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Abstract
Let �1, �2, �3 be three cuspidal automorphic representations for the group SL.2;Z/,
where �1 and �2 are fixed and �3 has large analytic conductor. We prove a subconvex
bound forL.1=2;�1 ˝�2 ˝�3/ of Weyl-type quality. Allowing �3 to be an Eisenstein
series, we also obtain a Weyl-type subconvex bound for L.1=2C i t; �1 ˝ �2/.
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1. Introduction

1.1. Weyl-type subconvexity
Subconvexity estimates belong to the core topics in the theory of L-functions and are
one of the most challenging testing grounds for the strength of existing technology. If
C denotes the analytic conductor of the relevant L-function (restricted to the param-
eters of interest), then the Phragmén–Lindelöf principle gives the bound C 1=4C" for
the L-function on the central line <s D 1=2. In the most favorable cases, one can
obtain an upper bound C 1=6C", which we refer to as a Weyl-type subconvex bound.
For instance, a classical result states that the Riemann zeta function satisfies the bound

�.1=2C i t/�"

�
1C jt j

�1=6C"
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on the critical line. Based on work of Weyl [49], it was proved first by Hardy and
Littlewood (cf. [34]), and first written down by Landau [32] in a slightly refined form
and generalized to all Dirichlet L-functions. Results of similar strength exist in the
Archimedean aspect for automorphic L-functions of degree 2, starting with the work
of Good [17] and culminating in the hybrid bound of Jutila and Motohashi [29]. We
also have a Weyl-type bound of degree 4 in some limited cases pertaining to Rankin–
Selberg L-functions, such as (see [30], [33])

L.1=2;f ˝ g/�g;" C.f /
1=3C"

for two cusp forms f , g for SL2.Z/, where C.f / denotes the conductor of f as
defined in Section 2.2.5 below. Although slightly better bounds are available for
GL.1/ (see [9], [37]), the Weyl exponent marks a natural barrier that has never been
improved, and rarely been reached, beyond GL.1/. We note that for some applications
(see [16], [35]), the essential input is a Weyl-type subconvex bound (or something
approaching it), rather than merely any nontrivial subconvex bound.1 We note also
that Petrow and Young recently established Weyl-type subconvex bounds for GL.1/ in
the level aspect, improving spectacularly upon the decades-old Burgess-type bounds
(see [40], [42], [43]).

A celebrated result of Bernstein and Reznikov established for the first time sub-
convex bounds for certain L-functions of degree 8. For two fixed spherical cuspidal
automorphic representations �1, �2 (i.e., generated by Maass forms for SL2.Z/) and
another spherical cuspidal automorphic representation �3 of large analytic conductor
C.�3/, they proved (see [3], [4]) thatX

T �C.�3/1=2�T CT 1=3

L.1=2;�1 ˝ �2 ˝ �3/��1;�2;" T
5=3C"; (1.1)

which implies (by nonnegativity of the central value) in particular L.1=2;�1 ˝�2 ˝

�3/ ��1;�2;" C.�3/
5=6C". The proof employs a beautiful combination of represen-

tation theory, invariant norms, and asymptotic analysis of oscillatory Airy-type inte-
grals. In fact, their result is really an estimate for triple product periods, asL-functions
enter only through the period formula of Watson and Ichino [22].

We observe, however, that (1.1) is not optimal. The Lindelöf hypothesis suggests
the Weyl-type bound with an exponent 4=3 instead of 5=3. That such a result might
be within reach was indicated by Suvitie [46]. For a fixed holomorphic cusp form F

of weight k and a Maass form h, she showed thatX
T �C.h/1=2�T CT 1=3

e�rh
ˇ̌˝
ykjF j2; h

˛ˇ̌2
�F;" T

2k� 2
3 C"; (1.2)

1Indeed, to show that the number of zeros on iŒ1;1/ of a holomorphic Hecke eigenform f of weight k tends
to infinity as k ! 1, the proof in [16] needs L.1=2 C it;f / � k0:335 with polynomial dependence in t .
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which via the Watson–Ichino formula translates intoX
T �C.h/1=2�T CT 1=3

L.1=2;F ˝F ˝ h/�F;" T
4=3C":

This L-function is not primitive, as it factorizes into a degree 6 and a degree 2 L-
function, but the same argument would work for FG instead of jF j2 in (1.2). More
seriously, however, the proof starts by replacing F with a holomorphic Poincaré series
and unfolding the inner product, a route that is not available in general. In fact, an
attempt to generalize this to Maass forms remained incomplete [45] and seems not to
work. In particular, the work of Bernstein–Reznikov remained unimproved.

In this article, we establish the Weyl-type bound for triple product L-functions in
a uniform fashion for all combinations of local types at infinity, that is, any of the three
factors can be holomorphic or Maass. As mentioned before, the Weyl-type bound
marks the natural limit of all present day approaches to subconvexity. The key novelty
in our work is the method. We combine in a substantial way representation theory,
local harmonic analysis, and analytic number theory to establish a robust method for
the subconvexity problem for triple product L-functions.

THEOREM 1
Let �1, �2 be two fixed cuspidal automorphic representations for the group SL2.Z/.
Let �3 run over cuspidal automorphic representations for SL2.Z/ with conductor
satisfying T � C.�3/

1=2 � T C T 1=3. ThenX
T �C.�3/1=2�T CT 1=3

L.1=2;�1 ˝ �2 ˝ �3/��1;�2;" T
4=3C";

in particular,

L.1=2;�1 ˝ �2 ˝ �3/��1;�2;" C.�3/
2=3C"

for every " > 0.

An inspection of the proof shows that the dependence on the analytic conductors
of �1, �2 is polynomial. Under Watson’s formula in [48], the latter estimate translates
to bounds for triple product integrals of Maass forms 'j of eigenvalue 1=4C t2j (j D

1; 2; 3): ˇ̌̌Z
SL2.Z/nH

'1'2'3

ˇ̌̌2

�'1;'2;" jt3j�2=3C" exp
�
�� jt3j

�
;

giving a further improvement beyond that in [4] on the general exponential decay
bounds of [44].
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We can allow �3 to be an Eisenstein series, and our proof yields as a by-product
a Weyl-type bound for Rankin–Selberg L-functions.

THEOREM 2
Let �1, �2 be two fixed cuspidal automorphic representations for the group SL2.Z/.
Then Z T CT 1=3

T

ˇ̌
L.1=2C i t; �1 ˝ �2/

ˇ̌2
dt ��1;�2;" T

4=3C";

in particular,

L.1=2C i t; �1 ˝ �2/��1;�2;"

�
1C jt j

�2=3C"

for every " > 0 and t 2 R.

For the rest of the paper, all implied constants may depend on ", and we suppress
it in subsequent formulas. The weaker bound L.1=2 C i t; �1 ˝ �2/ ��1;�2

.1 C

jt j/5=6C" is implicit in [4, Remarks 7.2.2.2] and was the best known result until now.
By a method purely based on analytic number theory, the bound L.1=2C i t; �1 ˝

�2/��1;�2
.1C jt j/15=16C" was recently shown in [1]. For bounds of triple product

L-functions in the level aspect, see [20] and [47].

1.2. Remarks
(1) Our results feature “pure” exponents of Weyl-type quality that are independent

of bounds towards the Ramanujan conjecture or the Selberg eigenvalue conjec-
ture. The proof uses at one place that the smallest nonzero Laplace eigenvalue
is larger than 3=16.

(2) In principle, the proof produces an asymptotic formula. If  is a sufficiently
regular test function with “essential support” in ŒT; T C H�, for example,
 .t/D exp.�.t�T /2H�2/, and t�3

�
p
C.�3/ (cf. (2.20)) denotes the spec-

tral parameter of �3, then with the same notation and under the same assump-
tions as in Theorem 1, one can relateX

�3

 .t�3
/
L.1=2;�1 ˝ �2 ˝ �3/

L.1;Ad2 �3/

C

Z
t2R

 .t/
jL.1=2C i t; �1 ˝ �2/j

j�.1C 2it/j2
dt

2�
(1.3)

to

cL.1;Ad2 �1/L.1;Ad2 �2/TH CO.T 3=2C"H�1=2/
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for a suitable constant c (depending on  ).
(3) The proof of Theorem 1 has the shape of a reciprocity formula as for instance

in [7]. A spectral sum in a window ŒT; T CH� as in (1.3) is ultimately trans-
formed into a spectral sum of similar shape with spectral parameter up to
� T=H (see (5.30), (5.28), (5.13)). This is analogous to the discussion after
(1.11) in [7], and a new instance of a reciprocity phenomenon. The optimal
choice is H D T 1=3, in which case both spectral sums have length T 4=3. This
yields the Weyl bound, and we see that the Weyl bound is indeed the natu-
ral limit from the point of view of spectral analysis. An abstract version of
the underlying reciprocity formula is displayed in (1.7) below which features
central L-values as well as their “canonical square roots.”

(4) Implicit in the proof of Theorem 1 is an alternative description of the central
triple product L-value L.1=2;�1 ˝ �2 ˝ �3/ in terms of a certain shifted
convolution problem very roughly of the shape

L.1=2;�1 ˝ �2 ˝ �3/�
ˇ̌̌ 1

t
1=2
�3

X
��1

X
m�t2

�3

��3
.m/��2

.mC �/��1
.�/

m1=4

� exp
�
˙2it�3

r
�

m

�ˇ̌̌2

: (1.4)

The “�” sign has to be interpreted in a broad sense (see Section 6 for details).
In the generic range m� t2�3

, the oscillatory factor is flat (see Section 2.4 for
definition of flatness).

1.3. Comparison with Bernstein–Reznikov and Michel–Venkatesh
It is instructive to compare our approach for studying the moment (1.1) with those of
Bernstein and Reznikov [3], [4] and Michel and Venkatesh [36].

To begin, we briefly sketch the approach to the subconvexity problem introduced
by Bernstein and Reznikov. We borrow some presentation features from Michel and
Venkatesh (see especially [36, Sections 1.1.1 and 1.1.3]). The starting point of this
approach is the triple product formula in [22]: for unit vectors vj 2 �j , we have

L.1=2;�1 ˝ �2 ˝ �3/

L.1;Ad2 �1/L.1;Ad2 �2/L.1;Ad2 �3/
L1.v1; v2; v3/

D
ˇ̌̌Z

g2SL2.Z/nSL2.R/

v1v2v3.g/dg
ˇ̌̌2

(1.5)

for a suitable local factor L1.v1; v2; v3/ (a constant multiple of a matrix coefficient
integral).

For unit vectors v1 2 �1 and v2 2 �2, we consider the inner product identity
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hv1v2; v1v2i D

Z
g2SL2.Z/n SL2.R/

jv1v2j2.g/dgD
˝
jv1j2; jv2j2

˛
: (1.6)

By expanding each of these inner products over the spectrum ofL2.SL2.Z/n SL2.R//

and applying (1.5), we obtain a spectral identity of families of L-functions, roughly
of the shapeX

�3

h.�3/L.1=2;�1 ˝ �2 ˝ �3/

� 1C
X

�

Qh.�/
p
L.1=2;�1 ˝ �1 ˝ �/L.1=2;�2 ˝ �2 ˝ �/: (1.7)

Here �3 and � run over cuspidal automorphic representations of SL2.Z/, the square
roots of L-values are “canonical square roots” (in the sense of [36, Section 1.1.3]),
and the meaning of “�” is that
� we have suppressed adjoint L-factors and other proportionality constants, and
� we have elided the contribution of the continuous spectrum and all degener-

ate terms except for the “expected main term” 1, which arises from the inner
product hjv1j2; 1ih1; jv2j2i D 1 (up to volume factors).

The weight functions h and Qh depend upon the choice of vectors v1 and v2.
The weights h.�3/ and the L-values L.1=2;�1 ˝ �2 ˝ �3/ are known to be

nonnegative, so if we can bound the right-hand side of (1.7) by O.1/ (the natural
limit, in view of the expected main term), then we deduce by dropping all but one
term the estimate

L.1=2;�1 ˝ �2 ˝ �3/� 1=h.�3/: (1.8)

Given some �3 with cond.�3/
1=2 � T , we now face the optimization problem

of choosing unit vectors v1 and v2 for which h.�3/ is as large as possible, so that
the bound (1.8) is as strong as possible. Bernstein and Reznikov [4, (2.6.3), Propo-
sition 9.1] showed (for �j spherical) that one may choose v1 and v2 so that h.�3/

is roughly T �5=3. This choice and a suitable bound for the global period eventually
yields their estimate (1.1). Michel and Venkatesh [36, Sections 3.6 and 3.7] (for �1

tempered and spherical) employed a simpler choice of vectors for which h.�3/ is of
size T �2; for this choice, the estimate (1.8) only recovers the convexity bound, but
Michel and Venkatesh managed to apply the amplification method to save a further
small power of T (in a more general “all aspects” setting).

To approach the Weyl bound L.1=2;�1 ˝�2 ˝�3/� T 4=3C" using (1.7) would
seem to require producing v1 and v2 for which h.�3/ is at least T �4=3, but the anal-
ysis of Bernstein and Reznikov strongly suggests that their lower bound T �5=3 is
best possible. To obtain a stronger lower bound thus requires a more flexible class of
weight functions h.�3/. Such a class may be obtained from the generalization of (1.6)
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to higher-rank tensors
P

j v1;j ˝ v2;j 2 �1 ˝ �2, namely,X
j;k

hv1;j v2;j ; v1;kv2;ki D
X
j;k

hv1;jv1;k; v2;kv2;j i:

Such tensors yield more flexible forms of (1.7). One could hope to find a tensorP
j v1;j ˝ v2;j for which the corresponding weight h.�3/ localizes on �3 satisfying

T � cond.�3/
1=2 � T C T 1=3 and for which the right-hand side of the correspond-

ing spectral identity as in (1.7) may be effectively bounded. To implement this idea
in practice would require a careful study of the spaces of test functions ¹hº and ¹ Qhº

as well as the transform relating them. Unfortunately, such a study has not yet been
carried out, and does not seem straightforward in the generality of Theorem 1 (which,
we should emphasize, imposes no local conditions on the representations �j ).

The method of this paper consists of two stages. We first use a somewhat crude
choice of v1 and v2 (like in the work of Michel and Venkatesh) and an unfolding
technique (see Section 1.5, in particular (1.11)) to express the L-values of interest
as bilinear forms in the Hecke eigenvalues of the varying form �3. We then average
over the spectral window T � C.�3/

1=2 � T C T 1=3 of interest by means of analytic
number theory, and in particular the Kuznetsov formula.

Our approach has in common with the works of Bernstein and Reznikov and
Michel and Venkatesh that we make use of the well-developed theory of integral rep-
resentations of L-functions to produce and analyze our test vectors. In this respect,
our basic framework owes much to those works. The essential difference is that we
analyze sums over much narrower spectral windows, and the more technical differ-
ence is that we implement this analysis using the Kuznetsov formula rather than the
spectral theory of triple product periods.

The main advantage of our approach is that we can make full use of available
technology related to the Kuznetsov formula (abundance of test functions, explicit
integral transforms, Bessel function asymptotics, large sieve estimates, and so on),
whose avatars are not available at the level of the triple product periods. To the best of
our knowledge, this paper is the first to employ such a combination of the theory of
integral representations and analytic number theory. We hope that this methodology
will be useful more broadly.

1.4. Analytic number theory
Having discussed the representation-theoretic ideas in the previous subsection, we
now give a brief sketch of how analytic number theory can handle expressions like
(1.4) that can be extracted from the triple product formula. This is a precursor to
the analysis in Section 5. The trivial bound in the m-sum recovers convexity, and if
we had square-root cancellation in the m-sum we would obtain Lindelöf. We now
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consider the sum X
2�T �rh�2�.T CH/

L.1=2;f ˝ g˝ h/: (1.9)

An application of the Kuznetsov and Voronoi formulas gives a dual shifted convolu-
tion problem that can be treated by a ı-symbol method. With a final application of
the spectral large sieve, the sum (1.9) can be shown to be � .TH/1C" forH D T 1=3,
which establishes the Weyl bound. For convenience, we describe a toy version of this
argument, restricting each parameter to the generic range. This is somewhat mislead-
ing because smaller ranges of m in (1.4) are punished by an additional oscillation
which complicates matters considerably, but it nevertheless gives a flavor for what
is happening. Restricting (1.4) to � D 1 (for simplicity) and applying the Kuznetsov
formula, we obtain an expression roughly of the shape (cf. (5.14))

H 3=2

T 5=2

X
m1;m2�T 2

X
c�T=H

�f .m1/�f .m2/S.m1 � 1;m2 � 1; c/

� e
�2pm1m2

c
�

T 2c
p
m1m2

�
;

provided thatH � T 1=3. (For smallerH , more terms in the exponential would be nec-
essary.) The complicated exponential is reminiscent of the uniform asymptotic expan-
sion of the J -Bessel function at imaginary index. The leading term of the Kuznetsov
kernel equals the Voronoi kernel, a feature that is now crucially exploited: applying
the Voronoi summation formula to m2, the dual variable will be close to m1 and a
large portion of the oscillation disappears. We obtain roughly (cf. (5.22))

H 5=2

T 5=2

X
c�T=H

X
h�T 2=H 2

S.h� 1;�1; c/
X

m�T 2

�f .m/�f .mC h/e
�2T h1=2

m1=2

�
:

The inner sum is now a shifted convolution problem with a moderately oscillatory
factor of size T .h=m/1=2 � T=H . It can be spectrally decomposed by a delta-symbol
method (cf. Section 5.7). Another application of the Voronoi and Kuznetsov formulas
(cf. Sections 5.8 and 5.9) leads to a spectral sum of length T=H having .T=H/2 terms
by Weyl’s law. Note that this is the length of the h-sum, so the large sieve (which is
itself an application of the Kuznetsov formula) can show its full power on the h-sum,
leading to the desired final bound. As an aside, we see that this analysis employs the
Kuznetsov formula three times, in various directions.

We finally remark that a direct approach to (1.9), by an approximate functional
equation followed by the Kuznetsov formula, appears to be hopeless: we would obtain
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sums over �f .n/�g.n/ with n� T 4 against oscillatory functions of (combined arith-
metic and analytic) conductor of size T 2 (regardless of the choice of H ), so that a
GL.2/ � GL.2/ Voronoi summation formula would not reduce the length of sum-
mation. In other words, after applying the Kuznetsov formula, we run out of moves
immediately.

1.5. Unfolding
Following [46], we now sketch a beautiful, but completely different approach to the
formula (1.4), specific to the case of discrete series representations �1, �2. Suppose
that �1, �2 are generated by holomorphic forms f , g and that �3 is generated by a
Maass form h of spectral parameter th � 0. By Watson’s formula, we have

L.1=2;f ˝ g˝ h/� e�th t2�2k
h

ˇ̌̌Z
z2SL2.Z/nH

Nf .z/g.z/h.z/yk d�.z/
ˇ̌̌2

:

We write g as a linear combination of Poincaré series, and without much loss of
generality we assume that

g.z/D Pn.z/D
X

�D.a b
c d

/2�1nSL2.Z/

.czC d/�ke.n	z/

is the nth Poincaré series. We insert the Fourier expansions and unfold. This gives a
y-integral Z 1

0

ykp
ycosh

��t
2

�
Kit .2�my/e

�2�.mCn/y dy

y2

�
e��t=2t2k�2

mk�1=2
exp

�
˙2it

r
n

m

�
min

�mk=2�1=4

tk�1=2
; 1

�
for large t and fixed n. This integral was first analyzed by Good [17, Section 4] in
terms of hypergeometric 2F1 functions; the analysis is long and difficult. At least if
the weight k is fixed but relatively large (for small k, one needs to work a little harder),
the typical range is m� t2, and we obtain that L.1=2;f ˝ g˝ h/ is essentially the
absolute-square of a linear combination of

1

t
1=2

h

X
m�t2

h

�h.m/�f .mC n/

m1=4
exp

�
˙2ith

r
n

m

�
(1.10)

for a fixed number of n’s. It is very interesting to note that this resembles closely
(1.4). The previous argument is due to [46].
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The unfolding step is obviously not applicable in the setup of Bernstein and
Reznikov. Following an idea of Zagier [50], the formal identityZ

z2SL2.Z/nH

f .z/d�.z/D
�

3

Z
z2SL2.Z/nH

f .z/ res
sD1
E.z; s/d�.z/

D
�

3

I
s

Z
z2�1nH

f .z/ys d�.z/
ds

2�i
(1.11)

for an SL2.Z/-invariant function f can be used to mimic unfolding in more general
situations (see [19, Appendix A] for a related idea). Applied to the triple product of
three classical Maass forms it yields a y-integral involving three K-Bessel functionsZ 1

0

Kit1.m1y/Kit2.m2y/Kit3.m3y/y
s�1=2 dy

for m1 Cm2 Cm3 D 0. This can still be analyzed to some extent, but the resulting
highly oscillatory shifted convolution problems become untreatable with the required
precision. This is the reason why the attempt on the Maass case in [45] remained
incomplete. Nevertheless, the unfolding step (1.11) is also present in our argument
(cf. Section 6). It acts as a hinge between the triple product identity and sums over
Fourier coefficients, leading eventually to the description (1.4) for the central L-value
in terms of shifted convolution sums.

1.6. The analytic test vector problem
The art in using the triple product formula (1.5) to bound L-functions consists of
choosing appropriate test vectors. The traditional test vector problem asks for explicit
v1, v2, v3 for which the local factor L1.v1; v2; v3/ is nonzero. Spherical vectors
are often test vectors in this sense, but are usually not the best choice due to the
exponential decay of the local factor. For analytic applications, it is useful to work
with analytic test vectors: vectors for which the local factor is not merely nonvanish-
ing, but enjoys (informally speaking) a reasonable quantitative lower bound. Michel
and Venkatesh [36, Section 3.6.1] gave a robust supply of test vectors under local
assumptions relevant for Rankin–Selberg subconvexity. We will revisit and extend
their approach to the triple product setting, removing all local assumptions in a uni-
form way.

For our analysis of test vectors, we adopt the language of analytic newvectors
in [26], which is well suited for keeping track of the essential invariance properties.
Analytic newvectors are approximate Archimedean analogues of the classical p-adic
newvectors introduced by Casselman [11] (see also [25]). Let K0.p

N / denote the
standard congruence subgroup consisting of matrices in PGL2.Zp/ whose lower left
entry is divisible by pN . Let 
 be a generic irreducible representation of PGL2.Qp/.
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Denote by c.
/ the conductor exponent of 
 , so that pc.�/ is the usual arithmetic
conductor of 
 . The main result of local newvector theory in [11] is that there is a
unique (up to scalar) nonzero vector v 2 
 such that 
.g/vD v for all g 2K0.p

c.�//.
Such vectors v are called newvectors.

An Archimedean analogue of the family of congruence subgroups K0.p
N / 	

PGL2.Zp/ is the family of subsets K0.X; �/ that is defined by the image in PGL2.R/

of the set 8<:
�
a b

c d

�
2 GL2.R/ W

ja� 1j< �; jbj< �;

jcj<
�

X
; jd � 1j< �

9=; :
Here X is a large positive parameter, thought of as tending off to infinity, while � 2

.0; 1/ is taken small but fixed. An Archimedean analogue of local newvector theory
is given by [26, Theorem 1]: for each fixed 0 � # < 1=2 and arbitrary ı > 0, there
is a � > 0 so that for every generic irreducible unitary #-tempered (see Section 2.3)
representation � of PGL2.R/, there is a unit vector v 2 � such that���.g/v � v

��< ı for all g 2K0.C.�/; �/.

We refer to such vectors as analytic newvectors (suppressing, for terminological
brevity, the dependence of this notion upon the parameters ı and � ). Such vectors v
may be constructed explicitly as fixed bump functions in the Kirillov model (see [26,
Theorem 7]).

Inspired by the construction of [36, Section 3.6.1], we approach the analytic test
vector problem for the local triple product periods L1.v1; v2; v3/ by choosing v1 and
v3 to be analytic newvectors. The choice of v2 is simplest to describe when �2 is a
principal series representation. In that case, we describe v2 in the induced model by
a function on the lower triangular subgroup supported within O.1=X/ of the iden-
tity. More generally, we make use of the fact that �2 may be embedded in a (not
necessarily unitary) principal series representation.

1.7. Plan for the paper
Having chosen test vectors v1, v2, v3 as indicated above, we need to solve three main
problems.
� We need to compute (a lower bound for) the matrix coefficient integral

L1.v1; v2; v3/. This will be done in Section 3. The idea of the proof, as in
[36, Section 3.7.2], is to write the matrix coefficient integral as the square of a
Rankin–Selberg integral and then to estimate the latter by playing the support
properties of v1 in its Kirillov model and v2 in its induced model against the
invariance properties of v3. One subtlety is that we have not assumed that
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any of our representations belongs to the principal series. For this reason,
the reduction to Rankin–Selberg integrals is achieved in general only after
embedding �2 into a principal series representation and using the standard
intertwining operator to normalize its inner product.

� We use (a refined version of) the formula (1.11) to compute the right-hand
side of (1.5). This leads to an integral of three Archimedean Whittaker func-
tions that will be computed asymptotically in Section 4. The proof involves
several applications of the local functional equation and stationary phase anal-
ysis, but no input concerning special functions beyond Stirling’s formula. This
yields the expression (1.4). In other words, choosing test vectors as above has
the exact same effect as using Poincaré series in the holomorphic case and
unfolding (cf. (1.10)). This is a rather remarkable feature.

� We need to bound the shifted convolution problem (1.4). This can be done by
analytic number theory, roughly as indicated in Section 1.4. This is the content
of Section 5. It is here that we implement the “hard analysis” required by our
short spectral summation.

Theorems 1 and 2 are then an easy consequence and will be derived in Section 6.

2. Preliminaries

2.1. Basic notation
Throughout we work with the groupG WD PGL2.R/, and its subgroupN of unipotent
upper triangular matrices which are equipped with the usual Haar measures. We use
the notation

n.x/ WD

�
1 x

0 1

�
; n0.x/ WD

�
1 0

x 1

�
; a.y/ WD

�
y 0

0 1

�
;

k.�/ WD

�
cos� � sin�
sin� cos�

�
; w WD

�
0 �1

1 0

�
:

We view k.�/ as a function of � 2 R=�Z. For convenience, we may assume that � is
taken in the interval Œ��=2;�=2�.

We write d�y D dy=jyj for the Haar measure on R� and dx for the Lebesgue
measure on R. We fix aG-invariant measure dg onNnG given in Iwahori coordinates
by

NnG 3 gD a.y/n0.x/; dgD
d�y

jyj
dx;

and in Iwasawa coordinates by

NnG 3 gD a.y/k.�/; dgD
d�y

jyj
d�:
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We equip GL2.R/ with the Haar measure compatible with the chosen Haar measures
on R� and G via the short exact sequence 1! R� ! GL2.R/!G ! 1.

Let X.R�/ denote the character group of R�. Each 
 2 X.R�/ is uniquely of the
form 
 D j 
 js sgna for some s 2 C and a 2 ¹0; 1º. We set <.
/ WD <.s/, =.
/ WD

=.s/, and C.
/ WD .1C j=sj/=.2�/ (cf. (2.14)). The group X.R�/ is a complex man-
ifold with respect to the coordinate charts 
 7! s. For a function f W X.R�/! C of
sufficient decay and � 2 R, we define the contour integralZ

<.�/D�

f .
/d
 WD
1

2

X
a2¹0;1º

Z
<.s/D�

f
�
j 
 js sgna

� ds
2�i

:

For a smooth function f W R� ! C of sufficient decay, we then have the Mellin inver-
sion formula

f .y/D

Z
<.�/D�


.y/
�Z

t2R�

f .t/
�1.t/
dt

jt j

�
d
: (2.1)

2.2. Local 	 -factors, Stirling’s formula, and the analytic conductor
Let � be a finite-dimensional representation of the Weil groupWR. Let  .x/ WD e2�ix

be the standard additive character of R. The local 	 -factor of � is defined as usual by

	.s; �/ WD 	.s; �; / WD �.s; �; /
L.1� s; Q�/

L.s; �/
; (2.2)

where � and L denote the �-factor and L-factor, respectively, a description of which
can be found in [48, Section 3.1] for the cases relevant in this paper. We regard  as
fixed once and for all, and for this reason we drop it from the notation.

The analytic conductor C.�/ has been defined in various slightly different ways
(see, e.g., [24, Section 2], [23, Section 5], [36, Section 3.1.8]). For many applications,
it is unimportant precisely which definition is used: what matters is just that C.�/
controls the local 	 -factor in the sense that for small enough s, and under favorable
conditions, one has at least the rough approximation

	.s; �/� C.�/1=2�s: (2.3)

For the purposes of this article, it will be convenient to normalize the definition of
C.�/ somewhat more precisely, so that a correspondingly more precise form of (2.3)
holds. While we could work with ad hoc definitions, it is useful to present this in a
slightly more general context. The purpose of the following computation is to give a
uniform asymptotic formula for the local gamma factors in the cases relevant for our
application. This is achieved in (2.20) and (2.21) below and used in Section 4.5.
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2.2.1. Stirling’s formula
With the principal branch of the logarithm, we have

�.z/D z�1=2
�z
e

�z�
GN .z/CON;"

�
jzj�N

��
;

ˇ̌
arg.z/

ˇ̌
� � � "; jzj � "

for some smooth function GN satisfying

jzjj
d j

dzj
GN .z/�j;N 1

for all N;j 2 Z�0.

2.2.2. Characters of R�

Set �R.s/ WD ��s=2�.s=2/. The basic Archimedean local 	 -factors over R are given
(with respect to the standard character  of R, as above) by

	.s; sgna/D ia
�R.1� sC a/

�R.sC a/

�
s 2 C; a 2 ¹0; 1º

�
;

corresponding to the characters j 
 js sgna of R�. For s D � C i� , we define g�;a.�/

by writing

	.s; sgna/D
� j� j

2�e

�1=2�s

g�;a.�/:

The factor g�;a.�/ is “mild” in the sense that whenever � is restricted to a fixed
interval and minn2N js � nj � " for some fixed " > 0, we have

@j
	 g�;a.�/�

�
1C j� j

��j
(2.4)

for all fixed j 2 Z�0; this estimate follows from Stirling’s formula for j� j � 1 and is
otherwise trivial.

From this estimate, we derive a useful approximation for the local variation of
	.s; sgna/, as follows. For w D uC iv, we may write

	.sCw; sgna/D
� jvj

2�

�1=2�s�w

exp
�
i�v.�/

�
g�;u;a.�; v/; (2.5)

where

�v.�/ WD �.vC �/ log
� j1C �=vj

e

�
(2.6)

and g�;u;a.�; v/D .e�1j1C �=vj/1=2���ug�Cu;a.� C v/. For jvj � max.1; 2j� j/ and
�;u� 1, we conclude from (2.4) that

@j1
	 @

j2
v g�;u;a.�; v/� jvj�j1�j2 : (2.7)
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2.2.3. Characters of C�

We now record the analogous discussion over C. Set �C.s/ D 2.2�/�s�.s/. The
basic local 	 -factors over C are given with respect to the standard additive character
 C.x/ WD e2�i.xC Nx/ of C by

	C.s; sgna
C
/D iaC1�C.1� sC jaj=2/

�C.sC jaj=2/
.s 2 C; a 2 Z/; (2.8)

corresponding to the character j 
 js
C

sgna
C

of C�; here jzjC WD z Nz, sgn
C
.z/ WD z=jzj.

We extend the definition (2.8) to arbitrary a 2 R by taking iaC1 WD exp. i�
2
.aC 1//.

We suppose henceforth that a � 0. For s D �C i� , we define gC;� .
a
2

C i�/ by writing

	C.s; sgna
C
/D

� ja=2C i� j

2�e

�1�2s� a=2C i�

ja=2C i� j

��a

gC;�

�a
2

C i�
�
:

Again, for � restricted to a fixed interval and .s; a/ a fixed distance away from poles
of 	C.s; sgna

C
/, Stirling’s formula implies that

@j1
a @

j2
	 gC;� .z/�D;j1;j2

�
1C j� j C jaj

��j1�j2 (2.9)

for j1; j2 � 0. We write

	C.sCw; sgna
C
/D

� ja=2C ivj

2�

�1�2s�2w

� exp
�
i�C;v;a.�/

�
gC;�;u

�
�;
a

2
C iv

�
; (2.10)

where

�C;v;a.�/ WD �2.vC �/ log
�1
e

ˇ̌̌
1C

i�

a=2C iv

ˇ̌̌�
� a arg

�a
2

C i.� C v/
�

(2.11)

and gC;�;u.�;
a
2

C iv/D .e�1j1C i�=.a
2

C iv/j/1�2��2ugC;�Cu.
a
2

C i.v C �//. For
ja=2C ivj � max.1; 2j� j/ and �;u� 1, we obtain from (2.9) that

@j1
	 @

j2
v @

j3
a gC;�;u

�
�;
a

2
C iv

�
�

�
jvj C jaj

��j1�j2�j3 : (2.12)

2.2.4. The general definition
Any n-dimensional representation of the Weil groupWR is isomorphic to a direct sum

�D
�
˚

n1

j D1j 
 jwj sgna1
�

˚
�
˚

n2

j D1j 
 j
zj

C
sgn

bj

C

�
; (2.13)

where n D n1 C 2n2, wj ; zj 2 C, aj 2 ¹0; 1º, and bj 2 Z�1. Here we identify the
indicated characters of C� ŠWC with the corresponding 2-dimensional induced rep-
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resentations of WR. The local 	 -factor of � is now given by

	.s; �/D

n1Y
j D1

	.sCwj ; sgnaj /

n2Y
j D1

	C.sC zj ; sgn
bj

C
/:

Write wj D uj C ivj and zj D xj C iyj . We define the analytic conductor

C.�/ WD

n1Y
j D1

max.1; jvj j/

2�

n2Y
j D1

max.1; bj =2C iyj /
2

.2�/2
(2.14)

and, using (2.6) and (2.11), the phase function

�
.�/ WD

n1X
j D1

�vj
.�/C

n2X
j D1

�C;yj ;bj
.�/

and the factors

g� .�; �/ WD

n1Y
j D1

g�;uj ;aj
.�; vj /

n2Y
j D1

gC;�;xj

�
�;
bj

2
C iyj

�
;

e
 WD

n1Y
j D1

� jvj j

2�

��ivj
n2Y

j D1

�bj =2C iyj

2�

��2iyj

:

By the dual (resp., conjugate) of �, we mean the representation obtained by
negating (resp., by conjugating) the parameters wj , zj in (2.13). We summarize the
previous discussion in the following lemma.

LEMMA 1
Suppose that � is isomorphic to its conjugate dual. Then

	.s; �/D e
C.�/
1=2�s exp

�
i�
.�/

�
g� .�; �/: (2.15)

If moreover � is self-dual (equivalently, self-conjugate), then

e
 D 1:

Proof
The content of our hypothesis is that we have the equalities of multisets®

.w1; a1/; : : : ; .wn1
; an1

/
¯

D
®
.�w1; a1/; : : : ; .�wn1

; an1
/
¯
; (2.16)®

.z1; b1/; : : : ; .zn2
; bn2

/
¯

D
®
.�z1; b1/; : : : ; .�zn2

; bn2
/
¯
: (2.17)



THE WEYL BOUND FOR TRIPLE PRODUCT L-FUNCTIONS 1189

It follows that

n1Y
j D1

� jvj j

2�

��uj

D

n2Y
j D1

� jbj =2C iyj j

2�

��xj

D 1:

We deduce (2.15) by multiplying together the identities (2.5) and (2.10). Assuming
moreover that � is self-dual, we obtain the additional equalities of multisets as in
(2.16) and (2.17), but without the conjugations, which in turn give that e
 D 1.

The primary hypothesis of Lemma 1 is satisfied if, for instance, � corresponds to
a unitary representation � of GLn.R/, while the full hypotheses are satisfied if � is
self-dual.

2.2.5. Examples of interest
We consider in this paper cuspidal automorphic representations � for SL2.Z/. Each
such � defines a generic irreducible unitary representation of PGL2.R/, hence a 2-
dimensional representation �� of WR. We set

	.s;�/ WD 	.s; ��/; (2.18)

and similarly define C.�/, ��.�/ and g� .�;�/. The possibilities for �� are as fol-
lows:
(1) � is a principal series representation � D �.r; a/ obtained by normalized

induction of the character j 
 jir sgna for some r 2 R [ .�1=2; 1=2/i and
a 2 ¹0; 1º, in which case �� D j 
 jir sgna ˚j 
 j�ir sgna, or

(2) � is a discrete series representation � D �.k/ of lowest weight k 2 2Z�1, in
which case �� D sgnk�1

C
.

We note that any such � is self-dual, hence any such � is both self-dual and self-
conjugate; this property is evident in each example. Thus for s D � C i� , we have

	.s;�/D C.�/1=2�s exp
�
i��.�/

�
g� .�;�/; (2.19)

where:
� for � D �.r; a/, we have

C.�/D
�max.1; j<.r/j/

2�

�2

;

��.�/D �.r C �/ log
�ˇ̌̌
1C

�

r

ˇ̌̌�
� .�r C �/ log

�ˇ̌̌
1�

�

r

ˇ̌̌�
C 2� I

(2.20)

� for � D �.k/,
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C.�/D
�max.1; .k � 1/=2/

2�

�2

;

��.�/D �2� log
�1
e

ˇ̌̌
1C

i�

.k � 1/=2

ˇ̌̌�
� .k � 1/ arg

�k � 1

2
C i�

�
I

(2.21)

and g� .�;�/ varies mildly in the sense given by the estimates (2.7) and (2.12);
namely:
� for jr j � max.1; 2j� j/ and � � 1,

@j1
	 @

j2
r g�

�
�;�.r; a/

�
� jr j�j1�j2 I

� for jk � 1j � 4j� j and � � 1,

@j1
	 @

j2

k
g�

�
�;�.k/

�
� jkj�j1�j2 : (2.22)

We note that, while �.k/ is not defined as a representation for nonintegral k, each of
the factors 	.s;�.k//, C.�.k//, ��.k/ and hence also g� .�;�.k// is defined for any
k 2 R�1 (see after (2.8)). For this reason, it makes sense to differentiate with respect
to k in (2.22).

On one occasion, we will apply Lemma 1 to a Rankin–Selberg convolution �1 ˝

�2 ˝ 
 of a pair of generic irreducible unitary representations of PGL2.R/, twisted
further by a character 
 of GL1.R/. Writing 
D 
0j 
 j<.�/ with 
0 unitary, we have

	.1=2;�1 ˝ �2 ˝ 
/D 	
�
1=2C <.
/;�1 ˝ �2 ˝ 
0

�
� C.�1 ˝ �2 ˝ 
/�<.�/; (2.23)

where in the second step we invoke Lemma 1 and the accompanying Stirling esti-
mates, using the unitarity of �1, �2 and 
0 to verify its hypotheses.

2.3. General bounds for Whittaker functions
Let � be a generic irreducible unitary representation of G WD PGL2.R/. We recall
that “generic” means that there is a G-equivariant embedding, necessarily unique,

� ,!
®
W WG ! C smooth jW

�
n.x/g

�
D e.x/W.g/

¯
;

v 7!Wv;

where G acts on the space on the right-hand side by right translation. The image of
� under such an embedding is called the Whittaker model of � with respect to  . An
invariant inner product on � is given by

hv1; v2i� WD

Z
R�

Wv1

�
a.y/

�
Wv2

�
a.y/

�
d�y: (2.24)
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When we speak below of � being realized in its Whittaker model, we mean that we
identify � with its image under such an embedding, with inner product normalized as
in (2.24).

Fix # 2 Œ0; 1=2/. We say that � is #-tempered if it lies in the discrete series or if,
writing � as a Langlands quotient of an isobaric sum �1 ˝ j det js1 � �2 ˝ j dets2 , we
have that each j<.si /j � # . Then � is 0-tempered in the above sense if and only if it
is tempered in the usual sense, that is, its matrix coefficients lie in L2C".G/ for each
" > 0.

In what follows, we work exclusively with smooth vectors in such representa-
tions. Thus “let v 2 �” is shorthand for “let v be a smooth vector in � .”

We denote by Sd the Sobolev norm on � defined in [36, (2.6)]. It takes finite
values on smooth vectors.

LEMMA 2
Let � be a #-tempered generic irreducible unitary representation of G, realized in
its Whittaker model. For each W 2 � and all y 2 R� and z 2 R with jzj � 1000, we
have

.y@y/
j2@j1

z W
�
a.y/wn.z/

�
� Sd .W /min

�
jyj1=2�# ; jyj�N

�
(2.25)

and

.y@y/
j2@j1

z W
�
a.y/n0.z/

�
� Sd .W /min

�
jyj1=2�# ; jyj�N

�
(2.26)

for all j1; j2;N 2 Z�0, where d 2 Z�0 and the implied constants depend at most
upon j1, j2, N .

Proof
See [36, Sections 2.4.1 and 3.2.3].

2.4. Smooth weight functions
Let X be a large parameter which will be clear from the context. We adopt the con-
vention that " denotes a fixed (i.e., independent of X) positive quantity, whose pre-
cise meaning may change from line to line. As usual, the notation A�B means that
jAj � C jBj for some fixed C ; we introduce subscripts as in A�j B to signify that C
may depend upon j . We use the notation A�B to denote that A and B are nonzero
real numbers for which A=B lies in some fixed compact subset of .0;1/; we then
have A�B �A. We introduce the abbreviation

A�B ()A�" X"B:
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We call an expression negligible if it is �N X�N for any N > 0. We call a smooth
function V W Rn ! C flat if

x
j1

1 
 
 
xjn
n V

.j1;:::;jn/.x1; : : : ; xn/�j 1 (2.27)

for all j 2 Zn
�0. Clearly if V is flat, then so is exp.iV /. If in addition V has fixed com-

pact support in .0;1/n, then we call it nice. We generally let V denote a nice function
in one or more variables, not necessarily the same at every occurrence. In practice,
V may depend on some additional parameters having certain prescribed sizes; it will
always be clear from the context with respect to which variables “flatness” is applied
(in which case all implied constants are uniform in these parameters).

For a nice function V , we may separate variables in V.x1; : : : ; xn/ by first insert-
ing a redundant function V.x1/ 
 
 
V.xn/ that is 1 on the support of V and then apply-
ing Mellin inversion

V.x1; : : : ; xn/D V.x1; : : : ; xn/V .x1/ 
 
 
V.xn/

D

Z
<.s1/D0


 
 


Z
<.sn/D0

bV .s1; : : : ; sn/
�

�
V.x1/ 
 
 
V.xn/x

�s1

1 
 
 
x�sn
n

�ds1 
 
 
dsn

.2�i/n
:

Here we can truncate the vertical integrals at height j=sj � 1 at the cost of a negligible
error. We will often separate variables in this way without explicit mention.

2.5. Integration by parts and stationary phase
We quote the following lemmas from [6, Section 8] and its extension in [31, Sec-
tion 3].

LEMMA 3
Let Y � 1, X;P;U;S > 0, and suppose that w is a smooth function with support on
Œ˛;ˇ�, satisfying

w.j /.t/�j XU
�j :

Suppose that h is a smooth function on Œ˛;ˇ� such thatˇ̌
h0.t/

ˇ̌
� S

for some S > 0, and

h.j /.t/�j YP
�j ; for j D 2; 3; : : : :
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Then Z
t2R

w.t/eih.t/ dt �A .ˇ � ˛/X
	
.PS=

p
Y /�A C .SU /�A



:

LEMMA 4
Let X be a large parameter. Let V be a flat function in the sense of Section 2.4 with
support in �d

j D1Œc1j ; c2j � for some fixed intervals Œc1j ; c2j �	 R not containing 0. Let

X1; : : : ;Xd > 0, Y � X". Write S D �d
j D1Œc1jXj ; c2jXj � 	 Rd . Let � W Rd ! R

be a smooth function satisfying the derivative upper bounds2

�.j1;:::;jd /.t1I t2; : : : ; td /� Y
dY

iD1

X
�ji

i

for j 2 Nd
0 and .t1; : : : td / 2 S , as well as the following second derivative lower bound

in the first variable:

�.2;0;:::;0/.t1I t2; : : : ; td /� YX�2
1 :

Suppose that there exists t	 D t	.t2; : : : ; td / such that �.1;0;:::;0/.t	; t2; : : : ; td / D 0.
Then for any N > 0, we haveZ

R

V
� t1
X1

; : : : ;
td

Xd

�
ei�.t1;:::;td / dt1

D
X1

Y 1=2
ei�.t�;t2;:::;td /W

� t2
X2

; : : : ;
td

Xd

�
CON .X

�N /

for a flat function W DWN with support in �d
j D2Œc1j ; c2j �.

3. The local triple product factor
Let �i for i D 1; 2; 3 be generic irreducible unitary representations of G such that:
� �1 and �2 are #-tempered, while
� �3 is tempered.
We regard �1 and �2 as fixed. We write Q D C.�3/ for the conductor of �3 and
think of Q as a large parameter. The aim of this section is to obtain a lower bound for
the local triple product integral L1.v1; v2; v3/ in (1.5) for a certain choice of vectors
vj 2 �j . The choice will be made at the beginning of Section 3.3 and the result will
be stated in Theorem 3 at the end of this section.

2The main result in [31, Section 3] states this with � instead of �, but our conclusion on W is insensitive to
Q"-powers.
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Let  denote the additive character of N given by n.x/ 7! e.x/. We realize �1

(resp., �3) in its Whittaker model with respect to  (resp., N ), with inner products
normalized as in (2.24).

In this section, we abbreviate 
s WD 
˝ j 
 js for 
 2 X.R�/ and s 2 C.

3.1. Embedding via intertwiners
Let 
 2 X.R�/. Let I.
/ denote the unitarily normalized induction of 
 from the
standard upper triangular Borel subgroup in G, consisting of smooth f WG ! C sat-
isfying f .n.x/a.y/g/D jyj1=2
.y/f .g/. LetM.
/ denote the standard intertwining
operator from the principal series I.
/ to I.
�1/, defined by the integral

f 7!

Z
x2R

f
�
wn.x/

�
dx (3.1)

for <.
/ > 0 and then meromorphically continued to all of X.R�/.
Let 
 D j 
 j1=2Ck for k 2 Z�0, and consider a K-type basis ¹f2lºl2Z on I.
/.

From the computation of [10, Proposition 2.6.3] we see that M.
/fl D 0 for jl j �

1C k. Thus M.
/ has a unique infinite-dimensional kernel which is isomorphic to
the discrete series Dk of weight k. We normalize M.
/ as

M 	.
/ WD 	.0;
2/M.
/; (3.2)

where 	 is the local Tate gamma factor as in Section 2.2. Then M 	.
/ is nonzero for
all <.
/ > 0 and is meromorphic for all 
. In other words, Dk can be embedded into
the principal series representation I.
/ with 
D j 
 jkC1=2 via the normalized inter-
twining operator M 	.
/. A similar embedding can be done for the complementary
series representation as well (see [10, Section 2.6]).

Let 
 with <.
/� 0 not be a pole ofM 	.
/. From now on we will only consider

 for which either <.
/D 0 or =.
/D 0. Note that if I.
/ is unitary, then 
 satisfies
this property. We can define a G-invariant sesquilinear pairing on I.
/ by

.f1; f2/0 WD

´R
x2R f1.n

0.x//f2.n0.x//dx if <.
/D 0;R
x2R f1.n

0.x//M 	.
/f2.n0.x//dx if =.
/D 0;

for f1; f2 2 I.
/.
There is a principal series representation �p

2 D I.
/, with 
 of nonnegative real
part, into which �2 embeds. Explicitly:
� If �2 is a tempered principal series I.
0/, that is, if 
0 is unitary, then we

choose 
D 
0.
� If �2 is the weight-k discrete series Dk , then we choose 
D j 
 j1=2Ck .
� If �2 is the complementary series attached to 0 < � < 1=2, then we choose


D j 
 j� .
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In each case, we have a G-invariant embedding �2 ,! �
p
2 D I.
/ and c.
/ 2 C�

such that

hv1; v2i�2
D c.
/.fv1

; fv2
/0 DW .fv1

; fv2
/;

where fvi
are the images of vi under the above embedding and h; i�2

is as defined in
(2.24). We refer to [10, Section 2.6] for details.

3.2. Local Rankin–Selberg zeta integral
Let W1 2 �1 and W3 2 �3, and let f2 2 I.
/ for some 
 2 X.R�/. We may param-
eterize f2 in terms of a Schwartz function, as follows. Let e2 WD .0; 1/ 2 R2, and let
ˆ 2 S.R2/ be a Schwartz function. We define

f2.g/ WD

Z
t2R�

ˆ.e2tg/
1=2

�
det.tg/

�
d�t:

The above integral converges absolutely for <.
/ > �1=2 and continues meromor-
phically to all 
 2 X.R�/.

The local GL.2/ � GL.2/ Rankin–Selberg zeta integral of �1 and �3 is defined
by

‰.W1; f2;W3/ WD

Z
g2N nG

W1.g/f2.g/W3.g/dg

D

Z
g2N n GL2.R/

W1.g/W3.g/ˆ.e2g/
1=2

�
det.g/

�
dg;

for <.
/ sufficiently large and in general by meromorphic continuation. The GL.2/�
GL.2/ local functional equation (see [12, Theorem 3.2]) asserts, using the notation
(2.18) and (2.2), that

	.1=2;�1 ˝ �3 ˝ 
/

Z
g2N n GL2.R/

W1.g/W3.g/ˆ.e2g/
1=2

�
det.g/

�
dg

D

Z
g2N n GL2.R/

QW1.g/ QW3.g/ Ô .e2g/

�1
1=2

�
det.g/

�
dg; (3.3)

where QWi 2 Q�i is the contragredient of Wi defined by QWi .g/DW.wg�>/ and Ô is
the Fourier transform of ˆ defined by

Ô .y/ WD

Z
x2R2

ˆ.x/e.y>x/dx:

For 
 a fixed distance away from a pole or zero of 	.1=2;�1 ˝ �3 ˝ 
/, we have

	.1=2;�1 ˝ �3 ˝ 
/�1 � 	.1=2; Q�1 ˝ Q�3 ˝ 
�1/

�<.�/ C.�1 ˝ �3 ˝ 
/<.�/ ��1;� C.�3/
2<.�/; (3.4)
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when 
 is fixed with <.
/ � 0. The first estimate above follows from the definition
of the gamma factor. The second estimate follows from (2.23). The third estimate
follows from repeated application of [21, Lemma A.2].

We record a variant of the local functional equation.

LEMMA 5
We have

‰.W1; f2;W3/	.1=2;�1 ˝ �3 ˝ 
/D‰
�
W1;M

	.
/f2;W3

�
;

whereM 	.
/ is as in (3.2).

Proof
Let <.
/ be sufficiently large. By expanding the definition (3.1) of the intertwining
operator, we see that

M.
/f2.g/D 
1=2

�
det.g/

�Z
x2R

Z
t2R�

ˆ
�
.t; x/g

�

2.t/ d�t dx:

We use the local Tate functional equation to evaluate the above as (cf. [15, p. 225])

	.0;
2/�1

�
det.g/

�ˇ̌
det.g/

ˇ̌�1=2
Z

t2R�

Ô
�
.t; 0/g�>

�

�2.t/jt jd�t:

Recalling (3.2), we may thus write

M 	.
/f2.g/D

Z
t2R�

Ô .e2twg
�>/
�1

1=2

�
det.tg�>/

�
d�t:

We use the definition of QWi and change variables g 7! wg�> on the right-hand side
of the local functional equation (3.3) to write

	.1=2;�1 ˝ �3 ˝ 
/

Z
g2N n GL2.R/

W1.g/W3.g/ˆ.e2g/
1=2

�
det.g/

�
dg

D

Z
g2N n GL2.R/

W1.g/W3.g/ Ô .e2wg
�>/
�1=2

�
det.g/

�
dg:

Folding the above integrals over R�, the identity follows for <.
/ large. We conclude
the proof by meromorphic continuation of the zeta integrals and the intertwiner.

LEMMA 6
Let �1 and �2 be #-tempered with # < 1=4, and let �3 be tempered. Let �i 3 vi 7!Wi

for i D 1; 3 be realized in their respective Whittaker models equipped with the inner
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products as defined in (2.24). Also let v2 7! f2 under �2 ,! �
p
2 D I.
/ as described

in Section 3.1. ThenZ
g2G

3Y
iD1

˝
�i .g/vi ; vi

˛
�i
dgD c.
/‰.W1; f2;W3/‰.W1; Qf2;W3/;

where

Qf2 D

´
f2 if �p

2 is a tempered principal series,

M 	.
/f2 otherwise:

From [36, Section 2.5.1] we have the bound of the matrix coefficients˝
�i .g/vi ; vi

˛
��i

„.g/1�2# for i D 1; 2;
˝
�3.g/v3; v3

˛
��3

„.g/:

Here „ is the Harish-Chandra „-function, which satisfies
R

g2G
„.g/2C� dg < 1.

Thus from the assumption that # < 1=4, we see that the local triple product integral
is absolutely convergent.

Proof
The proof is essentially given in [39, Lemma 2.14.3], but in an analogous metaplectic
setting. We modify the relevant part of the proof. Note that the left-hand side of the
equation in the lemma isZ

g2G

˝
�1.g/W1;W1

˛�
�

p
2 .g/f2; f2

�˝
�3.g/W3;W3

˛
dg:

We define


1 WDW1f2; 
2 WDW1
Qf2;

and note that


i .ng/D .n/
i .g/; n 2N;g 2G:

Using Iwahori coordinates gD a.y/n0.x/ 2NnG and the transformation of f2 under
the Borel subgroup, we compute the absolutely convergent integralZ

h2N nG


1.hg/
2.h/dh

D

Z
x2R

�
p
2 .g/f2

�
n0.x/

�
Qf2

�
n0.x/

�
�

Z
y2R�

�1.g/W1

�
a.y/n0.x/

�
W1

�
a.y/n0.x/

�
d�y dx:



1198 BLOMER, JANA, and NELSON

The inner integral evaluates to h�1.g/W1;W1i and consequently, we haveZ
h2N nG


1.hg/
2.h/dhD
˝
�1.g/W1;W1

˛�
�

p
2 .g/f2; Qf2

�
0
:

Hence, the left-hand side of the equation in the lemma equals

c.
/

Z
g2G

Z
h2N nG


1.hg/
2.h/
˝
�3.g/W3;W3

˛
dhdg:

The above double integral is only conditionally convergent. We proceed exactly as in
the proof of the identity (2.29) in [39] to evaluate the above integral as

c.
/

Z
h2N nG


1.h/W3.h/dh

Z
h2N nG


2.h/W3.h/dh:

The proof is now complete.

3.3. Choice of vectors
We choose f2 2 �

p
2 as before

f2.g/ WD

Z
t2R�

ˆ.e2tg/
1=2

�
det.tg/

�
d�t;

where ˆ is a smooth nonnegative bump function on R2 sufficiently concentrated
around the point e2 D .0; 1/ in terms of �1 and �2 only. Such a vector has a nonzero
preimage v0

2 2 �2. We choose

v2 WD a.Q/v0
2;

where, as we recall, QD C.�3/ is the conductor of �3 as in Section 2.2. We choose
vi 2 �i for i D 1; 3 such that vi are analytic newvectors, in the sense of Section 1.6;
that is, vi in their Kirillov models (with conjugate additive characters of N ) are given
by fixed bump functions in C1

c .R�/ sufficiently concentrated around 1. We denote
by Wi the images of vi in their Whittaker models for i D 1; 3.

We note thatZ
x2R

f2

�
n0.x/

�
dx � 1;

Z
y2R�

W1

�
a.y/

�
W3

�
a.y/

�

�1=2.y/d

�y � 1:

We normalize v1, v0
2, v3 so that both of the above integrals are 1.

LEMMA 7
Let �1 be #-tempered with # < 1=2, and let �3 be tempered. Let 
 with <.
/ � 0

and f2 2 I.
/ be as chosen above. Then for C.�3/DQ sufficiently large, we have

‰
�
W1; f2

�
a.Q/

�
;W3

�
��1;�2

Q�1=2C<.�/:
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Proof
We write the zeta integral with the Iwahori coordinates and change variables to obtain


�1
1=2.Q/‰

�
W1; f2

�
a.Q/

�
;W3

�
D 
�1

�1=2.Q/

Z
y2R�

Z
x2R

W1

�
a.y/n0

� x
Q

��
W3

�
a.y/n0

� x
Q

��
� f2

�
a.yQ/n0.x/

�
dx
d�y

jyj
: (3.5)

Note that

f2

�
a.yQ/n0.x/

�
D 
1=2.yQ/f2

�
n0.x/

�
;

and the support condition of ˆ confirms that f2.n
0.x// is supported in a sufficiently

small neighborhood of 0. We rewrite the right-hand side of (3.5) asZ
y2R�

Z
x2R

�
W3

�
a.y/n0

� x
Q

��
�W3

�
a.y/

��
�W1

�
a.y/n0

� x
Q

��
f2

�
n0.x/

�

�1=2.y/dx d

�y

C

Z
y2R�

Z
x2R

�
W1

�
a.y/n0

� x
Q

��
�W1

�
a.y/

��
�W3

�
a.y/

�
f2

�
n0.x/

�

�1=2.y/dx d

�y

C

Z
y2R�

W1

�
a.y/

�
W3

�
a.y/

�

�1=2.y/d

�y

Z
x2R

f2

�
n0.x/

�
dx: (3.6)

Note that the third integral equals 1 by the choice of normalizations of the vectors.
As �1 is fixed, we may apply (2.26) to conclude that

W1

�
a.y/n0.x=Q/

�
�N min

�
jyj1=2�# ; jyj�N

�
for x � 1. Moreover, given some sufficiently small constant c > 0, then for x suffi-
ciently small (in terms of c only) and C.�i /�Q we have

Wi

�
a.y/n0.x=Q/

�
�Wi

�
a.y/

�
�
C.�i /

Q
cjyj1=2�
��; (3.7)

for any � > 0 and � D #;0 if i D 1; 3, respectively. This estimate is essentially con-
tained in [26, Section 2.1] and can be seen as follows: using Mellin inversion for
Wi .a.y/n

0.x=Q//jyj�� for � D 1=2 � � � � and the PGL.2/ � GL.1/ local func-
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tional equation, we write the above difference (as in [26, Section 2.1]3)Z
<.�0/D0


0
� .y/


0
� .C.�i //

	.1=2� �;�i ˝ 
0�1/

�

Z
t2R�

�
e
�
�
txC.�i /

Q

�
� 1

�
Wi

�
a
�
C.�i /t

�
w

�

0

� .t/ d
�t d
0;

and (3.7) follows as in [26, Section 2.1].
Now we define

I2.
/ WD

Z
x2R

ˇ̌
f2

�
n0.x/

�ˇ̌
dx �

Z
.t;x/2R2

ˆ.tx; t/jt j2<.�/ dt dx � 1:

The first integral in (3.6) is therefore

� cI2.
/

Z
y2R�

jyj1=2�� min
�
jyj1=2�#��; jyj�N

�
jyj<.�/�1=2 d�y � c;

as <.
/� 0 and # < 1=2. The second integral in (3.6) is similarly

�Q�1I2.
/

Z
y2R�

W3

�
a.y/

�
jyj1=2�# jyj<.�/�1=2 d�y �Q�1:

Thus we estimate

‰
�
W1; f2

�
a.Q/

�
;W3

�
�Q�1=2C<.�/

�
1CO.c/CO.1=Q/

�
;

which concludes the proof upon choosing c sufficiently small in terms of the implied
constants.

THEOREM 3
Let �i for i D 1; 2; 3 be generic irreducible unitary representations of G such that
�1 and �2 are #-tempered with # < 1=4 and �3 is tempered with sufficiently large
conductor Q. The (smooth) vectors vi 2 �i specified at the beginning of Section 3.3
have the following properties.
(i) We have kvik � 1 for i D 1; 2; 3.
(ii) We have v1 D v0

1 and v2 D a.Q/v0
2 , where v

0
1 , v

0
2 are fixed (independent of

Q).
(iii) For any fixed nontrivial unitary character  of N , the vector v3 is given in

the  -Kirillov model by a fixed bump function.
(iv) We have Z

g2G

3Y
iD1

˝
�i .g/vi ; vi

˛
dg��1;�2

Q�1:

3In that paper, the authors took y D 1.
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Proof
Assertions (i), (ii), and (iii) are clear from the construction. (The description of v3 in
the Kirillov model is independent of the choice of  : different choices give rise to
models that are isomorphic to one another via left translation by a suitable diagonal
matrix.)

To verify (iv), we embed �2 ,! �
p
2 D I.
/ for some 
 with <.
/� 0 such that

either <.
/D 0 or =.
/D 0. For <.
/D 0, the integral in question evaluates to

c.
/
ˇ̌
‰

�
W1; f2

�
a.Q/

�
;W3

�ˇ̌2

by Lemma 6, and Lemma 7 implies the required bound. For =.
/D 0 and <.
/ > 0,
we apply Lemmas 5 and 6 to see that the integral in question is

c.
/	.1=2;�1 ˝ �3 ˝ 
/
ˇ̌
‰

�
W1; f2

�
a.Q/

�
;W3

�ˇ̌2
:

An appeal to (3.4) and Lemma 7 then completes the proof.

4. A triple Whittaker integral

4.1. Setting and statement of results
In this section, we evaluate asymptotically an integral containing three Whittaker
functions which is the crucial ingredient for an understanding of the right-hand side of
(1.5). We will not need any knowledge on special functions, but we do use extensively
Stirling’s formula and stationary phase analysis as described in Sections 2.2 and 2.5.

We retain the basic notation of Section 2.1. We continue to adopt the following
setting (as in the previous section):
� �1 and �2 are fixed #-tempered generic irreducible unitary representations of

G, with 0� # < 1=2 fixed.
� �3 is a varying tempered generic irreducible unitary representation of G,

whose analytic conductor (normalized as in Section 2.2) we denote by Q WD

C.�3/.
� Recall that we realize each �j in its Whittaker model as a space of func-

tionsW satisfyingW.n.x/g/D e.x/W.g/, where e.x/ WD e2�ix . Also, recall
from (2.24) that we normalize this realization so that the inner product on
�j is given in the Kirillov model by integration over the diagonal subgroup:
kW k2 D

R
y2R� jW.a.y//j2 d�y.

� We letWj 2 �j be the image of the vector vj as in Theorem 3. ThusW1 DW 0
1

and W2 D a.Q/W 0
2 with W 0

1 , W 0
2 fixed (independent of Q).

The basic bounds from Lemma 2 can be used for W1 DW 0
1 and W 0

2 . We will derive
useful bounds for W3 in Section 4.3 below.
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We recall the notation and conventions of smooth weight functions in Section 2.4.
Our basic large parameter here isQ, soA�B meansA�" Q

"B . As usual, the value
of " may change from line to line.

For y1; y2 2 R� with y1 C y2 ¤ 0, we define y3 2 R� by requiring that

y1 C y2 C y3 D 0: (4.1)

We set

F.y1; y2/ WD

Z

2R=�Z

Y
j D1;2;3

Wj

�
a.yj /k.�/

�
d�: (4.2)

The main result of this section is the following estimate for F and its derivatives.

THEOREM 4
We have

F.y1; y2/D
X
˙

e
�
˙2

p
Q‰

�y1

y2

��
N˙.y1; y2/C E.y1; y2/;

where ‰ is a smooth function satisfying the estimates

‰.y/D jyj1=2 CO
�
jyj3=2

�
; ‰.j /.y/� jyj1=2�j .j 2 N/ (4.3)

and for fixed j1; j2;N � 0 we have

.y1@y1
/j1.y2@y2

/j2N˙.y1; y2/�
� jy2j

Q

�3=4�
1C jy1j

��N
�
1C

jy2j

Q

��N

and E D E1 C E2 C E3, where for some absolute constant c > 0 we have

E1.y1; y2/DQ�1=2
�
1C jy1j C jy2j

��N
;

E2.y1; y2/DQc
�
1C jy1j C jQy2j

��N
;

E3.y1; y2/D
�
1C jy1j C jy2=Qj

��N
Q�N :

Here and in the following, all implied constants may depend on N and j , with or
without subscript. The proof gives an exact formula for‰ which however is irrelevant
for our application. It depends mildly on whether �3 belongs to the principal series or
to the discrete series. The key point of Theorem 4 is that it produces the desired and
expected oscillatory factor (cf. (1.4)).
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4.2. Preliminary decomposition
It will be convenient first to switch to Iwahori coordinates. We may find an even func-
tion �0 2 C1

c .R=�Z/, supported on .��=3;�=3/C �Z, so that �0.�/C �0.�=2C

�/D 1 for all � . Setting z WD tan� and using the matrix identities

k.�/D n.�z/a.z2 C 1/n0.z/;

k.�=2� �/D n.z/a.z2 C 1/wn.z/

and the relation d� D .1 C z2/�1 dz, we see that F.y1; y2/ D F1.y1; y2/ C

Fw.y1; y2/, where, with the abbreviation y0
j WD yj .z

2 C 1/, we have

F1.y1; y2/ WD

Z
z2R

� Y
j D1;2;3

Wj

�
a.y0

j /n
0.z/

��
�0

�
arctan.z/

� dz

z2 C 1
;

Fw.y1; y2/ WD

Z
z2R

� Y
j D1;2;3

Wj

�
a.y0

j /wn.z/
��
�0

�
arctan.z/

� dz

z2 C 1
:

Note that z 7! �0.arctan.z// defines a smooth compactly-supported function on R.
We now further decompose F1. We write 1 as a sum �] C�[ of smooth functions

on R� with
� �[.z/ supported on z �Q�1,
� �].z/ supported on Q�1 � z,
and with each function � in this decomposition satisfying .z@z/

j�.z/ � 1. We
accordingly decompose F1 D F [

1 C F
]
1 by weighting the z-integral. In summary, we

have decomposed

F D Fw CF [
1 CF

]
1 : (4.4)

We will verify that each of the three terms on the right-hand side of (4.4) satisfies the
conclusions of Theorem 4. The first two terms are fairly straightforward to analyze.
We treat them in Section 4.4. Indeed, we will see that the contribution of F [

1 can be
absorbed into the error term E , while Fw is nonnegligible only if y1 � 1 and y2 is
roughly of size Q, in which case the oscillatory factor e.˙Q1=2‰.y1=y2// is flat in
the sense of Section 2.4. The somewhat more intricate analysis of F ]

1 is carried out in
Section 4.5.

4.3. Interlude: Bounds for newvectors
For the relevant asymptotic analysis we will need certain uniform bounds of the test
vectors. We record them here.
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LEMMA 8
Let W 2 � , y 2 R�, z 2 R, and let � > �1=2C # . Then W.a.y/wn.z// admits the
absolutely convergent integral representation

W
�
a.y/wn.z/

�
D

Z
<.�/D�


.y/	.1=2;� ˝ 
/

�
�Z

t2R�

e.tz/W
�
a.t/

�

.t/d�t

�
d
: (4.5)

Proof
By Mellin inversion (2.1)—using the estimate (2.25) to verify its hypotheses—we
have

W
�
a.y/wn.z/

�
D

Z
<.�/D�


.y/

Z
t2R�

W
�
a.t/wn.z/

�

�1.t/ d�t d
:

By the PGL.2/� GL.1/ local functional equation (see [12, Theorem 3.1]), the inner
integral evaluates to

	.1=2;� ˝ 
/

Z
t2R�

W
�
a.t/n.z/

�

.t/d�t:

We conclude by calculating that W.a.t/n.z//DW.n.tz/a.t//D e.tz/W.a.t//.

LEMMA 9
Let � be tempered of conductorQ, and letW 2 � be an analytic newvector. For fixed
N > 0 and j 2 Z�0, we have

.x@x/
jW

�
a.Qx/wn.z/

�
� min

�
jxj�N ; jxjN C jxj1=2Q�N

�
(4.6)

uniformly in z � 1.

Proof
We write the proof in the case j D 0. The general case is treated similarly, using that
.y@y/

j
.y/D sj
.y/ for 
D j 
 js sgna.
By (4.5), we have the Mellin expansion

W
�
a.Qx/wn.z/

�
D

Z
�


.Qx/	.1=2;� ˝ 
/Vz.
/d
;

where

Vz.
/ WD

Z
t2R�

e.tz/W.t/
.t/ d�t:



THE WEYL BOUND FOR TRIPLE PRODUCT L-FUNCTIONS 1205

Since z � 1 and W is supported in a fixed compact set, we see that Vz is entire and
Vz.
/� C.
/�N in vertical strips. By Lemma 1 and [21, Lemma A.2] we have

	.1=2;� ˝ 
/� C.� ˝ 
/�<.�/ � C.�/�<.�/C.
/2j<.�/j;

which holds uniformly in any fixed vertical strip and for any 
 separated by � 1

from any pole of 	.1=2;� ˝ 
/. (In more detail, we apply Lemma 1 by writing 
D


0j 
 j<.�/, with 
0 unitary, and using that 	.1=2;� ˝ 
/D 	.1=2C <.
/;� ˝ 
0/

and C.� ˝ 
0/� C.� ˝ 
/.) We obtain an adequate estimate in the case jxj � 1 by
shifting the contour to <.
/D �N , passing no poles.

It remains to consider the case jxj � 1. We shift the contour to <.
/DN . Recall
that Q is assumed sufficiently large in terms of “fixed” quantities; in particular, Q
is much larger than any fixed power of N . It follows that if � belongs to the dis-
crete series, then this contour shift passes no poles. The required estimate follows (in
the stronger form obtained by omitting the term Q�N jxj1=2). Suppose now that �
belongs to the principal series. By hypothesis, � is tempered. Thus each pole that we
cross is of the form 
D sgna j 
 j�Cit with � � 1=2� # and t �Q1=2. The required
estimate follows from the rapid decay of Vz .

4.4. The easy cases: Estimates for Fw , F [
1

PROPOSITION 10
The function Fw satisfies the conclusions of Theorem 4.

Proof
By the matrix identity

a.y0
2/wn.z/a.Q/D a.y0

2=Q/wn.z=Q/ 2G

and the relations W1 DW 0
1 , W2 D a.Q/W 0

2 , we write Fw.y1; y2/ asZ
z2R

W 0
1

�
a.y0

1/wn.z/
�
W 0

2

�
a
�y0

2

Q

�
wn

� z
Q

��
�W3

�
a.y0

3/wn.z/
�
�0

�
arctan.z/

� dz

z2 C 1
:

We use (2.25) to bound the first two factors of the integrand as

.y1@y1
/j1.y2@y2

/j2W 0
1

�
a.y0

1/wn.z/
�
W 0

2

�
a
�y0

2

Q

�
wn

� z
Q

��
�

�
1C jy1j

��N
�
1C

jy2j

Q

��N

(4.7)
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uniformly for z � 1. We bound the third factor by (4.6) with x D y0
3=Q getting

.y3@y3
/jW3

�
a.y0

3/wn.z/
�

� min
�ˇ̌̌y3

Q

ˇ̌̌�N

;
ˇ̌̌y3

Q

ˇ̌̌N

CQ�N
�
:

Recalling (4.1), it is easy to see that

.y1@y1
/j1.y2@y2

/j2Fw.y1; y2/�
�
1C jy1j

��N
min

�ˇ̌̌y2

Q

ˇ̌̌�N

;
1C jy2jN

QN

�
:

If ‰ satisfies (4.3), then e.˙2
p
Q‰.y1=y2// is flat for y1 � 1 and Q1�" � jy2j �

Q1C", so up to a contribution that can go into E3 we have

.y1@y1
/j1.y2@y2

/j2e
�
˙2

p
Q‰.y1=y2/

�
Fw.y1; y2/

�
�
1C jy1j

��N
min

�ˇ̌̌y2

Q

ˇ̌̌�N

;
1C jy2jN

QN

�
;

which is admissible for Theorem 4.

PROPOSITION 11
The function F [

1 satisfies the conclusions of Theorem 4.

Proof
By definition,

F [
1 .y1; y2/D

Z
z2R

� Y
j D1;2;3

Wj

�
a.y0

j /n
0.z/

��
�[.z/�0

�
arctan.z/

� dz

z2 C 1
:

For jzj � 1=Q, we have

W1

�
a.y0

1/n
0.z/

�
�

�
1C jy1j

��N
;

W2

�
a.y0

2/n
0.z/

�
DW 0

2

�
a.Qy0

2/n
0.Qz/

�
�

�
1C jy2jQ

��N
;

where we used (2.26). The required estimate F [
1 � E2 � E follows now from the

weak a priori bound kW3k1 �QO.1/.
To deduce the latter, it suffices by the Iwasawa decomposition to estimate

W3.a.y/k.�//. We appeal first to Lemma 2, which gives for any W 2 �3 the
estimate W.a.y// � Sd .W / for some fixed d . Taking W D k.�/W3, we obtain
W.a.y// D W3.a.y/k.�// � Sd .W / D Sd .W3/. On the other hand, by [36, Sec-
tion 3.2.5] and the fact that y 7! W3.a.y// is a fixed bump function, we have
Sd .W3/�Qd 0

for some fixed d 0. The required a priori bound follows.
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4.5. The critical case: Estimates for F ]
1

PROPOSITION 12
The function F ]

1 satisfies the conclusions of Theorem 4.

Proof
Let Q�1 � z. We use the identity

a.y/n0.z/a.Q/D n.y=z/a.y=Qz2/wn.1=Qz/ 2G

to write

W2

�
a.y0

2/n
0.z/

�
D e.y0

2=z/W
0

2

�
a.y0

2=Qz
2/wn.1=Qz/

�
:

Similarly, we have

W3

�
a.y0

3/n
0.z/

�
DW3

�
n.y0

3=z/a.y
0
3=z

2/wn.1=z/
�

D e.y0
3=z/W3

�
a.y0

3=z
2/wn.1=z/

�
:

Using the consequence e.y0
2=z/e.y

0
3=z/D e.�y0

1=z/ of the hypothesis (4.1), we may

write F ]
1 .y1; y2/ in the formZ

z2R

W
�
y1;

y2

Qz2
; z

�
e
�
�
y1.z

2 C 1/

z

�
�W3

�
a
�y0

3

z2

�
wn

�1
z

��
�].z/�0

�
arctan.z/

� dz

z2 C 1
;

where

W.x1; x2; z/ WDW 0
1

�
a
�
x1.1C z2/

�
n0.z/

�
W 0

2

�
a
�
x2.1C z2/

�
wn.1=Qz/

�
:

From now on we will use extensively the conventions on smooth weight functions
stated in Section 2.4. In particular, V denotes generally a flat function, not necessarily
the same at every occurrence.

We apply the substitution z 7! 1=z and a smooth dyadic partition of unity local-
izing ˙z �Z, where Z runs over � 1 values (e.g., powers of 2) satisfying 1�Z �

Q. For notational simplicity we restrict to z > 0, the case z < 0 being essentially
identical. Since W is flat in z, it suffices to estimate

I0.y1; y2; y3/DW
�
y1;

y2Z
2

Q

�
�

Z
z2R

e
�
�y1.zC z�1/

�
W3

�
a
�
y3.1C z2/

�
wn.z/

�
� V

� z
Z

� dz

jzj2
; (4.8)
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where W satisfies the estimates

.x1@x1
/j1.x2@x2

/j2W.x1; x2/�

2Y
j D1

�
1C jxj j

��N
: (4.9)

At this point, we can easily deal with the contributionZ �Q1=2�". A trivial estimate
returns the bound

�Q�1=2
�
1C jy1j

��N �
1C jy2j

��N
D E1.y1; y2/

which is acceptable.
We can also easily deal with the contribution Z � 1. In this case, (4.6) yields

.y3@y3
/jW3

�
a
�
y3.1C z2/

�
wn.z/

�
� min

�� jy3j

Q

�N

CQ�N ;
� jy3j

Q

��N �
:

Recalling (4.1), we argue as in the proof of Proposition 10 that under the present
assumption Z � 1, up to an error of size E3, we have

.y1@y1
/j1.y2@y2

/j2I0.y1; y2; y3/�
�
1C jy1j

��N
min

�ˇ̌̌y2

Q

ˇ̌̌�N

;
1C jy2jN

QN

�
but then also

.y1@y1
/j1.y2@y2

/j2e
�
˙2

p
Q‰.y1=y2/

�
I0.y1; y2; y3/

�
�
1C jy1j

��N
min

�ˇ̌̌y2

Q

ˇ̌̌�N

;
1C jy2jN

QN

�
as required for the bound for N˙. So from now on we assume that

Q" �Z �Q1=2�":

We appeal to the (rapidly convergent) integral formula (4.5) to rewrite the integral
over z in (4.8) as

I WD

Z
<.�/D0

	.1=2;�3 ˝ 
/

�

Z
z2R



�
y3.z

2 C 1/
�
e
�
�y1.zC z�1/

�
V

� z
Z

�
I1.z;
/

dz

jzj2
d
; (4.10)

where

I1.z;
/ WD

Z
t2R

e.tz/
.t/W3

�
a.t/

� dt
jt j
:
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We keep in mind that the bound (4.9) allows us to assume y1 � 1, otherwise we can
bound I trivially by E3.

Let us write 
D j 
 jit� sgna� with t� 2 R and a� 2 ¹0; 1º. We split the 
-integral
in (4.10) according to the value of a� and regard that value as fixed from now on. We
have expressed I as a triple integral in t , z, t�, and we will apply stationary phase in
each of the variables, one at a time. Here z �Z, t � 1, and we will see in a moment
that the t -integral is negligible unless t� � Z. Stationary phase saves a factor Z1=2

in each of these integrals, so we expect that I is of size Z�3=2, and we can explicitly
compute the oscillatory behavior.

Step 1: The t -integral. We apply stationary phase analysis to find, for each fixed N 2

Z�0, a nice function V so that

I1.z;
/D z�1=2V
��t�

z
;
z

Z

�



� t�

2�ez

�
CO.Q�N /: (4.11)

To see this, we apply Lemma 4 if �t�=z � 1 by taking

�.t/D �.t I z; t�/D 2�zt C t� log jt j; t	 D �
t�

2�z
;

.X1;X2;X3/D .1;Z;Z/; Y DZ

and otherwise the integral is negligible by Lemma 3 with U D P D 1, S D Y D Z.
Here and henceforth the contribution of all negligible error terms is covered by E3 in
the statement of Theorem 4. We deduce that I is given up to acceptable error (that
can go into E3) byZ

<.�/D0

	.1=2;�3 ˝ 
/

� t�y3

2�e

�
�

Z
z2R


.z/e.�y1z/V
� z
Z
;
�t�

Z

�

.1C z�2/e.�y1z

�1/
dz

jzj5=2
d
:

Note that for jt�j � z �Q" and y1 �Q" the function 
.1C z�2/e.�y1z
�1/ is flat

in both z and t�, so we can incorporate this factor into V (and continue to call this
new function V ). Thus we may reduce further to estimatingZ

<.�/D0

V
��t�

Z

�
	.1=2;�3 ˝ 
/


� t�y3

2�e

�
I2.
;y1/ d
 (4.12)

with

I2.
;y1/ WD

Z
z2R

V
� z
Z

�

.z/e.�y1z/

dz

jzj5=2
:
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Step 2: The z-integral. By stationary phase analysis, we may find for each fixed N a
nice function V (again potentially different from previous versions of V ) so that

I2.
;y1/DZ�2V
� t�

Zy1

�



� t�

2�ey1

�
CO.Q�N /; (4.13)

whenever �t� �Z. We apply Lemma 4, taking

�.t/D �.t Iy1; t�/D �2�y1t C t� log jt j; t	 D
t�

2�y1

;

.X1;X2;X3/D .Z; 1;Z/; Y DZ

(if jy1j � 1, and otherwise the integral is negligible by Lemma 3 with U D Y D P D

Z, S D 1). Thus we reduce to studying

Z�2V.�y1/

Z
<.�/D0

V
��t�

Z

�
	.1=2;�3 ˝ 
/


� t2�y3

.2�e/2y1

�
d
; (4.14)

for certain nice functions V .

Step 3: The t�-integral. We now evaluate 	.1=2;�3 ˝ 
/ asymptotically using Stir-
ling’s formula, and appeal in particular to (2.19) and the subsequent explicit formulas.
Since jt�j �Z �Q1=2�", both are applicable. We start with the principal series case.
In view of (2.20), the relevant phase function may be written

�.t�/D �.t�I r; y1; y3/

D t� log
ˇ̌̌ t2�y3

.2�e/2y1

ˇ̌̌
C .r � t�/ log.r � t�/� .r C t�/ log.r C t�/C 2t� log.2�e/:

For convenience, we record some relevant derivatives:

@

@t�
�.
 
 
 /D log

ˇ̌̌ t2�y3

y1.r2 � t2�/

ˇ̌̌
;

@

@r
�.
 
 
 /D log

r � t�

r C t�
;

@

@y1

�.
 
 
 /D �
t�

y1

;
@

@y3

�.
 
 
 /D
t�

y3

;

@2

@t2�
�.
 
 
 /D

2r2

t�.r2 � t2�/
;

@2

@r2
�.
 
 
 /D

2t�

r2 � t2�
;

@2

@r@t�
�.
 
 
 /D �

2r

r2 � t2�
:

Using (4.1), we deduce that
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jt	� j D r jy1=y2j1=2:

The integral (4.14) is negligible by an application of Lemma 3 with U D Y D P DZ,
S D 1 unless sgn.y1/D � sgn.y2/ and jy2j �Q=Z2. In this case, we apply Lemma 4
with

.X1;X2;X3;X4/D .Z;Q1=2; 1;Q=Z2/; Y DZ:

We compute

�
�
r
ˇ̌̌y1

y2

ˇ̌̌1=2

I r; y1; y3

�
D 2r‰

�y1

y2

�
;

‰.y/D jyj1=2 arctanh
�
jyj

�
� arctanh

�
jyj1=2

�
;

where

‰.y/D �jyj1=2 CO
�
jyj3=2

�
; ‰j .y/� jyj1=2�j : (4.15)

The analysis in the discrete series case is similar. We write � D .k � 1/=2 and
apply Lemma 4 and (2.21) with

�.t�/D �.t�I�;y1; y3/D t� log
ˇ̌̌ t2�y3

e2y1�2

ˇ̌̌
� 2� arctan

t�

�
� t� log

�2 C t2�

e2�2
;

@

@t�
�.
 
 
 /D log

ˇ̌̌ t2�y3

y1.�2 C t2�/

ˇ̌̌
;

@

@�
�.
 
 
 /D �2 arctan

t�

�
;

@

@y1

�.
 
 
 /D �
t�

y1

;

@

@y3

�.
 
 
 /D
t�

y3

;
@2

@t2�
�.t�/D

2�2

t�.�2 C t2�/
:

We have �.1;0;0;0/.t	� I�;y1; y3/D 0 if and only if sgn.y1/D sgn.y3/ and

jt	� j D �

r
y1

y3 � y1

:

Again this is in the support of the integrand if and only if jy2j �Q=Z2, otherwise
the integral is negligible. We compute

�
�
�

r
y1

y3 � y1

I�;y1; y3

�
D �2� arctan

r
y1

y3 � y1

D 2� Q‰
�y1

y2

�
;

Q‰.y/D � arctan
�� 1

jxj
C 2

��1=2�
;

where Q‰ satisfies the same formulas as in (4.15).
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By the definition of the conductor in (2.20) and (2.21), we conclude that (4.14)
equals (up to a negligible error)

Z�3=2V
�
�y1;

y2Z
2

Q

�
e
�
�2

p
Q‰

�y1

y2

��
in the principal series case and

Z�3=2V
�
�y1;

y2Z
2

Q

�
e
�
�2

p
Q Q‰

�y1

y2

��
in the discrete series case.

We made in the beginning the assumption z > 0. The case z < 0 leads to an anal-
ogous expression, with the minus sign in the exponential removed. This completes
the proof.

5. A shifted convolution problem

5.1. Some preparation

5.1.1. Bessel functions
We need the following uniform asymptotic formulas for Bessel functions. For t 2 R,
jt j> 1 and x > 0, we have (see [14, 7.13.2(17)])

J2it .2x/

cosh.�t/
D

X
˙

e˙2i!.x;t/ f ˙
N .x; t/

x1=2 C jt j1=2
CON

��
xC jt j

��N �
;

!.x; t/D jt j 
 arcsinh
jt j

x
�

p
t2 C x2; (5.1)

where for any fixed N > 0 the function f ˙
N is flat. The error term estimate stated in

[14] is O.x�N /, but for x � t1=3, say, the estimate O.jt j�N / follows from the power
series expansion [18, 8.402] of J2it .x/. When we apply this formula in practice, we
first extract the negligible errorON ..xCjt j/�N / in the series expansion given by [14,
7.13.2(17)] and [18, 8.402], without pausing to estimate any derivatives of that error.
We then differentiate the remaining series expansion to verify the flatness condition.

For future reference, we note the identities

@

@t
!.x; t/D arcsinh

t

x
;

@2

@t2
!.x; t/D

1

x2 C t2
;

@

@x
!.x; t/D �

p
x2 C t2

x
; !.x; t/D �xC

t2

2x
CO

� t4
x3

�
:

(5.2)

For jt j � 2x > 0, we have by [14, 7.13.2(19)] (again coupled with the power
series expansion [18, 8.445, 8.485] for x � t1=3) or [2, (20) with z�1=2]
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K2it .2x/ cosh.�t/D jt j�1=2
X
˙

e˙2i!�.x;t/g˙
N .x; t/CON

��
xC jt j

��N �
;

!	.x; t/D jt j 
 arccosh
jt j

x
�

p
t2 � x2; (5.3)

where for any fixed N > 0 the function g˙
N is flat.

Similarly, for x � 2k we have (see [41, (4.24)])

J2k�1.2x/D
X
˙

e˙2ik Q!.x;k/h
˙
N .x; k/

x1=2
CON

�
.xC k/�N

�
;

Q!.x;k/D �k arctan

r
x2

k2
� 1C

p
x2 � k2;

(5.4)

where h˙
N is flat. For fixed index, these formulas simplify greatly, and we have

J2it .2x/

cosh.�t/
D

1

x1=2 C x2j=t j

X
˙

e˙2ixf ˙.x/;

J2k�1.2x/D
1

x1=2 C 1

X
˙

e˙2ixh˙.x/;

K2it .2x/ cosh.�t/D
e�2x

x1=2 C x2j=t j
g.x/

(5.5)

for t 2 C, k 2 N, x > 0with j=t j � 1=4 (for simplicity) and t , k in a fixed compact set,
where f ˙, g, h˙ can be chosen to be flat (depending on t or k). (See [8, Lemma 15]
for details on how to glue together the asymptotic formulas for x > 1 and x < 1.)

Remark
As the referee remarked, [14] contains no proofs. The expansions (5.1), (5.3), and
(5.4) are all relatively simple to obtain, since we are in the so-called oscillatory
range away from possible degenerate points (t D x for the K-function and k D x

for the J -function with real order). All three uniform asymptotic expansions can be
obtained from the integral representations (see [18, 8.421.1/2, 8.405], [18, 8.432.4],
[18, 8.411])



1214 BLOMER, JANA, and NELSON

Kit .x/D
1

2 cosh.�t=2/

Z 1

�1

cos.x sinhv/ exp.i tv/dv;

Jit .x/D
1

�

Z 1

�1

�
cosh.�t=2/ sin.x coshv/� i sinh.�t=2/ cos.x coshv/

�
� exp.i tv/dv;

Jk.x/D
1

2�i

Z �

��

exp.�ki� C ix sin�/d�

by an application of Lemma 4. For the improper integrals, note that the tail can be
estimated by partial integration using Lemma 3 (cf. e.g., [5, Section 4.4]).

5.1.2. Jutila’s circle method
We quote Jutila’s circle method (see [28]).

LEMMA 13
Let Q � 1, and let V be a smooth, nonnegative, nonzero function with support in
Œ1; 2�. For r 2 Q, write Ir .˛/ for the characteristic function of the interval Œr �

1=Q; r C 1=Q�, and define

ƒ WD
X

q

V
� q
Q

�
�.q/; I.˛/D

Q

2ƒ

X
q

V
� q
Q

� X
d .mod q/
.d;q/D1

Id=q.˛/:

Then I.˛/ is a good approximation to the characteristic function on Œ0; 1� in the sense
that Z 1

0

�
1� I.˛/

�2
d˛ �" Q

"�1

for any " > 0.

5.2. Notation and setup
Let T be a large positive real number. We recall once again the notation and conven-
tions from Section 2.4, in particular with respect to weight functions V . Moreover,
A�B denotes A� T "B . We consider two more parameters M and H satisfying

M � T 2; H D T 1=3C"; (5.6)

and � 2 Zn ¹0º with � � 1. The choice ofH will eventually turn out to be the optimal
choice, and it simplifies the argument if we make it right away at this point. With
slightly more extra work, we could run the same argument for T 1=3 �H � T 1�".

Let g be a fixed holomorphic or Maass Hecke eigenform for SL2.Z/ with Hecke
eigenvalues �g.n/ of weight kg or spectral parameter tg . Let �t .m/D

P
abDn a

itb�it .
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We fix a choice of sign ˙. With these notational conventions, we consider

L WD
1

TM 1=2

X
2�T �tj �2�.T CH/

1

L.Ad2 uj ; 1/

�
ˇ̌̌X

m

V
� m
M

�
�j .m/�g.mC �/ exp

�
˙2i

tj
p

j�j
p
m

�ˇ̌̌2

C
1

TM 1=2

Z 2�.T CH/

2�T

1

j�.1C 2it/j2

�
ˇ̌̌X

m

V
� m
M

�
�t .m/�g.mC �/ exp

�
˙2i

t
p

j�j
p
m

�ˇ̌̌2 dt

2�
; (5.7)

where uj runs through Hecke Maass cusp forms for SL2.Z/ with Hecke eigenvalues
�j .n/ and spectral parameter tj 2 Œ2�T; 2�.T CH/�. The right-hand side of (5.7) is
essentially a combination of (1.4) and (1.9); this explains its relevance.

Analogously, we also consider the holomorphic analogue

QL WD
1

TM 1=2

X
4�T �k�4�.T CH/

k even

X
uj 2Bk

1

L.Ad2 uj ; 1/

�
ˇ̌̌X

m

V
� m
M

�
�j .m/�g.mC �/ exp

�
˙2i

k
p

j�j
p
m

�ˇ̌̌2

; (5.8)

where uj runs over a Hecke eigenbasis Bk of cusp forms of weight k. For simplicity
let us assume � > 0, the other case being essentially identical. The aim of this section
is to prove the following theorem.

THEOREM 5
Let T be a large parameter, and let L, QL be defined as in (5.7) and (5.8) withM , H
as in (5.6). Then L; QL � TH .

The proof of the theorem follows the steps outlined in Section 1.4. In particular,
we will eventually transform the spectral sum (5.7) into a “reciprocal” spectral sum
of length T=H in Section 5.9 to which we apply the large sieve.

For M � T 2=3C", we can estimate trivially (using a standard Rankin–Selberg
bound)

L � 1

TM 1=2
THM 2 DHM 3=2 � TH

in agreement with Theorem 5. From now on, we assume that M � T 2=3C". Then
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exp
�
˙2i

.t � 2�T /
p
�

p
m

�
is flat for t 2 Œ2�T; 2�.T CH/� by our choice ofH in (5.6), so we can replace tj and
t with 2�T in the exponential (using the by now familiar device to separate variables
in nice functions after having multiplied by a suitable function with compact support
in 2�T CO.H/). We restrict to the positive sign in the exponential, the negative sign
being essentially identical.

We can majorize the characteristic function on Œ2�T; 2�.T C H/� by h.t/ D

exp.�. t�2�T
H

/2/ and then symmetrize with respect to t 7! �t in order to make the
expression amenable for the Kuznetsov formula. The exact shape of the function plays
no role.

5.3. Application of the spectral summation formula
We open the square in (5.7) and (5.8) and apply the Kuznetsov formula from [23, The-
orem 16.3] (along with a conversion from Fourier coefficients to Hecke eigenvalues).
Since

R
h.t/t tanh.�t/dt � TH by our choice of h, the diagonal term is bounded by

� 1

TM 1=2
TH 
M DM 1=2H � TH

by (5.6) in agreement with Theorem 5. For the off-diagonal term, we must understand
the Bessel transform Z

t2R

exp
�
�

� t � 2�T

H

�2� J2it .x/

cosh.�t/
t dt: (5.9)

As usual, we use holomorphicity to shift the contour a bit; in this way, we can truncate
the c-sum in (5.12) by some large power of T (cf. [29, p. 75]). Having this done, we
may smoothly truncate the integral to the interval Œ2�T �HT "; 2�T CHT "�. For
x � T 1�"H , we apply Lemma 3 and the uniform asymptotic formula (5.1) (along
with (5.2)) with

S D min.1;T=x/; QD Y D T C x; U DH

to see that the integral is negligible. Having recorded the condition

x � T 1�"H; (5.10)

we do not exploit any further cancellation in the integral. Using (5.1) along with a
Taylor expansion, we have, for t 2 Œ2�T �HT "; 2�T CHT "� and x � T 1�"H , the
approximation

J2it .2x/

cosh.�t/
D x�1=2

X
˙

e˙2i.�xC 1
2 .2�T /2=x/F˙.x; t/CO

�
jt j�N

�
(5.11)
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for a flat function F˙. We substitute this into (5.9) and integrate trivially over t . Thus
it suffices to estimate the off-diagonal term

TH

TM 1=2

X
m1;m2

V
�m1

M
;
m2

M

�X
c

V
� c
C

�S.m1;m2; c/

C
�g.m1 C �/�g.m2 C �/

�
C 1=2

M 1=2
e
�
˙

�2pm1m2

c
�

T 2c
p
m1m2

�
˙
2T �1=2.

p
m2 �

p
m1/

p
m1m2

�
(5.12)

by � TH (with all sign combinations), as required in Theorem 5, where C runs
through � 1 numbers (e.g., powers of 2) satisfying

1� C � M

TH
(5.13)

and each weight function V is nice.
We pause for a moment and consider the average QL over holomorphic forms, in

which we replace the Kuznetsov formula with the Petersson formula (see [23, Theo-
rem 14.5]). Here the analogue of (5.9) isX

k22Z

ikV
�k � 4�T

H

�
kJk�1.2�x/:

Using the Fourier representation (see [18, 8.411.1]) of the Bessel function coupled
with Poisson summation, this equalsX

k22Z

ikV
�k � 4�T

H

�
k

Z 1=2

�1=2

e
�
.1� k/� C x sin2��

�
d�

D
1

2

X
h2Z
h odd

Z 1=2

�1=2

Z 1

�1

V
�y � 4�T

H

�
ye

�yh
4

C .1� y/� C x sin2��
�
dy d�:

The y-integral is negligible unless h D ˙1 and � D ˙1=4C O.T "H�1/, but then
the remaining � -integral, smoothly truncated to the latter range, is negligible unless
x � T 1�"H . This last condition is the analogue of (5.10). The analogue of (5.11),
derived from (5.4), is

ikJ2k.x/D x�1=2
X
˙

e˙2i.xC 1
2 .2�T /2=x/ QF˙.x; k/CO.k�N /

for the present range of variables which leads to the same expression as (5.12) except
for a sign in the exponential which will not play a role later.

We now continue with the analysis of (5.12). In preparation for an application
of Voronoi summation, we shift the variables m1, m2 by �. By a Taylor expansion,
this makes no difference in the exponential, the resulting correction term being flat. It
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therefore suffices to bound

H

M

X
m1;m2

V
�m1

M
;
m2

M

�X
c

V
� c
C

�S.m1 � �;m2 � �; c/
p
C

�g.m1/�g.m2/

� e
�
˙

�2pm1m2

c
�

T 2c
p
m1m2

�
˙
2T �1=2.

p
m2 �

p
m1/

p
m1m2

�
: (5.14)

5.4. Preparatory interlude
We pause to recall the Voronoi formula (see, e.g., [8, Lemmas 25 and 6]): for c 2 N

and .b; c/D 1, we have

X
n

V.n/�g.n/e
�bn
c

�
D
1

c

X
˙

X
n

V ^
˙

� n
c2

�
�g.n/e

�
�

Nbn

c

�
;

V ^
˙ .y/D

Z 1

0

V.x/J˙.4�
p
xy/dx;

where J˙ D J˙
g is given for g a Maass form of eigenvalue 1=4C t2g by

JC.x/D �i
J2itg .x/� J�2itg .x/

sinh.�tg/
; J�.x/D 4 cosh.�tg/K2itg .x/

and for g a holomorphic form of weight kg by

JC.x/D 2�ikgJkg�1.x/; J�.x/D 0:

In the following sections, we will twice have to compute integrals of the formZ
x2R

V
� x
M

�
e.˛x1=2 C ˇx�1=2/ dx (5.15)

for certain ˛;ˇ 2 R satisfying

j˛jM 1=2 C jˇjM�1=2 �M ": (5.16)

In this case, it follows from Lemma 3 with

U DM 1�"=2; P DM; S D j˛jM�1=2 C jˇjM�3=2; Y DMS

that (5.15) is negligible unless ˇ=˛ �M (which, by the conventions of Section 2.4,
implies in particular that sgn.˛/D sgn.ˇ/) in which case by Lemma 4 (after restrict-
ing to dyadic ranges ˛ �A and ˇ �B and also possibly restricting the support of V
to a neighborhood of t	) with
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�.t/D �.t I˛;ˇ/D ˛t1=2 C ˇt�1=2; t	 D
ˇ

˛
;

@

@t
�.t	I˛;ˇ/D

ˇ

2t
5=2
0

�
ˇ

M 5=2
;

it equals

M 5=4

jˇj1=2
V

� ˛
A

�
V

� ˇ
B

�
V

�ˇ=˛
M

�
e
�
2 sgn.˛/

p
˛ˇ

�
; (5.17)

as usual with different functions V , and up to a negligible error.

5.5. Application of Voronoi summation
We open the Kloosterman sum in (5.14) and apply the Voronoi formula to the follow-
ing m2-sum:

X
m2

V
�m2

M

�
�g.m2/e

� Ndm2

c

�
e
�
˙

�2pm1m2

c
�

T 2c
p
m1m2

�
�
2T �1=2

p
m2

�
;

where .d; c/ D 1. We analyze the integral transforms using (5.4) and (5.5). In the
Maass case, we see that the J�-term is negligible thanks to the rapid decay of the
Bessel K-function and the consequence M=C 2 �H 2 � T 2=3C" of our hypotheses
(5.6) and (5.13). In either case, the JC-term contributesX

m2

�g.m2/e
��dm2

c

�1
c

Z
x2R

V
� x
M

���p
m2x

c

�1=2

C
�p

m2x

c

�2j=tg j��1

� e
�
�1

�2pm1x

c
�

T 2c
p
m1x

�
C �2

2T �1=2

p
x

�
e
�
�3

2
p
xm2

c

�
dx (5.18)

with �1; �2; �3 2 ¹˙1º, and where as usual the meaning of V may have changed. The
x-integral is of the shape (5.15) with

˛ D
2.�1

p
m1 C �3

p
m2/

c
; ˇ D ��1

T 2c
p
m1

C �22T �
1=2:

For the analysis of this integral, it is important to note that
p
m1x

c
�
M

C

is by at least a factor H 2T �" larger than

T 2c
p
m1x

�
T 2C

M
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by (5.6) and (5.13), and the latter is larger than T �1=2x�1=2 � TM�1=2 unless C � 1
and T 2 �M . Let us define

R WD T 2C 2=M: (5.19)

If R � T ", then (5.16) is satisfied, and we conclude from the discussion in the previ-
ous subsection that the x-integral is negligible unless �1 D ��3 and4

m2 �m1 �R:

If R � 1, then the same argument still shows that m2 �m1 � R � 1 (which allows
in particular m1 Dm2). In particular,

p
m2x=c �M=C � T 1�"H � 1 is large and

therefore we can drop the term containing j=tg j in (5.18).
Before we proceed, we estimate the total contribution of R � 1 in (5.18) when

substituted into (5.14) trivially by

� H

M

M 
M 1=2 DHM 1=2 �HT;

which is acceptable for Theorem 5. So from now on we assume that

R � T ": (5.20)

In view of (5.6), we can then also assume that

T 2C=M � T ": (5.21)

For such R and m2 �m1 � R and �1 D ��3, we see from (5.17) that (5.18) can be
recast as

M=T

c

X
m2

V
�m2 �m1

R

�
�g.m2/e

�
�
dm2

c

�

� e
�
˙

s
8.

p
m2 �

p
m1/

ˇ̌̌ T 2

p
m1

˙
2T �1=2

c

ˇ̌̌�
;

up to a negligible error and for suitable sign combinations. Plugging back into (5.14)
and calling r Dm2 �m1, mDm1, we obtain a total contribution

4This implies in particular that m2 � m1 > 0. In the holomorphic average QL, the term �T 2c=
p

m1x would
not have a minus sign, so that here m2 �m1 < 0. This sign is responsible for the choice of the integral transform
in the final application of the Kuznetsov formula in Section 5.9. We mention this only for the sake of clarity. In
the following, all sign combinations are treated uniformly.
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H

TC 1=2

X
r

X
m

X
c

V
� r
R
;
m

M
;
c

C

�S.�r � �;��; c/

c
�g.m/�g.mC r/

� e
�
˙

s
8.

p
mC r �

p
m/

ˇ̌̌ T 2

p
m

˙
2T �1=2

c

ˇ̌̌
˙
2T �1=2

p
m

�
:

For notational simplicity, the previous display deals only with the case r > 0. The
case r < 0, coming from the holomorphic average QL can be treated in the same
way. We simplify the exponential a bit using suitable Taylor expansions. First, using
the expansion

pp
1C 2x � 1D x1=2 �x3=2=4C 
 
 
 , we replace

p
j
p
mC r �

p
mj

with .r=2/1=2m�1=4, the error being flat since, by (5.6) and (5.13),

1

M 1=4


R3=2

M 3=2


T

M 1=4
D
T 4C 3

M 3
� T

H 3
� 1:

Similarly, we can replaceˇ̌̌ T 2

p
m

˙
2T �1=2

c

ˇ̌̌1=2

with
ˇ̌̌ T

m1=4
˙
m1=4�1=2

c

ˇ̌̌
up to a flat function. Thus it suffices to bound (with various sign combinations)

H

TC 1=2

X
r

X
m

X
c

V
� r
R
;
m

M
;
c

C

�S.�r � �;��; c/

c

� �g.m/�g.mC r/e
�
˙
2T r1=2

m1=2
˙
2.r�/1=2

c
˙
2T �1=2

m1=2

�
by � TH . We write the previous display as

H

TC 1=2

X
r

F.r/
X

m

V
� r
R
;
m

M

�
�g.m/�g.mC r/e

�
˙
2T .r1=2 ˙ �1=2/

m1=2

�
; (5.22)

where

F.r/D
X

c

V
� c
C

�S.�r � �;��; c/

c
e
�
˙
2.r�/1=2

c

�
:

5.6. An average of Kloosterman sums
We pause for a moment and prove thatX

r�R

ˇ̌
F.r/

ˇ̌2 �R: (5.23)

It is tempting to use the Kuznetsov formula, but we can argue in an elementary way.
We insert a smooth weight and open the square getting



1222 BLOMER, JANA, and NELSONX
r

V
� r
R

�ˇ̌
F.r/

ˇ̌2
D

X
c1;c2�C

1

c1c2

V
�c1

C
;
c2

C

�

�
X	

d1 .mod c1/

X	

d2 .mod c2/

e
�
��

�d1 C Nd1

c1

C
d2 C Nd2

c2

��

�
X

r

V
� r
R

�
e
�
�
.d1c2 C d2c1/r

c1c2

�
e
�
˙2.r�/1=2 c2 � c1

c1c2

�
:

We split the r -sum into residue classes modulo c1c2 and apply Poisson summa-
tion. The combined conductor of the exponentials is � C 2R1=2=C , and since R �

T �"C 2R1=2=C , it is easy to see that the dual sum picks up at most � 1 terms. Hence
we obtain the upper boundX

r�R

ˇ̌
F.r/

ˇ̌2
�R

X
h�1

X
c1;c2�C

1

c1c2

X	

d1 .mod c1/

X	

d2 .mod c2/

d1c2Cd2c1
h.mod c1c2/

1:

If hD 0, then the inner double sum vanishes unless c1 D c2. If h¤ 0, then the con-
gruence fixes dj modulo cj =.cj ; h/. In either case, we confirm (5.23).

Remark
It is clear from the proof that the smooth weight function V.c=C / in the definition of
F.r/ plays no role here and could be replaced with arbitrary bounded weights ˛c � 1

for c � C . The only assumption on R and C used in the proof is C �R1=2.

5.7. Application of the circle method
We now return to (5.22) and treat the m-sum as a shifted convolution problem:

X
n;m

V
� n
M
;
m

M

�
�g.n/�g.m/e

�
˙
2T .r1=2 ˙ �1=2/

n1=2

�Z 1

0

e
�
.m� n� r/˛

�
d˛:

We choose a gigantic parameter Q D T 1000 and replace the characteristic function
on Œ0; 1� with I.˛/, defined in Lemma 13. By Cauchy–Schwarz and trivial bounds,
this introduces an error at most M 2Q"�1=2 which can be neglected. In this way, the
˛-integral becomes

Q

2ƒ

X
q

V
� q
Q

� X
d .mod q/
.d;q/D1

Z 1=Q

�1=Q

e
��d
q

C ˛
�
.m� n� r/

�
d˛:

The portion e.˛.m� n� r// is obviously flat, so we end up with bounding
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1

ƒ

X
q

V
� q
Q

� X
d .mod q/
.d;q/D1

X
n;m

V
� n
M
;
m

M

�

� �g.n/�g.m/e
�
˙
2T .r1=2 ˙ �1=2/

n1=2

�
e
�d
q
.m� n� r/

�
; (5.24)

where ƒ D
P

q V.q=Q/�.q/ D Q2Co.1/. Recall that this represents the m-sum in
(5.22).

5.8. Voronoi again
Having separated the variables m, n by the circle method, we apply the Voronoi for-
mula (Section 5.5) to both sums in (5.24). This is simple for the m-sumX

m

V
� m
M

�
�g.m/e

�dm
q

�
because it contains no Archimedean oscillation. If g is a Maass form, then we get two
terms, one with a Bessel J -function and one with a Bessel K-function, and as before
we use (5.5) for the analysis. The dual variable can be truncated at �Q2=M at the
cost of a negligible error, by the oscillatory behavior of the Bessel J -function (5.1)
with t � 1 and the rapid decay of the Bessel K-function. Using a smooth partition of
unity, we obtain � 1 partial sums of the shape

M

Q

X
m

V
� m
M 0

��M 0M

Q2

��j=tg j

�g.m/e
�
˙

Ndm

q

�
; M 0 �Q2=M: (5.25)

The same analysis (slightly simpler) applies if g is holomorphic.
For the n-sumX

n

V
� n
M

�
�g.n/e

�
˙
2T .r1=2 ˙ �1=2/

n1=2

�
e
�
�
dn

q

�
;

we argue as follows. We note that T r1=2x�1=2 � TR1=2M�1=2 � T " by (5.6) and
(5.20), so there is sizeable oscillation. In particular, we see from the last formula
in (5.5) and Lemma 3 with U D P D M , Y D TR1=2M�1=2, S D Y=M (so that
PS=

p
Y and SU are both � T ") that the BesselK-term is negligible. For the Bessel

J -term, again by (5.5) we need to understand the transformZ
x2R

V
� x
M

�
e
�
˙
2T .r1=2 ˙ �1=2/

x1=2

�
e
�˙2

p
nx

q

�
�

��p
nx

q

�1=2

C
�p

nx

q

�2j=tg j��1

dx;
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which is of the shape (5.15) with

˛ D ˙
2
p
n

q
; ˇ D ˙2T .r1=2 ˙ �1=2/:

The condition (5.16) is satisfied in view of (5.6) and (5.20). From the discussion in
Section 5.4 we conclude that the x-integral is negligible unless

n�
Q2T 2R

M 2
;

in which case it equals, up to a negligible error,

V
� n

Q2T 2R=M 2

�
e
�
˙
4T 1=2.r1=2 ˙ �1=2/1=2n1=4

q1=2

�
�

��TR1=2

M 1=2

�1=2

C
�TR1=2

M 1=2

�2j=tg j��1�TR1=2

M 5=2

��1=2

:

Here we can afford to drop the term involving j=tg j and see that the n-sum is of the
form

1

q

�TR1=2

M 3=2

��1 X
n

V
� n

Q2T 2R=M 2

�
�g.n/e

� Ndn

q

�

� e
�
˙
4T 1=2.r1=2 ˙ �1=2/1=2n1=4

q1=2

�
:

Substituting this and (5.25) back into (5.24), we can replace (5.24) with terms of the
form

M

Q

�M 0M

Q2

��j=tg j M 3=2

TR1=2

1

Q2

X
m

X
n

V
� m
M 0

�
V

� n

Q2T 2R=M 2

�
�g.n/�g.m/

�
X

q

V
� q
Q

�S.˙mC n;�r; q/

q
e
�
˙
4T 1=2.r1=2 ˙ �/1=2n1=4

q1=2

�
: (5.26)

We note that n is always substantially bigger than m, since R � T ", so the arguments
of the Kloosterman sum never vanish.

5.9. Kuznetsov again
Eventually (5.26) has to be inserted into (5.22), but before we do this we focus on
the q-sum which calls for an application of the Kuznetsov formula (see [23, Theo-
rems 16.5 and 16.6]). Before we carry this out, we simplify the exponential a bit. By
a Taylor expansion we can replace n1=4 with .n˙m/1=4, the error being flat since
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T 1=2R1=2m

n3=4Q1=2
� T 1=2R1=2Q2M 3=2

MQ3=2T 3=2R3=4Q1=2
D
M 1=2

TR1=4
� 1

R1=4
� 1:

We can also replace .r1=2 ˙ �1=2/1=2 with r1=4 ˙ 1
2
�1=2r�1=4, the total error being

flat since

T 1=2n1=4

Q1=2R3=4
� T 1=2Q1=2T 1=2R1=4

M 1=2Q1=2R3=4
D
1

C
� 1:

Therefore, the q-sum in (5.26) becomes

X
q

V
� q
Q

�S.˙mC n;�r; q/

q
e
�
˙
4T 1=2r1=4.n˙m/1=4

q1=2

�

� e
�
˙
2.�T /1=2.n˙m/1=4

r1=4q1=2

�
:

The first exponential fits very well into the shape of the Kuznetsov formula, the second
does not. Unfortunately it is not (always) flat, but we can afford to open it by Mellin
inversion. We first add a redundant weight function V.r=R/ and then write

V
� r
R

�
e
�
˙
2.�T /1=2.n˙m/1=4

r1=4q1=2

�
D

Z
<.s/D0

�Z
x2R>0

V
� x
R

�
e
�
˙
2.�T /1=2r1=4.n˙m/1=4

x1=2q1=2

�
xs dx

x

�
r�s ds

2�i
:

The outer s-integral can be truncated at

=s � T 1=2.Q2T 2R=M 2/1=4

R1=4Q1=2
D

T

M 1=2
:

We sacrifice all cancellation in the x-, s-integrals and pull them outside of all sums,
including the r -, m-, n-sums in (5.26) and (5.22) which are currently not displayed.
(We remark that in the “generic” range M � T 2, we sacrifice nothing here.) The
remaining q-sum is of the form

T

M 1=2

X
q

S.˙mC n;�r; q/

q
ˆx

�p
.n˙m/r

q

�
; (5.27)

where x �R and

ˆx.z/D V
� z
Z

�
e
�
˙4.T z/1=2

�
1˙

�1=2

2x1=2

��
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with

Z D
R1=2.Q2T 2R=M 2/1=2

Q
D
RT

M
D
T 3C 2

M 2
(5.28)

by (5.19). It is important that ˆx does not depend on any of the variables n, m, r , q.
We can now apply the Kuznetsov formula to the q-sum. For a quantitative analysis,
we need to understand the three integral transforms

L̂
C.t/D

Z 1

0

ˆx.z/
J2it .z/� J�2it .z/

sinh.�t/

dz

z
;

L̂
�.t/D

Z 1

0

ˆx.z/K2it .z/ cosh.�t/
dz

z
;

L̂ hol.k/D

Z 1

0

ˆx.z/Jk�1.z/
dz

z
:

To this end, it is important to note that ˆx has sizeable oscillation since

T 1=2z1=2 � T 1=2Z1=2 D T 2C=M � T "

by (5.21). We note also, by (5.13) and (5.28), that

Z=T D .TC=M/2 � 1=H 2; (5.29)

so that Z is much smaller than T .
We start with an analysis of L̂

C.t/, recalling the formula (5.1). First, we observe
that it is negligible unless t � T 1=2Z1=2, otherwise we may apply Lemma 3 with

U DZT �"; P DZ; Y D max
�
jt j; T 1=2Z1=2

�
; S D Y=Z:

If t � T 1=2Z1=2, then we can apply Lemma 4 (or in fact the 1-dimensional version
of [6, Proposition 8.2]). We will not compute the stationary point x0 and the shape
of the resulting phase (although it can be done algebraically and leads to a quadratic
equation with a unique solution if potentially the support of V is slightly restricted),
but only bound the size of the integral to be

�
�T 1=2

Z3=2

��1=2 1

.TZ/1=4

1

Z
D

1

.TZ/1=2
:

Here the first factor comes from the stationary phase analysis, the second factor from
(5.1) (noting that Z1=2 C jt j1=2 � jt j1=2 � .TZ/1=4), and the last factor from the
measure dz=z.

For L̂
�.t/, we can argue in the same way, using (5.3), if jt j � Z with a suffi-

ciently large implied constant. For jt j �Z with a sufficiently small implied constant,
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the Bessel K-function is negligible (cf. e.g., [7, (A.3)]), and for jt j � Z we simply
regard the Bessel kernel as part of the weight function and use Lemma 3 with

U D min.ZT �"; 1/; P DZ; Y D T 1=2Z1=2; S D Y=Z

(cf. e.g., [7, (A.1), (A.3)] for the relevant bounds for Bessel functions) to show that
this contribution is negligible, too.

Similarly, we see that L̂ hol.k/ is negligible in all cases.
As an aside, we note that this analysis is independent of potential exceptional

eigenvalues, whose contribution would always be negligible (because of (5.29)).
Summarizing the previous discussion, we can rewrite (5.27), up to a negligible

error, as

T

M 1=2

1

TZ

X
tj �.T Z/1=2

�j .n˙m/�j .�r/

cosh.�tj /
‰.tj /C continuous spectrum; (5.30)

where ‰ is some function of which we only need to know ‰ � 1, and the sum runs
over the Fourier coefficients (in usual normalization) of Hecke Maass cusp forms
for SL2.Z/ with spectral parameter tj . We do not need to be more precise since the
spectral sum (including the continuous contribution) will disappear in a moment when
we apply the Cauchy–Schwarz inequality and the large sieve.

5.10. Cauchy–Schwarz and the large sieve
We recall that the previous display represents the q-sum in (5.26) which itself is the
m-sum in (5.22). Applying the Cauchy–Schwarz inequality, we deduce that the total
contribution to L and QL is ��

p
†1†2, where

� WD
H

TC 1=2

M

Q

�M 0M

Q2

��j=tg j M 3=2

TR1=2

1

Q2

T

M 1=2

1

TZ
;

†1 WD
X

tj �T 2C=M

1

cosh.�tj /

ˇ̌̌X
r

V
� r
R

�
F.r/�j .r/

ˇ̌̌2

C .
 
 
 /;

†2 WD
X

tj �T 2C=M

1

cosh.�tj /

ˇ̌̌X
s

�j .s/G.s/
ˇ̌̌2

C .
 
 
 /;

where .
 
 
 / denotes the continuous spectrum contribution and

G.s/ WD
X

n˙mDs

V
� m
M 0

�
V

� M 2n

Q2T 2R

�
�g.n/�g.m/:
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We prepare for the large sieve by estimating the 2-normX
s

ˇ̌
G.s/

ˇ̌2
D

X
n1˙m1Dn2˙m2

V
�m1

M 0
;
m2

M 0

�

� V
� M 2n1

Q2T 2R
;
M 2n2

Q2T 2R

�
�g.n1/�g.m1/�g.n2/�g.m2/:

We detect the condition n1 ˙m1 D n2 ˙m2 by a Fourier integral
R 1

0
e..n1 ˙m1 �

.n2 ˙m2//˛/d˛ and use Wilton’s bound to conclude thatX
s

ˇ̌
G.s/

ˇ̌2 �M 0Q
2T 2R

M 2
:

Now the scene has been prepared for the endgame with the spectral large sieve of
Deshouillers and Iwaniec [13]. Using this and recalling that Q is very large, we
deduce that �

p
†1†2 is

� H

TC 1=2

M

Q

�M 0M

Q2

��j=tg j M 3=2

TR1=2

1

Q2

T

M 1=2

1

TZ

�
��T 4C 2

M 2
CR

�
R

�1=2�Q2T 2R

M 2


Q2T 2R

M 2

M 0

�1=2

:

Since j=tg j < 1=2, this expression is increasing in M 0, so we can replace M 0

with its largest value Q2=M (up to T ") (cf. (5.25)), so that we can drop the term
.M 0M=Q2/�j=tg j. Simplifying and using (5.28), (5.19), (5.13), and (5.6), we obtain
the final upper bound

� HM 3

Q3R1=2C 3=2T 3


T 2C

M
R1=2 


Q3T 2R

M 5=2

D
HTR

.MC/1=2
D
HT 3C 3=2

M 3=2
� T 3=2

H 1=2
� TH:

This finishes the proof of Theorem 5.

6. Proof of the main results
We deduce Theorems 1 and 2 by applying the combination of Theorems 3, 4, and
5 to the triple product formula (1.5). Recall the setup and the choice of test vectors
from the beginning of Section 4. Ichino’s formula in [22] says that the identity (1.5)
holds with L1 a constant multiple of the matrix coefficient integral as in Theorem 3.
Therefore,

L.1=2;�1 ˝ �2 ˝ �3/

L.1;Ad2 �1/L.1;Ad2 �2/L.1;Ad2 �3/
�Q

ˇ̌̌Z
g2�nG

v1v2v3.g/dg
ˇ̌̌2
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with � D PGL2.Z/. We now appeal to the following regularized version of (1.11) (cf.
[27, (2.10)], [38, Theorem 5.6]). Recall from Section 2.1 our notation for Iwasawa
coordinates on G. For a �-invariant function ˆ on G of rapid decay near the cusps,
we haveZ

g2�nG

ˆ.g/dgD 2

Z
<.s/Da

��s�.s/�.2s/.2s � 1/

�
�Z

�N nGC

ˆ
�
n.x/a.y/k.�/

�
ys dx

dy

y2
d�

� ds
2�i

;

where �N WD � \ N denotes the upper triangular unipotent subgroup of � , GC

denotes the positive-determinant subgroup ofG, and the parameter a > 1 is at our dis-
posal. Note that the s-integral is rapidly convergent due to the decay of �.s/. We apply
this formula withˆD v1v2v3, insert the Fourier expansion and integrate over x. This
gives Z

�N nG

v1v2v3

�
n.x/a.y/k.�/

�
ys dx

dy

y2
d�

D
X

n1;n2;n3¤0
n1Cn2Cn3D0

��1
.n1/��2

.n2/��3
.n3/

p
n1n2n3

Z 1

0

F.n1y;n2y/y
s dy

y2

with F as in (4.2). Shifting the s-contour to the far right, we can restrict the y-integral
to y � Q�", the remaining error being O.Q�N /. On the other hand, since n1 2

Z n ¹0º, the upper bound for F in Theorem 4 implies that we can also restrict to
y �Q" and n1 � 1 at the cost of a negligible error. We insert the asymptotic formula
from Theorem 4. The error terms E2, E3 contribute negligibly, while E1 contributes
�Q�1=2. It remains to consider the contribution of N . We smoothly decompose the
sum over n2 into dyadic ranges n2 � M � Q. We focus on the contribution from
M > 0; the case M < 0 may be treated similarly. We estimate the contribution from
M �Q1=3 trivially (using Cauchy–Schwarz and standard Rankin–Selberg bounds)
by

X
n1�1

ˇ̌
��1

.n1/
ˇ̌ X

n2�M

j��2
.n2/��3

.n1 C n2/j

jn2j

� jn2j

Q

�3=4

� M 3=4

Q3=4
�Q�1=2:

For M �Q1=3C", we insert the full asymptotic formula for N , giving
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L.1=2;�1 ˝ �2 ˝ �3/

L.1;Ad2 �1/L.1;Ad2 �2/L.1;Ad2 �3/

� 1CQ sup
Q1=3C"�M�Q

X
��1

ˇ̌̌X
m

V
� m
M

���2
.m/��3

.mC �/p
jm.mC �/j

� jmj

Q

�3=4

� e
�
˙2

p
Q‰

� �
m

��ˇ̌̌2

for some nice function V (cf. Section 2.4). We implicitly restrict the sum over m to
the support of V.m=M/; in particular, m¤ 0;��. In the given range of M , we can
replace‰.y/with jyj1=2, the error being flat. By the usual procedure (see Section 2.4)
of separating variables and changing the weight function, we arrive at the upper bound

1C sup
Q1=3C"�M �Q

1

.MQ/1=2

X
��1

ˇ̌̌X
m

V
� m
M

�
��2

.m/��3
.mC �/e

�
˙2

p
Qj�=mj

�ˇ̌̌2

:

For �1, �2 fixed, we average this over �3 in a spectral window T �
p
Q � T CH

with H D T 1=3C". From Theorem 5 we obtain the first bounds in Theorems 1 and 2.
The second bound in Theorem 1 follows directly by dropping all but one term (using
positivity of central triple product values), while the second bound in Theorem 2
follows from a standard argument based on the functional equation (see, e.g., [17,
p. 63]).
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