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ABSTRACT

The Western Interior Seaway (WIS) was historically divided into latitudinal faunal prov-
inces that were taxonomically distinct from the adjacent Gulf Coastal Plain (GCP) and that
shifted in space due to sea-level changes. However, no rigorous quantitative analyses using
recent taxonomic updates have reassessed these provinces and their associations. We used
network modeling of macroinvertebrate WIS and GCP fauna to test whether biotic provinces
existed and to examine their relationships with abiotic change. Results suggest a cohesive
WIS unit existed across the Campanian, and distinct WIS and GCP provinces existed in the
Maastrichtian. Sea-level changes coincided with changes in network metrics. These results
indicate that, while the WIS did not contain subprovinces in the Late Cretaceous, environ-
mental factors influenced faunal associations and their communication over time.

INTRODUCTION

The Western Interior Seaway (WIS) and
Gulf Coastal Plain (GCP) are characterized
by a dense fossil record of marine inverte-
brates in the latest Cretaceous (ca. 100-66 Ma;
Caldwell, 1974; Slattery et al., 2013), spanning
45° latitude, which experienced a wide range
of environmental shifts. Fluctuating sea levels
(Fig. 1C), for example, modified basin geometry
and water-mass distributions, impacting marine
life (e.g., He et al., 2005; Kauffman, 1984;
Lowery et al., 2018). A restricted connection
between the WIS and the open ocean affected
oceanic conditions relative to the GCP and may
have influenced biotic provinces (Kauffman,
1984, and references therein; Lowery et al.,
2018). Biotic provinces are geographic regions
characterized by distinct ecological associations.
Previous studies of biotic provinces using fossil
materials have attributed them to major climatic
regions (e.g., Kocsis et al., 2021), associated
shifting provinces with sea-level fluctuations
(e.g., Kauffman, 1984), compared spatiotem-
poral influences on taxonomic association pat-
terns (e.g., Kiel, 2017), and observed changes
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in provinciality relative to taxonomic loss (e.g.,
Kocsis et al., 2018).

Quantification of biogeographic patterns can
therefore shed light on macroecology over evo-
lutionary time. Kauftman (1984) described three
significant biotic incursions during transgres-
sions based on changes to WIS subprovinces
(Fig. 1A). These subprovinces, determined using
percent endemism of mollusk records analyzed
from 1960 to the 1980s, are the (1) Northern
Interior, (2) Southern Interior, and (3) Cen-
tral Interior subprovinces (Kauffman, 1984).
Another identified faunal province was the Gulf
and Atlantic Coastal Plain subprovince. How-
ever, delineation of these paleobiogeographic
provinces and their changes through time was
based on qualitative assemblages limited by the
available fossil data (Kauffman, 1984, and ref-
erences therein). Analysis of WIS provinciality
using current fossil data will improve the valid-
ity of these interpretations.

Network modeling analysis of faunal prov-
inces is a novel approach (Kiel, 2016, 2017)
to quantifying faunal similarity across spatio-
temporal units. Using a well-vetted database of
over 33,000 fossil occurrences from the WIS and
the GCP, we used this approach to reevaluate
WIS provinciality in the Campanian and Maas-
trichtian Stages of the Late Cretaceous. While

previous studies have used network analysis to
explore provincialism in fossil taxa (Kiel, 2016,
2017; Rojas et al., 2021; Muscente et al., 2018;
Kocsis et al., 2018, 2021), none has applied the
technique to a geochemically unique, restricted
ocean system characterized by over 100 yr of
dedicated sampling. This research may also
inform general patterns of Earth-life interaction
over long time scales (e.g., the nature of faunal
variation through time and space) and serve as
a foundation for future WIS/GCP investigations.

METHODS

Records of marine invertebrates from the
Campanian and Maastrichtian intervals of the
WIS and the GCP were compiled from digital
databases, including the Paleobiology Database
(25 August 2021 download) and iDigBio (30
August 2021 download), and from museum
collections at the Black Hills Institute and U.S.
Geological Survey—Denver (Cobban Collec-
tion), and from the Mackenzie (2007) thesis
database (Table S1 in the Supplemental Mate-
rial'). Taxa were binned into the early, middle,
and late Campanian and the early and late Maas-
trichtian stages (Fig. 1B; Fig. S1). Localities
were converted to paleocoordinates within a
60 km grid for analysis; nodes with fewer than
three unique taxa were removed. The vetted
database was analyzed prior to network model-
ing to determine fundamental sources of taxo-
nomic and spatial bias that should be considered
during network interpretations (Table S2; Figs.
S52-S9).

Faunal provinces were delimited for sub-
stages individually and for the complete data-
base (combined substages) using threshold
weighted networks (Kiel, 2016) in the EDENet-
works software (Table S3; Figs. S10-S20;
Moalic et al., 2012; Kiveli et al., 2015; Kiel,
2016). Network components that were discon-
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Figure 1. (A) Previously defined subprovinces and northernmost extent of tropical/subtropical faunas during transgressions, modified from
Kauffman (1984). (B) Occurrence map of data from this study. (C) Global and regional sea-level curves with major transgressive-regressive
(T-R) events. (D) Complete database for 360 km network with Kauffman’s subprovinces indicated. Modified version of this figure with additional
biostratigraphic and isotopic data is available as Figure S30 (see text footnote 1). Camp.—Campanian; Maastr.—Maastrichtian; TH—threshold.

nected at and below a network-specific threshold
identified by EDENetworks, known as the per-
colation point, were interpreted as representing
distinct “community” groups (Newman, 2012)
or faunal provinces. General patterns in network
connections across all substages together were
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assessed using coarser spatial aggregations of
the data, and minor network components were
assessed for spatiotemporal consistency (Figs.
S521-S23).

Average network clustering coefficient (CC)
values, indicative of network organization rang-

ing from O (no cluster) to 1 (fully connected
cluster), were compared with a null model of
randomized networks to determine if the topol-
ogy was more or less clustered than a ran-
dom distribution (Table S4; Kiel, 2016). Link
weights, or the degree of dissimilarity between
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nodes, and betweenness centrality (BC), a mea-
sure of the degree to which a node acts as a
geographic connection between regions, were
averaged by 5° paleolatitudinal bins for com-
parison (Figs. S24-S26). Link weights were

also binned by geographic distance to test for
correlation between faunal dissimilarity and dis-
tance (Table S5; Fig. S27). Given the latitudinal
overlap between the WIS and GCP around 35°N,
we separated the data by major components and
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evaluated link similarity between the two regions
independently (Table S6; Fig. S28). Sampling
bias influence on network communication was
assessed by binning average betweenness cen-
trality (BC,,.) by generic richness as a proxy for
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sampling effort (Fig. S25) and using a minimum
spanning tree (MST) algorithm (Fig. S29). Addi-
tional explanation of methods is provided in the
Supplemental Material (see footnote 1).

RESULTS AND DISCUSSION
WIS versus GCP Provinces

The presence of a single faunal province in
the WIS was supported by all network permu-
tations and subsequent analysis (Fig. 2). This
province was geographically consistent with the
WIS (Fig. S21), was maintained at all thresh-
old levels (Figs. S10-S15), did not contain
spatiotemporally consistent minor components
(Figs. S22-S23), and was faunally distinct from
GCP grid cells (Fig. S21). For Maastrichtian
substages, which contained more GCP fossil
occurrences relative to the Campanian, a well-
supported GCP faunal province was observed
(Fig. 2; Figs. S16-S19). This distinct GCP prov-
ince was supported by the full database network
as well (Fig. S20). Network randomization com-
parisons demonstrated that these results were
nonrandom and likely reflect biogeographic
patterns (Table S4; average CC >3 standard
deviations from mean). They did not result from
sampling bias based on comparisons with spatial
cluster analysis (Figs. S5-S9), BC comparisons
(Fig. S25), and MST (Tables S7-S12). Thus,
our quantitative analysis does not support the
existence of WIS biotic subprovinces but does
support a distinct GCP province in the Maas-
trichtian (Kauffman, 1984).

The WIS and GCP provinces may have
resulted from geochemical and bathymetric
changes across the transcontinental arch (TA),
which may have acted as a bathymetric high
between the regions (He et al., 2005; Lowery
et al., 2018, and references therein), rather than
resulting from latitudinal factors (e.g., tempera-
ture). Geochemical studies have found evidence
for nonnormal marine conditions in the WIS,
including low salinity or brackish conditions
(Cochran et al., 2003; Dennis et al., 2013; Fricke
et al., 2010) and lower 6'*0 values of seawa-
ter than in the open ocean (Fricke et al., 2010;
Petersen et al., 2016). There is also evidence for
stratification within the WIS during the Cam-
panian and Maastrichtian, produced by mixing
water masses (He et al., 2005; Lowery et al.,
2018). These factors could have created a habitat
barrier between the GCP and WIS, facilitating

provincialism. The WIS fauna may have been
more tolerant of nonnormal conditions, sup-
ported by a lack of abundant reef-building and
reef-associated taxa (Gill and Cobban, 1966;
Caldwell, 1968; Kauffman, 1984; Kauffman and
Caldwell, 1993).

The lack of latitudinally defined provinces
within the WIS is unsurprising given a flattened
latitudinal temperature gradient in the Creta-
ceous greenhouse (Mannion et al., 2014; Super
et al., 2018). However, evidence for different
water-mass distributions and salinity/temper-
ature gradients has long been associated with
latitude and faunal gradients in the WIS (Fisher
et al., 1994; Slingerland et al., 1996; Longman
etal., 1998; Elderbak and Leckie, 2016; Lowery
etal., 2018). During much of the study interval,
a cool water mass circulated south through the
WIS from the northern connection with Green-
land and northern Europe, interacting with the
northward-moving warm water mass from the
Tethys Ocean, forming a counterclockwise gyre
(Steel etal., 2012; Lowery et al., 2018). However,
no evidence for provinces matching these water
bodies was observed in our results. Instead, this
gyre could have contributed to faunal homogeni-
zation despite ocean stratification or abiotic gra-
dients. Further, the unique geochemical nature
of the basin may have encouraged WIS incum-
bents and generalists to flourish over special-
ists or invaders. Data set differences, including
improved sampling and the lack of foraminifera
in this study, may have hindered observation of
Kauffman’s (1984) subprovinces, though this
requires further investigation. Indeed, the poten-
tial for along-seaway variation within specific
WIS faunas, as observed by previous authors
(i.e., Sohl, 1971; Jeletzky, 1971, etc.), was not
tested by this analysis, which tested for discrete
clusters of faunal assemblages.

Decreasing Faunal Similarity and Sea-
Level Fall

Network dissimilarity values increased
through time (i.e., decreasing similarity), par-
ticularly in the WIS province, based on average
link values per substage (Table 1); in contrast,
the GCP province showed increasing similarity
through the Maastrichtian (Table S6). Bathy-
metric and geochemical changes coincided with
these shifts, suggesting a potential relation-
ship. The WIS gyre may have promoted mix-

ing of water masses, WIS dispersal, and mixing
with the GCP (Fisher et al., 1994; Slingerland
et al., 1996; Longman et al., 1998; Elderbak
and Leckie, 2016). However, falling sea levels
likely impacted circulation patterns, water-mass
dynamics, and geochemical and environmen-
tal gradients (e.g., nonnormal salinity, nutrient
load), which would have limited WIS migra-
tion and thereby insulated existing fauna from
outside invasion (Cochran et al., 2003; He et al.,
2005; Fricke et al., 2010; Petersen et al., 2016).
Shallowing along the TA may also have created
a geographic barrier between the WIS and GCP
as early as the late Campanian (Lehman, 1987;
Lowery et al., 2018, and references therein).

Dampened circulation and salinity gradi-
ents may have also caused declining faunal
similarity within the WIS alone, as evidenced
by lower average faunal similarity within each
substage network across time (Table S6). Below
~1000 km, faunal similarity comparisons
showed weak correlation between distance and
link weight (Fig. 3; Fig. S28), indicating only a
slight decline in similarity over distance within
a substage, despite decreasing similarity though
time. Sedimentary evidence for tidal circulation
influences through at least the middle and late
Campanian (Steel et al., 2012) suggests contin-
ued circulation and mixing that could have pro-
moted homogenization. Distance comparisons
for the WIS and GCP components individually
produced similar patterns (Fig. S28), indicating
that these results were not basin specific. Addi-
tional study of WIS oceanography is needed to
confidently assess the potential influence of late
Campanian oceanographic changes.

While faunal connectivity within the WIS
and between the WIS and GCP decreased
over time, Maastrichtian average link weights
showed that GCP faunal similarity increased
(Table S6; Fig. S21). As a longitudinally broad,
open ocean—facing province, the GCP would
have experienced normal marine conditions, less
latitudinal variation, and the potential for long-
distance dispersal, potentially supporting faunal
similarity across the Maastrichtian by reducing
the endemism. Within the WIS province, from
the early Campanian to the early Maastrichtian,
network connections remained strong between
substages across time, indicating weak faunal
turnover in the region even as faunal similarity
decreased, until the late Maastrichtian, when

TABLE 1. AVERAGE/MEDIAN LINK WEIGHTS WITHIN SUBSTAGES AND BETWEEN DIFFERENT SUBSTAGES

Substages link weight comparisons (mean + 95% Cl/median)

Substage link weights Lower Camp. Middle Camp. Upper Camp. Lower Maastr. Upper Maastr.
(mean + 95% Cl/median)

Lower Camp. (0.78 £ 0.004/0.80) - 0.83 £ 0.002/0.84 0.85 + 0.002/0.86 0.87 + 0.003/0.88 0.96 + 0.001/0.98
Middle Camp. (0.79 + 0.002/0.82) - - 0.83 + 0.001/0.85 0.86 + 0.002/0.88 0.95 + 0.001/0.96
Upper Camp. (0.82 + 0.002/0.84) - - - 0.86 + 0.002/0.88 0.95 + 0.001/0.96

Lower Maastr. (0.83 + 0.004/0.86) -
Upper Maastr. (0.85 + 0.006/0.95) -

- 0.93 + 0.003/0.95

Note: 95% confidence intervals (Cl) of the mean are indicated. Camp—Campanian; Maastr—Maastrichtian.
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the province became disconnected from previ-
ous iterations (Fig. 1D). The late Maastrichtian
disconnect with previous iterations matches
expectations of oceanic changes that would have
decreased dispersal and habitat homogenization
for WIS taxa (Elderbak and Leckie, 2016; Steel
etal., 2012; Fisher et al., 1994; Longman et al.,
1998; Slingerland et al., 1996).

Latitudinal Patterns

Results do not support latitude-based faunal
provinces, despite changes in network metrics
across latitudes (Fig. 2). However, the region
of highest average faunal similarity (HFS)
shifted 5° north from the 40°N—45°N bin to the
45°N-50°N bin across the R9 regressive event
at the end of the middle Campanian (Fig. 1C;
Kauffman and Caldwell, 1993). Prior to the R9
regression, sea levels were more stable, and
the HFS region was fixed (Fig. S26). This HFS
shift appears to reflect biogeographic patterns
and is unlikely to be a product of data distri-
butions given that faunal similarity compared
to geodesic distance remained relatively stable
over <1000 km (Fig. 3). The geodesic distance
covered by a 5° latitudinal bin in this region is
~555 km, and the distance covered by two bins
is ~1110 km. Thus, similarity begins to strongly
decrease over distances greater than 10° latitude.

This suggests a regional control on network
metrics. If faunal similarity only depended on
distance, then similarity would show a uniform
pattern across latitude rather than the observed
peaks and dips (Fig. S25). Therefore, an HFS
region that shifts parallel to sea level likely rep-
resents a distinct biogeographical component
influenced by oceanographic changes.
Similarly, although the region of highest
BC,,. (indicating highest faunal communication
between regions) primarily occupied northern
latitudes (40°N—-60°N), it shifted south from
the middle to late Campanian (Fig. S25). This
region of highest communication may indicate
intermediate habitat (Kiel, 2016), uniformity of
conditions (i.e., water depth), or currents that
transported taxa long distances (Lowery et al.,
2018). The latter would support larval migration
of marine taxa, especially those with long plank-
tonic larval stages (Nickols et al., 2015). How-
ever, more specific bathymetric, geochemical,
and sedimentological evidence for habitat condi-
tions is sorely needed, but is outside the scope
of this analysis. The region of highest BC,,, may
also correspond to Kauffman’s (1984) mixing
zone. Despite the shifts in highest BC,,., all net-
works showed a minor or major peak in the cen-
tral WIS (45°N-50°N; Fig. S25) corresponding
with a region of mixing water masses (Lowery
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et al., 2018). This supports oceanographic or
habitat controls on fauna in the WIS.

CONCLUSIONS

Network analysis of the Late Cretaceous
WIS and GCP regions supports a single biogeo-
graphic province throughout the Campanian and
an independent GCP province in the Maastrich-
tian with decreasing faunal connectivity through
time. This contrasts with Kauffman’s (1984)
original division of the region into four “sub-
provinces.” Decreasing faunal similarity over the
study interval is consistent with oceanographic
and geochemical changes that restricted the WIS
and exacerbated nonnormal marine conditions.
Though no overarching relationship between
faunal associations and latitude was observed,
regional movement of the HFS and highest BC,,.
values suggest that environmental changes (i.e.,
falling sea levels and associated effects) were the
primary control on biogeographic connections.
This study also provides further evidence for
the utility of network modeling to quantitatively
characterize paleobiogeographic trends on evo-
lutionary time scales relative to major environ-
mental shifts, representing an important analyti-
cal tool in modern tests of marine biogeographic
change under predicted global change.
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