations and hence leads to the different symmetry
classification. )

For odd N, fermion parity operators (—1)" in the indi-
vidual ket and bra spaces defined by Egs. (37) and (38) are
constructed as

N-1)/2
+ P _
D = [ I1 <2zwzi_1w2i)}<ﬁw), (76)
i=1
N-1)/2
-DF = [ I1 <2iw;_1w;>}<ﬁw;>. (77)
i=1
In contrast with the previous case for even N [i.e., Egs. (71)
and (72)], fermion parity operators (—1)" * for odd N

consist of Majorana fermions ;" in the opposite Hilbert
space. In closed quantum systems with the odd num-
ber of Majorana fermions, fermion parity is constructed
by adding a Majorana fermion in different Hilbert space
[24,32,33]. In the double Hilbert space of open quantum
systems, Majorana fermions in the opposite Hilbert space
play a similar role of the additional Majorana fermion
in the different Hilbert space. Notably, these two unitary
operators anticommute with each other:

(=D, =Dy =0 (78)
Thus, the two unitary operators cannot be diagonalized
simultaneously in contrast to the previous case for even
N. Consequently, only total fermion parity (—1)7 in the
double Hilbert space is relevant for odd N.

C. Modular conjugation symmetry

As discussed in Sec. IIIC, Lindbladians generally
respect additional antiunitary symmetry defined by mod-
ular conjugation. Here, we explicitly construct modular
conjugation 7 in Eq. (39) and J in Eq. (41) for even and
odd N and discuss their relationship with fermion parity
symmetry.

1. Even N

For even N, the antiunitary operators [/ and j defined
by Egs. (39) and (41) are explicitly constructed as [i.e.,
Eq. (43)]

N/2
J =1~ v D@s+ivsnkc, (79

i=1

N2
J =@+ D@ —ivak,  (80)

i=1

satisfying

J*=J% = +1. @81)

Generic Lindbladians, including SYK Lindbladians for
arbitrary N and p, are invariant under modular conjuga-
tion J and j . In addition, J and j commute with total
fermion parity (—1)” in the double Hilbert space:
CRVMVACH VRV 7T =T (82)
Thus, modular conjugation remains to give symmetry even
in the subspace with fixed total fermion parity (—1)”.
While only the total fermion parity (—1)7 is relevant in
general, fermion parity (—1)7 * in the individual ket or bra
space is also relevant for even p, as described in Sec. IV B.
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Even if 7 and J remain symmetry in the subspace with
fixed (—1)7, it is nontrivial whether they are still sym-
metry in the subspace with fixed (—1)" *. To see this, we
have

DTN =g (83)
and
JT = (=D (=1)7, (84)

leading to
DT = OV DTT. (85)

Modular conjugation .7 also satisfies the same algebra.
Thus, for (—1)V/2(=1)* = 41, modular conjugation J
commutes with (—1)7 * and hence remains symmetry even
in the subspace with fixed (—1)""; for (—=)¥/2(=1)% =
—1, by contrast, J anticommutes with (—1)7 * and is no
longer symmetry in the subspace with fixed (—1)7". We
numerically confirm the breaking of modular conjugation
symmetry in Sec. V. It is also notable that even if modular
conjugation no longer gives symmetry, the combination of
modular conjugation and another operation can give rise to
symmetry even in the subspace with fixed (—1)" -,

2. 0dd N

For odd N, the antiunitary operators 7 and j defined
by Egs. (39) and (41) are constructed as [i.e., Eq. (45)]

N-1)/2

.7=[ I1 <w;1+w;i1>(iw;;—iw;,-)]<w;+m)/c,
i=1
(86)
_ WN-=1)/2
J=[ I1 <w;_1—w2:_1)<iw;+iw;,~>](M—vfmic.
i=1
(87)

With this definition, we have Egs. (81) and (82), and hence
modular conjugation symmetry still gives symmetry in the
subspace with fixed total fermion parity (—1)7.

D. Antiunitary symmetry

SYK Hamiltonians H are generally classified according
to two types of antiunitary symmetry (see Appendix C for
details) [24—31]. We study their counterparts in SYK Lind-
bladians. As a generalization of the antiunitary operators
for SYK Lindbladians, let us introduce the four antiunitary

operators P, @, R, S in the double Hilbert space. Each
antiunitary operation is defined to respect

Py P~ ==y, (88)
QurQ = Fyf, (89)
RyYyIR™ = 4y, (90)
SYyFrS™! = £yt 91)

Similarly to closed quantum systems, the four antiunitary
operators P, O, R, § are related to each other via the
fermion parity operators (—1)% and (—1)" - (Fig. 2).

From these definitions of the antiunitary operations in
Egs. (88)491), we have

AHEA™ = (-7 H* (92)

for A=P,0,R,S, where H" and H~ are the SYK
Hamiltonians described by the Majorana fermions ¥, and
Y in the ket and bra spaces, respectively. Hence, we have

A(=iH* +i(—i)7TH)A™!
= (=D (—iH +i(—i)'H "), (93)
A(—iH* +i(—i)7H )T A™!
= (=D (—iH +i(=i)‘H). (94)
Thus, the original symmetry of the SYK Hamiltonian can
remain to be respected even in the double Hilbert space.

Whether it survives even in the presence of dissipation
depends on p, which we study for p =1 (Sec. IVE),

Cof | Gy
P—-1"—R
)7 | EnF

FIG. 2. Relationship between the four types of antiunitary
symmetry operators P, Q, R, S and the fermion parity sym-
metry operators (—1)7, (—I)Fi. The product of P and R and
that of Q and S are proportional to total fermion parity (—1)7 in
the double Hilbert space. The product of P and S and that of Q
and R are proportional to fermion parity (—1)" " in the ket space.
The product of P and Q and that of R and S are proportional to
fermion parity (—1)7 in the bra space.
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p =2 (Sec. IVF), and p > 3 (Sec. IV G). Before study-
ing whether the dissipation term D is invariant under
the antiunitary operations, we here generalize the results
in Sec. [II D and discuss their algebraic structures with
fermion parity in the double Hilbert space, clarifying
which antiunitary operations are relevant in the subspace
with fixed fermion parity.

1. Even N

For even N, the antiunitary operators defined by
Egs. (88)+91) are explicitly constructed as

N/2

P = (sz;_lwzi_l)lc, (95)
i=1
N/2

Q:= (szgl (iw;i))ic, (96)
i=1
N/2

R = (]‘[2 (n/f;;)(iw;l.)>lc, (97)
i=1
N/2

S = (]’[2 G) xpz—i_l)lc. (98)
i=1

The antiunitary operators P and R contain all the Majo-
rana fermions ¥ with odd n and ¥F with even 7 in the
double Hilbert space, respectively. On the other hand, the
antiunitary operator Q contains ¥," with odd » in the ket
space and ¥, with even » in the bra space, and S contains
¥, with even 7 in the ket space and ¥, with odd » in the
bra space.

Even though the antiunitary operators P, Q, R, S
respect Eqgs. (93) and (94), they do not necessarily give
rise to symmetry in the subspace with fixed (—1)” or
(—DF - Importantly, these antiunitary operators form the
algebra different from that of SYK Hamiltonians, which
we partially studied in Sec. III D. First, we have

N/2
P =405 Vo Vi ¥y = (DY, (99)
i=1
N/2
Q* = [[4vs (v Gy = +1,
i=1
N/2
R> = []4 (o s @i ivs) = (DY, (101)
i=1
N/2
82 =14 s (v, = +1.

i=1

(100)

(102)

Notably, the signs of these antiunitary operators are cyclic
for N modulo 4, and the period of the symmetry clas-
sification is 4 in terms of N. This contrasts with the
symmetry classification of SYK Hamiltonians, for which
the signs of the antiunitary operators are cyclic for N mod-
ulo 8. In addition, these antiunitary operators commute
with fermion parity (—1)7 in the double Hilbert space:

D7FADT = A (103)
for A = P, 9, R,S. On the other hand, they do not neces-
sarily commute with fermion parity (—1)" * in each ket or
bra space:

F* FE _ N/2

(D" AEDT = (DY A (104)

We also have the following relationship between the antiu-
nitary operators and fermion parity (Fig. 2):

PR, OS x (—1)7, (105)
PS, OR o (—1)F, (106)
PO,RS o (D . (107)

Therefore, for odd p, in the subspace with fixed total
fermion parity (—1)7, two of the antiunitary symme-
try—for example, P and Q—are relevant. For even p,
in the subspace with fixed fermion parity (—1)" " and
(—=1)f", only one of the antiunitary symmetry—for exam-
ple, P—is relevant for N = 0 (mod 4) and none of the
antiunitary symmetry is relevant for N = 2 (mod 4). We
summarize the relevant symmetry in Table V. Notably, for
evenp and N = 2 (mod 4), although each antiunitary oper-
ation is no longer symmetry, the combination with modular
conjugation can give rise to symmetry even in the subspace
with fixed (—=1)"" and (— 1)

2. 0dd N

For odd N, the antiunitary symmetry operators defined
by Eqgs. (88)~91) are constructed as

(N+1)/2

P::( I 2@_1%_1)1@ (108)
i=1

TABLE V. Antiunitary symmetry for Sachdev-Ye-Kitaev
(SYK) Lindbladians. Here, P and Q can be respectively replaced
with R and S in each subspace with fixed fermion parity.

N (mod 4) 0 1 2 3
Odd p P&Q Q P& QO Q
Even p P Q None Q
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(N=1)/2 As discussed below, the reality of K,,;, or, more generally,
Q= ( 1_[ 21//2?_1(1'1#2[)) 2y K, (109)  the condition K,;;K,,; € R, is relevant to the symmetry
i=1 classification.
N—1)/2 In Sec. IV D, we confirm that the antiunitary operations
R = ( 1_[ 2(iw+.)(i1//')> K (110) P and Q still give rise to symmetry of the Hamiltonian
e AT ’ part in the double Hilbert space [i.e., Egs. (93) and (94)].
W12 Let us study the operations of P and Q on the dissipation
- term D. First, we h
S = ( I1 2(1'@)%_1)(\/5%)16 (111) o TISL W Rave
i=1
PP = £ K (i
The antiunitary operators satisfy PDP = ZK’”;’K'”” (HiyiTv; )
m,i,j
P = (=172, 112 1 . o
b (12 3 Y Ko 0+
Q% = +1, (113) msitj
R = (=HW=D2, (114) =-D (KnK:, €R),
~ o (119)
S? = +1. (115) # —D (otherwise).
Furthermore, while the antiunitary operators P and R 0 h
anticommute with fermion parity symmetry (—1)7 in the Furthermore, we have
double Hilbert space, the antiunitary operators Q and S
commute with (—1)7: PRIP-1 — ZKm;iK;Z;,- (_|_l-l//i+%;)
m,i,j
_A (A = 7)7 R)a
(—DTAD7 = (116) 1 . -
+A (A=0Q,S). -5 D K Ko U007 )
mif
This means that the antiunitary operations P and R switch __H (120)

fermion parity (—1)” and are no longer symmetry in the
subspace with fixed fermion parity. As a result, for odd N
and arbitrary p, in the subspace with fixed total fermion
parity (—1)7, only one of the antiunitary symmetry—Q or
S—is relevant (Table V).

E. Linear dissipator (p = 1)

For the linear dissipators p = 1, the dissipation term D
in Eq. (63) reads

1 1
D= ZKm;iK;;;j <_i‘/fi+‘//j_ - ijf‘pi—’__z‘/’i_l//j_),

m,i,j

117)
and the shifted dissipation term D reads
D:=D—(rL/tt])]
=) Ky (i 97)
m,ij
3 X KKy Y D). (B)
mi£j

While the linear dissipators were chosen to be K. =
/M8 (1 > 0) in Ref. [83], we here consider the symme-
try classification for generic dissipative coupling K,,.; € C.

for arbitrary K,,; € C. Combining these equations with
Egs. (93) and (94), we have

PLP'=-L (121)
for g = 0 (mod 4) and X,,;K;,; € R, and
PLIP ' =-L (122)

for g=2 (mod 4). Here, L := L — (tr L/tr )] is the
shifted Lindbladian (see also Sec. 11 D).
Similarly, we have

QD971 = ZK:,;,'Km;j (_iw;’_wj_)

m,i,j
1 -
= 3 D2 Kooy U )
m;i,j
=D (KmiK},; €R),

# D (otherwise). (123)
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Furthermore, we have

QDO = KK (=it )
m.iyj
—%Z%%mgﬁwwwwn
miij
#* g g)i;’licll'{wmee).R) (124)
Consequently, we have
QLY '=+4L (125)
for g =2 (mod 4) and K,,;K,,,.; € R, and
oLt9 ' =+£ (126)

for g = 0 (mod 4) and K,,;K;,,.; € R.

Considering the two types of antiunitary symmetry P
and Q, as well as modular conjugation symmetry 7,
we have the periodic table given in Table II. Here, for
each N (mod 4), we need to consider relevant antiunitary
symmetry in the subspace with fixed fermion parity, as
summarized in Table V. In the certain cases, the antiunitary
symmetry P and Q can be respected only for KiK., €
R, which changes the symmetry classification. Previously,
the quadratic Lindbladians were argued to fit into one of
the tenfold Altland-Zirnbauer” symmetry class [87]. While
SYK Lindbladians with p = 1 contain linear dissipators
similarly to the quadratic Lindbladians in Ref. [87], they
also contain the g-body Hamiltonian and hence cannot
be reduced to the noninteracting non-Hermitian opera-
tors [113]. As a consequence of the many-body nature,
SYK Lindbladians exhibit the unique symmetry classes
that were not predicted in the symmetry classification of
the quadratic Lindbladians. Such examples include classes
BDI" + S, and CI' + S, _ for ¢ = 0 (mod 4), as well as
classes BDI and CI for ¢ = 2 (mod 4), all of which do not
fit into the tenfold Altland-Zirnbauer” symmetry class (see
Appendix A for the definitions of the symmetry classes).

Another notable feature of our symmetry classification
is the presence of symplectic antiunitary symmetry. In
fact, time-reversal symmetry (or, equivalently, particle-
hole symmetry") with sign P? = —1 is respected for g = 0
(mod 4) and K, iKyj * . € R. The different signs of antiuni-
tary symmetry lead to the different spectral correlations
(see Appendix B for details). We show such symmetry-
enriched dissipative quantum chaos in Sec. V B. By con-
trast, while time-reversal symmetry’ with sign 41 appears,
time-reversal symmetry’ with sign —1 does not appear in
our classification. Time-reversal symmetry’ with sign —1
inevitably leads to the Kramers degeneracy for all com-
plex eigenvalues [58], which may be incompatible with

the double Hilbert space (see also Ref. [114]). On the
other hand, time-reversal symmetry with sign —1 results
in the Kramers degeneracy only on the symmetric line
[115]. Nevertheless, it is also possible that time-reversal
symmetry’ with sign —1 may appear in other models of
Lindbladians. It merits further study to investigate whether
or not time-reversal symmetry with sign —1 can appear in
open quantum systems.

We note in passing that the combination of the antiu-
nitary symmetry Q in Eq. (125) and modular conjugation
symmetry J in Eq. (40) gives rise to additional unitary
symmetry that commutes with the Lindbladian L:

(JTALITD ™ = (127)

Thus, we have to study the symmetry within the subspace
that diagonalizes the unitary symmetry 7 Q. Since J and
Q have the same sign J? = Q> = +1, they can commute
with each other. In this subspace, the antiunitary sym-
metry P also remains symmetry for (—1)7 = +1. It is
also notable that since the unitary operator J Q exchanges
the ket and bra degrees of freedom, the above unitary
symmetry can be considered as KMS symmetry.

F. Quadratic dissipator (p = 2)

For the quadratic dissipators p = 2, the dissipation term
D in Eq. (63) reads

— * - +
D= ZKm;iKm;/( i wn 2 1'”jz 11 i
m,i,j
Lo
- Ewiz Vi v v, ) (128)
and the shifted dissipation term D reads
D:=D—trLl/tr]
_ * + oo = —
= ZKm;iKm;f (wil i 1'[fjl 1//./‘2 )
m,i,j
1
* + + +.t
—5 2 KKy i Vi
miiy #1772
ULV (129)
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We study the action of the antiunitary operations P and Q
on the dissipation term D. First, we have

PDP71 = Z K;;;iKm;j (vfz_;_ ]//l-; w]: w];)

m,ij
1
+ututyt
2 ZK::JKM;/ (wjz 1pfl 1'//” wiz
m;ij
+ 1/’;'; l/ji: v’jj 1//];)
{: +D (Km;iK:;z;/‘ € R)’

# +D (otherwise). (130)

We also have

PO P = Kiky (U0 7))
m,i,j
1 * oot
) ZKM;I‘K’”J (w.iz 1'lfjl 1'[/il i
m;i,j
TV, i v v,)
=4D (KK, €R), a3
# +D (otherwise).

Combining these equations with Egs. (93) and (94), we
have

PLP ' =+L (132)

for g = 2 (mod 4) and KK, € R, and

PLIP = 4L (133)

for g = 0 (mod 4) and K,,;K;,,.; € R.
Similarly, for Q, we have

QDO = ZK:,‘,;,-Km;/’ Wi iy ¥y, V)

m,i,j
1
_ E ZK;:’;iKm;j (w/j wj-:_ sz ;
m;ij
+ VLV YY)
=4+D (Km;iK:z;/’ € R)’

# +D (otherwise). (134)

Furthermore, we have
—1 % -, =
QD' Q™ = K, (Ui W )

m,i,j

1
=5 D Kooy (U ¥ v

m;i,j
¥ ¥ ¥, ¥,)
=+D (Km;iK:;,;/‘ S R),

# +D (otherwise). (135)
Consequently, we have
QLY ' =+L (136)
for ¢ = 2 (mod 4) and Km;iK;;;/- € R, and
oLfo ' =+ (137)

for g = 0 (mod 4) and K,,,K,.; € R.

The symmetry classification for the quadratic dissipa-
tors p = 2 is summarized as the periodic table given in
Table I11. Similarly to the linear dissipators p = 1, the con-
dition Km;iK;;;j € R, including the real coupling K,,; € R
and the pure-imaginary coupling K,,; € iR, is relevant
to the symmetry classification. It is also notable that no
symmetry appears (i.e., class A) for N =2 (mod 4) and
KiK., ¢ R although modular conjugation symmetry J
is respected in arbitrary Lindbladians. This is because 7
anticommutes with the fermion parity operators (—1)* *
for (—1)¥/2(—=1)" = —1 and is no longer symmetry in
the subspace of fixed (—1)7 * [see Eq. (85)]. However, the
combination of modular conjugation .7 and the antiunitary
operations P, Q, R, S can give rise to symmetry even in
the subspace of fixed (—1)7 “.In fact, combining Egs. (40)
and (133), we have

(TP LIITP) " =L, (138)
where JP is a unitary operator. This symmetry is called
pseudo-Hermiticity [116], and the Lindbladian £ belongs
to class A + 5 in the 38-fold symmetry classification of
non-Hermitian operators (or, equivalently, iL respects chi-
ral symmetry and belongs to class Alll; see Appendix A
for details) [58]. While 7 and P individually anticommute
with fermion parity (—1) - [see Egs. (85) and (104)], the
combination J P satisfies

“DFIPI-DT = (DTIP),  (139)
and hence commutes with (—1)7" for (—1)* = +1. Con-
sequently, for (—1)” = +1 and Km;iK;;J € R, pseudo-
Hermiticity in Eq. (138) is respected even for p =2 and
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N =2 (mod 4). In Sec. V, we numerically confirm the
presence of this symmetry and its consequences on the
complex-spectral statistics.

G. Generic dissipator (p > 3)

In the preceding sections, we have considered the sym-
metry classification of SYK Lindbladians with the linear
and quadratic dissipators p = 1, 2. Here, we study the sym-
metry classification for generic p > 3. For even p, the
symmetry classification with p = 2 is still valid. Thus, the
periodic table given in Table 111 is applicable to the generic
dissipators as long as p is even.

On the other hand, for generic dissipators with odd
p > 3, the antiunitary symmetry P is violated while the
antiunitary symmetry Q is respected. In this sense, the lin-
ear dissipator p = 1 is special, for which both antiunitary
operations P and Q give rise to symmetry. For p = 3, for
example, the dissipation term reads D = Dt~ + D+ +
D~ with

= KKy (=i Wbty v ), (140)
m,i,j
1
+ . * +op oA o+
) ZKm?iKM;i( 73 Yh w.il 1'Zfil i ]//13 ), (141)
m,i,j
_ 1 o
=5 D KK W Vi Vi Vv ) (142)
m,i,j
Similarly to p = 1, we have
1 |=-D" (K,.K*. eR)
PD P! e ’ 143
{7& _D+_ (Km;lK:;,;/ ¢ ]R), ( )
POTHIP = D, (144)
oD {: +D* (KniKy €R), (145)
#+D*" (KwiK,; ¢ R),
QD)9 =D, (146)
For the other terms D+ and D™, we have
(D) = D+, (147)
PDP' =D (KK, €R), (148)
QD Q™' =D (KK, € R). (149)

Thus, the antiunitary symmetry Q is respected even for
p =3 (and arbitrary odd p). By contrast, the antiunitary

symmetry P is respected only for p = 1. In fact, we have
PO —te D e P!
—(Dt" —tr DT tr 1)

= > KK 8 WU D)

m,i,j

(150)

where the sum is taken for 7,; that satisfies i} < i, < i3,
Jj1 < Jj2 < j3 but does not satisfy iy =jj, i» = j», i3 _]3
For p = 3, the remainder term — ), ; i K, lK::z,/ 11,11( o
Y W ,t) is in general nonzero. For and only for p = 1,
on the other hand, this term vanishes. Consequently, we
have the following symmetry classification for odd p > 3:
for ¢ = 0 (mod 4) with K,;;K,,; ¢ R and g =2 (mod 4),
the symmetry class is class Al (or, equivalently, class D)
for arbitrary N; for ¢ = 0 (mod 4) with Km;,-K,’;;j € R, the

symmetry class is class BDI' for arbitrary N.

V. DISSIPATIVE QUANTUM CHAOS OF
SACHDEV-YE-KITAEV LINDBLADIANS

In this section, we numerically study the complex-
spectral statistics of SYK Lindbladians and demonstrate
that they obey the complex-spectral statistics of non-
Hermitian random matrices, signaling dissipative quantum
chaos. SYK Lindbladians belong to different symmetry
classes depending on p, ¢, N, and K,,;, as summarized
in Tables II and III. We show such symmetry-enriched
dissipative quantum chaos for various choices of the
parameters. Throughout this section, we set g = 4.

A. Linear dissipator (p = 1) with complex dissipative
coupling

We begin with SYK Lindbladians with the linear ran-
dom dissipators p = 1 and the complex dissipative cou-
pling K,,; € C. Figure 3 shows the complex spectra for
6 < N < 13. In our calculations, we choose the strength
K of the dissipators such that the Hamiltonian parts are
well balanced with the dissipators to observe the typical
behavior of SYK Lindbladians. In particular, we choose K
by demanding tr (D'D) = tr (E(T)/Lo), where £ is the SYK
Lindbladian without dissipation. Owing to this choice, the
complex spectra of SYK Lindbladians are similar to the
lemon-shaped spectrum of the completely random Lind-
bladians [63]. For odd p including p = 1, total fermion
parity (—1)7 in the double Hilbert space is conserved, but
fermion parity (—1)" * in each ket or bra space is not con-
served. Consequently, the double Hilbert space is divided
into the two subspaces with even and odd fermion parity,
(—1)7 = £1. In the numerical results in Fig. 3 and also the
subsequent figures, we plot the complex spectra for both
(=1)7 =41 and (—1)” = —1 for the sake of complete-
ness, although the physically relevant subspace has even
total fermion parity (—1)¥ = +1.
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FIG. 3. Complex spectrum of a single realization of the

Sachdev-Ye-Kitaev (SYK) Lindbladian with linear dissipators
p = 1 and complex coupling K,,,; € C. The number N of fermion
flavors and the strength K of the dissipators are chosen to be (a)
N=6,K=052,b)N=7,K=1,(c) N =8, K =0.68, (d)
N=9,K=1,(e)N=10,K=0.78, ) N=11, K =1, (g)
N =12, K =0.87, and (h) N = 13, K = 1. The other parame-
ters are taken asJ = 1 and M = N. The different colors represent
eigenstates with even (+1; red dots) or odd (—1; blue dots) total
fermion parity (—1)7.

Because of the complex coupling, only modular conju-
gation symmetry is respected (i.e., class Al), as shown in
Table II. Consistently, the complex spectra of SYK Lind-
bladians are symmetric about the real axis, and a subex-
tensive number of eigenvalues accumulate on the real axis.
We also obtain the density of states across the real axis as
a function of the imaginary part of complex eigenvalues
(Fig. 4). The density of states linearly vanishes toward the
real axis, which shows the level repulsion around the real
axis. The linear decay of the density of states around the
real axis is consistent with non-Hermitian random matrices

—_—
Q
N
—_
O
~

-
X)

o
=
"

-~

— ()T =+1
(-1)F=-1

— (-1)T=+1
(-1)F=-1

Density of states
Density of states

0 - 0
—0.06 —0.03 0.00 0.03 0.06 —0.04 —0.02  0.00 0.02 0.04

Im A\ Im A\

FIG. 4. Density of states across the real axis as a function of
the imaginary part of the complex eigenvalue A for Sachdev-
Ye-Kitaev (SYK) Lindbladians with linear dissipators p = 1 and
complex coupling Kj,; € C. The number N of fermion flavors
and the strength K of the dissipators are chosen to be (a) N = 10,
K =0.78 and (b) N = 12, K = 0.87. The other parameters are
taken asJ = 1 and M = N. The double Hilbert space is divided
into the two subspaces according to total fermion parity (—1)7,
as shown by the blue curves (+1) and orange curves (—1). We
take eigenvalues satisfying [Im A| > €/+/dim £ (¢ = 10™*) and
exclude real eigenvalues.

with time-reversal symmetry (see Appendix B for details)
[74,76].

To quantify the chaotic behavior of SYK Lindbladians,
we also study the statistics of complex level spacing s
numerically (Fig. 5). This is defined as the distance with
the closest eigenvalues in the complex plane, i.e.,

s:=min|X — A (151)

1

for all complex eigenvalues A; with A; % A. The statistics
of the complex level spacing s capture the local spec-
tral correlations of non-Hermitian random matrices and
open quantum systems [11,60,62,65,66,76]. In our calcu-
lations, we focus only on complex eigenvalues in the bulk
of the spectrum and exclude complex eigenvalues near
the edges. In addition, SYK Lindbladians are invariant
under modular conjugation, which makes the level statis-
tics around the real axis special; consequently, we also

FIG. 5. Distributions for normalized nearest spectral spacings
s of Sachdev-Ye-Kitaev (SYK) Lindbladians with linear dissipa-
tors p = 1 and complex coupling K,,; € C, compared with the
random-matrix results. The number N of fermion flavors and
the strength K of the dissipators are chosen to be (a) N = 10,
K =0.78 and (b) N = 12, K = 0.87. The other parameters are
taken as J = 1 and M = N. Each datum is averaged over 2000
samples.
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remove real eigenvalues from our calculations by requiring
[ImA| > €/+/dim £, where € = 10~ is a cutoff constant
and dim £ is the dimensions of the double Hilbert space.
Furthermore, while the density of states is uniform in non-
Hermitian random matrices, it is not necessarily so in
actual physical models including SYK Lindbladians, and
hence we need to unfold the complex spectrum to calculate
the complex-level-spacing statistics [11].

When the complex eigenvalues are uncorrelated
because of integrability, the complex-level-spacing statis-
tics obey the two-dimensional Poisson statistics p(s) =

(r5/2)e~ /45> The level statistics in Fig. 5 clearly deviate
from the Poisson statistics, which indicates the nontrivial
spectral correlations and nonintegrability of SYK Lindbla-
dians. Instead, they are close to the level-spacing distribu-
tion of non-Hermitian random matrices without symmetry
(i.e., class A), which is consistent with Table II. How-
ever, we see a significant deviation with the random-matrix
statistics. In particular, while the level-spacing distribution
for N = 12 agrees well with the random-matrix distribu-
tion in class A, this is not the case for N = 10; the N = 10
distribution agrees rather well with the random-matrix dis-
tribution in class AI' in the large and small s regimes,
while it may be closer to the random-matrix distribution
in class A around the peak. This intermediate behavior is
understood as partial chaotic behavior of SYK Lindbladian
with the linear dissipators p = 1. In fact, while the Hamil-
tonian parts are completely chaotic, the dissipators consist
only of quadratic fermions in the double Hilbert space
and hence are not fully chaotic. In Ref. [117], the level-
spacing distribution of the SYK Hamiltonian with ¢ = 4
was shown not to obey the random-matrix distribution in
the presence of an additional two-body SYK Hamiltonian
with ¢ = 2. Similarly, the SYK Lindbladian consists of the
completely chaotic Hamiltonian parts with ¢ = 4 and the
integrable linear dissipators p = 1 and hence should not
exhibit the maximally chaotic behavior.

To further study the chaotic behavior of SYK Lindbla-
dians, we also investigate the statistics of the complex-
spacing ratio (Fig. 6) defined as

o2 152
2= W (152)
where A is a complex eigenvalue picked uniformly at ran-
dom from the bulk of the spectrum, and ANN and ANNN are
respectively the nearest and next-nearest eigenvalues to A
in the bulk [67]. In contrast to the level spacing s, we do not
need to unfold the complex spectrum to study the statis-
tics of the level-spacing ratio z. When the Lindbladian is
integrable and the complex spectrum obeys the Poisson
distribution, the complex-spacing ratio z distributes uni-
formly in the disk in the complex plane. By contrast, when
the Lindbladian is fully chaotic, signatures of the random-
matrix statistics appear in the distribution of z. Here, while

(a) (b)

0.2 i 0240 i e
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FIG. 6. Marginal distributions for argument 6 of the complex-
spacing ratios of Sachdev-Ye-Kitaev (SYK) Lindbladians with
linear dissipators p = 1 and complex coupling K,,; € C, com-
pared with the random-matrix results. The number N of fermion
flavors and the strength K of the dissipators are chosen to be (a)
N =10,K =0.78 and (b) N = 12, K = 0.87. The other parame-
ters are taken asJ = 1 and M = N. Each datum is averaged over
2000 samples.

z distributes in the two-dimensional complex plane, we
focus on the marginal distribution

p@) = fp(r,@)dr (153)

with 7 := |z| and 0 := argz. The distribution p (9) clearly
exhibits a dip around 6 = 0, which is different from the
Poisson distribution p (f) = 1/27 and indicates the nonin-
tegrability of SYK Lindbladians. However, the obtained
distributions p(6) for N = 10 and N = 12 are closer to
the random-matrix distribution for class AI" instead of that
for class A, which is inconsistent with Table II and also
the numerical results on the level-spacing distributions in
Fig. 5. This discrepancy may originate from the partial
chaotic behavior due to the linear dissipators p = 1, as dis-
cussed above. We also observe and discuss similar discrep-
ancies between the level-spacing-ratio distributions and
level-spacing distributions, as well as the level-spacing-
ratio distributions and another indicator of symmetry, for
SYK Lindbladians with the quadratic (p = 2) and cubic
(p = 3) dissipators.

B. Linear dissipator (p = 1) with real dissipative
coupling

As shown in Sec. IV, the symmetry classification of
SYK Lindbladians depends on whether the dissipative
coupling K,; satisfies Km;iK,’;J € R (see Table II). Then,
we study the complex-spectral statistics of SYK Lind-
bladians with the linear dissipators p = 1 and the real
coupling K,,; € R. Figure 7 shows the complex spectra
for 6 < N < 13. Similarly to the previous case with the
complex dissipative coupling K,,,.; € C, the complex spec-
tra are symmetric about the real axis and a subextensive
number of real eigenvalues appear, both of which originate
from modular conjugation symmetry. A unique feature
arising from the real dissipative coupling K,,.; € R is the
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FIG. 7. Complex spectrum of a single realization of the

Sachdev-Ye-Kitaev (SYK) Lindbladian with linear dissipators
p = 1 and real coupling K,,; € R. The number N of fermion fla-
vors and the strength K of the dissipators are chosen to be (a)
N=6,K=073, &) N=7,K=1,(c) N =8, K=0.96, (d)
N=9,K=1,()N=10,K=110, ) N=11, K =1, (g
N =12, K =1.23, and (h) N = 13, K = 1. The other parame-
ters are taken asJ = 1 and M = N. The different colors represent
eigenstates with even (41; red dots) or odd (—1; blue dots) total
fermion parity (—1)7.

presence of additional time-reversal symmetry (or, equiv-
alently, particle-hole symmetry") that also makes the com-
plex spectrum symmetric about the line Re A = tr £L/tr/
(see Table II). Consistent with our symmetry classifica-
tion, a subextensive number of eigenvalues accumulate
on this symmetric line ReA = tr L/tr] for N = 0 (mod
4). Notably, whereas this spectral symmetry about Re A =
tr L£/tr [ is also respected in each subspace with fixed total
fermion parity (—1)7 for even N, it is no longer respected
in each subspace for odd N. Instead, for odd N, the spec-
trum with (—1)”7 = 41 and that with (=1)”7 = —1 come
in pairs and are symmetric about ReA = tr L/trI. This

difference originates from the different algebraic relation
between the antiunitary operation P and total fermion par-
ity (—1)”. In fact, for even N, since P commutes with
(=17 [i.e., Eq. (103)], P remains to be respected in the
subspaces of (—1)7. For odd N, on the other hand, since
P anticommutes with (—1)7 [i.e., Eq. (116)], P flips total
fermion parity (—1)” and maps the two subspaces onto
each other.

We also obtain the density of states along both real
and imaginary axes (Fig. 8). Owing to modular conjuga-
tion symmetry, a subextensive number of real eigenvalues
appear, and the density of states linearly decays toward
the real axis, similar to the previous case with the com-
plex dissipative coupling K,,; € C. By contrast, the level
statistics exhibit distinct behavior around the other sym-
metric line Re A = tr £/tr I. While a subextensive number
of complex eigenvalues appear on this symmetric line for
N = 12, no eigenvalues appear on it for N = 10. This
difference originates from the different signs of the antiu-
nitary symmetry P (see Table II and Appendix B). In
general, antiunitary symmetry P with P? = +1 suppresses
the spectral correlations of non-Hermitian random matri-
ces, while P with the opposite sign P> = —1 enhances the
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FIG. 8. Density of states projected to (a),(b) the imaginary axis

and (c),(d) the real axis as a function of the projected eigen-
values for Sachdev-Ye-Kitaev (SYK) Lindbladians with linear
dissipators p = 1 and real coupling K;; € R. The number N of
fermion flavors and the strength K of the dissipators are chosen
to be (a),(c) N =10, K = 1.10 and (b),(d) N =12, K = 1.23.
The other parameters are taken as J = 1 and M = N. The dou-
ble Hilbert space is divided into the two subspaces according to
total fermion parity (—1)7, as shown by the blue curves (+1) and
orange curves (—1). In (a) and (b), we take eigenvalues satisfying
ImA| > €/+/dim £ (¢ = 10~*) and exclude real eigenvalues. In
(c) and (d), on the other hand, we include the eigenvalues on the
symmetric line Re A = tr L/tr /. In (c), no eigenvalues appear on
the symmetric line. The inset in (d) shows the delta-function peak
of the density on the symmetric line.
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spectral correlations [65,74,76]. This is also similar to Her-
mitian random matrices, in which time-reversal symmetry
with sign 4+1 (—1) suppresses (enhances) the spectral cor-
relations [11]. In our SYK Lindbladian with N = 0 (mod
4), antiunitary symmetry P with sign P? = +1 is present
and makes the spectral correlations at the symmetric line
Re A = tr L/tr ] special. As a result, the level repulsion on
the symmetric line Re A = tr L/tr [ is weaker than that on
generic points in the complex plane, which results in a
subextensive number of eigenvalues on ReA = tr L/tr[].
For N =2 (mod 4), by contrast, while antiunitary sym-
metry P is still present, its sign is P? = —1. Hence,
antiunitary symmetry P makes the level repulsion on
the symmetric line Re A = tr L/tr I stronger than that on
generic points in the complex plane, leading to the absence
of eigenvalues on Re A = tr L/trI. Moreover, the density
of states almost linearly vanishes toward the symmetric
line Re A = tr L/tr [ for both N = 10 and N = 12, which
is consistent with the linear decay of the density of states
for non-Hermitian random matrices in classes BDIT and
CI' (see Table I of Ref. [74]). These results of the den-
sity of states also provide evidence of symmetry-enriched
dissipative quantum chaos in SYK Lindbladians.

To study the spectral correlations and chaotic behav-
ior, we also obtain the complex-spacing-ratio distributions
p(0), as shown in Fig. 9. In comparison with the previ-
ous case with the complex dissipative coupling K,,.; € C,
another unique feature due to the real dissipative coupling
K € R is the presence of time-reversal symmetry' (see
Table II), which changes the local spectral correlations
in the bulk. Consistent with our symmetry classification,
the spacing-ratio distribution for N = 12 agrees well with
the random-matrix distribution for class AI'. On the other
hand, the spacing-ratio distribution for N = 10 signifi-
cantly deviates from the random-matrix distribution for
class AI" and does not agree with any random-matrix
distributions. This discrepancy seems to arise from the par-
tial chaotic behavior due to the linear dissipators p = 1, as

(a) (b)
0.2 0.2 .
WN}\ R Puond TN T
S s
=01 — DT=+ =0.1 — )=+
= \w o = o
Class A Class A
Class Al Class Al
Class All'* Class All"
OVO—W —/2 0 /2 ™ OVO—W —m/2 0 /2 ™
)
FIG. 9. Marginal distributions for argument 6 of the complex-

spacing ratios of Sachdev-Ye-Kitaev (SYK) Lindbladians with
linear dissipators p = 1 and real coupling K,,; € R, compared
with the random-matrix results. The number N of fermion flavors
and the strength K of the dissipators are chosen to be (a) N = 10,
K =1.10 and (b) N = 12, K = 1.23. The other parameters are
taken as J = 1 and M = N. Each datum is averaged over 3000
samples.

also discussed in Sec. V A. Since we have the flat distri-
bution p(#) = 1/2x for the Poisson statistics in integrable
open quantum systems, the dip of p(f) around 8 = 0 is
a direct signature of the level repulsion and hence the
nonintegrability. Thus, the shallower dip of p(6) around
0 = 0 for the SYK Lindbladian with N = 10 (see Fig. 9)
indicates the less chaotic behavior compared with the
random-matrix statistics.

C. Quadratic dissipator (p = 2) with complex
dissipative coupling

Next, we study SYK Lindbladians with the quadratic
dissipators p = 2 and the complex dissipative coupling
K, € C. Figure 10 shows the complex spectra for 6 <
N < 13. For even p and even N, fermion parity is con-
served in both ket and bra spaces, and we investigate
the spectral properties in the individual subspaces with
fixed (—I)Fi. As also discussed in Sec. IV C, the pres-
ence or absence of modular conjugation symmetry depends
on N. In the physically relevant subspace with (—1)7 =
+1, complex eigenvalues in each subspace of (—1)" *
do not individually respect modular conjugation symme-
try for N =2 (mod 4). Rather, complex eigenvalues in
the subspace of (—1)" " = +1 and those in the subspace
of (=1)f" = —1 come in complex-conjugate pairs. These
numerical results are consistent with our symmetry classi-
fication (see, in particular, the entry “A” in Table III with
N = 2). By contrast, for N = 0 (mod 4), complex eigen-
values in each subspace of (—1)7 - individually respect
modular conjugation symmetry, and a subextensive num-
ber of real eigenvalues appear on the real axis, which is
also consistent with our symmetry classification (see, in
particular, the entry “Al = D in Table Il with N = 0).

We also obtain the density of states projected to the
imaginary axis, as shown in Fig. 11. For (—1)” = +1 and
N = 2 (mod 4), the density of states continuously changes
as a function of Im A because of the absence of modu-
lar conjugation symmetry in the subspaces with (—1)7 -,
This behavior is consistent with the level statistics of non-
Hermitian random matrices without symmetry (i.e., class
A). For (=1)7 = +1 and N =0 (mod 4), by contrast,
modular conjugation symmetry is respected in the individ-
ual subspaces with fixed (—1)* * and changes the spectral
correlations around the real axis Im A = 0. Consequently,
the density of states linearly vanishes toward the real axis.
The linear decay of the density of states toward the real
axis is consistent with the random-matrix statistics with
time-reversal symmetry (i.e., class Al) [74], which con-
firms the dissipative quantum chaos. We also note that
the behavior of the density of states is opposite in the
subspaces with (—1)”7 = —1: the density of states lin-
early vanishes for N = 2 (mod 4) but exhibits no singular
behavior for N = 0 (mod 4).
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FIG. 10. Complex spectrum of a single realization of the
Sachdev-Ye-Kitaev (SYK) Lindbladian with quadratic dissipa-
tors p = 2 and complex coupling K,,; € C. The number N of
fermion flavors and the strength K of the dissipators are cho-
sentobe (a) N=6,K=199, (b) N=7,K=1, (c) N=8,
K=291,(dN=9,K=1(e)N=10,K =3.64,(H N =11,
K=1,(gg N =12,K =4.47,and (h) N = 13, K = 1. The other
parameters are taken as J = 1 and M = N. For even N, the dif-
ferent colors represent eigenstates from even (+1) or odd (—1)
fermion parity (—1)F " and (=1)F", shown by blue dots (++),
orange dots (+—), green dots (—+), and red dots (——). For
odd N, eigenstates with even (red dots) and odd (blue dots) total
fermion parity (—1)7 are degenerate.

Furthermore, we study the spectral correlations and
dissipative quantum chaos. We first obtain the complex
spacing distributions, as shown in Fig. 12. Similarly to the
previous case with the linear dissipators p = 1, we focus
on the level statistics in the bulk. The level-spacing distri-
butions for all the four subsectors and both N = 10 and
N = 12 coincide well with the random-matrix distribu-
tion without symmetry (i.e., class A), which is consistent
with our symmetry classification in Table III. Notably, the
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FIG. 11. Density of states across the real axis as a function
of the imaginary part of the complex eigenvalue A for Sachdev-
Ye-Kitaev (SYK) Lindbladians with quadratic dissipators p = 2
and complex coupling K,,;; € C. The number N of fermion fla-
vors and the strength K of the dissipators are chosen to be (a)
N =10,K =3.64 and (b) N = 12, K = 4.74. The other param-
eters are taken as J = 1 and M = N. The double Hilbert space
is divided into the four subspaces according to fermion parity
(=DF i, as shown by the blue curves (4+), orange curves (+—),
green curves (—+), and red curves (——). We take eigenval-

ues satisfying [Im A| > €/+/dim £ (¢ = 10~%) and exclude real
eigenvalues.

quadratic dissipators p = 2 reduce to the fermionic quartic
terms in the double Hilbert space and hence are sufficiently
nonintegrable. Consequently, SYK Lindbladians exhibit
the completely chaotic behavior, which contrasts with the
partial chaotic behavior for the linear dissipators p =1
(compare Figs. 5 and 12).

We also obtain the level-spacing-ratio distributions, as
shown in Fig. 13. For N = 12, the level-spacing-ratio dis-
tribution is closer to the random-matrix distribution for
class A with a slight deviation, which is compatible with
the level-spacing distribution in Fig. 12 and the symme-
try classification in Table IIl. For N = 10, however, the
level-spacing-ratio distribution is closer to the random-
matrix distribution for class AI", which is incompatible
with both the level-spacing distribution and the symmetry
classification. This result may imply the possible presence
of time-reversal symmetry’ for N = 2 (mod 4).

EE S / O\ =
\ Closs Al — 1 L Clasar
N\ . \

1.0 0.0 0.5 1.0

S

FIG. 12. Distributions for normalized nearest spectral spac-
ings s of Sachdev-Ye-Kitaev (SYK) Lindbladians with quadratic
dissipators p =2 and complex coupling K,,; € C, compared
with the random-matrix results. The number N of fermion fla-
vors and the strength K of the dissipators are chosen to be (a)
N =10,K =3.64 and (b) N = 12, K = 4.47. The other param-
eters are taken as J = 1 and M = N. Each datum is averaged
over 2000 samples.
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FIG. 13. Marginal distributions for argument 6 of the
complex-spacing ratio of Sachdev-Ye-Kitaev (SYK) Lindbla-
dians with quadratic dissipators p =2 and complex coupling
Ky € C, compared with the random-matrix results. The num-
ber N of fermion flavors and the strength K of the dissipators are
chosen to be (a) N =10, K = 3.64 and (b) N = 12, K = 4.47.
The other parameters are taken asJ = 1 and M = N. Each datum
is averaged over 3000 samples.

To clarify the presence or absence of time-reversal
symmetry’, we directly test it in terms of the sym-
metry constraints on eigenstates instead of the spectral
statistics. Let A € C be an eigenvalue of the Lindbla-
dian £, and |¢) and |x) be right and left eigenstates,
respectively (i.e., £|¢) = Alg), LT |x) = 1*|x)). Then,
suppose that the Lindbladian £ respects time-reversal
symmetry’ PLIP~! = £ with an antiunitary operator P
satisfying P> = +1. Because of time-reversal symmetry’,
the right eigenstate |¢) and the corresponding left eigen-
state | x ) are related to each other. In fact, we have

LPx) =PLx) =PA* x) = AP x)), (154)
which shows that P |x) is also a right eigenstate of L
with the same eigenvalue A. Thus, without any additional
symmetry, especially additional spectral degeneracy, we
generally have

$) <P Ix), (155)
which is a direct indicator of time-reversal symmetry’
with sign +1 [58]. Notably, this symmetry test is math-
ematically well formulated as the angle test [118]; it is
proved that the Lindbladian £ (or, more generally, non-
Hermitian operator) without spectral degeneracy respects
time-reversal symmetry if and only if we have

(@il9) (9 16x) (Drldi) =[xl X ) (x; L) (el xad T (156)

whenever i <j <k and not all of 7, j, k are equal. In
particular, the violation of this condition even for a few
eigenstates means the absence of time-reversal symmetry".
While this angle test assumes the absence of spectral
degeneracy, the complex spectrum of the SYK Lindbla-
dian in each subspace of fermion parity (—1)* * is indeed
not degenerate.

We carry out the angle test of time-reversal symmetry"
for SYK Lindbladians with the quadratic dissipators

TABLE VI.  Angle test of time-reversal symmetry” (TRST) for
Sachdev-Ye-Kitaev (SYK) Lindbladians with quadratic dissipa-
tors p = 2 and ¢ = 4. The number N of fermion flavors is chosen
as 4, 6, 8, 10, and 12. The random dissipative coupling K,,.; is
chosen to be complex (C) or real (R). The angle test is carried
out for each subsector with fermion parity (—1)7 " and (=),
denoted by (&£, £). The entries “T” show the presence of TRST
while the entries “F” show the absence of TRS'.

N (mod 4) Kpi | (4 () (=+H) (= -)
4,8,12 =0 C F F F F
4,8,12 =0 R T T T T
6,10 =2 C F F F F
6,10 =2 R F F F F

p = 2, as summarized in Table VI. For all N and all the
subsectors of fermion parity (—1)7 i, we see that time-
reversal symmetry’ is absent as long as the dissipative
coupling K,,; is complex. In fact, a typical choice of a
triplet of eigenstates breaks the condition in Eq. (156).
This is consistent with the symmetry classification in
Table III and the level-spacing distributions in Fig. 12,
but incompatible with the level-spacing-ratio distribution
for N =10 in Fig. 13(a). Notably, while the complete
agreement with the spectral statistics of random matri-
ces requires the sufficient nonintegrability, the angle test
in Table VI works for generic non-Hermitian operators
even without the nonintegrability. Consequently, owing to
the angle test, time-reversal symmetry’ should be absent
in the SYK Lindbladian with p = 2 and K,,; € C, which
confirms our symmetry classification in Table III. The dis-
crepancy of the level-spacing-ratio distribution for N = 10
in Fig. 13 should originate from the special structure that
makes the model less chaotic and cannot be captured solely
from the internal symmetry classification. In particular, as
shown in Sec. IVF, only a part of the dissipation term D
can break time-reversal symmetry’ in the SYK Lindbla-
dian. In such a case, the level statistics should be subject
to a severe crossover effect between classes A and Al',
which may lead to the unusual behavior in Fig. 13. It is
worthwhile to further study the relationship between the
different measures of the complex-spectral statistics, such
as the spacing distribution and spacing-ratio distribution,
and its relevance to the chaotic behavior of open quantum
systems.

D. Quadratic dissipator (p = 2) with real dissipative
coupling
As discussed in Sec. IV, the condition K,,,;,K;;J eRis
also relevant to the symmetry classification of SYK Lind-
bladians for even p. Now, we study SYK Lindbladians
with the quadratic dissipators p = 2 and the real dissipa-
tive coupling K,,;; € R. Figure 14 shows the complex spec-
tra for N = 6, 8, 10, 12. Figure 15 also shows the complex
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FIG. 14. Complex spectrum of a single realization of the
Sachdev-Ye-Kitaev (SYK) Lindbladian with quadratic dissipa-
tors p = 2 and real coupling K,,,; € R. The number N of fermion
flavors and the strength K of the dissipators are chosen to be (a)
N=6K=282,(b)N=8,K=4.12,(c) N =10, K =5.15,
and (d) N = 12, K = 6.33. The other parameters are taken as
J =1 and M = N. The double Hilbert space is divided into
the four subspaces according to fermion parity (—1)F * and
(—=1DF", shown by the blue dots (4++), orange dots (+—),
green dots (—+), and red dots (——). In each subspace with
fixed (—1)F i, modular conjugation symmetry is respected for
(—=D¥2(=1)7 = +1, while pseudo-Hermiticity is respected for
(—=1)¥ = +1. For N = 6,10 = 2 (mod 4), eigenvalues with the
same total fermion parity (—1)7 are twofold degenerate.

spectral density averaged over different samples of SYK
Lindbladians. Similarly to the previous case with the com-
plex dissipative coupling K,,; € C, modular conjugation
symmetry is broken in the subspace with fixed (—1)" * for
N =2 (mod 4) and (—1)* = +1 [see Eq. (85)]. However,
as discussed in Sec. IVF and summarized in Table III,
the combination of modular conjugation and the antiu-
nitary operation P gives rise to pseudo-Hermiticity in
Eq. (138) even in the subspace with fixed (—1)" * for
(—=1)7 = +1. In fact, we numerically confirm the pres-
ence of pseudo-Hermiticity, as shown in Fig. 14. On the
other hand, for N = 2 (mod 4) and (—1)7 = —1, as well
as N = 0 (mod 4) and (—1)¥ = +1, modular conjugation
symmetry is respected even in the individual subspaces
of (=D -, Notably, while both modular conjugation and
pseudo-Hermiticity make the complex spectrum symmet-
ric about the real axis, they lead to the quantitatively
different complex-spectral statistics of non-Hermitian ran-
dom matrices [74]. We also obtain the density of states
across the real axis, as shown in Fig. 16. Similarly to the
previous case, the density of states linearly decays toward
the real axis, signaling dissipative quantum chaos also for
the real coupling K,,.; € R.
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FIG. 15. Complex spectral density of Sachdev-Ye-Kitaev
(SYK) Lindbladians with quadratic dissipators p = 2 and real
coupling K,; € R for (a),(b) N =10 and (c),(d) N =12.
Fermion parity (—1)*" and (—1)7 " is chosen as (a),(c) ++ and
(b),(d) +—. The other parameters are chosentobeJ = 1, K =1,
and M = N. Each datum is averaged over (a),(b) 1024 samples
for N = 10 and (c),(d) 166 samples for N = 12.

Furthermore, we carry out the angle test for the real dis-
sipative coupling K,,; € R, as summarized in Table VI.
While no time-reversal symmetry’ is detected for N =
2 (mod 4), the presence of time-reversal symmetry’ is
confirmed for N = 0 (mod 4), which completely agrees
with the symmetry classification in Table III. Notably, the
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FIG. 16. Density of states across the real axis as a func-
tion of the imaginary part of complex eigenvalues A for
Sachdev-Ye-Kitaev (SYK) Lindbladians with quadratic dissi-
pators p =2 and real coupling K,,; € R. The number N of
fermion flavors is chosen to be (a) N =10 and (b) N = 12.
The other parameters are taken as J =1, K =1, and M = N.
The double Hilbert space is divided into the four subspaces
according to fermion parity (—1)F *, as shown by the blue
curves (++4), orange curves (——), green curves (+—), and
red curves (—4). For N =2 (mod 4) including N = 10, the
complex spectrum with the same total fermion parity (—1)%
is two-fold degenerate. We only consider eigenvalues away
from the origin (|A| > 107'%) and away from the real axis
(ITm A| > 10710),
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FIG. 17. Complex spectrum of a single realization of the

Sachdev-Ye-Kitaev (SYK) Lindbladian with cubic dissipators
p = 3 and complex coupling K,,,; € C. The number N of fermion
flavors and the strength K of the dissipators are chosen to be (a)
N=6,K=521,(b)N =8 K=2839,(c)N=10,K =11.8,
and (d) N = 12, K = 15.4. The other parameters are taken as
J = 1land M = 2N. The double Hilbert space is divided into the
two subspaces according to total fermion parity (—1)7, as shown
by the red dots (even) and blue dots (odd).

absence of time-reversal symmetry" is due to the nontrivial
anticommutation relation between the antiunitary opera-

tion P and fermion parity (—1)" i, although they commute
with each other for N =0 (mod 4) (see Sec. IVD for
details).

E. Cubic dissipator (p = 3)

Furthermore, we study SYK Lindbladians with the cubic
dissipators p = 3 and the complex dissipative coupling
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FIG. 18. Density of states across the real axis as a function
of the imaginary part of the complex eigenvalue A for Sachdev-
Ye-Kitaev (SYK) Lindbladians with cubic dissipators p = 3 and
complex coupling K,,; € C. The number N of fermion flavors
is chosen to be (a) N = 10 and (b) N = 12. The other parame-
ters are takenasJ = 1, K = 10, and M = N. The double Hilbert
space is divided into the two subspaces according to total fermion
parity (—1)%, as shown by the blue curves (4) and orange
curves (—). We take eigenvalues satisfying |[Im A| > €/+/dim L
(e = 107*) and exclude real eigenvalues.
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FIG. 19. Distributions for normalized nearest spectral spac-
ings s of Sachdev-Ye-Kitaev (SYK) Lindbladians with cubic
dissipators p =3 and complex coupling K,,; € C, compared
with the random-matrix results. The number N of fermion fla-
vors and the strength K of the dissipators are chosen to be (a)
N =10,K =11.8 and (b) N = 12, K = 15.4. The other param-
eters are taken as J = 1, and M = N. Each datum is averaged
over (a) 3000 and (b) 800 samples.

Kni € C. We first obtain the complex spectrum, as shown
in Fig. 17. Similarly to the linear dissipators p = 1, only
modular conjugation symmetry is respected. However, the
complex spectrum seems more chaotic. In fact, the com-
plex spectrum in Fig. 17 looks more like the lemon-shaped
spectrum of the completely random Lindbladians [63]. In
Fig. 18, we also obtain the density of states across the
real axis ImA = 0. The density of states linearly van-
ishes toward the real axis, which is consistent with the
random-matrix results with time-reversal symmetry (i.e.,
class Al) [74].

In Fig. 19, we also show the complex-level-spacing
distributions p(s) of SYK Lindbladians with the cubic

1.0
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Rez

.0
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FIG. 20. Distribution of the complex-spacing ratios of the bulk
spectrum for Sachdev-Ye-Kitaev (SYK) Lindbladians with cubic
dissipators p = 3 and complex coupling K,,,; € C for (a),(b) N =
10 and (c),(d) N = 12. Total fermion parity (—1)7 is chosen as
(a),(c) + and (b),(d) —. The other parameters are taken as J = 1,
K =10, and M = N. The complex eigenvalues with |A| > 0.01
and [Im A| > 1073 are taken. Each datum is averaged over (a),(b)
96 samples for N = 10 and (c),(d) 24 samples for N = 12.
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FIG. 21. Angle distribution of the complex-spacing ratios
of Sachdev-Ye-Kitaev (SYK) Lindbladians with cubic dissipa-
tors p = 3 and complex coupling K,,; € C, compared with the
random-matrix results. The number N of fermion flavors and
the strength K of the dissipators are chosen to be (a) N = 10,
K =118 and (b) N = 12, K = 15.4. The other parameters are
taken as J = 1 and M = N. Each datum is averaged over (a)
3000 and (b) 800 samples.

dissipators p = 3. For N = 12, p(s) agrees well with the
random-matrix distribution in class A, which is consistent
with the symmetry classification in Table II. For N = 10,
on the other hand, while the peak and small-s behavior
of p(s) agree well with the random-matrix distribution
in class A, the tail (i.e., large-s) behavior of p(s) rather
agrees with the random-matrix distribution in class INU
This intermediate behavior should originate from the spe-
cial structure of SYK Lindbladians, including a crossover
effect between classes A and Al', as discussed above.
We also obtain the complex-spacing-ratio distributions
in Figs. 20 and 21. Similarly to the level-spacing dis-
tributions, the level-spacing-ratio distribution for N = 12
agrees well with the random-matrix distribution in class
A, which is consistent with Table II. For N = 10, on the
other hand, the level-spacing-ratio distribution coincides
with the random-matrix distribution in class AI" rather
than class A, which should again originate from the spe-
cial structure of SYK Lindbladians that cannot be captured
solely by the internal symmetry classification.

VI. DISCUSSIONS

Symmetry serves as a foundation for universal descrip-
tions of diverse phenomena and plays a key role in physics.
Despite the significance of symmetry in closed quantum
systems, symmetry of open quantum systems was not fully
understood. In this work, we have developed a theory of
symmetry in open quantum systems. Building upon the
operator-state mapping, we have reduced symmetry of
Liouvillian superoperators to symmetry of non-Hermitian
operators in the double Hilbert space and applied the 38-
fold symmetry classification of non-Hermitian operators
[57-59]. We have found the rich symmetry classification
due to the interplay between symmetry in the correspond-
ing closed quantum systems and symmetry inherent in the
construction of Liouvillian superoperators. As an illus-
trative example of open quantum bosonic systems, we

have studied symmetry classes of dissipative quantum
spin models. Furthermore, we have developed the sym-
metry classification of SYK Lindbladians as a prototype
of open quantum fermionic many-body systems. We have
established the periodic tables given in Tables II and III,
and elucidated the difference from the counterparts in
closed quantum systems. We have also numerically studied
the complex-spectral statistics of SYK Lindbladians and
demonstrated the dissipative quantum chaos enriched by
symmetry.

Owing to the generality and significance of symme-
try, our theory applies to a wide variety of open quantum
phenomena and leads to their unified understanding. For
example, our theory is relevant to the localization tran-
sitions and topological phases of open quantum systems,
which we leave for future work. In particular, the symme-
try classification of SYK Hamiltonians is closely related to
the Zg topological phases of interacting fermions [32,33],
as also discussed in Sec. IIID. Similarly, our symme-
try classification of SYK Lindbladians is relevant to the
topological phases of open interacting fermions. The sym-
metry classification of SYK Hamiltonians is also related
to the Jackiw-Teitelboim gravity [119,120]. It is signif-
icant to consider the analogs in open quantum systems.
Furthermore, it is worthwhile to investigate the dynami-
cal signatures of different complex-spectral statistics for
different symmetry classes. It also merits further study to
investigate the effect of other fundamental constraints in
open quantum systems, such as complete positivity, on
complex-spectral statistics and dissipative quantum chaos.

Moreover, our theoretical framework is straightfor-
wardly applicable to generic open quantum systems,
encompassing non-Markovian Liouvillians, although we
have focused on Markovian Liouvillians (i.e., Lindbla-
dians) in this work for the sake of clarity. While it is
generally formidable to analyze non-Markovian Liouvil-
lians, it is significant to study their general properties based
on symmetry. In this respect, it is also notable that generic
open quantum systems can be embedded into larger closed
quantum systems that consist of the original systems and
their surrounding environment. Thus, symmetry of open
quantum systems should be related to symmetry of closed
quantum systems in the dilated Hilbert space. This per-
spective may lead to a unified understanding of physics in
closed and open quantum systems, such as quantum chaos
[121,122] and topological phases [123].
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APPENDIX A: 38-FOLD SYMMETRY
CLASSIFICATION OF NON-HERMITIAN
OPERATORS

In general, Hermitian operators H are classified accord-
ing to the two types of antiunitary symmetry, one of which
is time-reversal symmetry (TRS)

THT ' =H, (A1)

and the other of which is particle-hole symmetry (PHS)

CHC™'=—H. (A2)
Here, 7 and C are antiunitary operators satisfying 72 =
+1 and C* = £1. As a combination of TRS and PHS, we
can also introduce chiral symmetry (CS), or, equivalently,
sublattice symmetry (SLS), by

SHS ' = —H, (A3)
where S is a unitary operator satisfying S = 1. These two
antiunitary symmetries and one unitary symmetry form the
tenfold Altland-Zirnbauer (AZ) symmetry classification
[6], which determines the universality classes of Anderson
localization [7] and topological phases [10] in Hermitian
systems. We note that A is assumed not to have any uni-
tary symmetry that commutes with it (i.e., UHU ™' = H);
if H of interest respects such unitary symmetry, we per-
form the block diagonalization and then study the internal
symmetry in each subspace.

In contrast to the tenfold AZ symmetry classification
for Hermitian operators, non-Hermitian operators are gen-
erally classified according to the 38-fold internal sym-
metry [58]. First, the two types of antiunitary symmetry
in Egs. (Al) and (A2) remain symmetry even for non-
Hermitian operators H, each of which is respectively
denoted by TRS and PHS' [58]. Similarly, the unitary sym-
metry in Eq. (A3) is still symmetry and denoted by SLS.
In addition to these symmetry, we can consider symmetry
that relates non-Hermitian operators H to their Hermi-
tian conjugates H . We can introduce two such antiunitary
symmetry by

TH'T'=H, (A4)

and

CH'C™'=-H, (A5)
where 7 and C are antiunitary operators satisfying 72 =
+1 and C? = #1. These symmetry is respectively denoted
by time-reversal symmetry’ (TRS') and particle-hole sym-
metry (PHS) because they are obtained by additional
Hermitian conjugation to TRS and PHS' in Egs. (Al)
and (A2). In a similar manner, we can also consider
Eq. (A3) with additional Hermitian conjugation by

rH'r-' = —H, (A6)
where I is a unitary operator satisfying I'> = 1. Unitary
symmetry in Eq. (A3) is called SLS for non-Hermitian
operators while unitary symmetry in Eq. (A6) is called
CS [58]. Here, while CS and SLS are equivalent to each
other for Hermitian operators, they are different for non-
Hermitian operators. The combination of TRS and PHS, as

TABLE VII.  Altland-Zirnbauer (AZ) and Altland-Zirnbauer®
(AZ") symmetry classes for non-Hermitian operators. Time-
reversal symmetry (TRS) and particle-hole symmetry (PHS) are
defined by 7TH7 ' = H and CH'C™' = —H with the antiu-
nitary operators 7 and C satisfying 72 = &1 and C? = #1,
respectively. Chiral symmetry (CS) is the combined symmetry
of TRS and PHS defined by THTT~! = —H with the unitary
operator I satisfying I'> = 1. The tenfold AZ symmetry class
is divided into two complex classes that only involve CS and
eight real classes where TRS and PHS are relevant. Moreover,
TRS' and PHS' are respectively defined by TH7 ! = H and
CHC™! = —H with the antiunitary operators 7 and C satisfy-
ing 72 = +1 and C> = %1, which constitute the AZ" symmetry
classes. Class Al (AIl) in the real AZ symmetry class and class
D' (C) in the real AZ" symmetry class are equivalent to each
other.

Symmetry class TRS PHS TRS' PHS' CS
Complex AZ A 0 0 0 0 0
Al 0 0 0 0 1
Real AZ Al +1 0 0 0 0
BDI  +1 +1 0 0 1
D 0 +1 0 0 0
DII -1 +1 0 0 1
All -1 0 0 0 0
ca -1 -1 0 0 1
C 0 -1 0 0 0
CI +1 -1 0 0 1
Real AZ' AIf 0 0 +1 0 0
BDI' 0 0 +1 +1 1
Df 0 0 0 +1 0
DI’ 0 0 —1 +1 1
All 0 0 -1 0 0
cit 0 0 -1 -1 1
cf 0 0 0 -1 0
crf 0 0 +1 -1 1
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TABLE VIII. Possible types [t=0,1 (mod 2)] of sublat-
tice symmetry as additional symmetry in the complex Altland-
Zirnbauer (AZ) symmetry class [s = 0, 1 (mod 2)]. The subscript
of Si specifies the commutation (+) or anticommutation (—)
relation to chiral symmetry: 'Sy = +S.T.

s AZ class t=0 t=1
A S
1 Alll S, S_

well as the combination of TRS™ and PHS', gives rise to
CS; on the other hand, the combination of TRS and PHS',
as well as the combination of TRS' and PHS, gives rise to
SLS.

In a similar manner to the tenfold AZ symmetry class for
Hermitian operators, TRS in Eq. (A1), PHS in Eq. (AYS),
and CS in Eq. (A6) form the tenfold symmetry class
for non-Hermitian operators (Table VII). Moreover, TRS'
in Eq. (A4), PHS' in Eq. (A2), and CS in Eq. (A6)
form another tenfold symmetry class, which is called the
AZ" symmetry class for non-Hermitian operators. In these
AZ and AZ" symmetry classes, SLS in Eq. (A3) is not
included. Taking SLS into consideration as additional sym-
metry (Tables VIII and IX), we have the 38-fold symmetry
class for non-Hermitian operators [58]. In non-Hermitian
random matrix theory, TRST in Eq. (A4) changes the spec-
tral statistics in the bulk [65] while the other symmetry
changes the spectral statistics at the symmetric point or
lines [74]. TRST physically means reciprocity of open
quantum systems and changes the universality classes of
the Anderson transitions [52]. The tenfold classification of
quadratic Lindbladians based on the AZ" symmetry class
was also developed in Ref. [87].

TABLE IX. Possible types [t = 0, 1, 2,3 (mod 4)] of sublattice
symmetry as additional symmetry in the real Altland-Zirnbauer
(AZ) symmetry class [s =0,1,...,7 (mod 8)]. The subscript
of 81 specifies the commutation (+) or anticommutation (—)
relation between Sy and time-reversal symmetry (TRS) and/or
particle-hole symmetry (PHS). For the symmetry classes that
involve both TRS and PHS (BDI, DIII, CII, and CI), the first sub-
script specifies the relation to TRS and the second one to PHS.
Classes Al with S_, BDI with S_; or S__, and CII with S_,
or S__ are equivalent to classes AIl with S_, DIII with S_, or
S__,and CI with S_, or S__, respectively.

s AZ class t=0 t=1 t=2 t=3
0 Al S_ S,
1 BDI Sy S, S__ Si_
2 D S, S_
3 DIII S Sy Siy S,
4 All S_ Sy
5 Cc1I Sy S, S__ Sy
6 C S, S_
7 CI S__ S, Syt Si_

Some symmetry classes in Tables VII, VIII, and IX
give the equivalent symmetry classes, which are not dou-
ble counted in the 38-fold symmetry classification. For
example, if a non-Hermitian operator H respects TRS
in Eq. (A1), another non-Hermitian operator iH respects
PHS' in Eq. (A2), both of which exhibit essentially the
same universal spectral statistics. Consequently, classes
Al and AII are respectively equivalent to classes D' and
C" and characterized by the same universality classes
(Table VII). Similarly, if a non-Hermitian operator H
respects pseudo-Hermiticity nH'n™' = H (> =1, nt =
n) [116] and belongs to class A + 5, another non-Hermitian
operator iH respects CS n(iH)n~' = —(iH) in Eq. (A6)
and hence belongs to class AlIL. It is also notable that some
examples of open quantum bosonic and fermionic sys-
tems studied in this work belong to class BDIT + S, , in
which the shifted Lindbladians respect TRS' in Eq. (A4),
PHS' in Eq. (A2), and SLS in Eq. (A3). In such a case,
they also respect TRS in Eq. (A1), PHS in Eq. (AS), and
SLS in Eq. (A3), and hence belong to class BDI + S, .
In a similar manner, class CI' + S,_ is equivalent to
class BDI + S_ (see also Table XIII of Ref. [58] for the
correspondence between symmetry classes).

APPENDIX B: NON-HERMITIAN RANDOM
MATRICES WITH TIME-REVERSAL SYMMETRY

Time-reversal symmetry plays an important role in
the universal spectral statistics of Hermitian and non-
Hermitian random matrices. In open quantum systems,
time-reversal symmetry also leads to the unique complex-
spectral statistics, as shown by the dissipative quantum
spin models in Sec. I1 E and SYK Lindbladians in Sec. V.
Here, we discuss the complex-spectral statistics of non-
Hermitian random matrices with time-reversal symmetry,
using two-by-two matrices in a similar manner to the
Wigner surmise. While time-reversal symmetry with sign
+1 (i.e., class Al) leads to the linear decay of the density
of states toward the real axis and a number of eigenval-
ues on the real axis, time-reversal symmetry with sign —1
(i.e., class All) leads to the quadratic decay of the density
of states toward the real axis and the absence of eigen-
values on the real axis. These behaviors also appear in
generic non-Hermitian random matrices with time-reversal
symmetry [76]. More extensive numerical and analytical
studies for generic non-Hermitian random matrices can be
found in Ref. [74].

1. Class A
The density of states of non-Hermitian random matrices

without symmetry is known to be uniform in the complex
plane (i.e., circular law [76,77]):

N

p—) (B1)

p:
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with the number N of complex eigenvalues and the radius »

ofthe complex spectrum. Hence, the density of states along

the imaginary axis is obtained as (i.e., Wigner semicircle
law [4,5])

= INVE =

o= | W

dx p = R
s Tr

(B2)

where s denotes the imaginary part of the complex
spectrum. Thus, the density of states reaches the max-
imum at the real axis s =0 and gradually decreases
away from the real axis. No level repulsion or singu-
lar behavior appears around the real axis s = 0, which
contrasts with the subsequent cases with time-reversal
symmetry.

The density of states in open quantum systems does
not completely coincide with that of non-Hermitian ran-
dom matrices in the corresponding symmetry class even if
the systems are nonintegrable. Nevertheless, qualitatively
similar behavior appears in nonintegrable open quantum
systems. For example, SYK Lindbladians with the even
number p of dissipators belong to class A for N = 2 (mod
4), ¢ = 0 (mod 4), and K,,;K, ; ¢ R (Table III). As shown
in Fig. 11, the density of states across the real axis con-
tinuously changes and does not exhibit the level repulsion,
which contrasts with the singular behavior of the density of
states around the real axis in the presence of time-reversal
symmetry.

2. Class Al
A generic two-by-two non-Hermitian matrix /4 in
class Al, which is required to respect time-reversal
symmetry

h* = h, (B3)

is given as

h = c+xoy +iyo, + zo. (B4)

with ¢,x,y,z € R. The two eigenvalues of /4 are obtained
as

Ei=c+x?—yr 422

The constant term c just shifts the spectrum along the real
axis, and hence we omit it in the following.

We calculate the density of states along the imaginary
axis, p(s) := (6(s —Im E,)) + (§(s — Im E_)), where the
brackets denote the ensemble averages over the differ-
ent realizations of 4. Suppose that # obeys the Gaussian
probability distribution function

(B5)

o e BUlTh2 _ —pe? 432422 (B6)

with a constant 8 > 0. Here, p(s) is an even function in
terms of s. Then, p(s) reads

1 o o0
p(s) = N/mdx/mdy

o
x / dz 8(s — Im[\/x2 — y2 + 22])e B2+
—00

(B7)

for s > 0, with the normalization constant

3/2
N = /oo dx/oo dy /00 dz e P <£) )
—00 —00 —00 ﬂ
(B8)
Introducing the polar coordinate by
z =:rsin0,

x =:rcosf, (B9)

with ¥ > 0 and 6 € [0,2x), we have

2 o0
p(s) = Wn /O drr
x / dys(s — Im[y/72 — y2])e P57 (B10)
—00

Importantly, this integral is singular at the real axis s = 0.
Let us first calculate p(s) away from the real axis s > 0.

For§ (s — Im[{/r? — y2]) # 0 withs > 0, weneed r < |y|
and y = y1 := ++/r2 + s2. Then, we have

8(s — Im[y/r2 — y2])

N

= —[(p — +50y —yo)], Bl11
m[(y ye)+8(y—y)l, (Bl
and hence,
() 47‘[S€ﬁs2 ood ,,.672ﬂ(r2+s2)
5) = r
g N Jo V2452
4rsePs” [ 2
= dte™  (t:=+/2B0? + s2))
N/2B J /28s
— V2B5eP erfe (V2B5), (B12)
where
fo(x) = —2 foodz 1 —erf(x)  (BI3)
erfc(x) := — e’ =1—erf(x
NEE

is the complementary error function. Using the expansion
erfc(x) ~ 1 — 2x//m + O(x?), we have

0(s) ~ /2Bs (B14)
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for small s, which implies the level repulsion around the
real axis. In addition, from the formula

/ i [xe* erfe(v/2x)] = “/52_ L (B15)
0
we have
/00 ds p(s) = x/z/oodx [xexzerfc(«/ix)]
0 0
1
=1-—
V2
£ 1. (B16)

The remaining probability is compensated by the sin-
gular behavior at s = 0. In fact, for s=0 and § (s —
Im[/r? — y2]) # 0, we need r > |y|. Then, the density of
states diverges at the real axis s = 0. Hence, p(s) contains
the delta function Nyd(s), where the normalization con-
stant Ny = /2 is determined so that we will have fooo ds
p(s) =1.

In summary, the density of states along the imaginary
axis in class Al is given as

p(s) = V2Blsle" erfo(y/2Bls) +V25(s)  (B17)
for arbitrary s. A unique feature due to time-reversal sym-
metry is the level repulsion around the real axis s = 0. In
fact, p(s) linearly decays toward the real axis. Another
characteristic feature is the presence of a number of real
eigenvalues, as represented by the delta function in p(s).
This behavior is understood by the change of the spec-
tral correlations due to time-reversal symmetry. In general,
time-reversal symmetry with sign +1 suppresses the level
repulsion [11]. Thus, the level repulsion on the real axis
is weaker than the level repulsion between generic com-
plex eigenvalues away from the real axis, which results
in the presence of a number of real eigenvalues. While
the above results of the density of states are obtained for
the two-by-two matrix, qualitatively similar results also
appear for generic non-Hermitian random matrices in class
Al [74,76].

As discussed in Secs. II and III, generic bosonic and
fermionic Lindbladians are invariant under modular con-
jugation. Consequently, in sufficiently nonintegrable open
quantum systems, the density of states vanishes toward
the real axis, and a subextensive number of eigenvalues
appear on the real axis. We confirm this universal behav-
ior for SYK Lindbladians with the different numbers p
of dissipators and the different numbers N of fermion
flavors (see Sec. V). The same behavior also arises in
open quantum bosonic systems, including the dissipative
quantum spin models studied in Sec. I E. Notably, the

dephasing XYZ model in Egs. (17) and (20) respects addi-
tional time-reversal symmetry (or, equivalently, particle-
hole symmetry’) in Eq. (25). As a consequence of this
symmetry, a number of complex eigenvalues appear on
the symmetric line Re A = tr £/tr I, and the level repul-
sion around this symmetric line is observed [Fig. 1(a)].
By contrast, in the presence of an additional magnetic
field that breaks this symmetry, the level repulsion and
the concomitant singularity of the density of states around
the symmetric line disappear [Fig. 1(b)], which is consis-
tent with the universal behavior of non-Hermitian random
matrices in classes A and Al.

3. Class AII

A generic two-by-two non-Hermitian matrix in class
AlI, which is required to respect time-reversal symmetry

o,h*o, = h, (B18)

is given as

h = c+i(xo, + yo, +z0.) (B19)
with ¢,x,y,z € R. In contrast to class Al, the sign of
time-reversal symmetry is 0,0, = —1, which results in
the different level statistics. The two eigenvalues of 4 are
obtained as

Ei =cdiyx?+y? 422

Similarly to the previous case for class Al, we omit the
constant term ¢ in the following. Notably, / is an anti-
Hermitian matrix; ik is a generic Hermitian matrix in class
A. Consequently, the density of states along the imaginary
axis is the same as the density of states for two-by-two
Hermitian random matrices in class A.

Suppose that / obeys the probability distribution func-
tion in Eq. (B6). Then, the density of states along the
imaginary axis, p(s) := (§(s —ImE,)) + (6(s —ImE_)),
reads

1 o oo
p(s) = N/_mdx/;oody

o0
X / dz8(s — m)e_ﬂ(xzﬂzﬂz)
—0Q

(B21)

(B20)

with the normalization constant in Eq. (BS8). Introducing
the polar coordinate with r := /x*> + y? + z2, we have

p(s) = %T /000 drir*s(s — r)e_‘g’2

3
=4,/ 'B—sze_“%2
T

(B22)
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for arbitrary s. Consistently, we have

o 8 * 2
ds p(s) = —/ dxx’e™ = 2.
./;oo \/E 0

An important feature in class All is the quadratic decay
of the density of states toward the real axis s = 0, which
contrasts with the linear decay in class Al. Furthermore,
no real eigenvalues are generally present, and the den-
sity of states exhibits no delta-function peak at the real
axis s = 0. In fact, time-reversal symmetry with sign —1
enhances the level repulsion [11]. Thus, the level repul-
sion on the real axis is stronger than the level repulsion
between generic complex eigenvalues away from the real
axis, which results in the absence of real eigenvalues.
The qualitatively similar behavior also arises for generic
non-Hermitian random matrices in class All [74,76].

Sufficiently nonintegrable open quantum systems in
class AIl also exhibit the similar universal behavior for
the density of states. As a prime example, SYK Lind-
bladians with the linear dissipators p = 1 respect time-
reversal symmetry P with sign —1 for N =2 (mod 4),
g =0 (mod 4), and K,y;K,,. € R (Table II). As shown
in Figs. 7 and 8, no eigenvalues appear on the sym-
metric line Re A = tr £L/trI, which is consistent with the
random-matrix behavior in class AIl. While the density of
states decays toward the symmetric line linearly instead
of quadratically, this linear decay is due to additional
time-reversal symmetry’ (see “class CI™ in Table I of
Ref. [74]).

(B23)

APPENDIX C: SYMMETRY CLASSIFICATION OF
SACHDEV-YE-KITAEV HAMILTONIANS

We describe the symmetry classification of SYK Hamil-
tonians (Table X) [24-31]. We consider the following
SYK Hamiltonian that includes generic all-to-all g-body
Majorana fermions :

H=i? 3

I<ij<-<ig=<N

(ChH

Here, g is assumed to be even, and J;, ... ;, are the real ran-

dom coupling drawn from the Gaussian distribution. This

TABLE X. Periodic table of Sachdev-Ye-Kitaev (SYK) Hamil-
tonians for ¢ = 0,2 (mod 4) and the number N (mod 8) of
Majorana fermions. For the entries of the antiunitary symmetry
P and R, the signs 1 mean P? and R?.

N (mod 8) o 1 2 3 4 5 6 7
P +1 41 +1 =1 =1 —1 =1 +I1
R +1 41 -1 =1 —1 —1 +1 +1

g=0(@mod4) | Al Al A AIl Al Al A Al
g=2@mod4) [D D A C C C A D

Hamiltonian includes N Majorana fermions, which satisfy

Vi, ¥} =4y, v = (C2)
Here, we choose v; with odd i to be real and symmetric
and ; with even i to be pure imaginary and antisymmet-
ric so that the corresponding complex fermion operators
will be real. The Hamiltonian part of the SYK Lindbla-
dian [i.e., Eq. (57)] coincides with the SYK Hamiltonian.
In the following, we explicitly provide the relevant antiu-
nitary symmetry operations of the SYK Hamiltonian H,

depending on whether N is even or odd.

1. Even N

Let us introduce the antiunitary operators

NJ2

Pi= ([Tv20 K. (©)
i=1
N/2

R:= (HiﬁtﬁZi)K, (C4)

i=1

where I denotes complex conjugation. The antiunitary
operator P contains all the Majorana fermions ,,’s with
odd n while R contains all ,’s with even n. These
antiunitary operators satisfy

P2 — (_1)(N/4)(N/2—1)

_ +1 [N =0,2(mod 8)], (C5)
—1 [N =4,6(mod 8)],
R? = (—1)N/HW/2+D)
_ +1 [N =0,6(mod 8)], (C6)
—1 [N =2,4(mod 8)].

Thus, the signs of P? and R?> change according to N (mod
8), summarized as Table X. Moreover, we have

Py;P~! = (=N, (C7)
RYR™ = (=), (C8)
leading to
PHP™! = (-1l
_|+H [g=0(mod 4)], ©9)
" |-H [g=2(mod4)],
RHR™' = (—=1)1™+bi2g
_ +H [gq=0(mod4)], (C10)
—H [q=2(mod4)].
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Thus, the antiunitary operators P and R individually give
time-reversal symmetry for ¢ = 0 (mod 4) and particle-
hole symmetry for ¢ = 2 (mod 4).

It is also notable that the product of the two antiunitary
operators P and R gives rise to fermion parity symmetry,

N2
PR oc (=) := [ ] 2021, (C11)
P
satisfying
(=D (=D = —y (C12)
and
(-DFHD =H. (C13)

Since the fermion parity gives Z, unitary symmetry that
commutes with the Hamiltonian H, we need to consider
the block-diagonalized Hamiltonian to study the symmetry
classes and spectral statistics. If we calculate the spec-
tral statistics for all eigenenergies with both (—1)F = +1
and (—1) = —1, we always obtain the Poisson statistics
since the eigenenergies with (—1)" = +1 and those with
(—1)f = —1 are uncorrelated with each other. Now, we
have the commutation and anticommutation relations

(—DFP(=DF = (=D?P,
(=DFR(=DF = (=DHV/?R.

(C14)
(C15)

Consequently, the antiunitary operations P and R act on
each subspace of fermion parity (—1)" and remain sym-
metry for even N /2 [i.e., N = 0,4 (mod 8)]; by contrast,
they switch fermion parity between the two subspaces of
(=¥ and are no longer symmetry in the subspace with
fixed (—1)% for odd N/2 [i.e., N = 2,6 (mod 8)]. These
considerations lead to the periodic table given in Table X
foreven N.

2.0dd N

For odd N, we need to modify the symmetry operations.
We introduce the antiunitary operators

(N+1)/2
Pim (T vawam ). 19
i=1

N-1)/2

Ro= ( 1 ,-@/,Zi)zc,

(C17)

which satisfy

P’ =R
_ (_1)(N2—1)/8

_J+1 [N =1,7(mod 8)], (C18)
" |-1 [N =3,5@mod 8)].
In addition, we have
PyP = RyR™ = ()N 2y, (C19)
and hence,
PHP™!' = RHR™!
= (-)"’H
_ +H [q = 0(mod4)], (C20)
—H [g=2(mod4)].

While the antiunitary operations P and R act differently for
even N, they act in a similar manner for odd N.

For odd N, the meaning of fermion parity is ambiguous.
Correspondingly, the product of the two antiunitary opera-
tors P and R does not give rise to fermion parity symmetry.
Rather, we have

(PRYY:(PR)™ = 1, (C21)
which means that PR acts as the identify operator. As a
result, the antiunitary operators P and R act equivalently to
each other. The symmetry classification for odd N is also
summarized as the periodic table given in Table X.
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