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Abstract

Let 71, o, 73 be three cuspidal automorphic representations for the group SL(2,7),
where 1 and 7w, are fixed and 13 has large analytic conductor. We prove a subconvex
bound for L(1/2, 71 @ m @ 13) of Weyl-type quality. Allowing 13 to be an Eisenstein
series, we also obtain a Weyl-type subconvex bound for L(1/2 4+ it,m1 ® m5).
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1. Introduction

1.1. Weyl-type subconvexity

Subconvexity estimates belong to the core topics in the theory of L-functions and are
one of the most challenging testing grounds for the strength of existing technology. If
C denotes the analytic conductor of the relevant L-function (restricted to the param-
eters of interest), then the Phragmén—Lindeldf principle gives the bound C1/4+¢ for
the L-function on the central line Ms = 1/2. In the most favorable cases, one can
obtain an upper bound C/6%¢ which we refer to as a Weyl-type subconvex bound.
For instance, a classical result states that the Riemann zeta function satisfies the bound

t/2+it) <o (1+]¢])F
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on the critical line. Based on work of Weyl [49], it was proved first by Hardy and
Littlewood (cf. [34]), and first written down by Landau [32] in a slightly refined form
and generalized to all Dirichlet L-functions. Results of similar strength exist in the
Archimedean aspect for automorphic L-functions of degree 2, starting with the work
of Good [17] and culminating in the hybrid bound of Jutila and Motohashi [29]. We
also have a Weyl-type bound of degree 4 in some limited cases pertaining to Rankin—
Selberg L-functions, such as (see [30], [33])

L(1/2, f ® g) g6 C(f)'/3F¢

for two cusp forms f, g for SL,(Z), where C(f) denotes the conductor of f as
defined in Section 2.2.5 below. Although slightly better bounds are available for
GL(1) (see [9], [37]), the Weyl exponent marks a natural barrier that has never been
improved, and rarely been reached, beyond GL(1). We note that for some applications
(see [16], [35]), the essential input is a Weyl-type subconvex bound (or something
approaching it), rather than merely any nontrivial subconvex bound." We note also
that Petrow and Young recently established Weyl-type subconvex bounds for GL(1) in
the level aspect, improving spectacularly upon the decades-old Burgess-type bounds
(see [40], [42], [43D).

A celebrated result of Bernstein and Reznikov established for the first time sub-
convex bounds for certain L-functions of degree 8. For two fixed spherical cuspidal
automorphic representations 7y, 7, (i.e., generated by Maass forms for SL,(Z)) and
another spherical cuspidal automorphic representation 73 of large analytic conductor
C(73), they proved (see [3], [4]) that

Z L(1/2,711 ® 13 ® 13) Ky maie T7/3T, (1.1)
T<C(rn3)!/2<T+T1/3

which implies (by nonnegativity of the central value) in particular L(1/2,7, ® 72 ®
73) Ky .ma.e C(r3)3/61¢. The proof employs a beautiful combination of represen-
tation theory, invariant norms, and asymptotic analysis of oscillatory Airy-type inte-
grals. In fact, their result is really an estimate for triple product periods, as L-functions
enter only through the period formula of Watson and Ichino [22].

We observe, however, that (1.1) is not optimal. The Lindelof hypothesis suggests
the Weyl-type bound with an exponent 4/3 instead of 5/3. That such a result might
be within reach was indicated by Suvitie [46]. For a fixed holomorphic cusp form F
of weight k and a Maass form /4, she showed that

) (YK F 2 R)[* < e T3, (1.2)
T<C()1/2<T+T!/3

'Indeed, to show that the number of zeros on i[1, 00) of a holomorphic Hecke eigenform f of weight k tends
to infinity as k — 0o, the proof in [16] needs L(1/2 + it, ) < k°-33% with polynomial dependence in .
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which via the Watson—Ichino formula translates into

> L(1/2,F® F @ h) K, T*3T.
T<CW)'/2<T+T'/3

This L-function is not primitive, as it factorizes into a degree 6 and a degree 2 L-
function, but the same argument would work for FG instead of | F|? in (1.2). More
seriously, however, the proof starts by replacing F' with a holomorphic Poincaré series
and unfolding the inner product, a route that is not available in general. In fact, an
attempt to generalize this to Maass forms remained incomplete [45] and seems not to
work. In particular, the work of Bernstein—Reznikov remained unimproved.

In this article, we establish the Weyl-type bound for triple product L-functions in
a uniform fashion for all combinations of local types at infinity, that is, any of the three
factors can be holomorphic or Maass. As mentioned before, the Weyl-type bound
marks the natural limit of all present day approaches to subconvexity. The key novelty
in our work is the method. We combine in a substantial way representation theory,
local harmonic analysis, and analytic number theory to establish a robust method for
the subconvexity problem for triple product L-functions.

THEOREM 1
Let 11, 15 be two fixed cuspidal automorphic representations for the group SL,(7Z).

Let w5 run over cuspidal automorphic representations for SLy(Z) with conductor
satisfying T < C(m3)Y /2 < T + T3, Then

Z L(1/2,m1 @ mp @ m3) Ly, 8 T4/3+8,
T<C(m3)!/2<T+T1/3

in particular,
L(1/2.m1 ® 72 ® 73) Kory e C3)?/3F¢

for every e > 0.

An inspection of the proof shows that the dependence on the analytic conductors
of 7y, 7, is polynomial. Under Watson’s formula in [48], the latter estimate translates
to bounds for triple product integrals of Maass forms ¢; of eigenvalue 1/4 4 tj? (j=
1,2,3):

|—2/3+8

2

’f 010203 KLgp,00,6 113 exp(—m|t3]).
SL2(Z)\H

giving a further improvement beyond that in [4] on the general exponential decay

bounds of [44].
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We can allow 73 to be an Eisenstein series, and our proof yields as a by-product
a Weyl-type bound for Rankin—Selberg L-functions.

THEOREM 2
Let 7y, 75 be two fixed cuspidal automorphic representations for the group SL, (7).
Then

T+T1/3 )
/ |L(1/2+it,m ® 1) | dt Ky pmne TP,
T

in particular,

L(1/2 + i[,ﬂl ® 7[2) <<711,J'[2,£ (1 + It|)2/3+“3

foreverye>0andt e R.

For the rest of the paper, all implied constants may depend on ¢, and we suppress
it in subsequent formulas. The weaker bound L(1/2 4 it, 71 @ m2) Kpymp (1 +
|£])3/6F¢ is implicit in [4, Remarks 7.2.2.2] and was the best known result until now.
By a method purely based on analytic number theory, the bound L(1/2 4 it, 71 ®
72) Lryon (14 [¢)13/1678 was recently shown in [1]. For bounds of triple product
L-functions in the level aspect, see [20] and [47].

1.2. Remarks

(1) Our results feature “pure” exponents of Weyl-type quality that are independent
of bounds towards the Ramanujan conjecture or the Selberg eigenvalue conjec-
ture. The proof uses at one place that the smallest nonzero Laplace eigenvalue
is larger than 3/16.

2) In principle, the proof produces an asymptotic formula. If ¥ is a sufficiently
regular test function with “essential support” in [T,T + H], for example,
V(1) =exp(—(t—T)?>H2),and t; < \/C(r3) (cf. (2.20)) denotes the spec-
tral parameter of 3, then with the same notation and under the same assump-
tions as in Theorem 1, one can relate

L(1/2,7T1 X V%) ® 7'[3)
%:Wt’”) L(1,Ad* 73)

n 1//(t)|L(1/2+”’”1®”2)|ﬂ

- ta+2iDpF 27 (-3

to

cL(1,Ad?> 710)L(1,Ad> 1) TH + O(T3? ¢ H~1/2)
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for a suitable constant ¢ (depending on ).

3) The proof of Theorem | has the shape of a reciprocity formula as for instance
in [7]. A spectral sum in a window [T, T + H] as in (1.3) is ultimately trans-
formed into a spectral sum of similar shape with spectral parameter up to
K T/H (see (5.30), (5.28), (5.13)). This is analogous to the discussion after
(1.11) in [7], and a new instance of a reciprocity phenomenon. The optimal
choice is H = T''/3, in which case both spectral sums have length 7#/3. This
yields the Weyl bound, and we see that the Weyl bound is indeed the natu-
ral limit from the point of view of spectral analysis. An abstract version of
the underlying reciprocity formula is displayed in (1.7) below which features
central L-values as well as their “canonical square roots.”

(4)  Implicit in the proof of Theorem 1 is an alternative description of the central
triple product L-value L(1/2,71 ® 7w, ® m3) in terms of a certain shifted
convolution problem very roughly of the shape

1 A (M)A, (m + V) Ay, (v
L(1/2,n1®n2®n3)%’ﬁz Z () nz,,(ll/4 M ()

73 vx1 m<<t,2,3

><exp(:|:2il‘,,3 \/g)‘z (1.4)

The “a” sign has to be interpreted in a broad sense (see Section 6 for details).

In the generic range m =< t2 ,» the oscillatory factor is flat (see Section 2.4 for
definition of flatness).

1.3. Comparison with Bernstein—Reznikov and Michel-Venkatesh
It is instructive to compare our approach for studying the moment (1.1) with those of
Bernstein and Reznikov [3], [4] and Michel and Venkatesh [36].

To begin, we briefly sketch the approach to the subconvexity problem introduced
by Bernstein and Reznikov. We borrow some presentation features from Michel and
Venkatesh (see especially [36, Sections 1.1.1 and 1.1.3]). The starting point of this
approach is the triple product formula in [22]: for unit vectors v; € m;, we have

L(1/2,m1 @ mp @ 73)
L(1,Ad*> 1) L(1,Ad? 72)L(1,Ad? 73)

Loo(V1,V2,V3)

2
-/ v1v2v3(g) dg (15)
g€SL2(Z)\SL2(R)
for a suitable local factor &£, (v1, V2, v3) (a constant multiple of a matrix coefficient
integral).
For unit vectors v; € m; and v, € m,, we consider the inner product identity
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(v1v2,v1v2) =/ lv1v2]*(g) dg = (Jv1 > [v2]?). (1.6)
g€SLa(Z)\ SL2 (R)

By expanding each of these inner products over the spectrum of L2(SL,(Z)\ SL»(R))
and applying (1.5), we obtain a spectral identity of families of L-functions, roughly
of the shape

Y h(r)L(1/2, 7 ® w2 ® 73)

3

~1+ Zﬁ(a)\/L(l/Z,m ®m Q®0)L(1/2, 715 ® m2 ® 0). (1.7)

Here 73 and o run over cuspidal automorphic representations of SL;(Z), the square

roots of L-values are “canonical square roots” (in the sense of [36, Section 1.1.3]),

and the meaning of “a” is that

. we have suppressed adjoint L-factors and other proportionality constants, and

. we have elided the contribution of the continuous spectrum and all degener-
ate terms except for the “expected main term” 1, which arises from the inner
product (Jvy|?, 1){1, [v2|?) = 1 (up to volume factors).

The weight functions / and h depend upon the choice of vectors v; and v,.

The weights h(w3) and the L-values L(1/2,m; ® m, ® m3) are known to be
nonnegative, so if we can bound the right-hand side of (1.7) by O(1) (the natural
limit, in view of the expected main term), then we deduce by dropping all but one
term the estimate

L(1/2,71 ® 2 ® 73) < 1/ h(73). (1.8)

Given some 73 with cond(7r3)/2 =< T, we now face the optimization problem
of choosing unit vectors v; and v, for which & (m3) is as large as possible, so that
the bound (1.8) is as strong as possible. Bernstein and Reznikov [4, (2.6.3), Propo-
sition 9.1] showed (for 7, spherical) that one may choose v; and v, so that h(m3)
is roughly 775/3. This choice and a suitable bound for the global period eventually
yields their estimate (1.1). Michel and Venkatesh [36, Sections 3.6 and 3.7] (for m;
tempered and spherical) employed a simpler choice of vectors for which /i (73) is of
size T~2; for this choice, the estimate (1.8) only recovers the convexity bound, but
Michel and Venkatesh managed to apply the amplification method to save a further
small power of T (in a more general “all aspects” setting).

To approach the Weyl bound L(1/2, 7 ® 2 ® m3) < T*/3+¢ using (1.7) would
seem to require producing vq and v, for which /(3) is at least T—4/3_ but the anal-
ysis of Bernstein and Reznikov strongly suggests that their lower bound T—%/3 is
best possible. To obtain a stronger lower bound thus requires a more flexible class of
weight functions /(7r3). Such a class may be obtained from the generalization of (1.6)
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to higher-rank tensors ) ; v1,; ® v2,; € 71 ® 72, namely,

D (1,jv2,. vikv2k) = (V1 V1K V2uT2)-
Ik ik

Such tensors yield more flexible forms of (1.7). One could hope to find a tensor
> j V1,j ® v, j for which the corresponding weight h(73) localizes on 3 satisfying
T < cond(m3)'/2 < T + T'/3 and for which the right-hand side of the correspond-
ing spectral identity as in (1.7) may be effectively bounded. To implement this idea
in practice would require a careful study of the spaces of test functions {4} and {i}
as well as the transform relating them. Unfortunately, such a study has not yet been
carried out, and does not seem straightforward in the generality of Theorem 1 (which,
we should emphasize, imposes no local conditions on the representations ;).

The method of this paper consists of two stages. We first use a somewhat crude
choice of vy and v, (like in the work of Michel and Venkatesh) and an unfolding
technique (see Section 1.5, in particular (1.11)) to express the L-values of interest
as bilinear forms in the Hecke eigenvalues of the varying form 3. We then average
over the spectral window T' < C(m3)'/2 < T 4 T''/3 of interest by means of analytic
number theory, and in particular the Kuznetsov formula.

Our approach has in common with the works of Bernstein and Reznikov and
Michel and Venkatesh that we make use of the well-developed theory of integral rep-
resentations of L-functions to produce and analyze our test vectors. In this respect,
our basic framework owes much to those works. The essential difference is that we
analyze sums over much narrower spectral windows, and the more technical differ-
ence is that we implement this analysis using the Kuznetsov formula rather than the
spectral theory of triple product periods.

The main advantage of our approach is that we can make full use of available
technology related to the Kuznetsov formula (abundance of test functions, explicit
integral transforms, Bessel function asymptotics, large sieve estimates, and so on),
whose avatars are not available at the level of the triple product periods. To the best of
our knowledge, this paper is the first to employ such a combination of the theory of
integral representations and analytic number theory. We hope that this methodology
will be useful more broadly.

1.4. Analytic number theory

Having discussed the representation-theoretic ideas in the previous subsection, we
now give a brief sketch of how analytic number theory can handle expressions like
(1.4) that can be extracted from the triple product formula. This is a precursor to
the analysis in Section 5. The trivial bound in the m-sum recovers convexity, and if
we had square-root cancellation in the m-sum we would obtain Lindelof. We now
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consider the sum

> L(/2,f@g@h). (1.9)

2rnT<rp<2n(T+H)

An application of the Kuznetsov and Voronoi formulas gives a dual shifted convolu-
tion problem that can be treated by a §-symbol method. With a final application of
the spectral large sieve, the sum (1.9) can be shown to be < (TH)1+8 for H = T1/3,
which establishes the Weyl bound. For convenience, we describe a toy version of this
argument, restricting each parameter to the generic range. This is somewhat mislead-
ing because smaller ranges of m in (1.4) are punished by an additional oscillation
which complicates matters considerably, but it nevertheless gives a flavor for what
is happening. Restricting (1.4) to v = 1 (for simplicity) and applying the Kuznetsov
formula, we obtain an expression roughly of the shape (cf. (5.14))

H3/2
T 2 2 ArmDAg(ma)Sem—1my—1.c)

my,my=<T2c<T/H

(24/m1m2 T?c )
X e - ’
C mimy

provided that H > T3, (For smaller H, more terms in the exponential would be nec-
essary.) The complicated exponential is reminiscent of the uniform asymptotic expan-
sion of the J-Bessel function at imaginary index. The leading term of the Kuznetsov
kernel equals the Voronoi kernel, a feature that is now crucially exploited: applying

the Voronoi summation formula to m,, the dual variable will be close to m; and a
large portion of the oscillation disappears. We obtain roughly (cf. (5.22))

H>/? 2Th!/?
¢<T/H h=<T2/H? mx=T?2

The inner sum is now a shifted convolution problem with a moderately oscillatory
factor of size T'(h/m)'/? =< T/H .1t can be spectrally decomposed by a delta-symbol
method (cf. Section 5.7). Another application of the Voronoi and Kuznetsov formulas
(cf. Sections 5.8 and 5.9) leads to a spectral sum of length 7/ H having (7 /H )? terms
by Weyl’s law. Note that this is the length of the 4-sum, so the large sieve (which is
itself an application of the Kuznetsov formula) can show its full power on the /-sum,
leading to the desired final bound. As an aside, we see that this analysis employs the
Kuznetsov formula three times, in various directions.

We finally remark that a direct approach to (1.9), by an approximate functional
equation followed by the Kuznetsov formula, appears to be hopeless: we would obtain
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sums over A s (n)Ag(n) withn < T* against oscillatory functions of (combined arith-
metic and analytic) conductor of size T2 (regardless of the choice of H), so that a
GL(2) x GL(2) Voronoi summation formula would not reduce the length of sum-
mation. In other words, after applying the Kuznetsov formula, we run out of moves
immediately.

1.5. Unfolding

Following [46], we now sketch a beautiful, but completely different approach to the
formula (1.4), specific to the case of discrete series representations 7, 7. Suppose
that 1, 7o are generated by holomorphic forms f, g and that 3 is generated by a
Maass form & of spectral parameter 75, > 0. By Watson’s formula, we have

L(1/2, f ® g ® h) ~ e™h 272k

[ F@g@h@y* du()| .
z€SLy (Z)\H

We write g as a linear combination of Poincaré series, and without much loss of
generality we assume that

g(z) = Py(z) = > (cz+d)Fe(nyz)
y=(% b)ere\sL,(2)

is the nth Poincaré series. We insert the Fourier expansions and unfold. This gives a
y-integral

*° t d
/ ykﬁcosh(%)K,-,(271my)e_2”(m+")y—y
0

y2
o T1/242k—2 I mk/2—1/4
~ Wexp(ﬂ:bt E) m1n<tk_—1/2,l)
for large ¢ and fixed n. This integral was first analyzed by Good [17, Section 4] in
terms of hypergeometric , F; functions; the analysis is long and difficult. At least if
the weight & is fixed but relatively large (for small k£, one needs to work a little harder),

the typical range is m < t2, and we obtain that L(1/2, f ® g ® h) is essentially the
absolute-square of a linear combination of

1 Ap(m)A g (m + n) ) n
tlT Z i/a eXp(:I:le‘h E) (1.10)

b m«it?

for a fixed number of n’s. It is very interesting to note that this resembles closely
(1.4). The previous argument is due to [46].
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The unfolding step is obviously not applicable in the setup of Bernstein and

Reznikov. Following an idea of Zagier [50], the formal identity

3

d
-z 515 / FEN dp() 5 (L1
s Jzelso \H Tl

for an SL,(Z)-invariant function f can be used to mimic unfolding in more general
situations (see [19, Appendix A] for a related idea). Applied to the triple product of
three classical Maass forms it yields a y-integral involving three K-Bessel functions

/ e =5 [ f)res E(z.5) du(:)
2€SLo(Z)\H zeSLa(Z)\H 5=

o0
/ Kit, (m1Y)Kity (m2y) Kisy (m3y)y* 2 dy
0

for m; + my 4+ m3 = 0. This can still be analyzed to some extent, but the resulting
highly oscillatory shifted convolution problems become untreatable with the required
precision. This is the reason why the attempt on the Maass case in [45] remained
incomplete. Nevertheless, the unfolding step (1.11) is also present in our argument
(cf. Section 6). It acts as a hinge between the triple product identity and sums over
Fourier coefficients, leading eventually to the description (1.4) for the central L-value
in terms of shifted convolution sums.

1.6. The analytic test vector problem

The art in using the triple product formula (1.5) to bound L-functions consists of
choosing appropriate test vectors. The traditional test vector problem asks for explicit
v1, V2, vz for which the local factor &£.0(v1,v2,v3) is nonzero. Spherical vectors
are often test vectors in this sense, but are usually not the best choice due to the
exponential decay of the local factor. For analytic applications, it is useful to work
with analytic test vectors: vectors for which the local factor is not merely nonvanish-
ing, but enjoys (informally speaking) a reasonable quantitative lower bound. Michel
and Venkatesh [36, Section 3.6.1] gave a robust supply of test vectors under local
assumptions relevant for Rankin—Selberg subconvexity. We will revisit and extend
their approach to the triple product setting, removing all local assumptions in a uni-
form way.

For our analysis of test vectors, we adopt the language of analytic newvectors
in [26], which is well suited for keeping track of the essential invariance properties.
Analytic newvectors are approximate Archimedean analogues of the classical p-adic
newvectors introduced by Casselman [11] (see also [25]). Let Ko(pN ) denote the
standard congruence subgroup consisting of matrices in PGL,(Z ) whose lower left
entry is divisible by pV . Let £ be a generic irreducible representation of PGL,(Q p)-
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Denote by ¢(&) the conductor exponent of &, so that p¢® is the usual arithmetic
conductor of &£. The main result of local newvector theory in [11] is that there is a
unique (up to scalar) nonzero vector v € £ such that £(g)v = v for all g € Ko(p¢®).
Such vectors v are called newvectors.

An Archimedean analogue of the family of congruence subgroups Ko(p?) C
PGL,(Z ) is the family of subsets Ko (X, ) that is defined by the image in PGL,(R)
of the set

4 b la—1| <z, |b|<T,
( )eGLz(R); .
c d el <. ld-1<z

Here X is a large positive parameter, thought of as tending off to infinity, while t €
(0, 1) is taken small but fixed. An Archimedean analogue of local newvector theory
is given by [26, Theorem 1]: for each fixed 0 < ¥ < 1/2 and arbitrary § > 0, there
is a T > 0 so that for every generic irreducible unitary 9 -tempered (see Section 2.3)
representation 7 of PGL;(R), there is a unit vector v € 7 such that

||n(g)v — vH <8 forall g € Ko(C(m), 7).

We refer to such vectors as analytic newvectors (suppressing, for terminological
brevity, the dependence of this notion upon the parameters § and 7). Such vectors v
may be constructed explicitly as fixed bump functions in the Kirillov model (see [26,
Theorem 7]).

Inspired by the construction of [36, Section 3.6.1], we approach the analytic test
vector problem for the local triple product periods L (v1, V2, v3) by choosing v and
v3 to be analytic newvectors. The choice of v, is simplest to describe when 5 is a
principal series representation. In that case, we describe v, in the induced model by
a function on the lower triangular subgroup supported within O(1/X) of the iden-
tity. More generally, we make use of the fact that 7, may be embedded in a (not
necessarily unitary) principal series representation.

1.7. Plan for the paper

Having chosen test vectors vy, v,, v3 as indicated above, we need to solve three main

problems.

. We need to compute (a lower bound for) the matrix coefficient integral
£Loo(v1,v2,v3). This will be done in Section 3. The idea of the proof, as in
[36, Section 3.7.2], is to write the matrix coefficient integral as the square of a
Rankin-Selberg integral and then to estimate the latter by playing the support
properties of vy in its Kirillov model and v, in its induced model against the
invariance properties of v3. One subtlety is that we have not assumed that
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any of our representations belongs to the principal series. For this reason,
the reduction to Rankin—Selberg integrals is achieved in general only after
embedding 7, into a principal series representation and using the standard
intertwining operator to normalize its inner product.

. We use (a refined version of) the formula (1.11) to compute the right-hand
side of (1.5). This leads to an integral of three Archimedean Whittaker func-
tions that will be computed asymptotically in Section 4. The proof involves
several applications of the local functional equation and stationary phase anal-
ysis, but no input concerning special functions beyond Stirling’s formula. This
yields the expression (1.4). In other words, choosing test vectors as above has
the exact same effect as using Poincaré series in the holomorphic case and
unfolding (cf. (1.10)). This is a rather remarkable feature.

. We need to bound the shifted convolution problem (1.4). This can be done by
analytic number theory, roughly as indicated in Section 1.4. This is the content
of Section 5. It is here that we implement the “hard analysis” required by our
short spectral summation.

Theorems 1 and 2 are then an easy consequence and will be derived in Section 6.

2. Preliminaries

2.1. Basic notation

Throughout we work with the group G := PGL,(R), and its subgroup N of unipotent
upper triangular matrices which are equipped with the usual Haar measures. We use
the notation

(1 x v (10 _(y O
n(x):= (0 1), n'(x):= (x 1), a(y) = (O 1),
cosf —sinf 0 -1
k) := (sin@ cos ) we= (1 0)'
We view k(6) as a function of 8 € R/ Z. For convenience, we may assume that 6 is
taken in the interval [—m /2, 7/2].
We write d*y = dy/|y| for the Haar measure on R* and dx for the Lebesgue

measure on R. We fix a G-invariant measure dg on N \ G given in Iwahori coordinates
by

/ d*y
N\G>g=a(y)n'(x), dg= o dx,
y
and in Iwasawa coordinates by
d*y
N\G>g=a(y)k(®), dg de.

Y
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We equip GL,(R) with the Haar measure compatible with the chosen Haar measures
on R* and G via the short exact sequence 1 - R* — GL,(R) —> G — 1.

Let X(R*) denote the character group of R*. Each y € X(R*) is uniquely of the
form y = |- |*sgn? for some s € C and a € {0, 1}. We set R(y) := N(s), I(y) :=
3J(s),and C(y) := (1 + |Js]|)/(2m) (cf. (2.14)). The group X(R*) is a complex man-
ifold with respect to the coordinate charts y > s. For a function f : X(R*) — C of
sufficient decay and o € R, we define the contour integral

1 S a ﬁ
[ fodz=5 X [ (e

ae{0,1} (s)=0

For a smooth function f : R* — C of sufficient decay, we then have the Mellin inver-
sion formula

o= [ o[ oo ) @

lt]

2.2. Local y-factors, Stirling’s formula, and the analytic conductor
Let p be a finite-dimensional representation of the Weil group Wi. Let ¥/ (x) := ¢27%*
be the standard additive character of R. The local y-factor of p is defined as usual by

L(1—s5,7)
L(s,p) '

where € and L denote the e-factor and L-factor, respectively, a description of which
can be found in [48, Section 3.1] for the cases relevant in this paper. We regard v as
fixed once and for all, and for this reason we drop it from the notation.

The analytic conductor C(p) has been defined in various slightly different ways
(see, e.g., [24, Section 2], [23, Section 5], [36, Section 3.1.8]). For many applications,
it is unimportant precisely which definition is used: what matters is just that C(p)
controls the local y-factor in the sense that for small enough s, and under favorable

y(s,p):=y(s,p,¥) :=€(s,p, V) (22)

conditions, one has at least the rough approximation

y(s.p) ~ C(p)'/*7*. (2.3)

For the purposes of this article, it will be convenient to normalize the definition of
C(p) somewhat more precisely, so that a correspondingly more precise form of (2.3)
holds. While we could work with ad hoc definitions, it is useful to present this in a
slightly more general context. The purpose of the following computation is to give a
uniform asymptotic formula for the local gamma factors in the cases relevant for our
application. This is achieved in (2.20) and (2.21) below and used in Section 4.5.
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2.2.1. Stirling’s formula
With the principal branch of the logarithm, we have

I'(z)= 2_1/2(2)2(:91\;(2) +O0ne(lzI™N)),  Jargz)| <7 —elz] > ¢

for some smooth function §y satisfying

.iﬂg 1
|Z| dZJ N(Z) <<J=N

forall N, j € Z>o.

2.2.2. Characters of R*
Set Tr(s) := 7 ~%/2T'(s/2). The basic Archimedean local y-factors over R are given
(with respect to the standard character ¥ of R, as above) by

_GFR(I—S—FQ)

y(s,sgn?) =i TG ) (seC,ae{0,1}),

corresponding to the characters | - |* sgn® of R*. For s = ¢ + it, we define g4.4(7)
by writing

|7l

vs.sen®) = (30) " e,

2me
The factor gq4(7) is “mild” in the sense that whenever o is restricted to a fixed
interval and mingey |s — 1| > ¢ for some fixed ¢ > 0, we have

3 ga(t) < (1+2))~7 2.4)

for all fixed j € Zxo; this estimate follows from Stirling’s formula for || > 1 and is
otherwise trivial.

From this estimate, we derive a useful approximation for the local variation of
y(s,sgn?), as follows. For w = u + iv, we may write

|U|)1/2—s_w exp(i v (7)) So.a (. V). (2.5)

y(s + w,sgn?) = (—
2

where
|1+ t/v|
Pu(t):i=—(v+71) log(T) (2.6)

and 8o,u,a (1—7 U) = (€_1|1 + T/v|)l/2_a_uga+u,a (T + U)‘ For |U| = max(l, 2|T|) and
o,u < 1, we conclude from (2.4) that

31072 g5 4 a(T,0) L 0|12, (2.7)
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2.2.3. Characters of C*
We now record the analogous discussion over C. Set I'c(s) = 2(2w)~*I'(s). The
basic local y-factors over C are given with respect to the standard additive character
Ye(x) 1= e27 I+ of C by

a1 e =5+ |al/2)

ve(s,sgng) =i oG 1 1al/2) (seC,ac?), (2.8)

corresponding to the character | - |f. sgnf. of C*; here |z|c := zZ, sgng(z) := z/|z].
We extend the definition (2.8) to arbitrary a € R by taking i“*! := exp(*Z (a + 1)).
We suppose henceforth that a > 0. For s = o +it, we define gc,» (5 +17) by writing

la/2+it| 1—2S( a/2+it )—a a . )
ay __ —
ye(s, sgng) = (42716 ) a2+ 71| g(C,o(z +it).

Again, for o restricted to a fixed interval and (s, a) a fixed distance away from poles
of yc(s,sgng), Stirling’s formula implies that

3(]1'1 aing,a(Z) LD,j1./2 (1 + el + |a|)_Jl_J2 (2.9)
for ji, j» > 0. We write

a/2+iv|\1-25—2w
ye(s + w,sgnd) = (M>

27
a
x exp(ipc,v,a(1))gc,ou (r, 2 + iv), (2.10)
where
1 it a .
dewalt) =20+ 1) log<;’1 + m‘) —aarg(z i+ v)) @2.11)

and gc,ou (7,5 +iv) = (e 1 +it/(¢ +iv))' 2 2gcoqu(% +i(v +1)). For
la/2 +iv| > max(l,2|7]) and 0,u < 1, we obtain from (2.9) that

o p I
apa{)zagggc,a,u(r,friv) < (Jv] + laf) T2 2.12)

2.2.4. The general definition
Any n-dimensional representation of the Weil group Wx is isomorphic to a direct sum

ni na

p= (L] sgn™) ® (&72,]- 4 sgnéf), (2.13)

where n =ny + 2n,, w;,z; € C, a; €{0,1}, and bj € Z>,. Here we identify the
indicated characters of C* = W¢ with the corresponding 2-dimensional induced rep-
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resentations of Wi. The local y-factor of p is now given by

ni na

. b;
y(s.0) = [ v(s +wy.sen®) [ yels + 25580,
j=1 j=1

Write w; =u; +iv; and z; = x; + iy;. We define the analytic conductor

Clp) = 1—[ max(l lvj]) 1—[ max(1,b;/2 +iy;)?

e (2.14)

Jj=1

and, using (2.6) and (2.11), the phase function

Po(7) = Zcpv (T)+Z¢<c vy, (T)

=1 j=1

and the factors

8o (7, p): —l_[gaujaj(f Uj)l_[g(Caxj( by +lyj)

j=1 j=1
ni ; np . .
) lvj[\~ivs bj/2+41iy;\~2;
€= 1_[(271') 1_[( 2T ) ’
j=1 Jj=1

By the dual (resp., conjugate) of p, we mean the representation obtained by
negating (resp., by conjugating) the parameters w;, z; in (2.13). We summarize the
previous discussion in the following lemma.

LEMMA 1
Suppose that p is isomorphic to its conjugate dual. Then

y(s.p) = €,C(p)" >~ exp(idhp(1)) g (z. ). (2.15)
If moreover p is self-dual (equivalently, self-conjugate), then
e, =1.

Proof
The content of our hypothesis is that we have the equalities of multisets

{(wlval)’ LR (wn1 ’anl)} = {(_w_lval)v L) (_w—nl’ ai’l])}? (216)
{z1.01), .. (Zngo bny) ) = {(=21,01), ., (=Zny by | (2.17)
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It follows that

na

() ()

j=1 j=1

We deduce (2.15) by multiplying together the identities (2.5) and (2.10). Assuming
moreover that p is self-dual, we obtain the additional equalities of multisets as in
(2.16) and (2.17), but without the conjugations, which in turn give that e, = 1. ]

The primary hypothesis of Lemma 1 is satisfied if, for instance, p corresponds to
a unitary representation 7w of GL, (R), while the full hypotheses are satisfied if 7 is
self-dual.

2.2.5. Examples of interest

We consider in this paper cuspidal automorphic representations 7 for SL,(Z). Each
such 7 defines a generic irreducible unitary representation of PGL,(RR), hence a 2-
dimensional representation p, of Wgr. We set

y(s, ) :==y(s, pr), (2.18)

and similarly define C (), ¢ (t) and g (7, ). The possibilities for p, are as fol-

lows:

(1) 7 is a principal series representation w = m(r,a) obtained by normalized
induction of the character | - |"” sgn® for some r € R U (—1/2,1/2)i and
a €{0, 1}, in which case p; = | - |"" sgn® @| - | 7" sgn?, or

(2)  m is a discrete series representation & = 7w (k) of lowest weight k € 271, in
which case p, = sgnk~1.

We note that any such = is self-dual, hence any such p is both self-dual and self-

conjugate; this property is evident in each example. Thus for s = 0 + i 7, we have

y(s.7) = C(m)"/* ™ exp(id (7)) go (z. 7). (2.19)

where:
. for 7 = 7w (r,a), we have

Clr) = <max(12,7|;ﬁ(r)|)>2,

(1) =—(r +1) log(‘l + ﬂ) —(=r+71) log(‘l _ ;D 20

(2.20)

. for m = w(k),
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Clr) = (max(l, (Zl;— 1)/2))2’
1 it k—1 221
o (7)) = —2rlog(2‘l + m‘) —(k— l)arg(T + ir);

and gy (7, 7) varies mildly in the sense given by the estimates (2.7) and (2.12);
namely:
. for |r| > max(1,2

7)) and 0 K 1,
92 go (v, m(r,a)) < |r] 71772,
. for |k —1|>4|r|and 0 K 1,
31972 g5 (v, m(k)) < |k| =177, (2.22)

We note that, while 7 (k) is not defined as a representation for nonintegral k, each of
the factors y (s, w(k)), C((k)), ¢ ) and hence also g, (7, 7(k)) is defined for any
k € Rx; (see after (2.8)). For this reason, it makes sense to differentiate with respect
to k in (2.22).

On one occasion, we will apply Lemma | to a Rankin—Selberg convolution 71 ®
7 ® y of a pair of generic irreducible unitary representations of PGL;(RR), twisted
further by a character y of GL;(R). Writing y = xo| - |*® with y¢ unitary, we have

(/2,11 @M ® 1) =y(1/2+ R(x), 11 ® 72 @ x0)
LC(m ®@m® ) W, (2.23)

where in the second step we invoke Lemma | and the accompanying Stirling esti-
mates, using the unitarity of 71, 7w, and y¢ to verify its hypotheses.

2.3. General bounds for Whittaker functions
Let 7 be a generic irreducible unitary representation of G := PGL,(R). We recall
that “generic” means that there is a G -equivariant embedding, necessarily unique,

m—{W:G — Csmooth | W(n(x)g) =e(x)W(g)},
v W,

where G acts on the space on the right-hand side by right translation. The image of
7 under such an embedding is called the Whittaker model of m with respect to 1. An
invariant inner product on 7 is given by

(or.02)r = [ W (@) WonaC) a%. (.24
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When we speak below of 7 being realized in its Whittaker model, we mean that we
identify 7 with its image under such an embedding, with inner product normalized as
in (2.24).

Fix ¢ € [0,1/2). We say that 7 is ¢ -tempered if it lies in the discrete series or if,
writing 7 as a Langlands quotient of an isobaric sum 07 ® | det|! B o, ® | det’2, we
have that each |?(s;)| < . Then 7 is O-tempered in the above sense if and only if it
is tempered in the usual sense, that is, its matrix coefficients lie in L27¢(G) for each
e>0.

In what follows, we work exclusively with smooth vectors in such representa-
tions. Thus “let v € 7 is shorthand for “let v be a smooth vector in 7.”

We denote by §; the Sobolev norm on 7 defined in [36, (2.6)]. It takes finite
values on smooth vectors.

LEMMA 2

Let w be a ¥ -tempered generic irreducible unitary representation of G, realized in
its Whittaker model. For each W € w and all y € R* and z € R with |z] < 1000, we
have

(y3,) 2] W (a(y)wn(z)) < 84(W)min(|y]' /277, |y|™V) (2.25)
and
(r3,) 2 W (a(y)n’(2)) < 84 (W) min(|y|"/>7?, |y|™N) (2.26)

for all ji,j2, N € Zxo, where d € Zxo and the implied constants depend at most
upon ji, ja, N.

Proof
See [36, Sections 2.4.1 and 3.2.3]. O

2.4. Smooth weight functions

Let X be a large parameter which will be clear from the context. We adopt the con-
vention that & denotes a fixed (i.e., independent of X’) positive quantity, whose pre-
cise meaning may change from line to line. As usual, the notation A < B means that
|A| < C|B| for some fixed C; we introduce subscripts as in A < ; B to signity that C
may depend upon j. We use the notation 4 < B to denote that A and B are nonzero
real numbers for which A/B lies in some fixed compact subset of (0, 00); we then
have A < B < A. We introduce the abbreviation

A< B+ A<, X®B.
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We call an expression negligible if it is <y X~V for any N > 0. We call a smooth
function V : R” — C flat if

x{l ...x'{" V(f1’~~~’j")(x1,...,xn) ‘\<J 1 (2.27)

forall j € ZZ ,. Clearly if V is flat, then so is exp(i V). If in addition V has fixed com-
pact support_ in (0, 00)", then we call it nice. We generally let V' denote a nice function
in one or more variables, not necessarily the same at every occurrence. In practice,
V may depend on some additional parameters having certain prescribed sizes; it will
always be clear from the context with respect to which variables “flatness” is applied
(in which case all implied constants are uniform in these parameters).

For a nice function V', we may separate variables in V(x1,...,x,) by first insert-
ing a redundant function V(x1)--- V(x,) thatis 1 on the support of V' and then apply-
ing Mellin inversion

VX1, ..., xp) =V(x1,...,x0)V(x1) - V(xp)

=/ / ?(sl,...,sn)
R(s1)=0 R(sn)=0

dsy---dsy

X (Vo) Vo)™ ™) =

n

Here we can truncate the vertical integrals at height |Js| < 1 at the cost of a negligible
error. We will often separate variables in this way without explicit mention.

2.5. Integration by parts and stationary phase
We quote the following lemmas from [6, Section 8] and its extension in [31, Sec-
tion 3].

LEMMA 3
LetY > 1, X, P,U, S > 0, and suppose that w is a smooth function with support on

[o, B, satisfying
w () <; XU,
Suppose that h is a smooth function on [o, B] such that
LAGIE
for some S >0, and

KD () <, YP™I, forj=2.3,....
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Then

[ w(t)e" D dt < 4 (B—)X[(PS/NY) ™+ (SU)™].
teR

LEMMA 4

Let X be a large parameter. Let V' be a flat function in the sense of Section 2.4 with
support in x?=1 [c1.c2j] for some fixed intervals [c1;,c2;] € R not containing 0. Let
Xi.....Xg >0, Y = X5 Write & = x9_\[c1jX;.c2;X;] SR Let ¢ : R > R
be a smooth function satisfying the derivative upper bounds’

i=1

forj e Ng and (t1,...1q) € 7, as well as the following second derivative lower bound
in the first variable:

@00 (111, 1) > VX2,

Suppose that there exists t* = t*(ta, ... tq) such that 100 1* 1, ... t;) = 0.
Then for any N > 0, we have

/ V(t_17 s ti)eﬂb(tl,---,td) dt,
r X1 Xq

Lk t t
= Yl/2€l¢(t 125000 td)W(_Z i) + ON(X_N)

X,

for a flat function W = Wy with support in X?=2[Clj ,C25].

3. The local triple product factor

Let 7; fori = 1,2, 3 be generic irreducible unitary representations of G such that:

. 71 and 7 are ¥-tempered, while

. 73 is tempered.

We regard 1 and m, as fixed. We write Q = C(mr3) for the conductor of 73 and
think of Q as a large parameter. The aim of this section is to obtain a lower bound for
the local triple product integral &£.0(v1, V2, v3) in (1.5) for a certain choice of vectors
v; € 7;. The choice will be made at the beginning of Section 3.3 and the result will
be stated in Theorem 3 at the end of this section.

2The main result in [31, Section 3] states this with < instead of <, but our conclusion on W is insensitive to
Q¢ -powers.
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Let ¢ denote the additive character of N given by n(x) — e(x). We realize m;
(resp., m3) in its Whittaker model with respect to ¥ (resp., ), with inner products
normalized as in (2.24).

In this section, we abbreviate ys := y ® | - |* for y € X(R*) and s € C.

3.1. Embedding via intertwiners

Let y € X(R*). Let d(y) denote the unitarily normalized induction of y from the
standard upper triangular Borel subgroup in G, consisting of smooth f : G — C sat-
isfying f(n(x)a(y)g) = |y|"?x(y) £(g). Let M(x) denote the standard intertwining
operator from the principal series J(y) to J(x~!), defined by the integral

fl—)/ERf(wn(x))dx 3.1

for M () > 0 and then meromorphically continued to all of X(R*).

Let y = |- |21k for k € Zsy, and consider a K-type basis { fo;};cz on d(x).
From the computation of [10, Proposition 2.6.3] we see that M(y) f; = 0 for |/| >
1 4+ k. Thus M(x) has a unique infinite-dimensional kernel which is isomorphic to
the discrete series Dy of weight k. We normalize M () as

M*(x) :=y(0, x*)M(y). (3.2)

where y is the local Tate gamma factor as in Section 2.2. Then M *() is nonzero for
all R(y) > 0 and is meromorphic for all y. In other words, Dy can be embedded into
the principal series representation () with y = | - |¥T1/2 via the normalized inter-
twining operator M *(x). A similar embedding can be done for the complementary
series representation as well (see [10, Section 2.6]).

Let y with () > 0 not be a pole of M * (). From now on we will only consider
x for which either 9 (y) = 0 or J(y) = 0. Note that if 4 () is unitary, then y satisfies
this property. We can define a G-invariant sesquilinear pairing on J () by

Jeer [1(' (%)) f2(n' (x)) dx it R(y) =0,

(/1. f2)o = {fxeR £ C)YM*(p) o’ (x)dx  if3(y) =0,

for f1, f2 € d(x).

There is a principal series representation né’ = J(x), with y of nonnegative real
part, into which 7, embeds. Explicitly:

. If m, is a tempered principal series d (o), that is, if yo is unitary, then we
choose y = yo-

. If 7, is the weight-k discrete series Dy, then we choose y = | - |'/21*,

. If 7, is the complementary series attached to 0 < o < 1/2, then we choose

g

=11
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In each case, we have a G-invariant embedding 7, < 74 = d(x) and c¢(y) € C*
such that

<Ul’ U2)712 = C(X)(fvl ’ fvz)O = (fv1 , fUz)?

where f,, are the images of v; under the above embedding and (, ), is as defined in
(2.24). We refer to [10, Section 2.6] for details.

3.2. Local Rankin—Selberg zeta integral

Let W) € m; and W3 € 3, and let f, € () for some y € X(R*). We may param-
eterize f» in terms of a Schwartz function, as follows. Let e, := (0, 1) € R?, and let
® € 8(R?) be a Schwartz function. We define

@)= [ ernadacs)d

The above integral converges absolutely for % (y) > —1/2 and continues meromor-
phically to all y € X(R>).

The local GL(2) x GL(2) Rankin-Selberg zeta integral of 71 and 3 is defined
by

(W1, f2, W3) 3=/ Wi(g) f2(8)W3(g) dg

geN\G

f Wi () Wa(g)®(e2g) x1/2(det(9)) dg.
geN\GL>(R)

for N () sufficiently large and in general by meromorphic continuation. The GL(2) x
GL(2) local functional equation (see [12, Theorem 3.2]) asserts, using the notation
(2.18) and (2.2), that

y(1/2.m1 @ 73 ® ) / o, OIS0 (dei() ds
g€ 2

- / W1 () Wa(2)b(er) 17 (det(g)) d, (3.3)
g€N\GL,(R)

where W; € 7; is the contragredient of W; defined by W;(g) = W(wg~ ") and D is
the Fourier transform of ® defined by

d(y) :=/ d(x)e(y ' x)dx.
x€R2
For y a fixed distance away from a pole or zero of y(1/2, 71 ® 73 ® x), we have
y(1/2,m@ms®@ 0 xy(1/2, 11 @73 ® x )
Koo Cnt @ 13 @ PP Ky g C)™ 0, (3.4
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when y is fixed with :(y) > 0. The first estimate above follows from the definition
of the gamma factor. The second estimate follows from (2.23). The third estimate
follows from repeated application of [21, Lemma A.2].

We record a variant of the local functional equation.

LEMMA 5
We have

W(Wy, f2, Wa)y(1/2,m1 @ 13 @ x) = W (W1, M™ () f2. W3),

where M*(y) is as in (3.2).

Proof
Let 91(x) be sufficiently large. By expanding the definition (3.1) of the intertwining
operator, we see that

M (o) = () [ [ a(@ngrod .

We use the local Tate functional equation to evaluate the above as (cf. [ 15, p. 225])

YO8 rlder)dere)| " [ (.0 )0l

Recalling (3.2), we may thus write

M* () fols) = /

teR

) dAD(eztwg_T))(l_/l2 (det(tg™T))d*t.

We use the definition of W; and change variables g — wg ™" on the right-hand side
of the local functional equation (3.3) to write

V()2 71 8 73 %) / oy MO WO PE) 11 p(de) dg
IS 2

- [ Wi (9)Wa(g)D(eawg™ ) x1/2(det(g)) dg.
g€N\GL>(R)

Folding the above integrals over R*, the identity follows for i () large. We conclude
the proof by meromorphic continuation of the zeta integrals and the intertwiner. [

LEMMA 6
Let 1 and 1wy be U -tempered with 0 < 1/4, and let 73 be tempered. Let w; 3 v; — W;
for i = 1,3 be realized in their respective Whittaker models equipped with the inner
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products as defined in (2.24). Also let vy +— f> under 7o < 78 = d(x) as described
in Section 3.1. Then

3 -
/ i, de = cGw W, fo. W bW fo W),
g€G
where

f=

~ | if nzp is a tempered principal series,
M*(x)f>» otherwise.

From [36, Section 2.5.1] we have the bound of the matrix coefficients
= (o129 . _ -
(i (g)vi. vi) Kx; B(Q) fori =1,2, (r3(8)v3, v3) K3 E(Q).

Here E is the Harish-Chandra E-function, which satisfies [, E(g)*"dg < oo.
Thus from the assumption that § < 1/4, we see that the local triple product integral
is absolutely convergent.

Proof

The proof is essentially given in [39, Lemma 2.14.3], but in an analogous metaplectic
setting. We modify the relevant part of the proof. Note that the left-hand side of the
equation in the lemma is

/ {m (WA W) (2) o o) ma ()W, W) .
ge
We define

£1:= W fa, £ =Wy fo,

and note that

Ei(ng) =y (n)&i(g), neN,geq.

Using Iwahori coordinates g = a(y)n’(x) € N\G and the transformation of f> under
the Borel subgroup, we compute the absolutely convergent integral

/ §1(hg)é2(h)dh
heN\G
- / 7)ol ) ()

x / 71 () Wi (a(y)n' () Wi (a()n' () d ¥y dx.
yeRX
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The inner integral evaluates to (71(g) Wi, Wi) and consequently, we have
[ atoBmah = (m@W W) (@) . ),
heN\G
Hence, the left-hand side of the equation in the lemma equals
e [ [ eilhe)Emae) s, Wa)dh .
g€G JheN\G

The above double integral is only conditionally convergent. We proceed exactly as in
the proof of the identity (2.29) in [39] to evaluate the above integral as

e [ amwsmdn [ GEWEm .
heN\G heN\G
The proof is now complete. O

3.3. Choice of vectors
We choose f> € 4 as before

@)= [ otrnnaeug)d,

where ® is a smooth nonnegative bump function on R? sufficiently concentrated
around the point e; = (0, 1) in terms of 7 and 7, only. Such a vector has a nonzero
preimage v, € 7. We choose

vy = a(Q)vs,

where, as we recall, Q = C(ir3) is the conductor of 73 as in Section 2.2. We choose
v; € m; for i = 1,3 such that v; are analytic newvectors, in the sense of Section 1.6;
that is, v; in their Kirillov models (with conjugate additive characters of N) are given
by fixed bump functions in C2°(R*) sufficiently concentrated around 1. We denote
by W; the images of v; in their Whittaker models for i =1, 3.

We note that

[ nerenar=1. [ weo)meo)eemdy <1
x€R yERX
We normalize vy, v/z, v3 so that both of the above integrals are 1.

LEMMA 7
Let 71 be O-tempered with ¥ < 1/2, and let w3 be tempered. Let y with R(y) >0
and f € J () be as chosen above. Then for C(w3) = Q sufficiently large, we have

(W1, 1o(a(0). W5) Sy my Q10
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Proof
We write the zeta integral with the Iwahori coordinates and change variables to obtain

X12(Q)¥ (W, f2(a(Q)), W3)
=@ [ [ wi(aom () w(aom(5))

x f2(a(yQ)n'(x))

Y (3.5)
Iyl
Note that
F(a(yO)n'(x)) = x12(y Q) fo(n'(x)),

and the support condition of ® confirms that f>(n’(x)) is supported in a sufficiently
small neighborhood of 0. We rewrite the right-hand side of (3.5) as

/yERX xeR(W3 (a(y)n/(é)) - W3(a(y))>
x Wi (a(y)n (Q)>f2(n () f1/2(r) dx d*y

+ /yERX [XER(WI (a(y)n’(g)) - (a(y)))
x Wa(a(y)) fa(n'(x)) x-1/2(y)dxd™y

+ / W1 (a () Wa(a () 1 l/z(y)dX/ A ). (36
yeRX xX€R

Note that the third integral equals 1 by the choice of normalizations of the vectors.
As mq is fixed, we may apply (2.26) to conclude that

Wi(a(y)n'(x/Q)) <y min(|y|V/27|y[7¥)

for x < 1. Moreover, given some sufficiently small constant ¢ > 0, then for x suffi-
ciently small (in terms of ¢ only) and C(rr;) < Q we have

C(rm;) o
Wi(a)n'(x/Q)) = Wi(a(») < T’clyl”2 o (3.7)
for any n > 0 and 0 = 1,0 if i = 1, 3, respectively. This estimate is essentially con-
tained in [26, Section 2.1] and can be seen as follows: using Mellin inversion for
W;(a(y)n'(x/Q))|y|~? for o = 1/2 — 6 — n and the PGL(2) x GL(1) local func-
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tional equation, we write the above difference (as in [26, Section 2.1]°)

/ ) 1o (C ()
non=0 " y(1/2—0om @ ¥

x /,eRX ("’(_%) - 1)Wi(a(C(m)t)w)x£,(z) d*tdy,

and (3.7) follows as in [26, Section 2.1].
Now we define

12(;()::f |f2(n/(x))|dx§/( O(tx, )|t PO dr dx « 1.
x€R

t,x)ER2

The first integral in (3.6) is therefore

< ch(y) M2 min |y |20y TN |y ROTV2 0%y « e
yeR>

as M(x) = 0and ¥ < 1/2. The second integral in (3.6) is similarly
€O [ W)y MOy < 0,
yeRX

Thus we estimate
(Wi, f2(a(Q)). Ws) > Q2D (1 4+ 0(c) + 0(1/0)).

which concludes the proof upon choosing ¢ sufficiently small in terms of the implied
constants. (]

THEOREM 3

Let 7; for i =1,2,3 be generic irreducible unitary representations of G such that

71 and 7y are ¥-tempered with ¥ < 1/4 and m3 is tempered with sufficiently large

conductor Q. The (smooth) vectors v; € m; specified at the beginning of Section 3.3

have the following properties.

(1) We have ||vi|| < 1 fori =1,2,3.

(i1) We have v = v‘l) and vy = a(Q)vg, where v?, vg are fixed (independent of
Q).

(iii))  For any fixed nontrivial unitary character W of N, the vector vs is given in
the -Kirillov model by a fixed bump function.

@iv)  We have

3
| Tt v)dg nm 07
8€G iy

3In that paper, the authors took y = 1.
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Proof
Assertions (i), (ii), and (iii) are clear from the construction. (The description of v3 in
the Kirillov model is independent of the choice of i : different choices give rise to
models that are isomorphic to one another via left translation by a suitable diagonal
matrix.)

To verify (iv), we embed 75 <> 77’ = J () for some y with % ()) > 0 such that
either R (y) =0 or JI(y) = 0. For NR(y) = 0, the integral in question evaluates to

c(N|¥ (M. f2(a(0)), W3)|2

by Lemma 6, and Lemma 7 implies the required bound. For J(y) = 0 and R(y) > 0,
we apply Lemmas 5 and 6 to see that the integral in question is

c(Y(1/2.m @ 13 ® N[V (Wi f2(a(0)). W3)[*.

An appeal to (3.4) and Lemma 7 then completes the proof. U

4. A triple Whittaker integral

4.1. Setting and statement of results

In this section, we evaluate asymptotically an integral containing three Whittaker

functions which is the crucial ingredient for an understanding of the right-hand side of

(1.5). We will not need any knowledge on special functions, but we do use extensively

Stirling’s formula and stationary phase analysis as described in Sections 2.2 and 2.5.
We retain the basic notation of Section 2.1. We continue to adopt the following

setting (as in the previous section):

. 71 and 7, are fixed ¥ -tempered generic irreducible unitary representations of
G, with 0 < ¢ < 1/2 fixed.

. 3 is a varying tempered generic irreducible unitary representation of G,
whose analytic conductor (normalized as in Section 2.2) we denote by Q :=
C(TL’ 3).

. Recall that we realize each m; in its Whittaker model as a space of func-

tions W satisfying W(n(x)g) = e(x)W(g), where e(x) := e>™*. Also, recall
from (2.24) that we normalize this realization so that the inner product on
7; is given in the Kirillov model by integration over the diagonal subgroup:
IWI2 = fyepx IW @) 2d*y.

. We let W; € 7 be the image of the vector v; as in Theorem 3. Thus W; = W)
and W = a(Q)W, with W, Wy fixed (independent of Q).

The basic bounds from Lemma 2 can be used for Wy = W and W,). We will derive

useful bounds for W3 in Section 4.3 below.
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We recall the notation and conventions of smooth weight functions in Section 2.4.
Our basic large parameter here is Q,s0o A < B means A <, Q¢ B. As usual, the value
of ¢ may change from line to line.

For y1, y, € R* with y; + y, # 0, we define y3 € R* by requiring that

y1+y2+y3s=0. 4.1)
‘We set
F(y.ya) i= / W, (a(y;)k(6)) d6. 42)
0eR/nZ i=1.2,3

J

The main result of this section is the following estimate for F' and its derivatives.

THEOREM 4
We have

F(yi1.y2) = Ze(izﬁ‘y(%))ﬂi(h,yz) + &1, y2),
+

where WV is a smooth function satisfying the estimates
V) =yI"2+0(yP?)., ¥VG) <y (jeN)  @43)

and for fixed ji, jo, N > 0 we have

i 594 (22 1+ 21

and & = &1 + &, + &3, where for some absolute constant ¢ > 0 we have
_ -N
E1(y1.y2) =0 1/2(1‘|‘|)’1|‘f‘|)’2|) ,
-N
E2(y1.y2) = Q°(1+ 1l +1Qy2l) .

&3(y1,y2) = (1 + |+ y2/01) N0V,

Here and in the following, all implied constants may depend on N and j, with or
without subscript. The proof gives an exact formula for ¥ which however is irrelevant
for our application. It depends mildly on whether 73 belongs to the principal series or
to the discrete series. The key point of Theorem 4 is that it produces the desired and
expected oscillatory factor (cf. (1.4)).
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4.2. Preliminary decomposition

It will be convenient first to switch to Iwahori coordinates. We may find an even func-
tion ¢g € C°(R/mZ), supported on (—n/3,7/3) + wZ, so that ¢o(6) + ¢o(r/2 +
0) =1 for all 6. Setting z := tan 6 and using the matrix identities

k(0) =n(=z)a(z®> + )n'(2),
k(r/2—0)=n(z)a(z*> + Hwn(z)

and the relation df = (1 + z2)"'dz, we see that F(y1,y2) = Fi1(y1,y2) +
Fy (y1, y2), where, with the abbreviation y} :=y,(z% + 1), we have

A= [ (T Wla0)n'e))placanc) 5=

2
j=12,3 +1

Fu(y.y2) = / H (@) wn(2)) ) o aretan2)) —

=1,2,3 2+1

Note that z > ¢g(arctan(z)) defines a smooth compactly-supported function on R.
We now further decompose F;. We write 1 as a sum ¢ + ¢° of smooth functions

on R* with

. #"(z) supported on z < Q71,

. ¢*(2) supported on 0! « z,

and with each function ¢ in this decomposition satisfying (z9,)/¢(z) < 1. We

accordingly decompose F; = F 1" + F lﬁ by weighting the z-integral. In summary, we

have decomposed

F=F,+F +F} (4.4)

We will verify that each of the three terms on the right-hand side of (4.4) satisfies the
conclusions of Theorem 4. The first two terms are fairly straightforward to analyze.
We treat them in Section 4.4. Indeed, we will see that the contribution of F; > can be
absorbed into the error term &, while F), is nonnegligible only if y; < 1 and y, is
roughly of size Q, in which case the oscillatory factor e(+Q'/2W(y;/y,)) is flat in
the sense of Section 2.4. The somewhat more intricate analysis of F lﬂ is carried out in
Section 4.5.

4.3. Interlude: Bounds for newvectors
For the relevant asymptotic analysis we will need certain uniform bounds of the test
vectors. We record them here.
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LEMMA 8§
Let Wen, yeR*, z€R, and let 6 > —1/2 + . Then W(a(y)wn(z)) admits the
absolutely convergent integral representation

W (a(y)wn(z)) = / xMy1/2.71® x)

(=0

x </,6Rx e(tz)W(a(t)))((t)dxt> dy. 4.5)

Proof
By Mellin inversion (2.1)—using the estimate (2.25) to verify its hypotheses—we
have

W (a(y)wn () = /m o /  Wla@un@)7 @ d dy.
X)=0 teR>

By the PGL(2) x GL(1) local functional equation (see [12, Theorem 3.1]), the inner
integral evaluates to

y(1/2,7 ® x) W (a(t)n(z)) x(t)d*t.

tER™

We conclude by calculating that W(a(t)n(z)) = W(n(tz)a(t)) = e(tz)W(a(t)). O

LEMMA 9
Let w be tempered of conductor Q, and let W € 7 be an analytic newvector. For fixed
N >0and j € Zxo, we have

(x0x) W (a(Q@x)wn(2)) < min(|x| =Y, x|V + [x['/2Q V) (4.6)

uniformly in z < 1.

Proof
We write the proof in the case j = 0. The general case is treated similarly, using that

(y3y) x(y) =7 x(y) for y = - |° sgn®.
By (4.5), we have the Mellin expansion

W (a(Qx)wn(2)) = / {00y (1/2.7 ® V() dy.

X

where

Vo (x):= /tERX e(tz)W()x(@)d™t.
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Since z < 1 and W is supported in a fixed compact set, we see that V; is entire and
V,(x) < C(x)~" in vertical strips. By Lemma | and [2], Lemma A.2] we have

r(1/2,7® 1) < Cw @ ™" < C(m) MO C ()0,

which holds uniformly in any fixed vertical strip and for any y separated by > 1
from any pole of y(1/2,7 ® y). (In more detail, we apply Lemma 1 by writing y =
xol - 10 with y unitary, and using that y(1/2,7 ® x) = y(1/2+ R(x), 7 @ y0)
and C(r ® xo) < C(wr ® y).) We obtain an adequate estimate in the case |x| > 1 by
shifting the contour to %i(y) = —N, passing no poles.

It remains to consider the case |x| < 1. We shift the contour to :(y) = N. Recall
that Q is assumed sufficiently large in terms of “fixed” quantities; in particular, Q
is much larger than any fixed power of N. It follows that if = belongs to the dis-
crete series, then this contour shift passes no poles. The required estimate follows (in
the stronger form obtained by omitting the term QN |x|/2). Suppose now that 7
belongs to the principal series. By hypothesis,  is tempered. Thus each pole that we
cross is of the form y = sgn® |- [+ with o > 1/2 — ¢ and ¢ < Q'/2. The required
estimate follows from the rapid decay of V. U

4.4. The easy cases: Estimates for Fy,, F lb
PROPOSITION 10

The function Fy, satisfies the conclusions of Theorem 4.

Proof
By the matrix identity

a(y))wn(z)a(Q) =a(yy/Quwn(z/Q) € G

and the relations Wy = W2, W, = a(Q)W,, we write Fy, (1, y2) as

/ZGR W (a(yy)wn(z)) Wy (a (%)wn (é))

x Ws(a(yy)wn(z)) o (arctan(z)) T

We use (2.25) to bound the first two factors of the integrand as

(ylayl)jl (y2aJ/2)j2 VVl0 (a(yi)w”(z))WZO (a (%)wn (é))
< () (1+ %)w @.7)
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uniformly for z <« 1. We bound the third factor by (4.6) with x = y}/Q getting

%)N + Q—N).

. —-N
(r30ys) Wa(ahywn(=) < min(| 2|

Recalling (4.1), it is easy to see that

; ~ -N . N 1+ [yaY
(0105 02052) " Fi (r1.2) < (14 Inl) ™ min(| 2], 24220

If W satisfies (4.3), then e(£2,/QW(y1/y2)) is flat for y; < 1 and Q7% < |y5] €
Q' so up to a contribution that can go into &3 we have
(7103)” (320y,) e (£2V/ QW (y1/y2)) Fu(y1. y2)
y2 |~V 14yl

<(1+ |)’1|)_N min(‘a T)

which is admissible for Theorem 4. O

PROPOSITION 11
The function F lb satisfies the conclusions of Theorem 4.

Proof
By definition,

dz
241

oo = [ (T Wiaoin'@))s Gn(acan)

Z€R Yi=12,3

For |z| < 1/Q, we have
Wi(a(ypn'(2)) < (1+ nl) 7",
Wa(a(h)n' (2)) = W (a(Qyyn' (Q2)) < (1 + [y210) ™",

where we used (2.26). The required estimate F lb & &, < § follows now from the
weak a priori bound || W3 ||oo < QM.

To deduce the latter, it suffices by the Iwasawa decomposition to estimate
Ws(a(y)k(6)). We appeal first to Lemma 2, which gives for any W € 3 the
estimate W(a(y)) < 84(W) for some fixed d. Taking W = k(0)W3, we obtain
W(a(y)) = Ws(a(y)k(0)) < 84(W) = 8;(W3). On the other hand, by [36, Sec-
tion 3.2.5] and the fact that y + W3(a(y)) is a fixed bump function, we have
8,(W3) <« Q% for some fixed d’. The required a priori bound follows. O
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4.5. The critical case: Estimates for F lﬁ
PROPOSITION 12
The function F} satisfies the conclusions of Theorem 4.
Proof
Let 0! « z. We use the identity

a(y)n'(z)a(Q) =n(y/z)a(y/Qz*)wn(1/Qz) € G
to write

Wa(a(yp)n'(2)) = e(y3/ )Wy (a(yy/ Qz*)wn(1/ Q2)).

Similarly, we have

Wa(a(y)n'(2)) = Wa(n(ys/2)a(ys/zwn(1/2))

= e(yy/2)Wa(a(ys/22ywn(1/2)).

Using the consequence e(y5/z)e(y5/z) = e(—y}/z) of the hypothesis (4.1), we may
write Flﬁ(yl , ¥2) in the form

/ZGRW(yl’ Qy;,z)e(_yl(zz;r 1))

x W3 (a (i—é) wn (é))(ﬁn(z)qbo (arctan(z))

dz
72241’

where
W(x1,x2,2) := W(a(x1(1 4+ 22))n’ (2)) Wy (a(x2(1 + z2))wn(1/ Qz)).

From now on we will use extensively the conventions on smooth weight functions
stated in Section 2.4. In particular, V' denotes generally a flat function, not necessarily
the same at every occurrence.

We apply the substitution z — 1/z and a smooth dyadic partition of unity local-
izing £z =< Z, where Z runs over < 1 values (e.g., powers of 2) satisfying 1 € Z <
Q. For notational simplicity we restrict to z > 0, the case z < 0 being essentially
identical. Since W is flat in z, it suffices to estimate

)’2QZZ>

x / (e 2 Wa(a(ra + ) un(2)

x V(%) |‘ZJ—|ZZ, (4.8)

Io(y1,y2,y3) = W(yl,
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where W satisfies the estimates
2 N
(10,71 (20,2 W (a1 x2) < [ [ (1 1xs1) 7 (4.9)
j=1

At this point, we can easily deal with the contribution Z > Q'/27¢_ A trivial estimate
returns the bound

<0+ (e Y =800 )

which is acceptable.
We can also easily deal with the contribution Z < 1. In this case, (4.6) yields

(739y3)? Wa(a(ys(1 + 2%))wn(2)) € min((%)N +07V, (Iy_le)‘N)

Recalling (4.1), we argue as in the proof of Proposition 10 that under the present
assumption Z < 1, up to an error of size &3, we have

-N .(‘yz‘—N 1+|y2|N)
0

(719y,)7 (1205,) To(y1. y2.y3) < (1 + [y1])”" min TN
but then also

(19y,)71 (320y,)2e(£2/ QW (y1/32)) Io(y1, y2. 3)

N (1y2N 1+ ]V
< (1+ [yl mm(‘— TN
as required for the bound for N.. So from now on we assume that

QS < 7 < QI/Z—S'

We appeal to the (rapidly convergent) integral formula (4.5) to rewrite the integral
over z in (4.8) as

I:= / V(1/2,75 @ 1)
R(D=0

_ z dz
X /;ER x(v3(Z2+ 1D)e(—yi(z +z 1))V(§)11(2, 1) EE dy., (4.10)
where
d
he= [ eome) o
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We keep in mind that the bound (4.9) allows us to assume y; < 1, otherwise we can
bound 7 trivially by &3.

Let us write y = | - |'* sgn®x with z,, € R and a, € {0, 1}. We split the y-integral
in (4.10) according to the value of a, and regard that value as fixed from now on. We
have expressed I as a triple integral in ¢, z, ¢,, and we will apply stationary phase in
each of the variables, one at a time. Here z < Z, ¢ < 1, and we will see in a moment
that the 7-integral is negligible unless 7, < Z. Stationary phase saves a factor Z 1/2

—-3/2

in each of these integrals, so we expect that / is of size Z , and we can explicitly

compute the oscillatory behavior.

Step 1: The t-integral. We apply stationary phase analysis to find, for each fixed N €
Z>9, a nice function V' so that

Il(z,)()=z_1/2V<_7tX,%))((2;TXeZ) +0(0™M). @.11)

To see this, we apply Lemma 4 if —¢,/z =< 1 by taking

I

t*=—
2nz’

P(t) = p(t:2,1y) = 2wzt + tylog|t

)

(X1.X2.X3)=(1.2,2), Y=Z

and otherwise the integral is negligible by Lemma 3 with U =P =1,S =Y = Z.
Here and henceforth the contribution of all negligible error terms is covered by &3 in
the statement of Theorem 4. We deduce that [ is given up to acceptable error (that
can go into &3) by

Iyys
/ y(1/2,m3® x)x(zx—)
z —t,

d
X/ZER X(Z)e(_ylz)v(z’ Z )X(1+2_2)€(—y12‘1)|z|%dx.

Note that for |7,| < z > Q¢ and y; < Q¢ the function y(1 + z72)e(—y;z 1) is flat
in both z and ¢,, so we can incorporate this factor into V' (and continue to call this
new function V'). Thus we may reduce further to estimating

i 113
A(X)=0V( Z )V(l/lﬂa®X)X(2M>Iz(x,y1)dx (4.12)

with

d
b= [ V(G )i@eenn s
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Step 2: The z-integral. By stationary phase analysis, we may find for each fixed N a
nice function V' (again potentially different from previous versions of V') so that

B = 272V () 1(5.5) + 0™, (4.13)

whenever —t, < Z. We apply Lemma 4, taking

_ I
B 27y1’

o) =t y1,ty) = 2myit + 1y loglt|, t*
(X1.X2,.X3)=(Z,1,2), Y=Z

(if |y1] =< 1, and otherwise the integral is negligible by Lemma 3 withU =Y = P =
Z, S =1). Thus we reduce to studying

—t l2y3
Z72V (- v(I—=%)ya/2, — X" )dy, 4.14
o ) V(G zme (G ) de @

for certain nice functions V.

Step 3: The ty-integral. We now evaluate y(1/2, 3 ® x) asymptotically using Stir-
ling’s formula, and appeal in particular to (2.19) and the subsequent explicit formulas.
Since |ty| < Z K< Q 1/2=¢ pboth are applicable. We start with the principal series case.
In view of (2.20), the relevant phase function may be written

d(ty) =Pty y1.y3)

12y3
8 Qre)y,

+ (r —ty)log(r —ty) — (r + 1) log(r +t) + 2t log(2me).

For convenience, we record some relevant derivatives:

0 23 0 F—ty
— ()= —p(--) =1
atx¢( ) ‘y ( 2—t§))’ 8r¢( ) Ogr+tx’
d Iy 0 Iy
A AT e
92 2r2 92 2ty
8—2¢(m):ﬁ’ ﬁqg(...): AR
1y ty(r? —t3) r r2—ig
92 2r
8r8tx¢(m)__r2—t§'

Using (4.1), we deduce that
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lty] =r|y1/y2|"%.

The integral (4.14) is negligible by an application of Lemma3 withU =Y = P = Z,
S = 1 unless sgn(y;) = —sgn(y2) and |y>| < Q/Z2. In this case, we apply Lemma 4
with

(X1.X2. X3, X4) =(Z,0Y2,1,0/2%), Y =2Z.

We compute

1/2
¢<r‘&‘ ir,yl,ys)—zr‘lj(yl)
V2 Y2

W(y) = |y|"/?arctanh(]y|) — arctanh(]y|'/?),
where
vy =-yI"2+ o), W) <y (4.15)

The analysis in the discrete series case is similar. We write k = (k — 1)/2 and
apply Lemma 4 and (2.21) with

Iy K> +12
o(ty) =Pty k, yl,y3)_txlog‘ ‘—2/carctan——txl 0g— ",

K ek

J 173 d t

- e :1 7)( s J— e :—2 1 —X’

ot () Og‘yl(Kz—i-t%) aKgb( ) arctan -

—¢( ==

Y1
_ I 2ic?
8y3¢( =1L atzqs(x) et

We have ¢1:0:00(¢*: . y;, y3) = 0 if and only if sgn(y1) = sgn(y3) and

N
y3z—n )

*_
|t)(|_K

Again this is in the support of the integrand if and only if |y»| < Q/Z?2, otherwise
the integral is negligible. We compute

¢(K 1 ;K,yl,y3) = —2k arctan _n = 2/c\i/<&),
V3 =1 y3—n

¥0) = —arean(( 1 +2) ).

where W satisfies the same formulas as in (4.15).
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By the definition of the conductor in (2.20) and (2.21), we conclude that (4.14)
equals (up to a negligible error)

2 (o 2 e 2V (2)

in the principal series case and

z? ~
2o (2 03(2)
0 Y2
in the discrete series case.
We made in the beginning the assumption z > 0. The case z < 0 leads to an anal-

ogous expression, with the minus sign in the exponential removed. This completes
the proof. U

5. A shifted convolution problem

5.1. Some preparation

5.1.1. Bessel functions
We need the following uniform asymptotic formulas for Bessel functions. For ¢t € R,
[t] > 1 and x > 0, we have (see [14, 7.13.2(17)])

e = Yt IO (et 1)),

cosh(rt) X2 4172
t
w(x,t) = |t|~arcsinhu—\/t2+x2, 5.1
x

where for any fixed N > 0 the function f’ A“,—L is flat. The error term estimate stated in

[14]is O(x~N), but for x < /3, say, the estimate O(|¢t|~") follows from the power

series expansion [18, 8.402] of J,;;(x). When we apply this formula in practice, we

first extract the negligible error Oy ((x + |¢[)™") in the series expansion given by [14,

7.13.2(17)] and [18, 8.402], without pausing to estimate any derivatives of that error.

We then differentiate the remaining series expansion to verify the flatness condition.
For future reference, we note the identities

] Lt 02 1

ga)(x,t) = arcsinh e at2a)(x 1) = Pt 52
d NECEwE 12 r* '
—a)(x,t):—L, a)(x,t)z—x—{———l—O(—).

ox X 2x x3

For |t| > 2x > 0, we have by [14, 7.13.2(19)] (again coupled with the power
series expansion [ 18, 8.445, 8.485] for x < /3) or [2, (20) with z<1/2]
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Kair(2x)cosh(r) = [t|7V2 3" 220 00 g (x 1) 4 Oy ((x + [1]) 7).
+
. lt]
o*(x,t) = |t| -arccosh — — V12 — x2, (5.3)
X

where for any fixed N > 0 the function g,ﬂf, is flat.
Similarly, for x > 2k we have (see [41, (4.24)])

L hE(x k) _
Jo—1(2x) = Zeﬁ”“”(x’k)liT +On((x +k)7™),

+ (5.4)
2
@(x,k) = —k arctan ,/ ]t—z — 14+ vx2—k2,

where hf, is flat. For fixed index, these formulas simplify greatly, and we have

J2it(2x) _ 1 Z@izixf:t(X),
+

cosh(rt)  x1/2 4 x2I81

_ 1 +2ix+
Jok-1(2x) = S ;e h™~(x), (5.5

e—2x
K>i;(2x) cosh(rt) = mg(x)
fort € C, k e N, x > 0 with |J¢| < 1/4 (for simplicity) and ¢, k in a fixed compact set,
where f +, g, h* can be chosen to be flat (depending on ¢ or k). (See [8, Lemma 15]
for details on how to glue together the asymptotic formulas for x > 1 and x < 1.)

Remark

As the referee remarked, [14] contains no proofs. The expansions (5.1), (5.3), and
(5.4) are all relatively simple to obtain, since we are in the so-called oscillatory
range away from possible degenerate points (¢ = x for the K-function and k = x
for the J-function with real order). All three uniform asymptotic expansions can be
obtained from the integral representations (see [18, 8.421.1/2, 8.405], [18, 8.432.4],
[18,8.411])
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Ki:(x)= m /_00 cos(x sinhv)exp(itv) dv,
Jir(x) = % /00 (cosh(m‘/Z) sin(x coshv) — i sinh(;r ¢ /2) cos(x cosh v))

x exp(itv)dv,
1 T
Ji(x) = E/ exp(—kif +ixsin6)do
-7

by an application of Lemma 4. For the improper integrals, note that the tail can be
estimated by partial integration using Lemma 3 (cf. e.g., [5, Section 4.4]).

5.1.2. Jutila’s circle method
We quote Jutila’s circle method (see [28]).

LEMMA 13
Let Q > 1, and let V be a smooth, nonnegative, nonzero function with support in
[1,2]. For r € Q, write I,.(a) for the characteristic function of the interval [r —

1/Q,r + 1/Q], and define
— q _ 9 q
A.—;V(E)qb(q), 1<a>—ﬁ;V(§) > lag(e).

d (mod q)

d.p=1
Then I (@) is a good approximation to the characteristic function on [0, 1] in the sense
that

1
/ (1— (@)’ da < 07!
0
for any ¢ > 0.

5.2. Notation and setup

Let T be a large positive real number. We recall once again the notation and conven-
tions from Section 2.4, in particular with respect to weight functions V. Moreover,
A < B denotes A < T¢B. We consider two more parameters M and H satisfying

M <T?, H=T"3% (5.6)

and v € Z\ {0} with v < 1. The choice of H will eventually turn out to be the optimal
choice, and it simplifies the argument if we make it right away at this point. With
slightly more extra work, we could run the same argument for T'/3 « H <« T'7¢,
Let g be a fixed holomorphic or Maass Hecke eigenform for SL,(Z) with Hecke
eigenvalues A, (1) of weight k or spectral parameter 7, Let oy (m) = Y, _, @b~
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We fix a choice of sign +. With these notational conventions, we consider

1 1

£i=—- E - -
1/2 2

™ 27TT§tj§2n(T+H)L(Ad uj, 1)

SN

x (; V(%)A,-(mng(m +v)exp(+2i Jn%vl

1 27(T+H) 1
+ JE— —
T™M1/2 /znT 1E(1+2i0)]?

d '”'))zﬁ 57)

Jm /| 27’

where u j runs through Hecke Maass cusp forms for SL,(Z) with Hecke eigenvalues
A j(n) and spectral parameter ¢; € 27T, 2n(T + H)]. The right-hand side of (5.7) is
essentially a combination of (1.4) and (1.9); this explains its relevance.

Analogously, we also consider the holomorphic analogue

X ‘Z V(%)ot (m)Ag(m +v) exp(:l:2i

~ 1 1
LD e
1/2 7
M2 or <k Sammyu ety LA D
k even

2
. (38

km)
Jm

where u ; runs over a Hecke eigenbasis By of cusp forms of weight k. For simplicity
let us assume v > 0, the other case being essentially identical. The aim of this section
is to prove the following theorem.

X ‘Z V(%)Aj(m))ug(m +v) exp(:l:2i

THEOREM 5
Let T be a large parameter, and let £, L be defined as in (5.7) and (5.8) with M, H
asin (5.6). Then £,£ < TH.

The proof of the theorem follows the steps outlined in Section |.4. In particular,
we will eventually transform the spectral sum (5.7) into a “reciprocal” spectral sum
of length 7/H in Section 5.9 to which we apply the large sieve.

For M < T?/3%¢ we can estimate trivially (using a standard Rankin—Selberg
bound)

1

2 _ 3/2
TMl/zTHM =HM>*<LTH

£ <

in agreement with Theorem 5. From now on, we assume that M > T2/3%¢ Then
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(t—2nT)/v )
Jm

isflatfor ¢t € 27T, 27 (T + H)] by our choice of H in (5.6), so we can replace ¢; and
t with 27 T in the exponential (using the by now familiar device to separate variables

exp(:l:Zi

in nice functions after having multiplied by a suitable function with compact support
in2x T + O(H)). We restrict to the positive sign in the exponential, the negative sign
being essentially identical.

We can majorize the characteristic function on [27 7,27 (T + H)] by h(t) =
exp(—(#)z) and then symmetrize with respect to t — —¢ in order to make the
expression amenable for the Kuznetsov formula. The exact shape of the function plays
no role.

5.3. Application of the spectral summation formula
We open the square in (5.7) and (5.8) and apply the Kuznetsov formula from [23, The-
orem 16.3] (along with a conversion from Fourier coefficients to Hecke eigenvalues).
Since [ h(t)t tanh(zrt) dt < TH by our choice of A, the diagonal term is bounded by

1 1/2

X—7TH - M=M""H<TH
TM1/2

by (5.6) in agreement with Theorem 5. For the off-diagonal term, we must understand
the Bessel transform

1 —=21nT\2\ Jaj
/ exp(—( d ) ) 2000 (5.9)
teR H cosh(mt)
As usual, we use holomorphicity to shift the contour a bit; in this way, we can truncate
the c-sum in (5.12) by some large power of T (cf. [29, p. 75]). Having this done, we
may smoothly truncate the integral to the interval 27T — HT*,2xT + HTF?]. For

x < T'"¢H, we apply Lemma 3 and the uniform asymptotic formula (5.1) (along
with (5.2)) with

S =min(1, T/x), 0=Y=T+x, U=H
to see that the integral is negligible. Having recorded the condition
x>T'""¢H, (5.10)

we do not exploit any further cancellation in the integral. Using (5.1) along with a
Taylor expansion, we have, fort € [2nT — HT®,2nT + HT®] and x > T'~° H, the
approximation

J2ir(2x)

_ —1/2 £2i(—x+3@aT/X) £y 1y 1+ o1t~V 511
cosnGr) = € 0 +0(™) G

+
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for a flat function F*. We substitute this into (5.9) and integrate trivially over . Thus
it suffices to estimate the off-diagonal term

M1/2 Z (ml mz)ZV<%)Mlg(m1+v))ug(Vn2+v)

my,m3

y Cl/ze(i(Z,/mlmz B T?c )ﬂ: 2TVV2( s — i)
M1/2 c Jmimy mimsy

by < TH (with all sign combinations), as required in Theorem 5, where C runs
through < 1 numbers (e.g., powers of 2) satisfying

M
1<C<— (5.13)
TH

) (5.12)

and each weight function V' is nice.

We pause for a moment and consider the average £ over holomorphic forms, in
which we replace the Kuznetsov formula with the Petersson formula (see [23, Theo-
rem 14.5]). Here the analogue of (5.9) is

3 ikV<k_%T)ka_1(2nx).

ke2Z

Using the Fourier representation (see [18, 8.411.1]) of the Bessel function coupled
with Poisson summation, this equals

_ 1/2
3 ikV(kiT)k/ e((1— k) + xsin276) do
ke27 H —1/2

1/2 4T h
/ / y i )ye(yT—I-(l—y)@—l—xsian@) dy df.

heZ 1/2

h odd
The y-integral is negligible unless 7 = &1 and 6 = £1/4 + O(T*H™!), but then
the remaining 6-integral, smoothly truncated to the latter range, is negligible unless
x > T'7¢H. This last condition is the analogue of (5.10). The analogue of (5.11),
derived from (5.4), is

ikak(X) — x—1/2Ze:|:2i(x+%(27rT)2/x)F':|:(x’k) + O(k—N)
+

for the present range of variables which leads to the same expression as (5.12) except
for a sign in the exponential which will not play a role later.

We now continue with the analysis of (5.12). In preparation for an application
of Voronoi summation, we shift the variables m;, m, by v. By a Taylor expansion,
this makes no difference in the exponential, the resulting correction term being flat. It
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therefore suffices to bound

H Z (ml mz)ZV(%)S(ml_%2_1)76)/151(7}11))@(”12)

2 /mimy  T?c 2TVV2(fmy — Jmiy)
(j:( e mlmz)i T ) (5.14)

xXe

5.4. Preparatory interlude
We pause to recall the Voronoi formula (see, e.g., [8, Lemmas 25 and 6]): for c € N
and (b,c) =1, we have

;V(n)xg(n)e(l%”) ZZVi( )x (n)e( )

o0
Vo) = [ Vgt er s,
where g+ = gzi is given for g a Maass form of eigenvalue 1/4 + t2 by

J21tg (x) = J2ir, (x)
sinh(rtg)

F7 ()=

, d7(x) = 4cosh(mtg) Kair, (x)
and for g a holomorphic form of weight k, by
Fre) =2mif (), 4T =

In the following sections, we will twice have to compute integrals of the form

/ V(i)e(ole/2 + Bx~ Y2y dx (5.15)
x€R M
for certain o, 8 € R satistying
| MYV2 4+ |BIM~Y2 > Mo (5.16)
In this case, it follows from Lemma 3 with
U=M"%?  P=M, S=laM 24+ |piM3?*  Y=MS

that (5.15) is negligible unless 8/« =< M (which, by the conventions of Section 2.4,
implies in particular that sgn(«) = sgn(f)) in which case by Lemma 4 (after restrict-
ing to dyadic ranges @ < A and § < B and also possibly restricting the support of V
to a neighborhood of ¢*) with
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$(1) = d(ta, f) =tV + B2, pF = g

. p p
a., t oA = = )

)

it equals

M_my(ﬁ)v(ﬁ) ('3/ ) (2sgn(@)yap), (5.17)

B2 \ A B M

as usual with different functions V', and up to a negligible error.

5.5. Application of Voronoi summation
We open the Kloosterman sum in (5.14) and apply the Voronoi formula to the follow-
ing m,-sum:

(P hon B )

where (d,c) = 1. We analyze the integral transforms using (5.4) and (5.5). In the

Maass case, we see that the ¢~ -term is negligible thanks to the rapid decay of the
Bessel K-function and the consequence M/C? = H? > T?/3%¢ of our hypotheses
(5.6) and (5.13). In either case, the § T-term contributes

S (L[ () ()

X e(ol(z\/:W — frz—fx) + 0227:/‘);/2)6(032@) dx (5.18)

with 01, 02,03 € {£1}, and where as usual the meaning of V' may have changed. The

x-integral is of the shape (5.15) with

_ 2(01y/mi1 +03./m3) B=—o T2c + 022Tv'/?
" ) IM 2 )

For the analysis of this integral, it is important to note that

Jmix M

P
~

c C

is by at least a factor H27 ~¢ larger than

T2c _ T2C

mix M
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by (5.6) and (5.13), and the latter is larger than Tv'/2x~1/2 < TM~'/2 unless C < 1
and T2 < M. Let us define

R:=T?C?*/M. (5.19)

If R > T, then (5.16) is satisfied, and we conclude from the discussion in the previ-
ous subsection that the x-integral is negligible unless o1 = —o3 and”

mo —mq < R.

If R < 1, then the same argument still shows that m, —m; < R < 1 (which allows
in particular my = my). In particular, \/max/c < M/C > T'"¢H > 1 is large and
therefore we can drop the term containing |3t | in (5.18).

Before we proceed, we estimate the total contribution of R < 1 in (5.18) when
substituted into (5.14) trivially by

H
< M-M-MW:HMI/Z < HT,

which is acceptable for Theorem 5. So from now on we assume that
R>T¢. (5.20)
In view of (5.6), we can then also assume that
T?C/M >T¢. (5.21)

For such R and m, —m; < R and 01 = —o3, we see from (5.17) that (5.18) can be
recast as

L (e (2)

c
ma

T2 " 2Tv1/2
N2 Cc ’)7

up to a negligible error and for suitable sign combinations. Plugging back into (5.14)
and calling r = m, —m;, m = m, we obtain a total contribution

xe(:l:\/S(\/m_—\/m_l)‘

4This implies in particular that m2 — my > 0. In the holomorphic average &£, the term —T?c//mix would
not have a minus sign, so that here m> —m < 0. This sign is responsible for the choice of the integral transform
in the final application of the Kuznetsov formula in Section 5.9. We mention this only for the sake of clarity. In
the following, all sign combinations are treated uniformly.
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TCI‘Jl/z >0 V(% % %) e —CV, _U’C)Ag(m)lg(m +r)
r m C

2Tv1/2 jE2Tv1/2

For notational simplicity, the previous display deals only with the case r > 0. The
case r < 0, coming from the holomorphic average £ can be treated in the same
way. We simplify the exponential a bit using suitable Taylor expansions. First, using
the expansion v/ +/1 4 2x — 1 = x"/2 —x3/2/4 4 ... ‘wereplace v/|/m + r — /m)|
with (r/2)"/2m~1/4, the error being flat since, by (5.6) and (5.13),

c

xe(i\/S(an—Jrr—ﬂ)‘j—; +

1 R¥2 T T3 T
M4 M32 pUs T M3 ﬁﬁﬁl'

Similarly, we can replace
. T ml/4p1/2
with ‘m1/4 =+ "

T2 N 2Tv1/2 172
Jm c )
up to a flat function. Thus it suffices to bound (with various sign combinations)
H r - m c\S(r—v,—v,c)
rer LV (pipe) e
r m c

2TrV2  2(rv)Y/2  2T1/2
ml/2 c ml/2 )

% Ag (M) g (m + r)e(:l:
by < TH. We write the previous display as

H 2T I/Zj: 1/2
WZF(’)ZV(%%)lg(m)lg(mﬂ)e(i(rTzv)), (5.22)

where

F(r) = Z V(%) S(—r —cv, —v,c)e(iz(rz)l/z).

c

5.6. An average of Kloosterman sums
We pause for a moment and prove that

Y |F@))* < R (5.23)
<R

It is tempting to use the Kuznetsov formula, but we can argue in an elementary way.
We insert a smooth weight and open the square getting
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Sv(RiFel= ¥ (@ E)

c1,cp<xC

Z Z ( (d1+d1 dg;};czz))

dy (mod ¢1)ds (mod ¢2) “
d d -
(L )e(Lh T Y ()
- R ci1c2 C1C2

We split the r-sum into residue classes modulo cjc; and apply Poisson summa-
tion. The combined conductor of the exponentials is < C2R'/2/C, and since R >
T—¢C2R'Y?/C, itis easy to see that the dual sum picks up at most < 1 terms. Hence

we obtain the upper bound

SFOF <R > o DD D

r=<R h<1cy,co2<C €2 d (mod c¢1)d> (mod ¢3)
dica+drci=h(mod cqc2)

If h = 0, then the inner double sum vanishes unless ¢; = ¢;. If & # 0, then the con-
gruence fixes d; modulo c; /(cj, h). In either case, we confirm (5.23).

Remark

It is clear from the proof that the smooth weight function V' (c/C) in the definition of
F(r) plays no role here and could be replaced with arbitrary bounded weights o, < 1
for ¢ < C. The only assumption on R and C used in the proof is C < R'/2.

5.7. Application of the circle method
We now return to (5.22) and treat the m-sum as a shifted convolution problem:

ZV(A’; ]‘4))L (n)Ag (m)e( W)/{;le((ln—n—r)a)da

We choose a gigantic parameter Q = 71990 and replace the characteristic function
on [0, 1] with /(«), defined in Lemma 13. By Cauchy—Schwarz and trivial bounds,
this introduces an error at most M2 Q¢~'/2 which can be neglected. In this way, the
a-integral becomes

zz/

@ (mod ) I/Q
d,q)=

—l—oz)(m—n—r))

The portion e(c(m —n — r)) is obviously flat, so we end up with bounding
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A 2v(g) X S

d (mod g) n.m
d.g)=1
2T (r1/2 £ 01/2)
X Ag(n)Ag (m)e( T) ( (m—n-— r)) (5.24)

where A =Y V(q/Q)¢(q) = 0*T°W. Recall that this represents the m-sum in
(5.22).

5.8. Voronoi again
Having separated the variables m, n by the circle method, we apply the Voronoi for-
mula (Section 5.5) to both sums in (5.24). This is simple for the m-sum

S (2 isime( )

because it contains no Archimedean oscillation. If g is a Maass form, then we get two
terms, one with a Bessel J-function and one with a Bessel K-function, and as before
we use (5.5) for the analysis. The dual variable can be truncated at < Q%/M at the
cost of a negligible error, by the oscillatory behavior of the Bessel J-function (5.1)
with # < 1 and the rapid decay of the Bessel K-function. Using a smooth partition of
unity, we obtain < 1 partial sums of the shape

—Z ( )(MM) Stgl)tg(fﬂ)e(ﬂcc%m), M’ < Q*/M. (5.25)

The same analysis (slightly simpler) applies if g is holomorphic.
For the n-sum

n 2T (r'/2 £ 01/2) dn
YoV (57 e e (25— )e(=):
n
we argue as follows. We note that Tr'/2x~1/2 < TRY2M~1/2 > T by (5.6) and
(5.20), so there is sizeable oscillation. In particular, we see from the last formula
in (5.5) and Lemma 3 with U = P = M, Y = TRY2M~'2, S = Y/M (so that

PS/~+/Y and SU are both >> T¢) that the Bessel K -term is negligible. For the Bessel
J -term, again by (5.5) we need to understand the transform

fXER V(%)e(iﬂ(rl:l/f Ul/z))e(izg/ﬁ)

Jnx\1/2 nx\2I18tgl\—1
() T
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which is of the shape (5.15) with

2
— B=L£2T(r'/? £v'/?).
q

The condition (5.16) is satisfied in view of (5.6) and (5.20). From the discussion in
Section 5.4 we conclude that the x-integral is negligible unless

_ Q?T?R
n = YO

in which case it equals, up to a negligible error,

n 4T1/2(r1/2iv1/2)1/2n1/4
\( ( )
QZTZR/MZ)e ql/z

(Gre) ™ G) ™) )™

Here we can afford to drop the term involving |Jfg | and see that the n-sum is of the
form

/2 _
é(ﬁ_;j) lzv(m)we(iﬂ)

n

4T1/2(r1/2 + v1/2)1/2n1/4
xe(:l: )
q1/2

Substituting this and (5.25) back into (5.24), we can replace (5.24) with terms of the
form

0

o (G g DV (i)Y (e Pateon

g\S(xtm+n,—r,q) 4TV2(p1/2 1 )1/2p1/4
x;v(é) e(+ )

p 7 (5.26)

We note that 7 is always substantially bigger than m, since R > T'¢, so the arguments
of the Kloosterman sum never vanish.

5.9. Kuznetsov again

Eventually (5.26) has to be inserted into (5.22), but before we do this we focus on
the g-sum which calls for an application of the Kuznetsov formula (see [23, Theo-
rems 16.5 and 16.6]). Before we carry this out, we simplify the exponential a bit. By
a Taylor expansion we can replace n'/* with (n & m)'/*, the error being flat since
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T1/2R1/2m T1/2R1/2Q2M3/2 M1/2 1

n3/4Q1/2 MQ3/2T3/2R3/4Q1/2 TR1/4 R1/4

We can also replace (r'/2 £ v1/2)1/2 with r1/4 £ 1y1/2,=1/4 the total error being
flat since

T1/2n1/4 T1/2Q1/2T1/2R1/4 1

Q1/2R3/4< M1/2Q1/2R3/4 -C L

IA

Therefore, the g-sum in (5.26) becomes

g\S(Etm+n,—r,q) AT V2P 4 £ m)1/4
() S (T

2 T1/2 + 1/4
e(i (wT) "= (n £ m) >
r1/4g172

The first exponential fits very well into the shape of the Kuznetsov formula, the second
does not. Unfortunately it is not (always) flat, but we can afford to open it by Mellin
inversion. We first add a redundant weight function V(r/R) and then write

V(%)e(i 20T)Y2(n + m)1/4)

r1/4g1/2

200T 1/2.,.1/4 + 1/4 d d
o TR e )
R(s)=0 \JxeRoy ‘R x1/2q1/ x 27i

The outer s-integral can be truncated at

T1/2(Q2T2R/M2)1/4 T
RU4Q1/2 Mz

[
Js <

We sacrifice all cancellation in the x-, s-integrals and pull them outside of all sums,
including the r-, m-, n-sums in (5.26) and (5.22) which are currently not displayed.
(We remark that in the “generic” range M ~ T2, we sacrifice nothing here.) The
remaining g-sum is of the form

T S(Em+n,—r,q) V(£ m)
MI/ZZ m n I‘qq)x( n mr>’
q

q q

(5.27)

where x < R and

p1/2

x(2) = V(3 )e(+4(T) (12 5573))
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with
B Rl/2(Q2T2R/M2)1/2 B RT B T3C?

z 0 o =g (5.28)

by (5.19). It is important that ®, does not depend on any of the variables n, m, r, q.
We can now apply the Kuznetsov formula to the g-sum. For a quantitative analysis,
we need to understand the three integral transforms

J2i1(2) = Jais(2) dz
sinh(rt) z

’

by (1) = [0 ()
d_(1) = f ~ 0.()Kain (2) cosh(en) .
0

Y o0 dz
D1 (k) = q)x(Z)Jk—l(Z)7'
0
To this end, it is important to note that ®, has sizeable oscillation since
TI/ZZI/Z = T1/221/2 — TZC/M >> TS
by (5.21). We note also, by (5.13) and (5.28), that
Z/T=(TC/M)*<1/H?, (5.29)

so that Z is much smaller than 7.
We start with an analysis of @4 (¢), recalling the formula (5.1). First, we observe
that it is negligible unless # =< T'/2Z1/2, otherwise we may apply Lemma 3 with

U=27T"*  P=2, Y=mx(t,TV?2'?), S=Y/Z.

If t < TY/2Z'/2 then we can apply Lemma 4 (or in fact the 1-dimensional version
of [6, Proposition 8.2]). We will not compute the stationary point xo and the shape
of the resulting phase (although it can be done algebraically and leads to a quadratic
equation with a unique solution if potentially the support of V is slightly restricted),
but only bound the size of the integral to be

TV2\-12 1 1 1
< ( ) —=———.
Z3/2 (TZ)1/4 A (TZ)1/2

Here the first factor comes from the stationary phase analysis, the second factor from
(5.1) (noting that Z/2 4 |¢|V/2 < |¢t|"/2 < (T'Z)"/*), and the last factor from the
measure dz/z.

For ®_(¢), we can argue in the same way, using (5.3), if || > Z with a suffi-
ciently large implied constant. For |t| < Z with a sufficiently small implied constant,



THE WEYL BOUND FOR TRIPLE PRODUCT L-FUNCTIONS 1227

the Bessel K-function is negligible (cf. e.g., [7, (A.3)]), and for |t| < Z we simply
regard the Bessel kernel as part of the weight function and use Lemma 3 with

U=min(ZT"%,1), P=2Z, Y=TY?7'2  §=Y/Z

(cf. e.g., [7, (A.1), (A.3)] for the relevant bounds for Bessel functions) to show that
this contribution is negligible, too.

Similarly, we see that &)hol (k) is negligible in all cases.

As an aside, we note that this analysis is independent of potential exceptional
eigenvalues, whose contribution would always be negligible (because of (5.29)).

Summarizing the previous discussion, we can rewrite (5.27), up to a negligible
error, as

T 1 Z pj(n£m)p;(—r)

12 T7 .
MV2TZ =T/ cosh(mt;)

W(z;) + continuous spectrum,  (5.30)

where W is some function of which we only need to know W < 1, and the sum runs
over the Fourier coefficients (in usual normalization) of Hecke Maass cusp forms
for SL,(Z) with spectral parameter ¢;. We do not need to be more precise since the
spectral sum (including the continuous contribution) will disappear in a moment when
we apply the Cauchy—Schwarz inequality and the large sieve.

5.10. Cauchy-Schwarz and the large sieve

We recall that the previous display represents the g-sum in (5.26) which itself is the
m-sum in (5.22). Applying the Cauchy—Schwarz inequality, we deduce that the total
contribution to £ and £ is < A/T1 25, where

Ao H MMMl M3 1 T 1
a Tcl/za( 02 ) TRI/Z@MI/Zﬁ’
1 r 2
Y= —) V(_)F . ‘ ),
= 2 a2V () FOR O]+ 6
thTZC/M r

D= ) wsh}ﬁ)ij(s)G(s)\zﬂ---),
M 7

t; XTZC/

where (---) denotes the continuous spectrum contribution and

Gs)= Y V(%)V(%)Ag(n)xg(m).

ntm=s
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We prepare for the large sieve by estimating the 2-norm

Yleof= ¥ v(§i7)

nixtmi=notmy

M?n M?n
V( 1 2

TR T2 )2 (1A (m1)h (n2) g (m2).

We detect the condition n; £ m; = n, &+ m, by a Fourier integral fol e((ny £my —
(np £ my))a) da and use Wilton’s bound to conclude that

QTR

Z|G( )F < M’ .

Now the scene has been prepared for the endgame with the spectral large sieve of
Deshouillers and Iwaniec [13]. Using this and recalling that Q is very large, we
deduce that A/31 %5 is

H M(M/M)—lstg\MWl T 1

STciz g\ Tz TREQEM2TZ
T4C? 1/2 ,0?T?R 2T2R 1/2
><((—+R)R) (Q 2 M)
M?2 M? M?

Since |Jtg| < 1/2, this expression is increasing in M’, so we can replace M’
with its largest value Q%/M (up to T¢) (cf. (5.25)), so that we can drop the term
(M’ M/ Q%) 13| Simplifying and using (5.28), (5.19), (5.13), and (5.6), we obtain
the final upper bound

- HM?3 ' TZCRl/z' Q3T2R
R Q3R1/2C3/2T3 M M5/2
HTR HT3C32  T13/2

S oy~ o Spin ST

This finishes the proof of Theorem 5.

6. Proof of the main results

We deduce Theorems 1 and 2 by applying the combination of Theorems 3, 4, and
5 to the triple product formula (1.5). Recall the setup and the choice of test vectors
from the beginning of Section 4. Ichino’s formula in [22] says that the identity (1.5)
holds with £ a constant multiple of the matrix coefficient integral as in Theorem 3.
Therefore,

L(1/2,m ® m2 ® 73) /
< ‘ ViUV d
LU AR LA AC ) L1 AR 1) <Ol eme "2 3(8)dg
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with ' = PGL,(Z). We now appeal to the following regularized version of (1.11) (cf.
[27, (2.10)], [38, Theorem 5.6]). Recall from Section 2.1 our notation for Iwasawa
coordinates on G. For a ['-invariant function ® on G of rapid decay near the cusps,
we have

[ ewdg=2[ areeses-
gel’'\G R(s)=a

ds
2mi’

x( /F - O (n(x)a(y)k(6))y* dxd—de)

where T'y := ' N N denotes the upper triangular unipotent subgroup of ', G*
denotes the positive-determinant subgroup of G, and the parameter @ > 1 is at our dis-
posal. Note that the s-integral is rapidly convergent due to the decay of I'(s). We apply
this formula with ® = v;v,v3, insert the Fourier expansion and integrate over x. This
gives

d
/ vivavs(n(x)a(y)k(9))y* dx—); de
I'nv\G

. Ay (nl)lnz(”Z)km(M)[ F(nyy, nzy))’
n1,n2,n370 W

ni+na+n3=0

with F as in (4.2). Shifting the s-contour to the far right, we can restrict the y-integral
to y > Q7¢, the remaining error being O(Q ). On the other hand, since n; €
Z \ {0}, the upper bound for F in Theorem 4 implies that we can also restrict to
y & Qf and nq < 1 at the cost of a negligible error. We insert the asymptotic formula
from Theorem 4. The error terms &,, &3 contribute negligibly, while &; contributes
< O~ /2_ 1t remains to consider the contribution of V. We smoothly decompose the
sum over 7, into dyadic ranges n, < M < Q. We focus on the contribution from
M > 0; the case M < 0 may be treated similarly. We estimate the contribution from
M < Q'3 trivially (using Cauchy—Schwarz and standard Rankin—Selberg bounds)
by

> Am )| Y | Ay (12) Ay (11 +n2)|<M)3/4< M3/ .

3/4 =
n1x1 ny=xM |n2| Q Q

For M > Q'/3%¢ we insert the full asymptotic formula for N, giving
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L(1/2,7T1 Ry R 71’3)
L(1,Ad®> 1) L(1,Ad? o) L(1, Ad® 7r3)

<1+Q  sup Z‘Z ( )nz(m)kn3(m+v)(|g|)3/4

QI3 +e<M<Q 31 m lm(m +v)]
Vv
<e(s2vas())f

for some nice function V' (cf. Section 2.4). We implicitly restrict the sum over m to
the support of V(m/M); in particular, m % 0, —v. In the given range of M, we can
replace W(y) with |y|'/2, the error being flat. By the usual procedure (see Section 2.4)
of separating variables and changing the weight function, we arrive at the upper bound

I+ sup (MQ)WZ‘Z (57 )2 () Ay (m 4 v)e (2 le/m|)‘2.

Q1/3te<M <0

For 7y, m, fixed, we average this over w3 in a spectral window T < \/Q <T+H
with H = T''/3*#_ From Theorem 5 we obtain the first bounds in Theorems | and 2.
The second bound in Theorem | follows directly by dropping all but one term (using
positivity of central triple product values), while the second bound in Theorem 2
follows from a standard argument based on the functional equation (see, e.g., [17,

p- 63]).
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