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a b s t r a c t 

We consider the problem of remanufacturing planning in the presence of statistical estimation errors. 

Determining the optimal remanufacturing timing, first and foremost, requires modeling of the state tran- 

sitions of a system. The estimation of these probabilities, however, often suffers from data inadequacy 

and is far from accurate, resulting in serious degradation in performance. To mitigate the impacts of the 

uncertainty in transition probabilities, we develop a novel data-driven modeling framework for reman- 

ufacturing planning in which decision makers can remain robust with respect to statistical estimation 

errors. We model the remanufacturing planning problem as a robust Markov decision process, and con- 

struct ambiguity sets that contain the true transition probabilities with high confidence. We further es- 

tablish structural properties of optimal robust policies and provide insights for remanufacturing planning. 

A computational study on the NASA turbofan engine shows that our data-driven robust decision frame- 

work consistently yields better out-of-sample reward and higher reliability of the performance guarantee, 

compared to the nominal model that uses the maximum likelihood estimates of the transition probabili- 

ties without considering parameter uncertainty. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

The manufacturing industry is a major consumer of materi- 

ls and energy and imposes a significant impact on environment. 

ustainable manufacturing with improved environmental perfor- 

ance has drawn great attentions from governments, companies 

nd scientific communities. In the past decade, remanufacturing 

as emerged as one of the critical elements for developing a sus- 

ainable manufacturing industry ( Ijomah et al., 2007 ). Remanufac- 

uring is an overhaul process whereby used or broken-down prod- 

cts, referred to as “cores”, are restored to a like-new condition 

ith an extended lifetime ( Östlin et al., 2009 ). During this pro- 

ess, the cores pass through a number of operations including in- 

pection, dismantling, part reprocessing, repair, replacement and 

eassembly. The performance of the remanufactured cores is ex- 

ected to meet the desired product standards similar to the origi- 

al product, but is not considered a new product in its first life. 

Comparing to manufacturing a new product, remanufacturing 

an reduce up to 80% of energy consumption and carbon diox- 

de emissions ( Sutherland et al., 2008 ), and 40–65% of manufactur- 
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ng costs ( Ford & Despeisse, 2016 ). Remanufacturing is being prac- 

iced across various sectors like automotive, aerospace, electrical 

nd electronic equipment (EEE), medical equipment, and machin- 

ry ( Russell & Nasr, 2019; Yang, 2020; Zhang et al., 2021 ). How-

ver, the growth of the remanufacturing industry faces several crit- 

cal challenges. One major challenge faced by remanufacturers is 

anaging the inherent uncertainty in cores’ conditions ( Örsdemir 

t al., 2014; Yang et al., 2020 ), which is largely attributed to the 

urrent reactive end-of-life remanufacturing approach. Many cores 

ollected at the end of a product’s life are no longer remanufat- 

rable due to the lack of adequate technologies to restore them 

o like-new conditions. To overcome this barrier, much attention 

as been received in designing optimal acquisition decisions such 

s acquiring more cores than the demand or purchase cores in 

orted grades, which allows a remanufacturer to be more selec- 

ive and remanufacture only those items that are in the best con- 

ition ( Galbreth & Blackburn, 2010; Örsdemir et al., 2014 ). While 

hese acquisition strategies may work well for electronic and elec- 

rical equipment including consumer electronics, ink and toner car- 

ridges, and white goods, it is much less applicable to several major 

ectors of remanufacturing such as aerospace, heavy duty and off- 

oad (HDOR) equipment, where bulk purchase is rarely an option. 

Further exacerbating the issues brought by cores’ uncertain 

onditions is that contrary to the conventional wisdom that 

https://doi.org/10.1016/j.ejor.2023.01.031
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emanufacturing reduces environmental impacts, it can, in fact, 

ead to negative outcomes due to heavy damage. Several studies 

ave shown that in some cases, remanufacturing actually con- 

umes more energy than manufacturing a new product ( Chandler, 

011; Gutowski et al., 2011 ). A natural question that arises is: Can 

e identify the optimal timing for remanufacturing prior to the 

roduct’s life end when it is still remanufacturable and worth the 

ffort? The f ocus of this paper is to investigate a proactive reman- 

facturing planning policy that is more viable for remanufacturing 

f large, capital equipment. 

Two critical enablers of proactive remanufacturing for equip- 

ent in industries such as aerospace, HDOR, are: condition 

onitoring technologies and service-based contracts. Due to the 

ission-critical and capital-intensive nature of these equipment, 

hey are monitored by various sensors and their conditions can be 

ssessed by analyzing the collected sensor data. Moreover, manu- 

acturers of equipment in these sectors have been increasingly of- 

ering service-based purchasing agreements. Through these agree- 

ents, the manufacturers have access to the status of the product, 

nd can determine when to remanufacture equipment rather than 

ait until the product fails. An example of such agreement is the 

oldCare provided by Boeing, which is an integrated service pro- 

iding asset management, engineering, maintenance and support 

or airline customers ( Parker et al., 2015 ). 

In this paper, we provide a novel data-driven modeling frame- 

ork for remanufacturing planning. In particular, we address the 

obustness of the planning decision threatened by the inherent 

ata inadequacy in sensor data. The optimal planning decision in- 

olves suggesting the optimal action, such as no intervention, re- 

anufacturing, or scrapping, at different system states, and there- 

ore it is required to first and foremost estimate the transition dy- 

amics of a system. The underlying transition probabilities (some- 

imes referred to as the true transition probabilities), which gov- 

rn the condition evolving process of a system, are typically un- 

nown and need to be estimated from data. The estimation is 

ypically subject to large statistical errors due to noises and in- 

orrect information contained in the sensor data. This data de- 

ciency poses a critical question to decision makers: How does 

ncertainty in model parameters translate into uncertainty in the 

erformance of interest? The decision makers must assess whether 

ny observed nominal improvement in the environmental and eco- 

omic effects resulted from remanufacturing at certain states is 

ikely to be a true improvement, suggesting remanufacturing in 

hose states, or conversely, a consequence of the parameter un- 

ertainties due to statistical estimation errors, favoring remanu- 

acturing when it causes negative effects. Note that the nominal 

mprovement here refers to the improvement obtained from the 

lanning model that uses the maximum likelihood estimates with- 

ut considering parameter uncertainty. The assessment the deci- 

ion maker needs to make here corresponds to the so-called “Opti- 

izer’s curse” phenomenon if we obtain an optimal decision based 

n a given dataset and evaluate its performance on a different 

ataset, then the resulting out-of-sample performance is often dis- 

ppointing. To mitigate the impacts of the uncertainty in model 

arameters, we construct an ambiguity set that contains the true 

ransition probabilities with high confidence using historical data 

nd formulate the remanufacturing planning problem as a robust 

arkov decision process (MDP) that helps remanufacturers hedge 

gainst the worst transition probabilities. 

We further establish structural properties of optimal robust 

olicies for decision making in remanufacturing planning. We 

how that the optimal robust policies are of control-limit type with 

espect to both the condition of the equipment and the cumula- 

ive number of remanufacturing processes. Control limit refers to 

ome threshold that delineates the upper or lower limit of the 

ange of some action. These key properties provide useful manage- 
103 
ial insights that support remanufacturers’ robust decision making, 

llow us to reduce the search effort for determining the optimal 

olicy, and facilitate easy implementation in practice. In addition, 

ased on the monotone structure of the optimal robust policies, 

e develop a monotone value iteration algorithm to reduce com- 

utational efforts. Computational studies using simulated opera- 

ional data of NASA turbo fan engine are conducted to demonstrate 

he optimal robust policies and to investigate the out-of-sample 

erformance of the resulting optimal robust remanufacturing poli- 

ies. We further derive data-driven solutions to improve the out- 

f-sample performance. 

The main contributions of this paper are threefold. First, we de- 

elop a robust remanufacturing planning framework that helps re- 

anufacturers to mitigate the effects of statistical estimation er- 

ors caused by limited data and/or errors contained in the data. 

ur study represents an initial attempt to prescribe optimal robust 

lanning policies that help remanufacturers remain robust with re- 

pect to statistical estimation errors. Second, we establish sufficient 

onditions that ensure the optimal robust remanufacturing policies 

re of control-limit type. Few papers in the robust MDP literature 

ave characterized the properties of optimal robust policies. The 

ontrol-limit remanufacturing policies are appealing because of its 

asiness of implement and the computational efficiency. Lastly, we 

resent a comprehensive computational study to demonstrate the 

tility of the proposed method and examine the impacts of pa- 

ameter uncertainties. In the computational study, to enhance the 

ut-of-sample performance, we have further developed data-driven 

ecisions that perform well under the most adverse distribution 

ithin a certain statistical distance (e.g., phi-divergence, Wasser- 

tein distance) from a nominal distribution constructed from the 

raining samples in the computational study. The goal of this data- 

riven decision-making is to learn a decision from finitely many 

raining operational data that will perform well on unseen data. 

The remainder of this paper is organized as follows. 

ection 2 reviews relevant literature on remanufacturing planning 

nd sequential decision making with parameter uncertainty. In 

ection 3 , we develop the data-driven robust remanufacturing 

lanning model. Section 4 establishes conditions to ensure the 

ptimal robust policies are of control-limit type. In Section 5 , we 

resent a computational study using simulated operational data 

f NASA’s turbofan engines. Section 6 concludes this study and 

uggests future research directions. 

. Literature review 

Our study is related to two streams of the literature: remanu- 

acturing planning and sequential decision-making with parameter 

ncertainty. 

.1. Remanufacturing planning 

Due to limited data and/or the noises and incorrect information 

ontained in the data, remanufacturing planning is typically con- 

ronted with the internal uncertainty in addition to the external un- 

ertainty . The internal uncertainty is due to the stochastic nature of 

 component or system’s condition evolution and the external un- 

ertainty is due to the deviation of the estimates from their true 

alues. Existing works on remanufacturing timing decisions often 

ither ignore both types of uncertainties in transition dynamics of 

 remanufacturing system or only focus on the internal variation. 

or example, Song et al. (2015) determine remanufacturing tim- 

ng based on a deterministic degradation process charaterized by 

esidual strength factors. Wang et al. (2016) recommend remanu- 

acturing based on online monitoring: Products are remanufactured 

hen it reaches the limit condition beyond which the product is 

o longer remanufacturable. External variation is largely ignored 
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n these works, and hence, remanufacturing could be blindly sug- 

ested even if it might lead to increased negative environmental or 

conomic impacts, resulting in the robustness of remanufacturing 

lanning decisions in question. 

Remanufacturing planning decision bears a close resemblance 

o maintenance planning which aims to determine the opti- 

al timing of preventive maintenance. In this paper, we model 

he transition dynamics using Markov models; the most rele- 

ant works in maintenance optimization literature are the ones 

hat model maintenance problems using MDP (e.g., Elwany et al., 

011; Kim & Makis, 2013; Kurt & Kharoufeh, 2010 ). Most mainte- 

ance optimization models that are formulated as an MDP, how- 

ver, assume that the cost parameters and the transition kernel 

re known, and hence, cannot provide satisfactory out-of-sample 

erformances when future realizations deviate from the predicted 

nes. One of the few papers that consider ambiguity in transition 

robabilities is by Kim (2016) . In his paper, Kim (2016) considers 

 failing system whose underlying state is unobservable and ac- 

ounts uncertainties in both posterior distributions and transition 

robabilities. Our work contributes to the maintenance literature 

here very few papers have examined the impacts of the parame- 

er uncertainty in the decisions and the performance of interest. 

Several recent papers consider parameter uncertainty in main- 

enance decision making, using a Bayesian approach. For exam- 

le, Fouladirad et al. (2018) study time-based replacement poli- 

ies when parameters of the time-to-failure distribution are un- 

nown and investigate the asymptotic distribution of the optimal 

eplacement decision and the optimal average cost. de Jonge et al. 

2015) and Omshi et al. (2020) use a Bayesian approach to model 

he parameter uncertainty and adjust maintenance decisions based 

n posterior distributions. The Bayesian approach, while providing 

 natural choice for learning parameter values, presents challenges 

n specifying an appropriate prior distribution when prior infor- 

ation of unknown parameters is limited. Our paper differs from 

hese papers in two aspects. First, we consider an alternative ap- 

roach to model parameter uncertainty. We use data-driven meth- 

ds to construct ambiguity sets that contain true parameters with 

igh confidence, which allow a decision maker to hedge against 

he worst-case parameters. Moreover, our objective is to find op- 

imal robust policies that maximize the total reward under the 

orst transition probabilities, whereas the aforementioned three 

apers focus on quantifying the uncertainty in the optimal average 

ost rate and adjusting maintenance policies when more informa- 

ion becomes available. Second, we formulate the problem as a se- 

uential decision process and these three papers model the main- 

enance decision problem as a renewal process. 

.2. Sequential decision making with parameter uncertainty 

Early works on the MDPs with parameter uncertainty, includ- 

ng Satia & Lave (1973) ; Silver (1963) ; White & El-Deib (1986) and

hite & Eldeib (1994) , formulate the uncertainty in either a game- 

heoretic or Bayesian approach. The game-theoretic approach as- 

umes that the uncertainty about the transition probabilities is 

ncoded by describing the set of all transition probability rows. 

ence, when the decision maker makes a decision for a given state, 

he nature, who plays an adversarial role, observes the decision, 

nd selects a transition probability row from the set to minimize 

he reward. Satia & Lave (1973) use the game-theoretic formula- 

ion to model the transition uncertainty in MDP and proposed a 

olicy iteration procedure to solve the problem. White & Eldeib 

1994) further develop a modified policy iteration-based algorithm 

or the MDP with imprecise transition probabilities. The Bayesian 

pproach, first introduced by Silver (1963) , assumes a known pri- 

ri probability distribution of each transition probability row. The 

ransition probabilities can be updated along the Bellman’s equa- 
104 
ions. Dirichlet priors are a common choice of modeling the uncer- 

ainty in transition probabilities ( Delage & Mannor, 2010 ). 

Most of the early contributions, however, do not concern 

he construction of ambiguity sets. Inspired by the data-driven 

pproaches, recent robust MDP works ( Iyengar, 2005; Nilim & 

l Ghaoui, 2005; Wiesemann et al., 2013 ) have developed various 

ethods to construct the uncertainty set of transition probabilities 

hat contain the true transition probabilities with high confidence. 

any statistical methods, such as likelihood constraints, deviation- 

ype constraints and distance metrics (e.g., Wasserstein ball, φ- 

ivergence balls), have been applied to construct an uncertainty set 

f transition probabilities with historical samples ( Iyengar, 2005; 

ilim & El Ghaoui, 2005; Wiesemann et al., 2013 ). Reformula- 

ion of robust MDPs with different types of ambiguity sets and 

he corresponding tractability have also been studied in the liter- 

ture. Compared to the theoretical orientation of these works, our 

resent work focuses more narrowly on developing methods for a 

pecific problem class, establishing structural properties of optimal 

obust policies, and providing executable insights. 

. Robust remanufacturing planning problem 

.1. Model development 

Consider remanufacturing planning of a single-component sys- 

em that degrades during its operation. Because we focus on 

ingle-component systems, the words system and component are 

sed interchangeably throughout the paper. The system is in- 

pected at equally spaced discrete time epochs T = { 0 , 1 , . . . } . Let
S, K) be the state space, where S = { 0 , 1 , 2 , . . . , S} represents the
et of condition states and K = { 0 , 1 , . . . } represents the set of
umulative numbers of completed remanufacturing activities. A 

arger value in S denotes a worse condition and the worst state 

 is an absorbing state, meaning the system is not operating prop- 

rly and needs to be either remanufactured or scrapped. It should 

e noted that state s ∈ S can be a specific physical characteristic 

hat reflects the condition of a system or a health index obtained 

rom various sensor data to reflect the overall condition of a sys- 

em. We consider a one-dimensional condition state because re- 

anufacturing is a means for overhauling a system and in prac- 

ice, when remanufacturing a system (e.g., an engine), the deci- 

ion is typically based on the overall state of the system. If the 

tate of a system is multi-dimensional, one can reduce the dimen- 

ion of the data and obtain a one-dimensional health index and 

odel the evolution process of this index. At each epoch, a deci- 

ion maker observes the state of the system and then chooses an 

ction from the set A = { 0 , 1 , 2 } , where 0 means continuing oper-

tion to the next decision epoch, 1 means remanufacturing, which 

akes one decision period (i.e., duration between two consecutive 

ecision epochs), and 2 means scrapping the component. Note that 

he scrap action takes the system to an absorbing state, denoted 

y �, in which case the system remains in the state � and the 

emanufacturing planning problem ends. The complete state space 

s thus S × K ∪ { �} . The objective of the remanufacturing planning

ptimization is to maximize the total profit for a system during 

ts lifetime, including extended lifetimes as a result of remanufac- 

uring. This is practical for some applications. For example, some 

roducts (e.g., engines) have a long life span. During the lifetime 

f such a product, a new generation of products that use new, ad- 

anced technologies have often emerged. The user therefore typ- 

cally purchases the new, upgraded product. The operational costs 

nd gains of a product of the newer generation can be significantly 

ifferent from the old, outdated ones, requiring a new remanufac- 

uring planning policy. A notation list is provided in Table 1 . 

An important objective of remanufacturing is to minimize 

he negative environmental impacts while sustaining profitable 
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Table 1 

Notation list. 

A action space A = { 0 , 1 , 2 } S condition state space S = { 0 , 1 , 2 , . . . } 
K cumulative number of completed remanufacturing activities K = { 0 , 1 , . . . } U ambiguity set 

T planning horizon T = { 0 , 1 , 2 . . . } θ radius of ambiguity sets 

e (s, k ) environmental cost of state (s, k ) g(s, k ) operational gain of state (s, k ) 

r(s, k ) reward of action 0; r(s, k ) = g(s, k ) − e (s, k ) c r remanufacturing cost 

c s salvage value p(s ′ | s, k ) transition probability from states (s, k ) to (s ′ , k ) 
ˆ p (s ′ | s, k ) estimated transition probability P P P transition probability matrix 
ˆ P P P estimated transition probability matrix β discount factor 

n (s ′ | s ) number of transitions from states s to s ′ 
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rowth. The direct environmental impacts of a remanufactured sys- 

em are often measured by greenhouse gas emissions (e.g., CO 2 , 

H 4 , N 2 O, etc.) using life cycle assessment (LCA). Instead of us- 

ng direct environmental impacts, we model the environmental ef- 

ects using carbon cost, which is determined by the amount of 

arbon emissions and the carbon price, so that we have a single- 

bjective problem, which is computationally efficient. As more 

arket-based mechanisms, such as taxes on emissions, tradable 

mission allowances and deposit-refund schemes for harmful prod- 

cts ( Abdallah et al., 2012 ), being designed and instituted, reman- 

facturing planning models that consider the carbon costs will be- 

ome more relevant and applicable. 

To model the profit of a remanufacturing system, we assume 

hat during each decision period, the decision maker receives a 

ain g(s, k ) (e.g., production revenue) and incurs some environ- 

ental costs e (s, k ) if operation is not interrupted (i.e., a = 0 ). Note

hat when the system does not function properly in the worst 

ondition s , the operational gain can be negative. The reward 

f keeping operation in one period is thus denoted by r(s, k ) =
(s, k ) − e (s, k ) . If the decision is to remanufacture the component,

 remanufacturing cost c r , which comprises the manufacturing and 

arbon costs, is incurred. If the system is scrapped, a salvage value 

 s is received. We assume that c r and c s are constants and do not

epend on the condition of the system. We assume that remanu- 

acturing cost ( c r ) is a constant because remanufacturing process 

ypically includes a number of operations, such as disassembly, 

leaning, inspection, repair, replacement, and assembly. For many 

ystems, the costs of most operations are fixed and the cost differ- 

nce resulted from condition difference is negligible. When com- 

onents are scrapped, there are two main mechanisms. One grades 

he component and prices the used component based on its con- 

ition, and the other one provides a fixed price. We consider the 

atter case in this study and assume that the scrap value is fixed. 

he system in the absorbing state � yields no operational gain, i.e., 

(�) = 0 . 

Although remanufacturing restores a component to like-new 

onditions, the system is not in an as-good-as-new state in its 

rst life, and the expected value of the extended lifetime is typ- 

cally shorter. To model this effect, we assume that a system’s 

ransition probabilities are dependent on the cumulative number 

f completed remanufacturing activities. We denote the transition 

robability matrix when the decision is to keep the system in op- 

ration by P P P = [ p(s ′ | s, k )] s,s ′ ∈S,k ∈K for a system that has been re-

anufactured k times. When a = 0 (the system is kept in opera- 

ion), the system transitions from (s, k ) to (s ′ , k ) with probability

p(s ′ | s, k ) . Note that when the system is kept in operation, the cu-

ulative number of remanufacturing operations remains the same. 

e assume that the system can only transition to a state that is 

orse than the current state when the system is kept in operation 

 a = 0 ), that is, p(s ′ | s, k ) = 0 for s > s ′ . We assume that remanufac-

uring brings the system to a like new condition (i.e., s = 0 ) but in-

rements the cumulative number of remanufacturings by one. That 

s, when a = 1 (the system is remanufactured), the state of the 

ystem becomes (0 , k + 1) . This assumption is motivated by some
 a

105 
ractical applications. For example, the wall thickness of some pip- 

ng system is a critical characteristic of its condition, and reman- 

facturing operation often adds additional materials and restores 

he thickness to the same level as a new system, but the remanu- 

actured piping system usually deteriorates faster and has a shorter 

emaining useful life comparing to a brand-new system. We will 

urther address the stochastic dominance relationship of transition 

ehaviors under different k values when analyzing the structure 

f the optimal robust planning policies in Section 4 . Due to lim- 

ted data availability and statistical estimation errors, the transi- 

ion probability of a remanufacturing system is fundamentally un- 

nown. We construct an ambiguity set, denoted by U , to model the 

ncertainty in the transition probability matrix P . An appropriate 

mbiguity set should contain the underlying transition probabil- 

ty matrix with high confidence. Next we present an important as- 

umption regarding the ambiguity set, which ensures deterministic 

nd Markovian policies ( Iyengar, 2005 ). 

ssumption 1 (Rectangularity) . A robust MDP problem has a rect- 

ngular ambiguity set if the ambiguity set has the form U = 

 

s ∈S,k ∈K U sk where 
⊗ 

stands for the Cartesian product, and U sk is 
he projection of U onto the parameters of state (s, k ) . 

The implication of the rectangularity assumption is often inter- 

reted in an adversarial setting ( Iyengar, 2005; Nilim & El Ghaoui, 

005 ): The decision maker first chooses a policy π . Then an ad- 

ersary observes π , and chooses a distribution that minimizes the 

eward. In this context, rectangularity is a form of an independence 

ssumption: The choice of a particular distribution for a given state 

s, k ) does not limit the choices of the adversary of other states. 

here are two possible models to address the transition matrix 

ncertainty. One is the stationary uncertainty model where the 

orst-case transition probability matrix is chosen by the adver- 

ary once and for all, and remains fixed thereafter. The other one 

s the time-varying uncertainty model where the worst-case tran- 

ition probability matrices can vary arbitrarily with time. In this 

aper, we consider the stationary worst-case distribution, that is, 

he choices of p p p (·| s, k ) are the same every time the state (s, k ) is

ncountered. Note that there is no ambiguity in transitions in the 

eriod during which remanufacturing is conducted, since reman- 

facturing takes one period and there is no transition in that pe- 

iod. Because the optimal robust policies of the remanufacturing 

lanning are Markovian and deterministic under the rectangular- 

ty assumption, we have the robust remanufacturing planning op- 

imization model in the following recursive form: 

 (s, k ) = sup 
a ∈A 

w (s, k ; a ) , (RRmPO) 

here 

 (s, k ; a ) = 

⎧ ⎨ 

⎩ 

inf P P P ∈U r(s, k ) + β
∑ 

s ′ ∈S p(s 
′ | s, k ) V (s ′ , k ) , a = 0 , 

−c r + βV (0 , k + 1) , a = 1 , 

c s , a = 2 . 

nd β ∈ [0 , 1) is the discount factor. 
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.2. Construction of ambiguity sets 

The construction of ambiguity sets has been extensively stud- 

ed. An ambiguity set U is considered statistically good if it is con- 

tructed with the asymptotic property lim inf n →∞ P (P 0 ∈ U ) ≥ 1 −
, where P 0 is the true distribution and n is the number of samples

 Lam, 2019 ). Methods that create ambiguity sets as confidence re- 

ions for P 0 include moment-based constraints, Wasserstein balls, 

-divergence balls. Among these ambiguity sets, moment-based 

mbiguity sets appear to display better tractability properties 

 Delage & Ye, 2010 ), but they do not consider any distributional in-

ormation. Completely different distributions might have the same 

oments, consequently leading to overly conservative solutions. 

n attractive alternative is to define the ambiguity set as a ball 

n the space of probability distributions by using a probability dis- 

ance function such as the φ-divergence or the Wasserstein met- 

ic. Such metric-based ambiguity sets contain all distributions that 

re close to a nominal or most likely distribution with respect 

o the prescribed probability metric. By adjusting the radius of 

he ambiguity set, both φ-divergence and the Wasserstein ambi- 

uity sets allow decision makers to control the degree of conser- 

atism. In this paper, we will first consider the use of ambiguity 

ets that are constructed as confidence sets using φ-divergence be- 

ause (1) many φ-divergence have already been commonly used 

n statistics (e.g., the Kullback–Leibler distance, Burg entropy, and 
2 -distance), making them attractive to deal with data directly, 

nd (2) φ-divergence sets preserve convexity, resulting in compu- 

ationally tractable models. Robust models with Wasserstein am- 

iguity sets are more computationally involving, but it has been 

emonstrated that the worst-case expectation over a Wasserstein 

mbiguity set can be computed efficiently via convex optimization 

echniques for numerous loss functions of practical interest, and 

ore importantly, Wasserstein ambiguity sets offer powerful out- 

f-sample performance guarantees ( Esfahani & Kuhn, 2018; Hana- 

usanto & Kuhn, 2018 ). We will further extend our investigation of 

he structural properties of the optimal robust policies to Model 

RRmPO) using Wassertein ambiguity sets. 

. Structure of the optimal robust policy 

In this section, we investigate the structural properties of the 

ptimal robust remanufacturing policies. We will focus our atten- 

ion on control-limit policies. We establish sufficient conditions 

hat ensure the existence of monotonically control-limit policies. 

he optimality of such structured policies is important because 

hey are appealing to decision makers and enable efficient com- 

utation and are easy to implement. Our analysis will make signif- 

cant use of the notion of the stochastic dominance, which helps 

stablish stochastic dominance relationships for transition behav- 

ors. Below, we define some stochastic order concepts that are used 

n our analysis. 

efinition 1. 

(a) A transition probability matrix P P P = [ p(i | j)] i, j=0 , 1 , ... n is said 

to be IFR (increasing failure rate) if 
∑ n 

i = m 
p(i | j) is non- 

decreasing in j for all m = 0 , 1 , . . . , n . 

(b) For two transition probability matrices P P P 1 = 

[ p 1 (i | j)] i, j=0 , 1 , ... n and P P P 2 = [(p 2 (i | j))] i, j=0 , 1 , ... n , we say P P P 1 
dominates P P P 2 , P P P 1 	 P P P 2 , if 

∑ n 
i = m 

p 1 (i | j) ≥ ∑ n 
i = m 

p 2 (i | j) for all
j, m = 0 , 1 , . . . , n . 

ssumption 2. Let ˆ P P P (·|·, k ) denote the nominal transition probabil- 

ty matrix for a system that has been remanufactured k times, 

(a) ˆ P P P (·|·, k ) is IFR for all k ∈ K. 
ˆ ˆ 
(b) P P P (·|·, k + 1) 	 P P P (·|·, k ) for all k ∈ K. l

106 
The nominal transition probability matrix in 

ssumption 2 refers to the transition probability matrix that 

s obtained using the conventional maximum likelihood estimation 

MLE) method. Assumption 2 (a) implies that, given the cumulative 

umber of completed remanufacturing activities k , the system in a 

orse state at the current epoch is more likely than the other to 

e found in a worse condition at the next epoch. Assumption 2 (b) 

mposes a first-order stochastic dominance relationship among 

he system’s deterioration matrices corresponding to different 

emanufacturing histories. More explicitly, given two systems with 

he same condition but different remanufacturing histories, the 

ystem with a larger k is more likely to get worse than the other 

uring operation. Additional assumption is made regarding the 

perational gains, environmental costs, and the salvage value. 

ssumption 3. 

(a) The operational gain g(s, k ) is non-increasing in s ∈ S and 

k ∈ K, and the carbon cost e (s, k ) is non-decreasing in s ∈ S
and k ∈ K; 

(b) The reward at state s , the salvage value c s and the discount 

factor β satisfy the following condition: 
r(S, 0) 

1 − β
< c s . 

Assumption 3 (a) implies that as the number of completed re- 

anufacturing activities increases and its condition worsens, the 

ain decreases and the carbon cost increases. For example, an en- 

ine in a worse state usually incurs higher maintenance costs, and 

onsumes more gasoline or electricity, which leads to a higher en- 

ironmental cost. Assumption 3 (b) ensures that the decision of no 

ntervention (i.e., a = 0 ) is excluded when a system is at the worst

tate for all k ∈ K because it is not practical that the system stays

n the worst condition s for an infinitely long time. This unrealistic 

cenario is eliminated by assuming that the total expected reward 

rom doing nothing at state (S, 0) , computed as 
∑ ∞ 

t=0 β
t r(S, 0) = 

r(S, 0) 

1 − β
, is less than the salvage value. Since r(S, 0) ≥ r(S, k ) for all

 > 0 , the condition also eliminates the no-intervention option for 

tate (S, k ) for all k > 0 . 

.1. Remanufacturing planning with φ-divergence ambiguity sets 

We first analyze the structure of the optimal robust policies un- 

er φ-divergence ambiguity sets. The φ-divergence between two 

ectors p p p = (p 1 , . . . , p m ) 
T and q q q = (q 1 , . . . , q m ) 

T is defined by Ben-

al et al. (2013) 

 φ( p p p , q q q ) = 

m ∑ 

i =1 

q i φ
(
p i 
q i 

)
, (1) 

here the φ-divergence function φ(t) satisfies φ(t) is convex on 

 ≥ 0 , φ(1) = 0 , and when q i = 0 , the terms of (1) are interpreted

s 0 φ(b/ 0) = b lim t→∞ (φ(t ) /t ) for b > 0 , and 0 φ(b/ 0) = 0 for b =
 . We are interested in transition probability distributions and de- 

ote the nominal distribution by ˆ P P P (for notational convenience, we 

rop the notation of k ). Given a radius θ , the ambiguity set is as

ollows: 

 s = 

{ 

p p p s : I φ
(
p p p s , ̂  p p p s 

)
≤ θ, 

∑ 

s ′ ∈S 
p s (s 

′ ) = 1 , p s (s 
′ ) ∈ [0 , 1] , s ′ ∈ S 

} 

. 

(2) 

Next, we provide reformulations and establish conditions that 

nsure control-limit type policies. We first reduce the bi-level 

roblem (RRmPO) to a single-level problem by applying the La- 

rangian dual theory, and then investigate the structure of the ro- 

ust value function, which is necessary for establishing control- 

imit robust remanufacturing planning policies. 
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roposition 1. For Model (RRmPO) with φ-divergence ambiguity 

ets, w (s, k ;0) can be reformulated as 

 (s, k ;0) = sup 
μ> 0 ,λ

r(s, k ) + λ − μθ

−μ
∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) φ∗

(
λ − βV (s ′ , k ) 

μ

)
, (3) 

here φ∗(b) = sup t≥0 bt − φ(t) is the conjugate function of φ(t) . 

roof. See Appendix A.1 . �

Among all φ-divergence ambiguity sets, the Kullback–Leibler 

mbiguity set has received most attention in robust optimization. 

et n (s ′ | s ) be the number transitions observed from state s to state

 
′ , and let N s = 

∑ 

s ′ ∈S n (s ′ | s ) denote the total number of transitions

bserved from state s N s = 

∑ 

s ′ ∈S n (s ′ | s ) . It has been shown that

he normalized estimated Kullback–Leibler distance 2 N s I φ( p p p s , ̂  p p p s ) 

symptotically follows a χ2 |S|−1 
distribution ( Ben-Tal et al., 2013 ). 

n the following corollary, we show how to construct the worst 

ransition probability distribution in a Kullback–Leibler ambiguity 

et. 

orollary 1. For Model (RRmPO) with Kullback–Leibler ambiguity 

ets, w (s, k ;0) can be reformulated as 

 (s, k ;0) = sup 
μ> 0 

r(s, k ) 

−μ log 

( ∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) exp 

(
−βV (s ′ , k ) 

μ

)) 

−μθ, (4) 

nd the worst-case distribution is 

p ∗(s ′ | s, k ) = 

ˆ p (s ′ | s, k ) exp 
(

−βV (s ′ , k ) 
μ∗

sk 

)
∑ 

s ′ ∈S ˆ p ( s ′ | s, k ) exp 
(

−βV (s ′ , k ) 
μ∗

sk 

) , (5) 

here μ∗
sk 

is the optimal solution of the dual problem (4) given s and 

 . 

roof. See Appendix A.2 . �

roposition 2. For Model (RRmPO) with ambiguity sets constructed 

sing φ-divergence, the value function V (s, k ) is non-increasing in s ∈
and k ∈ K. 

roof. See Appendix A.3 . �

Based on Proposition 2 , we further establish conditions that en- 

ure control-limit robust policy structures, that is, the remanufac- 

uring decisions are of control-limit type with respect to the con- 

ition of the system and the cumulative number of completed re- 

anufacturing activities. 

heorem 1. For Model (RRmPO) with φ-divergence ambiguity sets, 

here exists a cumulative number of completed remanufacturing ac- 

ivities k ∗ ∈ K, and operation states ζrm (k ) , ζscrap (k ) ∈ S such that for

 < k ∗

 (s, k ) = 

{
0 if s < ζrm (k ) , 
1 if s ≥ ζrm (k ) , 

and for k ≥ k ∗

 (s, k ) = 

{
0 if s < ζscrap (k ) , 
2 if s ≥ ζscrap (k ) . 

roof. See Appendix A.4 . �
107 
Theorem 1 shows that when has k < k ∗, the optimal decision 

s either wait until the next period or remanufacture, and the sys- 

em is remanufactured when the condition is equal to or exceeds 

he remanufacturing limit ζrm (k ) . When the cumulative number of 

ompleted remanufacturing activities reaches the threshold k ∗, the 
ptimal decision is either wait until the next period or scrap and 

here exists a scrapping threshold ζscrap (k ) . This implies that re- 

anufacturing is not always optimal —it is not recommended af- 

er being conducted certain number of times. Note that k ∗ = 0 is a

pecial case that remanufacturing is not optimal for all k ∈ K. The 

tructure of ζrm (k ) and ζscrap (k ) is examined in the next theorem. 

heorem 2. Consider Model (RRmPO) with φ-divergence-based am- 

iguity set. Then, the following holds: 

(a) If 
βr(0 , 0) 

1 − β
− βc s ≤ r(s, k ) − r(s, k + 1) , ζrm 

(k ) is non-

increasing in k, k < k ∗, and ζrm 
(k ∗ − 1) ≥ ζscrap (k 

∗) . 
(b) ζscrap (k ) is non-increasing in k, k ≥ k ∗. 

roof. See Appendix A.5 . �

The first part of Theorem 2 (a) implies that the optimal ro- 

ust policy is monotone with respect to k ∈ K for all k < k ∗. That
s, a remanufacturer tends to remanufacture earlier as the system 

oes through more remanufacturing processes. The second part of 

heorem 2 (a) ( ζrm 
(k ∗ − 1) ≥ ζscrap (k 

∗) ) indicates that if the op- 
imal action is remanufacture ( a = 1 ) at some s when k = k ∗ − 1 ,

hen the optimal action is scrap ( a = 2 ) for all s ′ ≥ s when k = k ∗.
heorem 2 (b) shows that the remanufacturer should scrap early as 

 increases for all k ≥ k ∗. Therefore, the optimal robust remanufac- 

uring policy has the appealing monotone structure with respect 

o k . Note that the condition in Theorem 2 (a) is restrictive. We 

ill show that most violations do not change the monotone struc- 

ure of ζrm (k ) and ζscrap (k ) in Section 5.3.1 through computational 

tudies. 

.2. Remanufacturing planning with Wasserstein ambiguity sets 

In this section, we show that the optimal robust policies are 

f control-limit type for Model (RRmPO) with Wasserstein-based 

mbiguity sets under similar conditions. The Wasserstein distance 

f two distributions can be viewed as the minimum transporta- 

ion cost for moving the probability mass from one distribution to 

he other. The Wasserstein ambiguity set contains all distributions 

hat are sufficiently close to the empirical distribution with respect 

o the Wasserstein metric. Given N independently and identically 

istributed training samples, the true distribution P 0 belongs to 

he Wasserstein ambiguity set around the empirical distribution ˆ P N 
ith confidence 1 − α if its radius is a sublinearly growing func- 

ion of log (1 /α) /N ( Esfahani & Kuhn, 2018 ). 

Let (S, d) be a metric space with metric d, and F(S) be the set

f all probability distributions defined on S . Given a radius θ and a 

tate s ∈ S (for notational purpose, we drop the notation of k ), the

mbiguity set of the Wasserstein ball centered on ˆ p p p s ∈ F(S) is 

 s = 

{ 

p p p s : W 
m 

m 
( p p p s , ̂  p p p s ) ≤ θm , 

∑ 

s ′ ∈S 
p s (s 

′ ) = 1 , p s (s 
′ ) ∈ [0 , 1] , s ′ ∈ S 

} 

, 

(6) 

here W 
m 

m 
( p p p s , ̂  p p p s ) is the Wasserstein distance between p p p s and ˆ p p p s 

ith order m . The Wasserstein distance W 
m 

m 
( p p p s , ̂  p p p s ) can be de-

cribed as 

 
m 
m ( p p p s , ̂  p p p s ) = 

{
min γ ∈F(S ×S ) 

∑ 

(x,y ) ∈S×S d(x, y ) m γ (x, y ) 

s.t. 
∑ 

y ∈S γ (x, y ) = p s (x ) , ∀ x ∈ S, 
∑ 

x ∈S γ (x, y ) = ̂  p s (y ) , ∀ y ∈ S 
}

. 

(7) 
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To establish conditions that ensure the special structure of op- 

imal robust policies for Model (RRmPO) with Wasserstein ambi- 

uity sets, we similarly reformulate the bi-level problem into a 

ingle-level problem, and then show that the value function is 

on-increasing in s ∈ S and k ∈ K. 

roposition 3. For Model (RRmPO) with the Wasserstein-distance- 

ased ambiguity set, w (s, k ;0) can be reformulated as 

 (s, k ;0) = sup 
μ> 0 

−μθm 

+ μ
∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) min 

s ′′ ∈S 

{
d(s ′ , s ′′ ) m + 

V (s ′′ , k ) 
μ

}
, (8) 

roof. See Appendix A.6 . �

roposition 4. For Model (RRmPO) with ambiguity sets constructed 

sing Wasserstein distance, the value function V (s, k ) is non- 

ncreasing in s ∈ S and k ∈ K. 

roof. See Appendix A.7 . �

Since the value function is non-increasing in s ∈ S and k ∈ K, 

e can similarly show that structural properties in Theorems 1 and 

 hold for Wasserstein-distance-based ambiguity sets under the 

ame conditions. The theorems and proofs are omitted here. 

.3. Solution methodology 

Model (RRmPO) can be solved using robust value iteration 

 Iyengar, 2005 ). We further develop an efficient algorithm for find- 

ng optimal robust policies with control-limit structures. If the op- 

imal robust policy is of control-limit type with respect to s ∈ S
nd k ∈ K, then Model (RRmPO) can be more efficiently solved by 

he monotone robust value iteration ( Algorithm 1 ) 

lgorithm 1 Monotone robust value iteration. 

1: Initialization: 
V (s, k ) , a ∗(s, k ) ← 0 , V̄ (s, k ) ← M, ∀ (s, k ) ∈ S × K, ε > 0 

2: while || ̄V V V −V V V || ≥ (1 −β) ε
4 β do 

3: V̄ V V ← V V V , A (s, k ) ← { 0 , 1 , 2 } ∀ (s, k ) ∈ S × K 

4: for (s, k ) ∈ S × K do 

5: V (s, k ) ← max a ∈ A (s,k ) w (s, k ; a ) , 
a ∗(s, k ) ← arg max a ∈ A (s,k ) w (s, k ; a ) 

6: if s + 1 ∈ S then 

7: A (s + 1 , k ) ← { a : a ≥ a ∗(s, k ) } 
8: end if 
9: if k + 1 ∈ K then 

10: A (s, k + 1) ← { a : a ≥ a ∗(s, k ) } 
11: end if 
12: end for 
13: end while 
14: return V V V , a a a ∗

This modified algorithm differs from robust value iteration in 

yengar (2005) in that the action space A becomes smaller with in- 

reasing s and k . Specifically, given a state (s, k ) and its optimal ro-

ust solution a ∗(s, k ) , we reduce the action space of state (s + 1 , k )

n step 7 based on Theorem 1 and reduce the action space of state 

s, k + 1) in step 10 based on Theorem 2. For example, if the opti-

al action for a given state (s, k ) is to remanufacture (i.e., a (s, k ) =
 ), then the optimal action for any state (s ′ , k ′ ) where s ′ > s, k ′ = k ,

he optimal action is to remanufacture based on Theorem 1. Simi- 

arly, if the optimal action for a given state (s, k ) is to remanufac-

ure (i.e., a (s, k ) = 1 ), then the optimal action for any state (s ′ , k ′ )
here s ′ = s, k ′ > k , the optimal action is to remanufacture based
108 
n Theorem 2. In the worst case, A (s, k ) remains the same for all

 ∈ S and k ∈ K and computational effort is the same as that of the

obust value iteration algorithm; however, when the control lim- 

ts exist, the sets A (s, k ) will decrease in size as s and k increase

nd hence the number of actions which need to be evaluated in 

tep 5 is reduced; at some state (s, k ) , the action set may only

ontain a single element, and no further optimization is necessary 

ince that action will be optimal for all states (s ′ , k ′ ) , s ′ ≥ s, k ′ ≥ k .

herefore, this algorithm achieves a better computational efficiency 

han the robust value iteration when the optimal robust policy 

as a monotone structure. The inner problem w (s, k ;0) in step 5

an be solved by employing a numerical search for its dual prob- 

em by taking the advantage that both dual problems are concave 

n their decision variables. Note that the time complexity of the 

obust value iteration algorithm for a ε-optimal robust policy is 

 (C|S| log (R/ε) / log (1 /β)) ( Iyengar, 2005 ), where C is the cost of 

omputing inner minimization problem w (s, k ;0) , and R is the up-

er bound of the reward function. Because the time complexity 

f solving the inner minimization problem is polynomial for both 

-divergence and Wasserstein-distance-based ambiguity sets, the 

untime of solving a robust MDP does not increase much compared 

ith solving a nominal MDP. 

. Computational study 

.1. System model description 

We use the operational data simulated using the Commer- 

ial Modular Aero-Propulsion System Simulation (C-MAPSS) soft- 

are ( Frederick et al., 2007 ) developed at NASA to demonstrate 

ur robust remanufacturing planning model and examine the per- 

ormance of the optimal robust remanufacturing policies. The C- 

APSS offers 14 inputs and can produce a number of outputs for 

nalysis. 

The dataset used in this study pertains to a single failure mode 

nd a single operating condition, and consists of 100 units which 

re run to failure. Note that end-of-life can be subjectively deter- 

ined as a function of operational thresholds that can be mea- 

ured; these thresholds depend on user specifications to deter- 

ine safe operational limits. For illustration purposes, we arbitrar- 

ly choose four features and plot the time series of these features 

or a randomly selected unit and all units ( Fig. 1 ). From Fig. 1 , we

an see that the data contains a lot of noises. Various sources can 

ontribute to noises, and the main sources of noise are manufac- 

uring and assembly variations, process noise, and measurement 

oise to name a few important ones ( Saxena et al., 2008 ). Due to

he large amount of noises and limited real-world operational data 

vailable, there often exists a high level of uncertainties in transi- 

ion probabilities of the turbofan engines, and operators and man- 

facturers are in great need of robust remanufacturing planning. 

.2. Construction of the ambiguity set 

It is typically desirable to reduce the dimensionality of the 

ata and reconstruct them from a lower dimensional samples. 

e therefore use the principal component analysis method to 

ompress the high-dimensional sensor outputs and use the first 

rincipal component that accounts for the largest variability 

f data (approximately 70% on average) as the health indica- 

or. We further discretize the obtained health indicator into 7 

ntervals, representing 7 condition states, as recommended by 

oghaddass & Zuo (2014) . The nominal transition probability is 

stimated using the maximum likelihood method, i.e., ˆ p (s ′ | s ) = 

 m 

i =1 n i (s 
′ | s ) / ∑ m 

i =1 

∑ 

s ′ ∈S n i (s ′ | s ) , where n i (s 
′ | s ) is the number of

ransitions from state s to s ′ for unit i , and m is the total num-

er of units in a sample. We construct the ambiguity sets as de- 
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Fig. 1. Illustrations of raw sensor data sequences. (a) and (b), time series of the selected features of unit 6. (c) and (d), time series of the selected features of all units. 

Solid lines are the time series of the unit that has the most maximum (yellow line) and minimum (red line) points. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

s  

m

l

t

m

f

t  

b

s  

p

a

b

r

h

f

s

m

b

b

S

s

5

5

m

o

r

i  

2  

a

(  

T

W

m

s

t

n

c

t

5

c

M

p

K

A

s

t

p

i

t

T

t

t

u

a

r

i  

o

t

(

T

c

t

i

d

p

i  

l  

c  

t

e

i  

c

b

s

c

c

s

5

t

s

s

S  

(

p

t

d

t

b

ν

cribed in Section 3.2 . It has been reported in the literature that re-

anufactured components/systems are like-new but have reduced 

ifetimes ( Östlin et al., 2009 ). However, the data simulated using 

he C-MAPSS software do not contain operational data after re- 

anufacturing. To model the reduction in lifetime after remanu- 

acturing, we modify the nominal transition probability matrix ob- 

ained for new turbofan engines (i.e., k = 0 ) for each k (the num-

er of completed remanufacturing operations). Specifically, we as- 

ume that the mean time to failure of a system is reduced by ap-

roximately 7% each time it is remanufactured. This percentage is 

rbitrarily chosen. We then adjust the nominal transition proba- 

ility matrix to achieve this reduction by trial and error. If post- 

emanufacturing operational data are available (i.e., the transition 

istories) for all k , then for each number of completed remanu- 

acturing operations, one can repeat the estimation procedure de- 

cribed in Section 5.2 to obtain the nominal (empirical) transition 

atrix, which is the center of the ball that contains all possi- 

le transition matrices. The radius of the ball can be determined 

y either choosing the desired confidence level (as described in 

ection 4 ) or using the data-driven approach which uses out-of- 

ample tests to select the best-performing radius (as described in 

.3.3 ). 

.3. Experiments 

Next, we demonstrate the structure of the optimal robust re- 

anufacturing policy and examine the out-of-sample performance 

f the optimal robust policies. We arbitrarily choose cost pa- 

ameters that satisfy Assumption 3 in all the following exper- 

ments: g(s, k ) = 4 − 0 . 25 s − 0 . 25 k, e (s, k ) = 1 + 0 . 25 s + 0 . 25 k, c r =
 , and c s = 0 . 5 . We follow the convention in the MDP works that

rbitrarily select a value of the discount factor no less than 0.8 

 Delage & Mannor, 2010; Goh et al., 2018; Wiesemann et al., 2013 ).

hus, the discount factor β is 0.9 for all the following experiments. 

e use the Kullback–Leiber distance to demonstrate the perfor- 

ance of general φ-divergence. For Wasserstein distance, we con- 

ider order m = 1 . In our experiments, the nominal policy refers 

o the optimal remanufacturing policy obtained using the nomi- 

al transition probabilities (i.e., the MLE estimates) which does not 

onsider parameter uncertainties, and we refer to this approach as 

he nominal approach. 

.3.1. Policy structures 

We have established conditions to ensure control-limit poli- 

ies for Model (RRmPO) with φ-divergence ambiguity sets and for 

odel (RRmPO) with Wasserstein ambiguity sets. For illustration 

urposes, we show the structure of optimal robust policies for 

ullback–Leibler ambiguity sets and Wasserstein ambiguity sets. 

s Fig. 2 shows, the remanufacturing policies exhibit control-limit 
109 
tructure. We can also see that as θ increases, the remanufacturing 

hreshold ζrm (k ) increases and k 
∗ decreases (i.e., the scrap action is 

erformed earlier). This implies that when parameter uncertainty 

s large, a decision maker needs to be cautious about remanufac- 

uring used products and to consider scrapping at an earlier stage. 

his is because (1) the remanufacturing cost may not be offset by 

he subsequent operational gains due to large parameter uncertain- 

ies and (2) securing the fixed salvage value better hedges against 

ncertainties in future gains. 

As stated earlier, the condition of Theorem 2 (a) is restrictive 

nd difficult to satisfy. We further examine whether the optimal 

obust policies are still of control-limit type when this condition 

s violated. We test a total of 50 0 0 instances and the generation

f the test instances is described in Appendix B.1. Out of the 3060 

est instances that violate the condition of Theorem 2 (a), only 209 

i.e., approximately 6.8%) instances violate the monotone structure. 

herefore, we believe that a control-limit policy with respect to k 

an be obtained in most practical cases even when the condition 

hat guarantees it is violated. 

We further investigate the structure of the optimal robust pol- 

cy when remanufacturing costs and salvage values are state- 

ependent. We conducted a numerical study that considers more 

arameter values to examine whether the control-limit structures 

n Theorems 1 and 2 , still exist. We assume c r (s, k ) and c s (s, k ) are

inear with respect to s and k . Suppose c r (s, k ) = d r + a r s + b r k and

 s (s, k ) = d s + a s s + b s k , where a r , b r , d r , a s , b s , and d s are parame-

ers. The ranges of parameters are all bounded by 0 and 2. The op- 

rational gain function is the same as the one used in other exper- 

ments, i.e., r(s, k ) = 3 − 0 . 5 s − 0 . 5 k . There are approximately 20%

ases that violate Theorems 1 and 2 for Kullback-Leibler-distance- 

ased ambiguity sets. For Wasserstein-distance-based ambiguity 

ets, there are about 25.7% cases that violate Theorem 1 and 26.8% 

ases that violate Theorem 2 . This shows that in the majority of 

ases with state-dependent costs, the optimal robust policies are 

till of the control-limit type. 

.3.2. Impact of the parameter uncertainty 

We first conduct experiments to investigate the impact of 

he parameter uncertainty on the out-of-sample performance. We 

ample a training set N from the data set to obtain nominal tran- 

ition probability ˆ p p p using the maximum likelihood estimator in 

ection 5.2 , where m = |N | . The optimal robust policies of Model

RRmPO) with ambiguity sets constructed under different hyper- 

arameter values using the training dataset, πN (θ ) ( θ determines 

he size of an ambiguity set), are then implemented in a test 

ataset M to assess the out-of-sample performance. We examine 

wo performance measurements: the average reward and the relia- 

ility of performance guarantees. The average reward is defined as 

¯N (θ ) = 

∑ 

i ∈M 
νi (πN (θ )) / |M| , where νi (πN (θ )) is the expected 
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Fig. 2. Optimal robust policies for different θs . 

Fig. 3. Out-of-sample reward ν̄N (θ ) and reliability Pr { ̄νN (θ ) ≥ V N (θ ) } as a function of ψ . (a) and (b) Kullback–Leibler ambiguity set. (c) and (d) Wasserstein ambiguity set. 
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eward of robust policy πN (θ ) for test sample i ∈ M when the sys-

em is brand new ( s = 0 , k = 0 ). The reliability is defined as the

roportion of the event νi (πN (θ )) ≥ V N (θ ) for all i ∈ M , where

 N (θ ) is the in-sample value of V (0 , 0) given θ . 
Figure 3 depicts the experiment results when the size of the 

raining dataset is 5 ( |N | = 5 ) and the size of the test dataset is 50

 |M| = 50 ). The value iteration algorithm and the monotone robust 

alue iteration algorithm ( Algorithm 1 ) are used to efficiently ob- 

ain the nominal policy and the robust policy, respectively. From 

ig. 3 (a), we observe that the average reward of the robust policy 

s better than that of the nominal policy when θ is not too large. 

s θ increases, the average reward of the robust policy deteriorates 

ecause the robust policy is too conservative. The empirical relia- 

ility in Fig. 3 (b) is in general non-decreasing in θ , and the relia-
ility of the performance guarantee under the robust approach is 

uch higher than that under the nominal approach. We also find 

hat the out-of-sample average reward using a robust approach is 

etter as long as the reliability of the performance guarantee is 

oticeably smaller than 1 and deteriorates when it is close to 1. 

igure 3 (c) and (d) present the out-of-sample performance and the 

eliability of Model (RRmPO) with the Wasserstein-distance-based 

mbiguity sets, respectively. Similar patterns are observed. Results 

f this experiment provide an empirical justification of adopting a 

obust remanufacturing approach, especially when the size of the 

ataset is small. 

.3.3. Remanufacturing planning driven by out-of-sample 

erformance 

From the previous experiment on the impact of the parame- 

er uncertainty, it is shown that different hyperparameter θ values 

ay lead to robust remanufacturing policies with different out-of- 

ample performance ν̄N (θ ) . It is desired to select a θ that max- 

mizes the average award ν̄N (θ ) . This, however, requires the true 

ransition probability that is not precisely known. We select the 
110 
ptimal θ via validation using the training data. Specifically, we 

andomly select 60% of the training dataset N for training and 

he remaining 40% of the training data is used for validation. Us- 

ng newly formed training dataset to construct the ambiguity sets, 

odel (RRmPO) is solved for a finite number of candidate hyper- 

arameter θ . We then use the validation dataset to evaluate the 

ut-of-sample performance of πN (θ ) , select the optimal θ ∗ as the 

ne that maximizes ν̄N (θ ) of the validation set, and report πN (θ ∗) 
s the data-driven solution. 

Figure 4 (a) shows the mean value of the out-of-sample perfor- 

ance ν̄N (θ ∗) as a function of the sample size |N | . We also ob-

erve that both out-of-sample and in-sample performances exhibit 

symptotic consistency. Figure 4 (b) shows the mean of the relia- 

ility of the guaranteed performance under different sample sizes. 

e can see that the robust policy significantly outperforms the 

ominal one, particularly when the training data is scarce. As more 

ata become available, the optimal robust policy converges to the 

ominal policy, and so does the performance of the robust policy. 

igure 4 (c) reports in-sample estimate V N (θ ) . We can see that the 

ominal approach is over-optimistic while the robust approaches 

ct on the cautious side. 

.3.4. Comparison with the alternative Bayesian approach 

To demonstrate the performance of the parameter uncertainty 

odeling approach used in this study as a viable alternative, we 

urther compare the performance of the Bayesian approach and 

he proposed robust approach in remanufacturing planning. Specif- 

cally, we compare the out-of-sample performance of the Bayesian 

pproach for prior distributions that are randomly chosen with 

hat of the proposed robust approach. For computational efficiency, 

e consider Dirichlet priors because the Dirichlet distribution is 

he conjugate prior for the multinomial distribution. Let Dir(ξs λλλs ) 

e the Dirichlet distribution given state s ∈ S and k = 0 with pa-

ameter ξs λλλs , where ξs ∈ R 
+ and λλλs ∈ R 

|S| satisfying λλλT 
s 1 1 1 = 1 and 
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Fig. 4. Out-of-sample reward ν̄N (θ ∗) , reliability Pr { ̄νN (θ ∗) ≥ V N (θ ∗) } , and in-sample reward V N (θ ∗) as a function of |N | . (a)–(c) Kullback–Leiber ambiguity set. (d) and (f) 

Wasserstein ambiguity set. 

Table 2 

Average out-of-sample reward with respect to 50 priors and hyperparameter θ . 

Training 

sample size 

Bayesian approach Robust approach 

ξ Mean θ Mean (KL) Mean (Wass.) 

1 5 16.12 0.1 16.62 16.34 

10 14.56 0.5 16.62 16.62 

20 14.56 1.0 16.23 16.20 

5 5 16.62 0.1 16.62 16.60 

10 16.62 0.5 16.23 16.62 

20 16.12 1.0 16.20 16.20 
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Parameter bounds in sensitivity analysis. 
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s ≥ 0 . We use the same random priors for all states (s, k ) ∈ S × K.

e consider three levels of ξ ∈ { 5 , 10 , 20 } , and a larger value im-

lies a smaller variance of priors when randomly generated. For 

ach level of variance ξ , we randomly generate λλλ. For each prior, 
he posterior distribution is obtained using the training data based 

n Bayes’ theorem. The posterior predictive transition probabilities 

re then served as the transition probabilities in an MDP, which is 

olved to obtain the optimal policy. We report the average reward 

f all 50 optimal policies in the test set. The same training set and

he test set in Section 5.3.2 are used in this experiment. Table 2 

ompares the results of the Bayesian approach and the robust ap- 

roach for two different training sample sizes. From Table 2 , we 

an see that the two approaches have similar performances in 

ome cases and that the robust approach has a slightly better av- 

rage reward than the Bayesian one when data are limited. In par- 

icular, when ξ increases, the performance of the Bayesian ap- 

roach decreases, especially when training sample size is small. 

his is because a smaller ξ leads to more sparse priors (i.e., 

igher variance), which can reduce the chance of concentrating 

n transition probabilities that are largely deviated from the true 

ne. 
111 
.3.5. Sensitivity analysis 

In this section, we conduct more experiments to examine the 

erformance of the robust policy under different parameter values. 

pecifically, we assume r(s, k ) = g(s, k ) − e (s, k ) = d − as − bk , and

est 10 0 0 instances where parameters d, a , b, c r , and c s are drawn

andomly from uniform distributions. The parameters of the uni- 

orm distributions are provided in Table 3 . 

We first examine the performance of the robust approach under 

ifferent cost parameters and θs . Table 2 summarizes the percent- 

ges of test instances where the robust policy is no worse than 

he nominal policy given θ . From Table 4 , we can see that there

s a very high chance that the robust policy is no worse than the 

ominal policy when θ is small, and this chance decreases as θ in- 

reases because the robust policy can be overly conservative. This 

s consistent with the conclusion in Section 5.3.2 . 

We further compare the robust policy and the nominal policy 

iven different training sample sizes. In this new experiment, we 

imilarly test sample sizes of 5, 10, and 15. For all 10 0 0 test in-

tances of each training sample size, the robust policies are no 

orse than the nominal ones. This agrees with our conclusion in 

ection 5.3.3 . 

Table 5 compares the performance of the robust approach and 

ayesian approach with different hyperparameter ξ and θ . From 

able 3 , we can see that when θ is small, the robust policy has a

igher percentage of outperforming the policy using Bayesian ap- 

roach. 
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Table 4 

Percentage of cases where robust policy is no worse than the nominal policy. 

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

KL 96.6% 90.7% 84.7% 80.4% 77.9% 75.5% 73.2% 70.9% 69.7% 60.9% 

Wass 99.9% 98.9% 93.6% 96.4% 79.7% 74.9% 72.9% 70.3% 68.8% 67.4% 

Table 5 

Percentage of instances where robust policy is no worse than the Bayesian policy. 

ξ 5 10 20 

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

KL 59.6% 43% 37.6% 62.4% 45.6% 39.6% 69.1% 55.1% 47.3% 

Wass 52.3% 43.9% 36.9% 55.9% 47.5% 38.8% 63% 56.7% 46.5% 
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. Conclusion and future work 

In this paper, we consider the problem of remanufacturing 

lanning in the presence of parameter uncertainty. We formulate 

he problem as a robust Markov decision process in which the 

rue transition probability is unknown but lies in an ambiguity set 

ith high confidence. Two distance-metric based ambiguity sets 

re considered: φ-divergence and Wasserstein distance. We inves- 

igate the structure of the optimal robust policies and establish 

onditions to ensure the policies are of control-limit type. We also 

stablish sufficient conditions for some of the intuitive results seen 

n our computational study. We demonstrate the structure of the 

ptimal robust policies via a computational study using the simu- 

ated operational data of the turbofan engine operated by NASA, 

nvestigate the out-of-sample performance, and derive the data- 

riven solutions to improve the out-of-sample performance. 

In this paper, we consider a remanufacturing planning problem 

ith a scrap action that takes a system to an absorbing state, in 

hich case the remanufacturing planning problem ends. It is worth 

onsidering a replacement action taking the system to a new state 

n the remanufacturing decision-making process to ensure the con- 

inuity of business in the future. Remanufacturing cost and salvage 

alue are assumed to be constants in this study; extending our 

odel to incorporate state-dependent remanufacturing cost and 

alvage value in remanufacturing planning is a natural future ex- 

ension of this work. Moreover, at each decision epoch, decision 

akers make new observation about the system, and an important 

uestion that arises is how the information that becomes available 

n the decision process can be leveraged to resolve some ambigu- 

ty, so that the optimal robust policies are not overly conservative. 

n addition, an implicit assumption made in this paper is that the 

tates of a system are directly observable (i.e., the sensor data re- 

eal the underlying state of the system with certainty). In practice, 

any systems are not directly observable and the states have to 

e inferred from signals collected. Future work will investigate the 

artially observable Markov decision process with parameter un- 

ertainty. 
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ppendix A 

1. Proof of Proposition 1 

Since Proposition 1 applies to all (s, k ) ∈ S × K, we drop

s, k ) in the value function when proving this proposition for 

he notational convenience. The value function defined in Model 

RRmPO) involves solving an inner problem for any given s ∈ S and 
112 
 ∈ K as follows 

 (s, k ;0) = min r + β
∑ 

s ′ ∈S 
p(s ′ ) V (s ′ ) 

s.t. 
∑ 

s ′ ∈S 
p(s ′ ) = 1 , 

∑ 

s ′ ∈S 
ˆ p (s ′ ) φ

(
p(s ′ ) 
ˆ p (s ′ ) 

)
, p(s ′ ) 

≥ 0 , s ′ ∈ S. ≤ θ (A.1) 

he Lagrangian dual problem of (A.1) is 

max 
free ,μ≥0 

L (λ, μ) 

here the Lagrangian dual objective function is 

 (λ, μ) = min 
p p p ≥0 

L (λ, μ, p p p ) 

= min 
p p p ≥0 

r + β
∑ 

s ′ ∈S 
p(s ′ ) V (s ′ ) + λ

( 

1 −
∑ 

s ′ ∈S 
p(s ′ ) 

) 

+ μ

( ∑ 

s ′ ∈S 
ˆ p (s ′ ) φ

(
p(s ′ ) 
ˆ p (s ′ ) 

)
− θ

) 

= min 
t t t ≥0 

r + λ − μθ+ μ
∑ 

s ′ ∈S 

(
t s ′ (βV (s 

′ ) −λ) 

μ
+ φ(t s ′ ) 

)
ˆ p (s ′ ) 

(A.2) 

 r + λ − μθ − μ
∑ 

s ′ ∈S 

(
max 
t t t ≥0 

t s ′ (λ − βV (s ′ )) 
μ

− φ(t s ′ ) 

)
ˆ p (s ′ ) 

 r + λ − μθ − μ
∑ 

s ′ ∈S 
ˆ p (s ′ ) φ∗

(
λ − βV (s ′ ) 

μ

)
, (A.3) 

here φ∗(a ) = sup t≥0 at − φ(t) and Eq. (A.2) is implied by the 

hange of decision variables t t t = p p p / ̂ p p p . Because the terms r, λ, and 
θ in Eq. (A.2) are independent of the decision variable t , and 

here is no constraint on each entry of t , we obtain Eq. (A.3) by

witching min t ≥0 and 
∑ 

s ′ ∈S , and replacing min f by −max − f . 

2. Proof of Corollary 1 

The value function defined in (RRmPO) involves solving an in- 

er problem for any given s ∈ S and k ∈ K as follows 

 (s, k ;0) = min r(s, k ) + β
∑ 

s ′ ∈S 
p(s ′ | s, k ) V (s ′ , k ) 

s.t. 
∑ 

s ′ ∈S 
p(s ′ | s, k ) = 1 , 

∑ 

s ′ ∈S 
log 

(
p(s ′ | s, k ) 
ˆ p (s ′ | s, k ) 

)
p(s ′ | s, k ) 

≤ θ, p(s ′ | s, k ) ≥ 0 , s ′ ∈ S. (A.4) 

https://doi.org/10.13039/100000001
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he Lagrangian dual problem of (A.4) is 

max 
free ,μ≥0 

L (λ, μ) s.t. L (λ, μ) = min 
p p p (·| s,k ) ≥0 

L (λ, μ, p p p (·| s, k )) 
here the Lagrangian function is 

 (λ, μ, p p p (·| s, k )) = r(s, k ) + β
∑ 

s ′ ∈S 
p(s ′ | s, k ) V (s ′ , k ) 

+ λ

( 

1 −
∑ 

s ′ ∈S 
p(s ′ | s, k ) 

) 

+ μ

( ∑ 

s ′ ∈S 
p(s ′ | s, k ) log 

(
p(s ′ | s, k ) 
ˆ p (s ′ | s, k ) 

)
− θ

) 

= r(s, k ) + λ − μθ + 

∑ 

s ′ ∈S 

(
βV (s ′ , k ) − λ

+ μ log 

(
p(s ′ | s, k ) 
ˆ p (s ′ | s, k ) 

))
p(s ′ | s, k ) . 

he strong duality holds because ˆ p p p (·| s, k ) is a strictly feasible solu-
ion to the problem (A.4) and the Slater condition holds. The first 

rder conditions of the Lagrangian function give 

∂L (λ, μ, p p p (·| s, k )) 
∂ p(s ′ | s, k ) = βV (s ′ , k ) − λ + μ log 

(
p(s ′ | s, k ) 
ˆ p (s ′ | s, k ) 

)
+ μ = 0 , ∀ s ′ ∈ S 

⇒ p(s ′ | s, k ) = ˆ p (s ′ | s, k ) exp 
(

−βV (s ′ , k ) + λ − μ

μ

)
, 

∀ s ′ ∈ S. (A.5) 

y substituting (A.5) into the Lagrangian function, the dual prob- 

em becomes 

max 
free ,μ≥0 

L (λ, μ) = r(s, k ) + λ − μθ

− exp 

(
λ − μ

μ

)
μ

∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) 

exp 

(
−βV (s ′ , k ) 

μ

)
. 

gain, the first order conditions give 

∂L (λ, μ) 

∂λ
= 1 − exp 

(
λ − μ

μ

)∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) 

exp 

(
−βV (s ′ , k ) 

μ

)
= 0 

⇒ λ = −μ log 

( ∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) exp 

(
−βV (s ′ , k ) 

μ

)) 

+ μ. 

(A.6) 

he dual problem can be rewritten as 

ax 
μ≥0 

L (μ) = r(s, k ) −μ log 

( ∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) exp 

(
−βV (s ′ , k ) 

μ

)) 

−μθ

y combining (A.5) and (A.6) , we have the worst-case transitional 

robabilities as 

p ∗(s ′ | s, k ) = 

ˆ p (s ′ | s, k ) exp (−βV (s ′ , k ) /μ∗
sk 

)
∑ 

s ′′ ∈S ˆ p ( s ′′ | s, k ) exp 
(
−βV (s ′′ , k ) /μ∗

sk 

) , ∀ s ′ ∈ S. 

here μ∗
sk 

is the optimal solution of the dual problem with given 

 and k . 
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3. Proof of Proposition 2 

Let V n (s, k ) = max a ∈A w 
n (s, k ; a ) denote the value function at

he n th iteration of the robust value iteration algorithm in 

ection 4.3 ( Iyengar, 2005 ). We will show that V n (s, k ) is non-

ncreasing in s ∈ S and k ∈ K for any integer n ≥ 0 by induction.

hen, the theorem follows because the robust value iteration algo- 

ithm converges to an optimal policy. 

We set the initial value as V 0 (s, k ) = 0 for all s ∈ S and k ∈ K.

irst, we show that V (s, k ) is non-increasing in s ∈ S for all k ∈ K.

ecause V 0 (s, k ) = 0 for all s ∈ S , the induction holds at the initial
teration. Assume that V n (s, k ) is non-increasing in s ∈ S for n =
 , . . . , N − 1 . Let s ′ , s ∈ S with s ′ > s and λ∗

sk 
and μ∗

sk 
be the optimal

olution of the dual problems for any give state (s, k ) ∈ S × K. We

onsider two cases at iteration N. If a = 0 , for φ-divergence, we 

ave 

 
N (s ′ , k ;0) = max 

μ> 0 ,λ
r(s ′ , k ) + λ − μθ

− μ

( ∑ 

s ′′ ∈S 
ˆ p (s ′′ | s ′ , k ) φ∗

(
λ − βV N−1 (s ′′ , k ) 

μ

)) 

= r(s ′ , k ) + λ∗
s ′ k − μ∗

s ′ k θ

− μ∗
s ′ k 

( ∑ 

s ′′ ∈S 
ˆ p (s ′′ | s ′ , k ) φ∗

(
λ∗
s ′ k − βV N−1 (s ′′ , k ) 

μ∗
s ′ k 

)) 

≤ r(s, k ) + λ∗
s ′ k − μ∗

s ′ k θ

− μ∗
s ′ k 

( ∑ 

s ′′ ∈S 
ˆ p (s ′′ | s ′ , k ) φ∗

(
λ∗
s ′ k − βV N−1 (s ′′ , k ) 

μ∗
s ′ k 

)) 

(A.7) 

≤ r(s, k ) + λ∗
s ′ k − μ∗

s ′ k θ

− μ∗
s ′ k 

( ∑ 

s ′′ ∈S 
ˆ p (s ′′ | s, k ) φ∗

(
λ∗
s ′ k − βV N−1 (s ′′ , k ) 

μ∗
s ′ k 

)) 

≤ max 
μ> 0 ,λ

r(s, k ) + λ − μθ

− μ

( ∑ 

s ′′ ∈S 
ˆ p (s ′′ | s, k ) φ∗

(
λ − βV N−1 (s ′′ , k ) 

μ

)) 

= w 
N (s, k ;0) (A.8) 

he inequality (A.7) holds because r(s ′ , k ) ≤ r(s, k ) . The inequal-

ty (A.8) follows Lemma 4.7.2 in Puterman (2014) because P P P (·|·, k ) 
s IFR and φ∗((λ − βV N−1 (s, k ) 

)
/μ

)
is non-decreasing in s due to 

 
N−1 (s, k ) is non-increasing in s by the induction hypothesis. 

If a = 1 , we have w 
N (s, k ;1) = w 

N (s ′ , k ;1) = −c r + βV N−1 (0 , k +
) . Therefore, w 

N (s, k ;1) is non-increasing in s given k . Simi-

arly, since w 
N (s, k ;2) = w 

N (s ′ , k ;2) = c s , w 
N (s, k ;2) is also non-

ncreasing in s given k . Since V N (s, k ) = max a ∈A w 
N (s, k ; a ) ≥

ax a ∈A w 
N (s ′ , k ; a ) = V N (s ′ , k ) , the induction hypothesis holds at

teration N. 

Next, we show that V (s, k ) is non-increasing in k ∈ K, ∀ s ∈ S .
ecause V 0 (s, k ) = 0 , ∀ k ∈ K, the induction holds at the initial iter-

tion. Assume for any s ∈ S , V n (s, k ) is non-increasing in k ∈ K for

 = 0 , . . . , N − 1 . We consider two cases at iteration N. If a = 0 , we

ave 

 
N (s, k + 1 ;0) 

= max 
μ> 0 ,λ

r(s, k + 1) + λ − μθ

− μ

( ∑ 

s ′ ∈S 
ˆ p (s ′ | s, k + 1) φ∗

(
λ − βV N−1 (s ′ , k + 1) 

μ

)) 
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= r(s, k + 1) + λ∗
s,k +1 − μ∗

s,k +1 θ

− μ∗
s,k +1 

( ∑ 

s ′ ∈S 
ˆ p (s ′ | s, k + 1) φ∗

(
λ∗
s,k +1 

− βV N−1 (s ′ , k + 1) 

μ∗
s,k +1 

))

≤ r(s, k ) + λ∗
s,k +1 − μ∗

s,k +1 θ

− μ∗
s,k +1 

( ∑ 

s ′ ∈S 
ˆ p (s ′ | s, k + 1) φ∗

(
λ∗
s,k +1 

− βV N−1 (s ′ , k ) 
μ∗

s,k +1 

)) 

(A.9) 

≤ r(s, k ) + λ∗
s,k +1 − μ∗

s,k +1 θ

− μ∗
s,k +1 

( ∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) φ∗

(
λ∗
s,k +1 

− βV N−1 (s ′ , k ) 
μ∗

s,k +1 

)) 

≤ max 
μ> 0 ,λ

r(s, k ) + λ − μθ

− μ log 

( ∑ 

s ′ ∈S 
ˆ p (s ′′ | s, k ) φ∗

(
λ − βV N−1 (s ′ , k ) 

μ

)) 

= w 
N (s, k ;0) (A.10) 

he inequality (A.9) holds because r(s, k + 1) ≤ r(s, k ) and 

 
N−1 (s, k + 1) ≤ V N−1 (s, k ) by the induction hypothesis. 

he inequality (A.10) follows Lemma 4.7.2 in Puterman 

2014) because P P P (·|·, k + 1) 	 P P P (·|·, k ) by Assumption 2 (b) and
∗((λ − βV N−1 (s, k ) 

)
/μ

)
is non-decreasing in s due to V N−1 (s, k ) 

s non-increasing in s by the induction hypothesis. 

If a = 1 , we have w 
N (s, k ;1) = −c r + βV N−1 (0 , k + 1) ≥ −c r +

V N−1 (0 , k + 2) = w 
N (s, k + 1 ;1) . Therefore, w 

N (s, k ;1) is non-

ncreasing in k for all s ∈ S . Similarly, since w 
N (s, k ;2) = w 

N (s, k +
 ;2) = c s , w 

N (s, k ;2) is also non-increasing in k for all s ∈
. Since V N (s, k ) = max a ∈A w 

N (s, k ; a ) ≥ max a ∈A w 
N (s, k + 1 ; a ) =

 
N (s, k + 1) , the induction hypothesis holds at iteration N. 

4. Proof of Theorem 1 

We first show that the optimal policy is of control-limit type for 

ll k ∈ K. Let s ′ > s . We consider two cases: ( i ) If a ∗(s, k ) = 1 , then

 (s, k ) = w (s, k ;1) = −c r + βV (0 , k + 1) = w (s ′ , k ;1) ≤ V (s ′ , k ) . Be-
ause V (s, k ) is non-increasing in s for all k ∈ K, V (s, k ) ≥
 (s ′ , k ) . Thus, we have V (s ′ , k ) = w (s ′ , k ;1) and a ∗(s ′ , k ) = 1 . ( ii )

f a ∗(s, k ) = 2 , then V (s, k ) = w (s, k ;2) = c s = w (s ′ , k ;2) , and by

roposition 2 , V (s, k ) ≥ V (s ′ , k ) , we have V (s ′ , k ) = w (s ′ , k ;2) and

 
∗(s ′ , k ) = 2 . 

Next, we show the existence of the threshold k ∗. This is equiv- 
lent to show that if a ∗(s, k ) = 2 for some k , then a ∗(s, k + 1) =
 . Since V (s, k ) = w (s, k ;2) = c s = w (s, k + 1 ;2) ≤ V (s, k + 1) and

 (s, k ) ≥ V (s, k + 1) , we have V (s, k + 1) = w (s, k + 1 ;2) and hence

 
∗(s, k + 1) = 2 . 

5. Proof of Theorem 2 

We first prove that ζrm (k ) is non-increasing in k, ∀ k ∈ 

 0 , . . . , k ∗ − 1 } . This is equivalent to show that a ∗(s, k + 1) = 1 if

 
∗(s, k ) = 1 ∀ k ∈ { 0 , . . . , k ∗ − 2 } . We prove this by contradiction. 

Suppose a ∗(s, k ) = 1 but a ∗(s, k + 1) = 0 for some s ∈ S and

 ∈ { 0 , . . . , k ∗ − 2 } . Then, we have w (s, k ;1) ≥ w (s, k ;0) , w (s, k +
 ;1) < w (s, k + 1 ;0) and hence, 

 (s, k ;1) − w (s, k + 1 ;1) > w (s, k ;0) − w (s, k + 1 ;0) . (A.11)

or φ-divergence, the right hand side (RHS) of Eq. (A.11) be rewrit- 

en as 

HS = r(s, k ) + max 
μ> 0 ,λ

( λ − μθ
114 
−μ
∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) φ∗

(
λ − βV (s ′ , k ) 

μ

)) 

− r(s, k + 1) − max 
μ> 0 ,λ

( λ − μθ

−μ
∑ 

s ′ ∈S 
ˆ p (s ′ | s, k + 1) φ∗

(
λ − βV (s ′ , k + 1) 

μ

)) 

≥ r(s, k ) + λ∗
s,k +1 − μ∗

s,k +1 θ

− μ∗
s,k +1 

∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) φ∗

(
λ∗
s,k +1 

− βV (s ′ , k ) 
μ∗

s,k +1 

)

− r(s, k + 1) −
( 

λ∗
s,k +1 − μ∗

s,k +1 θ − μ∗
s,k +1 

∑ 

s ′ ∈S 
ˆ p (s ′ | s, k + 1) 

φ∗
(

λ∗
s,k +1 

− βV (s ′ , k + 1) 

μ∗
s,k +1 

))
≥ r(s, k ) − r(s, k + 1) + μ∗

s,k +1 

∑ 

s ′ ∈S 
ˆ p (s ′ | s, k + 1) 

φ∗
(

λ∗
s,k +1 

− βV (s ′ , k ) 
μ∗

s,k +1 

)

− μ∗
s,k +1 

∑ 

s ′ ∈S 
ˆ p (s ′ | s, k ) φ∗

(
λ∗
s,k +1 

− βV (s ′ , k ) 
μ∗

s,k +1 

)
≥ r(s, k ) − r(s, k + 1) , (A.12) 

here inequality (A.12) follows Lemma 4.7.2 in Puterman 

2014) because φ∗
(

λ − βV (s, k ) 

μ

)
is non-decreasing in s ∈ S and 

ˆ 
   (·|·, k + 1) 	 ˆ P P P (·|·, k ) in Assumption 2 . The left hand side (LHS) of

q. (A.11) be rewritten as 

HS = −c r + βV (0 , k + 1) + c r − βV (0 , k + 2) ≤ βV (0 , k + 1) 

−βc s ≤ βr(0 , 0) 

1 − β
− βc s , (A.13) 

here the first inequality holds because V (0 , k + 2) ≥ w (s, k +
 ;2) = c s , and the second inequality holds because V (0 , k + 1) ≤
 ∞ 

t=0 β
t r(0 , 0) = r(0 , 0) / (1 − β) . By (A.12) and (A.13) , we have

r(0 , 0) / (1 − β) − βc s ≥ r(s, k ) − r(s, k + 1) , which violates condi-

ion in Theorem 2 (a) and implies that a ∗(s, k + 1) = 1 if a ∗(s, k ) =
 . 

Now we show that ζrm (k 
∗ − 1) ≥ ζscrap (k ∗) . This is equiv- 

lent to show that a ∗(ζrm (k ∗ − 1) , k ∗) = 2 . From the proof

bove, we can easily show that w (ζrm (k ∗ − 1) , k ∗;1) ≥ w (ζrm (k ∗ −
) , k ∗;0) . By the definition of k ∗, there exists a s ′ that

 
∗(s ′ , k ∗) = 2 . Therefore, w (s, k ∗;2) ≥ w (s, k ∗;1) for all s ∈ S . Thus,
e have w (ζrm (k ∗ − 1) , k ∗;2) ≥ w (ζrm (k ∗ − 1) , k ∗;1) ≥ w (ζrm (k ∗ −
) , k ∗;0) , which shows a ∗(ζrm (k 

∗ − 1) , k ∗) = 2 . It is straightforward

hat ζscrap (k ) is non-increasing in k ∈ K because a ∗(s, k + 1) = 2 if

 
∗(s, k ) = 2 as shown in the proof of Theorem 1 . 

6. Proof of Proposition 3 

For notational convenience, we drop s and k . The value func- 

ion defined in (RRmPO) involves solving an inner problem for any 

iven s ∈ S and k ∈ K as follows 

 (s, k ;0) = min r + β
∑ 

s ′ ∈S 
p(s ′ ) V (s ′ ) 

s.t. 
∑ 

s ′ ∈S 
p(s ′ ) = 1 , W 

m 

m 

(
p p p , ̂  p p p 

)
≤ θm , p(s ′ ) ≥ 0 , s ′ ∈ S. 

(A.14) 
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The Lagrangian dual problem is 

 D = max 
μ≥0 

L (μ) s.t. L (μ) = min 
p p p ≥0 , 

∑ 

s ′ p(s ′ )=1 
L (μ, p p p ) 

here the Lagrangian function is 

 (μ, p p p ) = 

∑ 

s ′ 
p(s ′ ) V (s ′ ) + μ

(
W 

m 

m 

(
p p p , ̂  p p p 

)
− θm 

)
= −μθm + 

∑ 

s ′ 
p(s ′ ) V (s ′ ) + μW 

m 

m 

(
p p p , ̂  p p p 

)
. 

or dual objective function, we have 

 (μ) = min 
p p p ≥0 , 

∑ 

s ′ p(s ′ )=1 
−μθm + 

∑ 

s ′ 
p(s ′ ) V (s ′ ) + μW 

m 

m 

(
p p p , ̂  p p p 

)
(A.15) 

= −μθm + min 
p p p ≥0 , 

∑ 

s ′ p(s ′ )=1 

{∑ 

s ′ 
p(s ′ ) V (s ′ ) 

+ μ max 
u ∈ L 1 ( p p p ) , v ∈ L 1 ( ̂ p p p ) 

{ ∑ 

x ∈S 
u (x ) p(x ) + 

∑ 

y ∈S 
v (y ) ̂  p (y ) : v (y ) 

≤ min 
x ∈S 

{ d(x, y ) m − u (x ) } , ∀ y ∈ S 
} 
}

(A.16) 

et u = −V V V /μ for μ > 0 , then u ∈ L 1 ( p p p ) and v (·) =
in x ∈S { d(x, ·) m − u (x ) } ∈ L 1 ( ̂ p p p ) . Thus, 

 (μ) ≥ − μθm + min 
p p p ≥0 

{
μ

∑ 

y ∈S 
ˆ p (y ) min 

x ∈S 
{ d(x, y ) m + V (x ) /μ} 

}

= − μθm + μ
∑ 

y ∈S 
ˆ p (y ) min 

x ∈S 
{ d(x, y ) m + V (x ) /μ} = L ′ (μ) 

ased on Theorem 1 of Gao & Kleywegt (2016) , there exists an op-

imizer μ∗ such that L (μ∗) = L ′ (μ∗) and v P = v D , i.e., strong dual-
ty holds. 

7. Proof of Proposition 4 

To prove V (s, k ) is non-increasing in s ∈ S , the key step is to
how w 

N (s ′ , k ;0) ≤ w 
N (s, k ;0) at iteration N. Therefore, it suffices

o show inequality (A.8) holds for Wasserstein-distance-based am- 

iguity sets, which is equivalent to show g(y ) = min x g(x, y ) is non-

ncreasing in y , where g(x, y ) = d(x, y ) + V (x ) ( k is dropped here).

o see this, let y 1 < y 2 and x a = arg min x g(x, y a ) for a = 1 , 2 . If

 2 ≤ x 1 , we have g(y 2 ) ≤ g(x 1 , y 2 ) = d(x 1 , y 2 ) + V (x 1 ) < d(x 1 , y 1 ) +
 (x 1 ) = g(y 1 ) . Otherwise if y 2 > x 1 , we have g(y 2 ) ≤ g(y 2 , y 2 ) =
 (y 2 ) ≤ V (x 1 ) < d(x 1 , y 1 ) + V (x 1 ) = g(y 1 ) . 

Since g(y ) is non-increasing in y , the inequality (A.10) holds 

or Wasserstein-distance ambiguity sets, which leads to 

 
N (s, k + 1 ;0) ≤ w 

N (s, k ;0) . Therefore, V (s, k ) is non-increasing

n k ∈ K. 

ppendix B 

1. Experiment parameters 

The following table provides the experiment parameters used in 

he experiment that examines the existence of control limit poli- 

ies when the condition of Theorem 2 (a) is violated. Note that for 

he ease of parameter control, we redefine the reward as r(s, k ) =
 0 − a 1 k − a 2 s . Parameter values are drawn from their respective 

niform distributions. 

a 0 a 1 a 2 c r c s θ β

U(10 , 50) U(1 , 15) U(1 , 15) U(0 , 10) U(0 , 10) U(0 , 2) U(0 . 01 , 0 . 99) 
115 
2. Data-driven decision process 

lgorithm B.1 Data-driven decision-making process. 

nput: Sensor data collected by continuous monitoring the opera- 

tion of units after the k th remanufacturing before the (k + 1) th 

remanufacturing, k = 0 , 1 , . . . 

1: Data Processing 

( a): Data Compression. Apply a data compression technique 

(e.g., PCA) to reduce the high-dimensional data to one dimen- 

sion to represent the overall health of a component; discretize 

the health into several intervals representing different discrete 

states. 

( b): Data Preparation. Separate the entire dataset into a training 

set N and a test set M 

( c): Parameter Estimation. Use a subset of the training dataset 

N to obtain the nominal transition probability ˆ P P P k 
2: Hyperparameter Tuning 

for each θ do 

( a): Construct the ambiguity set using the nominal transition 

probability ˆ P P P k and the radius θ . 
( b): Solve the robust MDP under the constructed ambiguity set 

and obtain a robust policy π(θ ) 

( c): Evaluate the out-of-sample performance ν̄(θ ) 

of π(θ ) using the remaining data in set N 

end for 

3: Obtain Data-Driven Solution 

( a): Select the optimal θ ∗ out of all candidate θ ’s in Step 2 that 
maximizes ν̄(θ ) 

( b): Obtain the data-driven solution π(θ ∗) 
4: Ev aluate the out − of − sample per f or mance of the data −

dri v en solution 
for each unit i ∈ M do 

( a): Obtain the nominal transition probability ˆ P P P 
i 

k for each k 

( b): Obtain the reward νi by implementing π(θ ∗) for unit i 
end for 

( c): Calculate the average reward π(θ ∗) for all i ∈ M 
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