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Abstract we developed a framework merging unsupervised and supervised machine learning to classify
lightning radio signals, and applied it to the possible detection of terrestrial gamma-ray flashes (TGFs).

Recent studies have established a tight connection between energetic in-cloud pulses (EIPs, >150 kA) and a
subset of TGFs, enabling continuous and large-scale ground-based TGF detection. However, even with a high
peak current threshold, it is time-consuming to manually search for EIPs in a background of many non-EIP
events, and it becomes even more difficult when a lower peak current threshold is used. Machine learning
classifiers are an effective tool. Beginning with unsupervised learning, spectral clustering is performed on the
low-dimensional features extracted by an autoencoder from raw radio waveforms, showing that +EIPs naturally
constitute a distinct class of waveform and 6%—7% of the total population. The clustering results are used to
form a labeled data set (~10,000 events) to further train supervised convolutional neural network (CNN) that
targets for +EIPs. Our CNN models identify on average 95.2% of true +EIPs with accuracy up to 98.7%,
representing a powerful tool for +EIP classification. The pretrained CNN classifier is further applied to identify
lower peak current EIPs (LEIPs, >50 kA) from a larger data set (~30,000 events). Among 10 LEIPs coincident
with Fermi TGF observations, 2 previously reported TGFs and 2 unreported but suspected TGFs are found,
while the majority are not associated with detectable TGFs. In addition, unsupervised clustering is found to
reflect characteristics of the ionosphere reflection height and its effect on radio wave propagation.

Plain Language Summary In this study, we developed a machine learning-based method to classify
lightning radio signals. The method uses unsupervised and supervised machine learning to distinguish different
types of signals with high accuracy. The focus of the study is to identify energetic in-cloud pulses (EIPs) that
are associated with a subset of lightning-related terrestrial gamma-ray flashes (TGFs). The method successfully
identified 95.2% of true EIPs with up to 98.7% accuracy, and discovered new TGF events that were not
previously reported. Additionally, the method revealed insights into the ionosphere and radio wave propagation.
This method can be useful for studying lightning and other related phenomena.

1. Introduction

Machine learning (ML) classifiers are an effective tool to automatically classify images and waveforms from
vast amount of data (Alzubaidi et al., 2021). Some previous studies have shown that ML approaches are capa-
ble of discriminating different lightning radio signals. With supervised learning, (J Wang et al., 2020) demon-
strated how to classify 10 different types of lightning pulses using one-dimensional convolutional neural network
(CNN), though their classification was performed upon selected waveforms that have a balanced number of 5,000
events for each class/type. Furthermore, (Zhu et al., 2021) applied Support Vector Machines approach to a realis-
tic lightning data set to improve the classification accuracy of the In-cloud/Cloud-to-ground (IC/CG) lightning to
97%, better than the previous 91%—96% with multiparameter classification algorithms (Kohlmann et al., 2017).
Nevertheless, the research and application of ML-based lightning classification approaches remains in its infancy.
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In this work, we developed a comprehensive framework that combines unsupervised clustering and supervised
classification approaches to explore the underlying pattern of a big lightning radio data set and to effectively
classify complicated lightning signals. We demonstrated the power of this ML-based tool with an example in
identifying energetic in-cloud pulses (EIPs) (Lyu et al., 2015), which could benefit to the study of Terrestrial
gamma-ray flashes (TGFs) (Lyu et al., 2016, 2021).

TGFs, as discovered by the Burst and Transient Source Experiment (BATSE) in 1991 (Fishman et al., 1994), are
one of the most energetic phenomena that occur in the Earth's atmosphere. A prevalent theory is that TGFs are
produced by relativistic runaway electron avalanche (RREA) processes in high-electric fields inside thunderstorms,
especially during the upward in-cloud leader processes (Dwyer, 2003; Lu et al., 2010; Stanley et al., 2006). But
there are significant ambiguities in the production of seed electrons and the location of high-electric fields where
subsequent RREA processes occur, leading to different TGF models (Babich et al., 2015; Celestin & Pasko, 2011;
Dwyer, 2012). The understanding of TGFs is largely limited by observations. TGFs are usually observed by
orbital gamma-ray detectors, such as RHESSI (Grefenstette et al., 2009), AGILE (Marisaldi et al., 2010), Fermi-
GBM (Briggs et al., 2013), BeppoSAX (Ursi et al., 2017), ASIM (Neubert et al., 2019) and Insight-HXMT
(Zhang et al., 2021). Nevertheless, it is very difficult to capture TGFs since they occur randomly in thunderstorms
at a rate way lower than lightning flashes and the gamma-ray detectors usually cover a small effective area of
detection. For instance, Fermi-GBM detects on average ~800 TGFs per year within 800 km of its spacecraft's
nadir using BGO detectors of an effective area of ~161 cm? (Roberts et al., 2018). Moreover, ground-based direct
detection of TGFs could be even harder as a result of both the small likelihood of a downward TGF from natural
lightning falling into the effective detection region of the detector, and the strong atmosphere attenuation near the
ground, with only a handful of cases being reported (e.g., Dwyer et al., 2012; Tran et al., 2015; Wada et al., 2019).

In the meanwhile, recent studies have established a high-to-certain connection between EIPs (>150 kA) and
a subset (~10%) of TGFs (Lyu et al., 2015, 2016, 2021). These so-called EIP events are generated during the
upward propagation of initial negative leaders and involve large peak currents above 150 kA. EIPs and TGFs have
been proved to be two facets of a same phenomenon (Lyu et al., 2016), with the large-amplitude and relatively
long-time scale (~50 ps) EIP sferics possibly produced by the current from the TGF itself (Tilles et al., 2020) or
a combination of currents from a hot channel and the TGF (Ostgaard et al., 2021). This opens a door for indirect
observation of TGFs by ground radio measurements. Since the ground radio sensor usually continuously moni-
tors a large area within hundreds to thousands of kilometers, such EIP-TGF connection enables unprecedentedly
continuous and large-scale ground-based detection of TGFs (Lyu et al., 2021). Therefore, we can expect to estab-
lish a large data set of TGF-associated EIPs to investigate in detail the occurrence context of TGFs, overcoming
the current limitations in time and space coverage in direct TGF observations. However, a new problem arises
that even with a high peak current threshold (>150 kA), it is time-consuming to manually search for EIPs in a
background of many non-EIP events, and it becomes even more difficult when a lower peak current threshold is
used (e.g., >50 kA).

Machine learning classifiers are thus a perfect tool for this kind of big data classification problem. In this study,
we combine unsupervised and supervised machine learning approaches to classify positive-polarity high peak
current lightning signals and to identify +EIPs especially. There are a couple of technical questions that we are
interested in: Is ML capable of identifying EIP-like events, which could be relatively rare, from a large number of
data? How well does ML work comparing to humans? Can ML approaches identify EIPs without human knowl-
edge? In other words, is unsupervised clustering capable of grouping EIPs spontaneously? Moreover, we also aim
to investigate the following scientific problems: How many types of high peak current lightning pulses are there
hidden in the lightning radio data? Are there EIP-like events that have lower peak currents below 150 kA? How
are these lower peak current EIPs (LEIPs) related to TGFs?

As a result, our unsupervised clustering of high peak current lightning radio pulses (>150 kA) identifies three
processes: +EIPs (6%—7%), positive narrow bipolar events (+NBEs, ~2%), and +CGs (~91%). Supervised CNN
classifiers are trained upon the labeled clustering results and classify on average 95.2% of true +EIPs with accu-
racy up to 98.7%. Lower peak current +EIPs (LEIPs, 50—150 kA) are further found by the pretrained CNN and
compared with Fermi TGF observations. Among the 10 LEIP-Fermi cases, 2 are Fermi-reported TGFs and 2
are unreported but suspected TGFs, while the majority (6 cases) are apparently not associated with detectable
TGFs, suggesting a complicated LEIP-TGF connection. In addition, we also found that unsupervised clustering
could automatically show the diurnal change of the ionosphere reflection height and its effect on radio wave
propagation.
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Figure 1. Example waveforms (1 X 1,001 points) of high peak current events (>150 kA) from the return stroke of a positive
cloud-to-ground flash (+CG), positive energetic in-cloud pulse (+EIP), and positive narrow bipolar event (+NBE).

2. Data and Methodology
2.1. Data Preparation

This work uses ground-based LF magnetic waveform data recorded near Duke University (DU, 35.971°N,
—97.440°E) and Florida Institute of Technology (FT, 28.062°N, —80.624°E). The LF sensors are composed
of two orthogonal magnetic coils working at approximately 1-300 kHz. The sampling rate is 1 MS/s with time
synchronized by GPS. The high peak current events are selected according to the peak current, polarity, time, and
location provided by the U.S. National Lightning Detection Network (NLDN). The following two parameters are
applied during the initial data preparation: distance to either of the two sensors <1,000 km and positive NLDN
> +150 kKA.

polarity peak current [, >

From February 2020 to August 2021, a total of 11,049 events that meet these criteria, including 4,719 FT events
and 6,330 DU events, were captured by our remote sensors with magnetic waveforms stored for further classi-
fication. Note that a single lightning event might be detected by both DU and FT sensors, but for classification
purposes, it would be treated as two independent events considering that the waveforms are not identical as a
result of propagation differences. These event waveforms are normalized and centered at the peak absolute value
in a time window from 0 to 1,000 ps (1 X 1,001 points). Example pulse waveforms of +CG, +EIP and +NBE
events are shown in Figure 1. Note that we use the notation “+CG” to represent “+CG return stroke,” as to main-
tain consistency with Lyu et al. (2015). The labeling of these events is semi-automated by doing quality control
of the clustering results from unsupervised algorithms (see Section 2.2).

A second and larger data set formed with a lower positive NLDN polarity peak current threshold of
50 kA < I, < 150 kA but otherwise the same parameters is also prepared for +EIP classification. The data
set consists of 32,775 events from FT from March 2021 to December 2021 during the time windows when
the Fermi satellite is above the Americas, which accounts for ~10% of the time of a day. This criterion is to
limit the volume of radio data stored, and to enable a comparison with Fermi TGF observations. The data set
will be used as a test data set for the search of lower peak current EIP-like events using the pre-trained CNN

classifier.

In addition, gamma-ray data detected by Fermi gamma-ray burst monitor (GBM) are employed to verify if the
ground-detected +EIPs are coincident with TGF photon counts. GBM consists of 2 bismuth germanate (BGO;
~200 keV — 40 MeV) detectors and 12 sodium iodide (Nal; ~8 keV — 1 MeV) detectors (Briggs et al., 2013).
Both types of scintillator detectors manifest TGF production, but it should be noted that Nal detectors have
uncertain arrival time delays due to Compton scattering (Jstgaard et al., 2008) and longer instrumental deadtime
(Briggs et al., 2013). The temporal relationship between +EIPs at LF and TGF gamma-ray counts will be inves-
tigated by aligning the two signals at the source position (Lyu et al., 2016, 2021; Pu et al., 2019).
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Figure 2. Framework of unsupervised and supervised classification of energetic radio pulses. Unsupervised clustering helps to visualize the pattern of the energetic
radio waveforms (>150 kA) and provide initial labels. Supervised classification using convolutional neural networks (CNN) aims to train a specific model to identify
EIPs with high performance. The pretrained CNN model will be applied to a larger data set to identify more EIP-like events but with lower peak currents (>50 kA).

2.2. Framework of Waveform Classification With Deep Learning

This work develops a comprehensive framework for waveform classification that merges unsupervised and super-
vised classification methods. As shown in Figure 2, an unsupervised clustering model is first implemented to
explore the underlying pattern of a large data set. The basic idea is to cluster lightning waveforms into groups with
similar features that are separated automatically by ML without interference of human knowledge. This step does
not determine what the different groups are, but only determines that each group is different from the others. In
the next step, these initial groups will be analyzed using supervised classification to determine their categories.
For the purposes of this work, we focus only on distinguishing EIPs from non-EIPs.

While an unsupervised model by itself is capable of discriminating waveforms, a supervised model normally
performs much better with the knowledge of true data. Thus, the preliminary >150 kA EIP/non-EIP labels are
manually refined and then used to train a convolutional neural network (CNN). In this step, the goal is to train a
model/classifier that can identify as many true +EIPs as possible while keeping low false alarms.

Finally, the pretrained CNN model will be used to search for +EIPs from a new data set that includes events of
lower peak currents between 50 and 150 kA. The lower peak current data set includes too many events to clas-
sify manually. This step is to identify events with waveforms most similar to (of high likelihood) typical +EIPs
shape but of relatively low amplitude, which has implications for many more but perhaps weak TGFs. A further
comparison with Fermi GBM photon data will be made to investigate if these ground-detected +LEIPs are capa-
ble of generating satellite-detectable TGFs.

2.3. Unsupervised Clustering With Autoencoders and Spectral Clustering

The data set of ~10,000 > 150 kA lightning waveforms raises questions of what patterns are hidden in these
high peak current events and how to visualize the similarity. Instead of relying on human assumptions and defi-
nitions, unsupervised clustering is applied to categorize similar waveforms impartially by measures of similarity/
distance that are intrinsic to data itself. There are many types of clustering algorithms (Abbas, 2008; Gulati &
Singh, 2015), such as K-means, spectral clustering, DBSCAN, Gaussian Mixture, etc. In this study, the way light-
ning data is organized in a graph-like structure called feature space can be complex. To handle this complexity,
a clustering method called spectral clustering was used (Von Luxburg, 2007). This method focuses on how data
points are related to each other in this feature space, instead of how close they are to each other (Singh, 2010).

Because spectral clustering is costly to compute for a large data set, we need to reduce the data dimension first
by extracting the most useful features from raw lightning waveforms. In this work we apply autoencoding as the
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Figure 3. Illustration of spectral clustering using extracted low-dimensional features by an autoencoder model.

algorithm to compute a low-dimensional representation of the input data (Tschannen et al., 2018). As illustrated
in Figure 3, the autoencoder model consists of an encoder that encodes the 1 X 1,001 input lightning waveform
into a small-size hidden layer (1 x 10), and a decoder that reconstructs the original waveform from the hidden
layer. After some training to minimize the difference between the input and the reconstructed output, the “bottle-
neck” 1 x 10 hidden layer contains almost all the information that needs to reconstruct the input and thus can be
used as a compressed representation of the original large 1 X 1,001 waveform data for further spectral clustering
(examples of original and reconstructed waveforms can be found in Figure S1 in Supporting Information S1).
Analysis will be performed on the grouped clusters based on the 10-dimensional data in the bottleneck layer to
recognize and understand the pattern of the entire data set.

2.4. Supervised Classification With Convolutional Neural Networks (CNNs)

The technical goal of this work is to automatically identify +EIPs with high sensitivity and accuracy from a
large number of lightning LF waveforms. With a good understanding of the different kinds of energetic lightning
events from the above unsupervised clustering as well as previous studies on lightning processes, we are able to
pre-categorize these events and train a more effective classifier using supervised learning algorithms.

Different from clustering, grouping data points that are pre-categorized or labeled is known as classification.
There are a lot of classical supervised classification algorithms in machine learning, such as logistic regression,
K-nearest neighbors, decision trees, support vector machines, etc. But considering that lightning waveforms are
complicated and unstructured (vs. structured data with well-defined features, e.g., “Weather” data that contain

entries like “wind,” “temperature,
is not explicitly defined. The convolutional neural network (CNN) is one of the most useful deep learning algo-

pressure,” and so on), we will use deep learning to gather information that

rithms to make classification on unstructured data of time series, images and videos (O'Shea & Nash, 2015).

The CNN model in this work is shown in Figure 4 and consists of convolutional and classification layers. The convo-
lutional layers have three stacks with building blocks of Conv, BatchNorm, ReLU, and Max pool layers (O'Shea &
Nash, 2015). The fully connected layer connects to a SoftMax layer for classification of two classes. The model uses
forward propagation to extract information from raw lightning waveforms and downsample it to a low dimensional
representation. Backpropagation is used in training to optimize weights and minimize loss (Alzubaidi et al., 2021).
While there are many other architecture designs that may work, this CNN model is one of the most compact.

When training a CNN model, we apply the “repeated K-folds validation” method (Refaeilzadeh et al., 2009) to
evaluate the performance and to tune the model hyperparameters. The energetic lightning data set that contains
11,049 events is randomly split into training and testing parts by a ratio of 70% versus 30%. For each split, the
model is trained and tested once with the same model hyperparameters. We then repeat this process for 100 times
and evaluate the statistical performance of the model. If the statistical performance of a CNN model is not satis-
factory, we will move on to adjust hyperparameters of the CNN model which will then be regarded as a different
CNN model. In this work, we only adjust one hyperparameter, which is the weight of the EIP class in the loss
function, in order to develop a model that has properly balanced EIP sensitivity and accuracy.
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Figure 4. Architecture of the 1-dimensional convolutional neural network (CNN) and illustration of 100 random train/test
splits at a ratio of 70/30. The CNN model is trained and tested 100 times to gain a statistical performance immune to the
uncertainty due to train-test splits.
3. Results and Analysis
3.1. Unsupervised Clustering of High Peak Current Events >150 kA
Figure 5 shows clustering results of the 11,049 energetic lightning events. t-SNE method (Van der Maaten &
Hinton, 2008) is applied here to reduce the 10-dimensional features identified by the autoencoder to 2-D and
visualize the data. We let the spectral clustering algorithm cluster the data into seven groups, and the two most
distinct groups are determined to be +EIPs and +NBEs. It's worth noting that the number of clusters should be
larger than three known types and large enough to distinguish the EIP class, but not too many subgroups; seven
100 (a) Manual labels 100 (b) Spectral clustering of 7 groups (c) Group average waveforms
+CGs and others (91.4%)
50 50 |
+EIP (6.7%)
AL X I
B #NBE (1.9%)
-50 & -50
-100 - -100 .
-100 -50 0 50 -100 -50 100 0 200 400 600 800 1000

tSNE1

tSNE1

Time (us)

Figure 5. t-SNE visualization of 11,049 positive polarity high peak current events (>150 kA) with color coded by (a) manual labels, and (b) spectral clustering groups.
(c) Average waveforms for each group from spectral clustering show that Group 6 and Group 7 are dominantly +EIPs and +NBEs, respectively, consistent with the

manual labels.
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Table 1 clusters were deemed appropriate but similar numbers are also acceptable.
Number of Positive Polarity High Peak Current (>150 kA) Events With Before we proceed to manually analyze the waveforms in each group, the

Manual Class Labels

group average waveforms are plotted out to show the prevalent features in

Manual labels N e Percentage % each group as seen in Figure 5c. Compared with the example waveforms
shown in Figure 1 and in previous studies about +EIPs (Lyu et al., 2015) and

EIPS 3 67 +NBEs (Eack, 2004), it is likely that Group 6 is dominated by +EIPs and

+NBEs 214 1.9 Group 7 +NBEs.

+CGs and others 10,092 14 Groups 1, 2, and 3 are likely +CGs with decreasing amplitude of

Total 11,049 100

ionosphere-reflected sky waves (the second pulse after 500 ps). This indicates

that these energetic lightning events can be discriminated by their sky wave

features and it worths a further look at how these subgroups of +CGs reflect
the information of ionosphere (see Section 3.4). However, it is less clear what the lightning events are in Groups 4
and 5. A question may raise that are there any new categories of energetic lightning events that have not yet been
recognized? For the time being, we apply question marks on these two unclear Groups 4 and 5, and we place all
events from Groups 1 to 5 in a large group of “+CGs and others” for the sake of simplicity. More investigation on
the above questions will be discussed in Section 3.4.

With this general understanding of the pattern of the data set, it becomes more straightforward to quality control
the labels, especially for +EIPs which are the focus of this work. It is important to note that while the 3D parame-
ter space defined by Lyu et al. (2015) was useful for identifying EIPs, it was not sufficient for dealing with larger
datasets with more variations in individual EIPs and CGs. Unsupervised clustering as an independent classifier
became helpful in identifying subtle features that could not be described by defined parameters. However, the
ML model could generate visually apparent errors, and human reviewers had additional knowledge that the two
waveforms from FT and DU sensors must have the same class label for a given EIP. Therefore, a hybrid approach
combining human expertise and machine learning was used for manual labeling. This approach allowed human
reviewers to ensure the most accurate representation of the EIPs by performing quality control on the results
(examples of misclustered events are shown in Figure S2 in Supporting Information S1). It is worth noting that
human reviewers depend on the typical waveforms of each type displayed in Figure 1 to identify the types of ener-
getic lightning events accurately. However, for waveforms that appear ambiguous and lack simultaneous meas-
urements from another station, both human and machine classifiers may misclassify them. To ensure consistency,
two of our coauthors independently visually inspected all 11,049 events.

Figure 5a and Table 1 respectively show the visualization and statistics of the manually labeled events that
are classified into three categories: +EIPs (6.7%), +NBEs (1.9%), and +CGs and others (91.4%). This manual
labeling is assumed to be correct and thus the ground truth. The labels assigned to the grouped points in spectral
clustering for +EIPs identifies 90.7% of the true EIPs with an accuracy of 89.5%, which is accurate enough to be
useful. This also confirms that +EIPs and +NBEs are naturally two distinct classes of energetic lightning events.

Meanwhile, we notice that there are many +EIPs being misclassified into Group 3 and Group 4. Why are these
+EIPs being misclassified by machine learning? It is found that the mean distance of ML-misidentified but
true +EIPs is 772 km, while the mean distance of ML-identified true +EIPs is 629 km, suggesting that the
ML clustering becomes relatively less sensitive to +EIPs when the propagation distance is above ~600 km. At
longer distances, the event waveform gets more distorted by sky wave, thus it becomes more and more difficult to
discriminate CGs and EIPs even by the human eye. This also indicates that the manually refined data set may still
be subject to human error and is not necessarily exhaustive, particularly in cases where the observation distance
is farther than 600 km. In this sense, ML performs similarly to human beings.

At this point, we could continue to use the unsupervised clustering model to discriminate +EIPs, and try to
further improve the performance (Xie et al., 2016). Or we can switch to supervised classification using the
labels/knowledge gained from unsupervised learning (clustering). We choose the latter, with the advantage that
in supervised classification there is more flexibility in training the model to target for a specific known class.

3.2. Supervised Classification of +EIPs > 150 kA With CNN

Note that +EIPs are only 6%—7% of the entire data set, which means that the classification is made upon an
imbalanced data set of a major non-EIP class (~93%) and a minor EIP class. Some special treatment needs to
be made to balance the two classes (Tanha et al., 2020). Therefore, we trained 4 CNN models that put different
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Figure 6. Classification performance of 4 CNN models on testing datasets using different weights of losses for EIP and non-EIP classes. (a) Performance of each CNN
model running on 100 random train-test splits. (b) Confusion matrix (error matrix) for one single data point of CNN2 type.

weights on EIP and non-EIP classes in the loss function to overcome this issue. From CNN1 to CNN4, the model
is more targeted to include as many true EIPs as possible with increased punishment on missing true EIPs, which
also affects the accuracy. We use the standard definitions with the EIP sensitivity defined as the ratio of the
model-predicted true EIPs over all true EIPs, and the EIP accuracy defined as the ratio of the model-predicted
true EIPs over all model-predicted EIPs. The goal is to have both high EIP sensitivity and accuracy, but there is
a tradeoff between the two measures.

Figure 6 shows the classification performance of the 4 CNN models. Each model was trained and tested on 100
random splits of the original >150 kA data set. There is a total of 4 X 100 = 400 data points in Figure 6a. These
CNN classification models operate well with a mean EIP sensitivity of 95.2% and an EIP accuracy as high as
98.7%. Since the EIP sensitivity does not increase as significantly as the accuracy drops when the model puts
more punishment on missing events, CNN2 appears to be an appropriate choice to use in practice. Figure 6b
shows the confusion matrix (or error matrix) that visualizes the goodness of one example of training and testing
result with CNN2. In this example, CNN2 was trained on 11,049 x 70% = 7,734 events that were randomly
selected from the entire data set, and then tested on the rest 11,049 x 30% = 3,315 events. According to the
confusion matrix, there are 223 + 5 =228 true EIPs in which 223 are identified by CNN2 but 5 are missed, while
CNN2 predicted 223 + 12 = 235 EIPs in which 223 are true but 12 are false. This means that CNN2 identified
223/228 = 97.8% true EIPs with an accuracy of 223/235 = 94.9%, which is much better than unsupervised spec-
tral clustering. Therefore, supervised CNN classification is demonstrated to be a powerful approach for +EIP
classification and for lightning classification in general. In the next Section, we will apply the pretrained CNN
model to search for +EIPs in a larger data set of >50 kA lightning events, aiming to detect more TGFs that were
not feasible without ML.

3.3. Application in Searching for +EIPs > 50 kA

One of the pretrained CNN2 models is now applied to predict +EIPs from a new data set of 32,775 events of
peak currents 50—150 kA. It should be noted that the relative fraction of component classes +EIPs, +NBEs, and
+CGs in the data may not remain the same when the peak current threshold is lowered. Also, the new data set
could include energetic pulses with a waveform pattern unlike any of the three categories identified in the high
peak current data set, which could reduce classification performance. But we expect to be able to spot events that
have a typical +EIP waveform shape using the pretrained CNN model.
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Figure 7. Prediction results of the pretrained CNN model on a new energetic lightning data set (~30,000 events) of peak currents between 50 and 150 kA. (a)
Distribution of probability score for +EIPs. (b) Distribution of peak currents for events of probability score >0.99. (c) An example of lower peak current +EIPs
identified by the CNN model with a high confidence close to 1. (d) Another example but with a low confidence close to 0.5.

Figure 7 shows the prediction results of the CNN model on the new 50—150 kA data set. 1,849 (5.6%) out of
32,775 events have a probability score higher than 0.5, which indicates that they are likely EIP events. The
higher the probability score, the more likely the event is a true EIP. We then show two example waveforms of
score = 0.999 and score = 0.502 in Figures 7c and 7d, respectively. The high-score event has extremely similar
waveform to a typical >150 kA EIP, though its peak current is only 54 kA, while the low-score event contains
more complicated pulses that make it difficult for unambiguous classification. Note that the CNN model has
especially high confidence (score >0.99) in classifying 463 (23%) events into +EIPs, seeing the first high bar in
the histogram plot of the probability score in Figure 7a. We thus assume that these 463 events are “true” +EIPs
and proceed to investigate the peak current distribution of these lower peak current +EIPs (LEIPs), which is
shown in Figure 7b. It is found that less than 20% LEIPs have a peak current above 100 kA while nearly half
of them have relatively low peak current between 50 and 60 kA. This indicates that there could be many more
EIP-TGFs happening in the thunderclouds than have been previously identified, if the EIP-TGF connection still
holds for these LEIPs.

Then we investigate the Fermi-GBM photon data at the time of the lower peak current EIPs to verify if these
LEIPs generated satellite-detectable TGFs. We slightly lower the score threshold to 0.9 to include more events
to be our “true” +EIPs, which leads to 998 events. Since the Fermi satellite detects TGFs effectively within a
distance of 600 km to its footprint (Briggs et al., 2013), only 10 LEIPs events are matched with Fermi within
600 km and 2 milliseconds. A case-by-case check on the LF waveforms and time-aligned photon counts of these
10 events shows that 2 are definitive TGFs that were previously reported by Fermi and 2 are suspected TGFs not
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Figure 8. LF waveforms and Fermi gamma-ray counts for 4 lower peak current +EIPs identified by the CNN model. Two are Fermi-reported TGFs and two are suspect
TGFs not reported by Fermi.

reported by Fermi but with a small peak (verified to not be a cosmic ray) higher than the environmental noise in
the photon profile. These 4 cases are shown in Figure 8. However, the remaining 6 LEIPs are apparently not asso-
ciated with detectable TGFs (see Figure S3 in Supporting Information S1), especially in one case that the Fermi
satellite is almost right above the head with a small horizontal distance of 43 km but no excess of photon counts
was detected at the time of this 52 kA LEIP. It is unknown whether this is because the TGF source is located deep
in the cloud and not bright enough to be detected by the satellite, or simply because some LEIPs do not produce
TGFs. These results collectively indicate that the relationship between TGFs and +EIPs of lower peak current
(especially 50-100 kA) is complicated and needs to be further studied.

To this point, several questions arise that (a) What are those low-score energetic pulses (like the one in Figure 7d)
and are they associated with TGFs? (b) What is the difference between a typical LEIP and a low-score energetic
pulse? These questions call for further studies and we do not have definitive answers at the moment. However, the
low-score pulses in Figure 7d also occur during the initial leader propagation similar to +EIPs and they are actu-
ally the so-called initial breakdown pulse (IBP) (e.g., Marshall et al., 2013; Y Wang et al., 2016; Wu et al., 2015).
Some previous studies have suggested that strong IBPs could be candidates for TGFs (Marshall et al., 2013;
Stolzenburg et al., 2016), and downward gamma rays (or weak TGFs) have been detected on the ground during
IBPs of negative CGs (J Belz et al., 2018; J. W Belz et al., 2020; Wada et al., 2019).

3.4. Implications for Ionosphere Reflection From Clustering Results

As mentioned in Section 3.1, questions remain as to whether we can extract more information from Groups 1 to
3 in Figure Sc that seem to be separated by sky wave variation, and what the events inside Groups 4 and 5 are.
Considering that the relationship between ground wave and sky wave is primarily reflected by the time difference
of the two, it is thus important to align all events at the ground wave pulse instead of the absolute maximum of
the entire pulse sequence. We then re-aligned lightning waveforms at the minimum of the first negative ground
wave pulse and repeated the autoencoder feature extraction and spectral clustering.

In Figure 9, we show the group average waveforms for the 7 new groups, along with the distribution of event hour
of the day and event distance to sensor for each group. Groups 6 and 7 again are primarily composed of +EIPs and
+NBEs, respectively, making them relatively easy to discriminate from the rest groups. While ideally the number
of events should be proportional to the square of distance (area), it is obvious from the distance distribution that
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Figure 9. Group average waveforms and the corresponding histograms of the hour of the day and the distance to sensor for
events in each group. The waveforms are aligned at the peak of the first ground wave pulse instead of the absolute maximum
of the entire pulse as did in Figure 5.

the number of identified +EIPs stop increasing at a distance above 600 km, which again indicates that +EIPs
become less distinguishable when they are far away from the sensor.

Compared with Figure 5c, the new Groups 1 to 5 become self-explanatory that they are all +CGs but with
various sky waves. Note that we only see the first-hop sky wave in the group average waveforms, though there
could have multiple reflected sky wave pulses in individual events due to multiple reflections. It is now clear
that Groups 1 and 2 are mostly daytime +CGs, while Groups 3 and 4 nighttime +CGs. For daytime +CGs,
comparing Group 2 with Group 1, the time difference between the ground wave and the sky wave is shorter,
but the magnitude ratio of the sky-wave/ground-wave is larger. And the same case for nighttime events. Since
Group 2(4) is farther from the sensor than Group 1(3), we can thus conclude that the sky-wave-to-group-wave
time delay and the magnitude ratio are both related to the propagation distance. The reason is that the sky
wave is generated by the reflection in ionosphere D region (e.g., Han & Cummer, 2010), which is sensitive
to propagation distance. When the distance gets longer, the propagation length difference between the ground
wave and the sky wave gets shorter and thus results in a shorter time difference between the two. Moreover,
the ground wave attenuates faster than the sky wave, which leads to a relatively larger sky wave amplitude at a
farther distance.

In addition, comparing nighttime events with daytime events, especially Group 2 and Group 4 that both occur
near 900 km, we can see that the sky-wave-to-ground-wave time delay is longer for nighttime events, which
indicates that the ionosphere reflection height is higher at night as can be explained by the reduced ionization by
solar radiation. However, the sky-wave/ground-wave magnitude ratio is larger for nighttime events, which indi-
cates that the ionosphere is more reflective during the night. Group 5 is relatively special that it does not contain
obvious sky wave and the distribution of hour of the day is relatively uniform. Considering that most of events in
Group 5 are within 600 km, it is plausible that close events do not have significant sky wave compared to ground
wave, and this situation occurs during both the day and night.
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We can then summarize the characteristics of the ionosphere and its influence on the radio wave propagation
based upon the ML unsupervised clustering results of energetic lightning radio waveforms:

The nighttime ionosphere reflection height is higher than the daytime.

The nighttime ionosphere reflection is stronger than the daytime.

The longer the propagation distance, the shorter the time delay between the sky wave and the ground wave.
The longer the propagation distance, the larger the magnitude ratio of sky-wave/ground-wave.

RAEE I S

The sky wave of +CGs becomes significant at a distance above 500 km.

In fact, all these understandings align with the well-known knowledge about the ionosphere (e.g., Cummer
et al., 1998; Shao & Jacobson, 2009; Wait, 1960), but the key point is that these characteristics are, to the best of
our knowledge, shown for the first time to be revealed automatically by machine learning from lightning radio
data. For the future, more detailed investigation on ionosphere remote sensing is anticipated with the help of
machine learning.

3.5. Remarks on Broader Applications

To this point, we have demonstrated that the ML-based clustering and classification methods are extremely
successful for revealing the underlying pattern of lightning radio signals and further classifying their types. In
fact, the framework we proposed in Figure 3 can be used in any other waveform classification problems that
first require initial understanding and labeling of the large data set, and then focus on identifying certain classes.
There could be a lot of application scenarios beyond +EIPs and lightning classification, such as applications to
earthquake signals, brain signals, radar signals, etc. Improvements in easing the process of the quality control of
the initial labels from clustering results can be made by iterative training, prediction and refinement using CNNs.

4. Conclusions

Direct observation of TGFs with energetic particle detectors is powerful but also limited due to coverage in time
and space, which in turn limits our understanding of TGF generation and effects. This work aims to improve the
continuous and large-scale detection of TGFs through ground radio measurements of EIPs, based on the known
EIP-TGF connection. As a manual search of extremely large volumes of lightning waveform data is infeasible,
machine learning classifiers become a perfect tool to explore for this kind of big data classification problem.

First, we are interested in how many types of high peak current lightning pulses exist in the data and to confirm
that +EIPs is a naturally distinct type, as has been shown previously (Lyu et al., 2015). For this purpose, we
specially designed an unsupervised clustering model to automatically group different classes of energetic light-
ning events (>150 kA) independent of human knowledge. We implemented an autoencoder model to extract
low-dimensional features from raw lightning waveforms and then applied spectral clustering to group different
clusters for ~10,000 events. As a result, the ML clustering shows that high peak current, positive NLDN polarity
lightning pulses are composed of three distinct classes: +CGs (~91%), +NBEs (~2%) and +EIPs (6%—7%). This
confirms that these three types are intrinsically different, and importantly, there is no sign of a fourth type of
positive polarity high peak current lightning event.

High-performance EIP classification was then realized by a supervised CNN with a labeled data set generated by
the unsupervised clustering. Since +EIPs are only 6%—7% of the data set, we specially tuned the weights of EIPs
in the loss function for this scenario of imbalanced classes. Our CNN models identify on average 95.2% of true
+EIPs with an accuracy up to 98.7%, making them a very powerful tool for automatic +EIP classification and
possible ground-based TGF detection. In fact, such high sensitivity as well as the high accuracy is comparable to
what a human can ideally achieve, and perhaps cannot be further improved because there is an intrinsic ambiguity
of several percent in determining EIPs due to the complexity in individual waveforms.

We are also interested in how lower peak current EIP-like events are related to TGFs, knowing that previous defi-
nition of EIPs with a high threshold of 150 kA was arbitrary and largely due to the limited data volume processing
capability of a human being. Thus, the pre-trained CNN classifier is then applied to a larger data set of ~30,000
events with peak currents >50 kA. It is found that about a quarter of the predicted EIPs have relatively low peak
currents between 50 and 60 kA, which suggests that many more TGFs could be happening than we already
detected if the EIP-TGF connection still holds for LEIPs. Compared with Fermi-GBM photon data, 2 previously
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reported TGFs and 2 unreported but suspected TGFs are found out of 10 matched EIP-Fermi events, while the
majority (6 cases) are apparently not associated with detectable TGFs. This indicates that LEIPs, especially those
of peak currents between 50-100 kA, have a relatively complicated relationship with TGFs, but that at least
some LEIPs are associated with TGFs detectable on orbit. Further observations and simulations are needed to
investigate if there is a cutoff in EIP peak currents that controls/reveals the TGF generation and detectability at
different source altitudes.

Meanwhile, similarities between LEIPs and IBPs are seen by ML because the CNN model predicts many IBPs to
be EIPs with a probability score above 0.5. As the probability score increases, the ambiguity between EIPs and
IBPs decreases. Note that there are a few reports of downward gamma rays during IBPs, it is worth a further study
on the similarity and difference between the two types.

We additionally found that ML can automatically identify the diurnal change of the ionosphere reflection height
and its effect on radio wave propagation. Note that waveform clustering results were affected by different time
alignments attempted: aligning at absolute peak value and ground wave pulse peak. Absolute peak method was
effective throughout the study to identify waveform types, but may not distinguish well between ground and sky
waves. Ground pulse method was more complex, required human-defined criteria, but was beneficial for iono-
spheric feature extraction. In the future, we can extend the ML methods herein to investigate negative-polarity
energetic lightning pulses and any other lightning sferics to extract more understandings hidden in the big light-
ning data. Moreover, the framework we proposed and demonstrated in this work for 1-D lightning waveform
clustering and classification could be widely applied to other waveform classification problems, like earthquake
signals, brain signals, radar signals, etc.

In summary, we develop machine learning classifiers, combining unsupervised and supervised methods,
to automatically discriminate +EIPs with high sensitivity and accuracy, which represents a powerful tool for
ground monitoring of EIP-type TGFs. Further application to lower peak current EIPs shows that the majority of
50-100 kA EIPs do not apparently relate to detectable TGFs.

Data Availability Statement

This work complies with the AGU data policy. The data set used in this study is available on the data reposi-
tory website at https://doi.org/10.5281/zenodo.7651645 (Pu & Cummer, 2022). The ML model and figures were
developed with MATLAB R2021a.
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