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Abstract For any regularity exponent β < 1/2, we construct non-conservative
weak solutions to the 3D incompressible Euler equations in the classC0t (H

β∩
L
1/(1− 2β)). By interpolation, such solutions belong toC0t B

s
3,∞ for s approaching

1/3 as β approaches 1/2. Hence this result provides a new proof of the flexi-
ble side of the L3-based Onsager conjecture. Of equal importance is that the
intermittent nature of our solutions matches that of turbulent flows, which are
observed to possess an L2-based regularity index exceeding 1/3. Thus our result
does not imply, and is not implied by, the work of Isett (AnnMath 188(3):871,
2018), who gave a proof of the Hölder-based Onsager conjecture. Our proof
builds on the authors’ previous joint work with Buckmaster et al. (Intermittent
convex integration for the 3D Euler equations: (AMS-217), Princeton Uni-
versity Press, 2023.), in which an intermittent convex integration scheme is
developed for the 3D incompressible Euler equations. We employ a scheme
with higher-order Reynolds stresses, which are corrected via a combinatorial
placement of intermittent pipe flows of optimal relative intermittency.
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An intermittent Onsager theorem 225

1 Introduction

We consider the three-dimensional homogeneous incompressible Euler equa-
tions

∂tv + div (v ⊗ v)+ ∇ p = 0 , (1.1a)

div v = 0 . (1.1b)

Here v(·, t) : T3 → R
3 is the velocity and p(·, t) : T3 → R is the pressure,

and we consider the system (1.1) with periodic boundary conditions on T3 =
[−π, π ]3. Without loss of generality, the velocity is taken to have zero mean,
and the pressure is uniquely determined as the zero mean solution of −�p =
div div (v ⊗ v). Smooth solutions v of the 3D Euler equations conserve their
kinetic energy E(t) = 1

2

´
T3
|v(x, t)|2dx .

In this paper, we consider weak solutions v ∈ C0t L2 to (1.1). Since the
Euler system is in divergence form and we consider velocity fields of finite
kinetic energy, the definition of weak solutions is the usual one. The motiva-
tion for considering weak solutions is twofold. First, the Euler equations are
expected to dynamically produce singularities, even from smooth initial condi-
tions. Second, matching the mathematical theory with the physical properties
of turbulent fluids necessitates the consideration of solutions with singular-
ities. Indeed, the Kolmogorov/Onsager theories of turbulence postulate that
solutions to the 3D incompressible Navier–Stokes equations, which repre-
sent a fully developed turbulent flow, exhibit anomalous dissipation of kinetic
energy in the infinite Reynolds number limit. This is an experimental fact
[29,30]. Hence, if the 3D Euler equations are to represent the inertial range
of turbulence at very large Reynolds numbers, one is forced to consider non-
conservative solutions of (1.1), which thusmust be weak solutions, not smooth
ones.
The conservation of kinetic energy for weak solutions to (1.1) was con-

sidered by Onsager [41], who predicted that “turbulent energy dissipation
[...] could take place just as readily without the final assistance of viscosity
[...] because the velocity field does not remain differentiable.” Based on the
computation of the energy flux through expanding Fourier domains, Onsager
formulated a remarkable statement connecting the regularity of aweak solution
v to (1.1) and the validity of the energy conservation law. Onsager’s conjec-
ture asserted that any weak solution v ∈ C0t Cs with s > 1/3 must conserve
kinetic energy, whereas for any s < 1/3 there exist dissipative weak solu-
tions v ∈ C0t Cs to the 3D Euler equations. The rigidity/flexibility dichotomy
expressed by the Onsager conjecture is the mathematical manifestation of an
experimental fact in hydrodynamic turbulence: Kolmogorov’s 4/5-law regard-
ing third order structure functions [29,30].
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226 M. Novack, V. Vicol

Due to the quadratic nature of the nonlinearity in (1.1), the Onsager
exponent 1/3 is intimately connected to an L3-based regularity scale, such
as C0t B

s
3,∞, where we recall that the Besov norm is given by �v�Bsp,∞ =

�v�L p+sup|z|>0 |z|−s�v(·+z)−v(·)�L p , so thatCs(T3) ⊂ Bs3,∞(T3). Indeed,
the rigidity part of the Onsager conjecture was established by Constantin-E-
Titi [18], who proved that any weak solution v ∈ L3t Bs3,∞ ∩ C0t L2x of (1.1)
must conserve kinetic energy if s > 1/3; see also the partial result [28] and
the subsequent refinements in [13,26,27]. Concerning the flexible part of the
Onsager conjecture, after the paradoxical constructions of Scheffer [42] and
Shnirelman [43], a systematic approach towards the resolution of the con-
jecture was proposed in the groundbreaking works [21,23] of De Lellis and
Székelyhidi Jr., who introduced L∞-convex integration andC0-Nash iteration
schemes to fluid dynamics. After a series of important partial results [3,19],
a resolution of the flexible part of the Onsager conjecture was obtained by
Isett [36] in the setting of weak solutions with compact support in time. This
was further refined by Buckmaster, De Lellis, Székelyhidi Jr., and the last
author in [4], by constructing dissipative weak solutions v ∈ C0t Cs to the 3D
Euler equations, for any s < 1/3. For a detailed account of the Onsager theory
of ideal turbulence, and of the mathematical results which turned the Onsager
conjecture into theOnsager theorem, we refer the reader to [6,8,22,24,29,44].
We note that the proofs of rigidity in [13,18,26,27] identify the L3-based

spaces B
1/3+
3,∞ and B

1/3
3,c0
, as the borderline regularity spaces for ensuring that

weak solutions conserve energy/have vanishing energy flux. These spaces are
known to be sharp, for instance in the case of a Burgers shock, which dissi-
pates energy and lies in B

1/3
3,∞. See also the incompressible 3D vector fields

constructed in [9,13–15,28], which have a nonzero flux at critical regularity.
Moreover, the L3-based regularity scale matches the prediction made for third
order structure functions in the Kolmogorov theory of turbulence.
In contrast, the proofs of flexibility in [4,35,36] are in a certain sense “too

strong,” since they construct weak solutions in the L∞-based space C 1/3−
(which implies the same result in B

1/3−
3,∞). These solutions thus do not exhibit

the observed inertial range intermittency of turbulent flows at large Reynolds
number, neither for low order structure functions, nor for high order structure
functions. To be more precise, for p < 3, the pth order inertial range structure
function exponents ζp in fully developed turbulence have consistently been
observed to lie above the Kolmogorov predicted value of p/3. See e.g. [30,
Figure 8.8], [12, Figures 4&5], [37, Figure 3], [34, Figure 3]. These mea-
surements correspond (see also [5,6] for details) to an L p-based regularity
exponent of ζp/p > 1/3. Similarly, for p 
 3, experiments and simulations
show that the inertial range structure function exponents ζp saturate (mean-
ing, remain bounded) as p → ∞. See e.g. [30, Figure 8.8], [34, Figure 6],
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An intermittent Onsager theorem 227

and the discussion in [34, Section D]. These measurements correspond to an
L p-based regularity exponent of ζp/p → 0 as p → ∞, suggesting that the
fully developed isotropic turbulent solutions observed in experiments do not
retain any positive Hölder exponent, even though weak solutions of Euler may
possess Hölder regularity. The culprit is intermittency.
The main goal of this paper is to give a new proof of the flexible side of the

L3-based Onsager conjecture. We construct weak solutions to the 3D Euler
equation in the regularity class C0t (H

1/2− ∩ L∞−) ⊂ C0t B
1/3−
3,∞, which are non-

conservative and exhibit the inertial-range intermittency observed in turbulent
flows.

Theorem 1.1 (Main result) Fix β ∈ (0, 1/2). For any divergence-free
vstart, vend ∈ L2(T3) which have zero mean, any T > 0 and any � >

0, there exists a weak solution v ∈ C([0, T ]; Hβ(T3) ∩ L 2−2β1−2β (T3)) to
the 3D Euler equations (1.1) such that �v(·, 0)− vstart�L2(T3) ≤ � and
�v(·, T )− vend�L2(T3) ≤ �.

Note that as β → 1/2−, the Sobolev regularity index of the weak solutions in
Theorem 1.1 converges to 1/2, while the Lebesgue integrability index converges
to∞, explaining the notation C0t (H 1/2− ∩ L∞−). By interpolation, it follows
that for any s < 1/3, we may choose β sufficiently close to 1/2 to ensure that
v ∈ C0t Bs3,∞, which is the Onsager regularity threshold (see Remark 2.7).
Remark 1.2 (β-model) We point out that the Sobolev regularity statement in
Theorem 1.1 corresponds exactly to the predictions of the phenomenological
model of turbulence known as the β-model, which was introduced by Frisch,
Sulem, and Nelkin [31]. Specifically, if one assumes that singularities concen-
trate on a 2-dimensional set, then the β-model predicts that the second order
structure function exponent is 1, which corresponds to H 1/2 regularity. Sim-
ple heuristic computations indicate that the solutions constructed in this work
do indeed concentrate on a two-dimensional set, which is also the prediction
of Iyer, Sreenivasan, andYeung [34]. For a proof of energy conservationwithin
the assumptions of the β-model, we refer to [25].

Remark 1.3 (Other flavors of flexibility) As in [5], we have chosen to state
Theorem 1.1 in a way that leaves the entire emphasis of the proof on the
regularity of the weak solutions. In terms of flexibility, Theorem 1.1 gives
the existence of infinitely many non-conservative weak solutions of 3D Euler
in the stated regularity class, and moreover shows that the set of wild initial
data is dense in the space of L2 periodic functions of given mean. Using
well-established techniques, see e.g. [3,4,36] and [5, Remarks 1.2, 3.7, 3.8],
we may alternatively establish other variants of flexibility for the 3D Euler
equations (1.1) in the regularity class C0t (H

1/2− ∩ L∞−):
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228 M. Novack, V. Vicol

(a) If the functions vstart and vend in Theorem 1.1 are any two C∞ smooth
stationary solutions of the 3D Euler equations of zero mean, then we may
take � = 0. Since the function 0 and any smooth shear flow are station-
ary solutions to (1.1), this implies the existence of nonzero weak solutions
which have compact support in time. Achieving this would require that
we introduce a temporal cutoff in the convex integration scheme, which
essentially ensures that on temporal regions where a stress is already van-
ishing identically, no further velocity increments need to be added; see [5,
Equation (3.14)].

(b) One may modify the proof of Theorem 1.1 to show that any C∞ function
e : [0, T ] → (0,∞) is the kinetic energy of a weak solution to the 3DEuler
equations in the regularity class C0([0, T ]; H 1/2− ∩ L∞−). This implies
flexibility within the class of dissipative solutions. Achieving this result
would require adding a few inductive assumptions in the convex integration
scheme: we need to measure the distance between the energy resolved at
every step q �→ q + 1 in the convex integration scheme, and the desired
energy profile, see e.g. [3,4,19,23]. In particular, the energy pumped into
the system due to higher order stresses in every sub-step n �→ n+ 1 needs
to be kept track of, and one also needs to keep track of the amount of energy
pumped on the support of each cutoff function, as was done in [7] for stress
cutoffs.

1.1 Minimally technical outline of the proof

We now provide a sketch of the argument used to prove Theorem 1.1, in
order to highlight the most important components. We simultaneously aim to
elide certain technical details, while emphasizing the aspects of our argument
which are distinct from recent well-known convex integration arguments (see
the comparisons in Sects. 1.2.1 and 1.2.2). Finally, while our proof relies
fundamentally on the technology developed in [5], it requires several new
ingredients in order to ensure that the solution v belongs to C0t L

∞−; see
Sect. 1.2.3.
As is customary in Nash-type convex integration schemes for the Euler

equations (see e.g. [6,24]), the solution v of Theorem 1.1 will be constructed
as a limit when q →∞ of solutions vq : T3×R→ R

3 to the Euler–Reynolds
system with a traceless symmetric stress R̊q : T3 × R→ M3×3symm

∂tvq + div (vq ⊗ vq)+∇ pq = div R̊q , (1.2a)

div vq = 0 . (1.2b)

123



An intermittent Onsager theorem 229

The pressure pq is uniquely defined by solving�pq = div div (R̊q−vq⊗vq),
with

´
T3
pqdx = 0. The functions vq and R̊q are assumed to oscillate at

frequencies no larger than λq = a(bq ), where a = a(β) is sufficiently large and
the superexponential growth rate b = b(β) is slightly larger than 1. Adhering
to the convention that all norms are measured uniformly in time, e.g. L p refers
to C0([0, T ]; L p(T3)), we posit that

�

�R̊q
�

�

L1 ≤ δq+1 := λ
−2β
q+1 ,

�

�R̊q
�

�

L∞− ≤ 1 . (1.3)

Thus R̊q → 0 in the L1 topology and is nearly summable in both W 1−,1 and
L∞−. The quadratic nature of the nonlinearity then leads us to posit further-
more that velocity increments wq = vq − vq−1 satisfy

�

�wq
�

�

L2 ≤ δ
1/2
q ,

�

�wq
�

�

L∞− ≤ 1 , (1.4)

so that wq → 0 in L2 and is nearly summable in both H 1/2− and L∞−. The
main inductive step on q asserts the existence of a velocity increment wq+1
and stress R̊q+1 such that (1.2)–(1.4) hold with q �→ q + 1.
In order to construct non-conservative solutions with regularity above 1/3 on

the L2-based Sobolev scale, the results of [18] dictate that the weak solution
must be intermittent—a termwhich is used here tomean that the weak solution
contains spatial concentrations, not just oscillations, and so it has a different
regularity index in an L2-based scale, versus an L∞-based scale.Afirst attempt
to define the velocity increment wq+1 would then be as a sum of products of
the form

a
�

R̊q ,∇vq
�

Wq+1,rq ,ξ , (1.5)

where a(R̊q ,∇vq) oscillates at spatial frequency λq , andWq+1,rq ,ξ is a high-
frequency intermittent pipe flow. More specifically,Wq+1,rq ,ξ is a shear flow
supported in a thin tube of diameter λ−1q+1 around a line parallel to a unit vector
ξ , which has been periodized to scale (λq+1rq)−1, see Proposition 3.3. The
parameter 0 < rq < 1 corresponds both to the measure of the support of the
intermittent pipe flow (which is r2q ) and the effective frequency support (which
is [λq+1rq , λq+1]). As such, it is clear that rq quantifies the intermittent nature
of the velocity incrementwq+1. The low-frequency functiona(R̊q ,∇vq) local-
izes the scheme in space and time by zooming down to the scale λ−1q , at which
R̊q and vq may be treated as spatially homogeneous. The “convex integration
step” via which we construct wq+1 then consists of essentially independent
local iterative steps, which are predicated on the local size of R̊q and∇vq . The
timescale of a(R̊q ,∇vq) is inversely proportional to �∇vq�L∞(supp a). Cheby-
shev’s inequality combined with the global inductive bounds on ∇vq and R̊q
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230 M. Novack, V. Vicol

then controls the sizes of the space-time sets on which each local iterative step
takes place.
At this stage in the argument, it is not clear how to choose the value of the

intermittency parameter rq . It turns out that in order to propagate both H
1/2−

and L∞− bounds, there exists a unique optimal choice of rq ! To see this, we
inspect the simplest error term in R̊q+1, namely the Nash error R̊Nashq+1 , defined
by solving the equation

wq+1 · ∇vq = div R̊Nashq+1 .

Using that �Wq+1,rq ,ξ�L p ≈ r
2/p−1
q and �a(R̊q ,∇vq)�L2p ≈ �R̊q�

1/2
L p , and

using the heuristic that the most costly part of ∇vq is ∇wq , we find that
�

�div−1
�

wq+1 · ∇vq
��

�

L1 � λ−1q+1 · δ
1/2
q+1rq · δ

1/2
q λq ,

�

�div−1
�

wq+1 · ∇vq
��

�

L∞ � λ−1q+1 · r−1q · r−1q−1λq .

As b → 1+ and β → 1/2−, matching the L1 bound for the stress requires
rq � λ

−1/2
q+1λ

1/2
q , while matching the L∞ bound requires rq � λ

−1/2
q+1λ

1/2
q ; see

(8.55) and (8.56) for precise inequalities. Thus our choice of rq is completely
constrained by the simplest error term in the scheme. Since we shall always
quantify rq in terms of powers of the quotient of λ

−1
q+1λq , we refer to this

constraint on rq as the one-half rule for intermittency. Of course, we must
then show that the transport and oscillation errors, defined by solving the
equations

div R̊transq+1 =
�

∂t + vq · ∇
�

wq+1 , div R̊oscq+1 = div
�

R̊q + wq+1 ⊗ wq+1
�

,

also respect this one-half rule which is dictated by the Nash error.
Let us first consider the transport error. Recall cf. [6,24] that Cα-based

convex integration schemes for the Euler equations essentially use global
Lagrangian coordinate systems, predicated on global L∞ bounds for ∇vq .
Instead, as in [5] we are forced to implement local Lagrangian coordinate
systems predicated on the local L∞ bounds for ∇vq which are available
on the support of a(R̊q ,∇vq). Pre-composing the high-frequency pipe flow
Wq+1,rq ,ξ with the local Lagrangian flow map then gives that the transport
error obeys bounds identical to those of the Nash error. Thus, we may expect
the transport error to also respect the one-half intermittency rule.
Unfortunately, the composition of Wq+1,rq ,ξ with Lagrangian flow maps

introduces an intersection problem in the oscillation error: between neighbor-
ing cutoffs a and a�, it may be the case that
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An intermittent Onsager theorem 231

a
�

R̊q ,∇vq
�

Wq+1,rq ,ξ ⊗ a�
�

R̊q ,∇vq
�

W
�
q+1,rq ,ξ � �= 0.

The main innovation in Isett’s proof of the Onsager conjecture [36] was a
“gluing technique,” which solved the intersection problem, but which required
global L∞ bounds on∇vq . The localized nature of our scheme, combinedwith
the inherently nonlocal nature of the Euler equations, appears to preclude the
usage of a gluing technique, in the spirit of [4,36].
We instead solve the intersection problem directly, using the sparsity of

the pipe flows. At an intuitive level, the empty space in between neighboring
pipes provides enough space for us to place new sets of intermittent pipes,
which do not intersect the already existing ones. We refer to this as pipe dodg-
ing. However, if one conceptualizes the spatial support of each a(R̊q ,∇vq)
as being a spheroid of diameter λ−1q , then the one-half rule for intermit-
tency does not provide enough sparsity to solve this intersection problem.
Indeed, [5, Proposition 4.8] shows that pipe dodging on the support of such an
isotropic cutoff requires a three-quarters intermittency rule. We address this
issue by anisotropically shrinking the diameter of the support of each ampli-
tude function a, in a ξ -dependent way. Specifically, if a(R̊q ,∇vq , ξ) is to be
multiplied by a pipe flow parallel to ξ as in (1.5), then we extend the support
of a(R̊q ,∇vq , ξ) to length λ−1q in the direction parallel to ξ and (λq+1rq)−1
in the direction perpendicular to ξ . We use the phrase relative intermittency
to quantify the aspect ratio of the support of a(R̊q ,∇vq , ξ) and implement
it technically via a set of checkerboard cutoffs. We refer to Sect. 5.4 for a
construction of these anisotropic checkerboard cutoffs, Proposition 3.8 for a
proof that the one-half rule provides sufficient relative intermittency to solve
the intersection problem, and Sect. 7.5 for the implementation of these two
ingredients in the context of the oscillation error.
Since the characteristic length scale of R̊q and ∇vq is λ−1q , one may expect

that introducing the artificially smaller length scale (λq+1rq)−1 � λ−1q will
produce unnaturally larger error terms. The first place to look for such a bad
error term would be in the oscillation error terms which are given by

div−1
�

∇
�

a(R̊q ,∇vq , ξ)2
� �

Id −−
ˆ

T3

�

(Wq+1,rq ,ξ ⊗Wq+1,rq ,ξ )
	

. (1.6)

The first key insight is that the differential operator in the above expression
is not the full gradient: it is the directional derivative ξ · ∇, as Wq+1,rq ,ξ is
parallel to ξ . Hence, from the perspective of this error term, the anisotropy
of a(R̊q ,∇vq , ξ) is essentially free, since in the direction of ξ the amplitude
function a only oscillates at frequency λq .
However, the error term in (1.6) presents other difficulties. Since this term

inherits its minimum effective frequency of λq+1rq from the mean-free part of
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Wq+1,rq ,ξ ⊗Wq+1,rq ,ξ , the leftover error terms in (1.6) live at frequencies of
absolute value in the range [λq+1rq , λq+1]. Simple heuristic estimates indicate
that the lowest frequency portion of these error terms is too large in L1 to be
absorbed into R̊q+1, while the highest frequency portion is too large in L∞ to
be absorbed into R̊q+1. Rectifying the first issue requires identifying higher
order stresses R̊q,n living at intermediate frequencies λq,n ∈ [λq+1rq , λq+1],
which are corrected by corresponding higher order perturbations

wq+1,n = a
�

R̊q,n,∇vq , ξ
�

Wq+1,rq,n,ξ .

The minimum frequency of the increment wq+1,n , which equals λq+1rq,n ,
is defined to converge to λq+1 as n approaches its maximum value of nmax.
This allows the L1 stress estimates to just barely close. Rectifying the second
issue requires a non-trivial estimate (see Lemma 3.5) on the L∞ size of the fre-
quency projected squared pipe flow P[λq,n�−1,λq,n� ](Wq+1,rq,n,ξ ⊗Wq+1,rq,n,ξ ).
Somewhat amazingly, this estimate respects the one-half rule in the sense that
the L∞− size of the resulting stress is exactly 1 if one chooses rq = λ

1/2
q λ
−1/2
q+1.

We then correct the higher order stresses R̊q,n according to a generalization
of the one-half rule; in other words, the pipes Wq+1,rq,n,ξ used to correct
R̊q,n , which lives at frequency λq,n ∈ [λq+1rq , λq+1], have minimum fre-
quency λ

1/2
q,nλ

1/2
q+1. This is again the minimum amount of intermittency needed

to ensure higher order pipe dodging, i.e., that pipes from overlapping cutoff
functions a(R̊q,n,∇vq , ξ) and a�(R̊q,n�,∇vq , ξ �) do not intersect. Thus,wq+1
is finally constructed as a sumof termsof the forma(R̊q,n,∇vq , ξ)Wq+1,rq,n,ξ ,
which collectively obey the inductive bounds required of velocity increments,
i.e. (1.4) with δ

1/2
q+1 replaced by a suitable δ

1/2
q+1,n , and they also produce a stress

R̊q+1 obeying (1.3).
In summary, in the iteration scheme described above, the one-half rule

presents the Goldilocks amount of intermittency needed to obtain both H 1/2−
and L∞− bounds on the velocity. At a technical level, it appears that the
choice of parameters in this scheme is essentially fixed, by scaling: the Nash,
transport, and oscillation errors each impose exactly the same intermittency
restrictions. Implementing the above strategy rigorously is made cumbersome
by the need to precisely localize all parts of the argument on suitable regions
of space-time. This technically involved part of the proof is encoded in the
design of cutoff functions, recursively for the velocities and iteratively for the
stresses, which effectively play the role of a joint Eulerian-and-Lagrangian
wavelet decomposition (see Sect. 5). This localization machinery was previ-
ously developed in our earlier joint work with Buckmaster and Masmoudi [5],
and this part of the argument can be used essentially out of the box. In this
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manuscript, we therefore just focus on the novel aspects of the intermittent
convex-integration/Nash iteration scheme.

1.2 Comparison and contrast with existing works

1.2.1 Hölder schemes

The techniques in the present work share a number of generic features with
the construction of non-conservative solutions in Cαt,x for α < 1/3 in [36], and
its subsequent optimizations in [4] and [35]. Foremost among these features
is the usage of some variation of Mikado/pipe flows rather than Beltrami
flows, an idea originating in [19] and used additionally in recent works such
as [20,32]. In contrast with Beltrami flows, Mikado/pipe flows enjoy stability
on the full Lipschitz timescale, which appears necessary in order to reach
sharp thresholds in the Nash and transport errors in both the intermittent and
homogeneous settings. In addition, we require the propagation of material
derivative estimates for the stress, as in the schemes in [3] and [40], since in
the absence of a gluing step in the iteration, these bounds do not come for free.
Implementation of these basic concepts, however, looks very different in

the intermittent setting than in the homogeneous setting. The most glaring
difference is in the type of derivative estimates which must be propagated
on both the stress R̊q and the gradient of velocity ∇vq . Sharp material and
spatial derivative estimates for homogeneous schemes have typically only been
required at very low order, perhaps one or two material derivatives and three
spatial derivatives. Furthermore, such estimates can always be made globally
due to the homogeneous character of the stress and velocity. In our setting,
sharp material and spatial derivative estimates have to be made both locally,
and to essentially infinite order. As in [5], propagating these estimates requires
a careful construction of stress and velocity cutoffs, and a localized inverse
divergence operator for which derivative estimates on the input lead directly
to corresponding estimates on the output. We expect these tools to be widely
applicable in problems which require sharp derivative estimates.
Furthermore, there are significant differences between the present work

and [4,35,36] in the estimation of nonlinear error terms. The most obvious
difference is in the approaches used to solve the intersection problem. The
gluing technique in [4,36] relied on a dynamic argument, which used classical
stability properties of the Euler equations to localize the stress R̊q to disjoint
regions in time. Conversely, the pipe dodging technique we use is predicated
entirely on an optimal exploitation of the sparsity of intermittent pipe flows.
While we rely on sharp local information about the deformations of various
pipes subjected to a background transport velocity, the fact that the transport
velocity field solves the Euler–Reynolds system is irrelevant.
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Let us emphasize that our estimates on the error term in (1.6), which includes
the nonlinear self-interaction of intermittent pipe flows, are sharp in both L1

and L∞. This is in contrast to the estimates on the corresponding nonlinear
error term in the homogeneous setting, which are strong enough to allow for
C

1/2 regularity, and thus offer no relevant regularity restriction.
Finally, one may draw a connection between our result and the problem of

approximating a short embedding of a Riemannian manifold by an isometric
embedding, for which there is some evidence that C1,1/2 demarcates the sharp
threshold between rigidity and flexibility [24,33]. Our result realizes a version
of this “1/2 threshold”, but in the appropriate topology for a different PDE with
a quadratic nonlinearity.

1.2.2 Intermittent schemes

The usage of intermittency in Nash-style iterative schemes originated in the
work of Buckmaster and the second author [7]. The fundamental idea is that an
L2-normalized function with significant spatial concentrations has an L1 norm
which is much smaller than its L2 norm. The estimation of linear error terms
in L1 then relies crucially on this property. Intermittent building blocks have
been used to great effect in a number of works since; we refer for example to
[1,2,10,11,16,17,38], and to the reviews [6,8] and the references cited therein.
The intermittent building block utilized in this paper was first used byModena
and Székelyhidi in [39]. The estimation in L1 of the Nash and transport errors
in our scheme relies in part on the intermittency of the pipe flows, and in this
limited sense, intermittency serves the same purpose in our context as in other
works.
Sparsity factors into our arguments in several other important ways which

however distinguish the present work from other intermittent schemes.We first
point to the oscillation error, in which the sparsity of pipe flows contributes
favorably by providing the needed degrees of freedom to solve the intersec-
tion problem. Secondly, and decidedly less favorably, intermittency serves to
complicate any local or global L∞ estimates, especially for the Lagrangian
transport maps. As our previous joint work with Buckmaster and Masmoudi
[5]was the first example of a convex integration schemewhich combined inter-
mittency with transport maps, other intermittent convex integration schemes
have generally not faced this difficulty; the only other exception to this is joint
work of the first author with Beekie for the α-Euler equations [1]. Third, the
higher order stresses are a feature only shared with [5], although it is conceiv-
able that higher-order stresses could sharpen the regularity estimates obtained
in other intermittent Nash-style schemes. Finally, both the sharp L∞− and
H 1/2− require an almost geometric growth of frequencies, which again is a
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feature only shared with [5] in the class of intermittent schemes, to the best of
the authors’ knowledge.

1.2.3 The H
1/2− scheme in [5]

More specific comparisons and differences may be identified between the
present work and our previous paper joint with Buckmaster, Masmoudi [5].
At a conceptual level, the most significant differences are the new constraints
on the amount of intermittency which may be utilized. As described earlier,
simultaneously reaching the H 1/2− and L∞− thresholds in the Nash and trans-
port error terms requires a specific choice of the intermittency parameter rq .
In [5], only a lower bound on intermittency was required since the final solu-
tion also enjoyed H 1/2− regularity, but Lebesgue integrability only close to L4.
Similarly, enacting pipe dodging in the nonlinear error terms in [5] required
only a minimum amount of intermittency, and the self-interaction term in (1.6)
was essentially impervious to the choice of rq . In the current argument, the use
of anistropy in the pipe dodging scheme improves the approach taken in [5],
while simultaneously preserving the size of the error term (1.6). Furthermore,
analysis of this error term utilizes the fact that intermittency may not affect
the L p norms of a function itself, but rather the L p norms of its derivatives.
The simplest example of the latter concept is a one-dimensional shock, which
is fully intermittent in the sense that it lies in B

1/p
p,∞ for 1 ≤ p ≤ ∞, but has

L p norms of order 1 for all p.
At the technical level, there are a few noteworthy similarities and differences

between [5] and the present work. First, we are able to reuse the framework of
the mollification argument, the “Appendix” full of technical lemmas on sums
and iterates of operators, and the structure of the inverse divergence operator.
The generalizations required for each of these tools are simple, and merely
require replacing every instance of L1 or L2 norm in the previous arguments
with an L∞ norm. Furthermore, all estimates related to flow maps (cf. Corol-
lary 5.10) and deformations of intermittent pipe flows (cf. Lemma 3.7) have
been taken verbatim from [5]. Next, the L2 inductive estimates on velocity
increments and the L1 inductive estimates on the stress R̊q match those from
[5]. However, we nowpropagate sharp L∞ bounds on both velocity increments
and stresses, cf. (2.8b), (2.9b), and (2.10b). Small power losses in frequency
in these estimates are encoded using the parameter Cu. We are able to reuse
the construction of the velocity and stress cutoff functions from [5]. However,
while the old estimates deferred to the Sobolev inequality to achieve lossy uni-
form bounds (see the bounds for the parameters imax in [5, Lemma 6.14] and
jmax in [5, Lemma 6.35]), the current argument appeals to the new, sharp, L∞
bounds which have been inductively propagated (see Lemmas 5.7 and 5.14).
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The identification of the error terms in Sect. 7.3 is very similar to that
in [5], save for two differences. The first difference is the elimination of
the unnecessary parameter p from the scheme, which was used to minimize
the accumulation of small power losses in frequency which arise from the
repeated cycles of constructing higher order stresses and velocity increments.
We instead minimize such losses by ensuring that an error term which arrives
at the higher order stress R̊q,n has endured at most ≈ log2 n previous cycles
of higher order stresses and increments. This requires a choice of nmax which
is large enough to guarantee that log2 nmaxnmax

� 1, cf. (8.2). Secondly, the identi-
fication and estimation of the divergence corrector errors are no longer trivial,
due to the anistropy of the checkerboard cutoff functions. However, we may
again use that the anistropy of a cutoff function is fundamentally related to the
direction of the axis of the associated pipe to ensure that divergence corrector
bounds are satisfactory; see Sect. 7.6 for details.

2 Inductive bounds and the proof of the main theorem

2.1 General notations

Throughout the paper, we shall say that the velocity field v solves the Euler–
Reynolds system with stress R̊, if (v, R̊) solve

∂tv + div (v ⊗ v)+ ∇ p = div R̊, div v = 0 ,
for a uniquely defined zero mean pressure p. As already discussed in (1.2),
for q ≥ 0 we consider a velocity field vq which solves the Euler–Reynolds
system with stress R̊q .
In order to circumvent the derivative-loss problem [23], we use the space-

time mollification operator Pq,x,t defined in (4.1) below, to smoothen vq and
define:

v�q := Pq,x,tvq , (2.1)

for all q ≥ 0. In particular, cf. (4.1) we have that spatial mollification is
performed at scale�λ−1q (which is just slightly smaller thanλ−1q ), while temporal
mollification is done at scale �τq−1 (which is much smaller than τq−1). Next,
for all q ≥ 1, define

wq := vq − v�q−1, uq := v�q − v�q−1 . (2.2)

For consistency of notation, define w0 = v0 and u0 = v�0 . Note that

uq = Pq,x,twq + (Pq,x,tv�q−1 − v�q−1) (2.3)
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so that we may morally think that uq = wq+ a small error term. We use the
following notation for the material derivative corresponding to the vector field
v�q :

Dt,q := ∂t + v�q · ∇ . (2.4)

With this notation, we have that

Dt,q = Dt,q−1 + uq · ∇ =: Dt,q−1 + Dq . (2.5)

Remark 2.1 (Geometric upper bounds with two bases) For all n ≥ 0 we define

M (n, N∗, λ,�) := λmin{n,N∗}�max{n−N∗,0} .

This notation has the following consequence, which is used throughout the
paper: if 1 ≤ λ ≤ �, then

M (a, N∗, λ,�)M (b, N∗, λ,�) ≤M (a + b, N∗, λ,�) .

When either a or b are larger than N∗ the above inequality creates a loss; for
a + b ≤ N∗, it is an equality.
Remark 2.2 (All norms are uniform in time) Throughout this section, and
the remainder of the paper, we shall use the notation � f �L p to denote
� f �L∞t (L p(T3)). That is, all L p norms stand for L p norms in space, uniformly
in time. Similarly, when we wish to emphasize a set dependence of an L p

norm, we write � f �L p(�), for some space-time set � ⊂ R× T3, to stand for
�1� f �L∞t (L p(T3)).

2.2 Inductive estimates

Theproof is based onpropagating estimates for solutions (vq, R̊q)of theEuler–
Reynolds system (1.2), inductively for q ≥ 0. In order to state these bounds,
we first need to fix a number of parameters in terms of which these inductive
estimates are stated. We start by picking a regularity exponent β ∈ [1/3, 1/2),
else the theorem is known cf. [4,36], and a super-exponential rate parameter
b ∈ (1, 3/2) such that 2βb < 1. In terms of this choice of β and b, a number
of additional parameters (nmax, . . .Nfin) are fixed, whose precise definition is
summarized for convenience in items (iii)–(xiii) of Sect. 8.1. Note that at this
point the parameter a∗(β, b) from item (xiv) in Sect. 8.1 is not yet fixed. With
this choice, we then introduce the fundamental q-dependent frequency and
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amplitude parameters from Sect. 8.2. We state here for convenience the main
q-dependent parameters defined in (8.15), (8.18), (8.17), (8.19), and (8.22):

λq = 2�(bq ) log2 a� ≈ λbq−1 , (2.6a)

δq = λ
β(b+1)
1 λ−2βq , (2.6b)

τ−1q = δ
1/2
q λq�

c0+11
q+1 , (2.6c)

�q+1 = λq+1λ−1q ≈ λ(b−1)q , (2.6d)

�q+1 = �
ε�
q+1 ≈ λ(b−1)ε�q , (2.6e)

where the constant c0 is defined by (8.5), and ε� is chosen as in (8.6). Next, we
define the n-dependent frequency, intermittency, and amplitude parameters

λq,n ≈
⎧

⎨

⎩

λq�
6
q+1, n = 0

λ
1
2− n

2(nmax+1)
q λ

1
2+ n

2(nmax+1)
q+1 , 1 ≤ n ≤ nmax

, (2.7a)

rq+1,n ≈ λ
1/2
q,nλ

−1/2
q+1�

−2
q+1 , (2.7b)

δq+1,n =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δq+1�−CRq , n = 0
δq+1,0λ

1/2
q λ
−1/2
q+1�

14+Cb
q+1 , n = 1

δq+1,0λqλ−1q,n−1�
13+Cb
q+1

�

�
1

2(nmax+1)
q+1 �

9+Cb
q+1

�ϒ(n)
, 2 ≤ n ≤ nmax

.

(2.7c)

In the above display, δq+1,n is defined to account for small losses (the quantity
in parentheses) raised to a power ϒ(n) (which is bounded independently of
q, cf. (6.6) and (6.8)). Therefore one may adhere to the heuristic that δq+1,n
is roughly speaking equal to δq+1λqλ−1q,n . We refer also to (8.23) and (8.24),
where the precise meaning of ≈ in (2.7a)–(2.7b) is given.
Remark 2.3 (Usage of the symbols ≈, �, and choice of a) The ≈ symbols
in (2.6) and (2.7) indicate that the left side of the ≈ symbol lies between two
(universal) constant multiples of the right side, see e.g. (8.16). Throughout the
paper we make frequent use of the symbol�. Any implicit constants indicated
by � are only allowed to depend on the parameters defined in Sect. 8.1, items
(i)–(xiii). The implicit constants in� are always independent of the parameters
a and q, appearing in (2.6b). This allows us at the end of the proof, cf. item (xiv)
inSect. 8.1 to choosea∗(β, b) to be sufficiently large so that for alla ≥ a∗(β, b)
and all q ≥ 0, the parameter �q+1 appearing in (2.6e) is larger than all the
implicit constants in � symbols encountered throughout the paper. That is,
upon choosing a∗ sufficiently large, any inequality of the type A � B which
appears in this manuscript, may be rewritten as A ≤ �q+1B, for any q ≥ 0.
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In order to state the inductive assumptionswe use four large integers, defined
precisely in Sect. 8.1. For the moment we simply note that these fixed param-
eters are independent of q and satisfy the ordering

1� Ncut,t � Nind,t � Nind,v � Nfin .

The precise definitions and the meaning of the� symbol in are given in (8.9),
(8.10), (8.11), and (8.14).

2.2.1 Primary inductive assumption for velocity increments

We make L2 and L∞ inductive assumptions for uq � = v�q� − v�q�−1 at levels
q � strictly below q. For all 0 ≤ q � ≤ q − 1 we assume that

�

�

�ψi,q �−1DnDmt,q �−1uq �
�

�

�

L2

≤ δ
1/2

q �M
�

n, 2Nind,v, λq �,�λq �
�M

�

m,Nind,t, �iq �τ
−1
q �−1,�τ

−1
q �−1

�

(2.8a)
�

�

�DnDmt,q �−1uq �
�

�

�

L∞(suppψi,q�−1)

≤ �
Cu
q � �

1/2

q �M
�

n, 2Nind,v, λq �,�λq �
�M

�

m,Nind,t, �
i+1
q � τ−1q �−1,�τ

−1
q �−1

�

(2.8b)

holds for all 0 ≤ n + m ≤ Nfin.
At level q, we assume that the velocity incrementwq satisfies corresponding

L2 and L∞ bounds
�

�

�ψi,q−1DnDmt,q−1wq
�

�

�

L2

≤ �−1q δ
1/2
q λ

n
qM

�

m,Nind,t, �i−1q τ−1q−1, �
−1
q �τ−1q−1

�

(2.9a)
�

�

�DnDmt,q−1wq
�

�

�

L∞(suppψi,q−1)

≤ �Cu−1q �
1/2
q λ

n
qM

�

m,Nind,t, �iqτ
−1
q−1, �

−1
q �τ−1q−1

�

(2.9b)

for all 0 ≤ n,m ≤ 7Nind,v.

2.2.2 Inductive assumptions for the stress

For the Reynolds stress R̊q , we make L1 and L∞ inductive assumptions
�

�ψi,q−1DnDmt,q−1 R̊q
�

�

L1
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≤ �−CRq δq+1λnqM
�

m,Nind,t, �i+1q τ−1q−1, �
−1
q �τ−1q−1

�

(2.10a)
�

�DnDmt,q−1 R̊q
�

�

L∞(suppψi,q−1)

≤ �Cuq λnqM
�

m,Nind,t, �i+2q τ−1q−1, �
−1
q �τ−1q−1

�

(2.10b)

for all 0 ≤ n,m ≤ 3Nind,v.
2.2.3 Inductive assumptions for the previous generation velocity cutoff

functions

More assumptions are needed in relation to the previous velocity perturbations
and old cutoff functions. First, we assume that the velocity cutoff functions
form a partition of unity for q � ≤ q − 1:

�

i≥0
ψ2i,q � ≡ 1 , and ψi,q �ψi �,q � = 0 for |i − i �| ≥ 2 . (2.11)

Second, we assume that there exists an imax = imax(q �) > 0, which is bounded
uniformly in q � as

imax(q
�) ≤ 1+ Cu +

1/2(b − 1)+ βb

ε�(b − 1)b , (2.12)

such that for all q � ≤ q − 1,

ψi,q � ≡ 0 for all i > imax(q
�) , and �

imax(q �)
q �+1 ≤ �

Cu
q �+1�

1/2

q � δ
−1/2
q � .

(2.13)

Remark 2.4 (Products of non-commuting operators) The fact that space
derivatives D (we do not dinstinguish between ∂x1, ∂x2, ∂x3 , but rather
denote them all with D) and time derivatives ∂t do not commute with the
material derivative Dt,q (see (2.4)), or with the directional derivative Dq
(see (2.5)), requires that we inductively propagate mixed derivative estimates
for the velocity cutoff functions. An example of such a mixed derivative is
Dα1Dβ1

t,q . . . D
αk Dβk

t,q for some multi-indices α = (α1, . . . , αk) and β =
(β1, . . . , βk) where α,β ∈ Nk0. Throughout the paper, we will accordingly
abbreviate these mixed derivative operators as

DαDβt,q :=
k
�

�=1
Dα�Dβ�

t,q , and DαDβq :=
k
�

�=1
Dα�Dβ�

q , (2.14)
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whenever α,β ∈ Nk0, and q ≥ 0.
For all 0 ≤ q � ≤ q−1 and 0 ≤ i ≤ imax we assume the following pointwise

derivative bounds for the cutoff functions ψi,q � . For mixed space and material
derivatives (recall the notation from (2.4), (2.14)) we assume

|DαDβt,q �−1ψi,q � |
ψ
1−(|α|+|β|)/Nfin
i,q �

�M �|α|,Nind,v, �q �λq �, �q ��λq �
�

× M
�

|β|,Nind,t − Ncut,t, �i+3q �+1τ
−1
q �−1, �

−1
q �+1�τ

−1
q �

�

(2.15)

for k ≥ 0 and α,β ∈ Nk0 with |α| + |β| ≤ Nfin. Lastly, we consider mixtures
of space, material, and directional derivatives (recall the notation from (2.5),
(2.14)). With M,α,β and k as above, and with N ≥ 0, we assume

|DN Dαq �Dβt,q �−1ψi,q � |
ψ
1−(N+|α|+|β|)/Nfin
i,q �

�M �

N ,Nind,v, �q �λq �, �q ��λq �
�

(�
i−c0
q �+1τ

−1
q � )
|α|

× M
�

β,Nind,t − Ncut,t, �i+3q �+1τ
−1
q �−1, �

−1
q �+1�τ

−1
q �

�

(2.16)

for all N + |α| + |β| ≤ Nfin.
In addition to the above pointwise estimates for the cutoff functions ψi,q � ,

we also assume that we have a good L1 control. More precisely, we postulate
that

�

�ψi,q �
�

�

L1 � �
−2i+Cb
q �+1 where Cb = 4+ b

b − 1 (2.17)

holds for 0 ≤ q � ≤ q − 1 and all 0 ≤ i ≤ imax(q �).
2.2.4 Secondary inductive assumptions for velocities

Next, for 0 ≤ q � ≤ q − 1, 0 ≤ i ≤ imax, k ≥ 1, and α,β ∈ Nk0, we assume
that the following mixed space-and-material derivative bounds hold

�

�DαDβt,q �−1uq �
�

�

L∞(suppψi,q� )

� (�i+1q �+1δ
1/2

q � )M
�|α|, 2Nind,v, �q �λq �,�λq �

�

×M
�

|β|,Nind,t, �i+3q �+1τ
−1
q �−1, �

−1
q �+1�τ

−1
q �

�

(2.18)
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for |α| + |β| ≤ 3Nfin/2+ 1,
�

�DαDβt,q �Dv�q�
�

�

L∞(suppψi,q� )

� (�i+1q �+1δ
1/2

q ��λq �)M
�|α|, 2Nind,v, �q �λq �,�λq �

�

× M
�

|β|,Nind,t, �i−c0q �+1τ
−1
q � , �

−1
q �+1�τ

−1
q �

�

(2.19)

for |α| + |β| ≤ 3Nfin/2, and

�

�DαDβt,q �v�q�
�

�

L∞(suppψi,q� )

� (�i+1q �+1δ
1/2

q � λ
2
q �)M

�|α|, 2Nind,v, �q �λq �,�λq �
�

× M
�

|β|,Nind,t, �i−c0q �+1τ
−1
q � , �

−1
q �+1�τ

−1
q �

�

(2.20)

for |α| + |β| ≤ 3Nfin/2 + 1. Lastly, for N ≥ 0 and N + |α| + |β| ≤ 3Nfin/2 + 1,
we postulate that mixed space-material-directional derivatives satisfy

�

�DN Dαq �D
β

t,q �−1uq �
�

�

L∞(suppψi,q� )

� (�i+1q �+1δ
1/2

q � )
|α|+1M �

N + |α|, 2Nind,v, �q �λq �,�λq �
�

× M
�

|β|,Nind,t, �i+3q �+1τ
−1
q �−1, �

−1
q �+1�τ

−1
q �

�

(2.21a)

� (�i+1q �+1δ
1/2

q � )M
�

N , 2Nind,v, �q �λq �,�λq �
�

(�
i−c0
q �+1τ

−1
q � )
|α|

× M
�

|β|,Nind,t, �i+3q �+1τ
−1
q �−1, �

−1
q �+1�τ

−1
q �

�

. (2.21b)

Remark 2.5 As shown in [5, Remark 3.4], (2.21b) automatically implies the
bounds

�

�

�DN DMt,q �uq �
�

�

�

L∞(suppψi,q� )
� (�i+1q �+1δ

1/2

q � )M
�

N , 2Nind,v, �q �λq �,�λq �
�

× M
�

M,Nind,t, �
i−c0
q �+1τ

−1
q � , �

−1
q �+1�τ

−1
q �

�

(2.22)

for all N + M ≤ 3Nfin/2+ 1, while in a similar way, (2.16) implies that

|DN DMt,q �ψi,q � |
ψ
1−(N+M)/Nfin
i,q �

�M �

N ,Nind,v, �q �λq �, �q ��λq �
�
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× M
�

M,Nind,t − Ncut,t, �i−c0q �+1τ
−1
q � , �

−1
q �+1�τ

−1
q �

�

(2.23)

for all N + M ≤ Nfin.

2.3 Main inductive proposition

The main inductive proposition, which propagates the inductive estimates in
Sect. 2.2 from step q to step q + 1, is as follows.
Proposition 2.6 Fix β ∈ [1/3, 1/2) and choose b ∈ (1, 1/2β). Solely in terms of
β and b, define the parameters nmax, Cb, CR, c0, ε� , Cu, α, Ncut,t, Ncut,x,
Nind,t, Nind,v, Ndec, d, and Nfin, by the definitions in Sect.8.1, items (i)–(xiii).
Then, there exists a sufficiently large a∗ = a∗(β, b) ≥ 1, such that for any
a ≥ a∗, the following statement holds for any q ≥ 0. Given a velocity field vq
which solves the Euler–Reynolds system with stress R̊q , define v�q , wq , and

uq via (2.1)–(2.2). Assume that {uq � }q−1q �=0 satisfies (2.8), wq obeys (2.9), R̊q
satisfies (2.10), and that for every q � ≤ q − 1 there exists a partition of unity
{ψi,q � }i≥0 such that properties (2.11)–(2.13) and estimates (2.15)–(2.21) hold.
Then, there exists a velocity field vq+1, a stress R̊q+1, and a partition of unity
{ψi,q}q≥0, such that vq+1 solves the Euler–Reynolds system with stress R̊q+1,
uq satisfies (2.8) for q � �→ q, wq+1 obeys (2.9) for q �→ q + 1, R̊q+1 satisfies
(2.10) for q �→ q + 1, and the ψi,q are such that (2.11)–(2.21) hold when
q � �→ q.

The proof of Proposition 2.6 takes up the bulk of the remaining part of
the paper, cf. Sects. 3–7. Here we just give a road map of which proofs are
contained in what sections:

• In Sect. 3, we recall the construction and important properties of intermit-
tent pipe flows from [5]. We however prove a new estimate for squared
pipe densities in Lemma 3.5, and an updated version of the pipe dodging
strategy in Proposition 3.8.
• In Sect. 4 we mollify the Euler–Reynolds system at level q, define v�q , and
show that uq satisfies (2.8) with q � replaced by q. This argument requires
few changes when compared to [5, Section 5].
• In Sect. 5 we construct the velocity cutoffs at level q, namely {ψi,q}i≥0,
and show that the inductive assumptions (2.11)–(2.21) hold for q � replaced
by q. This part of the argument is technically quite involved, but we take
advantage of the fact that it is identical to the proof in [5, Section 6], except
for the new bound for imax. The new bound on imax is the only place where
the propagated L∞ bounds are required, and we give the full details of this
part of the argument in Lemma 5.7.
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• In Sect. 6, we present Proposition 6.1, which gives the existence of a pair
(wq+1, R̊q+1)which satisfies the remaining inductive bounds, namely (2.9)
and (2.10), with q replaced by q + 1.
• In Sect. 7 we give the proof of Proposition 6.1, thereby concluding the
proof of Proposition 2.6, once a is taken sufficiently large with respect to
(β, b), as in Sect. 8.1, item (xiv). This is the main part of the proof, and it is
substantially different from the corresponding argument in [5, Section 8].

2.4 Proof of the main theorem

Weconclude this section by showinghowProposition 2.6 impliesTheorem1.1,
upon potentially choosing a ≥ a∗ even larger, depending also on the functions
vstart, vend, and on the T, � > 0 from the statement of Theorem 1.1. This
argument is nearly identical to that in [5, Section 3.4]. We also give here the
proof that the constructed solutions lie in C0t B

1/3−
3,∞, cf. Remark 2.7 below.

First, let a∗ = a∗(β, b) be as in Proposition 2.6, which holds for any a ≥ a∗.
Second, construct the pair (v0, R̊0), which solve the Euler–Reynolds system,
exactly as in [5, Equations (3.30)–(3.31)]. In essence, v0 is a temporal interpo-
lation betweenmollified versions of vstart and vend, and R̊0 is the resulting error
made in the Euler equations (1.1). Third, we define v−1 = v�−1 = u−1 ≡ 0,
and we let ψ0,−1 ≡ 1 and ψi,−1 ≡ 0 for all i ≥ 1. Lastly, it is convenient to
denote τ−1−1 = �0 := λ

ε�
0 ,�τ

−1
−1 = �30 = λ

3ε�
0 , and �0 = λ0.

With these choices, we have already verified in [5, Section 3.4] that if
a ≥ a∗ is taken to be sufficiently large, depending also on vstart, vend, T, �, then
u−1 ≡ 0 satisfies (2.8a) (and trivially also (2.8b)), w0 = v0 obeys (2.9a), R̊0
satisfies (2.10a), and we have that (2.11)–(2.21) hold trivially. Thus it remains
to show that (v0, R̊0) obey the uniform estimates (2.8b) and (2.10b), which
were not present in [5]. But these estimates are easy to satisfy since both

�
Cu−1
0 �

1/2
0 ≥ a1/2, and �Cu0 = a

1
(b−1)(nmax+1) , may be made arbitrarily large,

upon choosing a to be sufficiently large.
As such, the inductive estimates (2.8)–(2.21) hold for the base case of the

induction q = 0, and we may inductively apply Proposition 2.6 for all q ≥ 1,
to produce a sequence of velocity fields vq which solve the Euler–Reynolds
system with stress R̊q , and a sequence of velocity cutoff functions ψi,q , such
that the bounds (2.8)–(2.21) hold for all q ≥ 0. Then, by construction, we have
that for any β � < β, the series

�

q≥0(vq+1−vq) =
�

q≥0(wq+1+ (v�q −vq))
is absolutely summable in C0t H

β � , justifying the definition of the limiting
velocity field v = v0 +�

q≥0(vq+1 − vq) ∈ C0t Hβ � . As R̊q → 0 in C0t L
1,

the function v is a weak solution of the 3D Euler system (1.1). Moreover,
as was shown in [5, Section 3.4], the L2 distance between v(·, 0) and vstart,
respectively v(·, T ) and vend, is less than �.
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In order to conclude the proof of the theorem, we only need to show that v ∈
C0t L

2−2β
1−2β . For this purpose, note that we have the identity v = limq→∞ vq =

�

q≥0 uq . Using the bounds on uq provided by (2.8) we may sum over 0 ≤
i ≤ imax(q) using the partition of unity property (2.11), and use the definitions
(8.2a) and (8.7), to arrive at

�

�uq
�

�

L2 ≤ Cδ
1/2
q = λ

β(b+1)
2

1 λ−βq , and
�

�uq
�

�

L∞ ≤ C�Cuq �
1
2
q ≈ Cλ

b−1
b ( 12+ε�Cu)
q ≤ Cλ

b−1
b ( 12+ b−14b )
q ,

where the constant C depends only on our upper bound for imax(q), and so
only on β and b through (2.12). Using Lebesgue interpolation, and the above
established bounds, for p ∈ [2,∞) we obtain

�

�uq
�

�

L p ≤
�

�uq
�

�

2
p

L2

�

�uq
�

�

1− 2p
L∞ ≤ Cλ

β(b+1)
p

1 λ
− 2βp +(1− 2p ) b−1b ( 12+ b−14b )
q , (2.24)

where the constant C ≥ 1 depends only on β and b. Thus, in order to ensure
the absolute summability of {uq}q≥0 in L p, the exponent of λq appearing on
the right side of (2.24) must be strictly negative. After a short computation,
we deduce that we must have

p < p∗(β, b) =: 2+ 8βb

(b − 1)(b(b − 1)+ 2) . (2.25)

At last, we may verify that 2−2β1−2β < p∗(β, b) is equivalent to (b−1)(b(b−1)+2)
4b <

1 − 2β, which in turn is satisfied whenever 2βb < 1 and β ∈ [1/3, 1/2). This
concludes the proof of Theorem 1.1.

Remark 2.7 (L3-based Besov regularity) From (2.24) and (2.25), we deduce
that for p ∈ [2, p∗(β, b)), and in particular for p = 2−2β

1−2β , we have that
�

�uq
�

�

L p ≤ Cλ
1
p
1 λ
−η(p,β,b)
q , for some η(p, β, b) > 0. We therefore have that

�

�uq
�

�

B0p,∞
≤ Cλ

1
p
1 λ
−η(p,β,b)
q , and

�

�uq
�

�

Bβ2,∞
≤ �

�uq
�

�

Bβ2,2
≤ C �

�uq
�

�

Hβ ≤ C ,

where the constant C > 0 is independent of q. By interpolation, we have that
whenever s < βθ , where θ = θ(p) ∈ (0, 1) is defined by solving

1

3
= 1− θ

p
+ θ

2
�⇒ θ = 2p − 6

3p − 6 , (2.26)
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we have the bound

�

�uq
�

�

Bs3,∞
≤ C �

�uq
�

�

1−θ
B0p,∞

�

�uq
�

�

θ

Bβ2,∞
≤ Cλ

1
p
1 λ
−(1−θ)η(p,β,b)
q ,

for a constant C > 0 which is independent of q ≥ 0. Taking p = 2−2β
1−2β , we

obtain from (2.26) that θ = 4β−1
3β , and so for any s <

4β−1
3 , we have that

the series v = �

q≥0 uq is absolutely summable in C0t Bs3,∞, showing that
v ∈ C0t Bs3,∞. It is clear that by letting β be arbitrarily close to 1/2, the value of
s may be taken arbitrarily close to 1/3, the Onsager threshold.

3 Building blocks and pipe dodging

The main results in this section are Proposition 3.3 (which describes the inter-
mittent pipe flows and their properties), Lemma 3.5 (which gives a sharp bound
for the L∞ norm of frequency truncated square of pipe densities), and Propo-
sition 3.8 (which gives the proof of the one-half relative intermittency rule for
pipe dodging). First, we recall from [19, Lemma 2.4] a version of the following
geometric decomposition:

Proposition 3.1 (Choosing vectors for the axes) Let B1/2(Id) denote the ball of
symmetric 3×3matrices, centered at Id, of radius 1/2. Then, there exists a finite
subset � ⊂ S2 ∩ Q3, and smooth positive functions γξ : C∞

�

B1/2(Id)
�→ R

for every ξ ∈ �, such that for each R ∈ B1/2(Id), we have the identity

R =
�

ξ∈�

�

γξ (R)
�2
ξ ⊗ ξ. (3.1)

Additionally, for every ξ in �, there exist vectors ξ �, ξ �� ∈ S2 ∩ Q3 such that
{ξ, ξ �, ξ ��} is an orthonormal basis of R3, and there exists a least positive
integer n∗ such that n∗ξ, n∗ξ �, n∗ξ �� ∈ Z3, for every ξ ∈ �.

Wenow recall [5, Proposition 4.3] and [5, Proposition 4.4] which rigorously
construct the intermittent pipe flows and enumerate the necessary properties.

Proposition 3.2 (Rotating, shifting, and periodizing)Fix ξ ∈ �, where� is as
in Proposition 3.1. Let r−1, λ ∈ N be given such that λr ∈ N. Let � : R2→ R

be a smooth function with support contained inside a ball of radius 1/4. Then
for k ∈ {0, . . . , r−1 − 1}2, there exist functions �kλ,r,ξ : R3 → R defined in
terms of �, satisfying the following additional properties:
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(1) Wehave that�kλ,r,ξ is simultaneously
�

T
3

λr

�

-periodic and

�

T
3
ξ

λrn∗

	

-periodic.

Here, by T3ξ we refer to a rotation of the standard torus such that T
3
ξ has

a face perpendicular to ξ .

(2) Let Fξ be one of the two faces of the cube
T
3
ξ

λrn∗ which is perpendicular

to ξ . Let Gλ,r ⊂ Fξ ∩ 2πQ3 be the grid consisting of r−2-many points
spaced evenly at distance 2π(λn∗)−1 on Fξ and containing the origin.
Then each grid point gk for k ∈ {0, . . . , r−1 − 1}2 satisfies

�

supp �kλ,r,ξ ∩ Fξ
�

⊂ �

x : |x − gk | ≤ 2π (4λn∗)−1
�

. (3.2)

(3) The support of �kλ,r,ξ is a pipe (cylinder) centered around a
�

T
3

λr

�

-periodic

and

�

T
3
ξ

λrn∗

	

-periodic line parallel to ξ , which passes through the point

gk. The radius of the cylinder’s cross-section is as in (3.2).
(4) We have that ξ · ∇�kλ,r,ξ = 0.
(5) For k �= k�, supp �kλ,r,ξ ∩ supp �k

�
λ,r,ξ = ∅.

Proposition 3.3 (Construction and properties of shifted intermittent pipe
flows) Fix a vector ξ belonging to the set of rational vectors � ⊂ Q3 ∩ S2
from Proposition 3.1, r−1, λ ∈ N with λr ∈ N, and large integers 3Nfin and
d. There exist vector fieldsWk

ξ,λ,r : T3 → R
3 for k ∈ {0, . . . , r−1 − 1}2 and

implicit constants depending on Nfin and d but not on λ or r such that:

(1) There exists � : R2 → R given by the iterated Laplacian �dϑ =: � of a
potential ϑ : R2→ Rwith compact support in a ball of radius 14 such that
the following holds. Let �kξ,λ,r and ϑ

k
ξ,λ,r be defined as in Proposition 3.2,

in terms of � and ϑ (instead of �). Then there exists Ukξ,λ,r : T3 → R
3

such that if {ξ, ξ �, ξ ��} ⊂ Q3 ∩ S2 form an orthonormal basis of R3 with
ξ × ξ � = ξ ��, then we have

U
k
ξ,λ,r = −ξ � λ−2dξ �� · ∇�d−1

�

ϑkξ,λ,r

�

� �� �

=:ϕ��kξ,λ,r

+ξ �� λ−2dξ � · ∇�d−1
�

ϑkξ,λ,r

�

� �� �

=:ϕ�kξ,λ,r

,

(3.3)
and thus

curlUkξ,λ,r = ξλ−2d�d
�

ϑkξ,λ,r

�

= ξ�kξ,λ,r =:Wk
ξ,λ,r ,

and
ξ · ∇Wk

ξ,λ,r = ξ · ∇Ukξ,λ,r = 0 . (3.4)
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(2) The sets of functions {Ukξ,λ,r }k , {�kξ,λ,r }k , {ϑkξ,λ,r }k , and {Wk
ξ,λ,r }k satisfy

items 1–5 in Proposition 3.2.
(3) Wk

ξ,λ,r is a stationary, pressureless solution to the Euler equations.

(4) −
ˆ

T3
W
k
ξ,λ,r ⊗Wk

ξ,λ,r = ξ ⊗ ξ

(5) For all n ≤ 3Nfin,
�

�

�∇nϑkξ,λ,r
�

�

�

L p(T3)
� λnr

�

2
p−1

�

,

�

�

�∇n�kξ,λ,r
�

�

�

L p(T3)
� λnr

�

2
p−1

�

(3.5)
and

�

�

�∇nUkξ,λ,r
�

�

�

L p(T3)
� λn−1r

�

2
p−1

�

,

�

�

�∇nWk
ξ,λ,r

�

�

�

L p(T3)
� λnr

�

2
p−1

�

.

(3.6)
(6) Let � : T3 × [0, T ] → T

3 be the periodic solution to the transport
equation

∂t�+ v · ∇� = 0 , �t=t0 = x , (3.7)

with a smooth, divergence-free, periodic velocity field v. Then

∇�−1 ·
�

W
k
ξ,λ,r ◦�

�

= curl
�

∇�T ·
�

U
k
ξ,λ,r ◦�

��

. (3.8)

(7) For P[λ1,λ2] a Littlewood–Paley projector, � as in (3.7), A = (∇�)−1,
and for i = 1, 2, 3,

�

∇ ·
�

A P[λ1,λ2]
�

Wξ,λ,r ⊗Wξ,λ,r
�

(�)AT
	�

i

= A jmP[λ1,λ2]
�

W
m
ξ,λ,rW

l
ξ,λ,r

�

(�)∂ j A
i
l

= A jmξmξ l∂ j Ail P[λ1,λ2]
�

�

�kξ,λ,r

�2
	

. (3.9)

Remark 3.4 In (3.9) and throughout the rest of the paper, for any interval
I ⊂ R+ we use the notation

PI (3.10)

to denote the Fourier projection operator onto spatial frequencies ξ such that
|ξ | ∈ I . When I = [λ,∞) we abbreviate this projection as P≥λ, while for
I = [0, λ], we abbreviate this projection as P≤λ.
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In order to propagate sharp L∞ estimates for nonlinear error terms, we will
require the following estimates related to the mean-subtracted squared pipe
densities.

Lemma 3.5 Let �kξ,λ,r :
�

T
3

λr

�

→ R be defined as in Proposition 3.3. Let

λ1, λ2 be given with λr ≤ λ1 < λ, λ2, and set

ϑ =
�

λ−21 �
�−d

P[λ1,λ2)
�

(�kξ,λ,r )
2 − 1

�

.

Then, for an arbitrary α ∈ (0, 1] and N ≤ 2Nfin, we have the estimates
�

�

�

�

DNP[λ1,λ2)
�

�

�kξ,λ,r

�2 − 1
	�

�

�

�

L∞
�

�

min(λ2, λ)

λr

	2

min(λ2, λ)
N (3.11a)

�

�

�DNϑ
�

�

�

L∞
� λα

�

min(λ2, λ)

λr

	2

M (N , 2d, λ1,min(λ2, λ)) . (3.11b)

Remark 3.6 When λ2 � λ, we note that (3.11a) contains the nontrivial esti-
mate

�

�

�

�

P[λ1,λ2)
�

�

�ke3,λ,r

�2 − 1
	�

�

�

�

L∞
�

�

λ2

λr

	2

� 1

r2
≈

�

�

�

�

�

�ke3,λ,r

�2 − 1
�

�

�

�

L∞
,

which asserts that the L∞ norms of the Littlewood–Paley projections of the
mean-subtracted pipe density increase with respect to frequency from a mini-
mum of 1 at λ2 = λr to r−2 at λ2 = λ.

Proof of Lemma 3.5 For the sake of simplicity, we fix ξ = e3, and abbreviate
(�ke3,λ,r )

2 − 1 = � = �(x1, x2). Then we have from (3.10) that

P[λ1,λ2)�(x) =
�

λ1≤|k|<λ2,
k∈λrZ2

��(k)eik·x . (3.12)

From (3.5), we may bound

�

���(k)
�

� � ���L1(T3) �
�

��e3,λ,r
�

�

2
L2 + 1 � 1 . (3.13)

A simple counting argument further yields that

�

�

�

λ1 ≤ |k| < λ2 : k ∈ λrZ2
��

� �
�

λ2

λr

	2

. (3.14)
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Then in the case λ2 ≤ λ, the bounds (3.12)–(3.14) give that

�

�

�DNP[λ1,λ2)�
�

�

�

L∞
≤ λN2

�

λ1≤|k|<λ2
k∈λrZ2

�

���(k)
�

� � λN2

�

λ2

λr

	2

, (3.15)

which matches the desired bound in (3.11a). To prove (3.11a) in the case that
λ2 > λ, we simply appeal to the boundedness of P[λ1,λ2) on L∞ and (3.5).
In order to prove (3.11b), standard Littlewood–Paley arguments and the

above bound for P[λ1,λ2)� in L∞ again give that

λ2d1

�

�

�DN�−dP[λ1,λ2)�
�

�

�

L∞

�

⎧

⎪

⎨

⎪

⎩

�

min(λ2,λ)
λr

�2
λαλ

2d−(2d−N )
1 if 0 ≤ N ≤ 2d

�

min(λ2,λ)
λr

�2
λαλ2d1 min(λ2, λ)

N−2d if 2d+ 1 ≤ N ≤ 2Nfin ,

where the factor of λα is used to absorb endpoint (p = ∞) losses,
and α may be taken arbitrarily close to zero at the cost of changing the
implicit constants. Translating the above display to incorporate the notation
M (N , 2d, λ1,min(λ2, λ)) concludes the proof. ��
We will require [5, Lemma 4.7], which lists the geometric properties of

deformed intermittent pipe flows.

Lemma 3.7 (Control on axes, support, and spacing)Consider a convex neigh-
borhood of space� ⊂ T3. Let v be an incompressible velocity field, and define
the flow X (x, t) and inverse �(x, t) = X−1(x, t), which solves

∂t�+ v · ∇� = 0 , �t=t0 = x .

Define �(t) := {x ∈ T3 : �(x, t) ∈ �} = X (�, t). For an arbitrary C > 0,
let τ > 0 be a parameter such that

τ ≤ �

δ
1/2
q λq�

C+2
q+1

�−1
.

Furthermore, suppose that the vector field v satisfies the Lipschitz bound

sup
t∈[t0−τ,t0+τ ]

�∇v(·, t)�L∞(�(t)) � δ
1/2
q λq�

C
q+1 .

Let Wk
ξ,λq+1,r : T3 → R

3 be a set of straight pipe flows constructed as in

Propositions 3.2 and 3.3 which are T3/λq+1r-periodic for λqλ
−1
q+1 ≤ r ≤ 1 and
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are concentrated around axes {Ai }i∈I oriented in the vector direction ξ for
ξ ∈ �, passing through the grid-points in item (2) of Proposition 3.2. Then
W := Wk

ξ,λq+1,r (�(x, t)) : �(t) × [t0 − τ, t0 + τ ] satisfies the following
conditions:

(1) We have the inequality

diam(�(t)) ≤
�

1+ �−1q+1
�

diam(�) . (3.16)

(2) If x and y with x �= y belong to a particular axis Ai ⊂ �, then

X (x, t)− X (y, t)
|X (x, t)− X (y, t)| =

x − y
|x − y| + δi (x, y, t) (3.17)

where |δi (x, y, t)| < �−1q+1.
(3) Let x and y belong to Ai ∩ �, for some i , where the axes Ai are defined

above. Denote the length of the axis Ai (t) := X (Ai ∩ �, t) in between
X (x, t) and X (y, t) by L(x, y, t). Then

L(x, y, t) ≤
�

1+ �−1q+1
�

|x − y| . (3.18)

(4) The support of W is contained in a
�

1+ �−1q+1
�

2π(4n∗λq+1)−1-
neighborhood of the set

�

i

Ai (t) . (3.19)

(5) W is “approximately periodic” in the sense that for distinct axes Ai , A j
with i �= j , we have
�

1− �−1q+1
�

dist (Ai ∩�, A j ∩�) ≤ dist
�

Ai (t), A j (t)
�

≤
�

1+�−1q+1
�

dist (Ai ∩�, A j ∩�).
(3.20)

The following proposition is a variation on the statement and proof of [5,
Proposition 4.8]. For simplicity, we only consider ξ = e3. The generalization
to other vectors ξ ∈ � follows from incorporating a rotation into the argument;
for further details we refer to the final paragraph of the proof of [5, Proposition
4.8]. The main difference in the new Proposition is that the set on which place-
ments are made now has dimensions (λq+1r2)−1× (λq+1r2)−1× (λq+1r1)−1
as opposed to (λq+1r1)−1 × (λq+1r1)−1 × (λq+1r1)−1 in [5].
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Proposition 3.8 (Placing straight pipes which avoid bent pipes)
Let λqλ

−1
q+1 ≤ r1 ≤ r2 ≤ 1 be such that λq+1r2 ∈ N. Let � ⊂ T3 be a

rectangular prism with the following properties:

(1) The longest axis of� is parallel to e3 and has length precisely (λq+1r1)−1.
(2) There exists a constant C� (bounded independently of q) such that the

face of� which is perpendicular to e3 is a square of side length precisely
C�(�−1q+1λq+1r2)−1.

(3) There exists a constant CP such that for any convex subset �� ⊂ �

with diam
�

��
� ≤ 2√3π �

λq+1r2
�−1
, there exist at most CP�q+1 seg-

ments of deformed T3/λq+1r2-periodic pipes of length 4π
�

λq+1r2
�−1
. Here,

by “segments of deformed pipes”, we mean the objects constructed in
Propositions 3.2 and 3.3 which satisfy the conclusions (3.16)–(3.20) from
Lemma 3.7 on �. Let P denote the union of the supports of the deformed
pipe segments.

Then, there exists a geometric constant C∗ ≥ 1 such that if

C∗C2�CP�3q+1r22 ≤ r1 , (3.21)

then there exists a set of pipe flowsWk0
e3,λq+1,r2 : T3 → R

3 which are T3/λq+1r2-

periodic, concentrated to width 2π(4λq+1n∗)−1 around axes with vector
direction e3, satisfy the properties listed in Proposition 3.3, and

suppWk0
e3,λq+1,r2 ∩ P ∩� = ∅ . (3.22)

Proof of Proposition 3.8 The proof has been streamlined relative to the orig-
inal version [5, Proposition 4.8], although the fundamental ideas remain
unchanged. We divide the proof into three steps, in which we count the num-
ber of segments of deformed pipe of length ≈ (λq+1r2)−1, then project each
segment onto the smallest face of� and cover it with squares of size≈ λ−1q+1,
and finally use a pigeonhole argument and the bound (3.21) to find a shift k0
satisfying (3.22).
Step 1 To count the number of deformed segments of pipe which may com-

prise P ∩ �, we appeal to assumption (3) and volume considerations. The
dimensions of � imply that � is composed of at most C2��2q+1 · r2r−11 peri-

odic cells of side length 2π(λq+1r2)−1. Applying (3) with each of these cells
implies that the number of distinct segments of pipe of length 4π(λq+1r2)−1
comprising P is at most

CPC2��3q+1 · r2r−11 .

123



An intermittent Onsager theorem 253

Step 2We now measure the size of the shadows of the deformed segments
of pipe when projected onto the face of � which is perpendicular to e3. First,
the length constraint on the segments of deformed pipe implies that the pro-
jection of any single segment onto the face of � which is perpendicular to
e3 has length at most 4π(λq+1r2)−1. Now consider the grid Gλq+1,r2 from

Proposition 3.2, item (2). This grid contains squares of diameter≈ λ−1q+1, each
of which may contain part of the support of an e3-oriented periodic pipe flow,
or may be empty, depending on the choice of shift. Applying a covering argu-
ment using the above derived length constraint and (3.19), we see that there
exists a dimensional constant C∗ such that the number of grid squares needed
to cover the projection of a single segment is at mostC∗r−12 . Since the number
of segments was bounded by CPC2��3q+1 · r2r−11 from Step 1, we see that the
total number of grid squares needed to cover the projection of P is at most

CPC2��3q+1 · r2r−11 · C∗r−12 ≤ CPC2�C∗�3q+1r−11 .

Step 3 In order to conclude the proof, we appeal to a pigeonhole argument,
made possible by the bound from Step 2. Indeed, we have obtained an upper
bound on the number of grid squares which are deemed “occupied” by pro-
jections of deformed segments of pipe. Conversely, from Proposition 3.2, the
number of possible choices for the shifts k0 is r

−2
2 .Applying assumption (3.21),

we conclude by the pigeonhole principle that there exists a “free” shift k0 such
that none of the occupied squares intersect the support of Wk0

λq+1,r2,e3 . Thus
we have proven (3.22), concluding the proof of the lemma. ��

4 Mollification

Let φ(ζ ) : R→ R be a smooth, C∞ function compactly supported in the set
{ζ : |ζ | ≤ 1} which in addition satisfies

ˆ

R

φ(ζ ) dζ = 1,
ˆ

R

φ(ζ )ζ n = 0 ∀n = 1, 2, . . . ,Nind,v.

Let �φ(x) : R3→ R be defined by �φ(x) = φ(|x |). For λ,μ ∈ R, define

φ
(x)
λ (x) = λ3�φ (λx) , φ(t)μ (t) = μφ(μt).

For q ∈ N, we will define the spatial and temporal convolution operators

Pq,x := φ
(x)
�λq
∗, Pq,t := φ

(t)
�τ−1q−1
∗, Pq,x,t := Pq,x ◦ Pq,t . (4.1)
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Lemma 4.1 (Mollifying the Euler–Reynolds system) Let (vq , R̊q) solve the
Euler–Reynolds system (1.2), and assume that ψi,q �, uq � for q � < q, wq , and
R̊q satisfy (2.8a)–(2.21b). Then, we mollify (vq , R̊q) at spatial scale�λ−1q and
temporal scale�τq−1 (cf. the notation in (4.1)), and accordingly define

v�q := Pq,x,tvq and R̊�q := Pq,x,t R̊q . (4.2)

Themollified velocity v�q satisfies the Euler–Reynolds systemwith stress R̊�q+
R̊commq , where the commutator stress R̊commq satisfies the estimate (consistent
with (2.10a) and (2.10b) at level q + 1)
�

�DN DMt,q R̊
comm
q

�

�

L∞ ≤ �−1q+1�
−CR
q+1 δq+2λ

N
q+1M

�

M,Nind,t, τ−1q , �−1q �τ−1q
�

(4.3)

for all N ,M ≤ 3Nind,v, and we have that
�

�

�DN DMt,q−1(v�q − vq)

�

�

�

L∞
≤ λ−2q δ

1/2
q M

�

N , 2Nind,v, λq ,�λq
�

× M
�

M,Nind,t, τ
−1
q−1, τ̃

−1
q−1�

−1
q

�

(4.4)

for all N ,M ≤ 3Nind,v. Furthermore, uq = v�q − v�q−1 satisfies the bound
(2.8) with q � replaced by q

�

�

�ψi,q−1DN DMt,q−1uq
�

�

�

L2
≤ δ

1/2
q M

�

N , 2Nind,v, λq ,�λq
�

× M
�

M,Nind,t, �iqτ
−1
q−1, τ̃

−1
q−1

�

, (4.5a)
�

�

�DN DMt,q−1uq
�

�

�

L∞(suppψi,q−1)
≤ �Cuq �

1/2
q M

�

N , 2Nind,v, λq ,�λq
�

× M
�

M,Nind,t, �i+1q τ−1q−1,�τ
−1
q−1

�

,

(4.5b)

for all N + M ≤ 2Nfin. Finally, R̊�q satisfies bounds which extend (2.10) to
the mollified stress

�

�ψi,q−1DN DMt,q−1 R̊�q
�

�

L1 � �−CRq δq+1M
�

N , 2Nind,v, λq , λ̃q
�

× M
�

M,Nind,t, �i+2q τ−1q−1, τ̃
−1
q−1

�

,

(4.6a)
�

�DN DMt,q−1 R̊�q
�

�

L∞(suppψi,q−1) � �Cuq M
�

N , 2Nind,v, λq ,�λq
�
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× M
�

M,Nind,t, �i+3q τ−1q−1 ,�τ
−1
q−1

�

(4.6b)

for all N + M ≤ 2Nfin.
Proof of Lemma 4.1 The bounds in (4.3)–(4.5a), and also (4.6a), match those
of [5, Lemma 5.1, equations (5.3)–(5.5) and (5.7)], and so we omit the proofs.
We note that the analogue of estimate (4.4) in [5, equation (5.4)] contains a
typo in the sharp material derivative cost. Specifically, one may replace the
cost of τ−1q−1�i−1q simply with τ−1q−1 (which is actually the estimate that can
be proved using the argument in [5]). The only new estimates which would
require a proof are (4.5b) and (4.6b).
In order to give an idea of how to prove (4.5b), we follow the method of

proof from [5] for (4.5a). When either N ≥ 3Nind,v or M ≥ 3Nind,v, an
even stronger bound than (4.5b) was previously established in [5, Lemma 5.1,
equation (5.6)]. Thus, we only need to consider (4.5b) for N ,M ≤ 3Nind,v.We
appeal to (2.3) and split uq = Pq,x,twq+

�Pq,x,tv�q−1 − v�q−1
�

. Since the good
term (Pq,x,t − Id)v�q−1 was already estimated in L∞, cf. [5, equation (5.43)]
with a stronger bound than that required by (4.5b), we can consider just the
main term Pq,x,twq . We split Pq,x,twq as Pq,x,twq = wq + (Pq,x,t − Id)wq .
In view of (2.9b), which provides a satisfactory bound on wq , we are only
left with (Pq,x,t − Id)wq . However, this term was already estimated in L∞ in
[5, equations (5.33)–(5.35)], and so no new proof is required. Thus (4.5b) is
satisfied.
The proof of (4.6b) utilizes the same methodology that produced bounds

for Pq,x,twq from inductive assumptions on wq . Specifically, the material
derivative bounds have been relaxed by a factor of �q (the second �q loss
coming again from the fact that (4.6b) is estimated on the support of ψi,q−1),
the spatial derivative bounds have been relaxed from λq to �λq when N ≥
2Nind,v, and the available number of estimates on the un-mollified stress R̊q
wasmuchmore than 2Nind,v, specifically 3Nind,v.We therefore omit any further
discussion and refer the reader to the proof of [5, Lemma 5.1]. ��

5 Cutoffs

5.1 Velocity cutoff functions

For all q ≥ 1 and 0 ≤ m ≤ Ncut,t, we construct the following cutoff functions.
The specifics of the construction and the proof are contained in [5, Appendix
A.2]. To avoid abuse of notation, here we denote these smooth cutoffs using
the capital letters�m,q and ��m,q , instead of the notation in [5, Appendix A.2]
(which was ψm,q and �ψm,q ).
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Lemma 5.1 For all q ≥ 1 and 0 ≤ m ≤ Ncut,t, there exist smooth cutoff
functions ��m,q , �m,q : [0,∞)→ [0, 1] which satisfy the following.
(1) The function ��m,q satisfies 1[0, 14�2(m+1)q ] ≤ ��m,q ≤ 1[0,�2(m+1)q ].
(2) The function �m,q satisfies 1[1, 14�2(m+1)q ] ≤ �m,q ≤ 1[ 14 ,�2(m+1)q ].
(3) For all y ≥ 0, a partition of unity is formed as

��2m,q(y)+
�

i≥1
�2m,q

�

�−2i(m+1)q y
� = 1 . (5.1)

(4) ��m,q and �m,q(�
−2i(m+1)
q ·) satisfy

supp��m,q(·) ∩ supp�m,q
�

�−2i(m+1)q ·� = ∅ if i ≥ 2,
supp�m,q

�

�−2i(m+1)q ·� ∩ supp�m,q
�

�−2i �(m+1)q ·� = ∅ if |i − i �| ≥ 2.
(5.2)

(5) For 0 ≤ N ≤ Nfin, when 0 ≤ y < �
2(m+1)
q we have

|DN��m,q(y)| � (��m,q(y))
1−N/Nfin�−2N (m+1)q .

For 14 < y < 1 we have

|DN�m,q(y)| � (�m,q(y))
1−N/Nfin ,

while for 14�
2(m+1)
q < y < �

2(m+1)
q we have

|DN�m,q(y)| � �−2N (m+1)q (�m,q(y))
1−N/Nfin .

In each of the above inequalities, the implicit constants depend on N but
not m or q.

Definition 5.2 Given i, j, q ≥ 0, we define

i∗ = i∗( j, q) = i∗( j) = min{i ≥ 0 : �iq+1 ≥ �
j
q }.

Note that for j = 0, we have that i∗( j) = 0.
At stage q ≥ 1 of the iteration (by convention w0 = u0 = 0) and for

m ≤ Ncut,t and jm ≥ 0, we define

h2m, jm ,q(x, t) :=
Ncut,x
�

n=0
�
−2i∗( jm)
q+1 δ−1q

�

λq�q
�−2n�

τ−1q−1�
i∗( jm)+2
q+1

�−2m
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× |DnDmt,q−1uq(x, t)|2 . (5.3)

One should view hm, jm ,q as ameasurement of the extent towhich the amplitude

of Dmt,q−1uq (or its spatial derivatives) exceeds �
i∗( jm)
q+1 ≈ �

j
q , where τ

−1
q−1�

j
q

is the material derivative cost on the support of ψ j,q−1. The extra room of �q
in the spatial derivative cost and �2q+1 in the material derivative cost accrues
extra factors of smallness for high numbers of derivatives. This allows us to
eventually plug in a very lossy bound for |DnDmt,q−1uq | and still show that the
resulting contribution to the sum is very small. To measure the size of hm, jm ,q
precisely, we now rescale and plug into a cutoff function.

Definition 5.3 (Intermediate cutoff functions) Given q ≥ 1, m ≤ Ncut,t, and
jm ≥ 0 we define ψm,im , jm ,q by

ψm,im , jm ,q(x, t) = �m,q+1
�

�
−2(im−i∗( jm))(m+1)
q+1 h2m, jm ,q(x, t)

�

(5.4)

for im > i∗( jm), while for im = i∗( jm),

ψm,i∗( jm), jm ,q(x, t) = ��m,q+1
�

h2m, jm ,q(x, t)
�

. (5.5)

The intermediate cutoff functionsψm,im , jm ,q are equal to zero for im < i∗( jm).

The indices im and jm were shown in see [5, Lemma 6.14] and [5, equa-
tion (6.27)] to run up to some maximal values imax and�imax, although in the
present context, it will be necessary to propagate a much sharper bound on
imax; see Lemma 5.7. With this notation and in view of (5.1) and (5.2), it
immediately follows that

�

im≥0
ψ2m,im , jm ,q =

�

im≥i∗( jm)
ψ2m,im , jm ,q =

�

{im : �imq+1≥� jmq }
ψ2m,im , jm ,q ≡ 1

for any m and for |im − i �m | ≥ 2,

ψm,im , jm ,qψm,i �m , jm ,q = 0.

Definition 5.4 (mthVelocity cutoff function) For im ≥ 0,we inductively define
the mth velocity cutoff function

ψ2m,im ,q =
�

{ jm : im≥i∗( jm)}
ψ2jm ,q−1ψ

2
m,im , jm ,q . (5.6)
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Informally, one may interpret the definition of the mth velocity cutoff in
(5.6) as follows. To control Dt,q , one should split into Dt,q−1 and uq · ∇.
The inclusion of ψ jm ,q−1 ensures that the cost of Dt,q−1 may be controlled by
τ−1q−1�

j
q and the inclusion of ψm,im , jm ,q ensures that the cost of uq · ∇ may be

controlled as well. The index m is included for technical reasons, as it is more
convenient to control the size of Dmt,q−1uq for fixed m. Therefore, in reality
we then control the size of uq · ∇ only after incorporating the information
provided by the different partitions of unity {ψm,im ,q}im for 0 ≤ m ≤ Ncut,t.
Whichever value of im is the largest at any point in spacetime then determines
the material derivative cost there.
In order to define the full velocity cutoff function, we use the notation

�i = {im}Ncut,tm=0 =
�

i0, . . . , iNcut,t
� ∈ NNcut,t+10

to denote a tuple of non-negative integers of length Ncut,t + 1, and we shall
denote

Ii =
�

�i ∈ NNcut,t+10 : max
0≤m≤Ncut,t

im = i
�

.

Definition 5.5 (Velocity cutoff function) For 0 ≤ i ≤ imax(q), we inductively
define the velocity cutoff function ψi,q as follows. When q = 0, we let

ψi,0 =
�

1 if i = 0
0 otherwise.

Then, we inductively on q define

ψ2i,q =
�

Ii

Ncut,t
�

m=0
ψ2m,im ,q . (5.7)

for all q ≥ 1.
The sumused to defineψi,q forq ≥ 1 is over all tupleswith amaximumentry

of i . The number of such tuples isq-independent since it has been demonstrated
in [5, Lemma 6.14] that im ≤ imax(q) (which implies i ≤ imax(q)), and imax(q)
is bounded above independently of q.
For notational convenience, given an�i as in the sumof (5.7), we shall denote

supp
Ncut,t
�

m=0
ψm,im ,q =

Ncut,t
�

m=0
supp (ψm,im ,q) =: supp (ψ�i,q).

123



An intermittent Onsager theorem 259

In particular, wewill frequently use that (x, t) ∈ supp (ψi,q) if and only if there
exists �i ∈ NNcut,t+10 such that max0≤m≤Ncut,t im = i , and (x, t) ∈ supp (ψ�i,q).
Proposition 5.6 With the definitions of the velocity cutoff functions given in the
previous subsection, the inductive assumptions from (2.11) and (2.15)–(2.22)
hold.

For the proof, see [5, Section 6]. We however must provide a new estimate
for imax(q) in order to prove (2.12) and (2.13), and we give the details in the
following lemma.

Lemma 5.7 (Maximal i index in the definition of the cutoff) There exists
imax = imax(q) ≥ 0, determined by the formula (5.12) below, such that

ψi,q ≡ 0 for all i > imax (5.8)

and

�
imax
q+1 ≤ �

Cu
q+1�

1/2
q δ
−1/2
q (5.9)

for all q ≥ 0. Moreover, assuming λ0 is sufficiently large, imax(q) is bounded
uniformly in q as

imax(q) ≤ 1+ Cu +
1/2(b − 1)+ βb

ε�(b − 1)b . (5.10)

Proof of Lemma 5.7 Assume i ≥ 0 is such that supp (ψi,q) �= ∅. We
will prove that �iq+1 ≤ �

Cu
q+1�

1/2
q δ
−1/2
q . From (5.7) it follows that for any

(x, t) ∈ supp (ψi,q), there must exist at least one �i = (i0, . . . , iNcut,t) such
that max

0≤m≤Ncut,t
im = i , and with ψm,im ,q(x, t) �= 0 for all 0 ≤ m ≤ Ncut,t.

Therefore, in light of (5.6), for each such m there exists a maximal jm such
that i∗( jm) ≤ im , with (x, t) ∈ supp (ψ jm ,q−1) ∩ supp (ψm,im , jm ,q). In partic-
ular, this holds for any of the indices m such that im = i . For the remainder of
the proof, we fix such an index 0 ≤ m ≤ Ncut,t.
If we have i = im = i∗( jm) = i∗( jm, q), since (x, t) ∈ supp (ψ jm ,q−1),

then by the inductive assumption (2.13), we have that jm ≤ imax(q− 1). Then
using �i−1q+1 < �

jm
q ≤ �

imax(q−1)
q and (2.13), we deduce that

�iq+1 ≤ �q+1�imax(q−1)q ≤ �q+1�Cuq �
1/2
q−1δ

−1/2
q−1 ≤ �

Cu
q+1�

1/2
q δ
−1/2
q .

The last inequality above holds in light of the parameter inequality bε� +
Cuε� + 1/2b ≤ bCuε� + 1/2+ β, which in turn follows from ε� ≤ β/b. Thus, in
this case �iq+1 ≤ �

Cu
q+1�

1/2
q δ
−1/2
q indeed holds.
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On the other hand, if i = im ≥ i∗( jm) + 1, by the definition of �m,q+1
in (5.4), it follows that |hm, jm ,q(x, t)| ≥ (1/2)�

(m+1)(im−i∗( jm))
q+1 , and by the

pigeonhole principle, there exists 0 ≤ n ≤ Ncut,x with

|DnDmt,q−1uq(x, t)| ≥
1

2Ncut,x
�
(m+1)(im−i∗( jm))
q+1

× �
i∗( jm)
q+1 δ

1/2
q (λq�q)

n(τ−1q−1�
i∗( jm)+2
q+1 )m

≥ 1

2Ncut,x
�
im
q+1δ

1/2
q λ

n
q(τ
−1
q−1�

im+2
q+1 )

m,

andwe also know that (x, t) ∈ supp (ψ jm ,q−1). By (4.5b), the fact thatNcut,x ≤
2Nind,v, and Ncut,t ≤ Nind,t, we know that

|DnDmt,q−1uq(x, t)| ≤ �Cuq �
1/2
q λ

n
q(τ
−1
q−1�

jm+1
q )m

≤ �Cuq �
1/2
q λ

n
q(τ
−1
q−1�

i∗( jm)+1
q+1 )m

≤ �Cuq �
1/2
q λ

n
q(τ
−1
q−1�

im
q+1)

m .

The proof is now completed, since the previous two inequalities and im = i
imply that

�iq+1 ≤ 2Ncut,x�Cuq �
1/2
q δ
−1/2
q ≤ �

Cu
q+1�

1/2
q δ
−1/2
q . (5.11)

In view of the above inequality, the value of imax is chosen as

imax(q) = sup{i � : �i �q+1 ≤ �
Cu
q+1�

1/2
q δ
−1/2
q } . (5.12)

With this definition, if i > imax(q), then �iq+1 > �
Cu
q+1�

1/2
q δ
−1/2
q , and as such

supp (ψi,q) = ∅. To show that imax(q) is bounded independently of q, note
that

log(�Cuq+1�
1/2
q δ
−1/2
q )

log(�q+1)
= Cu + (1/2(b − 1)+ βb) log(λq−1)

ε�(b − 1) log(λq)
→ Cu +

1/2(b − 1)+ βb

ε�(b − 1)b ,

as q →∞. Thus, assuming λ0 is sufficiently large, the bound (5.10) holds. ��
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5.2 Temporal cutoff functions and flow maps

Let χ : (−1, 1)→ [0, 1] be a C∞ function of compact support which induces
a partition of unity according to

�

k∈Z
χ2(· − k) ≡ 1 . (5.13)

Consider the translated and rescaled function

χ
�

tτ−1q �
i−c0+2
q+1 − k

�

,

which is supported in the set of times t satisfying

�

�

�t − τq�
−i+c0−2
q+1 k

�

�

� ≤ τq�
−i+c0−2
q+1

⇐⇒ t ∈
 

(k − 1)τq�−i+c0−2q+1 , (k + 1)τq�−i+c0−2q+1
!

. (5.14)

We then define temporal cut-off functions

χi,k,q(t) = χ(i)(t) = χ
�

tτ−1q �
i−c0+2
q+1 − k

�

. (5.15)

It is then clear that

|∂mt χi,k,q | � (�
i−c0+2
q+1 τ−1q )m (5.16)

for m ≥ 0 and
χi,k1,q(t)χi,k2,q(t) = 0 (5.17)

for all t ∈ R unless |k1 − k2| ≤ 1. We define

χ(i,k±,q)(t) :=
�

χ2(i,k−1,q)(t)+ χ2(i,k,q)(t)+ χ2(i,k+1,q)(t)
�1/2
,

which are cutoffs with the property that

χ(i,k±,q) ≡ 1 on supp (χ(i,k,q)).

Next, we define the cutoffs �χi,k,q by

�χi,k,q(t) = �χ(i)(t) = χ
�

tτ−1q �
i−c0
q+1 − �

−c0
q+1k

�

.

123



262 M. Novack, V. Vicol

For comparison with (5.14), we have that�χi,k,q is supported in the set of times
t satisfying

�

�t − τq�
−i+c0
q+1 k

�

� ≤ τq�
−i+c0
q+1 .

As a consequence of these definitions and a sufficiently large choice of λ0, if
(i, k) and (i∗, k∗) satisfy suppχi,k,q ∩ suppχi∗,k∗,q �= ∅ and i∗ ∈ {i−1, i, i+
1}, then

suppχi,k,q ⊂ supp�χi∗,k∗,q . (5.18)

We can now make estimates regarding the flows of the vector field v�q on
the support of a cutoff function. The proofs of Lemma 5.8 and Corollary 5.10
are contained in [5, Section 6.4].

Lemma 5.8 (Lagrangian paths don’t jump many supports) Let q ≥ 0 and
(x0, t0) be given. Assume that the index i is such that ψ2i,q(x0, t0) ≥ κ2, where

κ ∈ " 1
16 , 1

#

. Then the forward flow (X (t), t) := (X (x0, t0; t), t) of the velocity
field v�q originating at (x0, t0) has the property that ψ

2
i,q(X (t), t) ≥ κ2/2 for

all t be such that |t − t0| ≤ (δ
1/2
q λq�

i+3
q+1)−1, which by (8.30) and (8.20) is

satisfied for |t − t0| ≤ τq�
−i+5+c0
q+1 .

Definition 5.9 We define �i,k,q(x, t) := �(i,k)(x, t) to be the flows induced
by v�q with initial datum at time kτq�

−i
q+1 given by the identity, i.e.

(∂t + v�q · ∇)�i,k,q = 0 , �i,k,q(x, kτq�
−i
q+1) = x .

We will use D�(i,k) to denote the gradient of �(i,k). The inverse of the

matrix D�(i,k) is denoted by
�

D�(i,k)
�−1, in contrast to D�−1(i,k), which is the

gradient of the inverse map �−1(i,k).
Corollary 5.10 (Deformation bounds) For k ∈ Z, 0 ≤ i ≤ imax, q ≥ 0,
and 2 ≤ N ≤ 3Nfin/2 + 1, we have the following bounds on the support of
ψi,q(x, t)�χi,k,q(t).

�

�D�(i,k) − Id
�

�

L∞(supp (ψi,q�χi,k,q )) � �−1q+1 (5.19a)
�

�

�DN�(i,k)

�

�

�

L∞(supp (ψi,q�χi,k,q ))
� �−1q+1M

�

N − 1, 2Nind,v, �qλq ,�λq
�

(5.19b)
�

�(D�(i,k))
−1 − Id��L∞(supp (ψi,q�χi,k,q )) � �−1q+1 (5.19c)

�

�

�DN−1
�

(D�(i,k))
−1�

�

�

�

L∞(supp (ψi,q�χi,k,q ))
� �−1q+1M

�

N − 1, 2Nind,v, �qλq ,�λq
�

(5.19d)
�

�DN�−1(i,k)
�

�

L∞(supp (ψi,q�χi,k,q )) � �−1q+1M
�

N − 1, 2Nind,v, �qλq ,�λq
�

(5.19e)

Furthermore, we have the following bounds for 1 ≤ N + M ≤ 3Nfin/2:

�

�DN−N �DMt,q DN
�+1�(i,k)

�

�

L∞(supp (ψi,q�χi,k,q ))
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≤�λNqM
�

M,Nind,t, �
i−c0
q+1 τ

−1
q ,�τ−1q �−1q+1

�

(5.19f)
�

�DN−N �DMt,q DN
�
(D�(i,k))

−1�
�

L∞(supp (ψi,q�χi,k,q ))

≤�λNqM
�

M,Nind,t, �
i−c0
q+1 τ

−1
q ,�τ−1q �−1q+1

�

(5.19g)

for all 0 ≤ N � ≤ N.

5.3 Stress estimates and stress cutoff functions

Before giving the definition of the stress cutoffs, we first note that we can
upgrade the L1 and L∞ bounds for ψi,q−1DK DMt,q−1 R̊�q available in (4.6a)
and (4.6b), respectively, to L1 and L∞ bounds for ψi,q DK DMt,q R̊�q . We claim
that:

Lemma 5.11 (L1 and L∞ estimates for zeroth order stress) Let R̊�q be as
defined in (4.2). For q ≥ 1 and 0 ≤ i ≤ imax(q) we have the estimates
�

�DK DMt,q R̊�q
�

�

L1(suppψi,q )

� �−CRq δq+1M
�

K , 2Nind,v, λq�q , λ̃q
�

M
�

M,Nind,t, �
i−c0
q+1 τ

−1
q , �−1q+1τ̃

−1
q

�

(5.20a)
�

�DK DMt,q R̊�q
�

�

L∞(suppψi,q )

� �Cuq M
�

K , 2Nind,v, λq�q , λ̃q
�

M
�

M,Nind,t, �
i−c0
q+1 τ

−1
q , �−1q+1τ̃

−1
q

�

(5.20b)

for all K + M ≤ 3Nfin/2.

Proof of Lemma 5.11 Theestimate in (5.20a) parallels that of [5,Lemma6.28];
the ingredients in the proof were the L1 bounds for the mollified stress, which
are available from (4.6a) (see also [5, Lemma 5.1]), and two lemmas regard-
ing sums and iterates of operators. For the sake of clarity, we thus focus on
the proof of (5.20b), which follows the same strategy as the original proof of
(5.20a). The only change is that we simply substitute the L∞ bound furnished
by (4.6b) for each instance of an L1 bound in the proof.
The first step is to apply [5, LemmaA.14 and Remark A.15] to the functions

v = v�q−1 , f = R̊�q , with p = ∞, and on the domain � = supp (ψi,q−1).
The bound [5, equation (A.50)] holds in view of the inductive assumption
(2.19) with q � = q − 1, for the parameters Cv = �i+1q δ

1/2
q−1, λv =�λv =�λq−1,

μv = �
i−c0
q τ−1q−1, �μv = �−1q �τ−1q−1, Nx = 2Nind,v, Nt = Nind,t, and for N∗ =

3Nfin/2. On the other hand, the assumption [5, equation (A.51)] holds due to
(4.6b), with the parameters C f = �

Cu
q , λ f = λq ,�λ f = �λq , Nx = 2Nind,v,

μ f = �i+3q τ−1q−1, �μ f =�τ−1q−1, Nt = Nind,t, and N◦ = 2Nfin. We thus conclude
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from [5, equation (A.54)] that

�

�DαDβt,q−1 R̊�q
�

�

L∞(supp (ψi,q−1))

� �Cuq M
�|α|, 2Nind,v, λq ,�λq

�M
�

|β|,Nind,t, �i+3q τ−1q−1,�τ
−1
q−1

�

whenever |α| + |β| ≤ 3Nfin/2. Here we have used that �λq−1 ≤ λq and that

�i+1q δ
1/2
q−1�λq−1 ≤ �i+3q τ−1q−1 ≤�τ−1q−1 (in view of (8.30), (8.32), and (2.13)). In

particular, the definitions of ψi,q in (5.7) and of ψm,im ,q in (5.6) imply that for
all |α| + |β| ≤ 3Nfin/2,

�

�DαDβt,q−1 R̊�q
�

�

L∞(supp (ψi,q ))

� �Cuq M
�|α|, 2Nind,v, λq ,�λq

�M
�

|β|,Nind,t, �i+3q+1τ
−1
q−1,�τ

−1
q−1

�

.

(5.21)

The second step is to apply [5, Lemma A.10] with B = Dt,q−1, A =
uq · ∇, v = uq , f = R̊�q , p = ∞, and � = supp (ψi,q). In this case

DK (A + B)M f = DK DMt,q R̊�q , which is exactly the object that we need to
estimate in (5.20b). The assumption [5, equation (A.40)] holds due to (2.18) at
level q (which holds due to Proposition 5.6) with Cv = �i+1q+1δ

1/2
q , λv = �qλq ,

�λv = �λq , Nx = 2Nind,v, μv = �i+3q+1τ
−1
q−1, �μv = �−1q+1�τ−1q , Nt = Nind,t, and

N∗ = 3Nfin/2+ 1. The assumption [5, equation (A.41)] holds due to (5.21) with
the parametersC f = �

Cu
q ,λ f = λq ,�λ f =�λq , Nx = 2Nind,v,μ f = �i+3q+1τ

−1
q−1,

�μ f = �τ−1q−1, Nt = Nind,t, and N∗ = 3Nfin/2. The bound [5, equation (A.44)]

and the parameter inequalities �i+1q+1δ
1/2
q �λq ≤ �

i−c0−2
q+1 τ−1q ≤ �−1q+1�τ−1q and

�i+3q+1τ
−1
q−1 ≤ �

i−c0
q+1 τ−1q (which hold due to (8.31), (8.30), (8.32), and (2.13))

then directly imply (5.20b), concluding the proof. ��
Remark 5.12 (L1 and L∞ estimates for higher order stresses) In order to verify
the inductive assumptions in (2.10a) and (2.10b) for the new stress R̊q+1, it
will be necessary to consider a sequence of intermediate objects R̊q,n indexed
by n for 1 ≤ n ≤ nmax. For notational convenience, when n = 0, we define
R̊q,0 := R̊�q , and estimates on R̊q,0 are already provided by Lemma 5.11.

For 1 ≤ n ≤ nmax, the higher order stresses R̊q,n are defined in Sect. 7.1,
specifically in (7.1). Note that the definition of R̊q,n is given as a finite sum
of sub-objects H̊n

�
q,n for n

� ≤ n − 1 and thus requires induction on n. The
definition of H̊n

�
q,n is contained in Sect. 7.3, specifically in (7.21). Estimates on

H̊n
�
q,n on the support of ψi,q are stated in (6.13a) and (6.13b) and proven in
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Sect. 7.4. For the time being, we assume that R̊q,n is well-defined and satisfies

�

�DkDmt,q R̊q,n
�

�

L1(suppψi,q )

� δq+1,nλkq,nM
�

m,Nind,t, �
i−cn
q+1 τ

−1
q , �−1q+1τ̃

−1
q

�

(5.22)
�

�DkDmt,q R̊q,n
�

�

L∞(suppψi,q )

� �Cuq �
14ϒ(n)
q+1 λkq,nM

�

m,Nind,t, �
i−cn
q+1 τ

−1
q , �−1q+1τ̃

−1
q

�

(5.23)

for k + m ≤ Nfin,n.
For the purpose of defining the stress cutoff functions, the precise definitions

of the n-dependent parameters δq+1,n, λq,n ,Nfin,n, and cn present in (5.22) are
not relevant. Note however that the definition for λq,n for 0 ≤ n ≤ nmax is
given in (2.7a). Similarly, for 0 ≤ n ≤ nmax, δq+1,n is defined in (2.7c). Finally,
note that there are losses in the sharpness and order of the available derivative
estimates in (5.22) and (5.23) relative to (5.20a) and (5.20b). Specifically, the
higher order estimates will only be proven up to Nfin,n, which is a parameter
that is decreasing with respect to n and defined in (8.29). For the moment it
is only important to note that Nfin,n 
 14Nind,v for all 0 ≤ n ≤ nmax, which
is necessary in order to establish (2.9a) and (2.10a) at level q + 1. Similarly,
there is a loss in the cost of sharp material derivatives in (5.22), as cn will be a
parameter which is decreasing with respect to n. When n = 0, we set cn = c0
so that (5.20a) is consistent with (5.22). For 1 ≤ n ≤ nmax, cn is defined in
(8.27).

For q ≥ 1, 0 ≤ i ≤ imax, and 0 ≤ n ≤ nmax, we keep in mind the bound
(5.22) and define

g2i,q,n(x, t) = 1+
Ncut,x
�

k=0

Ncut,t
�

m=0
δ−2q+1,n(�q+1λq,n)

−2k(�i−cn+2q+1 τ−1q )−2m

× |DkDmt,q R̊q,n(x, t)|2 . (5.24)

With this notation, for j ≥ 1 the stress cut-off functions are defined by

ωi, j,q,n(x, t) = �0,q+1
�

�
−2 j
q+1 gi,q,n(x, t)

�

, (5.25)

while for j = 0 we let

ωi,0,q,n(x, t) = ��0,q+1
�

gi,q,n(x, t)
�

, (5.26)
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where �0,q+1 and ��0,q+1 are as in Lemma 5.1. The cutoff functions ωi, j,q,n
defined above will be shown to obey good estimates on the support of the
velocity cutoffs ψi,q . An immediate consequence of (5.1) with m = 0 is that
for every fixed i, n, we have

�

j≥0
ω2i, j,q,n = 1 (5.27)

on T3 × R. Thus, {ω2i, j,q,n} j≥0 is a partition of unity.
The following Corollary is quite similar to [5, Corollary 6.34]. In fact the

method of proof of that Corollary applies mutatis mutandis after replacing
each instance of R̊q,n,p and λq,n,p with R̊q,n and λq,n , and so we omit the
proof.

Corollary 5.13 (L∞ estimates for the higher order stresses) For q ≥ 0, 0 ≤
i ≤ imax, 0 ≤ n ≤ nmax, and α,β ∈ Nk0 we have
�

�DαDβt,q R̊q,n
�

�

L∞(suppψi,qωi, j,q,n)

� �
2( j+1)
q+1 δq+1,n(�q+1λq,n)|α|M

�

|β|,Nind,t, �i−cn+2q+1 τ−1q , �−1q+1τ̃
−1
q

�

(5.28)

for all |α| + |β| ≤ Nfin,n − 4.
The next Lemma provides an estimate on the maximum value of j for

which ψi,qωi, j,q,n may be non-zero. While the proof is similar in spirit to [5,
Lemma 6.35], we include the proof since propagating sharp L∞ estimates of
the stress is one of the crucial new ideas in this paper.

Lemma 5.14 (Maximal j index in the stress cutoffs) Fix q ≥ 0 and 0 ≤ n ≤
nmax. There exists a jmax = jmax(q, n) ≥ 1, which is bounded as

jmax(q, n) ≤ 1
2

�

2+ Cu + 3
b
+ 2βb2

ε�(b − 1)
	

, (5.29)

such that for any 0 ≤ i ≤ imax(q), we have

ψi,q ωi, j,q,n ≡ 0 for all j > jmax.

Moreover, assuming that a = λ0 is sufficiently large, we have the bound

�
2 jmax(q,n)
q+1 ≤ �Cuq δ−1q+1,n�

14ϒ(n)+3
q+1 . (5.30)
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Proof of Lemma 5.14 We define jmax by

jmax = jmax(q, n) = 1
2

$

log(�Cuq δ−1q+1,n)�
14ϒ(n)+2
q+1

log(�q+1)

%

. (5.31)

To see that jmax may be bounded independently of q and n, we note that
δ−1q+1,n ≤ δ−1q+2, and thus

2 jmax

≤ 1+ Cu
b
+ log(δ

−1
q+2)

log(�q+1)
+ 14ϒ(n)+ 2

→ 3+ Cu
b
+ 2βb2

ε�(b − 1) + 14ϒ(n) as q →∞ .

Thus, assuming that a = λ0 is sufficiently large, we obtain that

2 jmax(q, n) ≤ 4+ Cu
b
+ 2βb2

ε�(b − 1) + 14ϒ(nmax) (5.32)

for all q ≥ 0 and 0 ≤ n ≤ nmax.
To conclude the proof of the Lemma, let j > jmax, as defined in (5.31), and

assume by contradiction that there exists a point (x, t) ∈ supp (ψi,qωi, j,q,n) �=
∅. In particular, j ≥ 1. Then, by (5.24)–(5.25) and the pigeonhole principle,
we see that there exists 0 ≤ k ≤ Ncut,x and 0 ≤ m ≤ Ncut,t such that

|DkDmt,q R̊q,n(x, t)| ≥
�
2 j
q+1

&

8Ncut,xNcut,t
δq+1,n(�q+1λq,n)k(�i−cn+2q+1 τ−1q )m .

On the other hand, from (5.20b) and (5.23), we have that

|DkDmt,q R̊q,n(x, t)| ≤ �Cu+1q �
14ϒ(n)
q+1 �q+1λkq,n(�

i−cn
q+1 τ

−1
q )m .

The above two estimates imply that

�
2 j
q+1 ≤ �Cu+1q �

14ϒ(n)
q+1

&

8Ncut,xNcut,tδ
−1
q+1,n ≤ �Cu+2q �

14ϒ(n)
q+1 δ−1q+1,n,

which contradicts the fact that j > jmax, as defined in (5.31). ��
The following two lemmas correspond to [5,Lemmas6.36 and6.38], respec-

tively. As with Corollary 5.13, the method of proof applies mutatis mutandis
after dropping the unnecessary subscript p. We therefore refer the reader to
[5] for further details.
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Lemma 5.15 (Derivative bounds for the stress cutoffs) For q ≥ 0, 0 ≤ n ≤
nmax, 0 ≤ i ≤ imax, and 0 ≤ j ≤ jmax, we have that

1suppψi,q |DN DMt,qωi, j,q,n|
ω
1−(N+M)/Nfin
i, j,q,n

� (�q+1λq,n)NM
�

M,Nind,t, �
i−cn+3
q+1 τ−1q , �−1q+1τ̃

−1
q

�

(5.33)

for all N + M ≤ Nfin,n − Ncut,x − Ncut,t − 4.
Lemma 5.16 (Lr norm of the stress cutoffs) Let q ≥ 0 and define ψi±,q =
�

ψ2i−1,q + ψ2i,q + ψ2i+1,q
�1/2

. Then for r ≥ 1 we have that
�

�ωi, j,q,n
�

�

Lr(suppψi±,q) � �
−2 j/r
q+1 (5.34)

holds for all 0 ≤ i ≤ imax, 0 ≤ j ≤ jmax, and 0 ≤ n ≤ nmax. The implicit
constant is independent of i, j, q, n.

5.4 Anisotropic checkerboard cutoff functions

We construct anisotropic checkerboard cutoff functions which are well-suited
for intermittent pipe flowswith axes parallel to e3. The construction for general
ξ ∈ � follows by rotation. Consider a partition of T3 into the rectangular
prisms defined using

'

(x1, x2, x3) ∈ T3 : 0 ≤ x1, x2 ≤ C��q+1
�

λq+1rq+1,n
�−1

, 0 ≤ x3 ≤ 2πλ−1q,n
(

(5.35)

and its translations by
�

l1C��q+1(λq+1rq+1,n)−1, l2C��q+1(λq+1rq+1,n)−1, l32πλ−1q,n
�

for

l1, l2 ∈ {0, . . . , C�/2π�−1q+1λq+1rq+1,n − 1}, l3 ∈ {0, . . . , λq,n − 1},

where C� ≥ 1 ensures that the prisms evenly partition [−π, π ]3 and is bounded
above independently of q. Index these prisms by integer triples �l = (l1, l2, l3).
Let Xq,n,e3,�l be a C∞ partition of unity adapted to this checkerboard of
anisotropic rectangular prisms which satisfies

�

�l

�Xq,n,e3,�l
�2 = 1 (5.36)
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for any q and n. Specifically, we impose that spatial derivatives applied to
cutoffs belonging to this partition of unity cost ≈ �q+1(λq+1rq+1,n)−1 in the
x1 and x2 directions, and ≈ λ−1q,n in the x3 direction, so that

�

�∂
M1
1 ∂

M2
2 ∂M3 Xq,n,e3,�l

�

�

L∞ �
�

λq+1rq+1,n�−1q+1
�M1+M2

λMq,�n

for M1,M2,M ≤ 3Nfin. Furthermore, for �l, �l∗ such that
|l1 − l∗1 | ≥ 2, |l2 − l∗2 | ≥ 2, |l3 − l∗3 | ≥ 2,

we impose that
Xq,n,e3,�l Xq,n,e3,�l∗ = 0 .

Incorporating rotations into the above construction, we may similarly produce
cutoff functions Xq,n,ξ,�l satisfying analogous properties for ξ ∈ �. Note that
if {ξ, ξ �, ξ ��} forms an orthonormal basis for R3, then

�

�

�

ξ � · ∇�M1 �ξ �� · ∇�M2 (ξ · ∇)MXq,n,ξ,�l
�

�

L∞ �
�

λq+1rq+1,n�−1q+1
�M1+M2

λMq,�n . (5.37)

Definition 5.17 (Anisotropic checkerboard cutoff function) Given q, ξ ∈ �,
0 ≤ n ≤ nmax, i ≤ imax, and k ∈ Z, we define

ζq,i,k,n,ξ,�l (x, t) = Xq,n,ξ,�l
�

�i,k,q(x, t)
�

. (5.38)

These cutoff functions satisfy properties which we enumerate in the follow-
ing lemma.

Lemma 5.18 The cutoff functions {ζq,i,k,n,ξ,�l}�l satisfy the following proper-
ties:

(1) The material derivative Dt,q(ζq,i,k,n,ξ,�l) vanishes.
(2) For each t ∈ R and all x = (x1, x2, x3) ∈ T3,

�

�l

�

ζq,i,k,n,ξ,�l (x, t)
�2 = 1 . (5.39)

(3) Let A = (∇�i,k,q)−1. Then we have the spatial derivative estimate
�

�DN1DMt,q(ξ
�A j�∂ j )

N2ζq,i,k,n,ξ,�l
�

�

L∞(suppψi,q�χi,k,q)

�
�

�−1q+1λq+1rq+1,n
�N1

λN2q,n
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× M
�

M,Nind,t, �
i−c0
q+1 τ

−1
q ,�τ−1q �−1q+1

�

. (5.40)

for all N1 + N2 + M ≤ 3Nfin/2+ 1.
(4) There exists an implicit dimensional constant Cχ independent of q, n,

k, i , and �l such that for all (x, t) ∈ suppψi,q�χi,k,q , the support of
ζq,i,k,n,ξ,�l (·, t) satisfies

diam(supp (ζq,i,k,n,ξ,�l (·, t))) � λ−1q,n . (5.41)

Proof of Lemma 5.18 The proof of (1) is immediate from (5.38) to (5.39) fol-
lows from (1) and (5.36). To verify (3), the only nontrivial calculations are
those including the differential operator (ξ�A j�∂ j ). Using the Leibniz rule, the
contraction

ξ�A j�∂ jζq,i,k,n,ξ,�l
= ξ�A j�(∂mXq,n,ξ,�l)(�i,k,q)∂ j�mi,k,q
= ξm(∂mXq,n,ξ,�l)(�i,k,q),

(5.37), and (5.19g) gives the desired estimate. The proof of (5.41) follows from
the construction of Xq,n,ξ,�l and the Lipschitz bound obeyed by ∇v�q on the
support of ψi,q ; see for example (3.16). ��

5.5 Definition of the cumulative cutoff function

Finally, combining the cutoff functions defined inDefinition 5.5, (5.25)–(5.26),
and (5.15), we define the cumulative cutoff function by

ηi, j,k,q,n,ξ,�l (x, t) = ψi,q(x, t)ωi, j,q,n(x, t)χi,k,q(t)ζq,i,k,n,ξ,�l (x, t) .

Since the values of q and n are clear from the context and the values of ξ and
�l are irrelevant in many arguments, we may abbreviate the above using any of

ηi, j,k,q,n,ξ,�l (x, t)
= ηi, j,k,q,n,ξ (x, t) = η(i, j,k)(x, t)

= ψ(i)(x, t)ω(i, j)(x, t)χ(i,k)(t)ζ(i,k)(x, t) .

It follows from (2.11) at level q, (5.27), (5.13), and (5.39) that for every
(q, n, ξ) fixed, we have

�

i, j≥0

�

k∈Z

�

�l
ηi, j,k,q,n,ξ,�l

2(x, t) = 1 . (5.42)
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The sum in i goes up to imax (defined in (5.12)), while the sum in j goes up to
jmax (defined in (5.31)).
We conclude this section with support estimates on the cumulative cutoff

functions ηi, j,k,q,n,ξ,�l .

Lemma 5.19 For r1, r2 ∈ [1,∞] with 1
r1
+ 1
r2
= 1 and any 0 ≤ i ≤ imax,

0 ≤ j ≤ jmax, and ξ ∈ �, we have that
�

�l

�

�

�supp (ηi, j,k,q,n,ξ,�l)
�

�

� � �

−2i+Cb
r1
+−2 jr2 +2

q+1 . (5.43)

Proof of Lemma 5.19 From (2.17) at level q and (5.34), we have that for each
fixed time t ,

�

�supp (ψi,q) ∩ supp (ωi, j,q,n)
�

� ≤
�

�

�

�

�

ψ2i−1,q + ψ2i,q + ψ2i+1,q
�1/2

×
�

ω2i, j−1,q,n + ω2i, j,q,n + ω2i, j+1,q,n
�1/2

�

�

�

�

L1

� �

−2(i−1)+Cb
r1

q+1 �

−2( j−1)
r2

q+1 .

Using the fact that {ηq,i,k,n,ξ,�l}�l forms a partition of unity from (5.39) and
1
r1
+ 1
r2
= 1 gives the desired estimate. ��

6 Inductive propositions

6.1 Induction on q

The main claim of this section is an induction on q. Notice that the estimates
in this proposition match the inductive assumptions (2.9) and (2.10) at level
q + 1.
Proposition 6.1 (Inductive step on q)Given the velocity field v�q which solves
theEuler–Reynolds systemwith stress R̊�q+ R̊commq , where v�q , R̊�q , and R̊

comm
q

satisfy the conclusions of Lemma 4.1 in addition to (2.8a)–(2.21b), there exist
vq+1 = v�q + wq+1 and R̊q+1 which satisfy the following:

(1) vq+1 solves the Euler–Reynolds system with stress R̊q+1.
(2) For all k,m ≤ 7Nind,v, we have

�

�

�ψi,q D
kDmt,qwq+1

�

�

�

L2
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≤ �−1q+1δ
1/2
q+1λ

k
q+1M

�

m,Nind,t, �
i−1
q+1τ

−1
q , �−1q+1�τ

−1
q

�

(6.1a)
�

�

�DkDmt,qwq+1
�

�

�

L∞(suppψi,q )

≤ �
Cu−1
q+1 �

1/2
q+1λ

k
q+1M

�

m,Nind,t, �iq+1τ−1q , �−1q+1�τ
−1
q

�

. (6.1b)

(3) For all k,m ≤ 3Nind,v, we have
�

�ψi,q D
kDmt,q R̊q+1

�

�

L1

≤ �
−CR
q+1 δq+2λ

k
q+1M

�

m,Nind,t, �
i+1
q+1τ

−1
q , �−1q+1�τ

−1
q

�

(6.2a)
�

�DkDmt,q R̊q+1
�

�

L∞(suppψi,q )

≤ �
Cu
q+1λ

k
q+1M

�

m,Nind,t, �
i+2
q+1τ

−1
q , �−1q+1�τ

−1
q

�

. (6.2b)

6.2 Notations

The proof of Proposition 6.1will be achieved through an inductionwith respect
to �n, where 0 ≤ �n ≤ nmax corresponds to the addition of the perturbation
wq+1,�n . We shall employ the notation:

(1) �n—An integer taking values 0 ≤ �n ≤ nmax over which induction is per-
formed, indexing the component wq+1,�n of the velocity increment wq+1.
We emphasize that the use of�n at various points in statements and esti-
mates means that we are currently working on the inductive step at level
�n.

(2) n—An integer taking values 1 ≤ n ≤ nmax which correspond to the higher
order stresses R̊q,n . Occasionally, we shall use the notation R̊q,0 = R̊�q
to streamline an argument. We emphasize that n will be used at various
points in statements and estimates to reference higher order objects in
addition to those at level�n, and so will satisfy the inequality�n ≤ n.

(3) H̊n
�
q,n—The component of R̊q,n originating from an error term produced
by the addition of wq+1,n� . The parameter n� will always be a subsidiary
parameter used to reference objects created at or below the level�n that we
are currently working on, and so will satisfy n� ≤�n.

(4) P[q,n]—We use the spatial Littlewood–Paley projectors P[q,n] defined by

P[q,n] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

P 
λ
1/2
q λ

1/2
q+1�q+1,λq,1

� if n = 1 ,
P[λq,n−1,λq,n) if 2 ≤ n ≤ nmax ,
P≥λq,nmax if n = nmax + 1 ,

(6.3)
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whereP[λ1,λ2) is defined in Remark 3.4 asP≥λ1P<λ2 . Errors which include
the frequency projector P[q,nmax+1] will be small enough to be absorbed
into R̊q+1. We note that if 0 ≤�n ≤ nmax, then from (2.7b), any T

3

λq+1rq+1,�n -
periodic function satisfies

f = −
ˆ

T3
f + P≥λq+1rq+1,�n f = −

ˆ

T3
f +

nmax+1
�

n=�n+1
P[q,n] f . (6.4)

(5) In order to later deduce a useful refinement of (6.4), we set

r(�n) =
�

0 if�n = 0 ,
nmax+�n
2 if 1 ≤�n ≤ nmax − 1 . (6.5)

(6) In order to keep track of small losses related to the process of building a
stress R̊q,�n , corrector wq+1,�n , and new stresses R̊q,n for n >�n, we define

ϒ(n) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if n = 0 ,
1 if 1 ≤ n ≤ nmax

2

k if 2
k−1−1
2k−1 nmax < n ≤ 2k−1

2k
nmax

2+ �log2(nmax)� if n = nmax .
(6.6)

ϒ(�n) gives an upper bound on the number of steps in the induction on�n
it takes to produce the entire error term R̊q,�n . A consequence of (6.5) and
(6.6) is that

n > r(�n) �⇒ ϒ(n) ≥ ϒ(�n)+ 1 . (6.7)

To prove this, first consider the case n = nmax. Then for all 0 ≤ �n ≤
nmax − 1, we have that r(�n) < nmax, and so (6.7) should hold for all�n <
nmax. Since�n < nmax, there exists a minimum value of k, say k�n , such that
�n ≤ nmax− nmax2k�n

, which implies thatϒ(�n) ≤ k
�n . For k = �log2(nmax)�+2,

however, we have that nmax− nmax
2k−1 ≥ nmax− 1

2 , and so it must be the case
that k

�n ≤ �log2(nmax)�+ 1, which proves (6.7) in the case n = nmax, and
shows that

ϒ(n) ≤ 2+ �log2(nmax)� ∀n ≤ nmax . (6.8)

To prove (6.7) in the remaining cases, note that if �n = 0, then n >

r(0) �⇒ n ≥ 1 and so (6.7) holds. If�n = 1, then n > nmax+1
2 , and again
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(6.7) holds. Finally, if 2 ≤�n ≤ nmax − 1 and ϒ(�n) = k, then

n >
nmax +�n

2
>
nmax + 2k−1−1

2k−1 nmax

2
= 2

k − 1
2k

nmax

�⇒ ϒ(n) ≥ k + 1 .

(7) R̊�nq+1 - For any 0 ≤�n ≤ nmax − 1, this is any stress term which satisfies
the estimates required of R̊q+1 and which has already been estimated at
the�nth stage of the induction; that is, error terms arising from the addition
of wq+1,n� for n� ≤�n. We exclude R̊commq from R̊�nq+1, only absorbing it at
the very end when we define R̊q+1. Thus

R̊�n+1q+1 = R̊�nq+1+
�

errors coming from wq+1,�n+1 that also go into R̊q+1
�

.

(6.9)
We adopt the convention that R̊−1q+1 = 0.

(8) We adopt the convention that
�−1
n=0 f (n) ≡

�nmax
n=nmax+1 f (n) ≡ 0

denotes an empty summation.

6.3 Induction on �n

We split the verification of Proposition 6.1 using a sub-inductive procedure
on the parameter�n. Note that summing (6.11a)–(6.12b) over 0 ≤ �n ≤ nmax,
appealing to (8.43) and (8.48), and using the extra factor of�−1q+1 to kill implicit
constants, we have matched the desired bounds in (6.1a)–(6.2b).

Proposition 6.2 (Induction on�n: From�n − 1 to�n for 0 ≤�n ≤ nmax) Under
the assumptions of Proposition 6.1 and Lemma 4.1, we let 0 ≤ �n ≤ nmax
be given, and let vq,�n−1 = v�q +

�n−1
�

n�=0
wq+1,n� , R̊�n−1q+1, and H̊n

�
q,n be given for

0 ≤ n� ≤�n − 1 and�n ≤ n ≤ nmax, such that the following are satisfied:
(1) vq,�n−1 solves the Euler–Reynolds system with stress

1{�n=0} R̊�q + R̊�n−1q+1 +
�n−1
�

n�=0

nmax
�

n>r(n�)
H̊n
�
q,n + R̊commq . (6.10)

(2) For all k+m ≤ Nfin,n� −Ncut,t−Ncut,x−2Ndec−9 and 0 ≤ n� ≤�n−1,
�

�

�DkDmt,qwq+1,n�
�

�

�

L2(suppψi,q)

123



An intermittent Onsager theorem 275

� δ
1/2

q+1,n��
3
q+1λkq+1M

�

m,Nind,t, τ−1q �
i−cn�+4
q+1 ,�τ−1q �−1q+1

�

(6.11a)
�

�

�DkDmt,qwq+1,n�
�

�

�

L∞(suppψi,q )

� �
Cu
2
q �

7ϒ(n�)+ 72
q+1 r−1q+1,n�λ

k
q+1M

�

m,Nind,t, τ−1q �
i−cn�+4
q+1 , �−1q+1�τ

−1
q

�

.

(6.11b)

(3) For all k,m ≤ 3Nind,v and 1 ≤�n ≤ nmax,
�

�ψi,q D
kDmt,q R̊

�n−1
q+1

�

�

L1

� �
−CR−1
q+1 δq+2λkq+1M

�

m,Nind,t, �
i+1
q+1τ

−1
q , �−1q+1�τ

−1
q

�

(6.12a)
�

�DkDmt,q R̊
�n−1
q+1

�

�

L∞(suppψi,q )

� �
Cu−1
q+1 λkq+1M

�

m,Nind,t, �
i+1
q+1τ

−1
q , �−1q+1�τ

−1
q

�

. (6.12b)

(4) For 0 ≤ n� ≤�n − 1, r(n�) < n ≤ nmax, and all k + m ≤ Nfin,n,
�

�DkDmt,q H̊
n�
q,n

�

�

L1(suppψi,q)

� δq+1,nλkq,nM
�

m,Nind,t, τ−1q �
i−cn
q+1 ,�τ

−1
q �−1q+1

�

, (6.13a)
�

�DkDmt,q H̊
n�
q,n

�

�

L∞(suppψi,q )

� �Cuq �
14ϒ(n)
q+1 λkq,nM

�

m,Nind,t, τ−1q �
i−cn
q+1 ,�τ

−1
q �−1q+1

�

. (6.13b)

Then if 0 ≤�n ≤ nmax−1, there existswq+1,�n, R̊�nq+1, and H̊n
�
q,n for 0 ≤ n� ≤�n,

such that (6.10)–(6.13b) are satisfied with�n− 1 replaced with�n. If�n = nmax,
then there existswq+1,nmax and R̊q+1 such that vq+1 := vq,nmax−1+wq+1,nmax
solves the Euler–Reynolds systemwith stress R̊q+1, and vq+1,wq+1, and R̊q+1
satisfy conclusions (6.1a)–(6.2b) from Proposition 6.1.

7 Proving the main inductive estimates

7.1 Definition of R̊q,�n and wq+1,�n

In this section we define the stresses R̊q,�n and the perturbations wq+1,�n used
to correct them. For 0 ≤�n ≤ nmax, we define

R̊q,�n = 1{�n=0} R̊�q +
�

0≤n�≤�n−1
H̊n
�
q,�n . (7.1)
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In Sect. 7.3, we will show that H̊n
�
q,�n is zero in certain parameter regimes,

although for the moment this is irrelevant. Now for any fixed values of�n, i , j ,
and k, we may define

Rq,�n, j,i,k = ∇�(i,k)

�

δq+1,�n�2 j+4q+1 Id − R̊q,�n
�

∇�T(i,k) . (7.2)

Let ξ ∈ � be a vector from Proposition 3.1. For all ξ ∈ �, we define the
coefficient function a

ξ,i, j,k,q,�n,�l by

a
ξ,i, j,k,q,�n,�l := aξ,i, j,k,q,�n := a(ξ)

= δ
1/2
q+1,�n�

j+2
q+1ηi, j,k,q,�n,ξ,�l γξ

)

Rq,�n, j,i,k

δq+1,�n�2 j+4q+1

*

. (7.3)

From Corollary 5.13, we see that on the support of η(i, j,k) we have |R̊q,�n| �
�
2 j+2
q+1 δq+1,�n , and thus by estimate (5.19a) from Corollary 5.10, we have that

�

�

�

�

�

Rq,�n, j,i,k

δq+1,�n�2 j+4q+1
− Id

�

�

�

�

�

≤ �−1q+1 <
1

2

once λ0 is sufficiently large. Thus we may apply Proposition 3.1.
The coefficient function a(ξ) is then multiplied by an intermittent pipe flow

defined in Proposition 3.3 (with λ = λq+1 and r = rq+1,�n)

∇�−1(i,k)Ws
ξ,λq+1,rq+1,�n ◦�(i,k),

where the superscript s = s(i, j, k,�n, �l) indicates the placement of the inter-
mittent pipe flowWs

ξ,λq+1,rq+1,�n (cf. (2) from Proposition 3.3), which depends

on i , j , k,�n, and �l and is only relevant in Sect. 7.5. To ease notation, we will
suppress the superscript s (except in Sect. 7.5), and use the shorthand notation

Wξ,q+1,�n :=Ws
ξ,λq+1,rq+1,�n . (7.4)

Wewill also adopt the same notational conventions for the potentialsUξ,q+1,�n .
Furthermore, (3.8) from Proposition 3.3 gives that we can now write the prin-
cipal part of the first term of the perturbation as

w
(p)
q+1,�n
=

�

i, j,k

�

�l

�

ξ

a(ξ)curl
�

∇�T(i,k)Uξ,q+1,�n ◦�(i,k)

�
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:=
�

i, j,k

�

�l

�

ξ

w(ξ) . (7.5)

The notation w(ξ) implicitly encodes all indices and thus will be a useful
shorthand for the principal part of the perturbation. To make the perturbation
divergence free, we add

w
(c)
q+1,�n
=

�

i, j,k

�

�l

�

ξ

∇a(ξ) ×
�

∇�T(i,k)Uξ,q+1,�n ◦�(i,k)

�

=
�

i, j,k

�

�l

�

ξ

w
(c)
(ξ) (7.6)

so that

wq+1,�n
= w

(p)
q+1,�n + w

(c)
q+1,�n

=
�

i, j,k

�

�l

�

ξ

curl
�

a(ξ)∇�T(i,k)Uξ,q+1,�n ◦�(i,k)

�

. (7.7)

7.2 Estimates for wq+1,�n

In this section, we verify (6.11a) and (6.11b).We first estimate the Lr norms of
the coefficient functions a(ξ). We have consolidated the proofs for each value
of�n into the following lemma.

Lemma 7.1 For N , N �, N ��,M with N �, N �� ∈ {0, 1} and N + N � + M ≤
Nfin,�n −Ncut,t −Ncut,x − 4, and r, r1, r2 ∈ [1,∞] with 1

r1
+ 1
r2
= 1, we have

the following estimate.

�

�DN−N ��DMt,q(ξ�A
p
� ∂p)

N �DN
��
a
ξ,i, j,k,q,�n,�l

�

�

Lr

� |supp (ηi, j,k,q,�n,ξ,�l)|
1/rδ

1/2
q+1,�n�

j+2
q+1

�

�−1q+1λq+1rq+1,�n
�N

× �

�q+1λq,�n
�N �M

�

M,Nind,t, τ−1q �
i−c

�n+3
q+1 ,�τ−1q �−1q+1

�

. (7.8)

In the case that r = ∞, the above estimate gives that
�

�DN−N ��DMt,q(ξ�A
p
� ∂p)

N �DN
��
a
ξ,i, j,k,q,�n,�l

�

�

L∞

� �
Cu
2
q �

7ϒ(�n)+ 72
q+1

�

�−1q+1λq+1rq+1,�n
�N
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× �

�q+1λq,�n
�N �M

�

M,Nind,t, τ−1q �
i−c

�n+3
q+1 ,�τ−1q �−1q+1

�

. (7.9)

Proof of Lemma 7.1 We first compute (7.8) for the case r = ∞. Recalling
estimate (5.28), we have that for all N + M ≤ Nfin,�n − 4,

�

�DN DMt,q R̊q,�n
�

�

L∞(supp η(i, j,k))

� δq+1,�n�2 j+2q+1
�

�q+1λq,�n
�NM

�

M,Nind,t, τ−1q �
i−c

�n+2
q+1 ,�τ−1q �−1q+1

�

.

From Corollary 5.10, we have that for all N + M ≤ 3Nfin/2,
�

�

�DN DMt,q D�(i,k)

�

�

�

L∞(supp (ψi,qχi,k,q ))

≤�λNqM
�

M,Nind,t, �
i−c0
q+1 τ

−1
q ,�τ−1q �−1q+1

�

.

Thus from the Leibniz rule and definition (7.2), for N + M ≤ Nfin,�n − 4,
�

�

�DN DMt,q Rq,�n, j,i,k
�

�

�

L∞(supp η(i, j,k))

� δq+1,�n�2 j+4q+1
�

�q+1λq,�n
�N

× M
�

M,Nind,t, τ−1q �
i−c

�n+2
q+1 ,�τ−1q �−1q+1

�

. (7.10)

The above estimates allow us to apply [5, LemmaA.5] with N = N �, M = M �
so that N + M ≤ Nfin,�n − 4, ψ = γξ,, �ψ = 1, v = v�q , Dt = Dt,q ,

h(x, t) = Rq,�n, j,i,k(x, t), Ch = δq+1,�n�2 j+4q+1 = �2, λ = �λ = λq,�n�q+1,
μ = τ−1q �

i−c
�n+2

q+1 , �μ = �τ−1q �−1q+1, and Nt = Nind,t. We obtain that for all
N + M ≤ Nfin,�n − 4,

�

�

�

�

�

DN DMt,qγξ

)

Rq,�n, j,i,k

δq+1,�n,�p�2 j+4q+1

*�

�

�

�

�

L∞(supp η(i, j,k))

�
�

�q+1λq,�n
�NM

�

M,Nind,t, τ−1q �
i−c

�n+2
q+1 ,�τ−1q �−1q+1

�

.

From the above bound, definition (7.3), theLeibniz rule, estimate (2.23) at level
q in conjunction with (8.35), (5.19g), (5.16), (5.33), and (5.40), we obtain that
for N + N � + M ≤ Nfin,�n − Ncut,x − Ncut,t − 4,

�

�DN DMt,q(ξ
�Ap� ∂p)

N �a
ξ,i, j,k,q,�n,�l

�

�

L∞

� δ
1/2
q+1,�n�

j+2
q+1(�

−1
q+1λq+1rq+1,�n)

N
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× (�q+1λq,�n)N
�M

�

M,Nind,t, τ−1q �
i−c

�n+3
q+1 ,�τ−1q �−1q+1

�

.

Then, using (5.30) the above bound becomes (7.9) for N �� = 0. The proof
for N �� = 1 is nearly identical, and we omit the details. When r �= ∞, we
use � f �Lr ≤ � f �L∞ |{supp f }|1/r and the demonstrated bound for r = ∞ to
obtain (7.8) for the full range of r . ��
An immediate consequence of Lemma 7.1 is that we have estimates for

the velocity increments themselves. These are summarized in the following
corollary. The proofs for r �= ∞ are analogous to those from [5, Corollary 8.2]
and therefore use Lemma A.1. We only note that the gap between the spatial
derivative cost of a(ξ) (λq+1rq+1,�n�−1q+1 from Lemma 7.1) and the minimum
frequency of Wξ,q+1,�n (λq+1rq+1,�n from (7.4) and Proposition 3.3) is now
only �q+1, and so we need the inequality (8.37) in order to satisfy (A.2).
The assumption (A.1) follows from (8.58a). The estimates for r = ∞ follow
directly from (7.9) and (3.6).

Corollary 7.2 For N+M ≤ Nfin,�n−Ncut,t−Ncut,x−2Ndec−8and (r, r1, r2) ∈
{(1, 2, 2), (2,∞, 1)}, for w(ξ) we have the estimates

�

�

�DN DMt,qw(ξ)

�

�

�

Lr

� |supp (ηi, j,k,q,�n,ξ,�l)|
1/rδ

1/2
q+1,�n�

j+2
q+1

�

rq+1,�n
� 2
r −1λNq+1

× M
�

M,Nind,t, τ−1q �
i−c

�n+3
q+1 ,�τ−1q �−1q+1

�

(7.11a)
�

�

�DN DMt,qw(ξ)

�

�

�

L∞

� r−1q+1,�nλNq+1�
Cu
2
q �

7ϒ(�n)+ 72
q+1

× M
�

M,Nind,t, τ−1q �
i−c

�n+3
q+1 ,�τ−1q �−1q+1

�

. (7.11b)

For N + M ≤ Nfin,�n − Ncut,t − Ncut,x − 2Ndec − 9 and (r, r1, r2) ∈
{(1, 2, 2), (2,∞, 1)}, we have that

�

�DN DMt,qw
(c)
(ξ)

�

�

Lr

� λq+1rq+1,�n
λq+1

|supp (ηi, j,k,q,�n,ξ,�l)|
1/rδ

1/2
q+1,�n�

j+2
q+1

�

rq+1,�n
� 2
r −1

× λNq+1M
�

M,Nind,t, τ−1q �
i−c

�n+3
q+1 ,�τ−1q �−1q+1

�

(7.12a)
�

�DN DMt,qw
(c)
(ξ)

�

�

L∞

� r−1q+1,�n
λq+1rq+1,�n

λq+1
�
Cu
2
q �

7ϒ(�n)+ 72
q+1 λNq+1
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× M
�

M,Nind,t, τ−1q �
i−c

�n+3
q+1 ,�τ−1q �−1q+1

�

(7.12b)

Remark 7.3 Note that the above estimates verify the bounds (6.11a) and
(6.11b) after summing on (i, j, k,�n, ξ, �l) and using (5.43) with r1 = ∞ and
r2 = 2. Then from (7.5)–(7.7), (7.11a)–(7.12b), and the parameter inequalities
(8.25), (8.43), and (8.48), the bounds (6.1a) and (6.1b) follow after using the
extra factor of �−1q+1 to absorb implicit constants.

7.3 Identification of error terms

Recall that vq,�n−1 is divergence-free and is a solution to the Euler–Reynolds
system with stress given in (6.10). Now using the definition of R̊q,�n from
(7.1) for 0 ≤ �n ≤ nmax, we add wq+1,�n as defined in (7.7), we have that
vq,�n := vq,�n−1 + wq+1,�n solves

∂tvq,�n + div
�

vq,�n ⊗ vq,�n
�+ ∇ pq,�n−1

= div
�

R̊�n−1q+1
�

+ div
�

�n−1
�

n�=0

nmax
�

n>r(n�)
H̊n
�
q,n

	

+ div R̊commq

+ Dt,qwq+1,�n + wq+1,�n · ∇v�q + 2
�

n�≤�n−1
div

�

wq+1,n� ⊗s wq+1,�n
�

+ div
�

wq+1,�n ⊗ wq+1,�n + R̊q,�n
�

. (7.13)

Here we use the notation a ⊗s b = 1
2 (a ⊗ b + b ⊗ a). The first term on the

right hand side is R̊�n−1q+1, which for�n ≥ 1 satisfies the same estimates as R̊�nq+1
by (6.12a) and will thus be absorbed into R̊�nq+1. The second term, save for the
fact that the sum is over n� ≤�n−1 rather than n� ≤�n and is therefore missing
the terms H̊�n

q,n , matches (6.10) at level�n (i.e. replacing every instance of�n−1
with �n). We apply the inverse divergence operators from Proposition A.2 to
the transport and Nash errors to obtain

Dt,qwq+1,�n + wq+1,�n · ∇v�q
= div �

(H+R∗) �Dt,qwq+1,�n + wq+1,�n · ∇v�q
��+ ∇π,

and these errors are absorbed into R̊�nq+1 or the new pressure. We will show in
Sect. 7.5 that the interaction of wq+1,�n with previous terms wq+1,n� is a Type
2 oscillation error so that
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2
�

0≤n�≤�n−1
wq+1,n� ⊗s wq+1,�n = 0 . (7.14)

So to verify (6.10) at level �n, only the analysis of last line of the right-hand
side of (7.13) remains.
For a fixed �n, throughout this section we will consider sums over indices

(ξ, i, j, k, �l), where the direction vector ξ takes on one of the finitely many
values in Proposition 3.3, 0 ≤ i ≤ imax(q) indexes the velocity cutoffs, 0 ≤
j ≤ jmax(q,�n) indexes the stress cutoffs, the parameter k ∈ Z indexes the
time cutoffs defined in (5.15), and lastly, �l ∈ N30 indexes the checkerboard
cutoffs from Definition 5.17. For brevity of notation, we denote sums over
such indexes as

�

ξ,i, j,k,�l
.

Moreover, we shall denote as
�

�={ξ,i, j,k,�l}

the double-summation over indexes (ξ, i, j, k, �l) and (ξ∗, i∗, j∗, k∗, �l∗)which
belong to the set

'

(ξ, i, j, k, �l) , (ξ∗, i∗, j∗, k∗, �l∗) : ξ �= ξ∗ ∨ i �= i∗ ∨ j �= j∗ ∨ k �= k∗ ∨ �l �= �l∗
(

.

We may now write out the self-interaction of wq+1,�n as

div
�

wq+1,�n ⊗ wq+1,�n
�

=
�

ξ,i, j,k,�l
div

�

curl
�

a(ξ)∇�T(i,k)Uξ,q+1,�n
�⊗ curl �a(ξ)∇�Ti,kUξ,q+1,�n

�

�

+
�

�={ξ,i, j,k,�l}
div

�

curl
�

a(ξ)∇�T(i,k)Uξ,q+1,�n
�⊗ curl �a(ξ∗)∇�T(i∗,k∗)Uξ∗,q+1,�n

�

�

=: divO
�n,1 + divO�n,2. (7.15)

We will show that O
�n,2 is a Type 2 oscillation error so that

O
�n,2 = 0 . (7.16)

Splitting O
�n,1 gives

divO
�n,1 =

�

ξ,i, j,k,�l
div

�

�

a(ξ)∇�−1(i,k)Wξ,q+1,�n ◦�(i,k)
�
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⊗�a(ξ)∇�−1(i,k)Wξ,q+1,�n ◦�(i,k)
�

�

+ 2
�

ξ,i, j,k,�l
div

�

�

a(ξ)∇�−1(i,k)Wξ,q+1,�n ◦�(i,k)
�

⊗s
�∇a(ξ) ×

�∇�T(i,k)Uξ,q+1,�n ◦�(i,k)
��

�

+
�

ξ,i, j,k,�l
div

�

�∇a(ξ) ×
�∇�T(i,k)Uξ,q+1,�n ◦�(i,k)

��

⊗�∇a(ξ) ×
�∇�T(i,k)Uξ,q+1,�n ◦�(i,k)

��

�

:= div �O
�n,1,1 +O�n,1,2 +O�n,1,3

�

. (7.17)

The last two of these terms are divergence corrector errors and will therefore
be absorbed into R̊�nq+1 and estimated in Sect. 7.6. So the only terms which we
have yet to identify from (7.13) are O

�n,1,1 and R̊q,�n .

Recall cf. (7.4) thatWξ,q+1,�n is periodized to scale
�

λq+1rq+1,�n
�−1. Using

(6.4), we have that

Wξ,q+1,�n ⊗Wξ,q+1,�n = −
ˆ

T3
Wξ,q+1,�n ⊗Wξ,q+1,�n

+
nmax+1
�

n=�n+1
P[q,n]

�

Wξ,q+1,�n ⊗Wξ,q+1,�n
�

.

Using (4) and (3.9) fromProposition3.3 in combinationwith the above identity,
and the convention that • denotes the unspecified components of a vector field,
we then split O

�n,1,1 as

div
�O

�n,1,1
� =

�

ξ,i, j,k,�l
div

�

a2(ξ)∇�−1(i,k) (ξ ⊗ ξ)∇�−T(i,k)
�

+
�

ξ,i, j,k,�l
div

�

a2(ξ)∇�−1(i,k)
nmax+1
�

n=�n+1
P[q,n](W⊗W)ξ,q+1,�n(�(i,k))∇�−T(i,k)

	

= div
�

ξ,i, j,k,�l
δq+1,�n�2 j+4q+1 η

2
(i, j,k)γ

2
ξ

)

Rq,�n, j,i,k

δq+1,�n�2 j+4q+1

*

× ∇�−1(i,k) (ξ ⊗ ξ)∇�−T(i,k)
+

�

ξ,i, j,k,�l
∇a2(ξ)∇�−1(i,k)

×
nmax+1
�

n=�n+1
P[q,n](W⊗W)ξ,q+1,�n(�(i,k))∇�−T(i,k)
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+
�

ξ,i, j,k,�l
a2(ξ)(∇�−1(i,k))αθ

×
nmax+1
�

n=�n+1
P[q,n](Wθ

W
γ )ξ,q+1,�n(�(i,k))∂α(∇�−1(i,k))•γ . (7.18)

By (3.1) from Proposition 3.1, identity (7.2), and (5.39), we obtain that

�

i, j,k,ξ

�

�l
δq+1,�n�2 j+4q+1 η

2
i, j,k,q,�n,ξ,�l γ

2
ξ

)

Rq,�n, j,i,k

δq+1,�n�2 j+4q+1

*

∇�−1(i,k) (ξ ⊗ ξ)∇�−T(i,k)

=
�

i, j,k,ξ

δq+1,�n�2 j+4q+1 ψ
2
i,qω

2
i, j,q,�nχ

2
i,k,qγ

2
ξ

×
)

Rq,�n, j,i,k

δq+1,�n�2 j+4q+1

*

∇�−1(i,k) (ξ ⊗ ξ)∇�−T(i,k)

=
�

i, j,k

ψ2i,qω
2
i, j,q,�nχ

2
i,k,q

�

δq+1,�n�2 j+4q+1 Id − R̊q,�n
�

= −R̊q,�n + Id
�

�

i, j,k

ψ2i,qω
2
i, j,q,�nχ

2
i,k,qδq+1,�n�

2 j+4
q+1

	

, (7.19)

where in the last equality we have appealed to the fact that η2i, j,k forms a
partition of unity, cf. (5.42). The second term on the right hand side of (7.19)
is a pressure term.
Returning to the second and third lines in (7.18), we first note that when

�n = 0, (2.7b) gives that λq+1rq+1,0 = λ
1/2
q+1λ

1/2
q,n�

−2
q+1 = λ

1/2
q+1λ

1/2
q �q+1.

Then from (6.3) and (7.4), for all 1 ≤ n ≤ nmax + 1, we deduce that
P[q,n]

�

Wξ,q+1,0 ⊗Wξ,q+1,0
� �= 0. Conversely, when 1 ≤ �n ≤ nmax, for all

n ≥�n+1 such thatλq,n < λ
1/2
q+1λ

1/2
q,�n�

−2
q+1, i.e. such that themaximal frequency

of P[q,n] is less than the minimal frequency of P �=0
�

Wξ,q+1,�n ⊗Wξ,q+1,�n
�

,
we have that P[q,n]

�

Wξ,q+1,�n ⊗Wξ,q+1,�n
� = 0. Using (2.7a), we write that

λ
1
2− n

2(nmax+1)
q λ

1
2+ n

2(nmax+1)
q+1

� �� �

=λq,n

< λ
1
2
q+1λ

1
4− �n

4(nmax+1)
q λ

1
4+ �n

4(nmax+1)
q+1 �−2q+1

� �� �

=λ1/2q+1λ
1/2
q,�n�

−2
q+1

⇔ λ
1
4+ �n−2n

4(nmax+1)
q < λ

1
4+ �n−2n

4(nmax+1)
q+1 �−2q+1

⇔ 2ε� <
1

4
+ �n − 2n
4(nmax + 1)

⇔ 8ε�(nmax + 1) < nmax + 1+�n − 2n
⇐ n ≤ nmax +�n

2
,

1

2
− 4ε�(nmax + 1) > 0 . (7.20)
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The second inequality in the last line follows from (8.6a). Based on (7.20) and
(6.5), we apply PropositionA.2 in the parameter regimes�n = 0, 1 ≤ n ≤ nmax
and 1 ≤�n ≤ nmax − 1, r(�n) = nmax+�n

2 < n ≤ nmax to define

H̊�n
q,n := H

�

�

ξ,i, j,k

∇a2(ξ)∇�−1(i,k)P[q,n](Wξ,q+1,�n ⊗Wξ,q+1,�n)(�(i,k))∇�−T(i,k)

+
�

ξ,i, j,k

a2(ξ)(∇�−1(i,k))αθ P[q,n](Wθ
ξ,q+1,�nW

γ
ξ,q+1,�n)(�(i,k))∂α(∇�−1(i,k))•γ

	

. (7.21)

The terms from (7.18) with P[q,nmax+1] will be absorbed into R̊�nq+1. We will
show shortly that the terms H̊�n

q,n in (7.21) are precisely the terms needed to
make (7.13) match (6.10) at level�n.
Recall from (6.9) that R̊�nq+1 will include R̊

�n−1
q+1 in addition to error terms

arising from the addition of wq+1,�n which are small enough to be absorbed in
R̊q+1. Then to check (6.10), we return to (7.13) and use (7.14), (7.15), (7.17),
(7.18), (7.19), (7.20), (6.5), and (7.21) to write

∂tvq,�n + div
�

vq,�n ⊗ vq,�n
�+∇ pq,�n−1

= div R̊commq + div
�

�n−1
�

n�=0

nmax
�

n>r(n�)
H̊n
�
q,n

	

+ div
�

R̊�n−1q+1
�

+ Dt,qwq+1,�n + wq+1,�n · ∇v�q + div
�O

�n,1,2 +O�n,1,3
�

+ div
�

O
�n,1,1 + R̊q,�n

�

= div R̊commq + div
�

�n−1
�

n�=0

nmax
�

n>r(n�)
H̊n
�
q,n

	

+ div
�

R̊�n−1q+1 + (H+R∗) �Dt,qwq+1,�n + wq+1,�n · ∇v�q
�

+ O
�n,1,2 +O�n,1,3

	

+∇π

+ div
�

�H+R∗�
�

�

ξ,i, j,k,�l
∇a2(ξ)∇�−1(i,k)

×
nmax+1
�

n>r(�n)

P[q,n](W⊗W)ξ,q+1,�n(�(i,k))∇�−T(i,k)
	

+ (H+R∗)
�

�

ξ,i, j,k,�l
a2(ξ)(∇�−1(i,k))αθ
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×
nmax+1
�

n>r(�n)

P[q,n](Wθ
W

γ )ξ,q+1,�n(�(i,k))∂α(∇�−1(i,k))•γ
	�

(7.22)

= div R̊commq + div
�

�n
�

n�=0

nmax
�

n>r(n�)
H̊n
�
q,n

	

+ div R̊�nq+1 +∇π , (7.23)

where

R̊�nq+1 = R̊�n−1q+1 + (H+R∗) �Dt,qwq+1,�n + wq+1,�n · ∇v�q
�+O

�n,corr + π Id

+H
�

�

ξ,i, j,k,�l
∇a2(ξ)∇�−1(i,k)

× P[q,nmax+1](W⊗W)ξ,q+1,�n(�(i,k))∇�−T(i,k)
	

+H
�

�

ξ,i, j,k,�l
a2(ξ)(∇�−1(i,k))αθ

× P[q,nmax+1](Wθ
W

γ )ξ,q+1,�n(�(i,k))∂α(∇�−1(i,k))•γ
	

+R∗
�

�

ξ,i, j,k,�l
∇a2(ξ)∇�−1(i,k)

nmax+1
�

n>r(�n)

× P[q,n](W⊗W)ξ,q+1,�n(�(i,k))∇�−T(i,k)
	

+R∗
�

�

ξ,i, j,k,�l
a2(ξ)(∇�−1(i,k))αθ

nmax+1
�

n>r(�n)

× P[q,n](Wθ
W

γ )ξ,q+1,�n(�(i,k))∂α(∇�−1(i,k))•γ
	

. (7.24)

We first emphasize that to obtain (7.23), we have used that the Type 2 oscil-
lation errors from (7.14) and (7.16) will be shown to vanish. In addition, the
symmetric stress O

�n,corr will be defined in The equality (7.23) completes the
proof of (6.10) at level�n.

7.4 Type 1 oscillation errors

Recall from (7.23) that there are two main categories of Type 1 oscillation
errors which arise from the addition ofwq+1,�n: the higher order stresses H�n

q,n ,
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which are defined and non-vanishing in (7.21) in the parameter regimes�n =
0, 1 ≤ n ≤ nmax and 1 ≤ �n < nmax, r(�n) < n ≤ nmax, and the portions of
R̊�nq+1, which are defined in the last four lines of (7.24). To estimate these error
terms, we will first analyze a single term of the form

�H+R∗�
�

�

ξ,i, j,k,�l
∇a2(ξ)∇�−1(i,k)P[q,n](Wξ,q+1,�n ⊗Wξ,q+1,�n)(�(i,k))∇�−T(i,k)

+
�

ξ,i, j,k,�l
a2(ξ)(∇�−1(i,k))αθ P[q,n](Wθ

ξ,q+1,�nW
γ
ξ,q+1,�n)(�(i,k))∂α(∇�−1(i,k))•γ

	

=: On,�n +O∗n,�n , (7.25)

where • refers to the unspecified components of a vector field, and superscripts
on Wξ,q+1,�n refer to components of vectors over which summation is per-
formed. In the above display,we allow0 ≤�n ≤ nmax and r(�n) < n ≤ nmax+1,
thus including both H�n

q,n from (7.21) and all Type 1 error terms in (7.24).

Lemma 7.4 The terms On,�n and O∗n,�n defined in (7.25) satisfy the following
estimates.

(1) For all error terms O∗n,�n, which are the outputs of R∗, we have for all
N ,M ≤ 3Nind,v that

�

�

�DN DMt,qO∗n,�n
�

�

�

L∞
≤ δq+2λN−1q+1 τ

−M
q . (7.26)

(2) For 0 ≤�n ≤ nmax and n = nmax+ 1, the high frequency, local part of the
Type 1 errors satisfies
�

�

�DN DMt,qOnmax+1,�n
�

�

�

L1(suppψi,q)

� �
−CR−1
q+1 δq+2λNq+1M

�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 , �−1q+1�τ

−1
q

�

(7.27a)
�

�

�DN DMt,qOnmax+1,�n
�

�

�

L∞(suppψi,q)

� �
Cu−1
q+1 λNq+1M

�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 , �−1q+1�τ

−1
q

�

(7.27b)

for all N ,M ≤ 3Nind,v.
(3) For 0 ≤ �n < nmax and r(�n) < n ≤ nmax, the medium frequency, local

part of the Type 1 errors satisfies
�

�

�DN DMt,qOn,�n
�

�

�

L1(suppψi,q )

� δq+1,nλNq,nM
�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 , �−1q+1�τ

−1
q

�

(7.28a)
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�

�

�DN DMt,qOn,�n
�

�

�

L∞(suppψi,q )

� �Cuq �
14ϒ(n)
q+1 λNq,nM

�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 , �−1q+1�τ

−1
q

�

(7.28b)

for all N + M ≤ Nfin,n.
Remark 7.5 In order to verify (6.13a) for n� = �n and r(�n) < n ≤ nmax, we
first note that On,�n = H̊�n

q,n , and the inequality �
i−c

�n+4
q+1 ≤ �

i−cn
q+1 , holds from

�n ≤ n−1 and (8.27). Then (7.28a) provides the desired bound. (6.13b) follows
similarly from (7.28b). The bound in (6.12a) follows from (7.26) and (7.27a),
since c

�n ≥ 4 from (8.5) and (8.27). The bound in (6.12b) follows from (7.26)
and (7.27b). Lastly, when�n = nmax, and hence n = nmax+ 1, (7.26), (7.27a),
and (7.27b) match (6.2a) and (6.2b).

Proof of Lemma 7.4 We use (1) from Proposition 3.3 and the notation A =
(∇�)−1 to rewrite (7.25) as

�H+R∗�
�

�

ξ,i, j,k,�l
P[q,n]

�

�

�ξ,λq+1,rq+1,�n
�2
�

× (�(i,k))ξ
θ ξγ

�

A(i,k)
�α

θ

�

∂αa
2
(ξ)

�

A(i,k)
�•
γ
+ a2(ξ)∂α

�

A(i,k)
�•
γ

�

	

.

Next, we must identify the functions and the values of the parameters which
will be used in the application of Proposition A.2. We first address the bounds
required in (A.4), (A.5), and (A.6), which we can treat simultaneously for
items (1), (2), and (3). Afterwards, we split the proof into two parts. First, we
set n = nmax + 1 and prove (7.26), (7.27a), and (7.27b) for any value of �n.
Next, we consider 0 ≤ �n < nmax and r(�n) < n ≤ nmax and prove (7.26) in
the remaining cases, as we simultaneously prove (7.28a) and (7.28b).
Returning to (A.4), we will verify that this inequality holds with v = v�q ,

Dt = Dt,q = ∂t + v�q · ∇, and N∗ = M∗ = #N #/2$, where N # = Nfin,�n −
Ncut,t −Ncut,x− 5. In order to verify the assumption N∗ − d ≥ 2Ndec+ 4, we
use that Ndec and d satisfy (8.58a). We fix values of (i, j, k,�n, ξ, �l) and set

G• = ξθ ξγ
�

A(i,k)
�α

θ

�

∂αa
2
(ξ)

�

A(i,k)
�•
γ
+ a2(ξ)∂α

�

A(i,k)
�•
γ

�

. (7.29)

Note crucially that the differential operator falling on a2
ξ,i, j,k,q,�n,�l in the first

term is precisely ξθ
�

A(i,k)
�α

θ
∂α , which from (5.40) and (7.8) will obey a good

bound. We now establish (A.4)–(A.6) with the parameter choices
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CG,1 = |supp (ηi, j,k,q,�n,ξ,�l)|δq+1,�nλq,�n�2 j+5q+1 , CG,∞ = �Cuq �
14ϒ(�n)+8
q+1 λq,�n ,

(7.30)

λ = λq+1rq+1,�n�−1q+1, Mt = Nind,t, ν = τ−1q �
i−c

�n+4
q+1 , �ν = �τ−1q �−1q+1, and

λ� =�λq .
To establish an L1 bound for the first term from (7.29), we appeal to

Lemma 7.1, estimate (7.8) with N � = 1, and (5.19g) to deduce that
�

�

�

�

DN DMt,q
�

ξθ
�

A(i,k)
�α

θ
∂αa

2
(ξ)

�

A(i,k)
�•
γ
ξγ

�

�

�

�

�

L1

� |supp (ηi, j,k,q,�n,ξ,�l)|δq+1,�nλq,�n�2 j+5q+1
�

�−1q+1λq+1rq+1,�n
�N

× M
�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

(7.31)

holds for all N ,M ≤ #1/2 �Nfin,�n − Ncut,t − Ncut,x − 5
�$. It is precisely at this

point that we have used that the differential operator ξθ (A(i,k))αθ ∂α costs only
λq,�n�q+1. For the L∞ bound on the same term, we argue similarly except we
apply estimate (7.9) to obtain

�

�

�

�

DN DMt,q
�

ξθ
�

A(i,k)
�α

θ
∂αa

2
(ξ)

�

A(i,k)
�•
γ
ξγ

�

�

�

�

�

L∞

� �Cuq �
14ϒ(�n)+8
q+1 λq,�n

�

�−1q+1λq+1rq+1,�n
�N

× M
�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

. (7.32)

For the second term from (7.29), we can appeal to (5.19g) and use that�λq ≤
λq,�n for all�n to deduce that for N ,M ≤ #1/2

�

Nfin,�n − Ncut,t − Ncut,x − 5
�$,

we have
�

�

�DN DMt,q∂α
�

A(i,k)
�•
γ

�

�

�

L∞(suppψi,q�χi,k,q )

� λN+1q,�n M
�

M,Nind,t, τ−1q �
i−c0+1
q+1 ,�τ−1q �−1q+1

�

.

Combining this with Lemma 7.1, estimate (7.8) in the case p = 1 and (7.9) in
the case p = ∞ produces identical bounds as for the first term and in the range
N ,M ≤ #1/2 �Nfin,�n − Ncut,t − Ncut,x − 5

�$. Adding both estimates together
shows that (A.4) has been satisfied for both p = 1,∞.
We set the flow in PropositionA.2 as� = �i,k , which by definition satisfies

Dt,q�i,k = 0. Appealing to (5.19b) and (5.19e), we have that (A.5) is satisfied.
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From (2.19) at level q, which follows from Proposition 5.6, the choice of ν
from earlier, and (8.30), we have that Dv = Dv�q satisfies the bound (A.6).
Proof of items (1) and (2) for 0 ≤ �n ≤ nmax and n = nmax + 1. We first

assume that�n < nmax. With the goal of verifying (i)–(iii) of Proposition A.2,
we choose ζ, μ,�, ρ and � as

ζ = λq,nmax , μ = λq+1rq+1,�n , � = λq+1 ,

� = P[q,nmax+1]
�

�

�ξ,λq+1,rq+1,�n
�2
�

ϑ = λ2dq,nmax�
−d
P[q,nmax+1]

�

�2ξ,λq+1,rq+1,�n

�

, (7.33)

where we recall that �ξ,λq+1,rq+1,�n is defined in Propositions 3.2 and 3.3. We
then have by definition that (i) fromPropositionA.2 is satisfied.By property (1)
of Proposition 3.2, we have that the functions � and ϑ defined in (7.33) are
both periodic to scale

�

λq+1rq+1,�n
�−1, and so (ii) is satisfied. In the case

p = 1, the estimates in (A.7) follow with C∗,1 = 1 from standard Littlewood–
Paley arguments (see also the discussion in part (b) of [5, Remark A.21]) and
item (5) from Proposition 3.3. In the case p = ∞, the estimates follow from
Lemma 3.5, (3.11b) with the choices C∗,∞ = r−2q+1,�n , λ1 = λq,nmax, λ2 =
∞, λ = λq+1, r = rq+1,�n . We recall from (8.36) the choice of α = ε�

b−1
b , so

that the loss λαq+1 gives exactly a loss of �q+1. From (8.20), (8.24), and the
temporary assumption that�n < nmax, we have that

�λq � λq+1rq+1,�n�−1q+1 � λq+1rq+1,�n ≤ λq,nmax ≤ λq+1,

and so (A.8) is satisfied. From (8.37) we have that

λ4q+1 ≤
)

λq+1rq+1,�n
2π
√
3�−1q+1λq+1rq+1,�n

*Ndec

=
�

�q+1
2π
√
3

	Ndec
,

and so (A.9) is satisfied. Applying the estimate (A.11) for p = 1 with α as
in (8.36), recalling the value for CG,1 in (7.30), summing over i and using
(2.11) at level q, summing over j, k, ξ , summing over �l and using (5.43) with
r1 = ∞ and r2 = 2, and appealing to (8.38) and (8.40), we obtain that for
N ,M ≤ #1/2 �Nfin,�n − Ncut,t − Ncut,x − 5

�$ − d,
�

�

�DN DMt,qOn,�n
�

�

�

L1(suppψi,q)

� λNq+1δq+1,�nλq,�n�8q+1λ−1q,nmaxM
�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

� �
−CR−1
q+1 δq+2λNq+1M

�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

. (7.34)

123



290 M. Novack, V. Vicol

Applying the same steps but in the case p = ∞ and using the parameter
inequality (8.45) yields the bound

�

�

�DN DMt,qOn,�n
�

�

�

L∞(suppψi,q)

� �Cuq �
14ϒ(�n)+9
q+1 λq,�nr

−2
q+1,�nλ

−1
q,nmaxλ

N
q+1M

�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

� �
Cu−2
q+1 λNq+1M

�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

. (7.35)

in the same range of N ,M . The proof is complete after using (8.58c), which
gives that the range of derivatives allowed in (7.34) and (7.35) is as much as
is needed in (7.27a).
Following the parameter choices in [5, Remark A.19], we set N◦ = M◦ =

3Nind,v, and N # = Nfin,�n −Ncut,t−Ncut,x− 5. From (8.58d), we have that the
condition N◦ ≤ N #/4 is satisfied. The inequalities (A.13) and (A.14) follow from
the discussion in [5, Remark A.19]. The inequality in (A.15) follows from the
choices λ = λq+1rq+1,�n�−1q+1, ζ = λq,nmax ≥ λq+1rq+1,�n�−1q+1, (8.32), and
(8.50). Having satisfied these assumptions, we may now appeal to estimate
(A.17) for p = ∞ and sum over all parameters (i, j, k, ξ, �l). Since �l takes at
most λ3q+1 values, i , and j are bounded independently of q, and k corresponds
to a partition of unity in time, we obtain (7.26) for the case �n < nmax and
n = nmax + 1.
Recall that we began this casewith the temporary assumption that�n < nmax.

In the case �n = nmax, we have from (8.24) that λq+1rq+1,nmax > λq,nmax .
Then we can set ζ = μ = λq+1rq+1,nmax and substitute P≥λq+1rq+1,�n for
P[q,nmax]. The only change is that (7.34) and (7.35) become stronger, since
λq,nmax < λq+1rq+1,nmax , and so the desired estimates follow by arguing as
before. We omit further details.
Proof of item (3) and of item (1) when 0 ≤�n < nmax and r(�n) < n ≤ nmax.

We set

ζ =
�

max
�

λq+1rq+1,�n, λq,n−1
�

if 2 ≤ n ≤ nmax
λ
1/2
q+1λ

1/2
q �q+1 if n = 1 ,

μ = λq+1rq+1,�n , � = λq,n , (7.36)

and

� = P[q,n]
�

�

�ξ,λq+1,rq+1,�n
�2
�

, ϑ = ζ 2d�−dP[q,n]
�

�2ξ,λq+1,rq+1,�n

�

.

We then have by definition that (i) from Proposition A.2 is satisfied. By prop-
erty (1) of Proposition 3.2, � and ϑ are both periodic to scale

�

λq+1rq+1,�n
�−1,

and so (ii) is satisfied. The estimates in (A.7) follow with C∗,1 = 1 in the case
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p = 1 as before. In the case p = ∞, we appeal to Lemma 3.5, (3.11b) with
λ1 = ζ , λ2 = λq,n = � < λq+1, and r = rq+1,�n to deduce that (A.7) holds
with C∗,∞ =

�

λq,n
λq+1rq+1,�n

�2
. We again set α as in (8.36). From (8.24) and the

condition that r(�n) < n, we have that if n �= 1, then

�λq ≤ λq+1rq+1,�n�−1q+1 � λq+1rq+1,�n ≤ max
�

λq+1rq+1,�n, λq,n−1
� ≤ λq,n,

and so (A.8) is satisfied if n �= 1. If n = 1, then it must be the case that�n = 0,
and so

�λq ≤ λq+1rq+1,0�−1q+1 � λq+1rq+1,0 ≤ λq,1.

From (8.37), the inequality λq,n ≤ λq+1, and the choices of μ and λ, we have
that (A.9) is satisfied.
We now use the definition of CG,p in (7.30) and apply the estimate (A.11).

In the case that p = 1 and n = 1, then we must have �n = 0, and so for all
N ,M ≤ #1/2 �Nfin,�n − Ncut,t − Ncut,x − 5

�$ − d, we sum over (i, j, k, ξ, �l) as
before and obtain that

�

�

�DN DMt,qO0,1
�

�

�

L1(suppψi,q)

� �−CRq δq+1�λq�9q+1
�

λ
1/2
q λ

1/2
q+1�q+1

�−1
λNq,1M ()

M,Nind,t, τ−1q �
i−c0+4
q+1 ,�τ−1q �−1q+1

� δq+1,1λNq,1M
�

M,Nind,t, τ−1q �
i−c0+4
q+1 ,�τ−1q �−1q+1

�

. (7.37)

The inequality in the last line follows immediately from the definitions in
(8.26). Alternatively, if n > 1, then ζ−1 ≤ λ−1q,n−1 from (7.36), and so if
N ,M ≤ #1/2 �Nfin,�n − Ncut,t − Ncut,x − 5

�$ − d,
�

�

�DN DMt,qO�n,n

�

�

�

L1(suppψi,q)

� δq+1,�nλq,�n�8q+1λ
−1
q,n−1λ

N
q,nM

�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

� δq+1,nλNq,nM
�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

. (7.38)

In the last inequality, we have used (8.42). After using (8.59), which gives
#1/2 �Nfin,�n − Ncut,t − Ncut,x − 5

�$ − d ≥ Nfin,n for all �n < n, we have
achieved (7.28a).
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In the case that p = ∞ and n = 1, then we must have that�n = 0, and so

�

�

�DN DMt,qO0,1
�

�

�

L∞(suppψi,q)

� �Cuq �9q+1λq,0
�

λq,1

λq+1rq+1,0

	2 �

λq+1λq�2q+1
�−1/2

× λNq,1M
�

M,Nind,t, τ−1q �
i−c0+4
q+1 ,�τ−1q �−1q+1

�

� �9q+1�Cuq λNq,1M
�

M,Nind,t, τ−1q �
i−c0+4
q+1 ,�τ−1q �−1q+1

�

. (7.39)

To achieve the last line, we have appealed to (8.24) and the inequality
λ2q,1

λ
3/2
q+1λ

1/2
q �q+1

< 1, which is immediate from a large choice of nmax. In the

case that p = ∞ and n ≥ 2, we have that

�

�

�DN DMt,qOn,�n
�

�

�

L∞(suppψi,q)

� �Cuq �
14ϒ(�n)+9
q+1 λq,�n

�

λq,n

λq+1rq+1,�n

	2

λ−1q,n−1

× λNq,nM
�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

� �Cuq �
14ϒ(�n)+13
q+1

λ2q,n

λq+1λq,n−1
λNq,nM

�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

� �Cuq �
14ϒ(n)
q+1 λNq,nM

�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

. (7.40)

To achieve the second inequality, we have used (8.24). To achieve the third
inequality,we have used (8.39) and (6.7). The estimates above are again valid in
the range N ,M ≤ #1/2 �Nfin,�n − Ncut,t − Ncut,x − 5

�$ − d, which from (8.59)
completes the proof of (7.28b).
Following again the parameter choices in [5, Remark A.19], we set N◦ =

M◦ = 3Nind,v, and N # = Nfin,�n−Ncut,t−Ncut,x−5. From (8.58d),we have that
the condition N◦ ≤ N #/4 is satisfied. The inequalities (A.13) and (A.14) follow
from the discussion in [5, Remark A.19]. The inequality in (A.15) follows
from the choices λ = λq+1rq+1,�n�−1q+1, ζ ≥ λq+1rq+1,�n , (8.32), and (8.50).
We then achieve the concluded estimate in (A.17), which after summing as
before gives (7.26) in the remaining cases 0 ≤�n < nmax, r(�n) < n ≤ nmax. ��
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7.5 Type 2 oscillation errors

In order to show that the Type 2 errors identified in (7.14) and (7.15) vanish,
we will apply Proposition 3.8 on the support of a specific cutoff function

η = ηi, j,k,q,n,ξ,�l = ψi,qχi,k,qωi, j,q,nζq,i,k,n,ξ,�l

in order to place pipes parallel to ξ on supp η. We first collect several prelim-
inary estimates in the first subsubsection, mainly with the goal of verifying
assumption (3) from Proposition 3.8, before applying Proposition 3.8 in the
second.

7.5.1 Preliminary estimates

Lemma 7.6 (Keeping track of overlap) For every tuple (i, j, k, n), define the
index set I as

I = I(i, j, k, n)
= �

(i∗, j∗, q, n∗) : n∗ ≤ n, ψi,qωi, j,q,nχi,k,qψi∗,qωi∗, j∗,q,n∗χi∗,k∗,q �≡ 0
�

.

Then, the cardinality of I is bounded above by Cη�q+1, where Cη depends only
on nmax, jmax, and dimensional constants. In particular, Cη is independent of
q.

Proof of Lemma 7.6 Theproof proceeds similarly to theproof of [5,Lemma8.8].
In fact it is somewhat simpler, since the parameter p (see [5, Definition 2.4])
is no longer part of the scheme, and we are not considering the checkerboard
cutoffs ζq,i,k,n,ξ,�l yet, but will only incorporate them later. We thus give only
an idea of the proof. Once i is fixed, we first note that ψi,q may only over-
lap with ψi+1,q and ψi−1,q from (2.11) at level q. The factor of �q+1 in the
upper bound for the cardinality of I comes from the fact that the timescale
of the χi+1,k∗,q ’s on the support of ψi+1,q is faster by a factor of �q+1 than
the timescale of the χi,k,q ’s on the support of ψi,q . Considering then values
of j and n introduces a dependence on jmax and nmax which is nevertheless
independent of q. ��
Lemma 7.7 Let (x, t), (y, t) ∈ suppψi,q be such that ψ2i,q(x, t) ≥ 1/4 and

ψ2i,q(y, t) ≤ 1/8. Then there exists a geometric constant C∗ > 1 such that

|x − y| ≥ C∗
�

�qλq
�−1

. (7.41)

For the proof of Lemma 7.7, we refer to [5, Lemma 8.9].
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Lemma 7.8 Consider cutoff functions

η := ηi, j,k,q,n,ξ,�l = ψi,qχi,k,qωi, j,q,nζq,i,k,n,ξ,�l ,
η∗ := ηi∗, j∗,k∗,q,n∗,ξ∗,�l∗ = ψi∗,qχi∗,k∗,qωi∗, j∗,q,n∗ζq,i∗,k∗,n∗,ξ∗,�l∗,

where (i∗, j∗, k∗, n∗) ∈ I(i, j, k, n), as defined in Lemma 7.6. Let t∗ ∈
suppχi∗,k∗,q be given. Assume furthermore that ηη∗ �≡ 0, which implies
that ζq,i,k,n,ξ,�l ζq,i∗,k∗,n∗,ξ∗,�l∗ �≡ 0. Then there exists a convex set � :=
�(η, η∗, t∗) ⊂ T3 with diameter λ−1q,n�q+1 such that

�

supp ζq,i,k,n,ξ,�l ∩ {t = t∗}
� ⊂ � ⊂ suppψi±,q .

Proof of Lemma 7.8 Let (x, t0) ∈ supp (ηη∗). Then there exists i � ∈ {i −
1, i, i + 1} such that ψ2i �,q(x, t0) ≥ 1

2 . Consider the flow X (x, t) origi-

nating from (x, t0). Then for any t such that |t − t0| ≤ τq�
−i+5+c0
q+1 , we

can apply Lemma 5.8 to deduce that ψ2i �,q(t, X (x, t)) ≥ 1
4 . By the def-

inition of χi∗,k∗,q , the fact that i∗ ∈ {i − 1, i, i + 1}, the existence of
(x, t0) ∈ supp (χi,k,qχi∗,k∗,q), and the fact that t∗ ∈ suppχi∗,k∗,q , we in par-
ticular deduce that ψ2i �,q(t

∗, X (x, t∗)) ≥ 1
4 . Now, let y be such that

|X (x, t∗)− y| ≤ λ−1q,n�q+1 ≤�λ−1q < C∗(�qλq)−1

for C∗ given in (7.41), where we have used the definition of λq,n in (8.23).
Then from Lemma 7.7, it cannot be the case that ψ2i �,q(y, t

∗) ≤ 1
8 , and so

y ∈ suppψi �,q ∩ {t = t∗} ⊂ suppψi±,q ∩ {t = t∗} . (7.42)

Since y is arbitrary, we conclude that the ball of radius �q+1λ−1q,n is contained
in suppψi±,q ∩ {t = t∗}. We let �(η, η∗, t∗) to be precisely this ball. Since
Dt,qζq,i,k,n,ξ,�l = 0 and (x, t0) ∈ supp ζq,i,k,n,ξ,�l , we have that X (x, t∗) ∈
supp ζq,i,k,n,ξ,�l ∩ {t = t∗}. Then, recalling that the support of ζq,i,k,n,ξ,�l must
obey the diameter bound in (5.41) on the support of �χi,k,q , which contains the
support of χi∗,k∗,q by (5.18), we conclude that

supp ζq,i,k,n,ξ,�l ∩ {t = t∗} ⊂ � . (7.43)

Combining (7.42) and (7.43) concludes the proof of the lemma. ��
Lemma 7.9 As in Lemma 7.8, consider cutoff functions η and η∗ satisfying the
conditions fromLemma 7.6 and the assumptionηη∗ �≡ 0. Let t∗ ∈ suppχi∗,k∗,q
be such that�∗ := �(i∗,k∗) is the identity at time t∗. Using Lemma 7.8, define
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� := �(η, η∗, t∗). Define �(t) := �(η, η∗, t∗, t) := X∗(�, t), where X∗ is
the inverse of �∗. Then the following conclusions hold.
(1) For t ∈ suppχi,k,q ,

supp η(·, t) ⊂ �(t) ⊂ suppψi±,q .

(2) Let W∗ ◦ �∗ := Wi∗, j∗,k∗,n∗,�l∗
ξ∗,q+1,n∗ ◦ �(i∗,k∗) be the intermittent pipe flow

supported on η∗. ThenW∗ ◦�∗ satisfies the conclusion of Lemma 3.7 on
the set �(t) for t ∈ suppχi,k,q .

(3) For I = I(i, j, k, n) defined as in Lemma 7.6, we denote

P :=
�

I

�

supp
�

ψi∗,qωi∗, j∗,q,n∗
�

×
�

⎛

⎝

�

�l∗,ξ∗
supp

�

ζq,i∗,k∗,n∗,ξ∗,�l∗W
i∗, j∗,k∗,n∗,�l
ξ∗,q+1,n∗ ◦�(i∗,k∗)

�

⎞

⎠

⎞

⎠ ,

(7.44)

which is precisely the union of the supports of all pipes living on cut-
off functions indexed by tuples belonging to I, which are however not
restricted to the support of their corresponding time cutoffs χi∗,k∗,q . Then
there exists CP such that for any convex set �� ⊂ T3 with diam(��) ≤
(λq+1rq+1,n)−1 and any t ∈ suppχi,k,q , the set P∩

�{t} ×��
�

consists of
at most CP�q+1 segments of deformed pipes of length (λq+1rq+1,n)−1.

Remark 7.10 The third item simply asserts that at stage n, there exists a
geometric constant CP such that in any (T/λq+1rq+1,n)3-periodic cell of diame-
ter approximately (λq+1rq+1,n)−1, there exist at most CP�q+1 segments of
deformed pipes of length (λq+1rq+1,n)−1. This will later allow us to apply
Proposition 3.8. The factor of �q+1 comes from the fact that overlapping time
cutoffs χi,k,q and χi+1,k�,q have timescales which differ by a factor of �q+1,
and that we have not restrictedWi∗, j∗,k∗,n∗,�l∗

ξ∗,q+1,n∗ to the support of its correspond-
ing time cutoffχi∗,k∗,q . Notice also that since choosing a shift moves a segment
of pipe inside a (T/λq+1rq+1,�n)3-periodic cell but does not increase the number of
such segments, the conclusion in (3) is independent of the choice of placement.
Wemay thus appeal to it in the next subsection in order to choose a placement.

Proof of Lemma 7.9 The statement and proof are quite similar to the proof of
[5, Lemma 8.11], and we refer there for the proof of the first two claims. The
only difference is contained in the third claim above, since we have rephrased
the way in which we count the number of deformed segments of pipe compris-
ingW∗◦�∗ whichmay overlapwith supp η.We remind the reader that a single
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“segment of deformed pipe” consists of the support ofW∗ ◦�∗ restricted to a
single (deformed) (T3/λq+1rq+1,n)−1-periodic cell. Then to prove the third claim,
we first fix a tuple (i∗, j∗, k∗, n∗) ∈ I and note that in any convex set ��
of diameter at most (λq+1rq+1,n)−1, the conclusions of Lemma 3.7 and the
construction of the checkerboard cutoff functions implies that there exist at
most finitely many ζq,i∗,k∗,n∗,ξ∗,�l∗ such that

ψi∗,qωi∗, j∗,q,n∗χi∗,k∗,qζq,i∗,k∗,n∗,ξ∗,�l∗ �≡ 0.

From the construction ofW∗ ◦�∗ in Proposition 3.3 and the fact thatW∗ ◦�∗
satisfies the conclusions of Lemma 3.7 on suppχi,k,q , we then have that taking
the union over just �l∗ and ξ∗ in (7.44) allows for the desired conclusion with
a q-independent constant. Then applying Lemma (7.7) and taking the union
over the Cη�q+1 many tuples in I then provides the conclusion with a new
constant CP multiplied by �q+1. ��

7.5.2 Applying Proposition 3.8

Lemma 7.11 The Type 2 oscillation errors identified in (7.14) and (7.15)
vanish.

Proof of Lemma 7.11 To show that the errors defined in (7.14) and (7.15) van-
ish, it suffices to show the following: for any pairs of cutoff functions η =
ηi, j,k,q,�n,ξ,�l and η∗ = ηi∗, j∗,k∗,q,n∗,ξ∗,�l∗ where (i∗, j∗, n∗, k∗) ∈ I(i, j, k, n),
we have that

ηi, j,k,q,�n,ξ,�l ηi∗, j∗,k∗,q,n∗,ξ∗,�l∗

×
�

W
i, j,k,�n,�l
ξ,q+1,�n ◦�(i,k) ⊗Wi∗, j∗,k∗,n∗,�l∗

ξ∗,q+1,n∗ ◦�(i∗,k∗)
�

≡ 0 . (7.45)

The proof of this claim will proceed by fixing �n, using the preliminary esti-
mates, and applying Proposition 3.8.
Now, consider all cutoff functions ηi, j,k,q,�n,ξ,�l utilized at stage�n. We may

choose an ordering of the tuples (i, j, k, ξ, �l) at level�n, which automatically
provides orderings for the cutoff functions ηi, j,k,q,�n,ξ,�l and associated pipe

flowsWi, j,k,�n,�l
ξ,q+1,�n ◦�(i,k). To lighten the notation, we will abbreviate the newly

ordered cutoff functions asηz and the associated intermittent pipe flows as (W◦
�)z , where z ∈ N corresponds to the ordering. We will apply Proposition 3.8
inductively on z ∈ N, according to the chosen ordering, so that (7.45) holds.
Fix ηz , and fix the associated index set I(z) = I(i, j, k,�n). Since we are

proving (7.45) iteratively, we only need to consider the elements z� ∈ I(z)
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such that n∗ <�n, and�z ∈ I(z) such that n∗ = �n and�z < z, according to the
aforementioned ordering.
We will apply Proposition 3.8 with the following choices. First, we recall

that at the time tz at which �z is the identity, the cutoff function ηz
contains a checkerboard cutoff function ζz which from (5.35) is adapted
to a rectangular prism of dimensions 2πλ−1q,�n in the direction of ξz , and
C��q+1(λq+1rq+1,�n)−1 in the directions perpendicular to ξz . Thus we can
bound the dimensions of the support of the anistropic checkerboard cutoff by
4πλ−1q,�n and 2C��q+1(λq+1rq+1,�n)−1, and we thus set

� = supp ζz ∩ {t = tz} , r1 = λq,�n

4πλq+1
, r2 = rq+1,�n , C� = 2C�.

Recalling item 3 from Lemma 7.9, we choose the support of (W ◦�)z|t=tz to
have empty intersection with

P ∩� , P as defined in (7.44) , (7.46)

and so by definition P satisfies item 3 from Proposition 3.8. Thus it remains
to check (3.21). From the definition of rq+1,�n in (8.24), we have that

C∗C2�CP�3q+1r22 = C∗C2�CP�3q+1r2q+1,�n � C∗C2�CP�3q+1
λq,�n

λq+1
�−4q+1 < r1

(7.47)

if a is chosen sufficiently large so that �−1q+1 can absorb the constants C∗, C2�,CP and the implicit constant, all of which are bounded independently of q.
Therefore (3.21) is satisfied, and we may apply Proposition 3.8 to choose a
placement for Wz which has empty intersection with P at time t = tz . This
shows that at time t = tz , Wz has empty intersection with all previously
existing pipes which may be non-zero at any time t ∈ suppχi,k,q but have
been flowed to time t = tz . Finally, since Dt,q(W ◦�)z = Dt,q(W ◦�)z� =
Dt,q(W ◦ �)�z , and P has been constructed to contain all pipes which are
non-zero at any time t ∈ suppχi,k,q , (7.45) is satisfied for all t ∈ suppχz ,
concluding the proof. ��

7.6 Divergence corrector errors

In this subsection we define and estimate the stress O
�n,corr written in (7.24)

and arising from the divergence correctors identified in (7.17), which satisfy

div
�

w
(p)
q+1,�n⊗w(c)

q+1,�n+w(c)
q+1,�n⊗w(p)

q+1,�n+w(c)
q+1,�n⊗w(c)

q+1,�n
� = div �O

�n,corr
�

.
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Lemma 7.12 For all 0 ≤ �n ≤ nmax, the divergence corrector errors O�n,corr
satisfy the bounds

�

�

�ψi,q D
kDmt,qO�n,corr

�

�

�

L1

� �
−CR−1
q+1 δq+2λkq+1M

�

m,Nind,t, �
i−c

�n+4
q+1 τ−1q , �−1q+1�τ

−1
q

�

(7.48a)
�

�

�DkDmt,qO�n,corr

�

�

�

L∞(suppψi,q )

� �
Cu−1
q+1 λkq+1M

�

m,Nind,t, �
i−c

�n+4
q+1 τ−1q , �−1q+1�τ

−1
q

�

(7.48b)

for all k,m ≤ 3Nind,v.
Proof of Lemma 7.12 We first present the estimates for the stress O

�n,1,3 =
w
(c)
q+1,�n ⊗ w

(c)
q+1,�n , which is also given explicitly by the last line in (7.17) and

may be absorbed directly into O
�n,corr and estimated. By the Leibniz rule, the

estimate (7.12a) with (r, r1, r2) = (2,∞, 1), and the fact that suppψi,q ∩
supp η(i �, j �,k�) �= ∅ if and only if |i � − i | ≤ 1, it follows that

�

�

�ψi,q D
kDmt,qO�n,1,3

�

�

�

L1

� r2q+1,�nδq+1,�n�6q+1λkq+1M
�

m,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

.

The bound (7.48a) forO
�n,1,3 now follows from the parameter inequality (8.52).

Similarly, from (7.12b) it follows that

�

�

�DkDmt,qO�n,1,3

�

�

�

L∞(suppψi,q )

� �Cuq �
14ϒ(�n)+7
q+1 λkq+1M

�

m,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

.

The bound (7.48b) for O
�n,1,3 then follows from the inequality (8.54).

It thus remains to analyze div (w(p)
q+1,�n⊗w(c)

q+1,�n+w(c)
q+1,�n⊗w(p)

q+1,�n). Using
the second line of (7.17), we have

div
�

w
(p)
q+1,�n ⊗ w

(c)
q+1,�n + w

(c)
q+1,�n ⊗ w

(p)
q+1,�n

�•

=
�

ξ,i, j,k,�l
∂m

�

a(ξ)�(ξ) ◦�(i,k)ξ
�
�

Am� �•pr + A•��mpr
�

× ∂pa(ξ)∂r�
s
(i,k)U

s
ξ,q+1,�n ◦�(i,k)

�

(7.49)
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where �i1i2i3 is the Levi-Civita alternating tensor, we implicitly contract the
repeated indices �,m, p, r, s, and the • refers to the indices of the vectors on
either side of the above display. The subtle point is that if the derivative in ∂pa(ξ)
is not in a good direction, cf. Lemma 5.18, one seemingly obtains the wrong
bound. As such we use that {ξ, ξ �, ξ ��} is an orthonormal basis associated with
the direction vector ξ with ξ×ξ � = ξ ��, and so ξnξ�+(ξ �)n(ξ �)�+(ξ ��)n(ξ ��)� =
δn�, and decompose ∂pa(ξ) into a sum of vector fields a

good
p,(ξ) and a

bad
p,(ξ) defined

by

∂pa(ξ)

= ∂p�
n
(i,k)ξ

nξ�A j�∂ j a(ξ)
� �� �

=:agoodp,(ξ)

+ ∂p�
n
(i,k)(ξ

�)n(ξ �)�A j�∂ j a(ξ) + ∂p�
n
(i,k)(ξ

��)n(ξ ��)�A j�∂ j a(ξ)
� �� �

=:abadp,(ξ)

, (7.50)

where we have also set A = A(i,k) = (∇�(i,k))
−1. Using this decomposition,

we note that from Lemma 7.1, the derivative of a(ξ) in the “good” term costs a
factor of λq,�n�q+1, whereas the derivatives landing on a(ξ) in the “bad” terms
cost a factor of λq+1rq+1,�n�−1q+1 
 λq,�n�q+1.
In view of (7.8) and (7.9), we leave the part of (7.49) which contains agoodp,(ξ)

in divergence form and simply move the resulting symmetric stress

(Ogood
�n,1,2)

m• :=
�

ξ,i, j,k,�l
a(ξ)�(ξ) ◦�(i,k)ξ

�
�

Am� �•pr + A•��mpr
�

agoodp,(ξ)∂r�
s
(i,k)

× Usξ,q+1,�n ◦�(i,k) , (7.51)

into O
�n,corr (and thus R̊�nq+1), up to removing a trace term which is thrown

into the pressure. This good part of O
�n,1,2 obeys the same L1 and L∞

bounds as O
�n,1,3 above. To see this, we apply the L1 de-correlation estimate

from Lemma A.1, for p = 1, f = a(ξ)ξ �(Am� �•pr + A•��mpr )agoodp,(ξ)∂r�
s
(i,k),

� = �(i,k), v = v�q , and ϕ = �(ξ)U
s
ξ,q+1,�n . In light of Proposi-

tion 3.3, Corollary 5.10, estimate (7.8), and definition (7.50), we have that
the assumptions of Lemma A.1 hold with the parameter choices C f =
|supp ηi, j,k,q,�n,ξ,�l |δq+1,�n� j+7q+1λq,�n , λ = �−1q+1rq+1,�nλq+1, ν = �

i−c
�n+4

q+1 τ−1q ,
�ν = �τ−1q �−1q+1, Nt = Nind,t, μ = λq+1rq+1,�n = �q+1λ, Cϕ = λ−1q+1, ζ =�ζ =
λq+1, Nx = 0, and N◦ = Nfin,�n −Ncut,t −Ncut,x− 5. By (8.58a) we have that
N◦ ≥ 2Ndec + 4, and by (8.37) we have that λ4q+1 ≤ (�q+1(2π

√
3)−1)Ndec ,
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and so condition (A.2) is verified. Thus, from (A.3) and summing on �l using
(5.43), we deduce the L1 estimate

�

�ψi,q D
kDmt,qOgood�n,1,2

�

�

L1

� δq+1,�n�7q+1λq,�nλ
−1
q+1λ

k
q+1

× M
�

m,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

.

The bound (7.48a) forOgood
�n,1,2 now follows from the parameter inequality (8.53),

and the fact thatNfin,�n−Ncut,t−Ncut,x−5 ≥ max{2Nind,t+4+3Nind,v, 6Nind,v},
which is a consequence of (8.58a) and (8.58c). Similarly, from Proposition 3.3,
Corollary 5.10, estimate (7.9), and definition (7.50), we have the L∞ estimate

�

�DkDmt,qOgood�n,1,2

�

�

L∞(suppψi,q )

� r−2q+1,�n�Cuq �
14ϒ(�n)+8
q+1 λq,�nλ

−1
q+1λ

k
q+1

× M
�

m,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

.

Thebound (7.48b) forOgood
�n,1,2 then follows from the parameter inequality (8.47).

Returning to (7.49), it remains to consider the bad part, coming from the
second term in (7.50), namely

�

ξ,i, j,k,�l
∂m

�

a(ξ)�(ξ) ◦�(i,k)ξ
�
�

Am� �•pr + A•��mpr
�

abadp,(ξ)∂r�
s
(i,k)

× U
s
ξ,q+1,�n ◦�(i,k)

�

= V•1 + V•2 (7.52)

where V1 corresponds to the term containing Am� �•pr , and V2 corresponds to
the term containing A•��mpr . When we distribute the ∂m derivative in (7.52),
we need to be careful that the derivative does not land on the fast (at frequency
λq+1) object �(ξ)Usξ,q+1,�n .
Let us first handle V1. For this purpose, note that

ξ�Am� ∂m
�

(�(ξ)U
s
ξ,q+1,�n) ◦�(i,k)

�

= ξ�Am� ∂m�
r
(i,k)

�

∂r (�(ξ)U
s
ξ,q+1,�n)

�

◦�(i,k)

=
�

ξ�∂�(�(ξ)U
s
ξ,q+1,�n)

�

◦�(i,k)

= 0
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because ξ · ∇ annihilates both �(ξ) and Uξ,q+1,�n , from (3.4). Thus, by (7.52),
the term V•1 becomes

V•1 =
�

ξ,i, j,k,�l
∂m

�

a(ξ)ξ
�Am� �•pra

bad
p,(ξ)∂r�

s
(i,k)

�

�

�(ξ)U
s
ξ,q+1,�n

�

◦�(i,k)

(7.53)

Notice that by the Piola identity, we have ∂m(a(ξ)ξ �Am� �•prabadp,(ξ)∂r�
s
(i,k)) =

ξ�Am� ∂m(a(ξ)�•prabadp,(ξ)∂r�
s
(i,k)), and so the slow objects contain a deriva-

tive that costs the good factor of λq,�n�q+1, and a derivative that costs
the bad factor of λq+1rq+1,�n . We then apply the inverse divergence oper-
ator H + R∗ from Proposition A.2, with the following choices: p = 1,
G = ξ�Am� ∂m(a(ξ)�•prabadp,(ξ)∂r�

s
(i,k)), � = �(ξ)U

s
ξ,q+1,�n , � = �(i,k),

v = v�q , and N∗ = M∗ = #12 (Nfin,�n − Ncut,t − Ncut,x − 5)$. By
(2.19), Corollary 5.10, and estimate (7.8), assumption (A.4) holds for CG =
|supp (ηi, j,k,q,�n,ξ,�l)|δq+1,�n� j+7q+1(�

−1
q+1λq+1rq+1,�n)λq,�n , λ = λq+1rq+1,�n�−1q+1,

Nt = Nind,t, ν = τ−1q �
i−c

�n+4
q+1 , and�ν = �τ−1q �−1q+1, while assumptions (A.5)–

(A.6) hold with λ� =�λq . From Proposition 3.3 and standard Littlewood–Paley
analysis, upon letting ζ = μ = λq+1rq+1,�n , ϑ = (ζ−2�)−d(�(ξ)Usξ,q+1,�n)
(we note that �(ξ)Usξ,q+1,�n has mean zero from a direct computation using the
definition of the intermittent pipe flows from Proposition 3.3), � = λq+1,
C∗ = λ−1q+1, and α as in (8.36), we have that condition (A.7) is satisfied. With
these chosen parameters, the condition (A.8) trivially holds, while condition
(A.9) is equivalent to λ4q+1 ≤ (�q+1(2π

√
3)−1)Ndec , which in this case holds

due to (8.37). Conditions (A.13)–(A.14) are verified for N◦ = M◦ = 3Nind,v
and Cv = �

imax+1
q+1 δ

1/2
q λ

2
q ≤ �

Cu
q+1�

1/2
q λ

2
q , in view of (2.1), (2.13), and (2.20),

and (8.20)–(8.21). Lastly, the inequality (A.15) holds because d is taken to
be sufficiently large to ensure (8.51). From (A.11), (A.17), and a sum on �l as
before, we deduce the L1 bound

�

�

�ψi,q D
kDmt,q(H+R∗)V1

�

�

�

L1

� δq+1,�n�8q+1
(�−1q+1λq+1rq+1,�n)λq,�n
(λq+1rq+1,�n)λq+1

λkq+1

× M
�

m,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

. (7.54)

Since δq+1,�n�7q+1λq,�nλ
−1
q+1 ≤ �

−CR−1
q+1 δq+2 – see (8.53), and #12 (Nfin,�n −

Ncut,t−Ncut,x−5)$−d ≥ 3Nind,v – see (8.58c), the above bound is consistent
with (7.48a).
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The L∞ estimate is obtained similarly. We again apply Proposition A.2
with the only parameters that change being: p = ∞, CG = �

Cu
q �

14ϒ(�n)+8
q+1 λq,�n

(�−1q+1λq+1rq+1,�n) – see (A.14), and C∗ = r−2q+1,�nλ−1q+1 – see (3.5) and (3.6).
From (A.11) and (A.17) we obtain

�

�

�DkDmt,q(H+R∗)V1
�

�

�

L∞(suppψi,q )

� �Cuq �
14ϒ(�n)+9
q+1

(�−1q+1λq+1rq+1,�n)λq,�nr
−2
q+1,�n

(λq+1rq+1,�n)λq+1
λkq+1

× M
�

m,Nind,t, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

, (7.55)

Since �Cuq �
14ϒ(�n)+8
q+1 λq,�nr

−2
q+1,�nλ

−1
q+1 ≤ �

Cu−1
q+1 , see (8.47), the above bound is

consistent with (7.48b).
It remains to consider the term V2 in (7.52). We distribute the ∂m derivative

on either the slow or the fast objects and decompose

V•2 =
�

ξ,i, j,k,�l
∂m

�

a(ξ)�(ξ) ◦�(i,k)ξ
�A•��mprabadp,(ξ)∂r�

s
(i,k)U

s
ξ,q+1,�n ◦�(i,k)

�

=
�

ξ,i, j,k,�l

�

∂m
�

ξ�A•��mpr∂r�s(i,k)
�

a(ξ)a
bad
p,(ξ)

+ agoodm,(ξ)ξ
�A•��mprabadp,(ξ)∂r�

s
(i,k)

− a(ξ)ξ �A•��mpr∂m(agoodp,(ξ))∂r�
s
(i,k)

� �

�(ξ)U
s
ξ,q+1,�n

�

◦�(i,k)

+
�

ξ,i, j,k,�l
a(ξ)ξ

�A•��mprabadp,(ξ)∂r�
s
(i,k)∂m

�

(�(ξ)U
s
ξ,q+1,�n) ◦�(i,k)

�

.

(7.56)

In the second equality above we have used the identities �mpr∂m(abadp,(ξ)) =
−�mpr∂m(agoodp,(ξ)), and that �mpra

bad
m,(ξ)a

bad
p,(ξ) = 0. We first consider the terms in

which the ∂m has not landed on functions related to pipe densities. Similarly
to the definition of V1 in (7.53), the slow functions in each term contain a
derivative that costs the good factor of λq,�n�q+1, and a derivative that costs
the bad factor of λq+1rq+1,�n . As such, when applying H +R∗ to the second
to last line of (7.56), the resulting stress obeys exactly the same estimates as
(7.54) and (7.55).
Finally, we are left to consider the term on the last line of (7.56), in which the

∂m derivative lands on the fast objects, at frequency λq+1. The key observation
is that this term is in fact equal to 0! To see this cancellation, we recall the
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identification of abadp,(ξ) in (7.50), and we recall from (3.3) that Uξ,q+1,�n =
−ξ �ϕ��ξ,λq+1,rq+1,�n + ξ ��ϕ�ξ,λq+1,rq+1,�n . With these identities, we have

a(ξ)ξ
�A•��mprabadp,(ξ)∂r�

s
(i,k)∂m

�

(�(ξ)U
s
ξ,q+1,�n) ◦�(i,k)

�

= a(ξ)ξ �A•��mprabadp,(ξ)∂r�s(i,k)∂m�n∂n(�(ξ)Usξ,q+1,�n) ◦�(i,k) .

Note that from (7.50), that abadp,(ξ) contains either a factor of ∂p�
k
(i,k)ξ

�
k or a

factor of ∂p�k(i,k)ξ
��
k . From (3.4), we also have that

∂r�
s
(i,k)∂m�

n∂n(�(ξ)U
s
ξ,q+1,�n)

= −∂r�s(i,k)ξ �s∂m�nξ �n
�

(ξ � · ∇)
�

�(ξ)ϕ
��
ξ,λq+1,rq+1,�n

��

◦�(i,k)

+ ∂r�
s
(i,k)ξ

��
s ∂m�

nξ �n
�

(ξ � · ∇)
�

�(ξ)ϕ
�
ξ,λq+1,rq+1,�n

��

◦�(i,k)

− ∂r�
s
(i,k)ξ

�
s∂m�

nξ ��n
�

(ξ �� · ∇)
�

�(ξ)ϕ
��
ξ,λq+1,rq+1,�n

��

◦�(i,k)

+ ∂r�
s
(i,k)ξ

��
s ∂m�

nξ ��n
�

(ξ � · ∇)
�

�(ξ)ϕ
��
ξ,λq+1,rq+1,�n

��

◦�(i,k) .

Thus, the expression �mprabadp,(ξ)∂r�
s
(i,k)∂m�

n∂n(�(ξ)U
s
ξ,q+1,�n) ◦�(i,k) equals

the sum of eight terms, each of which is of the type

�mpr∂p�
k
(i,k)ξ

(1)
k ∂r�

s
(i,k)ξ

(2)
s ∂m�

nξ (3)n

× (product of fast pipe densities or fast cutoffs) ◦�(i,k)

where (ξ (1), ξ (2), ξ (3)) ∈ {ξ �, ξ ��}3. Since in each of these eight terms, at least
two of the vectors in the tuple (ξ (1), ξ (2), ξ (3)) are equal to each other, either
to ξ � or ξ ��, by the skew symmetry of the Levi-Civita symbol, we must have

�mpr∂p�
k
(i,k)ξ

(1)
k ∂r�

s
(i,k)ξ

(2)
s ∂m�

nξ (3)n = 0 .
This proves that the last term on the right side of (7.56) is indeed equal to 0,
concluding the proof. ��

7.7 Transport errors

Lemma 7.13 For all 0 ≤�n ≤ nmax, the transport error satisfies the following
estimates for N ,M ≤ 3Nind,v:

�

�

�ψi,q D
N DMt,q

��H+R∗� �Dt,qwq+1,�n
��

�

�

�

L1
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� δq+2�−CR−1q+1 λNq+1M
�

M,Nind,t, τ−1q �
i−c

�n+5
q+1 , �−1q+1�τ

−1
q

�

(7.57a)
�

�

�DkDmt,q
��H+R∗� (Dt,qwq+1,�n)

�

�

�

�

L∞(suppψi,q )

� �
Cu−1
q+1 λNq+1M

�

M,Nind,t, τ−1q �
i−c

�n+5
q+1 , �−1q+1�τ

−1
q

�

. (7.57b)

Proof of Lemma 7.13 Recall from the first line of (7.24) that the transport error
is given byH+R∗ applied to Dt,qwq+1,�n , which we further expand as

Dt,qwq+1,�n = Dt,q
�

�

i, j,k,�l,ξ
curl

�

a
ξ,i, j,k,q,�n,�l∇�T(i,k)Uξ,q+1,�n ◦�(i,k)

�

	

=
�

i, j,k,�l,ξ
Dt,q

�

a(ξ)∇�−1(i,k)
�

Wξ,q+1,�n ◦�(i,k)

+
�

i, j,k,�l,ξ

�

Dt,q∇a(ξ)
�× �∇�(i,k)Uξ,q+1,�n ◦�(i,k)

�

+
�

i, j,k,�l,ξ
∇a(ξ) ×

��

Dt,q∇�(i,k)
�

Uξ,q+1,�n ◦�(i,k)
�

(7.58)

Since the second two terms contain the corrector defined in (7.6), and the
bounds for the corrector in (7.12a) are stronger than that of the principal part
of the perturbation, we shall completely estimate only the first term and simply
indicate the set-up for the second and third. Before applying Proposition A.2,
recall that the inverse divergence of (7.58) needs to be estimated on the support
of a cutoff ψi,q in order to verify (7.57a) and (7.57b). Recall that for all �n,
Dt,qwq+1,�n has zero mean. Thus, although each individual term in the final
equality in (7.58) may not have zero mean, we can safely apply H and R∗ to
each term and estimate the outputs while ignoring the last term in (A.16).
We will apply Proposition A.2 to the first term with the following choices.

Let p ∈ {1,∞}. We set v = v�q , and Dt = Dt,q = ∂t+v�q ·∇ as usual.We set
N∗ = M∗ = #1/2

�

Nfin,�n − Ncut,t − Ncut,x − 5
�$, with Ndec and d satisfying

(8.58a). We define

G = Dt,q(a(ξ)∇�−1(i,k))ξ,

with λ = �−1q+1λq+1rq+1,�n , ν = τ−1q �
i−c

�n+5
q+1 , Mt = Nind,t,�ν = �τ−1q �−1q+1. In

order to obtain the value of the amplitude constant CG , which now depends on
p, when p = 1 we use (7.8) with r = 1 and (5.19g), while when p = ∞ we
use (7.9) and (5.19g), obtaining
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CG,1 = |supp (ηi, j,k,q,�n,ξ,�l)|δ
1/2
q+1,�n�

j+2
q+1τ

−1
q �

i−c
�n+3

q+1 , (7.59a)

CG,∞ = �
Cu
2
q �

7ϒ(�n)+ 72
q+1 τ−1q �

imax−c�n+4
q+1

≤ �
Cu
2
q �

Cu+7ϒ(�n)+9−c�n
q+1 τ−1q �

1/2
q δ
−1/2
q

≤ �
Cu
2
q �

Cu+7ϒ(nmax)+20+c0−c�n
q+1 �

1/2
q λq . (7.59b)

In the above expressions we have used (8.33) to control cn, (5.9) to control
�
imax
q+1, and the definition of τq from (8.22). We have that

�DN DMt,qG�L p � CG,p
�

λq+1rq+1,�n�−1q+1
�N

× M
�

M,Nind,t − 1, τ−1q �
i−c

�n+4
q+1 ,�τ−1q �−1q+1

�

� CG,p
�

λq+1rq+1,�n�−1q+1
�N

× M
�

M,Nind,t, τ−1q �
i−c

�n+5
q+1 ,�τ−1q �−1q+1

�

, (7.60)

for all N ,M ≤ #1/2 �Nfin,�n − Ncut,t − Ncut,x − 5
�$ after using (8.35), and so

(A.4) is satisfied. We set � = �i,k and λ� = �λq . Appealing as usual to
Corollary 5.10 and (2.19) with q � = q, which is valid from Proposition 5.6,
we have that (A.5) and (A.6) are satisfied.
Referring to (1) from Proposition 3.3, we set � = �ξ,λq+1,rq+1,�n and ϑ =

ϑξ,λq+1,rq+1,�n . Setting ζ = λq+1, we have that (i) is satisfied. Setting μ =
λq+1rq+1,�n and referring to (2) from Proposition 3.3, we have that (ii) is

satisfied. Setting � = ζ = λq+1, C∗,p = r
2
p−1
q+1,�n , α as in (8.36), and referring

to (3.5) and (3.6) from Proposition 3.3, we have that (A.7) is satisfied. (A.8)
is immediate from the definitions. Referring to (8.37), we have that (A.9) is
satisfied.
After summing on (i, j, k,�n, ξ, �l), using (2.11) at level q, and (5.43) with

r1 = r2 = 2, we conclude from (A.11) that for p = 1 and N ,M ≤
#1/2 �Nfin,�n − Ncut,t − Ncut,x − 5

�$ − d,
�

�

�DN DMt,q
�H �

Dt,qwq+1,�n
��

�

�

�

L1(suppψi,q)

� δ
1/2
q+1,�n�

Cb+9−c�n
q+1 τ−1q rq+1,�nλ−1q+1λ

N
q+1

× M
�

M,Nind,t, τ−1q �
i−c

�n+5
q+1 ,�τ−1q �−1q+1

�

� �
−CR−1
q+1 δq+2λNq+1
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× M
�

M,Nind,t, τ−1q �
i−c

�n+5
q+1 ,�τ−1q �−1q+1

�

(7.61)

after also using (8.55) and (8.33). From (8.58c), these bounds are valid for all
N ,M ≤ 3Nind,v. Similarly, for p = ∞, we have

�

�

�DN DMt,q
�H �

Dt,qwq+1,�n
��

�

�

�

L∞(suppψi,q)

� �
Cu
2
q �

Cu+7ϒ(nmax)+21+c0−c�n
q+1 �

1/2
q λqr

−1
q+1,�nλ

−1
q+1λ

N
q+1

M
�

M,Nind,t, τ−1q �
i−c

�n+5
q+1 ,�τ−1q �−1q+1

�

� �
Cu−1
q+1 λNq+1M

�

M,Nind,t, τ−1q �
i−c

�n+5
q+1 ,�τ−1q �−1q+1

�

(7.62)

after also using (8.27) and (8.56).
To conclude the proof, we must still estimate the nonlocal (R∗) portion of

the inverse divergence, and the error terms coming from the divergence cor-
rectors. These error terms, however, obey stronger estimates than the bounds
in (7.61) and (7.62), and so we refer to the proof of [5, Lemma 8.4] for further
details. ��

7.8 Nash errors

Lemma 7.14 For all 0 ≤ �n ≤ nmax, the Nash errors satisfy the following
estimates for N ,M ≤ 3Nind,v:

�

�

�ψi,q D
N DMt,q

��H+R∗� �wq+1,�n · ∇v�q
��

�

�

�

L1

� δq+2�−CR−1q+1 λNq+1M
�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 , �−1q+1�τ

−1
q

�

(7.63a)
�

�

�DkDmt,q
��H+R∗� (wq+1,�n · ∇v�q )

�

�

�

�

L∞(suppψi,q )

� �
Cu−1
q+1 λNq+1M

�

M,Nind,t, τ−1q �
i−c

�n+4
q+1 , �−1q+1�τ

−1
q

�

. (7.63b)

Proof of Lemma 7.14 Recall from the first line of (7.24) that the Nash error is
given byH+R∗ applied to wq+1,�n · ∇v�q , which we further expand as

wq+1,�n · ∇v�q =
�

i, j,k,�l,ξ
curl

�

a
ξ,i, j,k,q,�n,�l∇�T(i,k)Uξ,q+1,�n ◦�(i,k)

�

· ∇v�q

=
�

�

i, j,k,�l,ξ
∇a(ξ) ×

�

∇�T(i,k)Uξ,q+1,�n ◦�(i,k)

�
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+
�

i, j,k,�l,ξ
a(ξ)∇�−1(i,k)Wξ,q+1,�n ◦�(i,k)

	

· ∇v�q . (7.64)

Due to the fact that thefirst termarises from the addition of the corrector defined
in (7.6), and the fact that the bounds for the corrector in (7.12a) are stronger
than that of the principal part of the perturbation, we shall only consider the
second term. Note that the Nash error can be written as div (wq+1,�n⊗v�q ) and
so has zero mean. Thus, although each individual term in the final equality in
(7.64) may not have zero mean, we can safely apply H and R∗ to each term
and estimate the outputs while ignoring the last term in (A.16).
Wewill apply PropositionA.2 to the second termwith the following choices.

We set v = v�q , and Dt = Dt,q = ∂t + v�q · ∇ as usual. We set N∗ = M∗ =
#1/2 �Nfin,�n − Ncut,x − Ncut,t − 4

�$, with Ndec and d satisfying (8.58a). We
define

G = a(ξ)∇�−1(i �,k)ξ · ∇v�q
and set CG,1, CG,∞ to be equal to the quantities in (7.59), λ = �−1q+1λq+1rq+1,�n ,
ν = τ−1q �

i−c
�n+4

q+1 , Mt = Nind,t, and �ν = �τ−1q �−1q+1. Note that these choices
match exactly the choices from the estimates on the transport error. From (7.8)
with r = 1 and r1 = r2 = 2, (5.19g), and (2.19) at level q, we have that for
N ,M ≤ #1/2 �Nfin,�n − Ncut,x − Ncut,t − 4

�$
�

�

�DN DMt,qG
�

�

�

L1
� CG,p

�

�−1q+1λq+1rq+1,�n
�N

× M
�

M,Nind,t, τ−1q �i+1q+1,�τ
−1
q �−1q+1

�

, (7.65)

and so (A.4) is satisfied. Note that we have used (8.30) when converting the
δ
1/2
q �λq coming from (2.19) at level q to a τ−1q . Setting� = �(i,k) and λ� =�λq ,
we have that (A.5) and (A.6) are satisfied as usual. The choices of �, ϑ , ζ ,
μ, �, and C∗ are identical to those of the transport error (both terms contain
Wξ,q+1,�n ◦ �(i,k)), and so we have that (i)–(ii), (A.7), (A.8), and (A.9) are
satisfied as well. Since the bound (7.65) is identical to that of (7.60), we obtain
an estimate identical to (7.61) in the case p = 1. The case p = ∞ and the
estimates for theR∗ portion follows analogously to that for the first term from
the transport error. We omit further details. ��

8 Parameters

The purpose of the first subsection is to define the q-independent parameters
in order, beginning with the regularity index β, and ending with the number
a∗, which will be used to absorb every implicit constant throughout the paper.
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Then in Sect. 8.2, we define the parameters which depend on q, as well as the
parameterswhich depend in addition on n. Section8.3 contains, in no particular
order, consequences of the definitionsmade in the previous two sections which
are necessary to close the estimates in the proof.

8.1 Definitions and hierarchy of the parameters

The parameters in our construction are chosen as:

(i) Choose an L2 regularity index β ∈ [1/3, 1/2); in light of [4,36], there is
no reason to take β < 1/3.

(ii) Choose b ∈ (1, 3/2) sufficiently small such that

2βb < 1 . (8.1)

(iii) With β and b chosen, we may now designate a number of parameters:
(a) The parameter nmax, which denotes the total number of higher order
stresses R̊q,n , is defined as the smallest integer such that

2

nmax + 1 <
(b − 1)2
2b

(8.2a)

2βb + 3+ �log2 nmax�
2(nmax + 1) <

1

2
+ nmax
2(nmax + 1) . (8.2b)

Notice that the second inequality is possible since 2βb < 1.
(b) The parameter Cb appearing in (2.17) to quantify

�

�ψi,q
�

�

L1 is defined
as

Cb = b + 4
b − 1 . (8.3)

(c) The exponent CR is a small parameter used to estimate the Reynolds
stress, cf. (2.10a), and then absorb geometric constants in the construc-
tion. It is defined as

CR = 10b + 1 . (8.4)

(iv) The parameter c0, which is first introduced in (2.16) and utilized in
Sects. 6 and 7 to control small losses in the sharp material derivative
estimates, is defined in terms of nmax as

c0 = 4nmax + 5 . (8.5)
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(v) The parameter ε� > 0, which is used in (8.19) to quantify the finest
frequency scale between λq and λq+1 utilized throughout the scheme, is
defined as any real number such that

ε�300(nmax + 1)(�log2 nmax�) < b − 1 (8.6a)

7ε�(2+ �log2 nmax� + 22+ 4nmax) <
b − 1
2b
− 3

2(b − 1)(nmax + 1)
(8.6b)

ε�
�

5+ (2+ �log2 nmax�)(9+ Cb)
�

<
1

2
− 2+ �log2 nmax�

nmax
(8.6c)

ε�

�

CR

�

b − 1
b

	

+ 15+ 9(3+ �log2(nmax)�)
	

<
1

2

�

1+ nmax
nmax + 1

	

− 2βb − 3+ �log2 nmax�
2(nmax + 1) (8.6d)

ε�

�

1

2
Cb + c0 + 10+ 1

2
CR

	

< 1− 2βb (8.6e)

ε� (7+ CR + nmax(8+ Cb)) < 1− 2β
10

(8.6f)

2bε�(c0 + 7) < 1− β . (8.6g)

We note that the right-hand side of (8.6b) is positive from (8.2a) and the
right-hand sides of (8.6c) and (8.6d) are positive from (8.2b).

(vi) The parameter Cu is defined as

Cu = 1

ε�(b − 1)(nmax + 1) . (8.7)

(vii) The parameter α > 0 from the L1 loss of the inverse divergence operator
is now defined as

α = ε�(b − 1)
2b

. (8.8)

(viii) The parameters Ncut,t and Ncut,x are used in Sect. 5 in order to define the
velocity and stress cutoff functions; see (5.3), (5.7), and (5.24). These
large integers are chosen solely in terms of b and ε� as

1

2
Ncut,x = Ncut,t =

/

3b

ε�(b − 1) +
15b

2

0

. (8.9)

(ix) The parameter Nind,t, which is the number of sharp material derivatives
propagated on stresses and velocities in Sects. 2 through 7, is chosen as
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the smallest integer for which we have

Nind,t =
/

4

ε�(b − 1)
0

Ncut,t . (8.10)

(x) The parameter Nind,v, whose primary role is to quantify the number
of sharp spatial derivatives propagated on the velocity increments and
stresses, cf. (2.8a) and (2.10a), is chosen as the smallest integer for which
we have the bound

4bNind,t + 8+ b(CR + 3)ε�(b − 1)+ 2β(b3 − 1) < ε�(b − 1)Nind,v .
(8.11)

(xi) The value of the decoupling parameter Ndec, which is used in the L p

decorrellation conditions (A.2) and (A.9), is chosen as the smallest inte-
ger for which

Ndec >
8b

(b − 1)ε� . (8.12)

(xii) The parameter d, which is used in the inverse divergence operator of
Proposition A.2 to count the order of a parametrix expansion, is chosen
as the smallest integer for which we have

(d− 1)ε�(b − 1) > b(6+ 13Nind,v)+ 2βb2

+ (2+ �log2 nmax�)
�

b − 1
2(nmax + 1) + ε�(b − 1)(9+ Cb)

	

. (8.13)

(xiii) The value of Nfin, which is introduced in Sect. 2 and used to quantify
the highest order derivative estimates utilized throughout the scheme is
chosen as the smallest integer such that

3

2
Nfin > (2Ncut,t + Ncut,x + 14Nind,v + 2d+ 2Ndec + 12)2nmax+1 .

(8.14)

(xiv) Having chosen all the previous parameters in items (i)–(xiii), there exists
a sufficiently large parameter a∗ ≥ 1, which depends on all the param-
eters listed above (which recursively means that a∗ = a∗(β, b)), and
which allows us to choose a an arbitrary number in the interval [a∗,∞).
While we do not give a formula for a∗ explicitly, it is chosen so that
a(b−1)ε�∗ is at least twice larger than all the implicit constants in the �
symbols throughout the paper; note that these constants only depend on
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the parameters in items (i)–(xiii) — never on q — which justifies the
existence of a∗.

8.2 Definitions of the q-dependent parameters

8.2.1 Parameters which depend only on q

For q ≥ 0, we define the fundamental frequency parameter as

λq = 2
1

(bq ) log2 a
2

. (8.15)

Definition (8.15) gives that λq is an integer power of 2, and that we have the
bounds

a(b
q ) ≤ λq ≤ 2a(bq ) and

1

3
λbq ≤ λq+1 ≤ 2λbq (8.16)

for all q ≥ 0. Throughout the paper, if there exists a universal constant C > 0
such thatC−1A ≤ B ≤ CA, we say that A ≈ B. In particular, the above reads
λq ≈ a(bq ) and λq+1 ≈ λbq . It will be convenient to denote the quotient of two
consecutive frequency parameters by

�q+1 = λq+1λ−1q ≈ λb−1q . (8.17)

The fundamental amplitude parameter is defined in terms of λq by

δq = λ
(b+1)β
1 λ−2βq . (8.18)

We now introduce a parameter which is defined in terms of the parameter
ε� from (8.6) and used repeatedly to mean “a tiny power of the frequency
parameter”:

�q+1 = �
ε�
q+1 . (8.19)

In order to cap off our derivative losses, we need to mollify in space and time
using the operators described in Sect. 4. This is done in terms of the following
space and time parameters:

�λq = λq�
5
q+1 (8.20)

�τ−1q = τ−1q �λ3q
�λq+1 . (8.21)
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While�τq is used formollification and thus for roughmaterial derivative bounds,
the fundamental temporal parameter used in the paper for sharpmaterial deriva-
tive bounds is

τq =
�

δ
1/2
q �λq�

c0+6
q+1

�−1
. (8.22)

Note that besides depending on the parameters introduced in (i)–(xiv), the
parameters introduced above only depend on q, but are independent of n. We
note that the definitions of the parameters listed so far in this subsection have
not been changed from the definitions used in [5].

8.2.2 Parameters which depend on q and n

The rest of the parameters depend on both q and n. We start by defining the
frequency parameter λq,n and the intermittency parameter rq+1,n by

λq,n =
�

2�(1+6(b−1)ε�) log2 λq�, n = 0
2�(

1
2− n

2(nmax+1) ) log2 λq+( 12+ n
2(nmax+1) ) log2 λq+1�, 1 ≤ n ≤ nmax

,

(8.23)

rq+1,n = λ−1q+12
� 12 log2 λq,n+ 12 log2 λq+1−2 log2 �q+1� (8.24)

for 0 ≤ n ≤ nmax. In particular, (8.23) shows that λq,n is a power of 2, with
λq,0 ≈ λq�

6
q+1 and λq,n ≈ λ

1
2− n

2(nmax+1)
q λ

1
2+ n

2(nmax+1)
q+1 for 1 ≤ n ≤ nmax.

Similarly, (8.24) shows that λq+1rq+1,n is an integer power of 2, and we have
λq+1rq+1,�n ≈ λ

1/2
q+1λ

1/2
q,�n�

−2
q+1. A consequence of these approximations are the

inequalities

r−2q+1,�n ≤ 2
λq+1
λq
= 2�q+1 , r2q+1,�n ≤ 2�−4q+1

λq,�n

λq+1
. (8.25)

We recall from (2.7c) that the stresses R̊q,n for 0 ≤ n ≤ nmax will be
measured in terms of

δq+1,n =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

δq+1�−CRq , n = 0
δq+1,0

�λq

λ
1/2
q λ

1/2
q+1

�9q+1, n = 1

δq+1,0
�λq

λq,n−1
�8q+1

�

�
1

2(nmax+1)
q+1 �9q+1

	ϒ(n)

, 2 ≤ n ≤ nmax .
(8.26)
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The functionϒ(n) is defined in (6.6) to quantify the number of steps required
to produce R̊q,n . As each step accumulates negligible losses, which correspond
to the quantity in parentheses above, onemay adhere to the heuristic that δq+1,n
is roughly speaking equal to

δq+1λq
λq,n

. We remark that each of the parameters
defined so far in this subsubsection has a new definition compared to that of
[5].
Conversely, the following three parameters remain unchanged when com-

pared to [5]. For 1 ≤ n ≤ nmax, we define cn in terms of c0 by

cn = c0 − 4n . (8.27)

For n = 0, we set
Nfin,0 = 3

2
Nfin, (8.28)

while for 1 ≤ n ≤ nmax, we define Nfin,n inductively on n by using (8.28) and
the formula

Nfin,n =
3

1

2

�

Nfin,n−1 − Ncut,t − Ncut,x − 6
�− d

4

. (8.29)

8.3 Inequalities and consequences of the parameter definitions

Due to (8.15) we have that �q+1 ≥ (1/2)bε�λ
(b−1)ε�
q ≥ (1/2)bε�λ

(b−1)ε�
0 ≥

(1/2)a(b−1)ε�∗ . As was already mentioned in item (xiv), we have chosen a∗ to
be sufficiently large so that a(b−1)ε�∗ is at least twice larger than all the implicit
constants appearing in all� symbols throughout the paper. Therefore, for any
q ≥ 0, we may use a single power of �q+1 to absorb any implicit constant in
the paper: an inequality of the type A � B may be rewritten as A ≤ �q+1B.
From the definition (8.22) of τq and (8.27), which gives that cn is decreasing

with respect to n, we have that for all 0 ≤ n ≤ nmax,

�
cn+6
q+1 δ

1/2
q �λq ≤ τ−1q . (8.30)

Using the definitions (8.18), (8.19), (8.20), and (8.22), and writing out every-
thing in terms of λq−1, we have

τ−1q−1�
3+c0
q+1 ≤ τ−1q . (8.31)

From the definition of�τq , it is immediate that

τ−1q �λ4q ≤�τ−1q ≤ τ−1q �λ3q
�λq+1 . (8.32)
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From the definitions (8.5) of c0 and (8.27) of cn, we have that for all 0 ≤ n ≤
nmax,

− cn + 4 ≤ −1. (8.33)

Next, we a list a few consequences of the fact thatNind,v 
 Nind,t, as specified
in (8.11). First, we note from (8.32) that

�τ−1q−1τq−1 ≤�λ3q−1�λq ≤ λ4q (8.34)

where in the second inequality we have used that ε� ≤ 3
20b .

The fact that Nind,t is taken to be much larger than Ncut,t, as expressed in
(8.10), implies when combined with (8.34) the following bound, which is also
used in Sect. 5:

�

τq�τ
−1
q

�Ncut ≤ �
Nind,t
q+1 (8.35)

for all q ≥ 1. The parameter α in (8.8) is chosen as such in order to ensure
that

λαq+1 ≈ �q+1. (8.36)

for all q ≥ 0. We note that the previous seven inequalities only involve param-
eters which have not changed when compared to [5].
Next, we list a number of parameter inequalities which are not the same as

those in [5]. Our choice of Ndec in (8.12) and the assumption that a is chosen
sufficiently large so that �

1/2
q+1 > 2π

√
3 yields

λ4q+1 ≤
�

�q+1
2π
√
3

	Ndec
⇐� 8b

(b − 1)ε� < Ndec . (8.37)

We need a number of new inequalities to manage the Type 1 oscillation
errors. The first of these is

δq+1,�nλq,�n�8q+1

≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�
−CR
q δq+1�λq�9q+1

�

�
1

2(nmax+1)
q+1 �9q+1

	

�n)

if �n = 0, 1

�
−CR
q δq+1�λq�9q+1

�

�
1

2(nmax+1)
q+1 �9q+1

	ϒ(�n)+1
if 2 ≤�n ≤ nmax

.

(8.38)

If�n = 0, then the inequality follows from (8.26), (8.20), (8.23), and (6.6). If
�n = 1, the inequality follows from the aforementioned inequalities and the
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equality
λq,1

λ
1/2
q λ

1/2
q+1
= λq,�n

λq,�n−1
= λq+1
λq,nmax

= �
1

2(nmax+1)
q+1 , (8.39)

which holds for 2 ≤ �n ≤ nmax. Finally, if 2 ≤ �n ≤ nmax, we use the afore-
mentioned inequalities in conjunction with (8.39). Next, we claim that for all
0 ≤�n ≤ nmax,

�−CRq δq+1�λq�9q+1
�

�
1

2(nmax+1)
q+1 �9q+1

	ϒ(�n)+1
λ−1q,nmax ≤ �

−CR−1
q+1 δq+2 .

(8.40)
The above inequality is a consequence of (6.8) and

2βb(b − 1)+ (b − 1)ε�
�

−CR
�

1

b
− 1

	

+ 15+ 9(3+ �log2(nmax)�)
	

+ �

3+ �log2 nmax�
� b − 1
2(nmax + 1)

<
b − 1
2
+ nmax
2(nmax + 1)(b − 1) , (8.41)

which in turn follows from (8.2b) and (8.6d). Finally, we claim that for n such
that n > r(�n), as defined in (6.5), and n > 2,

δq+1,�nλq,�n�9q+1λ
−1
q,n−1 ≤ δq+1,n . (8.42)

If �n = 0, 1, the inequality follows from the definitions of λq,0 and λq,1 in
(8.23), the definition of the δq+1,n’s in (8.26), and (6.6), which guarantees
that ϒ(n) ≥ 1 for n ≥ 2. In the case 2 ≤ �n ≤ nmax, the inequality follows
from the aforementioned inequalities combined with (8.39) and the fact that
for n > r(�n), (6.7) gives that ϒ(n) ≥ ϒ(�n)+ 1.
The amplitudes of the higher order corrections wq+1,n,p must meet the

inductive assumptions stated in (2.9a). Towards this end, we claim that for all
0 ≤�n ≤ nmax,

δ
1/2
q+1,�n�

5
q+1 ≤ δ

1/2
q+1 . (8.43)

Indeed, the case�n = 0 follows from the definition of CR in (8.4), while the
case�n ≥ 1 is a consequence of the definition (8.26) and the inequality

ε�(b−1)
�

5+ (2+ �log2 nmax�)(9+ Cb)
�+(b−1)2+ �log2 nmax�

nmax
<
b − 1
2

,

(8.44)
which in turn is a consequence of (8.2b) and (8.6c).
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We will also need that

�Cuq �
14ϒ(�n)+13
q+1 λq,�nr

−2
q+1,�nλ

−1
q,nmax ≤ �

Cu−2
q+1 . (8.45)

The above inequality is a consequence of (2.7a), (8.39), and

ε�

�

Cu
b
+ 14 �2+ �log2 nmax�

�+ 20− Cu
	

+ 1

2(nmax + 1) < 0 , (8.46)

which holds due to the choice of Cu in (8.7) and (8.6a). The inequality (8.45)
then immediately implies that

�Cuq �
14ϒ(�n)+13
q+1 λq,�nr

−2
q+1,�nλ

−1
q+1 ≤ �

Cu−2
q+1 . (8.47)

We claim now that Cu satisfies

�
Cu
2
q �

7ϒ(�n)+7/2
q+1 r−1q+1,�n ≤ �

Cu−2
q+1 �

1/2
q+1 . (8.48)

We may verify this by using (8.25), the definition of Cu in (8.7), and the
inequalities

Cu
2b
+ 7(2+ �log2 nmax�)+ 4 ≤ Cu − 2 ,

⇐� 1− 1

2b
> ε�(b − 1)(nmax + 1)(7�log2 nmax� + 20) ,(8.49)

the second of which follows from (8.6a).
Next, we claim that due to our choice of d, we have

�λqλq+1
�

�
1

2(nmax+1)
q+1 �

9+Cb
q+1

	ϒ(�n)

λq+1

)

�−1q+1λq+1rq+1,�n
λq+1rq+1,�n

*d−1
�

λ4q+1
�3Nind,v

≤ δq+2
λ10q+1

, (8.50)

and

(δq+1,�n�Cb+5q+1 rq+1,�nλq,�nλq+1)
)

�−1q+1λq+1rq+1,�n
λq+1rq+1,�n

*(d−1)
�

λ4q+1
�3Nind,v

≤ δq+2
λ10q+1

. (8.51)
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The bound (8.50) follows from (8.13) and (8.34), while (8.51) follows from
(8.50) and the parameter inequality δq+1,�n�Cb+5q+1 rq+1,�nλq,�nλq+1 ≤�λqλ

2
q+1.

For estimating the stresses emerging from the divergence correctors, we
shall need the bound

r2q+1,�nδq+1,�n�13q+1 ≤ �
−CR−1
q+1 δq+2 , (8.52)

which follows from (8.25), (8.38), and (8.40) and implies that

δq+1,�n�9q+1λq,�nλ
−1
q+1 = r2q+1,�n�13q+1δq+1,�n ≤ �

−CR−1
q+1 δq+2 . (8.53)

We furthermore need that

�Cuq �
14ϒ(�n)+7
q+1 ≤ �Cuq �

14ϒ(nmax)+7
q+1 ≤ �

Cu−1
q+1 , (8.54)

which in turn follows fromCu ≥ b
b−1(8+14ϒ(nmax)), which is a consequence

of (8.6a) and (6.8).
In order to estimate the transport and Nash errors in L1 in Sects. 7.7 and 7.8,

we claim that

�
Cb+4
q+1 δ

1/2
q+1,�nτ

−1
q rq+1,�nλ−1q+1 ≤ �

−CR−1
q+1 δq+2 . (8.55)

In order to verify (8.55),we note that by (8.18), (8.19), (8.22), (8.24), (8.26), the
definition ofCb in (8.3), and the previously established parameter inequalities
(8.38) and (8.40), the left side of (8.55) is bounded from above by

�
Cb+c0+13
q+1 (δq+1,�nλq,�n)

1/2(δqλq)
1/2λ

1/2
q λ
−3/2
q+1

≤ �
Cb+c0+13
q+1 (�

−Cb−9−CR
q+1 λq+1δq+2)

1/2(δq+2λq+1λ2βb−1q+1 λ1−2βq )
1/2λ

1/2
q λ
−3/2
q+1

≤ �
1
2Cb+c0+10+ 12CR
q+1 λ(βb+β−1)(b−1)q (�

−CR−1
q+1 δq+2) .

Thus, (8.55) holds since ε�(12Cb + c0 + 10 + 1
2CR) + 2βb < 1, in view of

(8.1) and (8.6e). To estimate the transport and Nash errors in L∞, we finally
need that

�
Cu
2
q �

Cu+7ϒ(nmax)+21+4�n
q+1 �

1/2
q λqr

−1
q+1,�nλ

−1
q+1 ≤ �

Cu−1
q+1 , (8.56)

which follows from the definition of Cu in (8.7), (8.25), and (8.6b).
In Remark 2.7, have have used that

lim
(β,b)→(1/2−,1+)

2βb

(b − 1)(Cuε� + 1/2)
+ 2→∞ (8.57)
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which is a consequence of the choice of Cu in (8.7).
We conclude this section by verifying a few inequalities concerning the

parameter Nfin,n, which counts the number of available space-plus-material
derivative for the residual stress R̊q,n . This verification is the same as in [5,
Section 9.3]. For all 0 ≤ n ≤ nmax we require that

Nind,t, 2Ndec + 4 ≤ #1/2
�

Nfin,n − Ncut,t − Ncut,x − 5
�$ − d , (8.58a)

14Nind,v ≤ Nfin,n − Ncut,t − Ncut,x − 2Ndec − 9 , (8.58b)

6Nind,v ≤ #1/2
�

Nfin,n − Ncut,t − Ncut,x − 6
�$ − d , (8.58c)

6Nind,v ≤ #1/4
�

Nfin,n − Ncut,t − Ncut,x − 7
�$ . (8.58d)

for all 0 ≤ n ≤ nmax. Additionally for 0 ≤�n < n ≤ nmax, we require that

#1/2 �Nfin,�n − Ncut,t − Ncut,x − 6
�$ − d ≥ Nfin,n (8.59)

holds. The inequality (8.59) is a direct consequence of the recursive for-
mula (8.29) and of the fact that the sequence Nfin,n is monotone decreasing
with respect to n. Using (8.28) and (8.29) one may show that

Nfin,n ≥ 2−nNfin,0 − (2d+ Ncut,t + Ncut,x + 8).

Noting that the bounds (8.58) are most restrictive for n = nmax, they now
readily follow from (8.14).
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Appendix A. Auxiliary lemmas

A.1 L p decorrelation

In order to estimate the perturbation in L p spaces as well as terms appearing
in the Reynolds stress we will need a combination of [5, Lemma A.7] and [5,
Remark A.9], which we recall next.

Lemma A.1 (L p decorrelation with flows) Let p ∈ {1, 2}, and fix integers
N◦ ≥ Ndec ≥ 1. Suppose f : R3 × R → R and let � : R3 × R → R

3

be a vector field advected by an incompressible velocity field v, i.e. Dt� =

123



An intermittent Onsager theorem 319

(∂t + v · ∇)� = 0. Denote by �−1 the inverse of the flow �, which is the
identity at a time slice which intersects the support of f . Assume that for some
λ, ν,�ν ≥ 1 and C f > 0 the functions f satisfies

�

�

�DN DMt f
�

�

�

L p
� C f λNM (M, Nt , ν,�ν)

for all N + M ≤ N◦, and that �, and �−1 are bounded as
�

�

�DN+1�
�

�

�

L∞(supp f )
+

�

�

�DN+1�−1
�

�

�

L∞(supp f )
� λN

for all N ≤ N◦. Lastly, suppose that ϕ is (T/μ)3-periodic, and that there exist
parameters�ζ ≥ ζ ≥ μ and Cϕ > 0 such that

�

�

�DNϕ
�

�

�

L p
� CϕM

�

N , Nx , ζ,�ζ
�

(A.1)

for all 0 ≤ N ≤ N◦. If the parameters
λ ≤ μ ≤ ζ ≤�ζ

satisfy

�ζ 4
�

2π
√
3λμ−1

�Ndec ≤ 1 , (A.2)

and we have
2Ndec + 4 ≤ N◦ ,

then the bound
�

�

�DN DMt ( f ϕ ◦�)
�

�

�

L p
� C f CϕM

�

N , Nx , ζ,�ζ
�M (M,Mt , ν,�ν) (A.3)

holds for N + M ≤ N◦ and M ≤ N◦ − 2Ndec − 4.

A.2 Inversion of the divergence

Given a vector fieldGi , a zeromean periodic function � and an incompressible
flow�, our goal in this section is to write Gi (x)�(�(x)) as the divergence of
a symmetric tensor. For this purpose, we use [5, Proposition A.18].

Proposition A.2 (Intermittency-friendly inverse divergence) Fix an incom-
pressible vector field v and denote its material derivative by Dt = ∂t + v · ∇.
Fix integers N∗ ≥ M∗ ≥ 1. Also fixNdec,d ≥ 1 such that N∗−d ≥ 2Ndec+4,
and let p ∈ {1,∞}.
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Let G be a vector field and assume there exists a constant CG > 0 and
parameters λ, ν ≥ 1 such that

�

�

�DN DMt G
�

�

�

L p
� CGλNM (M,Mt , ν,�ν) (A.4)

for all N ≤ N∗ and M ≤ M∗.
Let � be a volume preserving transformation of T3, such that

Dt� = 0 and �∇�− Id�L∞(suppG) ≤ 1/2.

Denote by �−1 the inverse of the flow �, which is the identity at a time slice
which intersects the support of G. Assume that the velocity field v and the flow
functions � and �−1 satisfy the following bounds
�

�

�DN+1�
�

�

�

L∞(suppG)
+

�

�

�DN+1�−1
�

�

�

L∞(suppG)
� λ�N (A.5)

�

�

�DN DMt Dv
�

�

�

L∞(suppG)
� νλ�NM (M,Mt , ν,�ν) ,

(A.6)

for all N ≤ N∗, M ≤ M∗, and some λ� > 0.
Lastly, let �, ϑ : T3 → R be two zero mean functions with the following

properties:

(i) there exists d ≥ 1 and a parameter ζ ≥ 1 such that �(x) = ζ−2d�dϑ(x)
(ii) there exists a parameter μ ≥ 1 such that � and ϑ are (T/μ)3-periodic
(iii) there exists parameters � ≥ ζ , C∗ ≥ 1, and α ∈ (0, 1], such that

�

�

�DNϑ
�

�

�

L p
� C∗�αM (N , 2d, ζ,�) (A.7)

for all 0 ≤ N ≤ Nfin.
If the above parameters satisfy

λ� ≤ λ� μ ≤ ζ ≤ �, (A.8)

where by� in (A.8) we mean that

�4
�

2π
√
3λμ−1

�Ndec ≤ 1 , (A.9)

then, we have that

G � ◦� = div (H (G� ◦�))+∇P + E . (A.10)
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where the traceless symmetric stress H(G� ◦ �) and the scalar pressure P
are supported in suppG, and for any fixed α ∈ (0, 1) they satisfy

�

�

�DN DMt H (G� ◦�)
�

�

�

L p
+

�

�

�DN DMt P
�

�

�

L p

� CGC∗ζ−1�αM (N , 1, ζ,�)M (M,Mt , ν,�ν) (A.11)

for all N ≤ N∗ − d and M ≤ M∗. The implicit constants depend on N ,M, α
but not G, �, or �. Lastly, for N ≤ N∗ − d and M ≤ M∗ the error term E in
(A.10) satisfies

�

�

�DN DMt E
�

�

�

L p
� CGC∗λdζ−d�α+NM (M,Mt , ν,�ν) . (A.12)

We emphasize that the range of M in (A.11) and (A.12) is exactly the same as
the one in (A.4), while the range of permissible values for N shrank from N∗
to N∗ − d.
Lastly, let N◦,M◦ be integers such that 1 ≤ M◦ ≤ N◦ ≤ M∗/2. Assume

that in addition to the bound (A.6)we have the following global lossy estimates
�

�

�DN∂Mt v
�

�

�

L∞(T3)
� Cv�λNq �τ−Mq (A.13)

for all M ≤ M◦ and N + M ≤ N◦ + M◦, where
Cv�λq ��τ−1q , and λ� ≤�λq ≤ � ≤ λq+1 . (A.14)

If d is chosen large enough so that

CGC∗�
�

λζ−1
�d−1 �

1+ τq max{�τ−1q ,�ν, Cv�}
�M◦ ≤ δq+2λ−10q+1 , (A.15)

then we may write

E = div �R∗(G� ◦�)�+
 

T3
G� ◦�dx , (A.16)

whereR∗(G� ◦�) is a traceless symmetric stress which satisfies
�

�

�DN DMt R∗ (G� ◦�)
�

�

�

L p
≤ δq+2λN−10q+1 τ−Mq (A.17)

for N ≤ N◦ and M ≤ M◦.
The estimates claimed in Proposition A.2 for p = 1 are taken as is from [5,

Proposition A.18]. The definition/construction of the operators H and R∗ is
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independent of p. Then the estimates claimed in Proposition A.2 in the case
p = ∞ follow from the proof of [5, Proposition A.18] after replacing each
instance of an L p bound for p �= ∞ in the proof with an L∞ bound.
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