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Abstract For any regularity exponent § < !/2, we construct non-conservative
weak solutions to the 3D incompressible Euler equations in the class C 0(H AN
L'71-2»)_ By interpolation, such solutions belong to COBA o for s approaching
13 as B approaches !/2. Hence this result provides a new proof of the flexi-
ble side of the L3-based Onsager conjecture. Of equal importance is that the
intermittent nature of our solutions matches that of turbulent flows, which are
observed to possess an L2-based regularity index exceeding ! /3. Thus our result
does not imply, and is not implied by, the work of Isett (Ann Math 188(3):871,
2018), who gave a proof of the Holder-based Onsager conjecture. Our proof
builds on the authors’ previous joint work with Buckmaster et al. (Intermittent
convex integration for the 3D Euler equations: (AMS-217), Princeton Uni-
versity Press, 2023.), in which an intermittent convex integration scheme is
developed for the 3D incompressible Euler equations. We employ a scheme
with higher-order Reynolds stresses, which are corrected via a combinatorial
placement of intermittent pipe flows of optimal relative intermittency.
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1 Introduction

We consider the three-dimensional homogeneous incompressible Euler equa-
tions

dv+diviv®v)+Vp =0, (1.1a)
divv =0. (1.1b)

Here v(-,1): T3 — R3 is the velocity and p(-,1): T3 — R is the pressure,
and we consider the system (1.1) with periodic boundary conditions on T> =
[—m, 7r]3. Without loss of generality, the velocity is taken to have zero mean,
and the pressure is uniquely determined as the zero mean solution of —Ap =
divdiv (v ® v). Smooth solutions v of the 3D Euler equations conserve their
kinetic energy £(t) = %fiﬁ [v(x, 1)|*dx.

In this paper, we consider weak solutions v € C,OL2 to (1.1). Since the
Euler system is in divergence form and we consider velocity fields of finite
kinetic energy, the definition of weak solutions is the usual one. The motiva-
tion for considering weak solutions is twofold. First, the Euler equations are
expected to dynamically produce singularities, even from smooth initial condi-
tions. Second, matching the mathematical theory with the physical properties
of turbulent fluids necessitates the consideration of solutions with singular-
ities. Indeed, the Kolmogorov/Onsager theories of turbulence postulate that
solutions to the 3D incompressible Navier—Stokes equations, which repre-
sent a fully developed turbulent flow, exhibit anomalous dissipation of kinetic
energy in the infinite Reynolds number limit. This is an experimental fact
[29,30]. Hence, if the 3D Euler equations are to represent the inertial range
of turbulence at very large Reynolds numbers, one is forced to consider non-
conservative solutions of (1.1), which thus must be weak solutions, not smooth
ones.

The conservation of kinetic energy for weak solutions to (1.1) was con-
sidered by Onsager [41], who predicted that “turbulent energy dissipation
[...] could take place just as readily without the final assistance of viscosity
[...] because the velocity field does not remain differentiable.” Based on the
computation of the energy flux through expanding Fourier domains, Onsager
formulated aremarkable statement connecting the regularity of a weak solution
v to (1.1) and the validity of the energy conservation law. Onsager’s conjec-
ture asserted that any weak solution v € C,OCS with s > 1/3 must conserve
kinetic energy, whereas for any s < !/ there exist dissipative weak solu-
tions v € C,O C* to the 3D Euler equations. The rigidity/flexibility dichotomy
expressed by the Onsager conjecture is the mathematical manifestation of an
experimental fact in hydrodynamic turbulence: Kolmogorov’s 4/s-law regard-
ing third order structure functions [29,30].

@ Springer



226 M. Novack, V. Vicol

Due to the quadratic nature of the nonlinearity in (1.1), the Onsager
exponent !/3 is intimately connected to an L3-based regularity scale, such

as COBg s> Where we recall that the Besov norm is given by [[v]lp; =

lvllLr+sup ;- 1zl lv(-+2)—v ()| L, so that Cs (T3 c Bgyoo(’]IG).Indeed,
the rigidity part of the Onsager conjecture was established by Constantin-E-
Titi [18], who proved that any weak solution v € L3 wNC OL2 of (1.1)
must conserve kinetic energy if s > !/3; see also the partlal result [28] and
the subsequent refinements in [13,26,27]. Concerning the flexible part of the
Onsager conjecture, after the paradoxical constructions of Scheffer [42] and
Shnirelman [43], a systematic approach towards the resolution of the con-
jecture was proposed in the groundbreaking works [21,23] of De Lellis and
Székelyhidi Jr., who introduced L*°-convex integration and C°-Nash iteration
schemes to fluid dynamics. After a series of important partial results [3,19],
a resolution of the flexible part of the Onsager conjecture was obtained by
Isett [36] in the setting of weak solutions with compact support in time. This
was further refined by Buckmaster, De Lellis, Székelyhidi Jr., and the last
author in [4], by constructing dissipative weak solutions v € C? C* to the 3D
Euler equations, for any s < !/3. For a detailed account of the Onsager theory
of ideal turbulence, and of the mathematical results which turned the Onsager
conjecture into the Onsager theorem, we refer the reader to [6,8,22,24,29,44].

We note that the proofs of rigidity in [13,18,26,27] identify the L3-based
spaces B;/ 3; and Bé/ ZO, as the borderline regularity spaces for ensuring that
weak solutions conserve energy/have vanishing energy flux. These spaces are
known to be sharp, for instance in the case of a Burgers shock, which dissi-
pates energy and lies in Bj / . See also the incompressible 3D vector fields
constructed in [9,13-15 28] Wthh have a nonzero flux at critical regularity.
Moreover, the L3-based regularity scale matches the prediction made for third
order structure functions in the Kolmogorov theory of turbulence.

In contrast, the proofs of flexibility in [4,35,36] are in a certain sense “too
strong,” since they construct weak solutions in the L>°-based space C'/*~
(which implies the same result in B /- )+ These solutions thus do not exhibit
the observed inertial range mtermlttency of turbulent flows at large Reynolds
number, neither for low order structure functions, nor for high order structure
functions. To be more precise, for p < 3, the p™ order inertial range structure
function exponents ¢, in fully developed turbulence have consistently been
observed to lie above the Kolmogorov predicted value of /5. See e.g. [30,
Figure 8.8], [12, Figures 4&5], [37, Figure 3], [34, Figure 3]. These mea-
surements correspond (see also [5,6] for details) to an L”-based regularity
exponent of ¢/, > /3. Similarly, for p > 3, experiments and simulations
show that the inertial range structure function exponents ¢, saturate (mean-
ing, remain bounded) as p — oo. See e.g. [30, Figure 8.8], [34, Figure 6],
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and the discussion in [34, Section D]. These measurements correspond to an
L?-based regularity exponent of ¢/, — 0 as p — 00, suggesting that the
fully developed isotropic turbulent solutions observed in experiments do not
retain any positive Holder exponent, even though weak solutions of Euler may
possess Holder regularity. The culprit is intermittency.

The main goal of this paper is to give a new proof of the flexible side of the
L3-based Onsager conjecture. We construct weak solutions to the 3D Euler
equation in the regularity class C?(H ALY ¢ Ct0 B;/ 3;3, which are non-
conservative and exhibit the inertial-range intermittency observed in turbulent
flows.

Theorem 1.1 (Main result) Fix B € (0,!/). For any divergence-free
Ustarts Vend € LZ(T3) which have zero mean, any T > 0 and any € >

2-28
0, there exists a weak solution v € C([0,T]; HP(T?) N L2 (T3)) 1o
the 3D Euler equations (1.1) such that ||v(-,0) — vsartll 23y < € and
[v(:, T) — Vendllz2¢13) < €.

Note thatas § — 127, the Sobolev regularity index of the weak solutions in
Theorem 1.1 converges to /2, while the Lebesgue integrability index converges
to 0o, explaining the notation C,O(H "2~ M L°°7). By interpolation, it follows
that for any s < !/3, we may choose § sufficiently close to !/> to ensure that
v E C,OBS which is the Onsager regularity threshold (see Remark 2.7).

3,00°

Remark 1.2 (B-model) We point out that the Sobolev regularity statement in
Theorem 1.1 corresponds exactly to the predictions of the phenomenological
model of turbulence known as the B-model, which was introduced by Frisch,
Sulem, and Nelkin [31]. Specifically, if one assumes that singularities concen-
trate on a 2-dimensional set, then the f-model predicts that the second order
structure function exponent is 1, which corresponds to H '/ regularity. Sim-
ple heuristic computations indicate that the solutions constructed in this work
do indeed concentrate on a two-dimensional set, which is also the prediction
of Iyer, Sreenivasan, and Yeung [34]. For a proof of energy conservation within
the assumptions of the 8-model, we refer to [25].

Remark 1.3 (Other flavors of flexibility) As in [5], we have chosen to state
Theorem 1.1 in a way that leaves the entire emphasis of the proof on the
regularity of the weak solutions. In terms of flexibility, Theorem 1.1 gives
the existence of infinitely many non-conservative weak solutions of 3D Euler
in the stated regularity class, and moreover shows that the set of wild initial
data is dense in the space of L? periodic functions of given mean. Using
well-established techniques, see e.g. [3,4,36] and [5, Remarks 1.2, 3.7, 3.8],
we may alternatively establish other variants of flexibility for the 3D Euler
equations (1.1) in the regularity class CIO(HI/Z_ N L>®7):
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228 M. Novack, V. Vicol

(a) If the functions vy and vepq in Theorem 1.1 are any two C°° smooth
stationary solutions of the 3D Euler equations of zero mean, then we may
take € = 0. Since the function 0 and any smooth shear flow are station-
ary solutions to (1.1), this implies the existence of nonzero weak solutions
which have compact support in time. Achieving this would require that
we introduce a temporal cutoff in the convex integration scheme, which
essentially ensures that on temporal regions where a stress is already van-
ishing identically, no further velocity increments need to be added; see [5,
Equation (3.14)].

(b) One may modify the proof of Theorem 1.1 to show that any C* function
e: [0, T] — (0, co) is the kinetic energy of a weak solution to the 3D Euler
equations in the regularity class C%([0, T']; H'~~ N L°7). This implies
flexibility within the class of dissipative solutions. Achieving this result
would require adding a few inductive assumptions in the convex integration
scheme: we need to measure the distance between the energy resolved at
every step g — ¢q + 1 in the convex integration scheme, and the desired
energy profile, see e.g. [3,4,19,23]. In particular, the energy pumped into
the system due to higher order stresses in every sub-step n — n + 1 needs
to be kept track of, and one also needs to keep track of the amount of energy
pumped on the support of each cutoff function, as was done in [7] for stress
cutoffs.

1.1 Minimally technical outline of the proof

We now provide a sketch of the argument used to prove Theorem 1.1, in
order to highlight the most important components. We simultaneously aim to
elide certain technical details, while emphasizing the aspects of our argument
which are distinct from recent well-known convex integration arguments (see
the comparisons in Sects. 1.2.1 and 1.2.2). Finally, while our proof relies
fundamentally on the technology developed in [5], it requires several new
ingredients in order to ensure that the solution v belongs to C?LOO_; see
Sect. 1.2.3.

As is customary in Nash-type convex integration schemes for the Euler
equations (see e.g. [6,24]), the solution v of Theorem 1.1 will be constructed
as a limit when ¢ — oo of solutions v, : T3 x R — RR3 to the Euler—Reynolds

system with a traceless symmetric stress R, : T2 x R — M3

dvg +div (v, ® vy) + Vp, = div R, (1.2a)
divu, =0. (1.2b)
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An intermittent Onsager theorem 229

The pressure p, is uniquely defined by solving Ap, = div div (I%q — vy ®y),
with f’ﬂ"3 pqdx = 0. The functions v, and I%q are assumed to oscillate at
frequencies no larger than A, = a®”) where a = a(p) is sufficiently large and
the superexponential growth rate b = b(p) is slightly larger than 1. Adhering
to the convention that all norms are measured uniformly in time, e.g. L? refers
to CO([0, T1; LP(T3)), we posit that

o L _zﬂ o

IRy |1 < 8441 = Agi1o [Rg| - = 1. (1.3)
Thus Ii’q — 0in the L' topology and is nearly summable in both W!=! and
L°°~. The quadratic nature of the nonlinearity then leads us to posit further-
more that velocity increments wy = v, — vg—1 satisfy

lwell > =88 wgl,~ <1, (14)

so that w; — Oin L? and is nearly summable in both H'>~ and L>°~. The
main inductive step on g asserts the existence of a velocity increment w4
and stress éq+] such that (1.2)—(1.4) hold with ¢ — g + 1.

In order to construct non-conservative solutions with regularity above !/3 on
the L2-based Sobolev scale, the results of [18] dictate that the weak solution
must be intermittent—a term which is used here to mean that the weak solution
contains spatial concentrations, not just oscillations, and so it has a different
regularity index in an L?-based scale, versus an L>°-based scale. A first attempt
to define the velocity increment w1 would then be as a sum of products of
the form .

a(Rg. Vg )Wy itk - (1.5)

where a(I%q, V) oscillates at spatial frequency A4, and W11 ,, ¢ is a high-
frequency intermittent pipe flow. More specifically, W, 11 r, ¢ is a shear flow
supported in a thin tube of diameter A;}L] around a line parallel to a unit vector
&, which has been periodized to scale (kq+1rq)_1, see Proposition 3.3. The
parameter 0 < r, < 1 corresponds both to the measure of the support of the
intermittent pipe flow (which is rqz) and the effective frequency support (which
i8 [Ag417g, Ag+1]). As such, itis clear that r, quantifies the intermittent nature
of the velocity increment wy 1 1. The low-frequency function a (I%q , V) local-
izes the scheme in space and time by zooming down to the scale A !, at which
I%q and v, may be treated as spatially homogeneous. The “convex integration
step” via which we construct wy 11 then consists of essentially independent
local iterative steps, which are predicated on the local size of Ii’q and Vv,. The
timescale of a(I%q, Vu,) is inversely proportional to || Vvy || Lo (suppa)- Cheby-
shev’s inequality combined with the global inductive bounds on Vv, and Ii’q
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230 M. Novack, V. Vicol

then controls the sizes of the space-time sets on which each local iterative step
takes place.

At this stage in the argument, it is not clear how to choose the value of the
intermittency parameter . It turns out that in order to propagate both H o
and L°°~ bounds, there exists a unique optimal choice of r,! To see this, we
inspect the simplest error term in IéqH, namely the Nash error I%qulh, defined
by solving the equation

_ 3:.. pNash
Wyt1 - Vg =div R 5.

. 2/,—1 o o 1/,
Using that [Wos1,, e ~ g and lla(Rg. Vog)ll 20 ~ [[Ryllfy. and
using the heuristic that the most costly part of Vv, is Vw,, we find that

||div_1 (wq+] : VUq)HLl S )“;Jlrl "Sz];/iqu ’ 5111/2)‘11’
div =" (wos1 - Vog) [ oo S 20417t rgting

As b — 17 and B — 1/, matching the L' bound for the stress requires
rg S )»q_lfl )\;]/2, while matching the L> bound requires r, 2 )L;r/zl)»lq/z; see
(8.55) and (8.56) for precise inequalities. Thus our choice of r,; is completely
constrained by the simplest error term in the scheme. Since we shall always
quantify r, in terms of powers of the quotient of Ay Jlrlkq, we refer to this
constraint on ry as the one-half rule for intermittency. Of course, we must
then show that the transport and oscillation errors, defined by solving the

equations
div I%;rinls = (8; SR V)wq+1 , div I%f]’ifl =div (I%q + wy+1 ® wq+1) ,

also respect this one-half rule which is dictated by the Nash error.

Let us first consider the transport error. Recall cf. [6,24] that C¥-based
convex integration schemes for the Euler equations essentially use global
Lagrangian coordinate systems, predicated on global L> bounds for V.
Instead, as in [5] we are forced to implement local Lagrangian coordinate
systems predicated on the local L* bounds for Vv, which are available
on the support of a(I%q, Vv,). Pre-composing the high-frequency pipe flow
Wyt1,r,,6 with the local Lagrangian flow map then gives that the transport
error obeys bounds identical to those of the Nash error. Thus, we may expect
the transport error to also respect the one-half intermittency rule.

Unfortunately, the composition of W1 ,, ¢ with Lagrangian flow maps
introduces an intersection problem in the oscillation error: between neighbor-
ing cutoffs a and a’, it may be the case that
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An intermittent Onsager theorem 231

a(léq, Vo )Wy it r,.e ® a’(ﬁq, VUQ)WZJHJ,,,&/ #0.

The main innovation in Isett’s proof of the Onsager conjecture [36] was a
“gluing technique,” which solved the intersection problem, but which required
global L*° bounds on Vv, . The localized nature of our scheme, combined with
the inherently nonlocal nature of the Euler equations, appears to preclude the
usage of a gluing technique, in the spirit of [4,36].

We instead solve the intersection problem directly, using the sparsity of
the pipe flows. At an intuitive level, the empty space in between neighboring
pipes provides enough space for us to place new sets of intermittent pipes,
which do not intersect the already existing ones. We refer to this as pipe dodg-
ing. However, if one conceptualizes the spatial support of each a(ﬁq, V)
as being a spheroid of diameter A;l, then the one-half rule for intermit-
tency does not provide enough sparsity to solve this intersection problem.
Indeed, [5, Proposition 4.8] shows that pipe dodging on the support of such an
isotropic cutoff requires a three-quarters intermittency rule. We address this
issue by anisotropically shrinking the diameter of the support of each ampli-
tude function a, in a £-dependent way. Specifically, if a(]%q, Vg, &) is to be
multiplied by a pipe flow parallel to § as in (1.5), then we extend the support
of a(Rq, Vg, &) to length A !'in the direction parallel to & and (kq+1rq)
in the direction perpendlcular to £. We use the phrase relative intermittency
to quantify the aspect ratio of the support of a(I%q, Vu,, &) and implement
it technically via a set of checkerboard cutoffs. We refer to Sect. 5.4 for a
construction of these anisotropic checkerboard cutoffs, Proposition 3.8 for a
proof that the one-half rule provides sufficient relative intermittency to solve
the intersection problem, and Sect. 7.5 for the implementation of these two
ingredients in the context of the oscillation error.

Since the characteristic length scale of I% and Vu, is A‘l one may expect

that introducing the artificially smaller length scale (kq+1rq) L Ay U will
produce unnaturally larger error terms. The first place to look for such a bad
error term would be in the oscillation error terms which are given by

div ! <v (au%q, V. 5)2) (Id —]{P)(Wﬁl,rq,g ® Wﬁl,,q,g)) . (1.6)

The first key insight is that the differential operator in the above expression
is not the full gradient: it is the directional derivative § - V, as Wy, ¢ 1s
parallel to £. Hence, from the perspective of this error term, the anisotropy
of a(]i’q, Vu,, &) is essentially free, since in the direction of § the amplitude
function a only oscillates at frequency A,.

However, the error term in (1.6) presents other difficulties. Since this term
inherits its minimum effective frequency of A, 1r, from the mean-free part of
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232 M. Novack, V. Vicol

Wyt £ R Wyrt,r B the leftover error terms in (1.6) live at frequencies of
absolute value in the range [A4 4174, A4+1]. Simple heuristic estimates indicate
that the lowest frequency portion of these error terms is too large in L' to be
absorbed into Iéq+1, while the highest frequency portion is too large in L* to
be absorbed into I%qH. Rectifying the first issue requires identifying higher
order stresses I%q,n living at intermediate frequencies Ay , € [Ag+17g, Ag+1],
which are corrected by corresponding higher order perturbations

Wyg+1,n = a(Rq,n, Vvq, %—)Wq-i-l,rq,n,é-

The minimum frequency of the increment w11 ,, which equals A, 1174 ,,
is defined to converge to A, 11 as n approaches its maximum value of 7max.
This allows the L' stress estimates to just barely close. Rectifying the second
issue requires a non-trivial estimate (see Lemma 3.5) on the L° size of the fre-
quency projected squared pipe flow }P’[A W1y oAW1, e @Woiir, , ).
Somewhat amazingly, this estimate respects the one-half rule in the sense that

1
S g
We then correct the higher order stresses I%q, » according to a generalization
of the one-half rule; in other words, the pipes Wy, , ¢ used to correct

the L°°~ size of the resulting stress is exactly 1 if one chooses ry, = A

I%q n» which lives at frequency A, , € [Ay4174, Ag+1], have minimum fre-
quency Aq LA q/ 1~ This is again the minimum amount of intermittency needed
to ensure higher order pipe dodglng, i.e., that pipes from overlapping cutoff
functions a(Rq n» Vug, &) and a (Rq n's Vg, £’) do not intersect. Thus, Wy 1
is finally constructed as a sum of terms of the form a (Rq,,, , Vug, &) Wy Tgmiks
which collectively obey the inductive bounds required of velocity increments,

i.e. (1.4) with (S 2 1 replaced by a suitable 57"

q+1 obeying (1.3).

In summary, in the iteration scheme described above, the one-half rule
presents the Goldilocks amount of intermittency needed to obtain both H '/~
and L°°~ bounds on the velocity. At a technical level, it appears that the
choice of parameters in this scheme is essentially fixed, by scaling: the Nash,
transport, and oscillation errors each impose exactly the same intermittency
restrictions. Implementing the above strategy rigorously is made cumbersome
by the need to precisely localize all parts of the argument on suitable regions
of space-time. This technically involved part of the proof is encoded in the
design of cutoff functions, recursively for the velocities and iteratively for the
stresses, which effectively play the role of a joint Eulerian-and-Lagrangian
wavelet decomposition (see Sect.5). This localization machinery was previ-
ously developed in our earlier joint work with Buckmaster and Masmoudi [5],
and this part of the argument can be used essentially out of the box. In this

q +1 ,» and they also produce a stress
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An intermittent Onsager theorem 233

manuscript, we therefore just focus on the novel aspects of the intermittent
convex-integration/Nash iteration scheme.

1.2 Comparison and contrast with existing works

1.2.1 Holder schemes

The techniques in the present work share a number of generic features with
the construction of non-conservative solutions in Cff . fora < 1/31n [36], and
its subsequent optimizations in [4] and [35]. Foremost among these features
is the usage of some variation of Mikado/pipe flows rather than Beltrami
flows, an idea originating in [19] and used additionally in recent works such
as [20,32]. In contrast with Beltrami flows, Mikado/pipe flows enjoy stability
on the full Lipschitz timescale, which appears necessary in order to reach
sharp thresholds in the Nash and transport errors in both the intermittent and
homogeneous settings. In addition, we require the propagation of material
derivative estimates for the stress, as in the schemes in [3] and [40], since in
the absence of a gluing step in the iteration, these bounds do not come for free.

Implementation of these basic concepts, however, looks very different in
the intermittent setting than in the homogeneous setting. The most glaring
difference is in the type of derivative estimates which must be propagated
on both the stress I%q and the gradient of velocity Vv,. Sharp material and
spatial derivative estimates for homogeneous schemes have typically only been
required at very low order, perhaps one or two material derivatives and three
spatial derivatives. Furthermore, such estimates can always be made globally
due to the homogeneous character of the stress and velocity. In our setting,
sharp material and spatial derivative estimates have to be made both locally,
and to essentially infinite order. As in [5], propagating these estimates requires
a careful construction of stress and velocity cutoffs, and a localized inverse
divergence operator for which derivative estimates on the input lead directly
to corresponding estimates on the output. We expect these tools to be widely
applicable in problems which require sharp derivative estimates.

Furthermore, there are significant differences between the present work
and [4,35,36] in the estimation of nonlinear error terms. The most obvious
difference is in the approaches used to solve the intersection problem. The
gluing technique in [4,36] relied on a dynamic argument, which used classical
stability properties of the Euler equations to localize the stress Ii’q to disjoint
regions in time. Conversely, the pipe dodging technique we use is predicated
entirely on an optimal exploitation of the sparsity of intermittent pipe flows.
While we rely on sharp local information about the deformations of various
pipes subjected to a background transport velocity, the fact that the transport
velocity field solves the Euler—-Reynolds system is irrelevant.
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Letus emphasize that our estimates on the error term in (1.6), which includes
the nonlinear self-interaction of intermittent pipe flows, are sharp in both L'
and L°°. This is in contrast to the estimates on the corresponding nonlinear
error term in the homogeneous setting, which are strong enough to allow for
C'” regularity, and thus offer no relevant regularity restriction.

Finally, one may draw a connection between our result and the problem of
approximating a short embedding of a Riemannian manifold by an isometric
embedding, for which there is some evidence that C!-'> demarcates the sharp
threshold between rigidity and flexibility [24,33]. Our result realizes a version
of this “!/2 threshold”, but in the appropriate topology for a different PDE with
a quadratic nonlinearity.

1.2.2 Intermittent schemes

The usage of intermittency in Nash-style iterative schemes originated in the
work of Buckmaster and the second author [7]. The fundamental idea is that an
L?-normalized function with significant spatial concentrations has an L' norm
which is much smaller than its L? norm. The estimation of linear error terms
in L' then relies crucially on this property. Intermittent building blocks have
been used to great effect in a number of works since; we refer for example to
[1,2,10,11,16,17,38], and to the reviews [6, 8] and the references cited therein.
The intermittent building block utilized in this paper was first used by Modena
and Székelyhidi in [39]. The estimation in L' of the Nash and transport errors
in our scheme relies in part on the intermittency of the pipe flows, and in this
limited sense, intermittency serves the same purpose in our context as in other
works.

Sparsity factors into our arguments in several other important ways which
however distinguish the present work from other intermittent schemes. We first
point to the oscillation error, in which the sparsity of pipe flows contributes
favorably by providing the needed degrees of freedom to solve the intersec-
tion problem. Secondly, and decidedly less favorably, intermittency serves to
complicate any local or global L* estimates, especially for the Lagrangian
transport maps. As our previous joint work with Buckmaster and Masmoudi
[5] was the first example of a convex integration scheme which combined inter-
mittency with transport maps, other intermittent convex integration schemes
have generally not faced this difficulty; the only other exception to this is joint
work of the first author with Beekie for the «-Euler equations [1]. Third, the
higher order stresses are a feature only shared with [5], although it is conceiv-
able that higher-order stresses could sharpen the regularity estimates obtained
in other intermittent Nash-style schemes. Finally, both the sharp L°°~ and
H'’~ require an almost geometric growth of frequencies, which again is a
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feature only shared with [5] in the class of intermittent schemes, to the best of
the authors’ knowledge.

1.2.3 The H'"~ scheme in [5]

More specific comparisons and differences may be identified between the
present work and our previous paper joint with Buckmaster, Masmoudi [5].
At a conceptual level, the most significant differences are the new constraints
on the amount of intermittency which may be utilized. As described earlier,
simultaneously reaching the H'/>~ and L~ thresholds in the Nash and trans-
port error terms requires a specific choice of the intermittency parameter r.
In [5], only a lower bound on intermittency was required since the final solu-
tion also enjoyed H '~ regularity, but Lebesgue integrability only close to L*.
Similarly, enacting pipe dodging in the nonlinear error terms in [5] required
only a minimum amount of intermittency, and the self-interaction term in (1.6)
was essentially impervious to the choice of r. In the current argument, the use
of anistropy in the pipe dodging scheme improves the approach taken in [5],
while simultaneously preserving the size of the error term (1.6). Furthermore,
analysis of this error term utilizes the fact that intermittency may not affect
the L? norms of a function itself, but rather the L? norms of its derivatives.
The simplest example of the latter concept is a one-dimensional shock, which
is fully intermittent in the sense that it lies in B;,/f’oo for 1 < p < oo, but has
L? norms of order 1 for all p.

At the technical level, there are a few noteworthy similarities and differences
between [5] and the present work. First, we are able to reuse the framework of
the mollification argument, the “Appendix” full of technical lemmas on sums
and iterates of operators, and the structure of the inverse divergence operator.
The generalizations required for each of these tools are simple, and merely
require replacing every instance of L' or L2 norm in the previous arguments
with an L°° norm. Furthermore, all estimates related to flow maps (cf. Corol-
lary 5.10) and deformations of intermittent pipe flows (cf. Lemma 3.7) have
been taken verbatim from [5]. Next, the L? inductive estimates on velocity
increments and the L' inductive estimates on the stress I%q match those from
[5]. However, we now propagate sharp L°° bounds on both velocity increments
and stresses, cf. (2.8b), (2.9b), and (2.10b). Small power losses in frequency
in these estimates are encoded using the parameter C,. We are able to reuse
the construction of the velocity and stress cutoff functions from [5]. However,
while the old estimates deferred to the Sobolev inequality to achieve lossy uni-
form bounds (see the bounds for the parameters ipax in [5, Lemma 6.14] and
Jmax in [5, Lemma 6.35]), the current argument appeals to the new, sharp, L>°
bounds which have been inductively propagated (see Lemmas 5.7 and 5.14).
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The identification of the error terms in Sect. 7.3 is very similar to that
in [5], save for two differences. The first difference is the elimination of
the unnecessary parameter p from the scheme, which was used to minimize
the accumulation of small power losses in frequency which arise from the
repeated cycles of constructing higher order stresses and velocity increments.
We instead minimize such losses by ensuring that an error term which arrives
at the higher order stress Ii’q,n has endured at most ~ log, n previous cycles
of higher order stresses and increments. This requires a choice of ny,x which
is large enough to guarantee that lo%fﬂ & 1, cf. (8.2). Secondly, the identi-
fication and estimation of the divergemnxce corrector errors are no longer trivial,
due to the anistropy of the checkerboard cutoff functions. However, we may
again use that the anistropy of a cutoff function is fundamentally related to the
direction of the axis of the associated pipe to ensure that divergence corrector
bounds are satisfactory; see Sect. 7.6 for details.

2 Inductive bounds and the proof of the main theorem
2.1 General notations

Throughout the paper, we shall say that the velocity field v solves the Euler—
Reynolds system with stress R, if (v, R) solve

dv+divo®v)+Vp=divR, divv=0,

for a uniquely defined zero mean pressure p. As already discussed in (1.2),
for ¢ > 0 we consider a velocity field v, which solves the Euler-Reynolds
system with stress R,,.

In order to circumvent the derivative-loss problem [23], we use the space-
time mollification operator P, . , defined in (4.1) below, to smoothen v, and
define:

Vg, *= Fq.x,tVq s (2.1)

for all ¢ > 0. In Nparticular, cf. (4.1) we have that spatial mollification is
performed at scale A;l (whichis justslightly smaller than 2 - 1, while temporal
mollification is done at scale ?q_l (which is much smaller than 7, ). Next,
for all ¢ > 1, define

Wq = Vg — Vg, Ug 1= Vg, — Vg, ;- 2.2)

For consistency of notation, define wyg = vp and up = vy,. Note that

ug = Pqx,iwg + (Py x,1ve,1 — Ve,_y) (2.3)
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so that we may morally think that u; = w,+ a small error term. We use the
following notation for the material derivative corresponding to the vector field
Uy qi

Dig=0+vy V. 2.4)
With this notation, we have that

Dl,q = Dt,q—l + Ltq -V = Dl‘,q—l + Dq . (25)

Remark 2.1 (Geometric upper bounds with two bases) For all n > 0 we define
M (n, N*, )\‘, A) = Amin{n,N*}Amax{n—N*,O} .

This notation has the following consequence, which is used throughout the
paper: if 1 < A < A, then

M(aaN*v)“’ A)M(b9 N*v)\"A) iM(a+bv N*’)"aA)

When either a or b are larger than N, the above inequality creates a loss; for
a+ b < N,, it is an equality.

Remark 2.2 (All norms are uniform in time) Throughout this section, and
the remainder of the paper, we shall use the notation || f||;, to denote
||f||L$O(L1>(T3))- That is, all L? norms stand for L? norms in space, uniformly
in time. Similarly, when we wish to emphasize a set dependence of an L?”
norm, we write || f || LP(Q)> for some space-time set 2 C R x T3, to stand for

1o f||L§>°(Lp('J1*3))-

2.2 Inductive estimates

The proofis based on propagating estimates for solutions (v, 134) of the Euler—
Reynolds system (1.2), inductively for ¢ > 0. In order to state these bounds,
we first need to fix a number of parameters in terms of which these inductive
estimates are stated. We start by picking a regularity exponent 8 € [/, 1/2),
else the theorem is known cf. [4,36], and a super-exponential rate parameter
b € (1,3/) such that 28b < 1. In terms of this choice of § and b, a number
of additional parameters (nmax, - . . Nfin) are fixed, whose precise definition is
summarized for convenience in items (iii)—(xiii) of Sect.8.1. Note that at this
point the parameter a, (8, b) from item (xiv) in Sect. 8.1 is not yet fixed. With
this choice, we then introduce the fundamental g-dependent frequency and

@ Springer



238 M. Novack, V. Vicol

amplitude parameters from Sect. 8.2. We state here for convenience the main
g-dependent parameters defined in (8.15), (8.18), (8.17), (8.19), and (8.22):

Ag = 7 [(b7)logyal )‘2—1 , (2.6a)
5y = ay A (2.6b)

_ 3 11
=82, T (2.6¢)
Og41 = Agy1r, ' 207D (2.6d)
Tyr1 = O, ~ AP, (2.6¢)

where the constant Cg is defined by (8.5), and er is chosen as in (8.6). Next, we
define the n-dependent frequency, intermittency, and amplitude parameters

6 _
)\,q Fq+15 n= 0
Agn™q 1___n I+ 52 ’ 27
)\; 2(nmax+1) )Lq2+12(nmax+1)’ 1 <n < Nmax
P 32
Ta+in X hgnhy Uyt s =
—Cg
1/2 —1/2 14+Ch =
Sq+in = 1 2a+1.0%0 Ag i lgpn ™ I "
R U T (n)
_1 134Cp ( o Zomax+D 2 9+Cs
8q+1,0)\q)»q,n—qu+l (®CI+1 FQ-H 0 2SS N
(2.7¢)

In the above display, 8,41, is defined to account for small losses (the quantity
in parentheses) raised to a power Y (n) (which is bounded independently of
q, cf. (6.6) and (6.8)). Therefore one may adhere to the heuristic that 8,1 ,
is roughly speaking equal to 8q+1)»q)»(;}1. We refer also to (8.23) and (8.24),
where the precise meaning of ~ in (2.7a)—(2.7b) is given.

Remark 2.3 (Usage of the symbols =, <, and choice of a) The ~ symbols
in (2.6) and (2.7) indicate that the left side of the & symbol lies between two
(universal) constant multiples of the right side, see e.g. (8.16). Throughout the
paper we make frequent use of the symbol <. Any implicit constants indicated
by < are only allowed to depend on the parameters defined in Sect. 8.1, items
(i)—(xiii). The implicit constants in < are always independent of the parameters
a and g, appearing in (2.6b). This allows us at the end of the proof, cf. item (xiv)
in Sect. 8.1 to choose a. (8, b) tobe sufficiently large so that foralla > a. (8, b)
and all ¢ > 0, the parameter I'; | appearing in (2.6¢) is larger than all the
implicit constants in < symbols encountered throughout the paper. That is,
upon choosing a, sufficiently large, any inequality of the type A < B which
appears in this manuscript, may be rewritten as A < I'; 1 B, for any ¢ > 0.
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In order to state the inductive assumptions we use four large integers, defined
precisely in Sect. 8.1. For the moment we simply note that these fixed param-
eters are independent of ¢ and satisfy the ordering

I K Ncut,t < Nind,t < Nind,v < Nﬁn .

The precise definitions and the meaning of the << symbol in are given in (8.9),
(8.10), (8.11), and (8.14).

2.2.1 Primary inductive assumption for velocity increments

We make L2 and L inductive assumptions for u, = Ve, = Ve, at levels
q’ strictly below ¢. For all 0 < ¢’ < g — 1 we assume that

n m
H Vig 1D Dy iy

<8/ M (1, 2Ningy. Agr, gr) M (m Nind,c, T} 7.l %;;ll) (2.8a)

L°°(supp 1/[[',(//—1)
< IO M (1, Ningy, At ) M (m, Npao T 01700 )
(2.8b)
holds for all 0 < n + m < Ngy.

Atlevel g, we assume that the velocity increment w, satisfies corresponding
L? and L bounds

n nym
Hl//i,q—lD Dt,q—lwq

L2
= 17 8 M (m Nipao T e T 17 ) (2.92)
ot
H hq-174 L (supp ¥ g—1)
= P10 A M (m, Nipao Ty T ) 29)

forall 0 <n,m < 7Njpg.y.

2.2.2 Inductive assumptions for the stress

For the Reynolds stress I%q, we make L! and L inductive assumptions
” Wi,q—anD?fq—léq ”Ll

@ Springer



240 M. Novack, V. Vicol

< T, R8g4125M (m Ninae, Tj ') Fq_l?q__ll) (2.10a)
n ym 5

”D Dt,qfqu ||LO°(SUPP¢’i,q71)
< Fg“k’;/\/l (m Nind,t, Fffth__ll, Fq_l?q__ll) (2.10b)

forall 0 < n,m < 3Njpg.y.

2.2.3 Inductive assumptions for the previous generation velocity cutoff
functions

More assumptions are needed in relation to the previous velocity perturbations
and old cutoff functions. First, we assume that the velocity cutoff functions
form a partition of unity for ¢’ < ¢ — 1:

Yoy, =1, and Yy =0 for [i—i'|=2. (211

i>0

Second, we assume that there exists an imax = imax(¢’) > 0, which is bounded
uniformly in g’ as

(b —1) + Bb

j N"<1+C ,
imax(q) <1+ Gy + er(b — Db

(2.12)

such that forall ¢’ < g — 1,

. . max (§ C 1ho—1h
Yig =0 forall i >imu(g), and Ty < Fq/“H@q,(Sq/(/z .

Remark 2.4 (Products of non-commuting operators) The fact that space
derivatives D (we do not dinstinguish between 0y, dy,, dx;, but rather
denote them all with D) and time derivatives 9, do not commute with the
material derivative D;, (see (2.4)), or with the directional derivative D,
(see (2.5)), requires that we inductively propagate mixed derivative estimates
for the velocity cutoff functions. An example of such a mixed derivative is
D"“Dﬁ; . ..D“kDf’j] for some multi-indices &« = (aq,...,a;) and f =
(B1, ..., Br) where a, B € Nl(‘). Throughout the paper, we will accordingly
abbreviate these mixed derivative operators as

k k
p*pf, =[] p*Df,. and D*Df:=[[D*Df. (214
=1 =1
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whenever o, € NK and qg > 0.

Forall0 < ¢’ <g—1and0 < i < ip.x we assume the following pointwise
derivative bounds for the cutoff functions ¥; ;. For mixed space and material
derivatives (recall the notation from (2.4), (2.14)) we assume

DD iy
1—(le|+[B])/Nin ™
v

M (|°5|, Nind,v, ququ, Fq/xq,)

X M <|ﬂ|’ Nind,t - Ncut,t, Fq_::_)’] q/ 1° Fq_ll_l’v_])
(2.15)

fork >0and o, B € NS with || + |B| < Ngp. Lastly, we consider mixtures
of space, material, and directional derivatives (recall the notation from (2.5),
(2.14)). With M, ¢, B and k as above, and with N > 0, we assume

N B
IDVNDEDE i gl
1pl*(1\’+\0t|+|/3\)/Nﬁn

i,q'
< M (N, Ning,y, iy, )wﬁﬁwﬂ
x M (,B, Nind,c — Ncut,t,F;jl e Fqiqu‘) (2.16)

forall N + |e| + |B| < Nfin.
In addition to the above pointwise estimates for the cutoff functions ¥; ./,

we also assume that we have a good L' control. More precisely, we postulate
that

—2i +Cb 4 + b

le q’ ”Ll ~ q 41 where  Cp = h_1 (2.17)

holds for0 < ¢’ < g —land all 0 <i < imax(q’).

2.2.4 Secondary inductive assumptions for velocities

Next,for0 < ¢’ <g—1,0 <i <ima,k > 1l,and o, B € Nk, we assume
that the following mixed space-and-material derivative bounds hold

” D* D;Bq/—luq/ ||L°°(supp Vig!)

(WﬁbMWme/wjo

(Iﬂl ind.os T 010t 1,l“q“+1’“q“) (2.18)
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for || 4+ |B] < 3Nmfo 4 1,

| D qu,Dvgq,

Lo (supp ¥; ;1)

+1 51 . ~
S (U8 g M (Jeel, 2Ning,v, iy, o)

x M<|ﬂ|’Nind,ta ri G-l pol 21 (2.19)

q'+17q" g1y )
for le| + 8] < /2, and
o B
|| D Dz,q’vﬁq/ ” L (supp Wi,q/)

i+1 ¢'/2,2 £y
S (F;/+18q/)‘q/)M (|O(|, 2Nind,v» Fq’)\'q/a )\'q/)

x M (181 Ningso T 07 T4 701 (2.20)

for |ae| + |B| < 3Nm/p + 1. Lastly, for N > Oand N + || + |B] < Nifp 4+ 1,

we postulate that mixed space-material-directional derivatives satisfy

“ DNDZ’qu/—l Ug' ” Lo (supp ¥; 1)

S (Fl+1 81/2)‘06|+1M (N + |a|’ 2Nind,v’ Fq/)"q’9xq’)

q/+1 q/
x M (181 Nings, T2 T 700 2.21a)
i+1 ¢'/ 0% i—co_—1
S (F;/+1841)M (N’ 2Nind,v, Fq/)\'q/v )\'q/) (Fq/+(lij/ )lal
x M (Iﬁl, Nina.c, T00 70 F(]L?q_/l)- (2.21b)

Remark 2.5 As shown in [5, Remark 3.4], (2.21b) automatically implies the
bounds
N M
| DY Dy

i1 o) . ~
S, (F;r+15q/ M (Na 2N1nd,Va Fq/)\q/a )Lq/)

‘L“(supp Vig!)
. i—Co_—1 p—1 ~—1
X M (M’ Nlnd,ta Fq/+1 fq/ ) Fq/+1fq/ >
(2.22)

forall N + M < 3Nw/ + 1, while in a similar way, (2.16) implies that

|DND%]/wi,q/| < ~
g~ MV Ny, Ty Ty )

Vig
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x M (M, Nipa = Newto T 27, T4 7)) 223)

forall N + M < Ngp.

2.3 Main inductive proposition

The main inductive proposition, which propagates the inductive estimates in
Sect.2.2 from step ¢ to step g + 1, is as follows.

Proposition 2.6 Fix 8 € [!/3,1/2) and choose b € (1, 1)2p). Solely in terms of
B and b, define the parameters nmax, Cp, Cr, Co, ér, Cu, @ Ncut.t, Neut.x,
Nind.tr Nind.v» Ndec, d, and Ngy, by the definitions in Sect. 8.1, items (i)—(xiii).
Then, there exists a sufficiently large a, = a.(B,b) > 1, such that for any
a > ax, the following statement holds for any g > 0. Given a velocity field v,

which solves the Euler—Reynolds system with stress Ii’q, define vg,,, wg, and
ug via (2.1)~(2.2). Assume that {uqr}z,_:lo satisfies (2.8), wy obeys (2.9), Ii’q
satisfies (2.10), and that for every q' < q — 1 there exists a partition of unity
{¥i,q'}i=0 such that properties (2.11)~(2.13) and estimates (2.15)—~(2.21) hold.
Then, there exists a velocity field vy 11, a stress I%q_H, and a partition of unity
{Vi.q}q=0, such that vy solves the Euler—Reynolds system with stress I%,H],
uy satisfies (2.8) for ¢’ — q, wyy1 obeys (2.9) for g — g + 1, I%q+1 satisfies
(2.10) for g — q + 1, and the V; 4 are such that (2.11)~(2.21) hold when
q' —q.

The proof of Proposition 2.6 takes up the bulk of the remaining part of
the paper, cf. Sects.3—7. Here we just give a road map of which proofs are
contained in what sections:

e In Sect. 3, we recall the construction and important properties of intermit-
tent pipe flows from [5]. We however prove a new estimate for squared
pipe densities in Lemma 3.5, and an updated version of the pipe dodging
strategy in Proposition 3.8.

e In Sect.4 we mollify the Euler-Reynolds system at level ¢, define v, , and
show that u, satisfies (2.8) with ¢’ replaced by ¢. This argument requires
few changes when compared to [5, Section 5].

e In Sect.5 we construct the velocity cutoffs at level g, namely {v; ;}i>0,
and show that the inductive assumptions (2.11)—(2.21) hold for ¢’ replaced
by ¢. This part of the argument is technically quite involved, but we take
advantage of the fact that it is identical to the proof in [5, Section 6], except
for the new bound for i,x. The new bound on iy, is the only place where
the propagated L bounds are required, and we give the full details of this
part of the argument in Lemma 5.7.
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e In Sect. 6, we present Proposition 6.1, which gives the existence of a pair
(Wg+1, ﬁq+]) which satisfies the remaining inductive bounds, namely (2.9)
and (2.10), with ¢ replaced by g + 1.

e In Sect.7 we give the proof of Proposition 6.1, thereby concluding the
proof of Proposition 2.6, once a is taken sufficiently large with respect to
(B, b), asin Sect. 8.1, item (xiv). This is the main part of the proof, and it is
substantially different from the corresponding argument in [5, Section 8].

2.4 Proof of the main theorem

We conclude this section by showing how Proposition 2.6 implies Theorem 1.1,
upon potentially choosing a > a, even larger, depending also on the functions
Ustarts Vend, and on the T, ¢ > 0 from the statement of Theorem 1.1. This
argument is nearly identical to that in [5, Section 3.4]. We also give here the
proof that the constructed solutions lie in CO , cf. Remark 2.7 below.

First, leta, = a.(B, b) be asin Proposmon 2 6 whlch holds forany a > a,.
Second, construct the pair (v, Ro), which solve the Euler—Reynolds system,
exactly as in [5, Equations (3.30)—(3.31)]. In essence, vg is a temporal interpo-
lation between mollified versions of vt and vend, and Ii’o is the resulting error
made in the Euler equations (1.1). Third, we define vy = vy, = u_; =0,
and we let 1//0 —1=1land ¢; _1 =0 foralli > 1. Lastly, it is convenient to
denote T~ 1 =To:=1,7 N_l =TI} = kf’)gr and ®g = Ag.

With these choices, we have already verified in [5, Section 3.4] that if
a > ay istaken to be sufficiently large, depending also on vgart, Vend, T, €, then
u_1 = 0 satisfies (2.8a) (and trivially also (2.8b)), wo = vg obeys (2.9a), Iéo
satisfies (2.10a), and we have that (2.11)—(2.21) hold trivially. Thus it remains
to show that (vo, Ro) obey the uniform estimates (2.8b) and (2.10b), which
were not present in [5]. But these estimates are easy to satisfy since both
Fg”_l®(l)/2 > g, and Fg“ = am, may be made arbitrarily large,
upon choosing a to be sufficiently large.

As such, the inductive estimates (2.8)—(2.21) hold for the base case of the
induction ¢ = 0, and we may inductively apply Proposition 2.6 for all ¢ > 1,
to produce a sequence of velocity fields v, which solve the Euler-Reynolds
system with stress I%q, and a sequence of velocity cutoff functions ¥; ,, such
that the bounds (2.8)—(2.21) hold for all ¢ > 0. Then, by construction, we have
that forany g’ < B, the series 3~ (Vg+1 —Vg) = D_ 50 (Wg+1+ (v, —Vg))
is absolutely summable in C,OH F justifying the definition of the limiting
velocity field v = vo + 3_ - g(Vg+1 — vg) € COHF'. As R, — 0in COL,
the function v is a weak solution of the 3D Euler system (1.1). Moreover,
as was shown in [5, Section 3.4], the L? distance between v(-, 0) and vgart,
respectively v(-, T') and vepg, is less than €.

@ Springer



An intermittent Onsager theorem 245

In order to conclude the proof of the theorem, we only need to show that v €
2-2,

B
COL1 =28 . For this purpose, note that we have the identity v = lim; oo vy =
Z g>0Uq- Using the bounds on u, provided by (2.8) we may sum over 0 <
i < imax(g) using the partition of unity property (2.11), and use the definitions
(8.2a) and (8.7), to arrive at

Huq HLz <C8) = )\.w)\.q_ﬂ, and

b=l
b

Jutg ] = CTE0; ~ Ci

where the constant C depends only on our upper bound for ipax(g), and so
only on g and b through (2.12). Using Lebesgue interpolation, and the above
established bounds, for p € [2, co) we obtain

2 1_% Bb+1) +(1_;)b 1( + )
lugll o < lugll ]z lugll e < Cry 7 iy . Q24)

where the constant C > 1 depends only on 8 and b. Thus, in order to ensure
the absolute summability of {u,},>0 in L”, the exponent of A, appearing on
the right side of (2.24) must be strictly negative. After a short computation,
we deduce that we must have

8B8b

p < p«(B.,b) =12+ T EE R (2.25)

Atlast, we may verify that 2 = 2§ < p«(B, b) is equivalent to W <

1 — 28, which in turn is satisfied whenever 28b < 1 and 8 € [!/3, 1/2). This
concludes the proof of Theorem 1.1.

Remark 2.7 (L3-based Besov regularity) From (2.24) and (2.25), we deduce

that for p € [2, p«(B, b)), and in particular for p = %, we have that

1
||uq “L,, <Ci{ A;n(p’ﬁ’b), for some n(p, B, b) > 0. We therefore have that

1
liegl gy = L3P and

g g = Duall e, = € gl =

where the constant C > 0 is independent of ¢. By interpolation, we have that
whenever s < 6, where 6 = 0(p) € (0, 1) is defined by solving

1 1-6 6 2p—6
3 p +2

3p—=6

, (2.26)
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we have the bound

1
1-6 0 S —(1— B,
By, =C g HBgm g HB&’@ < CAF A=)

g

for a constant C > 0 which is independent of ¢ > 0. Taking p = %, we

obtain from (2.26) that § = %, and so for any s < #, we have that
the series v = }_ . ug is absolutely summable in CYBj
v E C,0 B3 - Itis clear that by letting B be arbitrarily close to !/2, the value of

3.00> Showing that
s may be taken arbitrarily close to /3, the Onsager threshold.

3 Building blocks and pipe dodging

The main results in this section are Proposition 3.3 (which describes the inter-
mittent pipe flows and their properties), Lemma 3.5 (which gives a sharp bound
for the L° norm of frequency truncated square of pipe densities), and Propo-
sition 3.8 (which gives the proof of the one-half relative intermittency rule for
pipe dodging). First, we recall from [19, Lemma 2.4] a version of the following
geometric decomposition:

Proposition 3.1 (Choosing vectors for the axes) Let Bi,(1d) denote the ball of
symmetric 3 X 3 matrices, centered at1d, of radius /2. Then, there exists a finite
subset & C S* N Q3, and smooth positive functions ye: C (31 /Z(Id)) - R
forevery & € E, such that for each R € Bi;,(Id), we have the identity

R=Y (n(R)&®¢. 3.1

EeE

Additionally, for every £ in B, there exist vectors &', " € S* N Q3 such that
(€,&,&"} is an orthonormal basis of R3, and there exists a least positive
integer ny such that ny€, ny&', n.&" € 73, for every & € E.

We now recall [5, Proposition 4.3] and [5, Proposition 4.4] which rigorously
construct the intermittent pipe flows and enumerate the necessary properties.

Proposition 3.2 (Rotating, shifting, and periodizing) Fix§ € B, where B isas
in Proposition 3.1. Let r—', A € N be given such that \r € N. Let x : R* — R
be a smooth function with support contained inside a ball of radius '/s. Then
fork € {0, ...,r=' — 1}2, there exist functions }(/A‘ e R3 — R defined in
terms of x, satisfying the following additional propér’ties:
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T3
(1) We have that xk & is simultaneously < T ) -periodic and <—> -periodic.

Here, by T3 we refer to a rotation of the standard torus such that ']1‘2 has

a face perpendicular to &.
3

(2) Let Fg be one of the two faces of the cube +—— which is perpendzcular

to&. Let G, , C Fz N 21 Q3 be the grid conszstmg of r~2-many points
spaced evenly at distance 2w (Any)~! on Fg and containing the origin.
Then each grid point gy fork € {0, ..., r~' — 1}? satisfies

<supp e Fg) Clx:lr—gl <27 @m0t (32

(3) The support of }fA rE is a pipe (cylinder) centered around a ( ) -periodic

';

and ) -periodic line parallel to &, which passes through the point

8k. The radius of the cylinder’s cross-section is as in (3.2).
(4) We have that & - wf’r’g =0.
(5) Fork # k', supp X;f,r,f N supp Xﬁr,é = 0.
Proposition 3.3 (Construction and properties of shifted intermittent pipe
flows) Fix a vector & belonging to the set of rational vectors & C Q3 N S?
from Proposition 3.1, r=', » € N with or € N, and large integers 3Nsy and

d. There exist vector ﬁelds Wk :T3 - R3 fork € {0, . —1)% and
implicit constants depending on Nﬁn and d but not on A or r such that:

(1) There exists o : R — R given by the iterated Laplacian A% =: ¢ of a
potential 9 : R? — R with compact support in a ball of radius }1 such that
the following holds. Let Qé 5. and z?é" .., be defined as in Proposition 3.2,
in terms of o and ¥ (instead of x). Then there exists Ulg’ or T3 —» R3

such that if (£, &', "} € Q> N'S? form an orthonormal basis of R with
& x & =§&", then we have

Uk, = —& 0 VAL (of, )+ M v ATl (o),

_ (pé/k)L . =1</’é]fx,r
(3.3)
and thus
k —2d A d k k
curl UE,)\,,F = g)\. A (ﬁf,}hr) = gQE,)\. r WS g
and
£ ngxr—s V[UEX,:O. (3.4)
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(2) The sets of functions {Ug,x,r}k’ {Q]g,)hr}k, wg,x,r}k’ and {ng,k,r}k satisfy
items 1-5 in Proposition 3.2.
is a stationary, pressureless solution to the Euler equations.
(3) WE, i ' less soluti he Eul '

@ Wk, @, £ o
(5) Foralln < 3Ngy,

2 2
n gk <. (31) H n )k <. (G1)
HV ﬁé,l,r Lo(T3) ™ ATr ’ \% Q¢ r LP(T?) SAT
(3.5
and
2 2
nitk n—1_\5-1 nywk n (-1
Hv Ur] gy S LG Hv W sy S LG
3.6)
(6) Let @ : T x [0, T] — T3 be the periodic solution to the transport
equation
8tq)—|-v-VCD=O, q)l‘zt() =X, (37)

with a smooth, divergence-free, periodic velocity field v. Then
vol. (W’é,x’r ° c1>) — curl (chT : <[U§M o c1>)) . (3.8)

(7) For Py, 5, a Littlewood—Paley projector, ® as in (3.7), A = (Vo) L,
and fori = 1,2, 3,

|:V ) <A Ppaal (Wé,k,r ® WS,A,r) (q))AT)i|
= A%P[M,Kz] <ng,rwé,k,r) (q))ajAf

. . 2
— ALEME D AP, ((.g’g,k,,) ) . (3.9)

i

Remark 3.4 In (3.9) and throughout the rest of the paper, for any interval
I C R4 we use the notation

P, (3.10)

to denote the Fourier projection operator onto spatial frequencies & such that
|&] € I. When I = [A, 0o) we abbreviate this projection as P, while for
I = [0, A], we abbreviate this projection as P<,.
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In order to propagate sharp L°° estimates for nonlinear error terms, we will
require the following estimates related to the mean-subtracted squared pipe
densities.

Lemma 3.5 Let Qék’r : <11:—j) — R be defined as in Proposition 3.3. Let

A1, A2 be given with Ar < A1 < A, Ao, and set

—d
9 =(3728)  Ppy (@607 - 1)

Then, for an arbitrary a € (0, 1] and N < 2Ngp, we have the estimates

2
N k
HD Pray.a0) ((Qé,x,r> - 1)

HDNﬂ” < 5o min(Aa, A)
Lo ™~ AF

~ Ar

2
) min(ha, M)V (3.11a)

- (mln(kz, A)
LOO

2
) M (N, 2d, A1, min(A2, 1)) . (3.11b)

Remark 3.6 When X, < A, we note that (3.11a) contains the nontrivial esti-

mate
2
L2 (E) <mefen) -

k 2
HP[M,Az) ((Qeg.,)»,r) - 1)

which asserts that the L® norms of the Littlewood-Paley projections of the
mean-subtracted pipe density increase with respect to frequency from a mini-
mumof 1 at hy = Artor 2 at iy = A.

9’

LOO

Proof of Lemma 3.5 For the sake of simplicity, we fix £ = e3, and abbreviate
(Q]e{%)hr)z — 1 =WV = W¥(xq1, x2). Then we have from (3.10) that

PoapW) = Y Behr. (3.12)
A <|k| <Az,
kearZ?

From (3.5), we may bound

-~ 2

WO S Il S Jloesir|2 +1 ST (3.13)
A simple counting argument further yields that

2
[ < Ikl <22t kerarZ?}] (i—i) . (3.14)
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Then in the case A, < A, the bounds (3.12)—(3.14) give that

2
_ A
N N N
HD P[M,M)q/Hng,\z TGS <;> . (315
M =lk|<An
kerrZ?

which matches the desired bound in (3.11a). To prove (3.11a) in the case that
A2 > A, we simply appeal to the boundedness of P, »,) on L* and (3.5).

In order to prove (3.11b), standard Littlewood—Paley arguments and the
above bound for IP;, )W in L again give that

Sl L

. 2
§ (mlng);z,k)> )\ak%d—(Zd—N) if 0<N <2d
. 2
(mng22) 2o min(ho, WY 2d 4+ 1< N < 2N,
where the factor of A% is used to absorb endpoint (p = o0) losses,

and o may be taken arbitrarily close to zero at the cost of changing the
implicit constants. Translating the above display to incorporate the notation
M (N, 2d, A1, min(12, A)) concludes the proof. O

We will require [5, Lemma 4.7], which lists the geometric properties of
deformed intermittent pipe flows.

Lemma 3.7 (Control on axes, support, and spacing) Consider a convex neigh-
borhood of space Q C T3. Let v be an incompressible velocity field, and define
the flow X (x, t) and inverse ®(x,t) = X~Y(x, 1), which solves

atq)—i-v-VCD:O, CD;:to=x.

Define Q(t) := {x € T3 : d(x,1) € Q} = X (2, t). For an arbitrary C > 0,
let T > 0 be a parameter such that

T= (‘Slq/qurqcilz)_l :

Furthermore, suppose that the vector field v satisfies the Lipschitz bound

1
sup VoG-, Doy S 5q/2quqc+1 .
telty—1,t0+1]

Let Wg hgatir T3 — R3 be a set of straight pipe flows constructed as in

Propositions 3.2 and 3.3 which are T /.,,.r-periodic for Aqk;_lH <r <1and
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are concentrated around axes {A;}ict oriented in the vector direction & for
& € E, passing through the grid-points in item (2) of Proposition 3.2. Then
W = ng’kq%r(é(x, 1)) 1 Q@) x [tg — 1, to + ] satisfies the following
conditions:

(1) We have the inequality
diam(Q2(z)) < (1 + qul) diam(€2) . (3.16)

(2) If x and y with x # y belong to a particular axis A; C €2, then

X(xvt)_X(yvt) _ X =y
IX(x,t) — X, 0 |x =yl

+8i(x, y,1) (3.17)

where |8; (x, y,1)| < l"(;l_l.

(3) Let x and y belong to A; N Q, for some i, where the axes A; are defined
above. Denote the length of the axis A;(t) ;= X(A; N Q,t) in between
X(x,t)and X(y,t) by L(x,y,t). Then

Lo yn = (14100 ) e =yl (3.18)

(4) The support of W is contained in a (1 +Fq_i1)2”(4”*)‘q+l)_l'
neighborhood of the set

U Ai(1). (3.19)

(5) W is “approximately periodic” in the sense that for distinct axes A;, A
withi # j, we have

(1=l ) dist (A N @, 4, N Q) = dist (A1), A; (1)

—1 .
< (1+Fq+1) dist (A; N Q, A; N Q).
(3.20)

The following proposition is a variation on the statement and proof of [5,
Proposition 4.8]. For simplicity, we only consider & = e3. The generalization
to other vectors £ € E follows from incorporating a rotation into the argument;
for further details we refer to the final paragraph of the proof of [5, Proposition
4.8]. The main difference in the new Proposition is that the set on which place-
ments are made now has dimensions (A +1r2)_1 X (A +1r2)_1 X ()Lqﬂrl)_1
as opposed to (Aq+1r1)_1 X (Ag+1r1)™ " X (Agg1r1)” in [S].
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Proposition 3.8 (Placing straight pipes which avoid bent pipes)
Let Aqk;_lH < r1 < rp < 1be such that Ay11r2 € N. Let Q@ C T3 be a
rectangular prism with the following properties:

(1) The longest axis of S2 is parallel to e3 and has length precisely (Ay117r1)~ L

(2) There exists a constant Cq (bounded independently of q) such that the
face of Q2 which is perpendicular to e3 is a square of side length precisely
CQ(Fq_i]?»qHVz)_l-

(3) There exists a constant Cp such that for any convex subset Q' C Q
with diam (SZ/) < 237 (Aq+1r2)_1, there exist at most CpI'yy1 seg-

ments of deformed T /1,..r,-periodic pipes of length 41 (Aq+1r2)_1. Here,
by “segments of deformed pipes”, we mean the objects constructed in
Propositions 3.2 and 3.3 which satisfy the conclusions (3.16)—(3.20) from
Lemma 3.7 on Q. Let P denote the union of the supports of the deformed
pipe segments.

Then, there exists a geometric constant Cy > 1 such that if

C.CHCPTo 13 <11, (3.21)

. ; k .
then there exists a set of pipe flows We;),kqﬂ,rz . T3 — R3 which are T /v,,1r.-

periodic, concentrated to width 271(4)\q+1n*)_1 around axes with vector
direction e3, satisfy the properties listed in Proposition 3.3, and

supp W0 NPNQ=4¢. (3.22)

€3,hg+1,72

Proof of Proposition 3.8 The proof has been streamlined relative to the orig-
inal version [5, Proposition 4.8], although the fundamental ideas remain
unchanged. We divide the proof into three steps, in which we count the num-
ber of segments of deformed pipe of length ~ (Aq+1r2)_1, then project each
segment onto the smallest face of €2 and cover it with squares of size ~ A_+11,
and finally use a pigeonhole argument and the bound (3.21) to find a shift kg
satisfying (3.22).

Step 1 To count the number of deformed segments of pipe which may com-
prise P N ©, we appeal to assumption (3) and volume considerations. The

dimensions of 2 imply that €2 is composed of at most Cé l"g 412y ! peri-

odic cells of side length 2 ()\q+1r2)*1. Applying (3) with each of these cells
implies that the number of distinct segments of pipe of length 47 ()Lquz)*l
comprising P is at most

2 3 —1
CPCQFqH.rzrl .
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Step 2 We now measure the size of the shadows of the deformed segments
of pipe when projected onto the face of 2 which is perpendicular to e3. First,
the length constraint on the segments of deformed pipe implies that the pro-
jection of any single segment onto the face of Q2 which is perpendicular to
e3 has length at most 4n(kq+1r2)_1. Now consider the grid G, ST from

Proposition 3.2, item (2). This grid contains squares of diameter ~ )‘q_+11 ,each
of which may contain part of the support of an e3-oriented periodic pipe flow,
or may be empty, depending on the choice of shift. Applying a covering argu-
ment using the above derived length constraint and (3.19), we see that there
exists a dimensional constant C,, such that the number of grid squares needed
to cover the projection of a single segment is at most Cyr, ! Since the number
of segments was bounded by C pC?2 Fg L1y ! from Step 1, we see that the

total number of grid squares needed to cover the projection of P is at most
2 13 -1 ~1 2 30 —1
CPCQFq+1 ‘7‘2/"1 -C*rz SCPCQC*Fq+1rl .

Step 3 In order to conclude the proof, we appeal to a pigeonhole argument,
made possible by the bound from Step 2. Indeed, we have obtained an upper
bound on the number of grid squares which are deemed “occupied” by pro-
jections of deformed segments of pipe. Conversely, from Proposition 3.2, the
number of possible choices for the shifts ko is 7, 2, Applying assumption (3.21),
we conclude by the pigeonhole principle that there exists a “free” shift ko such
that none of the occupied squares intersect the support of W];»(;H,rz, e Thus
we have proven (3.22), concluding the proof of the lemma. O

4 Mollification

Let ¢(¢) : R — R be a smooth, C* function compactly supported in the set
{¢ :|¢] < 1} which in addition satisfies

/d)(f)d{:l, /¢>(§)§"=0 vn=1,2,..., Ningv-
R R
Let ¢(x) : R — R be defined by ¢(x) = ¢ (|x|). For A, u € R, define

¢ () =3P x), V(@) = ue (o).

For g € N, we will define the spatial and temporal convolution operators

Pow =00 % Por=¢ i % Pors=PpxoPer (1)
g—1
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Lemma 4.1 (Mollifying the Euler-Reynolds system) Let (v, I%q) solve the
Euler—Reynolds system (1.2), and assume that \; o1, ug for q' < q, wy, and

I%q satisfy (2.8a)—(2.21b). Then, we mollify (v, I%q) at spatial scale F)tq_l and
temporal scale T,_ (cf. the notation in (4.1)), and accordingly define

v, = Pyxivg and I%(q = Pq,x’[qu . 4.2)

q

The mollified velocity v, satisfies the Euler—Reynolds system with stress Re .t

REOMM \yhere the commutator stress R;‘)mm satisfies the estimate (consistent

q
with (2.10a) and (2.10b) at level g + 1)

N M 1 —1 —1~1
”D thszomm”LOO Fq+qu+1 86]+2)‘q+1M (M det’ ’Fq tq )

(4.3)

forall N, M < 3Ningy, and we have that

HDN DM (v, — vq)HLOO < 2,28 M (N, 2Ninays Ag. %g)

x M (M Npao 7 25T @)

forall N, M < 3Ninqy. Furthermore, ug; = Ve, — Ve, satisfies the bound
(2.8) with q' replaced by g

Hwi,q—lDND;,quluq HL2 = Sq/zM (N, 2Nind,w }\'L]a Xq)

pNpM H < TOOL M (N, 2Ning,v, g, %
H t,q—14q L% (supp Vi.g—1) ( ind,v q q)

X M (M Nll’ldt? Fl+l q 1’%;_11) ’
(4.5b)

for all N + M < 2Ngy. Finally, ]%[q satisfies bounds which extend (2.10) to
the mollified stress

|wiq DYDY Ry, S r‘_CF*5q+1/\/l <N» 2Nind,v, Aq> 5»4)

X M<M det’r +2 q ]afq_ll) ’

(4.6a)

|DVDM Ry, STSUM (N, 2Ningyv, Ag, Ag)

H Lo (supp ¥ig—1) N
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i+3._ -1 ~—1
X M(M, Nind,t’ FZ] 'L’q_l,t )

forall N + M < 2Ngp.

Proof of Lemma 4.1 The bounds in (4.3)—(4.5a), and also (4.6a), match those
of [5, Lemma 5.1, equations (5.3)—(5.5) and (5.7)], and so we omit the proofs.
We note that the analogue of estimate (4.4) in [5, equation (5.4)] contains a
typo in the sharp material derivative cost. Specifically, one may replace the
cost of rq__ll Ff]*l simply with rq__ll (which is actually the estimate that can
be proved using the argument in [5]). The only new estimates which would
require a proof are (4.5b) and (4.6b).

In order to give an idea of how to prove (4.5b), we follow the method of
proof from [5] for (4.5a). When either N > 3Nijyqy or M > 3Ny, an
even stronger bound than (4.5b) was previously established in [5, Lemma 5.1,
equation (5.6)]. Thus, we only need to consider (4.5b) for N, M < 3Njpq,v. We
appeal to (2.3) and splituy = Py x rwq+ (Pq,x,,vgq_l — Ueq_l). Since the good
term (Py x, — Id)vy, |, was already estimated in L, cf. [5, equation (5.43)]
with a stronger bound than that required by (4.5b), we can consider just the
main term Py, ;wg. We split Py x ;wg as Py x wg = wg + (Py x,r — Id)wy.
In view of (2.9b), which provides a satisfactory bound on w,, we are only
left with (P x ; — Id)w,. However, this term was already estimated in L in
[5, equations (5.33)—(5.35)], and so no new proof is required. Thus (4.5b) is
satisfied.

The proof of (4.6b) utilizes the same methodology that produced bounds
for Py x,rwy from inductive assumptions on w,. Specifically, the material
derivative bounds have been relaxed by a factor of I'; (the second I'; loss
coming again from the fact that (4.6b) is estimated on the support of ¥ig—1),
the spatial derivative bounds have been relaxed from A, to A, when N >
2Nind.v, and the available number of estimates on the un-mollified stress I‘éq
was much more than 2Niyq.y, specifically 3Njpq,y. We therefore omit any further
discussion and refer the reader to the proof of [5, Lemma 5.1]. O

5 Cutoffs
5.1 Velocity cutoff functions

Forallg > 1 and 0 < m < Ngy ¢, we construct the following cutoff functions.
The specifics of the construction and the proof are contained in [5, Appendix
A.2]. To avoid abuse of notation, here we denote these smooth cutoffs using
the capital letters W,,,, qNand @m ¢- instead of the notation in [5, Appendix A.2]
(which was v, 4 and ¥, ).
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Lemma 5. 1 For all g > 1 and 0 < m < Ny, there exist smooth cutoff
functions @, q> Ym,q 1[0, 00) — [0, 1] which satisfy the following.

(1) The function \I’m,q satisfies 1[0 Ir (0.120mHD
q

(2) The function Yy, 4 satisfies 1 P20+ < Vg <11 2m+,.

: [1,4020mtDy ’ BN

2(m+1)] =< \Ijm ,q =< 1

(3) Forall y > 0, a partition of unity is formed as

mg )+ W (T2 Dy =1 (5.1)

i>1
@) Wy and Wy, (T 2"V satisfy

supp \Tlm,q(-) N supp Wy 4 (I‘;Zi(mJ’l).) =@ if i >2,

supp W, 4 (Fq—zi(m+1>_) N supp lpm’q(l-q—Zi’(m-l—l),) —¢if |i—i|>2
5.2)

(5) ForO < N < Ngp, when0 <y < Fg,(mﬂ) we have
1DV Wy g ()] S (W g (1))~ N/Nimp 2N D)
For% <y < 1 we have
DN Wi g (D] S (W g ()N,
while for %Fg(MH) <y< Fg(MH) we have
DN W, ()] S T 2N (W, 4 ()N N,

In each of the above inequalities, the implicit constants depend on N but
notm or q.

Definition 5.2 Given i, j, g > 0, we define

v

ix =ix(j,q) =ix(j) =min{i > 0: l—‘Z]‘f'1 Fé}

Note that for j = 0, we have that i, (j) = 0.
At stage ¢ > 1 of the iteration (by convention wyg = ug = 0) and for
m < Ncyr and j,, > 0, we define

NClll X

m] q(x t) = Z Fqill*(jm)a Fq)—ln( -1 F;*_|(_jlm)+2)
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x |D"D g (x, D). (5.3)

One should view hy, j,, 4 as ameasurement of the extent to which the amplitude

of D" g—14q (or its spatial derivatives) exceeds F’*J(FJ’”) ~ FJ where 7, 11 FJ
is the material derivative cost on the support of ¥ , 1. The extra room of F
in the spatial derivative cost and I'2 41 in the material derivative cost accrues
extra factors of smallness for high numbers of derivatives. This allows us to
eventually plug in a very lossy bound for | D" D" g—14q | and still show that the
resulting contribution to the sum is very small. To measure the size of A, j, 4
precisely, we now rescale and plug into a cutoff function.

Definition 5.3 (Intermediate cutoff functions) Given ¢ > 1, m < Neyt, and
Jjm > 0 we define V¥ i, g bY

2(im—isx(m +1
l[/m,im,jm,q(xv 1) = \Ijm,q—f—l(rq_,_(ll ~helim))m )hi jm q(x, t)) 5.4

for iy, > ix(jn), while for i, = ix(jin),

Vst g 1) = T (B2, (1)) (5.5)

The intermediate cutoff functions ¥, ;,, . j,..q are equal to zero for iy, < ix(jm).

The indices i,, and j,, were shown in see [5, Lemma 6.14] and [5, equa-
tion (6.27)] to run up to some maximal values ipax and ipmax, although in the
present context, it will be necessary to propagate a much sharper bound on
Imax; see Lemma 5.7. With this notation and in view of (5.1) and (5.2), it
immediately follows that

2
Z 'S//m s Jms l] Z wm s Jm s q Z l//myim,jm,q 1

> > i j
in=>0 im=ix(Jm) {im: Fq"jrlzf‘é’”}

for any m and for iy, —i,,| > 2,

1pm,im,jm,q 1pm,i,/n,jm,q =0.

Definition 5.4 (mth Velocity cutoff function) For i,,, > 0, we inductively define
the m™ velocity cutoff function

2 _ 2 2
wmsiqu - Z wjqu_lwmsim’jm9q. (56)

{m t im =15 (m)}

@ Springer



258 M. Novack, V. Vicol

Informally, one may interpret the definition of the m™ velocity cutoff in
(5.6) as follows. To control D, 4, one should split into D; ;1 and u, - V.
The inclusion of v, ,—1 ensures that the cost of D, ;1 may be controlled by

T q__ll Fé and the inclusion of v, ;,,. j,.q €nsures that the cost of u, - V may be
controlled as well. The index m is included for technical reasons, as it is more
convenient to control the size of Dm Ug for fixed m. Therefore, in reality
we then control the size of u, - V only after incorporating the information
provided by the different partitions of unity {¥, ;... }i,, for 0 < m < Ney.
Whichever value of i, is the largest at any point in spacetime then determines
the material derivative cost there.
In order to define the full velocity cutoff function, we use the notation

. ,N . . N 1
= {im} sy = (l(), e lNCm,[) € NOC”t"+

to denote a tuple of non-negative integers of length N¢y ¢ + 1, and we shall
denote

< N 1 . .
I, = {l € NOC”‘"Jr D omax i, = z}.

OSWlSNcut,t

Definition 5.5 (Velocity cutoff function) For 0 < i < inax(g), we inductively
define the velocity cutoff function y; , as follows. When g = 0, we let

1 ifi=0
lﬂi,o={ .

0 otherwise.

Then, we inductively on g define

=2 H i (57)

7, m=0

forallg > 1.

The sum used to define ¥/; , forg > 1isoverall tuples with a maximum entry
of i. The number of such tuples is g-independent since it has been demonstrated
in [5,Lemma 6.14] that i, < imax(g) (Whichimpliesi < imax(q)), and imax(q)
is bounded above independently of g. _

For notational convenience, given an i as in the sum of (5.7), we shall denote

NCl.ltl NCllll
supp H Yiing = [ | SUPP (Ym.ip.q) =: SUpD (Y5 ,)-
=0 m=0
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In particular, we will frequently use that (x, 1) € supp (¥; 4) if and only if there
exists i € Nyc‘""H such that maxo<m <Ny, im = i, and (x, 1) € supp (5 ).

Proposition 5.6 With the definitions of the velocity cutoff functions given in the
previous subsection, the inductive assumptions from (2.11) and (2.15)—(2.22)

hold.

For the proof, see [5, Section 6]. We however must provide a new estimate
for imax(q) in order to prove (2.12) and (2.13), and we give the details in the
following lemma.

Lemma 5.7 (Maximal i index in the definition of the cutoff) There exists
imax = imax(q) > 0O, determined by the formula (5.12) below, such that

Vig =0 forall i > inax (5.8)
and

rims < T 05, " (5.9)

for all g > 0. Moreover, assuming Ao is sufficiently large, imax(q) is bounded
uniformly in q as
: 2(b— 1)+ Bb
<14+Cy+ ——"7——. 5.10
imax(q) =1+ Cy+ er(b — Db ( )
Proof of Lemma 5.7 Assume i > 0 is such that supp (¢;4) # 9. We

will prove that in]+1 < Fq+1®/26 ", From (5.7) it follows that for any

(x,1) € supp (¥ 4), there must exist at least one i = ({05 + -+ » INgye,) SUCh
that max i, = i, and with ¥, ;, ,(x,1) # O forall 0 < m < Ney.
Ofmchut,t

Therefore, in light of (5.6), for each such m there exists a maximal j, such
that ix(jm) < im, with (x, 1) € supp (¥},,.q—1) NV Supp (Vi jm.q)- In partic-
ular, this holds for any of the indices m such that i, = i. For the remainder of
the proof, we fix such an index 0 < m < N¢y .

If we have i = iy, = ix(jm) = ix(jm,q), since (x,t) € supp (¥j,.q—1)
then by the inductive assumption (2.13), we have that j,, < imax(g — 1). Then

using ri- Fé’” < qum""‘(q D and (2.13), we deduce that

q—H <

1—-.; <Fq+ 1-‘lmax(éi )] <F IFCU®q/ 15q /i <F;:i1®/28 /
The last inequality above holds in light of the parameter inequality ber +
Cuer +1 < bCusr + /24 B, which in turn follows from er < #/». Thus, in

this case F;H < quh@ /28 " indeed holds.
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On the other hand, if i = i,, > ix(j,) + 1, by the definition of Wy, 441
in (5.4), it follows that [y, j, o (x. 0 = (T and by the
pigeonhole principle, there exists 0 < n < Ny x With

F(m+1)(im_i*(jm))

|D”D,"fq_1uq(x,t)| >

- 2Ncut,x q+1
ix(m) o'/2 —1 is(m)+2
x Ty 0g gTg)" (r, 2y Ty O™

im 1/2 n —1 lm+2 m
= 2Ncutxrq+184 )‘q(fq—qu-i-l U

and we also know that (x, t) € supp (¥}, 4—1). By (4.5b), the fact that Ny x <
2Nind.v> and Neye t < Nipg,r, we know that

! - m+1
D" D" _jug(x.n)| < TS0 (! rjthm

C e —1 ix(m)+1
SFq“®q )‘g(fq—quﬂ )"

C el -1 im
<r&e /T .

The proof is now completed, since the previous two inequalities and i,,, = i
imply that
j lho—1h Cu lho—1p
Iy < 2N P00, 6, < T58 076, (5.11)

In view of the above inequality, the value of iy is chosen as
imax(q) = sup{i’ : Th | < TS 0,6, ). (5.12)

With this definition, if i > imax(¢). then I > T, ©/°5, ", and as such
supp (¥ 4) = ¥. To show that ijyax(¢g) is bounded independently of g, note
that

log(T% 048, ") (1p(b — 1) + pb) log(ry_1)
log(Tg+1) ! er(b — 1)log(ry)
Us(b — 1) + Bb
O T

as g — oo. Thus, assuming A is sufficiently large, the bound (5.10) holds. O
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5.2 Temporal cutoff functions and flow maps

Let x : (—1, 1) — [0, 1] be a C* function of compact support which induces
a partition of unity according to

Y ox-kb=1. (5.13)

keZ

Consider the translated and rescaled function

—1i—Cp+2
X(Z“Eq Fq+1 —k),

which is supported in the set of times ¢ satisfying

1 D k| <
—itco—2 —itco-2
= e [k= DR ke D] G4

We then define temporal cut-off functions

Xika® = xo® = x (177 T2 = k) (5.15)

It is then clear that

10" Xk | S (o0 2,y (5.16)
for m > 0 and
Xik1.q (D Xikoq(®) =0 (5.17)

for all ¢+ € R unless |k; — k| < 1. We define
. 2 2 2 '
X(ik+,q) () = (X(i,k_l,q)(t) + X(i,k,q)(t) + X(i,k+1,q)(f)) )
which are cutoffs with the property that
Xiktq) =1 on  supp (X(ikgq))-
Next, we define the cutoffs X; x4 by
Tiskag 0 = Ty () = x (17" T4 0 = T, 3k).
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For comparison with (5.14), we have that ;. k,q 18 supported in the set of times
t satisfying

l+00k} —i+Co
q+1 q+1

As a consequence of these definitions and a sufﬁmently large choice of A, if
(i, k) and (i*, k*) satisfy supp x;i k,q NSUPP Xi* kg 7= Pandi* € {i —1,i,i+
1}, then

-

SUPP Xi kg C SUPP Xi* k*.q- (5.18)

We can now make estimates regarding the flows of the vector field vg, on
the support of a cutoff function. The proofs of Lemma 5.8 and Corollary 5.10
are contained in [5, Section 6.4].

Lemma 5.8 (Lagrangian paths don’t jump many supports) Let ¢ > 0 and
(x0, to) be given. Assume that the index i is such that wf q (x0, t0) > k2, where
K € [16, 1] Then the forward flow (X (t), t) := (X (xo, to; t), t) of the velocity
field vy, originating at (xo, 10) has the property that wl% p (X(t),t) = <) for
all t be such that |t — to| < (8 7 r;fl) ! which by (8.30) and (8.20) is
satisfied for |t — to| < t,T’ qu—5+co

Definition 5.9 We define ®; x 4(x, 1) := P i) (x, 1) to be the flows induced
by vg, with initial datum at time kt, I‘;Ll given by the identity, i.e.

(8I+U€q 'V)Cpi,k,q =0, lkq(x kTqu_H) =X.

We will use D®; ) to denote the gradient of ®(; x). The inverse of the
matrix D®; ) is denoted by (DCID(,;/())*1 , in contrast to DCDalk), which is the
gradient of the inverse map d>61k).

Corollary 5.10 (Deformation bounds) For k € Z, 0 < i < imax, ¢ > 0,
and2 < N < MNmp + 1, we have the following bounds on the support of

wi,q (x, t))?i,k,q(t)

—1
[ D@ - Id”L“’(supp Wig i) ST (5.19a)
HDNGD(i,k)H ST M(N = 1, 2Nipay. Tyig. 5g) (5.19b)

Lo (supp (Wi Ting) 9!

-1 -1
H(Dq)("’k)) - Id”L“’(supp Wi g Xikiqg)) ™~ ST (5-19¢)

DY (D)) H =L M(N =1, 2Nigv. Tuhg. 30 (5.19d
H ((D2G0) Lw(eupp(w,qxlm) Fom MW nav: Farg: 2q) ( )

1D 0G| L qupp iy 7y < Tt M (N = 1. 2Ninay. Ty g i) (5.19€)

Furthermore, we have the following bounds for 1 < N + M < 3Nu/>:

H DN_N/D%JDN/—i_l D k) HL°°(SUPP (Wing Xikoq))

@ Springer



An intermittent Onsager theorem 263

<TVM (M, Ning. 15507, . N—qujl) (5.19f)

| DY =N DY DN (DD 1)~ | 2o supp (g T

< TN M (M, N Ty 07 7 T L) (5.192)

forall0 < N < N.

5.3 Stress estimates and stress cutoff functions

Before giving the definition of the stress cutoffs, we first note that we can
upgrade the L' and L* bounds for Vig— DX Dt g le available in (4.6a)

and (4.6b), respectively, to L' and L> bounds for VigD DM Rg We claim
that:

Lemma 5.11 (L' and L estimates for zeroth order stress) Let I%g . be as
defined in (4.2). Forq > 1 and 0 <i < imax(q) we have the estimates

”DKD R‘q L1 (supp ¥iq)

< r; RS, s1 M (K, 2Nindv, ATy, 5»4) M (M, Nind.t, ;Jjo (;1 r‘qll 71) (5.20a)
”DKD%JI%‘% Lo (supp i ¢)

S TS M (K, 2de,v,xqrq,iq)M (M, Ningg, %0771, T 7 q—l) (5.20b)

forall K + M < 3Nu/,,

Proof of Lemma 5.11 Theestimatein (5.20a) parallels that of [5, Lemma 6.28];
the ingredients in the proof were the L' bounds for the mollified stress, which
are available from (4.6a) (see also [5, Lemma 5.1]), and two lemmas regard-
ing sums and iterates of operators. For the sake of clarity, we thus focus on
the proof of (5.20b), which follows the same strategy as the original proof of
(5.20a). The only change is that we simply substitute the L°° bound furnished
by (4.6b) for each instance of an L' bound in the proof.

The first step is to apply [5, Lemma A.14 and Remark A.15] to the functions
v =g, f = ég , with p = 00, and on the domain 2 = supp (¥; 4—1).
The bound [5, equatlon (A.50)] holds in view of the inductive assumptlon

(2.19) with ¢’ = g — 1, for the parameters C, = F’“Sq/z 1Ay = )\, = Aq 1,
My = Fé] e q__ll, y = Fq 1~q—_11’ Ny = 2de,Va N, = Nlnd,t, and for N, =
3MNwm /. On the other hand, the assumption [5, equation (A.51)] holds due to
(4.6b), with the parameters Cf = FqC“, Ar = Ay, Xf = 3:,], Ny = 2Nind.v,

[y = F’+3 7! 1, fy= 1, N; = Ningay, and N, = 2Ng,. We thus conclude
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from [5, equation (A.54)] that

H D*D t q—1 R‘Zq H L (supp (¥i,q—1))

S FqCuM (|“|, 2Nind,v, )\qaz ) <|ﬂ| Nlndta q 3 ;11,~;11>
whenever |a| + |B] < 3Nm/. Here we have used that Xq_l < X4 and that
Fitls ) Jg_1 < TiH3e ! < 77! (in view of (8.30), (8.32), and (2.13)). In
particular, the definitions of ¥; , in (5.7) and of ¥, ;,, 4 in (5.6) imply that for
all la| + |B] < Nwp2,

” DY Dﬂ

t,g— lReq

” L% (supp (¥i,4))
< DM (el 2Nina . g Tg) M (181 Ninar T 7,15, )
(5.21)

The second step is to apply [5, Lemma A.10] with B = D; 41, A =
ug - Vo v = uy, f = ﬁzq, p = oo, and Q = supp (Y; ). In this case
DX A + B)Mf = DKD%] I%gq, which is exactly the object that we need to
estimate in (5.20b). The assumption [5, equation (A.40)] holds due to (2.18) at

level g (which holds due to Proposition 5 6) with C, = l"’qfl 8q/ Ly = = T4Ayg,

Ay = Jgs No = Ningy, o = T80, o = T3 %" Ny = Ning,, and
Ny = MNm/ 4 1. The assumption [5 equation (A. 41)] holds due to (5.21) w1th
C by £y i+3
the parametersCy = 'y, Ay = Ag, A = Ay, Ny = 2Nipay, i f = F;_H — 1,
ny = ?q__ll, N; = Nipayr, and N, = 3Ni/a. The bound [5, equation (A.44)]
aqd the parameter inequalities F’ 1 184 ey g < F’ o qu_ l'<r . ifq_ Iand
rie ! < Pr,! (which hold due to (8. 31) (8 30), (8.32), and (2.13))
then directly imply (5.20b), concluding the proof. O

Remark 5.12 (L' and L™ estimates for higher order stresses) In order to verify
the inductive assumptions in (2.10a) and (2.10b) for the new stress R, 1, it

will be necessary to consider a sequence of intermediate objects R .n indexed
by nforl < n < npax. For notatlonal convenience, when n = O we define
Rq 0 = Rg , and estimates on Rq o are already provided by Lemma 5.11.

For 1 < n < nmax, the higher order stresses Rq,n are defined in Sect.7.1,
specifically in (7.1). Note that the definition of I%q,n is given as a finite sum
of sub-objects IfI;’/n for ’ < n — 1 and thus requires induction on n. The
definition of I-OI;:” is contained in Sect. 7.3, specifically in (7.21). Estimates on

I-olé’fn on the support of v; , are stated in (6.13a) and (6.13b) and proven in
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Sect. 7.4. For the time being, we assume that Iz’q,n is well-defined and satisfies

|| pDkpr I%q,n ” L (supp ¥i q)

S 81t M (m Ninaa TG T 7 (5.22)

H DFp" g I%q,n “ L (supp i 4)

Cu 147 (1) k . i~Co —1 p—1 =—1
ST 3 M (m Npao TSe T L) 523)

for k +m < Ngp n.

For the purpose of defining the stress cutoff functions, the precise definitions
of the n-dependent parameters 8,411, Ag,n, Nfin,n, and C, present in (5.22) are
not relevant. Note however that the definition for A, , for 0 < n < nya is
givenin (2.7a). Similarly, forO < n < nmax, d441,, 1s defined in (2.7¢). Finally,
note that there are losses in the sharpness and order of the available derivative
estimates in (5.22) and (5.23) relative to (5.20a) and (5.20b). Specifically, the
higher order estimates will only be proven up to Ngy n, Which is a parameter
that is decreasing with respect to n and defined in (8.29). For the moment it
is only important to note that N, n 3> 14Nijpq,y for all 0 < n < npax, which
is necessary in order to establish (2.9a) and (2.10a) at level ¢ + 1. Similarly,
there is a loss in the cost of sharp material derivatives in (5.22), as ¢, will be a
parameter which is decreasing with respect to n. When n = 0, we set ¢, = Cg
so that (5.20a) is consistent with (5.22). For 1 < n < nmax, Cy is defined in
(8.27).

Forg > 1,0 <i < imax, and 0 < n < npax, we keep in mind the bound
(5.22) and define

Ncut X Cllt t

Glan. =1+ 387 (Tgpihgn) TG,
k=0 m=0
< |[DED Ry n(x, ). (5.24)
With this notation, for j > 1 the stress cut-off functions are defined by

wlvjvq’n(x’ t) = \'IJO,q-f—l (Fq_i-{ gl,q,n(xv t)) ’ (5.25)

while for j = 0 we let

030400 1) = P41 (8ig.n(x.1)) (5.26)
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where Wy 441 and \TJo,qH are as in Lemma 5.1. The cutoff functions w;_ j ¢ »
defined above will be shown to obey good estimates on the support of the
velocity cutoffs v/; ,. An immediate consequence of (5.1) with m = 0 is that
for every fixed i, n, we have

Yo} gn=1 (5.27)

Jj=0

on T3 x R. Thus, {a’iz,j,q,n}jzo is a partition of unity.

The following Corollary is quite similar to [5, Corollary 6.34]. In fact the
method of proof of that Corollary applies mutatis mutandis after replacing
each instance of Ii’q,n,p and A4 , p with Ii’q,n and A4 ,, and so we omit the

proof.

Corollary 5.13 (L°° estimates for the higher order stresses) For g > 0, 0 <
[ <imax, 0 <n < npmax, and o, B € N](‘) we have

H D* Df,q éfl»” H L (supp ¥i,qwi, j.q.n)

q+1°¢q
(5.28)

2(j+1 i—Cot2_—1 -1 ~—
ST 801 Tyt M (181, Nina i T 2oL T L 2

forall || + |B] < Nfin.n — 4.

The next Lemma provides an estimate on the maximum value of j for
which v; yw;, j 4.» may be non-zero. While the proof is similar in spirit to [5,
Lemma 6.35], we include the proof since propagating sharp L estimates of
the stress is one of the crucial new ideas in this paper.

Lemma 5.14 (Maximal j index in the stress cutoffs) Fixg > 0 and 0 <n <
Nmax. There exists a jmax = jmax(q, n) > 1, which is bounded as

. 1 Cu+3 28b?
max ) = 4 2 5 2
Ja(qn)<2<+ 5 +8F(b_1)> (5.29)

such that for any 0 < i < imax(q), we have
YigWijgn=0 forall j > jmax.
Moreover, assuming that a = Ao is sufficiently large, we have the bound

2 jmax(q.n) Cuse—1 147 (n)+3
[2ms@m < pCugt pltimss, (5.30)
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Proof of Lemma 5.14 We define jmax by

Cuo— 147 2
: jmax (¢, 1) 1 | log(I'g ‘Sq+ll,n)rq+1(n)Jr

= ,n) = — '
Jmax = Jmax (g 2 log(Ty41)

(5.31)

To see that jy.x may be bounded independently of ¢ and n, we note that
—i

—1
8q+17n < 84+2, and thus
2 jmax
—1

Cy log(s,,)

<14+ —+—L" 1147 (m) +2
b ' log(Tyt1)

3+C“ + 2b° + 147 (n)
— —_— _— n as — 0.
b er(b—1) a4

Thus, assuming that a = A¢ is sufficiently large, we obtain that

. Cu 28V
2jmax(q,n) <4+ —+ ——— 4+ 147 (nmax) (5.32)
b er(b—1)
forallg > 0and 0 < n < npax-

To conclude the proof of the Lemma, let j > jnax, as defined in (5.31), and
assume by contradiction that there exists a point (x, 1) € supp (¥i 4w;, j.g.n) #
). In particular, j > 1. Then, by (5.24)—(5.25) and the pigeonhole principle,
we see that there exists 0 < k < N¢yi.x and 0 < m < Ngy ¢ such that

2j
S +1 i—Cp+2_—
ID*D)" Ry n(x, 1) = ——=—==8, 1.0 (Cg 1 hgn) (T T 2™,

YN N q+1 q
8Ncut,chut,t

On the other hand, from (5.20b) and (5.23), we have that

kym Cut1 14T (n) k pi—Ca_—1ym
IDXD Ry n(x, )] < TG T 10k (@00 ey,

The above two estimates imply that

2j Cy+1p14Y(n) / -1 Cy+2p147 () o—1
Fq+1 =< Fq Fq+l 8Ncut,chut,t8q+1’n =< Fq Fq+1 (Sq-l—l,n’

which contradicts the fact that j > jax, as defined in (5.31). O

The following two lemmas correspond to [5, Lemmas 6.36 and 6.38], respec-
tively. As with Corollary 5.13, the method of proof applies mutatis mutandis
after dropping the unnecessary subscript p. We therefore refer the reader to
[5] for further details.

@ Springer



268 M. Novack, V. Vicol

Lemma 5.15 (Derivative bounds for the stress cutoffs) Forg > 0,0 < n <
Nmax, 0 <7 <imax, and 0 < J =< Jmax, we have that

N M
Lsupp i, 1D Dt,qa)i,jsfb”l
1—(N+M)/Nsn

i,j,q.n

< (Tyrihgn)V M (M, Nings. [0S 2,1, 17 “1) (5.33)

q+1%
forall N + M < Nfinn — Neut,x — Newrt — 4
Lemma 5.16 (L” norm of the stress cutoffs) Let ¢ > 0 and define Y+ 4 =
(wl gt wi, + wz—H q) . Then for r > 1 we have that

<=
L7 (supp it q) ~ Fq+1 (5.34)

|@i..q.n]
holds for all 0 < i < imax, 0 < j < Jjmax, and 0 < n < nmax. The implicit

constant is independent of i, j, q, n.

5.4 Anisotropic checkerboard cutoff functions

We construct anisotropic checkerboard cutoff functions which are well-suited
for intermittent pipe flows with axes parallel to e3. The construction for general
£ e E follows by rotation. Consider a partition of T into the rectangular
prisms defined using

-1 -
[(xlvx2,x3) €T :0<x,x < Crlg+1 (hge1rg+1n) . 0<x3 < 271)»(],1,] (5.35)
and its translations by

(WCrTys1Gg1rgs1n) s LCr Tyt Cg17g10) ™" 13271)»;},)

for
Nl €40, .., /ol Agirgin =1} {0, Agn — 1},

where Cr > 1 ensures that the prisms evenly partition [—7, 7] and is bounded
above independently of ¢. Index these prisms by integer triples [ = Iy, 12, 13).
Let X gunesd be a C* partition of unity adapted to this checkerboard of
anisotropic rectangular prisms which satisfies

SN, ) =1 (5.36)

l
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for any ¢ and n. Specifically, we impose that spatial derivatives applied to
cutoffs belonging to this partition of unity cost ~ I'; 1 (kq+1rq+1,n)_1 in the
x1 and xp directions, and ~ )Lq_}L in the x3 direction, so that

M +M;
My oMy oM . -1 M
Hal 82 83 Xq,n,e_g,l ||L°° S ()"Q+1rq+1,nrq+l) )‘q,’ﬁ

for My, M>, M < 3Ngy,. Furthermore, for T, I* such that

=112, -31=22  |-l>2

we impose that

q.n,e3,l Xq,n,€3,7*

=0.
Incorporating rotations into the above construction, we may similarly produce

cutoff functions X el satisfying analogous properties for £ € E. Note that

if {€, &', €"} forms an orthonormal basis for R3, then

>M1+M2

M- (5.37)

[ 9)" € 9)" @M% il S (gmrgnaly

Definition 5.17 (Anisotropic checkerboard cutoff function) Given g, £ € &,
0<n<nma, i <imax, and k € Z, we define

gq,i,k,n,é,i (x,1) = Xq’nﬁg’f (cDi,k,q (x, t)) . (5.38)

These cutoff functions satisfy properties which we enumerate in the follow-
ing lemma.

Lemma 5.18 The cutoff functions {¢ ik, S,f}f satisfy the following proper-
ties:

(1) The material derivative Dy 4( giknE 7) vanishes.
(2) Foreacht € Rand all x = (x1, x2, x3) € T3,

Z(fq,i,k,n,g,i(x’ t))z =1. (5.39)

[

3) Let A = (V@i’k’q)_l. Then we have the spatial derivative estimate
Ni M (£€ xJq \N -
”D 1Dt,q (§ Ayd)) qu,i,k,n,é,lH L®(supp Vi q Xik.q)

< —1 Ni N>
~ (Fq+1)‘fl+1rf1+1yn> )‘q,n
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(5.40)

. i—Co_—1 ~—1 1
x M (M, N Top07 70 T )

forall Ny + Ny + M < 3Ninfp + 1.
(4) There exists an implicit dimensional constant C,, independent of q, n,

k, i, and [ such that for all (x,t) € supp Vi gXikqg> the support of
Sy ikmeld (-, t) satisfies

diam(supp (§q kg .0 =< Aq. n . (5.41)

Proof of Lemma 5.18 The proof of (1) is immediate from (5.38) to (5.39) fol-
lows from (1) and (5.36). To verify (3), the iny nontrivial calculations are

those including the differential operator (& ZAé d;). Using the Leibniz rule, the
contraction

SeAja.é‘qiknéi
= £ A] (X, D(Pikg)d; O
—5 Om X, ng[)(qDqu)

(5.37), and (5.19g) gives the desired estimate. The proof of (5.41) follows from
the construction of X el and the Lipschitz bound obeyed by Vv, on the
support of ¥; 4; see for example (3.16). O

5.5 Definition of the cumulative cutoff function

Finally, combining the cutoff functions defined in Definition 5.5, (5.25)—(5.26),
and (5.15), we define the cumulative cutoff function by

N jkgmnel (x,1) = l;Di,q (x, t)wi,j,q,n(x’ I)Xi,k,q(t)é‘q’i’k’n,gj (x,1).
Since the values of g and n are clear from the context and the values of § and

[ are irrelevant in many arguments, we may abbreviate the above using any of

Ui,j,k’q’n’g’, ()C t)
= Ni,jk.gne (X, 1) = NG, jk)(x, 1)
= Vi) (x, D, j) (s D Xk Ok (x, 1) .
It follows from (2.11) at level ¢, (5.27), (5.13), and (5.39) that for every
(g, n, &) fixed, we have

Z Z Z ”i,j,k,q,n,g,iz(x, 1 =1. (5.42)

i,j>0keZ 7|

@ Springer



An intermittent Onsager theorem 271

The sum in i goes up to ipmax (defined in (5.12)), while the sum in j goes up to
Jmax (defined in (5.31)).
We conclude this section with support estimates on the cumulative cutoff

functions 7, kgt

Lemma 5.19 For r;, rn € [1, oo] with % +L = 1and any 0 < i < imax,

r
0 < j < jmax, and & € &, we have that

—2i.+Cb+;2j+2
3 ‘supp (ni’j,mn’g’;)‘ sr . (5.43)
7

Proof of Lemma 5.19 From (2.17) at level g and (5.34), we have that for each
fixed time ¢,

1
|supp (¥i.q) N supp (@i, j.g.0)| < “ (*ﬂ,-Z_],q + wz%q + Wi2+1,q)

1/2
2 2 2
x (a)i,j—l,q,n T @ jgn Tt wi,j+l,q,n>

—2(-1)+Cj,  —2(j—1)

< 3 r
~ l—‘6]—1—1 1—1q—|-1

Ll

Using the fact that {nq’i’ kon, 5’;}; forms a partition of unity from (5.39) and
% + % = 1 gives the desired estimate. O

6 Inductive propositions
6.1 Induction on ¢

The main claim of this section is an induction on g. Notice that the estimates
in this proposition match the inductive assumptions (2.9) and (2.10) at level
q+1.

Proposition 6.1 (Inductive step on g) Given the velocity field v, which solves

the Euler—Reynolds system with stress iée . +I%;°mm, where vy o R 0, and Reomm
satisfy the conclusions of Lemma 4.1 in addition to (2.8a)—(2.21b), there exist
Vg+1 = V¢, + Wg+1 and Ry which satisfy the following:

(1) vgy1 solves the Euler-Reynolds system with stress Iéq+1-
(2) Forall k,m < TNipgy, we have

k rym
H Vig D" Dy qwq1 ‘

L2
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<rls” A’;HM (m Nind,t, F;:Lllf

N
ek ARV (6.1a)

q+1°q

DED™ w H
1, +1
H 49 Loo (supp vi.4)

Cu—lgn' 4k 1 -1 =1 ~1
= 9 O dh M (m, N Tz T L) - 6.1b)
(3) Forall k,m < 3Nipgy, we have
“‘l’i,quDtn}qI%qulHLl
= T 820 M (. N T2 T L EY) 620)

q+1°¢q q+1°¢q
knm
”D Dz,qRq+1 HLOO(suppgz/,-,q)
Cu 1k i+2 _—1 =1 ~—1
< TSk M (m,Nind’t,l"’thq S umits ) . (6.2b)

6.2 Notations

The proof of Proposition 6.1 will be achieved through an induction with respect
to 7, where 0 < 7' < nmax corresponds to the addition of the perturbation
Wg+1,5- We shall employ the notation:

(1) n—An integer taking values 0 < 7 < npax over which induction is per-
formed, indexing the component w1 5 of the velocity increment w4 1.
We emphasize that the use of 7 at various points in statements and esti-
mates means that we are currently working on the inductive step at level
n.

(2) n—Aninteger taking values 1 < n < npax Which correspond to the higher
order stresses I%q,n. Occasionally, we shall use the notation Iéq,o = égq
to streamline an argument. We emphasize that n will be used at various
points in statements and estimates to reference higher order objects in
addition to those at level 77, and so will satisfy the inequality 7' < n.

3) F)I;:n—The component of I%q, n originating from an error term produced
by the addition of w1 ,-. The parameter n” will always be a subsidiary
parameter used to reference objects created at or below the level 71 that we
are currently working on, and so will satisfy n’ < 7.

(4) Pry,n)—We use the spatial Littlewood—Paley projectors [P, ,; defined by

]P) 1y 1y lfl’l = 1 N
[ 3T
P[q,n] = ]P)[)\q,nfla)‘q,n) if2 <n < nmax, (6.3)

]P)zk ifﬂ:nmax+1»

q>"max
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&)

(6)

where P[;, 1,) is defined in Remark 3.4 as P>, P, . Errors which include

the frequency projector Pry 5., +1] Will be small enough to be absorbed
into §q+1 . We note that if 0 < 7' < npax, then from (2.7b), any kq++:+m_
periodic function satisfies

Nmax+1

P F 4 Posgnand = £+ ) By (64
T3 T n=n+1
In order to later deduce a useful refinement of (6.4), we set
- 0 ifn=0,
r(n) =4, 47 . - (6.5)
= ifl <A <nmax— 1.

In order to keep track of small losses related to the process of building a
stress R, 7, corrector wy 41,5, and new stresses R , forn > 1, we define

0 ifn=0,
if 1 <n < g

T(n) = (6.6)

P | 2k—1
k if anax <n< z—kl’lmax

2+ [logy(Mmax)] ifn = npax .

Y (7) gives an upper bound on the number of steps in the induction on 77
it takes to produce the entire error term R, 5. A consequence of (6.5) and
(6.6) is that

n>r@ =  Ym) =YY@ +1. 6.7)

To prove this, first consider the case n = npax. Then for all 0 < 7 <
Nmax — 1, we have that r (1) < nmax, and so (6.7) should hold for all 7 <
Nmax- SINCE 7' < Nmax, there exists a minimum value of k, say k5, such that
n< nmax—”z‘}‘(—“ﬁ",which implies that Y (1) < kz. Fork = [log, (nmax)1+2,

however, we have that ry,x — '2% > Hmax — %, and so it must be the case
that k7 < [log,(nmax)1 =+ 1, which proves (6.7) in the case n = np,yx, and
shows that

Tn) <2+ [logy(nmax)] V1 < nmax - (6.8)

To prove (6.7) in the remaining cases, note that if 7 = 0, then n >
r(0) = n > landso (6.7) holds. If 7 = 1, thenn > %, and again
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(6.7) holds. Finally, if 2 < 7 < npax — 1 and Y () = k, then
~ 2k—1_1 k
Nmax + 1 Nmax + 2 o1 Mtmax 28 —1
2 2 o2k
— Tn)>k+1.

n >

\
=
=]
)
>

(7 I%ZH - For any 0 <7 < nmax — 1, this is any stress term which satisfies

the estimates required of I%q+1 and which has already been estimated at
the 77" stage of the induction; that is, error terms arising from the addition

of w41, forn’ < n. We exclude Rcomm from Rq+1’ only absorbing it at

the very end when we define Rq+1. Thus

RZI% = R"+1 + <errors coming from w1 741 that also go into Iéq“
(6.9)
We adopt the convention that R q +1 =0.

(8) We adopt the convention that .10 f(n) = Do fm) =0
denotes an empty summation.

6.3 Induction on 77

We split the verification of Proposition 6.1 using a sub-inductive procedure
on the parameter 7. Note that summing (6.11a)—(6.12b) over 0 <7 < nmax,
appealing to (8.43) and (8.48), and using the extra factor of I" 1 to kill implicit
constants, we have matched the desired bounds in (6.1a)—( 2b)

Proposition 6.2 (Induction on 71: From 77 — 1 to 77 for 0 < 7' < nyax) Under

the assumptions of Proposition 6.1 and Lemma 4.1, we let 0 < 1 < nmax
n—1

be given, and let vy 51 = ve, + Zo Wyt 1,0’ Rq+1’ and an,,n be given for
n’'=

0<n' <n—1landn < n < nmax, such that the following are satisfied:

(1) vg 51 solves the Euler—Reynolds system with stress
Nmax
Lgi—o R, + K11 + Z YoOHI AR (6.10)

n'=0n>r(n’)

(2) Forallk +m < Ngnn —Neut,t — Neut,x —2Ndec —9and 0 <n’ <n'—1,

DD wyi
t,qWq+1l,n
H q L2 (supp Vi g)
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i— C/+4 ~.

'/ 3 -1 —1 -1
S8 T M (. Nia 7 ' T 5T ) 61
DD w1
H tgmatln Lo (supp ¥iiq)
Gu 7Y (n’ )+ -1 —1i—Cy+4 1 ~_1
2 2
S I 1—‘tH-l Tg+1.0 +1M <m det’ 1_‘q-i—l 1—‘q-H Cé b
(6.11b)

(3) Forallk,m <3Nijpgy and 1 <1 < nmax,

“‘/’iquDzquZJr”Ll

—Cp— =
< saak  M (m Ning.c. T ot T 1) (6.12a)

qg+1 a+1%
k S71—1
|p* D7, q+1HL°°<suppw,~q>
S F‘]C-T-l FaM <m Nind,t, Ff]ﬂ ; Fq’ifq‘l) . (6.12b)

4) ForO<n' <n—1,r(n) <n < nmax, and all k + m < Ngp p,

kpym 1yn
HD Dl‘ qu nHLl(suppd/,-yq)

< 8yt oM (m Nipa 7 TS 7T ) (6.13a)
| Dk A

t.,qq.n “ L (supp Vi q)

<Tor MRk M (m,de,t, i VAR o

g+l SR EITL) . ©13b)

Then if 0 < 1 < nmax — 1, there exists Wq-+1,70 Ii’qH, andH nforO <n' <n,
such that (6.10)—(6.13b) are satzsﬁed with 1 — 1 replaced wzth n. If = nmax,
then there exists Wy 11y, and Rq+1 such that vy 1 := Vg ppu—1+ Wyt1, Hmax

solves the Euler—Reynolds system with stress Rq+1, and vy 11, Wy+1, and Rq+1
satisfy conclusions (6.1a)—(6.2b) from Proposition 6.1.

7 Proving the main inductive estimates

7.1 Definition of R, ;7 and w, ;7

In this section we define the stresses ]%qﬁ and the perturbations w1 7 used
to correct them. For 0 < 7' < nyax, we define

Rﬁzan}Réq+ Z H5. (7.1)

0<n’'<n—1
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In Sect. 7.3, we will show that H; is zero in certain parameter regimes,
although for the moment this is irrelevant. Now for any fixed values of 77, i, J,
and k, we may define

2+
Ryiijik = VOin (Spnaliiid— Ryg) Vol (72)
Let £ € E be a vector from Proposition 3.1. For all £ € E, we define the
coefficient function g i kg il by

g i jdegii] “= G6.ij kg '= AE)

o pit2 Ry 7. jik
8q+1 n q+1nl jik.q.m,E 1 7 Ve ( 2_j+4> . (73)

From Corollary 5.13, we see that on the support of 7 j x) we have |Ii’qﬁ| <

st:{ZSqH 7, and thus by estimate (5.19a) from Corollary 5.10, we have that
Ry j.ik 1
5L 1dl < T < =
2j+4 — " q+l

once X is sufficiently large. Thus we may apply Proposition 3.1.
The coefficient function a ) is then multiplied by an intermittent pipe flow
defined in Proposition 3.3 (with A = A, and r = ry117)

VO We sy 1y © Pk

where the superscript s = s(i, j, k, 77, ) ) indicates the placement of the inter-
mittent pipe flow Wg Agt LT gl (cf. (2) from Proposition 3.3), which depends

oni, j, k,n,and [ and is only relevant in Sect.7.5. To ease notation, we will
suppress the superscript s (except in Sect. 7.5), and use the shorthand notation

WS,q-Hﬁ = Wg',)»qﬂ,rqﬂﬁ . (7.4)

We will also adopt the same notational conventions for the potentials Ug 41 17.
Furthermore, (3.8) from Proposition 3.3 gives that we can now write the prin-
cipal part of the first term of the perturbation as

@
qg+1.n

= Z Z Za(g)curl (Vq)(l k)US q+1,7 9 q>(z k))

ijk T

w
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=y Y Z W) - (7.5)

i,jk T

The notation w() implicitly encodes all indices and thus will be a useful
shorthand for the principal part of the perturbation. To make the perturbation
divergence free, we add

©
q+1,n

=22 Z Vag) x (VqD(z Ue.q+17 0 P, k))

i,j.k |

=) ZZWES (76)

i,j,k T

w

so that

Wg+1,7

(p) (©)
WoriqtWeirw

- Z 3 Zcurl (a0 VOl Ueqriio®in) . (D)

i,jk T

7.2 Estimates for w1 5

In this section, we verify (6.11a) and (6.11b). We first estimate the L” norms of
the coefficient functions a). We have consolidated the proofs for each value
of 7 into the following lemma.

Lemma 7.1 For N,N', N, M with N',N” € {0,1}and N+ N + M <
Nfin7 — Neut,t — Neut,x — 4, and r, ry, 2 € [1, 0o] with % + % =1, we have
the following estimate.

| DNN"DM (¢ ATD,)Y DY a

< LRV Al § i) )
|Supp(r’l,],k,q,n,{-‘,l)| g1l g \ Dy +17g 417

N’ _ %N_ _
X (Pyg)" M (M, N 7 ' To 0 2T

g+l > % q+1) (7.8)

In the case that r = 00, the above estimate gives that
N=N" M ;€ P \N' N” R
|D Dy (§" A 9p)" D7 ag ;0 HLOO

CSu 7van+l
S qu 1—‘q—i-l ’ <

~

—1 N
Fq+1kq+1rq+1ﬁ>
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N/ _ + ~ _
X (Cgig )" M (M N 7 TSP 2 T ) - 09)

Proof of Lemma 7.1 We first compute (7.8) for the case r = oo. Recalling
estimate (5.28), we have that for all N + M < Ng, 7 — 4,

H DNDtA,{] éﬂ]ﬁ H Lo (supp (i, j k)

R2j42 \N ) —1i—Ci+2 ~—1p—1
§5q+1,nrq+1 (Fq—i-l)\q,n) M<Ma de,t’ Ty Fq+1 ' Ty Fq+1 .

From Corollary 5.10, we have that for all N + M < 3Ni/»,

N nM
HD D,’chb(,-,k)H N
L (Supp(wi,q)(i,k,q))

~N ) i—Co_—1 ~—1p—1
< )\.q M (M, de,t, Fq+1 Ty T Fq—i—l) :

Thus from the Leibniz rule and definition (7.2), for N + M < Ngn 7 — 4,

N M
HD Dt,qRq,ﬁ,j,i,kH .
L (supp 1, j.k))

2j+4 N
S 6q+1ﬁrqj+1 (Fq+1)“q,ﬁ)
i —Ci+2 ~—1p—
x M (M, Nipaso 7 T2 57T ) (7.10)

The above estimates allow us to apply [5, Lemma A.5]with N = N', M = M’

sothat N+ M < Nz —4 ¢ =y, 'y = 1L,v = ve,» Di = Dy g,
2j+4 ~

h(x7t) = Rq,?[,j,i,k(xvt)e Cn = 8q+l,ﬁrq{:1_ = 1—12’ A=A = )Lqﬁrq—i-l,

w=1; IF;::“H, n = ?q_ qu_il, and N; = Nipg(. We obtain that for all

N + M < Nfinz — 4,

R Wik

N M q.7,j,i,
D7D, ve ( it
g+1Lm,pt g41

Loo(supp 1, j k)

\N ) —1Ii—Ci+2 ~—1r—1
rS (Fq+1)\q,n) M <M9 de,t, Tq Fq+]n ’ Tq Fq+1> .

From the above bound, definition (7.3), the Leibniz rule, estimate (2.23) at level
q in conjunction with (8.35), (5.19g), (5.16), (5.33), and (5.40), we obtain that
for N+ N +M =< Nﬁn,ﬁ - Ncut,x - Ncut,t — 4,
N M (st N’
”D Dy, Agap) as,i,j,k,q,ﬁ,iHLoo

/2 J+2 =1 AN
N 5q+1,ﬁrq+1(Fq+1)‘q+1’”q+1,n)
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X (Cqig i)™ M (M, Ninaos 7 T 5,770 L)
Then, using (5.30) the above bound becomes (7.9) for N” = 0. The proof
for N” = 1 is nearly identical, and we omit the details. When r # oo, we
use || fllzr < |l fllz e [{supp 1" and the demonstrated bound for r = oo to
obtain (7.8) for the full range of r. O

An immediate consequence of Lemma 7.1 is that we have estimates for
the velocity increments themselves. These are summarized in the following
corollary. The proofs for r # oo are analogous to those from [5, Corollary 8.2]
and therefore use Lemma A.1. We only note that the gap between the spatial
derivative cost of ag) (kq+1rq+1,ﬁf‘qjl from Lemma 7.1) and the minimum
frequency of We ;417 (Ag417¢+1,57 from (7.4) and Proposition 3.3) is now
only I'; 41, and so we need the inequality (8.37) in order to satisfy (A.2).
The assumption (A.1) follows from (8.58a). The estimates for r = oo follow
directly from (7.9) and (3.6).

Corollary 7.2 For N+M < Ngin 7—Ncut,t—Neut.x —2Ndec—8 and (r, r1, r2) €
{(1,2,2), (2, 00, D}, for wg) we have the estimates

N M
”D Dt,qw(s)‘y
Nhs'h pit2 LN
< [supp (ni?j,k,qﬁ?g’lﬂ /6q+lﬁrq+l(rq+1,”) )‘q-l—l
1 pi—Ci+3 ~—1p—1
x M <M, Nind 7, T, % 1Fq+1> (7.11a)

N oM
”D Dt’qw(S)HLoo

Cu 717G+
< —1 -~ N 2 2
qu—i-l,n)‘q-f—qu Fq—l—l

x M (M, Nipao 7 TG 57T ) (7.11b)

For N + M < Nﬁn,ﬁ - Ncut,t - Ncut,x - 2Ndec — 9 and (I’, I’l,rz) (S
{(1,2,2), (2, 00, 1)}, we have that

[DY D wE |,
< % 1Supp (0 1o e D18 2T )
q+1
x AN M (M, N 7, T, 71T, L ) (7.12)
| DY D wie |
< rq_-':lﬁkq+qu+lﬁF%ngiﬁ)—i_%)"g’—&—l

Ag+1
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x M (M, Niago 7 T 70T ) (7.12b)

Remark 7.3 Note that the above eStiIILatCS verify the bounds (6.11a) and
(6.11b) after summing on (i, j, k, 77, €, [) and using (5.43) with r; = oo and
ro = 2. Then from (7.5)—(7.7), (7.11a)—(7.12b), and the parameter inequalities
(8.25), (8.43), and (8.48), the bounds (6.1a) and (6.1b) follow after using the
extra factor of L, il to absorb implicit constants.

7.3 Identification of error terms

Recall that v, 71 is divergence-free and is a solution to the Euler-Reynolds

system with stress given in (6.10). Now using the definition of I%qﬁ from
(7.1) for 0 < 7 < npax, we add Wg+1,7 as defined in (7.7), we have that
Vg it i= Vg ji—1 + Wg+1,7 solves

dvg5 + div (vg.5 ® vy, ﬁ) + qu -1
Nmax
— div (&7;1) + div ( >3 g ) +aiv g
n'=0n>r(n')

+ Dt qWg+1,57 + Wot1,7 - vaq +2 Z div (wq+1,n’ s wq+1,71)

n'<n—1

+div (g1 ® wyri+ Ryi) (7.13)

Here we use the notation a ®s b = 5 (a ® b+ b ® a). The first term on the

right hand side is R" +11, which for 7 > 1 satisfies the same estimates as R” g+

by (6.12a) and will thus be absorbed into R;‘ il The second term, save for the
fact that the sum is over n’ < 1 — 1 rather than n’ < 7 and is therefore missing
the terms H, Ci .- matches (6.10) at level 77 (i.e. replacing every instance of 77 — 1
with 77). We apply the inverse divergence operators from Proposition A.2 to
the transport and Nash errors to obtain

Dt,qwq-i-l,ﬂ + Wgr17 - vaq
= div ((H +R" (D,’qwqq-lﬁ + wy1,5 vaq)) + Vm,

and these errors are absorbed into R g+1 OF the new pressure. We will show in
Sect. 7.5 that the interaction of wy1 7 with previous terms w41, is a Type
2 oscillation error so that
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2 Y Wt ®sweyri =0, (7.14)

0<n'<n-1

So to verify (6.10) at level 77, only the analysis of last line of the right-hand
side of (7.13) remains.

For a fixed 7, throughout this section we will consider sums over indices
(&.1, j, k, 1), where the direction vector £ takes on one of the finitely many
values in Proposition 3.3, 0 < i < inax(g) indexes the velocity cutoffs, 0 <
J < Jmax(q,n) indexes the stress cutoffs, _the parameter k € Z indexes the
time cutoffs defined in (5.15), and lastly, [ € Ng indexes the checkerboard
cutoffs from Definition 5.17. For brevity of notation, we denote sums over
such indexes as Z

£,i,jk,0

2

#&,0,j,k,I}

Moreover, we shall denote as

the double-summation over indexes (£, i, j, k, 1) and (€%, i*, j*, k*, [*) which
belong to the set

[€ i kD @ ok Ty e £ 87 Vit v £ vk £ R VT AT
We may now write out the self-interaction of wy 11 7 as

div (wg1.7 ® wy+1.7)

= Z div (curl (a) V(i 1y Uz g115) ® curl (a(g)Vd:'iT’kUg,qH,g))

g jkd
+ ) div (curl (a@) VO 1)U g11.7) ® curl (aen VO 1oy Uss 4 +1ﬁ))
#lEd. k)
=:div Oz1 + div Oz 2. (7.15)

We will show that Oy 5 is a Type 2 oscillation error so that
Oi2=0. (7.16)

Splitting Oz 1 gives

div Oﬁ,l = Z div ((a(g)vq)(_i’lk)Wg,q_Hﬁ o q)(i,k))
£, jk]
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-1
®(a@) VP 1y We g1, 0 d’(i,k)))

+2 Z div ((a(g)vq)a,lk)Wg,q_Hﬁ o q)(i,k))
£, j.k,1

®s(Vag) x (VOf 1) Us.y+1i 0 D)) )

=+ Z div <(Va(§) X (Vq)g;k)[[}g,q_;_lﬁo CD(i,k)))

£, jk, ]
®(Vaw) x (VOF 1y Us.qr1 0 Pin)))
=div (Os1,1 + Oii2 + 05 13) - (7.17)

The last two of these terms are divergence corrector errors and will therefore
be absorbed into RZ 1 and estimated in Sect.7.6. So the only terms which we

have yet to identify from (7.13) are O3 1,1 and I%q,;,“.

Recall cf. (7.4) that W ;41 5 is periodized to scale ()\q+1rq+1,ﬁ)_1. Using
(6.4), we have that

We g+1.7 ® We g11.5 =][% We g+1.7 ® We 11,5
'H‘,

Nmax+1

+ Z Prg.nl (Weg41.7 @ We g41.7) -
n=n—4+1

Using (4) and (3.9) from Proposition 3.3 in combination with the above identity,
and the convention that e denotes the unspecified components of a vector field,
we then split Oz 1,1 as

div (Ori1) = Y div (aé)vq—i}k) G ®.§)V<I>(_l§))
£ gkl

Nmax+1
+ Z div aé)Vd)(iqlk) Z P[‘L"](W®W)E,qﬂ-lﬁ(q)(i,k))V(Da]];))
£, j.k,I n=r+1

— _p2j+4 2 o[ Rgimjik
= div Z 8q+|,nrq+] n([’j,k) VS ( ~F2j+4)
ik, Sq+1iT g4

-1 -T
x VO, € ®8) Vo],

2 —1
+ Y Vag Vo,
£ jk,l

Nmax+1
x Z Prg.n1 (W ® W) g 417(Pia) VP
n=n+1
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2 -1
+ ) A (VLS
£ jkd
Nmax+1
X3 Plam(WOW)e g1 (@) 0 (VO )5 - (7.18)
n=n+1

By (3.1) from Proposition 3.1, identity (7.2), and (5.39), we obtain that

24 2 2 [ Rgdjik —1 -
DB IENE A Y7 (51~2]+4) V@i E®E VO,

ijkE T q+1ik g1
_ _p2jt4 2 2 2 .2
= Y Sqtal N V0 g ixig Ve
i,jkE

q.7,].i, 1 _r
x <2j+4> VO E@E VO
64+1,7qu+1

_ 2 2 2 _2jt+4 S
=D Vi@ jgiking (5q+1,"rq+1 Id— Ry 7
i,j.k

o 2j+4
=—&ﬁ+w(2)ﬁw%%mﬁﬁwmnh), (7.19)
i,],k

where in the last equality we have appealed to the fact that 771'2, . forms a
partition of unity, cf. (5.42). The second term on the right hand side of (7.19)
is a pressure term.

Returning to the second and third lines in (7.18), we first note that when

A= 0, (27b) gives that hgi1rgp10 = Al gnl 2 = Alihd Tt
Then from (6.3) and (7.4), for all 1 < n < nmxx + 1, we deduce that

P[qﬁ] (Wé,q—i—l,o ® WS,q—f—l,O) # 0. Conversely, when 1 < 7 < Nmax, for all
n > n+1suchthati, , < kil/:_lqu/fﬁF;_il,i.e. such that the maximal frequency
of P(g,x) 1s less than the minimal frequency of P (Wg’q+1’ﬁ ® Wg,qH,;),
we have that Py ») (We g+1.5 ® We g4157) = 0. Using (2.7a), we write that

1 n

I N T 2 ST L s, dTa D =2
)\‘q (nmax+ ))\‘ (nmax+1) <12 (nmax + ))\‘ (nmax+ )1’1—

q+1 q+174 g+1 q+1
=Ag.n ' k-
q, _}‘q+l)‘qﬁrq£l
1 n—2n 1 n—2n
3T 30max 11 3T Zomax 1D =2
& Ay <y r5
o2 1 N n—2n
r< — 4+ ——m—
4 4(”max + l)
& 8er(Mmax + 1) < nmax + 1 +7 — 2n
Amax + 1 1
@ngJ%r—, 5~ 4er(mas + 1) > 0. (7.20)
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The second inequality in the last line follows from (8.6a). Based on (7.20) and
(6.5), we apply Proposition A.2 in the parameter regimes 77 = 0, 1 < n < nmax
and 1 <7 <npmax — 1, 7(0) = W < n < npax to define

. 2 —1 -T
H;n -=H< § V“(s)V(D(i,k)P[q,n](Wé,qHﬁ®WE,qul,ﬁ)(‘D(i,k))Vd’(i,k)
&,i,j.k

+ Z a(g)(vq)(, k))G]P[q n](wg g+1, nWé g+1, n)(q)(l k))a (VCD(I k)) > . (721)

£, j.k

The terms from (7.18) with P[q nmax+1] Will be absorbed into R g+1- e will

show shortly that the terms H 4 , 1n (7.21) are precisely the terms needed to
make (7.13) match (6.10) at| level n. N

Recall from (6.9) that R" 4 will include R”jr]1 in addition to error terms
arising from the addition of w1 7 which are small enough to be absorbed in

R)q+1. Then to check (6.10), we return to (7.13) and use (7.14), (7.15), (7.17),
(7.18), (7.19), (7.20), (6.5), and (7.21) to write

0 g7 + div (vqr,®vq;;)+qu;; 1

Nmax

= div RCOmm + div (Z Z ) + div (RZJF})

=0n>r(n’)

+ Di qwgi 17+ wer17 - Vg, +div (O 12+ O51.3)
+ div <Oﬁ,1,1 + Ii’q,ﬁ)

Nmax
= div RCOmm + div (Z Z )

=0n>r(n’)

+ div <RZ+% + (H+R%) (Dt,qwq—i—l,ﬁ + Wy41,7 - vaq)

+ Oii12+ 0%,1,3) + Vr

+ div [ (H + R¥) ( > Vai, Vol
.’;",l,],k,l

Nmax+1
X Z IP[W,](W®W)g,q+1,ﬁ(q’(i,k))vq>a71;))

n>r(n)

2 —1
+ (H+R*)( Y a(VGL)E
£, jk,]
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where

ST
q+1

Nmax+1
x Y P[q,n](Wewyk,qﬂ,z(dm,k))aa(vcbg}k));)] (7.22)
n>r(n)

Nmax

— dlchomm+dlv(Z > H )+(11qu,+l +Vr, (1.23)

n’'=0n>r(n')

= RZ—‘,—% + (H + R*) (Dt,qwq+]’ﬁ —+ wq+l,?i . vvzq) + O;f,corr + jTId
* H( > Vag Ve,
£d,j.k]
X P[qvnmax+l](w ® W)S,qﬂ,ﬁ(q)(i,k))Vd)(_i’]];))
2 —1
* H( > a4 (VEGLE
£, j.kI

nmax+1

+R ( Y Vai, Ve,
S,t,J,k,l n>r(n)

X Py (W& We g41.75(Pg, k))VCD(l k))

Nmax+1

2 —1
+R*< Y an(VOE Y

£ )kl n>r ()

X P[q,n](WQWV)s,q+1,ﬁ(¢(i,k))3a(V¢5,lk));,) : (7.24)

We first emphasize that to obtain (7.23), we have used that the Type 2 oscil-
lation errors from (7.14) and (7.16) will be shown to vanish. In addition, the
symmetric stress Oy corr Will be defined in The equality (7.23) completes the
proof of (6.10) at level 7.

7.4 Type 1 oscillation errors

Recall from (7.23) that there are two main categories of Type 1 oscillation

errors which arise from the addition of w11 7: the higher order stresses H, i

q.n>
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which are defined and non-vanishing in (7.21) in the parameter regimes 7 =
0,1 <n < nmax and 1 <7 < nmax, () < n < Nmax, and the portions of
I%Z e which are defined in the last four lines of (7.24). To estimate these error
terms, we will first analyze a single term of the form

(H +R*) Z Vaé)V(b(’iqlk)P[q_n](Wg,qﬂﬁ ® Wg,q+lﬁ)(¢(i,k))vq>&7[;)
£, j kI

+ 2 “(25)(V%}/c))gpl%"l(Wg.wlﬁwg,qﬂ.ﬁ)(‘DU»k))aa(Vd’(?,llc));)
£ jkd
= Onii+ 05 5. (7.25)
where e refers to the unspecified components of a vector field, and superscripts
on W 4417 refer to components of vectors over which summation is per-
formed. In the above display, we allow 0 < 7' < npax andr () < n < npax+1,
thus including both H;’n from (7.21) and all Type 1 error terms in (7.24).

Lemma 7.4 The terms O, 5 and (’);:ﬁ defined in (7.25) satisfy the following
estimates.

*

(1) For all error terms On,?[’ which are the outputs of R*, we have for all

N, M < 3Njna,y that

< Sguah )M (7.26)

N M yx
“D Dt,qon,ﬁ Lo q+1

(2) For0 < n < nmax and n = nmax + 1, the high frequency, local part of the
Type 1 errors satisfies

N M
HD Dt,qonmax'i‘l,ﬁ

L (supp i 4)

i =G4 ]~
g2t M (M, N 7 T T 701) (.27

—Cp—1

<
~ l—‘cﬁl

N M ~
H D Dt,qumax"‘lvn

L (supp i 4)

Cu—14 N —1i—Cit4 -1 ~—1
SFq-H )‘q-HM (M7 Nind, Ty F;+1 ,Fq+qu ) (7.27b)

forall N, M < 3Nipg.y-
(3) For 0 < 71 < npax and r(N) < n < nmax, the medium frequency, local
part of the Type 1 errors satisfies

H DVDM O, 5

L (supp ¥iq)

i =G4 ] ~—
S 8tk M (M, N 7 T T 7 (7.282)
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| DYDY O,

Lo (supp Vi q)

Cu14T(n)y N Grtd pl -1
ST M (M Nipao 7 T T L7 (7.28b)

forall N + M < Ngp n.

Remark 7.5 In order to Verify (6.13a) forn’ = n and r(n) < n < Amax, WE
first note that O, 7 = H , and the inequality F’ CN+4 < F; +CI“ holds from
7 <n—1and(8.27). Then (7 28a) provides the desned bound. (6.13b) follows
similarly from (7.28b). The bound in (6.12a) follows from (7.26) and (7.27a),
since Ci > 4 from (8.5) and (8.27). The bound in (6.12b) follows from (7.26)
and (7.27b). Lastly, when 7' = npax, and hence n = nyax + 1, (7.26), (7.27a),
and (7.27b) match (6.2a) and (6.2b).

Proof of Lemma 7.4 We use (1) from Proposition 3.3 and the notation A =
(V®)~! to rewrite (7.25) as

(H + R*) < Z Prg.n] ((QS,MHMH,??)Z)

£, j.k[

X (@a)E’E” (Aun)y (2aal) (Aun)] + afeydu (Au,k));))-

Next, we must identify the functions and the values of the parameters which
will be used in the application of Proposition A.2. We first address the bounds
required in (A.4), (A.5), and (A.6), which we can treat simultaneously for
items (1), (2), and (3). Afterwards, we split the proof into two parts. First, we
set n = nmax + 1 and prove (7.26), (7.27a), and (7.27b) for any value of 7.
Next, we consider 0 < 7' < npax and r(7) < n < npax and prove (7.26) in
the remaining cases, as we simultaneously prove (7.28a) and (7.28b).
Returning to (A.4), we will verify that this inequality holds with v = v,
D; = Dy g = 0; + vg, V,and N, = M, = |¥/)2], where N? = Nfin7 —
Neut,t — Neut,x — 5. In order to verify the assumption N, —d > 2Ngec + 4, we
use that Nge. and d satisfy (8.58a). We fix values of (i, j, k, 71, &, 7) and set

G* = £ (A" (ao,aé) (Adb), + at)da (A(,-,k));) . (729
Note crucially that the differential operator falling on a? kg i in the first

term is precisely £7 (A(, k)) 0y, which from (5.40) and (7.8) will obey a good
bound. We now establish (A 4)—(A.6) with the parameter choices

@ Springer



288 M. Novack, V. Vicol

~y ~p2itS _ rCupldT@+8, _
CG,] = |SUPP (ni’j’k’qﬁﬁgj)|8q+l,n)¥q,nrq+1 s CG,oo - Fqurq+1 )bq,n s

(7.30)

—1pi—Citd o~ _ >—lp-l
q

v g+1° and

A= )‘q-i-qu-i—lﬁrq__il_l’ M; = Ning, v =7, T ",
A=y

To establish an L! bound for the first term from (7.29), we appeal to
Lemma 7.1, estimate (7.8) with N’ = 1, and (5.19g) to deduce that

|00t (& (A ey (40, €7)

L!

, N
2i+5 (-1 -
< Isupp (n,',j?k?q 7LE f)|8q+1,ﬁ)¥q,nrq+l (Fq+1)‘q+1rq+1,n)

315Gy

i —Cit+d ~—1qa—
x M (M, Nind,t, 7, leH_TJr T, quL) (7.31)
holds for all N, M < [!/> (Nfin# — Neut,t — Newr,x — 5)J. It is precisely at this
point that we have used that the differential operator &¢ (A(i k))g 0o costs only

Aq.iilg+1. For the L bound on the same term, we argue similarly except we
apply estimate (7.9) to obtain

HDNDLMq (59 (Ad)g daale) (Adi);, Ey)

LOO
~ N
CupldT+8, (1 N
S Fq“Fq+1 Ag it (Fq+1)‘q+qu+l,n)

_ i =G4 a1 1
x M (M. Niago 7, T 70T L)

(7.32)
For the second term from (7.29), we can appeal to (5.19g) and use that ’)tq <
g for all 71 to deduce that for N, M < ['/2 (Nfin 7 — Neut,t — Newrx — 5) 1,
we have

DYDY, (Agp)) |
H g ( a ))V L (supp Yi.q Xi.k.q)
N+1 pi—Cotl a1
SJ)\'K],% M (M, Nind,t, Tq qu+10 ,Tq Fq+1).

Combining this with Lemma 7.1, estimate (7.8) in the case p = 1 and (7.9) in
the case p = oo produces identical bounds as for the first term and in the range
N, M < ') (Nﬁnﬁ — Neut,t — Neurx — S)J. Adding both estimates together
shows that (A.4) has been satisfied for both p = 1, oco.

We set the flow in Proposition A.2 as & = @, 4, which by definition satisfies
D; @, x = 0. Appealing to (5.19b) and (5.19¢), we have that (A.5) is satisfied.
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From (2.19) at level ¢, which follows from Proposition 5.6, the choice of v
from earlier, and (8.30), we have that Dv = Duy . satisfies the bound (A.6).

Proof of items (1) and (2) for 0 < 7' < npax and n = npax + 1. We first
assume that 7’ < npax. With the goal of verifying (i)—(iii) of Proposition A.2,
we choose ¢, i, A, p and g as

; = )\'Qvnmax ’ n = )"q-f-qu—f—l"f[, A= )\‘q+1 s
2
0= ]P)[qv”max'f‘l] ((Qéf,)»q+1,rq+1.ﬁ) )
2d —d 2
ﬁ = )\-q,nmaxA P[q,nmax+1] (Qé’)“q+l’rq+l.ﬁ> ) (733)

where we recall that ¢ 5, ,,.r,,, 7 is defined in Propositions 3.2 and 3.3. We
then have by definition that (i) from Proposition A.2 is satisfied. By property (1)
of Proposition 3.2, we have that the functions ¢ and ¢+ defined in (7.33) are
both periodic to scale ()\q+1rq+1ﬁ)_l, and so (ii) is satisfied. In the case
p = 1, the estimates in (A.7) follow with Cx 1 = 1 from standard Littlewood—
Paley arguments (see also the discussion in part (b) of [5, Remark A.21]) and
item (5) from Proposition 3.3. In the case p = oo, the estimates follow from

Lemma 3.5, (3.11b) with the choices Cy oo = rq_+21’,~l, A = Agnma> A2 =
00, A = Ag41, T = rg+1,5. We recall from (8.36) the choice of o = sr%, SO
that the loss )»g 41 gives exactly a loss of I'; 4. From (8.20), (8.24), and the

temporary assumption that 7 < npyax, we have that
0y -1
)Mq < Aq+qu+l,ﬁrq+1 < )\q—i—qu-i—l,ﬁ = )\q,nmax =< )\-q—i—l,

and so (A.8) is satisfied. From (8.37) we have that

Ndec Ndec
M < Ag1Tg+17 _ ( | | >
R V2. 2VE) UV SRS AISE 21/3

and so (A.9) is satisfied. Applying the estimate (A.11) for p = 1 with « as
in (8.36), recalling the value for Cg 1 in (7.30), summing over i and using
(2.11) at level g, summing over j, k, £, summing over [ and using (5.43) with
r1 = oo and rp = 2, and appealing to (8.38) and (8.40), we obtain that for
N, M < |_1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,x - S)J - da

N M
| DY D 0| |
L' (supp ¥iiq)
N ~y ~T8 -1 ) i —Ci+4 ~—1—1
S g18q+17hg, i g1 g i M (M’ Nina.. 7 Tt 7 Fq“)
—Cr-1 N , =G4~ 11
ST o020l M (M N 7 TETHL 20T ) - (39)
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Applying the same steps but in the case p = oo and using the parameter
inequality (8.45) yields the bound

DVDM O, x

H tg = L (supp ¥i.q)
Cul4YM49, _ -2 -1 N ) =Gt 1]

ST g )‘q’”qurlﬁ)‘qumax)‘q-FlM(M’ Ning.. 7 Tyii' ™ Fq+1>
Cu—2,N . —1i—Ci+4 ~—1p—1

STE M (M N 7 T 70T ) (7.35)

in the same range of N, M. The proof is complete after using (8.58c), which
gives that the range of derivatives allowed in (7.34) and (7.35) is as much as
is needed in (7.27a).

Following the parameter choices in [5, Remark A.19], we set N, = M, =
3Nind.v» and N* = Ngn 7 — Neut.t — Neut.x — 5. From (8.58d), we have that the
condition N, < ~*/sis satisfied. The inequalities (A.13) and (A.14) follow from
the discussion in [5, Remark A.19]. The inequality in (A.15) follows from the
choices & = Ag417g 4130 > & = Agnpe = rgt1rgr1aT, ), (8.32), and
(8.50). Having satisfied these assumptions, we may now appeal to_estimate
(A.17) for p = oo and sum over all parameters (i, j, k, &, [). Since [ takes at
most )»2 41 values, i, and j are bounded independently of ¢, and k corresponds
to a partition of unity in time, we obtain (7.26) for the case < nmax and
n=nmx + 1.

Recall that we began this case with the temporary assumption that 7’ < 7yay.
In the case # = nmax, wWe have from (8.24) that AgH1Tg+ 1 nmax > Mg nmax-
Then we can set §{ = [ = Ag417g+1.nmy and substitute P>, ., ., 5 for
Plg,nmax1- The only change is that (7.34) and (7.35) become stronger, since
Agimax < Ag+1Tg+1,nma> and so the desired estimates follow by arguing as
before. We omit further details.

Proof of item (3) and of item (1) when 0 < 7 < nmax and r (1) < 1 < Nmax.
We set

g T if n=1,

n= )‘q—f—qu—i—l,?i, A= )\q,n ) (7.36)

¢ = {max {)‘q+1”q+1,ﬁ» )\q,n—l} if 2<n<nmax

and

2 2d A —d 2
0= P[‘Iv”] ((‘va)\qul,qurl.ﬁ) ) ’ U= é‘ A ]P)[q,n] (Q%’,Aq+1,rq+1j) :

We then have by definition that (i) from Proposition A.2 is satisfied. By prop-
erty (1) of Proposition 3.2, o and ¢ are both periodic to scale (Aq+ 1rg+ Lﬁ)_l,

and so (ii) is satisfied. The estimates in (A.7) follow with Cy ; = 1 in the case
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p = 1 as before. In the case p = oo, we appeal to Lemma 3.5, (3.11b) with
AM=1C, A =Agn =A < Agq1,and r = ry4 5 to deduce that (A.7) holds

2
with Cy 00 = (%) . We again set « as in (8.36). From (8.24) and the

Ag+1Tg+1,7%
condition that r(n) < n, we have thatif n # 1, then

T -1
Ag = )‘q+1’”q+1,ﬁrq+1 KL Ag4+1Tg+1,7 < max {)\q—i-qu—l-lﬁ» )\q,n—l} < Ag.ns

and so (A.8) is satisfied if n # 1. If n = 1, then it must be the case that 7 = 0,
and so

Iy —1
Ag = )‘q+qu+1,0rq+1 KL Ag+1rg+1,0 < Ag 1.

From (8.37), the inequality A4 , < A4+1, and the choices of x and A, we have
that (A.9) is satisfied.

We now use the definition of Cg, , in (7.30) and apply the estimate (A.11).
In the case that p = 1 and n = 1, then we must have 7 = 0, and so foI all
N, M < |'/2(Nfini — Neur,t — Neux — 5)] — d, we sum over (i, j, k, &, 1) as
before and obtain that

H DNDZ’MQO()J ‘

L' (supp i q)

-C T 9 ho1h -1, N
Srq R54+1)‘qrq+l()‘q )\’q—i-lrf["!‘l) )‘q,lM()

. —1pi—Cot4 ~—1p—1
Ma de,tv Tq Fq+1 ,Tq Fq_;’_l

< Sgrnail M (M, Ninag 7, TS0 21T ] (7.37)

g+l 7q q+1) :
The inequality in the last line follows immediately from the definitions in

(8.26). Alternatively, if n > 1, then g“_l < A;L_ | from (7.36), and so if
N, M < |_1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,x - S)J - da

H VDM 05,

L (supp i 4)

U S , i G4 11
S Sqrritg T a L M (M, Ninge, 7, TS, 7 FqH)

S 8tk M (M, Nipa g 7 T 7

g q+1>' (7.38)

In the last inequality, we have used (8.42). After using (8.59), which gives
L'/2 (Nﬁn’ﬁ — Neut,t — Neut.x — 5)] —d > Nfpp for all ¥ < n, we have
achieved (7.28a).
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In the case that p = oo and n = 1, then we must have that 7 = 0, and so

DN pM Oo.1 H
H L5 e (supp Vi g)

A 2 2
Cup9 q,1 2
S Fqurq—i-l)‘q,o (— ) (quAquH)

Ag+17g+1,0
N , 1 pi—Cotd ~—1p—1
x 1 M (M, Ning. 73 o0 2T )
9 Cuy N ) —1i—Co+4 ~—1p—1
S, Fq+1Fqu)‘q,1M (M, de,t, 7 Fq+1 ' Ty Fq+l> . (7.39)

To achieve the last line, we have appealed to (8.24) and the inequality
o
)‘;z/llkcz/'rqﬂ
case that p = oo and n > 2, we have that

< 1, which is immediate from a large choice of npax. In the

| DYDY 0,

Lo (supp ¥i g )

2

A _

crorinm (e Yo
Ag+1Tg+17 ’

N , —1pi—Cit4 ~—1p—1

x 2N M <M, Ninds 7, T, % Fq+1>
47 (@) +13 Iy

Cur 14T (m)+1 q.n N ) —1i—Ci+4 ~—1p—1

SJFq“Fq_H W)\,q’n./\/l <M, de,t, 'Cq Fq+ln ,Tq Fq+1>
qg+1/Mg,n—1

Cur14T(n)y N . —1i—Ci+4 ~—1p—1

ST A, M (M, Ny 7 T 77T L) (7.40)

To achieve the second inequality, we have used (8.24). To achieve the third
inequality, we have used (8.39) and (6.7). The estimates above are again valid in
the range N, M < |'/> (Nfin,v — Newi,t — Neu,x — 5)] — d, which from (8.59)
completes the proof of (7.28b).

Following again the parameter choices in [5, Remark A.19], we set N, =
M, = 3Ningy, and N* = Ny 7 —Neye.t —Neue.x —5. From (8.58d), we have that
the condition N, < ¥*/s is satisfied. The inequalities (A.13) and (A.14) follow
from the discussion in [5, Remark A.19]. The inequality in (A.15) follows
from the choices A = )\.q+1rq+1’ﬁrq__'l_l, ¢ = Ag1rg+1,7 (8.32), and (8.50).
We then achieve the concluded estimate in (A.17), which after summing as
before gives (7.26) in the remaining cases 0 < 7 < nmax, ¥ (1) < n < Npax. O
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7.5 Type 2 oscillation errors

In order to show that the Type 2 errors identified in (7.14) and (7.15) vanish,
we will apply Proposition 3.8 on the support of a specific cutoff function

M= kgned = ViaXika®ijaqnSyiknel

in order to place pipes parallel to & on supp n. We first collect several prelim-
inary estimates in the first subsubsection, mainly with the goal of verifying
assumption (3) from Proposition 3.8, before applying Proposition 3.8 in the
second.

7.5.1 Preliminary estimates

Lemma 7.6 (Keeping track of overlap) For every tuple (i, j, k, n), define the
index set T as

I=1I(,j,k,n)

= {(i*’ j*s q, ”*): n* <n, 1)01',116‘)i,j,q,nXi,k,qwi*,qa)i*,j*,q,n*Xi*,k"‘,q # O} .

Then, the cardinality of T is bounded above by C,,I" 41, where C,, depends only
ON Nmax, jmax, and dimensional constants. In particular, Cy, is independent of

q.

Proof of Lemma 7.6 The proof proceeds similarly to the proof of [5, Lemma 8.8].
In fact it is somewhat simpler, since the parameter p (see [5, Definition 2.4])
is no longer part of the scheme, and we are not considering the checkerboard
cutoffs ¢ 0.ikong ] YEL but will only incorporate them later. We thus give only
an idea of the proof. Once i is fixed, we first note that y; ;, may only over-
lap with v/;11,4 and ¥; 1 4 from (2.11) at level g. The factor of I'y 1 in the
upper bound for the cardinality of Z comes from the fact that the timescale
of the x; 1,4+ 4’s on the support of V1 4 is faster by a factor of I'; ¢ than
the timescale of the x; x ,’s on the support of v; ,. Considering then values
of j and n introduces a dependence on jmax and nmax Which is nevertheless
independent of ¢q. O

Lemma 7.7 Let (x,1t), (y,t) € supp ¥ 4 be such that ll/l%q (x,t) > Yaand
Iﬂ,% ¢V 1) = '/s. Then there exists a geometric constant C« > 1 such that

—1
Ix —y| = Cu (Tghg) . (7.41)
For the proof of Lemma 7.7, we refer to [5, Lemma 8.9].
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Lemma 7.8 Consider cutoff functions

M= jkqnel = wi,qXi,k,qwi,j,q,ngqvi,k,n,gj’

* - — . . . . -
n = ni*,j*,k*,q,n*,é*,l* = WI*,qXl*,k*,qwl*,]*,q,n*gq’i*’k*’n*’g*’l*,

where (i*, j*, k*,n*) € I(, J, k,n), as defined in Lemma 7.6. Let t* €
supp xi* k*,q be given. Assume furthermore that nn* # 0, which implies
that gq,i,k,n,éj;q,i*,k*,n*,é*,i* % 0. Then there exists a convex set Q2 =
Q. n*, t*) C T2 with diameter )»q_}qu_H such that

(supp Cpikmel Nt = 1*}) C Q C suppyitq -

Proof of Lemma 7.8 Let (x,ty) € supp (nn*). Then there exists i’ € {i —
1,i,i + 1} such that wl%?q(x,to) > 1. Consider the flow X (x,7) origi-
—i+5+co
g+l ’
can apply Lemma 5.8 to deduce that wiq(t, X(x,1) > }‘. By the def-
inition of x;« x+ 4, the fact that i* € {i — 1,i,i + 1}, the existence of
(x,10) € supp (Xik,q Xi*.k*,q)> and the fact that t* € supp x;+ x+ 4, we in par-
ticular deduce that ‘ﬁ,%,q t*, X(x, %)) > zlt' Now, let y be such that

nating from (x, 7). Then for any ¢ such that |t — 79| < 7, we

X (x, %) =y < A0 Tgn <07 < CaTgag) ™!

for Cy given in (7.41), where we have used the definition of 4, , in (8.23).
Then from Lemma 7.7, it cannot be the case that wl% g (y,t*) < %, and so

y esupp i g N{t ="} Csupp Yt g N{t =17}. (7.42)

Since y is arbitrary, we conclude that the ball of radius Fq+1)\.q_’11 is contained
in supp i+ 4 N {t = t*}. We let Q(n, n*, t*) to be precisely this ball. Since
D’ﬁ‘lg’q,i,k,n,éj = 0 and (x, 7y) € supp Cyikmel We have that X (x, t*) €
SUPP L, i jpe il {t = t*}. Then, recalling that the support of ¢ i kon.g,] MOUSE
obey the diameter bound in (5.41) on the support of X .4, Whic% contains the
support of ;x x4 by (5.18), we conclude that

SUpp &, ;e i Nt =17 C Q. (7.43)

Combining (7.42) and (7.43) concludes the proof of the lemma. O

Lemma 7.9 Asin Lemma 7.8, consider cutoff functions n and n* satisfying the
conditions from Lemma 1.6 and the assumption nn* # 0. Let t* € supp x; i 4
be such that ®* := &« y+) is the identity at time t*. Using Lemma 7.8, define
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Q:=Qn, n*, t*). Define Q(t) .= Q(n, n*, t*,t) := X*(Q, t), where X* is
the inverse of ®*. Then the following conclusions hold.

(1) Fort € supp xik.q

supp (-, 1) C §2(1) C supp Yi+q -

(2) Let W* 0 &% := Wi Al
supported on n*. Then W* o ®* satisfies the conclusion of Lemma 3.7 on
the set Q(t) for t € supp X k,q-

() ForZ =1(i, j, k, n) defined as in Lemma 7.6, we denote

P .= U (supp (wi*,qwi*,j*,%”l*)

A

i* ,k*,n*,i
X m U 0 I*WS* g+l © P )
l*’é*

o @« kx) be the intermittent pipe flow

(7.44)

which is precisely the union of the supports of all pipes living on cut-
off functions indexed by tuples belonging to I, which are however not
restricted to the support of their corresponding time cutoffs x;« i+ 4. Then
there exists Cp such that for any convex set Q' C T3 with diam(Q') <
(Aq+1rq+1’n)_l and anyt € Supp xi kg the set PN ({t} X Q/) consists of
at most Cpl'y 11 segments of deformed pipes of length ()\q+1rq+1,n)_1

Remark 7.10 The third item simply asserts that at stage n, there exists a
geometric constant Cp such that in any (7/,..r,....)>-periodic cell of diame-
ter approximately (Aq+1rq+1,n)_1, there exist at most CpI'y 41 segments of
deformed pipes of length (Aq+1rq+1,n)_1. This will later allow us to apply
Proposition 3.8. The factor of I'; | comes from the fact that overlapping time
cutoffs ;x4 and x;41,k 4 have timescales which differ by a factor of I'j 41,

and that we have not restricted Wl Jq +kl n’i n to the support of its correspond-

ing time cutoff x;« x+ 4. Notice also that since choosing a shift moves a segment
of pipe inside a (T/xqu+l +)3-periodic cell but does not increase the number of
such segments, the conclusion in (3) is independent of the choice of placement.
We may thus appeal to it in the next subsection in order to choose a placement.

Proof of Lemma 7.9 The statement and proof are quite similar to the proof of
[5, Lemma 8.11], and we refer there for the proof of the first two claims. The
only difference is contained in the third claim above, since we have rephrased
the way in which we count the number of deformed segments of pipe compris-
ing W* o ®* which may overlap with supp 1. We remind the reader that a single
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“segment of deformed pipe” consists of the support of W* o &* restricted to a
single (deformed) (T*/s,.1r,.1.,) ~ ! -periodic cell. Then to prove the third claim,
we first fix a tuple (i*, j*, k*, n*) € 7 and note that in any convex set Q’
of diameter at most ()Lq+1rq+1,n)_1, the conclusions of Lemma 3.7 and the
construction of the checkerboard cutoff functions implies that there exist at
most finitely many 8qi* kv £ T such that

wi*,qwi*,j*,q,n*Xi*,k*,qé‘q’i*vk*ﬁ*’s*,f* = 0.

From the construction of W* o ®* in Proposition 3.3 and the fact that W* o ®*
satisfies the conclusions of Lemma 3.7 on supp x; k.4, we then have that taking

the union over just I* and &* in (7.44) allows for the desired conclusion with
a g-independent constant. Then applying Lemma (7.7) and taking the union
over the C,I'y41 many tuples in Z then provides the conclusion with a new
constant Cp multiplied by Iy . O

7.5.2 Applying Proposition 3.8

Lemma 7.11 The Type 2 oscillation errors identified in (7.14) and (7.15)
vanish.

Proof of Lemma 7.11 To show that the errors defined in (7.14) and (7.15) van-
ish, it suffices to show the following: for any pairs of cutoff functions n =
i kg el and n* = Mix jo kgt £ I where (i*, j*, n*, k*) € Z(i, j, k, n),
we have that

Ni,jk.gigl i j* kx,q.n* & I+

.’ .,k,N,i
x (Wyihito o @W

i '*,k*, *j'*

T o @) =0, (743)
The proof of this claim will proceed by fixing 7, using the preliminary esti-
mates, and applying Proposition 3.8.

Now, consider all cutoff functions 7, 7 utilized at stage 7. We may

kg nE,
choose an ordering of the tuples (i, j, k, &, [) at level 7, which automatically
provides orderings for the cutoff functions 7, ikg el and associated pipe

flows W7 ifé o ®(; ). To lighten the notation, we will abbreviate the newly
ordered cutoff functions as 1, and the associated intermittent pipe flows as (Wo
®),, where z € N corresponds to the ordering. We will apply Proposition 3.8
inductively on z € N, according to the chosen ordering, so that (7.45) holds.
Fix n;, and fix the associated index set Z(z) = Z(i, j, k, n). Since we are

proving (7.45) iteratively, we only need to consider the elements 7' € Z(z)
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such that n* < 7, and 7 € Z(z) such that n* = 7 and Z < z, according to the
aforementioned ordering.

We will apply Proposition 3.8 with the following choices. First, we recall
that at the time 7, at which &, is the identity, the cutoff function 7,
contains a checkerboard cutoff function ¢ \ivhich from (5.35) is adapted

to a rectangular prism of dimensions 27 A o in the direction of &, and

CFFqH(AquqHﬁ)_l in the directions perpendicular to &,. Thus we can
bound the dimensions of the support of the anistropic checkerboard cutoff by
471)»;’}7 and 2Cr Ty 11 (hg117g+1.7) ', and we thus set

Ag i

Q=supps N{t =t;}, r1 s 2 ="rg+17, Cq =2Cr.

- 47T)\,q+]

Recalling item 3 from Lemma 7.9, we choose the support of (W o ®),[,—,, to
have empty intersection with

PN, P as defined in (7.44) , (7.46)

and so by definition P satisfies item 3 from Proposition 3.8. Thus it remains
to check (3.21). From the definition of 11 7 in (8.24), we have that

2 3 2 2 3 2
C*CQCPFq+1r2 = C*CQCPFq-i-qu-i-l,ﬁN g+

(7.47)

Agii
< C*cécprjﬂkq—:’lr to<r
q

if a is chosen sufficiently large so that qul | can absorb the constants Ci, Cé,
Cp and the implicit constant, all of which are bounded independently of g.
Therefore (3.21) is satisfied, and we may apply Proposition 3.8 to choose a
placement for W, which has empty intersection with P at time ¢ = ¢,. This
shows that at time ¢ = t;, W, has empty intersection with all previously
existing pipes which may be non-zero at any time ¢ € supp x; k.4 but have
been flowed to time ¢ = ¢,. Finally, since D; ;(W o ®), = D; ;(W o @), =
Dy 4(W o @)z, and P has been constructed to contain all pipes which are
non-zero at any time ¢ € supp x; x,q, (7.45) is satisfied for all 7 € supp .,
concluding the proof. O

7.6 Divergence corrector errors

In this subsection we define and estimate the stress Oy corr Written in (7.24)
and arising from the divergence correctors identified in (7.17), which satisfy

. (P) (©) (©) (») (©) (0) — di ~
div (wq+1ﬁ®wq+1ﬁ+wq+1ﬁ®wq+1ﬁ+wq+1ﬁ®wq+1ﬁ) = div (On,corr) .
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Lemma 7.12 For all 0 < 1 < npyax, the divergence corrector errors O corr
satisfy the bounds
Vi DD O
i,q t,q~'n,corr L
—Cr—1

i—Citd_—1 ] ~—
ST, T 8giahg M (m’Nind,ta e, T 1) (7.48a)

q+1 q+1°¢q

H Dk D?fq Oﬁ,corr

L°°(supp ¥i 4)

Cu—1,k i—Ci+d_—1 p—1 ~—1
ST LM (N T e m ] 7 (7.48b)

forall k,m < 3Nipq.y.

Proof of Lemma 7.12 We first present the estimates for the stress Oy 13 =
w;:)_lﬁ ® w((gj)-l,ﬁ’ which is also given explicitly by the last line in (7.17) and
may be absorbed directly into Oy corr and estimated. By the Leibniz rule, the
estimate (7.12a) with (r,r1,r2) = (2,00, 1), and the fact that supp v/; 4 N

supp 1, jr ky # ¥ if and only if [i” — i| < 1, it follows that

k
H Viq D" D}, O 13 ‘

Ll
2 176 k . —1pi—Ci+4 ~—1p—1
S 2 g AT G M M (N 7 TR 2T )

The bound (7.48a) for O3 1,3 now follows from the parameter inequality (8.52).
Similarly, from (7.12b) it follows that

‘Lw(suw Yiq)
< 1Cu 14Y ()47 4 k ) 1 i—Ci+4 ~—1p—1
STy Fq+1 Aq+1M m, Nind,t, T, Fq+1 ' T Fq+1 .

The bound (7.48b) for Oy 1 3 then follows from the inequality (8.54).

It thus remains to analyze div (w;ﬁ_) 17® wéﬂlﬁ + wéﬂ)r] 7® w;’jr) 1.77)- Using

the second line of (7.17), we have

; (p) (©) (c) (p) e
div (% 5 ® Wyt 5+ w1 5 ® w1 )
= Y Om(a@oe © Pt (A7 eopr + Alempr)
£ ).kl

X 8pa() 0P Ui 4170 Pin) (7.49)
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where €;,;,;, is the Levi-Civita alternating tensor, we implicitly contract the
repeated indices ¢, m, p, r, s, and the e refers to the indices of the vectors on
either side of the above display. The subtle point is that if the derivative in 0 ,a )
is not in a good direction, cf. Lemma 5.18, one seemingly obtains the wrong
bound. As such we use that {£, £’, £”} is an orthonormal basis associated with
the direction vector & with& x&' = £”, and soS”Sﬁ—l—(’g")”(%")‘q—i—(f”)n(s”)Z

g”e and decompose 94 () into a sum of vector fields @', (;) and a® o (é) defined

y

dpace)
.
=0 cb(z k)f 3 Aéaja(s)
good
Ap.©)

+9 <I)(l k)(s )"(E Aja jaeg +90 CD(; k)(gll)n(él/)eAéaja(g), (7.50)

__.bad
=)

where we have also set A = A(; k) = (VO k))_l. Using this decomposition,
we note that from Lemma 7.1, the derivative of a) in the “good” term costs a
factor of A4 7"y 41, whereas the derivatives landing on a ) in the “bad” terms
cost a factor of Aq+1rq+1ﬁf‘qj1 > Ag il

In view of (7.8) and (7.9), we leave the part of (7.49) which contains algf?éd)
in divergence form and simply move the resulting symmetric stress

good e 12 ° good
(OFTD"™ =D awee © Paws (A7 €wpr + Alempr)ay )0 Py,
£,k
x Ug g1 © P » (7.51)

into Oy corr (and thus I%g 41)> up to removing a trace term which is thrown

into the pressure. This good part of Oy obeys the same L' and L

bounds as Oy 1 3 above. To see this, we apply the L' de-correlation estimate
. d

from Lemma A.1, for p = 1, f = a@)§" (A €apr + A€mpr)ay 60, P 4.

® = Pip, v = v, and ¢ = Q(S)Ug’ e In light of Proposi-

tion 3.3, Corollary 5.10, estimate (7.8), and definition (7.50), we have that

the assumptions of Lemma A.1 hold with the parameter choices C; =

J+7 _ pi—Cit+4_—1
|supp N jkq.i 571|5q+1,n q+1)‘q i A= Fq+1rq+1 ihg+1, V = Fq—H Ty

V= T_IFq_-H’ N; = Nil’ld,t’ W= Agtilg+iq = Fq+1)u, C(p = )Lq_-il-l’ =t =
Ag+1, Ny = 0,and N, = Nfip 7 — Neye,t — Newe,x — 5. By (8.58a) we have that
No = 2Ngec + 4, and by (8.37) we have that A} | < (Ig41(2m+/3)~")Neee,
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and so condition (A.2) is verified. Thus, from (A.3) and summing on ! using
(5.43), we deduce the L! estimate

1.4 D* D7, OFTS

1 4k
< 84—1—1 n q—l—l)‘q ")‘q+l)‘q+l

—1pi—Cit+4 >—lp-1
x M(m,de,t, it T rqﬂ).

The bound (7.48a) for (9%010 » now follows from the parameter inequality (8.53),
and the fact that Ngp, 7— Ncut t—Neut.x—5 > max{2Ninq+4+3Nind.v, 6Nind.v},
which is a consequence of (8.58a) and (8.58c¢). Similarly, from Proposition 3.3,
Corollary 5.10, estimate (7.9), and definition (7.50), we have the L estimate

H Dk fofdz ”Lw(supp Vig)

Cupr 14T (@)+8 _
S q+1nFunq+l Aq, )‘ 1)L

— 1 c~+4 =—1p-1
x M<m,Nind,t, rist rq+1).

q+1

The bound (7.48b) for (’)%010 » then follows from the parameter inequality (8.47).
Returning to (7.49), it remains to consider the bad part, coming from the
second term in (7.50), namely

I4 °
> m (“@Q(s) 0 D k)5 (AY €apr + Af€mpr)aps)dr P )
£, j. kT

x Ut g1 0 q’(i,k>) =Vi+V3] (7.52)

where V| corresponds to the term containing Aj'€, -, and V3 corresponds to
the term containing Aje;,,,. When we distribute the 9,, derivative in (7.52),
we need to be careful that the derivative does not land on the fast (at frequency

Ag+1) Object Q(E)[Ug,q—i-lﬁ‘
Let us first handle V. For this purpose, note that

0
E°AY O <(Q(S)U§ g+1.7) © P, k))
= £ AV O Py 1) (a, (Q@)Ué,qﬂ,z)) ° ik

= (geaﬁ(Q(é)Ug,q—&-l,'ﬁ)) © Piky
=0
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because & - V annihilates both g() and Ug 441 7, from (3.4). Thus, by (7.52),
the term V] becomes

° L bad
Vi= Z O ()& AT €apray ey 0 Pl 1) (Q(E)Ug,qﬂ,ﬁ) o D k)
£, jk, ]
(7.53)

Notice that by the Piola identity, we have 9,, (a@)é Al €, prap (5)8 <I>S k)) =

ELAT By (ae)€apral o (5)8 ®(; 1y)» and so the slow objects contain a deriva—
tive that costs the good factor of A, 7I'g41, and a derivative that costs
the bad factor of A,41r,41,7. We then apply the inverse divergence oper-
ator H —I— R* from Proposition A.2, with the following choices: p = 1,
= ECAY Om(a) €aprap ) 0r Py, k))’ e = e®Usgrim ® = Piny
Vo= Uy, and Ny, = M, = |_ (Nﬁnn - Ncutt - Ncutx — 5)]. By
(2.19), Corollary 5.10, and est1mate (7 8), assumption (A.4) holds for Cg =
|supp (n,,lykyq’n’g,l)lqurl 7 q-i-l(Fq-l-l g+1Tg+1i)Ag i A = Ag+1rg+1, nrq_,l_la
N; = Nipgp, v = r_ll‘;J:M and vV =7, ~lp il, while assumptions (A.5)—
(A.6) hold with A" = X,. From Proposmon 3.3 and standard Littlewood—Paley
analysis, upon letting g“ = = Agilg+17> U = (§_2A)_d(g(g)l[lg a+1, )
(we note that Q(g)lUs g1 ~ has mean zero from a direct computation using the
deﬁn1t10n of the intermittent pipe flows from Proposition 3.3), A = A1,
Co =M1 q +1, and « as in (8.36), we have that condition (A.7) is satisfied. With
these chosen parameters, the condition (A.8) trivially holds, while condition
(A.9) is equivalent to A; 41 = (Fg1 2 /3)"HNaee which in this case holds
due to (8.37). Conditions (A. 13) (A.14) are verified for No = Mo = 3Ninay
and C, = Timy 522 < TS 032, in view of (2.1), (2.13), and (2.20),
and (8.20)— (8 21) Lastly, the 1nequal1ty (A.15) holds because d is taken to
be sufficiently large to ensure (8.51). From (A.11), (A.17), and a sum on [ as
before, we deduce the L! bound
1

“ Vg DEDI (H+ ROV, )

(Fq+1)‘q+1rq+lﬁ))‘qﬁ k
q+1

~ 9g+1, nI +1
1 (;“q—l—qu—I—l n))\q-i-l

x M(m,Nind,t, colpi=Citd z—ip-

TR (7.54)

Since 8g41,3T ] hgiitgty < Tyof 8442 — see (8.53), and |1 (Ngnj7 —
Neut.t — Neut,x —5)] —d > 3Nipg,v — see (8.58¢), the above bound is consistent

with (7.48a).
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The L estimate is obtained similarly. We again apply Proposition A.2

w1th the only parameters that change being: p = 00, Cg = FC“ F;ﬁmMAq,;{

(F g+1 Ag+1Tq+1,5) — see (A.14), and C, = rqul n)‘q+1 see (3.5) and (3.6).
From (A.11) and (A.17) we obtain

| DF Dy, -+ RV |
’ L% (supp ¥i q)
~1 Ny 2
< r‘cur,mr(ﬁ)w (Fq+1)‘q+1”q+l,n))”q,nrqﬂ,ﬁ k
~oa et Ag+17g+17)Ag+1 a+!
_ 4 =
x M (. Niago 7 T, 70T ) (7.55)
Since FC”FMT("HgAq nrqul n)‘;+1 Fchgl, see (8.47), the above bound is

consistent with (7.48b).
It remains to consider the term V, in (7.52). We distribute the 0,, derivative
on either the slow or the fast objects and decompose

Vis 2 (a(f)g(g) 0 D ky§ Al emprap ()0 P 1y Uk g1 © q’(i,k))

S,i,j,k,l
lie K bad
- (am(s AL emprdy @Y 1 )aead'ls,
£, jk ]

good
+ a5 AL empray o) P g

good
— a@E" Abemprom (@) 0r ;. k)> (Q@ﬂUé,qH,ﬁ) © Dk

+ Z ag§" Aeemprap ) 0r P, 1) Om ((Q(S)Us g+17) © PG, k))

E,l,],k,l
(7.56)
In the second equality above we have used the identities €, 0, (aga‘é)) =
—€mprOm (aioéd) and that em,,ram ) Ead = 0. We first consider the terms in

which the 9, has not landed on functlons related to pipe densities. Similarly
to the definition of Vi in (7.53), the slow functions in each term contain a
derivative that costs the good factor of A, 7", 41, and a derivative that costs
the bad factor of 1,4 174+1,57. As such, when applying H 4+ R* to the second
to last line of (7.56), the resulting stress obeys exactly the same estimates as
(7.54) and (7.55).

Finally, we are left to consider the term on the last line of (7.56), in which the
O derivative lands on the fast objects, at frequency A, 1. The key observation
is that this term is in fact equal to 0! To see this cancellation, we recall the
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identification of ag‘j‘é) in (7.50), and we recall from (3.3) that Ug ;417 =

_Szwé/’kq%rq“ﬁ + 5”<ﬂé,xq+1 e With these identities, we have

a)&" Abemprayey0r P 1o 0m ((Q<5>U§,q+1,z) o q’(i,k))
= a@)E A empral) (e 0r % 1 I ®" 9 (0&)UE 411 7) © Piiky -

Note that from (7.50), that agf‘?g) contains either a factor of 9, CDI(‘L k)SIQ ora

factor of 9 pCIDI((l. k)élé’ . From (3.4), we also have that

0 D 1) Om " 0 (0&) Uz 41,7
= — 8, @ )&, D", <($/ V) (Q@)ﬁﬂé/,xqﬂ,rqﬂﬁ)) o @i k)
+ 8, @ )&y 0 @"E, <(5 "-V) (Q(é)fﬂé,xqﬂ,rqﬂﬁ)) o (k)

— O q’fi,k)ss/am q’né&; ((SN V) (Q(é)(ﬂg,xqﬁ,rﬁlﬁ )

) oDk
+ 0, <Dfi,k)§;/3m g ((f/ -V) (Q(é)‘ﬁg,kq+,’rq+]ﬁ>> oDy .

Thus, the expression emp,abf‘?é)ar d?‘zi’k) 0, "0, (Q(S)U;Hlﬁ) o @ k) equals
the sum of eight terms, eacﬁ of which is of the type

1
€mprdp Cbl((i,k)slg )8, qDEi,k)és(Z) I @ng,?)
x (product of fast pipe densities or fast cutoffs) o ®; x)

where (£, €@ £3)) ¢ £/, £”)3. Since in each of these eight terms, at least
two of the vectors in the tuple (5(1), 5(2), 5(3)) are equal to each other, either
to & or £”, by the skew symmetry of the Levi-Civita symbol, we must have

1
emprdp @y i 0 P EP 0 @"ED = 0.

This proves that the last term on the right side of (7.56) is indeed equal to 0,
concluding the proof. O

7.7 Transport errors

Lemma 7.13 Forall 0 < 7 < nyay, the transport error satisfies the following
estimates for Ny, M < 3Nipq.y:

0.4 DY DY, (7 + R*) (Drgugr 7))

Ll
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—Cg—1 i =G5 =l e
S 5q+2Fq+1R kéVHM <M, Nind,t, 7, IF;+T+ ) Fqiqu 1) (7.57a)

H D*D ((H + R*) (Di qwg11.3)) “LOO(SUPP Vig)

Cu—1,N —1i—Ci+5 —1 ~—1
S T AN M (M Ny 7 TR T L 7 (7.57b)

Proof of Lemma 7.13 Recall from the first line of (7.24) that the transport error
is given by H + R* applied to D; ;w,41,5, which we further expand as

D; qwg+15 = Dt,q( Z curl (as’i’j’k,qﬁjV®5’k)U§,q+1ﬁ o q’(i,k)))
ij.kLE

-1
= > Dy (a(S)VCD(i,@) We gv1i 0 @ik
ijkE

+ > (DigVae) x (VOauUegriio D)
i jk,0E

+ Y Vag x ((DrgV®an) Uegrio Pap)  (7.58)
i jk, &

Since the second two terms contain the corrector defined in (7.6), and the
bounds for the corrector in (7.12a) are stronger than that of the principal part
of the perturbation, we shall completely estimate only the first term and simply
indicate the set-up for the second and third. Before applying Proposition A.2,
recall that the inverse divergence of (7.58) needs to be estimated on the support
of a cutoff ¥; ; in order to verify (7.57a) and (7.57b). Recall that for all n,
Dy qwg 1,5 has zero mean. Thus, although each individual term in the final
equality in (7.58) may not have zero mean, we can safely apply H and R* to
each term and estimate the outputs while ignoring the last term in (A.16).

We will apply Proposition A.2 to the first term with the following choices.
Let p € {1, 00}. Wesetv = vgq,and D; =D,y = E)t—l—wq -V as usual. We set
Ny = My = ['/2(Nfini — Neut,t — Neux — 5) ], with Ngee and d satisfying
(8.58a). We define

—1
G = Dy q(ag)VP; )k,

. _ | ~i—Ci+5 ~ ~ ]
with A = Tl Agpirgeim v =1, T T, My = Nipa, ¥ = 7,'T [, In
order to obtain the value of the amplitude constant Cg, which now depends on
p, when p = 1 we use (7.8) with r = 1 and (5.19g), while when p = oo we

use (7.9) and (5.19g), obtaining
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1h i+2_— 3
CG,l = |SUPP (ni,j,k,qﬁ,éj)wq/"'l nF;—I—l q 1F;+(T+ ’ (7.5%)
7T( )+ — max — 4
CG.00 = F Fq+1n 't IF;+1 o
Cu+7Y (M) +9—cx —1 rg—=1p
1‘* Fq—tl Oy
F F;;iJlr7T(nmdx)+2o+co Cﬁ®]/2 (7.59b)

In the above expressions we have used (8.33) to control ¢y, (5.9) to control

F;"fxl, and the definition of 7, from (8.22). We have that

N 1\
IDY DM Gllur 5 Co.p (RrrgsiiTy )

I pi—Cih =l
x M (M, Ningy = 12 T 2T )

1 N
CGp q—l—l”q—l—ln q—H)

—1i—Cx+5 ~—1 1
x M(M, Ning. 7, ' TS5, 7 rqH)

(7.60)
for all N, M < ['/2(Nfin — Neut,t — Neu,x — 5) ] after using (8.35), and so
(A.4) is satisfied. We set ® = ®; and 2 = ’Xq. Appealing as usual to
Corollary 5.10 and (2.19) with ¢’ = ¢, which is valid from Proposition 5.6,
we have that (A.5) and (A.6) are satisfied.

Referring to (1) from Proposition 3.3, we set 0 = Q¢ 3, .ry 5 and ¥ =
ﬁgvxqﬁ—lsrq#—lﬁ‘ Setting { = A441, we have that (i) is satisfied. Setting u =

Ag+1rg+1,5% and referring to (2) from Proposition 3.3, we have that (ii) is
2

satisfied. Setting A = ¢ = X441, Cy p =7 +11n, « as in (8.36), and referring
to (3.5) and (3.6) from Proposition 3.3, we have that (A.7) is satisfied. (A.8)
is immediate from the definitions. Referring to (8.37), we have that (A.9) is
satisfied. .

After summing on (i, j, k, 7, &, ), using (2.11) at level ¢, and (5.43) with
ri = rp = 2, we conclude from (A.11) that for p = 1 and N, M <
L!/2 (Nﬁn,?[ - Ncut,t - Ncut,x - S)J —d

HDND%] (H (Dr.qwg+1.7)) H

Y2 Cp+9—Ci_—1 -1 N
8q+1 nFq-‘rl Tq Tq+l, ")”q-i—l)\‘q—H

L (supp i )

. —1 i—Cy+5 ~—1 1
x M (M, Niai, 7 T 5, 77T L)

Cr—1
STy 8‘1+2)‘q+1
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i —Ci A5 [
x M (M, Nipag, 7 T, 70T ) (7.61)

after also using (8.55) and (8.33). From (8.58c), these bounds are valid for all
N, M < 3Njpgy. Similarly, for p = oo, we have

” DYDY (H (Digwg+1.77)) HLoo(supp Vi)

Cu _ 1
5 qu FCu+7T(”max)+21+CO CH@L]/Z)\qr_l N)L—l )\‘N

q+1 g+1.1%q+1"q+1
. 1 pi—Ci+5 11
M (M Nigo 77 T2 2 T )
Cu—1,N _ i G451
S T AN M (M N, 7 TG, 5T ) (7.62)

after also using (8.27) and (8.56).

To conclude the proof, we must still estimate the nonlocal (R*) portion of
the inverse divergence, and the error terms coming from the divergence cor-
rectors. These error terms, however, obey stronger estimates than the bounds
in (7.61) and (7.62), and so we refer to the proof of [5, Lemma 8.4] for further
details. O

7.8 Nash errors

Lemma 7.14 For all 0 < 0 < npax, the Nash errors satisfy the following
estimates for Ny, M < 3Nipq.y:

Hwi,qDND% ((H + R*) (U)q—Hﬁ . vaq))

Ll
~Cr—1, N —lpi—Gitd pol -l
S 8q+2l T dg M (M’ Nina, 7y Tyt Ty Ty ) (7.632)
D*D" (M +R*) (w 1~-W)H
H t.q (( ) g+ln a ) L5 (supp ¥i 4)
Cu—1,N —lpimGitd ol -l
§Fqi1 AgaM <M, Nind,i. 7, L M ) (7.63b)

Proof of Lemma 7.14 Recall from the first line of (7.24) that the Nash error is
given by H + R* applied to wy+1 7 - Vv, , which we further expand as

Wy+1,7 * Vqu = Z curl (aé,i,j,k,q,ﬁ,iv¢g;,k)U5vQ+1ﬁ o q>(i,k)) . vaq
i,jkLE

T
= ( Z Vagg X (Vq’(i,k)Ué,qulﬁo cD(ivk))
i.j.k.LE
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+ Z a(g)v(balk)Wg’q_Hﬁ o CD(,'JQ) Vg, . (7.64)
i.jk0E

Due to the fact that the first term arises from the addition of the corrector defined
in (7.6), and the fact that the bounds for the corrector in (7.12a) are stronger
than that of the principal part of the perturbation, we shall only consider the
second term. Note that the Nash error can be written as div (wg 41,7 ® ve,) and
so has zero mean. Thus, although each individual term in the final equality in
(7.64) may not have zero mean, we can safely apply H and R* to each term
and estimate the outputs while ignoring the last term in (A.16).

We will apply Proposition A.2 to the second term with the following choices.
We set v = Ve, and D; = D; g = 0, + Ve, V as usual. We set N, = M, =
|'/2 (Nfin,# — Neut,x — Neur,t — 4) ], with Ngec and d satisfying (8.58a). We
define

G =ae)VP ;& - Vi,

and set Cg.1, Cg, o0 to be equal to the quantities in (7.59), A = Fq__fl_l)\.q+1rq+1’;?[,

V=T IF; +°~+4 M; = Nipgy, and vV = 7, 1l“ 1 . Note that these choices
match exactly the choices from the estlmates on the transport error. From (7.8)
withr = 1l and r; = rp = 2, (5.19g), and (2.19) at level ¢, we have that for
N, M < |_1/2 (Nﬁn,ﬁ - Ncut,x - Ncut,t - 4)J

N
|p"DY,G| | S Cop (Totingrirgsi)

« M(M, Nind,t, —lpitl >—1p-l

MLEITL). a6s)

and so (A.4) is satisfied. Note that we have used (8.30) when converting the
8 /zk coming from (2.19) at level g to a T, ~1 . Setting @ = Py and A = Aq,
we have that (A.5) and (A.6) are satisfied as usual. The choices of o, ¥, ¢,
u, A, and C, are identical to those of the transport error (both terms contain
We g+1,7 © Pix)), and so we have that (i)—(ii), (A.7), (A.8), and (A.9) are
satisfied as well. Since the bound (7.65) is identical to that of (7.60), we obtain
an estimate identical to (7.61) in the case p = 1. The case p = oo and the
estimates for the R* portion follows analogously to that for the first term from
the transport error. We omit further details. O

8 Parameters
The purpose of the first subsection is to define the g-independent parameters

in order, beginning with the regularity index g, and ending with the number
a., which will be used to absorb every implicit constant throughout the paper.
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Then in Sect. 8.2, we define the parameters which depend on ¢, as well as the
parameters which depend in addition on n. Section 8.3 contains, in no particular
order, consequences of the definitions made in the previous two sections which
are necessary to close the estimates in the proof.

8.1 Definitions and hierarchy of the parameters

The parameters in our construction are chosen as:

(i) Choose an L2 regularity index § € [!/3, 1/2); in light of [4,36], there is
no reason to take 8 < !/.
(i) Choose b € (1, 3/2) sufficiently small such that

2Bb < 1. 8.1)

(iii)) With 8 and b chosen, we may now designate a number of parameters:
(a) The parameter nm,x, Which denotes the total number of higher order
stresses Ry ,, is defined as the smallest integer such that

2 (b —1)?
<
Nmax + 1 2b
3 + [log, nmax | 1 Nmax

2pb s max ] _ C Tmax (g op)
2(nmax + 1) 2 2(nmax + 1)

(8.2a)

Notice that the second inequality is possible since 28b < 1.
(b) The parameter C;, appearing in (2.17) to quantify || Vig || 1 is defined
as

b+4
Cr=1—7 (8.3)

(¢) The exponent Cg is a small parameter used to estimate the Reynolds

stress, cf. (2.10a), and then absorb geometric constants in the construc-
tion. It is defined as

Cr=10b+1. (8.4)
(iv) The parameter Cg, which is first introduced in (2.16) and utilized in
Sects.6 and 7 to control small losses in the sharp material derivative

estimates, is defined in terms of nax as

Co = 4max + 5 . (8.5)
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(v) The parameter e > 0, which is used in (8.19) to quantify the finest
frequency scale between A, and A, utilized throughout the scheme, is
defined as any real number such that

er300(nmax + 1) ([log, nmax1) < b — 1 (8.6a)
b—1 3
Ter (2 + [l 22+ 4 —
er(2 + [logy nmax 1 + + 4nmax) < b 20— Do + 1)
(8.6b)

1 2 + [log, nmax |

er (5+ 24 [Mogy nmax1)(9 + Cp)) < 3~ - (8.6¢)
( ( ) 159G+ ﬂogzmmdxm)
1 Nmax _ _ 3+ |'10g2 Nmax |
= 2 (1 + Nmax + 1) 2le 2(nmax + 1) (86d)
r (%Cb +co+ 10+ %CR) <1-—-28b (8.6e)
1-2
er (7+Cr 4+ nmax (8 + Cp)) < 0 p (8.6f)
2ber(Co+7) <1 — 8. (8.6g)

We note that the right-hand side of (8.6b) is positive from (8.2a) and the
right-hand sides of (8.6¢) and (8.6d) are positive from (8.2b).
(vi) The parameter Cy is defined as

1
y= : 7
c er(b — D)(nmax + 1) &

(vii) The parameter o > O from the L' loss of the inverse divergence operator
is now defined as

_ er(b—1)

b (8.8)

(viii) The parameters N¢y¢ ¢ and Ngy¢ x are used in Sect. 5 in order to define the
velocity and stress cutoff functions; see (5.3), (5.7), and (5.24). These
large integers are chosen solely in terms of b and er as

1

_Ncut,x = Ncut,t = ’7

3b 150
3 —‘ (8.9)

-1 2

(ix) The parameter Njpq, Which is the number of sharp material derivatives
propagated on stresses and velocities in Sects. 2 through 7, is chosen as
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the smallest integer for which we have

4
Nind,t == [m—‘ Ncut,t . (810)

(x) The parameter Njnqy, Whose primary role is to quantify the number
of sharp spatial derivatives propagated on the velocity increments and
stresses, cf. (2.8a) and (2.10a), is chosen as the smallest integer for which
we have the bound

4bNina + 8 + b(Cr + 3)er (b — 1) + 286> — 1) < er (b — DNipay -
(8.11)

(xi) The value of the decoupling parameter Ngec, wWhich is used in the L”
decorrellation conditions (A.2) and (A.9), is chosen as the smallest inte-
ger for which

&b

N _.
dec > & — Der

(8.12)

(xii) The parameter d, which is used in the inverse divergence operator of
Proposition A.2 to count the order of a parametrix expansion, is chosen
as the smallest integer for which we have

(d— Der(b —1) > b(6 + 13Ninqy) + 28b>
b—1

+ (2 + [logy nmax 1) (m

+er(b— 1)(9—|—Cb)> . (8.13)

(xiii) The value of Ny, which is introduced in Sect.2 and used to quantify
the highest order derivative estimates utilized throughout the scheme is
chosen as the smallest integer such that

3
ENﬁn > (2Ncut,t + Ncut,x + 14‘Nind,v +2d + 2Ngec + 12)2”max+1 .
(8.14)

(xiv) Having chosen all the previous parameters in items (i)—(Xiii), there exists
a sufficiently large parameter a, > 1, which depends on all the param-
eters listed above (which recursively means that a, = a.(8, b)), and
which allows us to choose a an arbitrary number in the interval [a,., 00).
While we do not give a formula for a, explicitly, it is chosen so that
aibil)ar is at least twice larger than all the implicit constants in the <

symbols throughout the paper; note that these constants only depend on
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the parameters in items (i)—(xiii) — never on g — which justifies the
existence of a.
8.2 Definitions of the ¢g-dependent parameters

8.2.1 Parameters which depend only on g

For g > 0, we define the fundamental frequency parameter as

hg = 2 O loma] (8.15)

Definition (8.15) gives that A, is an integer power of 2, and that we have the
bounds

1
a® <, <2a®  and 5,\’; < Agp1 S22F (8.16)
for all ¢ > 0. Throughout the paper, if there exists a universal constant C > 0
suchthat C~'A < B < CA, we say that A ~ B. In particular, the above reads
Ag & a®) and Agil & kg. It will be convenient to denote the quotient of two
consecutive frequency parameters by

Og41 = Agpir, ' ~ab7 (8.17)
The fundamental amplitude parameter is defined in terms of A, by
b+1 —
8g =y TP (8.18)

We now introduce a parameter which is defined in terms of the parameter
er from (8.6) and used repeatedly to mean “a tiny power of the frequency
parameter”:

Pgr1 =0

o (8.19)

In order to cap off our derivative losses, we need to mollify in space and time
using the operators described in Sect. 4. This is done in terms of the following
space and time parameters:

PP (8.20)

T =1, A kg (8.21)
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While 7, is used for mollification and thus for rough material derivative bounds,
the fundamental temporal parameter used in the paper for sharp material deriva-
tive bounds is
1h 6\ —1
7y = (847 Uo7 (8.22)
Note that besides depending on the parameters introduced in (i)—(xiv), the
parameters introduced above only depend on ¢, but are independent of n. We

note that the definitions of the parameters listed so far in this subsection have
not been changed from the definitions used in [5].

8.2.2 Parameters which depend on g and n

The rest of the parameters depend on both ¢ and n. We start by defining the
frequency parameter A, , and the intermittency parameter r;1,, by

2[(1+6(b=Der)logy g1 n=0
Agn = 2r(%7m)logqu+(%+m)Ing)L"H], 1 <n < nmax ’
(8.23)
Fg+1.n = )»;}HZ[% 10g Ag.nt 3 10g) Ag+1—210gy Tg41] (8.24)

for 0 < n < nmax. In particular, (8.23) shows that 2, , is a power of 2, with

1 n 1 n
5= 5+
2 2 a 272 P 1
)\q,() ~ qu6+1 and )\q,n ~ )‘q (Vlmdx+1))\’q+1(l’lmdx+) for 1 < n < Nmax.

Similarly, (8.24) shows that A, 11741, is an integer power of 2, and we have

a2 N
')Lqﬂrqﬂ’n A hgph qﬁF 441 A consequence of these approximations are the
inequalities

—4 hq
q+1 )\'

)
2 < 21—“ =20441. 1l <2T (8.25)

r ~
+1,n —
1 q q+1

We recall from (2.7c) that the stresses Ii’q,n for 0 < n < npax will be
measured in terms of

-C

(Sq+1Fq i, n=>0

A

q 9 —
5,0 = 100 Lo n=1
3:61 8 2 l )19 e
(nmax+1

8q+1,0k 1Fq+l <®q+l Fq-i—l) , 2= n < npax .

q,n—

(8.26)
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The functoion Y (n) isdefined in (6.6) to quantify the number of steps required
to produce R, ,. As each step accumulates negligible losses, which correspond
to the quantity in parentheses above, one may adhere to the heuristic that 8,41,
is roughly speaking equal to "“ 1. We remark that each of the parameters
defined so far in this subsubsectlon has a new definition compared to that of

[51.
Conversely, the following three parameters remain unchanged when com-
pared to [5]. For 1 < n < npax, we define ¢, in terms of Cg by

Cn = Co — 4n. (8.27)

For n = 0, we set

3
Nfin,0 = ENﬁn, (8.28)

while for 1 < n < npax, we define Ngj o inductively on n by using (8.28) and
the formula

1
Nﬁn,n = LE (Nﬁn,n—l - Ncut,t - Ncut,x - 6) - dJ . (8-29)

8.3 Inequalities and consequences of the parameter definitions

Due to (8.15) we have that Tyy > (12)Peral=Der > (pybery b=Der >
(1 )a(bfl)ar As was already mentioned in item (xiv), we have chosen a, to
be sufficiently large so that a(b Der is at least twice larger than all the implicit
constants appearing in all < symbols throughout the paper. Therefore, for any
g > 0, we may use a single power of I'; | to absorb any implicit constant in
the paper: an inequality of the type A < B may be rewritten as A < I';;1B.

From the definition (8.22) of 7, and (8.27), which gives that ¢, is decreasing
with respect to n, we have that for all 0 < n < npyy,

cn+6 Vered 1
rovtos)/ oy <, (8.30)

Using the definitions (8.18), (8.19), (8.20), and (8.22), and writing out every-

thing in terms of A, _, we have

R SR (8.31)

From the definition of ?q, it is immediate that

T g < T <t R (8.32)
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From the definitions (8.5) of cg and (8.27) of C,, we have that forall 0 < n <

N'max»

—Cp+4<-1. (8.33)

Next, we a list a few consequences of the fact that Nipgv >> Ning,t, as specified
in (8.11). First, we note from (8.32) that

Tt <k kg <A (8.34)

where in the second inequality we have used that ep < Z%.

The fact that Njpq, is taken to be much larger than N¢y (, as expressed in
(8.10), implies when combined with (8.34) the following bound, which is also
used in Sect. 5:

Neut Nin
(%) ™ =y (8.35)
for all ¢ > 1. The parameter « in (8.8) is chosen as such in order to ensure
that

A1 ~ Tgir. (8.36)

for all g > 0. We note that the previous seven inequalities only involve param-
eters which have not changed when compared to [5].

Next, we list a number of parameter inequalities which are not the same as
those in [5]. Our choice of Ngec in (8.12) and the assumption that a is chosen

sufficiently large so that qu/il > 27+/3 yields

1" Ndec Sb
4 q+1
Agv1 = (2 \/—> — = Der < Ngec - (8.37)

We need a number of new inequalities to manage the Type 1 oscillation
errors. The first of these is

-1 ~T38
5q+l,n)‘q,nrq+1

—Cr 20max+D 19 ~
ry, 8,]+1k Fq+1 <®q+1 * Lo if n=0,1
= ¢ | T ()+1 :
Ty P8gr1hg Tl (@);ﬁm“ F3+1) if 2 <7 < nmax
(8.38)
If 7 = 0, then the inequality follows from (8.26), (8.20), (8.23), and (6.6). If
n = 1, the inequality follows from the aforementioned inequalities and the
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equality
Ag.1 _ Ag.ii _ Ag+1 _ @2(llméllx+l) 839
)\‘1/2)\‘1/2 - A, 1 - A - Yg+1 s ( . )
q "g+1 q,n— q smax

which holds for 2 < 7' < npax. Finally, if 2 < 7' < npax, we use the afore-
mentioned inequalities in conjunction with (8.39). Next, we claim that for all
0<n< Nmax;

—1 —Cr-1
)\'q,nmax = Fl]+1 8Q+2 .

(8.40)

T(@)+1
qg+1 q+1>

1
Fq—CR 5q+1 )‘q F3+1 <® 2(nmax+1) F9
The above inequality is a consequence of (6.8) and

2b(b —1) + (b — Der (—CR (% - 1> +15+9G + flogz(nmaxﬂ))

( l—l -|) n 1
+ 3 + [log, n
gz max 2( = 1)
b—1 Nm
o (b — 1) y (8.41)

+
2 2(nmax + 1)

which in turn follows from (8.2b) and (8.6d). Finally, we claim that for n such
that n > r(#), as defined in (6.5), and n > 2,

Sq1ihg il g1 hgm_t < Sqtin- (8.42)

If 7 = 0, 1, the inequality follows from the definitions of 1,0 and A4 1 in
(8.23), the definition of the ;41 ,’s in (8.26), and (6.6), which guarantees
that Y(n) > 1 for n > 2. In the case 2 < 1 < npmax, the inequality follows
from the aforementioned inequalities combined with (8.39) and the fact that
for n > r(n), (6.7) gives that Y (n) > Y (n) + 1.

The amplitudes of the higher order corrections w1 ,,p must meet the
inductive assumptions stated in (2.9a). Towards this end, we claim that for all
0= n = Mmax-

§° S <s”

g+1n" g+1 = “g+1- (8.43)

Indeed, the case n = 0 follows from the definition of CR in (8.4), while the
case n > 1 is a consequence of the definition (8.26) and the inequality

2 + [logy nmax | - b—1

Nmax

er(b—1) (5 + (2 + Mogy nmax D9 + Cp))+(b—1)

’

2
(8.44)
which in turn is a consequence of (8.2b) and (8.6c).
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We will also need that

Cypl4Y@m+13, _ -2 -1 Cu—2
FunQ-H )‘q’”rq—i-l,?z)‘q,nmax = Fq_|u_1 . (8.45)

The above inequality is a consequence of (2.7a), (8.39), and

Cu 1
— 4+ 14 (241 20—-C — <0, (846
€I‘< b + ( +|_0g2”max-|)+ u)+2(nmax+l) < ( )

which holds due to the choice of Cy, in (8.7) and (8.6a). The inequality (8.45)
then immediately implies that

Cupl4Y)+13, _ —2 .1 Cu—2
I AR I R I D (8.47)

We claim now that C; satisfies

FCTUF7T(7{)+7/2 ~1 _ _Cu2g':

a Lg+l Far1i = g1 Yg+1- (8.48)

We may verify this by using (8.25), the definition of Cy in (8.7), and the
inequalities

Cu

2b
1
< 1 —_ % > Sl“(b - 1)(nrnax + 1)(7 |—10g2 nmaX] + 20) 7(849)

+72+ flngnmaxT) +4<Cy—-2,

the second of which follows from (8.6a).
Next, we claim that due to our choice of d, we have

_ d—1
| (@) ~1 - .
T et (®2("max+1)1—~9+cb) Aot Fytitra+17g+13 <)L4 )3de»v
qq 1 1 q - +1
q+ q+ )‘q—Hrq—H,n q

< 8q+2
f— A‘IO b
q+1

(8.50)

and

-1 5 (d-—1)
_Cp+5 L Fq+1)¥q+1rq+1,n 4 3Nind,v
(561+1,nrq+1 Fg+1iitq iirg+1) )‘q+1
Ag+17g+1,7

< Jaxz (8.51)
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The bound (8.50) follows from (8.13) and (8.34), while (8.51) follows from
(8.50) and the parameter inequality 8q+1771F5J’;J1r5rq+1ﬁkq,ﬁkq+1 <A Afl Iy
For estimating the stresses emerging from the divergence correctors, we

shall need the bound

2 13 —Cr-1
Far1ida+1il 0 S T T g4, (8.52)

which follows from (8.25), (8.38), and (8.40) and implies that

2 1

19 =1 13 - —Cr—
5q+1,nrq+1)‘q,n)‘q+1 = rq+1,ﬁrq+1‘sq+1,n = Fq+1R 8g+2 - (8.53)
We furthermore need that
Cy 1~ 14T ()+7 Cy 1147 (nmax)+7 Cu—1
Fq“FqJrl qu”Fq+1 5Fqi1 , (8.54)

which in turn follows from C > b‘%] (8414 (nmax)), which is a consequence
of (8.6a) and (6.8).

In order to estimate the transport and Nash errors in L' in Sects. 7.7 and 7.8,
we claim that

Cp+4 ¢! -1 —1 -Cp-1
T8y i by < T F 8g 4. (8.55)

In order to verify (8.55), we note that by (8.18), (8.19), (8.22), (8.24), (8.26), the
definition of Cp, in (8.3), and the previously established parameter inequalities
(8.38) and (8.40), the left side of (8.55) is bounded from above by

FCh+CO+13(8q+]’ﬁ)\«q,ﬁ)]/Z(Sq)\'q)]/z)“l/z)"_3/2

q+1 q "q+1
C 13 ,~—Cp—9-C 28b—1,1— 1 —3
= FqiTCO+ (Fq+lh R)‘q+l8q+2)1/2(8q+2)‘q+1)‘qi1 )‘:11 2,8)1/2)%]/2)%1_’_/21
1 1
3Cp+Co+10+3CR . (Bp+B—1)(b—1) ;a—Cr—1
< F(12+1 2 )\[(],3 B—=1)( )(Fq-H 8442) -

Thus, (8.55) holds since SF(%C[, +co+ 10 + %CR) + 28b < 1, in view of
(8.1) and (8.6¢). To estimate the transport and Nash errors in L, we finally
need that

Cu ~
2 Cu+7Y (nmax)+21+47 ' -1 -1 Cy—1
g "Og At g ST LT (8.56)
which follows from the definition of Cy, in (8.7), (8.25), and (8.6b).
In Remark 2.7, have have used that
2Bb
& +2— 00 (8.57)

lim
(B.)—(—.1+) (b — 1)(Cyer + /)
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which is a consequence of the choice of Cy in (8.7).

We conclude this section by verifying a few inequalities concerning the
parameter Ngp n, which counts the number of available space-plus-material
derivative for the residual stress Iéq,n. This verification is the same as in [5,
Section 9.3]. For all 0 < n < np,x we require that

Nind,t’ 2Ndec +4 =< |_1/2 (Nﬁn,n - Ncut,t - Ncut,x - S)J —d s (8-583)

14'Nind,v =< Nﬁn,n - Ncut,t - Ncut,x - 2Ndec -9 s (858]3)
6Nind,v =< |_1/2 (Nﬁn,n - Ncut,t - Ncut,x - 6)J —d s (8-580)
6Nind,v =< Ll/“ (Nﬁn,n - Ncut,t - Ncut,x - 7)J . (8-58d)

for all 0 < n < npax. Additionally for 0 < 77’ < n < npax, We require that
|_1/2 (Nﬁn,ﬂ - Ncut,t - Ncut,x - 6)J —d = Nﬁn,n (859)

holds. The inequality (8.59) is a direct consequence of the recursive for-
mula (8.29) and of the fact that the sequence Nfgj » is monotone decreasing
with respect to n. Using (8.28) and (8.29) one may show that

Nﬁn,n = 2_nNﬁn,O - (2d + Ncut,t + Ncut,x + 8)-

Noting that the bounds (8.58) are most restrictive for n = npyx, they now
readily follow from (8.14).
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Appendix A. Auxiliary lemmas
A.1 L? decorrelation

In order to estimate the perturbation in L? spaces as well as terms appearing
in the Reynolds stress we will need a combination of [5, Lemma A.7] and [5,
Remark A.9], which we recall next.

Lemma A.1 (L? decorrelation with flows) Let p € {1, 2}, and fix integers
No > Ngec > 1. Suppose f: R3 xR — R and let ®: R3 x R — R3
be a vector field advected by an incompressible velocity field v, i.e. D;® =
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@ 4+ v-V)® = 0. Denote by ®~! the inverse of the flow ®, which is the
identity at a time slice which intersects the support of f. Assume that for some
AV, V> 1andC > 0 the functions f satisfies

“DND,MfHL S CAANM (M, Ny, v, D)
P
forall N + M < N,, and that ®, and &~ are bounded as

HDNHCDH 4 HDN+1<D—1H <3N

L (supp f) L= (supp f)

Jorall N < N.. Lastly, suppose that ¢ is (T/ w)3-periodic, and that there exist
parameters { > ¢ >  and C, > 0 such that

|2

L, SCM(N. Ny £.7) (A1)
forall 0 < N < N.,. If the parameters
rsu<e=<t
satisfy
THanVEp ) <1, (A2)

and we have
2Ndec +4 =< No )

then the bound
HDND,M (fgo (D)HLP < CrCuM (N, Ny, €, T) M (M, My, 1,7) (A3)

holds for N + M < N, and M < Ny, — 2Ngec — 4.

A.2 Inversion of the divergence

Given a vector field G', a zero mean periodic function ¢ and an incompressible
flow @, our goal in this section is to write G* (x)o(® (x)) as the divergence of
a symmetric tensor. For this purpose, we use [5, Proposition A.18].

Proposition A.2 (Intermittency-friendly inverse divergence) Fix an incom-
pressible vector field v and denote its material derivative by D; = 9; + v - V.
Fixintegers Ny, > M, > 1. Also fix Ngec, d > 1 such that Ny —d > 2Ngec +4,
and let p € {1, oo}.
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Let G be a vector field and assume there exists a constant Cg > 0 and
parameters A, v > 1 such that

H pN DyGHU S CoAN M (M, M;, v, 7) (A4)

forall N < Nyand M < M,.
Let ® be a volume preserving transformation of T°, such that

th) = 0 and ||V<I> — Id”LOO(SuppG) S l/2.

Denote by ®~! the inverse of the flow ®, which is the identity at a time slice
which intersects the support of G. Assume that the velocity field v and the flow
functions ® and =" satisfy the following bounds

HDN+lq)H + “DN+1(D—1 H < )\‘/N (AS)

L (supp G) L>(supp G) "

HDND,M DUH SN MM, M0, |
L% (supp G)
(A.6)

forall N < Ny, M < M,, and some )" > 0.
Lastly, let 0,9 : T3 — R be two zero mean functions with the following
properties:

() there exists d > 1 and a parameter { > 1 such that o(x) = g‘_ZdAdz?(x)
(ii) there exists a parameter i > 1 such that o and ¥ are (*/u)>-periodic
(iii) there exists parameters A > ¢, Cx > 1, and o € (0, 1], such that

HDNz‘} Hu < CLAYM (N, 2d, ¢, A) (A7)

forall 0 < N < Ngp.

If the above parameters satisfy
Mshigpst A, (A.8)
where by < in (A.8) we mean that
IN(PEN VRS A (A9)
then, we have that

G 0o ® =div (H(Goo®)+ VP +E. (A.10)
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where the traceless symmetric stress H(Go o ®) and the scalar pressure P
are supported in supp G, and for any fixed o € (0, 1) they satisfy

HDNDtMH (Go o c1>)“Lp + “DND,MP

Ly
< CGCLETVAYM(N, 1,2, A) M (M, My, v, D) (A.11)

forall N < N, —dand M < M,. The implicit constants depend on N, M, o
but not G, o, or ®. Lastly, for N < N, — d and M < M, the error term E in
(A.10) satisfies

0 DYDME ”LP < CGCHeTINTHN M (M, My, v, D) (A.12)

We emphasize that the range of M in (A.11) and (A.12) is exactly the same as
the one in (A.4), while the range of permissible values for N shrank from N,
to N, — d.

Lastly, let No, M, be integers such that 1 < M, < N, < M, /2. Assume
that in addition to the bound (A.6) we have the following global lossy estimates

WM (A.13)

NaM
”D 0 UHLOO(T3)N vhq Tq

forall M < M, and N + M < N, + M,, where

~

Cokg ST,;'. and N <Xy <A <hgp. (A.14)

If d is chosen large enough so that
CaCut (k™) (1 + 7 max(z; 1,5, CUA}) Tl (A)
then we may write
E =div (R*(Goo @) + ][w Go o ®dx, (A.16)
where R*(Go o @) is a traceless symmetric stress which satisfies
q+1 q

”DN DMR* (Go o cp)H < 5yl V107 ~M (A.17)

for N < Noand M < M,,.

The estimates claimed in Proposition A.2 for p = 1 are taken as is from [5,
Proposition A.18]. The definition/construction of the operators H and R* is
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independent of p. Then the estimates claimed in Proposition A.2 in the case
p = oo follow from the proof of [5, Proposition A.18] after replacing each
instance of an L? bound for p # oo in the proof with an L bound.
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