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We consider the problem of remanufacturing planning in the presence of statistical estimation errors.
Determining the optimal remanufacturing timing, first and foremost, requires modeling of the state tran-
sitions of a system. The estimation of these probabilities, however, often suffers from data inadequacy
and is far from accurate, resulting in serious degradation in performance. To mitigate the impacts of the
uncertainty in transition probabilities, we develop a novel data-driven modeling framework for reman-
ufacturing planning in which decision makers can remain robust with respect to statistical estimation
errors. We model the remanufacturing planning problem as a robust Markov decision process, and con-
struct ambiguity sets that contain the true transition probabilities with high confidence. We further es-
tablish structural properties of optimal robust policies and provide insights for remanufacturing planning.
A computational study on the NASA turbofan engine shows that our data-driven robust decision frame-
work consistently yields better out-of-sample reward and higher reliability of the performance guarantee,
compared to the nominal model that uses the maximum likelihood estimates of the transition probabili-
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ties without considering parameter uncertainty.
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1. Introduction

The manufacturing industry is a major consumer of materi-
als and energy and imposes a significant impact on environment.
Sustainable manufacturing with improved environmental perfor-
mance has drawn great attentions from governments, companies
and scientific communities. In the past decade, remanufacturing
has emerged as one of the critical elements for developing a sus-
tainable manufacturing industry ([jomah et al., 2007). Remanufac-
turing is an overhaul process whereby used or broken-down prod-
ucts, referred to as “cores”, are restored to a like-new condition
with an extended lifetime (Ostlin et al., 2009). During this pro-
cess, the cores pass through a number of operations including in-
spection, dismantling, part reprocessing, repair, replacement and
reassembly. The performance of the remanufactured cores is ex-
pected to meet the desired product standards similar to the origi-
nal product, but is not considered a new product in its first life.

Comparing to manufacturing a new product, remanufacturing
can reduce up to 80% of energy consumption and carbon diox-
ide emissions (Sutherland et al., 2008), and 40-65% of manufactur-
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ing costs (Ford & Despeisse, 2016). Remanufacturing is being prac-
ticed across various sectors like automotive, aerospace, electrical
and electronic equipment (EEE), medical equipment, and machin-
ery (Russell & Nasr, 2019; Yang, 2020; Zhang et al., 2021). How-
ever, the growth of the remanufacturing industry faces several crit-
ical challenges. One major challenge faced by remanufacturers is
managing the inherent uncertainty in cores’ conditions (Orsdemir
et al., 2014; Yang et al., 2020), which is largely attributed to the
current reactive end-of-life remanufacturing approach. Many cores
collected at the end of a product’s life are no longer remanufat-
urable due to the lack of adequate technologies to restore them
to like-new conditions. To overcome this barrier, much attention
has been received in designing optimal acquisition decisions such
as acquiring more cores than the demand or purchase cores in
sorted grades, which allows a remanufacturer to be more selec-
tive and remanufacture only those items that are in the best con-
dition (Galbreth & Blackburn, 2010; Orsdemir et al., 2014). While
these acquisition strategies may work well for electronic and elec-
trical equipment including consumer electronics, ink and toner car-
tridges, and white goods, it is much less applicable to several major
sectors of remanufacturing such as aerospace, heavy duty and off-
road (HDOR) equipment, where bulk purchase is rarely an option.

Further exacerbating the issues brought by cores’ uncertain
conditions is that contrary to the conventional wisdom that


https://doi.org/10.1016/j.ejor.2023.01.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.01.031&domain=pdf
mailto:zhicheng.zhu@ttu.edu
mailto:yxiang4@uh.edu
mailto:mzhao@udel.edu
mailto:yue.shi.mse@whu.edu.cn
https://doi.org/10.1016/j.ejor.2023.01.031

Z. Zhu, Y. Xiang, M. Zhao et al.

remanufacturing reduces environmental impacts, it can, in fact,
lead to negative outcomes due to heavy damage. Several studies
have shown that in some cases, remanufacturing actually con-
sumes more energy than manufacturing a new product (Chandler,
2011; Gutowski et al., 2011). A natural question that arises is: Can
we identify the optimal timing for remanufacturing prior to the
product’s life end when it is still remanufacturable and worth the
effort? The focus of this paper is to investigate a proactive reman-
ufacturing planning policy that is more viable for remanufacturing
of large, capital equipment.

Two critical enablers of proactive remanufacturing for equip-
ment in industries such as aerospace, HDOR, are: condition
monitoring technologies and service-based contracts. Due to the
mission-critical and capital-intensive nature of these equipment,
they are monitored by various sensors and their conditions can be
assessed by analyzing the collected sensor data. Moreover, manu-
facturers of equipment in these sectors have been increasingly of-
fering service-based purchasing agreements. Through these agree-
ments, the manufacturers have access to the status of the product,
and can determine when to remanufacture equipment rather than
wait until the product fails. An example of such agreement is the
GoldCare provided by Boeing, which is an integrated service pro-
viding asset management, engineering, maintenance and support
for airline customers (Parker et al., 2015).

In this paper, we provide a novel data-driven modeling frame-
work for remanufacturing planning. In particular, we address the
robustness of the planning decision threatened by the inherent
data inadequacy in sensor data. The optimal planning decision in-
volves suggesting the optimal action, such as no intervention, re-
manufacturing, or scrapping, at different system states, and there-
fore it is required to first and foremost estimate the transition dy-
namics of a system. The underlying transition probabilities (some-
times referred to as the true transition probabilities), which gov-
ern the condition evolving process of a system, are typically un-
known and need to be estimated from data. The estimation is
typically subject to large statistical errors due to noises and in-
correct information contained in the sensor data. This data de-
ficiency poses a critical question to decision makers: How does
uncertainty in model parameters translate into uncertainty in the
performance of interest? The decision makers must assess whether
any observed nominal improvement in the environmental and eco-
nomic effects resulted from remanufacturing at certain states is
likely to be a true improvement, suggesting remanufacturing in
those states, or conversely, a consequence of the parameter un-
certainties due to statistical estimation errors, favoring remanu-
facturing when it causes negative effects. Note that the nominal
improvement here refers to the improvement obtained from the
planning model that uses the maximum likelihood estimates with-
out considering parameter uncertainty. The assessment the deci-
sion maker needs to make here corresponds to the so-called “Opti-
mizer’s curse” phenomenon if we obtain an optimal decision based
on a given dataset and evaluate its performance on a different
dataset, then the resulting out-of-sample performance is often dis-
appointing. To mitigate the impacts of the uncertainty in model
parameters, we construct an ambiguity set that contains the true
transition probabilities with high confidence using historical data
and formulate the remanufacturing planning problem as a robust
Markov decision process (MDP) that helps remanufacturers hedge
against the worst transition probabilities.

We further establish structural properties of optimal robust
policies for decision making in remanufacturing planning. We
show that the optimal robust policies are of control-limit type with
respect to both the condition of the equipment and the cumula-
tive number of remanufacturing processes. Control limit refers to
some threshold that delineates the upper or lower limit of the
range of some action. These key properties provide useful manage-
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rial insights that support remanufacturers’ robust decision making,
allow us to reduce the search effort for determining the optimal
policy, and facilitate easy implementation in practice. In addition,
based on the monotone structure of the optimal robust policies,
we develop a monotone value iteration algorithm to reduce com-
putational efforts. Computational studies using simulated opera-
tional data of NASA turbo fan engine are conducted to demonstrate
the optimal robust policies and to investigate the out-of-sample
performance of the resulting optimal robust remanufacturing poli-
cies. We further derive data-driven solutions to improve the out-
of-sample performance.

The main contributions of this paper are threefold. First, we de-
velop a robust remanufacturing planning framework that helps re-
manufacturers to mitigate the effects of statistical estimation er-
rors caused by limited data and/or errors contained in the data.
Our study represents an initial attempt to prescribe optimal robust
planning policies that help remanufacturers remain robust with re-
spect to statistical estimation errors. Second, we establish sufficient
conditions that ensure the optimal robust remanufacturing policies
are of control-limit type. Few papers in the robust MDP literature
have characterized the properties of optimal robust policies. The
control-limit remanufacturing policies are appealing because of its
easiness of implement and the computational efficiency. Lastly, we
present a comprehensive computational study to demonstrate the
utility of the proposed method and examine the impacts of pa-
rameter uncertainties. In the computational study, to enhance the
out-of-sample performance, we have further developed data-driven
decisions that perform well under the most adverse distribution
within a certain statistical distance (e.g., phi-divergence, Wasser-
stein distance) from a nominal distribution constructed from the
training samples in the computational study. The goal of this data-
driven decision-making is to learn a decision from finitely many
training operational data that will perform well on unseen data.

The remainder of this paper is organized as follows.
Section 2 reviews relevant literature on remanufacturing planning
and sequential decision making with parameter uncertainty. In
Section 3, we develop the data-driven robust remanufacturing
planning model. Section 4 establishes conditions to ensure the
optimal robust policies are of control-limit type. In Section 5, we
present a computational study using simulated operational data
of NASA’s turbofan engines. Section 6 concludes this study and
suggests future research directions.

2. Literature review

Our study is related to two streams of the literature: remanu-
facturing planning and sequential decision-making with parameter
uncertainty.

2.1. Remanufacturing planning

Due to limited data and/or the noises and incorrect information
contained in the data, remanufacturing planning is typically con-
fronted with the internal uncertainty in addition to the external un-
certainty. The internal uncertainty is due to the stochastic nature of
a component or system’s condition evolution and the external un-
certainty is due to the deviation of the estimates from their true
values. Existing works on remanufacturing timing decisions often
either ignore both types of uncertainties in transition dynamics of
a remanufacturing system or only focus on the internal variation.
For example, Song et al. (2015) determine remanufacturing tim-
ing based on a deterministic degradation process charaterized by
residual strength factors. Wang et al. (2016) recommend remanu-
facturing based on online monitoring: Products are remanufactured
when it reaches the limit condition beyond which the product is
no longer remanufacturable. External variation is largely ignored
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in these works, and hence, remanufacturing could be blindly sug-
gested even if it might lead to increased negative environmental or
economic impacts, resulting in the robustness of remanufacturing
planning decisions in question.

Remanufacturing planning decision bears a close resemblance
to maintenance planning which aims to determine the opti-
mal timing of preventive maintenance. In this paper, we model
the transition dynamics using Markov models; the most rele-
vant works in maintenance optimization literature are the ones
that model maintenance problems using MDP (e.g., Elwany et al.,
2011; Kim & Makis, 2013; Kurt & Kharoufeh, 2010). Most mainte-
nance optimization models that are formulated as an MDP, how-
ever, assume that the cost parameters and the transition kernel
are known, and hence, cannot provide satisfactory out-of-sample
performances when future realizations deviate from the predicted
ones. One of the few papers that consider ambiguity in transition
probabilities is by Kim (2016). In his paper, Kim (2016) considers
a failing system whose underlying state is unobservable and ac-
counts uncertainties in both posterior distributions and transition
probabilities. Our work contributes to the maintenance literature
where very few papers have examined the impacts of the parame-
ter uncertainty in the decisions and the performance of interest.

Several recent papers consider parameter uncertainty in main-
tenance decision making, using a Bayesian approach. For exam-
ple, Fouladirad et al. (2018) study time-based replacement poli-
cies when parameters of the time-to-failure distribution are un-
known and investigate the asymptotic distribution of the optimal
replacement decision and the optimal average cost. de Jonge et al.
(2015) and Omshi et al. (2020) use a Bayesian approach to model
the parameter uncertainty and adjust maintenance decisions based
on posterior distributions. The Bayesian approach, while providing
a natural choice for learning parameter values, presents challenges
in specifying an appropriate prior distribution when prior infor-
mation of unknown parameters is limited. Our paper differs from
these papers in two aspects. First, we consider an alternative ap-
proach to model parameter uncertainty. We use data-driven meth-
ods to construct ambiguity sets that contain true parameters with
high confidence, which allow a decision maker to hedge against
the worst-case parameters. Moreover, our objective is to find op-
timal robust policies that maximize the total reward under the
worst transition probabilities, whereas the aforementioned three
papers focus on quantifying the uncertainty in the optimal average
cost rate and adjusting maintenance policies when more informa-
tion becomes available. Second, we formulate the problem as a se-
quential decision process and these three papers model the main-
tenance decision problem as a renewal process.

2.2. Sequential decision making with parameter uncertainty

Early works on the MDPs with parameter uncertainty, includ-
ing Satia & Lave (1973); Silver (1963); White & El-Deib (1986) and
White & Eldeib (1994), formulate the uncertainty in either a game-
theoretic or Bayesian approach. The game-theoretic approach as-
sumes that the uncertainty about the transition probabilities is
encoded by describing the set of all transition probability rows.
Hence, when the decision maker makes a decision for a given state,
the nature, who plays an adversarial role, observes the decision,
and selects a transition probability row from the set to minimize
the reward. Satia & Lave (1973) use the game-theoretic formula-
tion to model the transition uncertainty in MDP and proposed a
policy iteration procedure to solve the problem. White & Eldeib
(1994) further develop a modified policy iteration-based algorithm
for the MDP with imprecise transition probabilities. The Bayesian
approach, first introduced by Silver (1963), assumes a known pri-
ori probability distribution of each transition probability row. The
transition probabilities can be updated along the Bellman’s equa-

104

European Journal of Operational Research 309 (2023) 102-116

tions. Dirichlet priors are a common choice of modeling the uncer-
tainty in transition probabilities (Delage & Mannor, 2010).

Most of the early contributions, however, do not concern
the construction of ambiguity sets. Inspired by the data-driven
approaches, recent robust MDP works (Iyengar, 2005; Nilim &
El Ghaoui, 2005; Wiesemann et al., 2013) have developed various
methods to construct the uncertainty set of transition probabilities
that contain the true transition probabilities with high confidence.
Many statistical methods, such as likelihood constraints, deviation-
type constraints and distance metrics (e.g., Wasserstein ball, ¢-
divergence balls), have been applied to construct an uncertainty set
of transition probabilities with historical samples (Iyengar, 2005;
Nilim & El Ghaoui, 2005; Wiesemann et al., 2013). Reformula-
tion of robust MDPs with different types of ambiguity sets and
the corresponding tractability have also been studied in the liter-
ature. Compared to the theoretical orientation of these works, our
present work focuses more narrowly on developing methods for a
specific problem class, establishing structural properties of optimal
robust policies, and providing executable insights.

3. Robust remanufacturing planning problem
3.1. Model development

Consider remanufacturing planning of a single-component sys-
tem that degrades during its operation. Because we focus on
single-component systems, the words system and component are
used interchangeably throughout the paper. The system is in-
spected at equally spaced discrete time epochs 7 = {0, 1,...}. Let
(S, K) be the state space, where S = {0, 1,2, ...,S} represents the
set of condition states and K ={0,1,...} represents the set of
cumulative numbers of completed remanufacturing activities. A
larger value in S denotes a worse condition and the worst state
s is an absorbing state, meaning the system is not operating prop-
erly and needs to be either remanufactured or scrapped. It should
be noted that state s € S can be a specific physical characteristic
that reflects the condition of a system or a health index obtained
from various sensor data to reflect the overall condition of a sys-
tem. We consider a one-dimensional condition state because re-
manufacturing is a means for overhauling a system and in prac-
tice, when remanufacturing a system (e.g., an engine), the deci-
sion is typically based on the overall state of the system. If the
state of a system is multi-dimensional, one can reduce the dimen-
sion of the data and obtain a one-dimensional health index and
model the evolution process of this index. At each epoch, a deci-
sion maker observes the state of the system and then chooses an
action from the set A = {0, 1,2}, where 0 means continuing oper-
ation to the next decision epoch, 1 means remanufacturing, which
takes one decision period (i.e., duration between two consecutive
decision epochs), and 2 means scrapping the component. Note that
the scrap action takes the system to an absorbing state, denoted
by A, in which case the system remains in the state A and the
remanufacturing planning problem ends. The complete state space
is thus S x K U {A}. The objective of the remanufacturing planning
optimization is to maximize the total profit for a system during
its lifetime, including extended lifetimes as a result of remanufac-
turing. This is practical for some applications. For example, some
products (e.g., engines) have a long life span. During the lifetime
of such a product, a new generation of products that use new, ad-
vanced technologies have often emerged. The user therefore typ-
ically purchases the new, upgraded product. The operational costs
and gains of a product of the newer generation can be significantly
different from the old, outdated ones, requiring a new remanufac-
turing planning policy. A notation list is provided in Table 1.

An important objective of remanufacturing is to minimize
the negative environmental impacts while sustaining profitable
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Table 1
Notation list.
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A action space A = {0, 1, 2} S condition state space S ={0,1,2,...}

K cumulative number of completed remanufacturing activities € ={0,1,...} U ambiguity set

T planning horizon 7 ={0,1,2...} 0 radius of ambiguity sets

e(s, k) environmental cost of state (s, k) g(s, k) operational gain of state (s, k)

r(s, k) reward of action 0; r(s, k) = g(s, k) —e(s, k) cr remanufacturing cost

Cs salvage value p(s'ls, k)  transition probability from states (s, k) to (s, k)
p(s'|s, k)  estimated transition probability P transition probability matrix

P estimated transition probability matrix B discount factor

n(s'|s) number of transitions from states s to s’

growth. The direct environmental impacts of a remanufactured sys-
tem are often measured by greenhouse gas emissions (e.g., CO,,
CHy, N5,0, etc.) using life cycle assessment (LCA). Instead of us-
ing direct environmental impacts, we model the environmental ef-
fects using carbon cost, which is determined by the amount of
carbon emissions and the carbon price, so that we have a single-
objective problem, which is computationally efficient. As more
market-based mechanisms, such as taxes on emissions, tradable
emission allowances and deposit-refund schemes for harmful prod-
ucts (Abdallah et al., 2012), being designed and instituted, reman-
ufacturing planning models that consider the carbon costs will be-
come more relevant and applicable.

To model the profit of a remanufacturing system, we assume
that during each decision period, the decision maker receives a
gain g(s, k) (e.g., production revenue) and incurs some environ-
mental costs e(s, k) if operation is not interrupted (i.e., a = 0). Note
that when the system does not function properly in the worst
condition s , the operational gain can be negative. The reward
of keeping operation in one period is thus denoted by r(s, k) =
g(s, k) —e(s, k). If the decision is to remanufacture the component,
a remanufacturing cost cr, which comprises the manufacturing and
carbon costs, is incurred. If the system is scrapped, a salvage value
cs is received. We assume that ¢; and c¢s are constants and do not
depend on the condition of the system. We assume that remanu-
facturing cost (cr) is a constant because remanufacturing process
typically includes a number of operations, such as disassembly,
cleaning, inspection, repair, replacement, and assembly. For many
systems, the costs of most operations are fixed and the cost differ-
ence resulted from condition difference is negligible. When com-
ponents are scrapped, there are two main mechanisms. One grades
the component and prices the used component based on its con-
dition, and the other one provides a fixed price. We consider the
latter case in this study and assume that the scrap value is fixed.
The system in the absorbing state A yields no operational gain, i.e.,
r(A) =0.

Although remanufacturing restores a component to like-new
conditions, the system is not in an as-good-as-new state in its
first life, and the expected value of the extended lifetime is typ-
ically shorter. To model this effect, we assume that a system’s
transition probabilities are dependent on the cumulative number
of completed remanufacturing activities. We denote the transition
probability matrix when the decision is to keep the system in op-
eration by P = [p(s'[s. k)]s scskex fOr a system that has been re-
manufactured k times. When a = 0 (the system is kept in opera-
tion), the system transitions from (s, k) to (s’, k) with probability
p(s’|s, k). Note that when the system is kept in operation, the cu-
mulative number of remanufacturing operations remains the same.
We assume that the system can only transition to a state that is
worse than the current state when the system is kept in operation
(a =0), that is, p(s'|s, k) = 0 for s > s’. We assume that remanufac-
turing brings the system to a like new condition (i.e., s = 0) but in-
crements the cumulative number of remanufacturings by one. That
is, when a =1 (the system is remanufactured), the state of the
system becomes (0, k + 1). This assumption is motivated by some
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practical applications. For example, the wall thickness of some pip-
ing system is a critical characteristic of its condition, and reman-
ufacturing operation often adds additional materials and restores
the thickness to the same level as a new system, but the remanu-
factured piping system usually deteriorates faster and has a shorter
remaining useful life comparing to a brand-new system. We will
further address the stochastic dominance relationship of transition
behaviors under different k values when analyzing the structure
of the optimal robust planning policies in Section 4. Due to lim-
ited data availability and statistical estimation errors, the transi-
tion probability of a remanufacturing system is fundamentally un-
known. We construct an ambiguity set, denoted by i/, to model the
uncertainty in the transition probability matrix P. An appropriate
ambiguity set should contain the underlying transition probabil-
ity matrix with high confidence. Next we present an important as-
sumption regarding the ambiguity set, which ensures deterministic
and Markovian policies (Iyengar, 2005).

Assumption 1 (Rectangularity). A robust MDP problem has a rect-
angular ambiguity set if the ambiguity set has the form &« =
Rses.kex Usk Where & stands for the Cartesian product, and Uy, is
the projection of ¢/ onto the parameters of state (s, k).

The implication of the rectangularity assumption is often inter-
preted in an adversarial setting (Iyengar, 2005; Nilim & El Ghaoui,
2005): The decision maker first chooses a policy 7. Then an ad-
versary observes i, and chooses a distribution that minimizes the
reward. In this context, rectangularity is a form of an independence
assumption: The choice of a particular distribution for a given state
(s, k) does not limit the choices of the adversary of other states.
There are two possible models to address the transition matrix
uncertainty. One is the stationary uncertainty model where the
worst-case transition probability matrix is chosen by the adver-
sary once and for all, and remains fixed thereafter. The other one
is the time-varying uncertainty model where the worst-case tran-
sition probability matrices can vary arbitrarily with time. In this
paper, we consider the stationary worst-case distribution, that is,
the choices of p(:|s, k) are the same every time the state (s, k) is
encountered. Note that there is no ambiguity in transitions in the
period during which remanufacturing is conducted, since reman-
ufacturing takes one period and there is no transition in that pe-
riod. Because the optimal robust policies of the remanufacturing
planning are Markovian and deterministic under the rectangular-
ity assumption, we have the robust remanufacturing planning op-
timization model in the following recursive form:

V(s,k) =supw(s, k;a), (RRmPO)
acA
where
infpe 1(s, k) + BY ges PSS, K)V(S', k), a=0,
w(s, k;a) =1 —c+BV(O0,k+1), a=1,
Cs, =2.

and B € [0, 1) is the discount factor.
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3.2. Construction of ambiguity sets

The construction of ambiguity sets has been extensively stud-
ied. An ambiguity set U/ is considered statistically good if it is con-
structed with the asymptotic property liminf, ..o P(Pp eid) > 1 —
o, where Py is the true distribution and n is the number of samples
(Lam, 2019). Methods that create ambiguity sets as confidence re-
gions for Py include moment-based constraints, Wasserstein balls,
¢-divergence balls. Among these ambiguity sets, moment-based
ambiguity sets appear to display better tractability properties
(Delage & Ye, 2010), but they do not consider any distributional in-
formation. Completely different distributions might have the same
moments, consequently leading to overly conservative solutions.
An attractive alternative is to define the ambiguity set as a ball
in the space of probability distributions by using a probability dis-
tance function such as the ¢-divergence or the Wasserstein met-
ric. Such metric-based ambiguity sets contain all distributions that
are close to a nominal or most likely distribution with respect
to the prescribed probability metric. By adjusting the radius of
the ambiguity set, both ¢-divergence and the Wasserstein ambi-
guity sets allow decision makers to control the degree of conser-
vatism. In this paper, we will first consider the use of ambiguity
sets that are constructed as confidence sets using ¢-divergence be-
cause (1) many ¢-divergence have already been commonly used
in statistics (e.g., the Kullback-Leibler distance, Burg entropy, and
x2-distance), making them attractive to deal with data directly,
and (2) ¢-divergence sets preserve convexity, resulting in compu-
tationally tractable models. Robust models with Wasserstein am-
biguity sets are more computationally involving, but it has been
demonstrated that the worst-case expectation over a Wasserstein
ambiguity set can be computed efficiently via convex optimization
techniques for numerous loss functions of practical interest, and
more importantly, Wasserstein ambiguity sets offer powerful out-
of-sample performance guarantees (Esfahani & Kuhn, 2018; Hana-
susanto & Kuhn, 2018). We will further extend our investigation of
the structural properties of the optimal robust policies to Model
(RRmPO) using Wassertein ambiguity sets.

4. Structure of the optimal robust policy

In this section, we investigate the structural properties of the
optimal robust remanufacturing policies. We will focus our atten-
tion on control-limit policies. We establish sufficient conditions
that ensure the existence of monotonically control-limit policies.
The optimality of such structured policies is important because
they are appealing to decision makers and enable efficient com-
putation and are easy to implement. Our analysis will make signif-
icant use of the notion of the stochastic dominance, which helps
establish stochastic dominance relationships for transition behav-
iors. Below, we define some stochastic order concepts that are used
in our analysis.

Definition 1.

(a) A transition probability matrix P = [p(i|j)]; jo1,.n IS said
to be IFR (increasing failure rate) if Y7 . p(ilj) is non-
decreasing in j forallm=0,1,...,n.

(b) For  two  transition  probability = matrices P =
[p1(lD]ij=01,.n and Py =[(p2(iliN]ij=01,.nn We say Py
dominates P,, Py > Py, if Y"1 p1(ilj) = Y1, p2(ilj) for all
jym=0,1,..,n

Assumption 2. Let P(-|-, k) denote the nominal transition probabil-
ity matrix for a system that has been remanufactured k times,

a)

(a) P(|- k) is IFR for all k € K.
(b) P(|-

- k+1) = P(|-, k) for all k € K.
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The nominal transition probability matrix in
Assumption 2 refers to the transition probability matrix that
is obtained using the conventional maximum likelihood estimation
(MLE) method. Assumption 2(a) implies that, given the cumulative
number of completed remanufacturing activities k, the system in a
worse state at the current epoch is more likely than the other to
be found in a worse condition at the next epoch. Assumption 2(b)
imposes a first-order stochastic dominance relationship among
the system’s deterioration matrices corresponding to different
remanufacturing histories. More explicitly, given two systems with
the same condition but different remanufacturing histories, the
system with a larger k is more likely to get worse than the other
during operation. Additional assumption is made regarding the
operational gains, environmental costs, and the salvage value.

Assumption 3.

(a) The operational gain g(s, k) is non-increasing in s € S and
k € K, and the carbon cost e(s, k) is non-decreasing in s € S
and k € K;

(b) The reward at state s, the salvage value c¢; and the discount

(S, 0)

1-p
Assumption 3 (a) implies that as the number of completed re-

manufacturing activities increases and its condition worsens, the

gain decreases and the carbon cost increases. For example, an en-
gine in a worse state usually incurs higher maintenance costs, and
consumes more gasoline or electricity, which leads to a higher en-
vironmental cost. Assumption 3(b) ensures that the decision of no
intervention (i.e., a = 0) is excluded when a system is at the worst
state for all k € K because it is not practical that the system stays
in the worst condition s for an infinitely long time. This unrealistic
scenario is eliminated by assuming that the total expected reward
from doing nothing at state (S,0), computed as > 2, Br(S,0) =

(S, 0)

1-8

k > 0, the condition also eliminates the no-intervention option for

state (S, k) for all k > 0.

factor 8 satisfy the following condition: < Cs.

, is less than the salvage value. Since r(S,0) > r(S, k) for all

4.1. Remanufacturing planning with ¢-divergence ambiguity sets

We first analyze the structure of the optimal robust policies un-
der ¢-divergence ambiguity sets. The ¢-divergence between two
vectors p = (py,....pm)T and g = (qq,...,qm)T is defined by Ben-
Tal et al. (2013)

ly(p.q@) = iql'flS(%),
i=1 !

where the ¢-divergence function ¢(t) satisfies ¢ (t) is convex on
t>0, ¢(1) =0, and when g; =0, the terms of (1) are interpreted
as 0¢(b/0) = blim;_ (¢ (t)/t) for b > 0, and 0¢(b/0) =0 for b =
0. We are interested in transition probability distributions and de-
note the nominal distribution by P (for notational convenience, we
drop the notation of k). Given a radius 6, the ambiguity set is as
follows:

(1)

Us=1Ps : Ls(Ps, Bs) <60, ps(s) =1,ps(s) €[0,1],5' € §

s'eS
(2)

Next, we provide reformulations and establish conditions that
ensure control-limit type policies. We first reduce the bi-level
problem (RRmPO) to a single-level problem by applying the La-
grangian dual theory, and then investigate the structure of the ro-
bust value function, which is necessary for establishing control-
limit robust remanufacturing planning policies.
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Proposition 1. For Model (RRmPO) with ¢-divergence ambiguity
sets, w(s, k; 0) can be reformulated as

w(s, k;0) = sup r(s, k) + A — ub

©n>0,A
Y s g (“5‘/“")> 3)
s'eS K

where ¢*(b) = sup,obt — ¢(t) is the conjugate function of ¢(t).

Proof. See Appendix A.l. O

Among all ¢-divergence ambiguity sets, the Kullback-Leibler
ambiguity set has received most attention in robust optimization.
Let n(s’|s) be the number transitions observed from state s to state
s/, and let Ny = }"y s n(s’|s) denote the total number of transitions
observed from state s Ny =Y g sn(s’|s). It has been shown that
the normalized estimated Kullback-Leibler distance 2N31¢(p3, D)
asymptotically follows a X\?Sl—l distribution (Ben-Tal et al., 2013).
In the following corollary, we show how to construct the worst
transition probability distribution in a Kullback-Leibler ambiguity
set.

Corollary 1. For Model (RRmPO) with Kullback-Leibler ambiguity
sets, w(s, k; 0) can be reformulated as

w(s, k; 0) = supr(s, k)
w>0

—ulog (Z P(s'|s, k) exp

s'eS

-BV (s, k)
———— ) |-nb, (4)
< Iz :
and the worst-case distribution is

. -BV (s, k)
p(s'|s, k) exp <M* >

sk
—pV (s, k)) ’

sk

p(s'ls. k) = (5)

Y oes PSS, k) exp (

where ¥, is the optimal solution of the dual problem (4) given s and

Proof. See Appendix A.2. O

Proposition 2. For Model (RRmPO) with ambiguity sets constructed
using ¢-divergence, the value function V (s, k) is non-increasing in s €
S and k € K.

Proof. See Appendix A.3. O

Based on Proposition 2, we further establish conditions that en-
sure control-limit robust policy structures, that is, the remanufac-
turing decisions are of control-limit type with respect to the con-
dition of the system and the cumulative number of completed re-
manufacturing activities.

Theorem 1. For Model (RRmPO) with ¢-divergence ambiguity sets,
there exists a cumulative number of completed remanufacturing ac-
tivities k* € K, and operation states {m (k). {scrap (k) € S such that for
k < k*

0

a(s, k) = {1 if s < grm(k),

if s = (k).
and for k > k*

0
2

if s < gscrap(k)y

a(s, k) = { if s> {scrap(k)'

Proof. See Appendix A.4. O
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Theorem 1 shows that when has k < k*, the optimal decision
is either wait until the next period or remanufacture, and the sys-
tem is remanufactured when the condition is equal to or exceeds
the remanufacturing limit {ym (k). When the cumulative number of
completed remanufacturing activities reaches the threshold k*, the
optimal decision is either wait until the next period or scrap and
there exists a scrapping threshold {scrap (k). This implies that re-
manufacturing is not always optimal —it is not recommended af-
ter being conducted certain number of times. Note that k* =0 is a
special case that remanufacturing is not optimal for all k € K. The
structure of ¢rm (k) and scrap (k) is examined in the next theorem.

Theorem 2. Consider Model (RRmPO) with ¢-divergence-based am-
biguity set. Then, the following holds:

@) If ﬂlr(f’;) —Bes<r(s. k) —r(s.k+1), rm(k)

increasing in k, k < k*, and {rm (k* — 1) > {scrap (k*).
(b) &scrap (k) is non-increasing in k, k > k*.

is

non-

Proof. See Appendix A.5. O

The first part of Theorem 2(a) implies that the optimal ro-
bust policy is monotone with respect to k € K for all k < k*. That
is, a remanufacturer tends to remanufacture earlier as the system
goes through more remanufacturing processes. The second part of
Theorem 2(a) (¢rm(k* — 1) > {scrap (k*)) indicates that if the op-
timal action is remanufacture (a = 1) at some s when k = k* — 1,
then the optimal action is scrap (a = 2) for all s’ > s when k = k*.
Theorem 2(b) shows that the remanufacturer should scrap early as
k increases for all k > k*. Therefore, the optimal robust remanufac-
turing policy has the appealing monotone structure with respect
to k. Note that the condition in Theorem 2(a) is restrictive. We
will show that most violations do not change the monotone struc-
ture of {ym (k) and Cscrap (k) in Section 5.3.1 through computational
studies.

4.2. Remanufacturing planning with Wasserstein ambiguity sets

In this section, we show that the optimal robust policies are
of control-limit type for Model (RRmPO) with Wasserstein-based
ambiguity sets under similar conditions. The Wasserstein distance
of two distributions can be viewed as the minimum transporta-
tion cost for moving the probability mass from one distribution to
the other. The Wasserstein ambiguity set contains all distributions
that are sufficiently close to the empirical distribution with respect
to the Wasserstein metric. Given N independently and identically
distributed training samples, the true distribution P, belongs to
the Wasserstein ambiguity set around the empirical distribution Py
with confidence 1 — « if its radius is a sublinearly growing func-
tion of log(1/a)/N (Esfahani & Kuhn, 2018).

Let (S, d) be a metric space with metric d, and F(S) be the set
of all probability distributions defined on S. Given a radius 6 and a
state s € S (for notational purpose, we drop the notation of k), the
ambiguity set of the Wasserstein ball centered on p, € F(S) is

Us=1Ds : Wi (s, Bs) < 0™, ) ps(s)=1,ps(s) €[0,1],5' e S ¢,

s'eS
(6)

where W (ps, ps) is the Wasserstein distance between ps and P
with order m. The Wasserstein distance W (ps, ps) can be de-
scribed as

MiNy cr(svs) 2 xy)esxs A& VMY (X, ¥)

SE Y yes ¥ (X, 1)=ps(X), VX € 8, Y s ¥ (%, ¥)=Ds(¥), Vy € S}'
(7)

W (ps. ) = {
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To establish conditions that ensure the special structure of op-
timal robust policies for Model (RRmPO) with Wasserstein ambi-
guity sets, we similarly reformulate the bi-level problem into a
single-level problem, and then show that the value function is
non-increasing in s € S and k € K.

Proposition 3. For Model (RRmPO) with the Wasserstein-distance-
based ambiguity set, w(s, k; 0) can be reformulated as
}, (8)

Proposition 4. For Model (RRmPO) with ambiguity sets constructed
using Wasserstein distance, the value function V(s,k) is non-
increasing in s € S and k € K.

w(s, k; 0) = sup —ud™
n>0
V(s k)

dS/,S// my
{( ) m

S ls 1 mi
+ Y B(s'ls, k) min

s'eS

Proof. See Appendix A.6. O

Proof. See Appendix A.7. O

Since the value function is non-increasing in s € S and k € K,
we can similarly show that structural properties in Theorems 1 and
2 hold for Wasserstein-distance-based ambiguity sets under the
same conditions. The theorems and proofs are omitted here.

4.3. Solution methodology

Model (RRmPO) can be solved using robust value iteration
(Iyengar, 2005). We further develop an efficient algorithm for find-
ing optimal robust policies with control-limit structures. If the op-
timal robust policy is of control-limit type with respect to s e S
and k € K, then Model (RRmPO) can be more efficiently solved by
the monotone robust value iteration (Algorithm 1)

Algorithm 1 Monotone robust value iteration.
1: Initialization: }
V(s k),a*(s, k) < 0,V(s, k) « M, V(s,k) e SxK,e >0
2. while ||V —V|| > % do
33 V<V, A5 k) < {0,1,2})V(s.k) e Sx K
4: for (s,k) e S x K do
5: V (s, k) < maxgeais.i WS, k; a),
a*(s, k) < arg MaXgea(s,k) wi(s, k; a)

6: if s+1 € S then

7: A+ 1,k) < {a:a=>a*(s, k)}
8: end if

o: if k+1 € K then

10: A, k+1) < {a:a=>a*(s, k)}
11: end if

12: end for

13: end while
14: return V, a*

This modified algorithm differs from robust value iteration in
Iyengar (2005) in that the action space A becomes smaller with in-
creasing s and k. Specifically, given a state (s, k) and its optimal ro-
bust solution a*(s, k), we reduce the action space of state (s + 1, k)
in step 7 based on Theorem 1 and reduce the action space of state
(s,k+1) in step 10 based on Theorem 2. For example, if the opti-
mal action for a given state (s, k) is to remanufacture (i.e., a(s, k) =
1), then the optimal action for any state (s, k') where s’ > s, k' =k,
the optimal action is to remanufacture based on Theorem 1. Simi-
larly, if the optimal action for a given state (s, k) is to remanufac-
ture (i.e., a(s, k) = 1), then the optimal action for any state (s, k')
where s’ =s, k' > k, the optimal action is to remanufacture based

108

European Journal of Operational Research 309 (2023) 102-116

on Theorem 2. In the worst case, A(s, k) remains the same for all
s e S and k € K and computational effort is the same as that of the
robust value iteration algorithm; however, when the control lim-
its exist, the sets A(s, k) will decrease in size as s and k increase
and hence the number of actions which need to be evaluated in
step 5 is reduced; at some state (s, k), the action set may only
contain a single element, and no further optimization is necessary
since that action will be optimal for all states (s, k’),s’ > s,k > k.
Therefore, this algorithm achieves a better computational efficiency
than the robust value iteration when the optimal robust policy
has a monotone structure. The inner problem w(s, k; 0) in step 5
can be solved by employing a numerical search for its dual prob-
lem by taking the advantage that both dual problems are concave
in their decision variables. Note that the time complexity of the
robust value iteration algorithm for a e-optimal robust policy is
0(C|S|log(R/€)/log(1/8)) (lyengar, 2005), where C is the cost of
computing inner minimization problem w(s, k; 0), and R is the up-
per bound of the reward function. Because the time complexity
of solving the inner minimization problem is polynomial for both
¢-divergence and Wasserstein-distance-based ambiguity sets, the
runtime of solving a robust MDP does not increase much compared
with solving a nominal MDP.

5. Computational study
5.1. System model description

We use the operational data simulated using the Commer-
cial Modular Aero-Propulsion System Simulation (C-MAPSS) soft-
ware (Frederick et al., 2007) developed at NASA to demonstrate
our robust remanufacturing planning model and examine the per-
formance of the optimal robust remanufacturing policies. The C-
MAPSS offers 14 inputs and can produce a number of outputs for
analysis.

The dataset used in this study pertains to a single failure mode
and a single operating condition, and consists of 100 units which
are run to failure. Note that end-of-life can be subjectively deter-
mined as a function of operational thresholds that can be mea-
sured; these thresholds depend on user specifications to deter-
mine safe operational limits. For illustration purposes, we arbitrar-
ily choose four features and plot the time series of these features
for a randomly selected unit and all units (Fig. 1). From Fig. 1, we
can see that the data contains a lot of noises. Various sources can
contribute to noises, and the main sources of noise are manufac-
turing and assembly variations, process noise, and measurement
noise to name a few important ones (Saxena et al., 2008). Due to
the large amount of noises and limited real-world operational data
available, there often exists a high level of uncertainties in transi-
tion probabilities of the turbofan engines, and operators and man-
ufacturers are in great need of robust remanufacturing planning.

5.2. Construction of the ambiguity set

It is typically desirable to reduce the dimensionality of the
data and reconstruct them from a lower dimensional samples.
We therefore use the principal component analysis method to
compress the high-dimensional sensor outputs and use the first
principal component that accounts for the largest variability
of data (approximately 70% on average) as the health indica-
tor. We further discretize the obtained health indicator into 7
intervals, representing 7 condition states, as recommended by
Moghaddass & Zuo (2014). The nominal transition probability is
estimated using the maximum likelihood method, i.e., p(s'|s) =
Y ni(s'18)/ Yl Yges i(s'|s), where n;(s’|s) is the number of
transitions from state s to s’ for unit i, and m is the total num-
ber of units in a sample. We construct the ambiguity sets as de-
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Fig. 1. Illustrations of raw sensor data sequences. (a) and (b), time series of the selected features of unit 6. (c) and (d), time series of the selected features of all units.
Solid lines are the time series of the unit that has the most maximum (yellow line) and minimum (red line) points. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

scribed in Section 3.2. It has been reported in the literature that re-
manufactured components/systems are like-new but have reduced
lifetimes (Ostlin et al., 2009). However, the data simulated using
the C-MAPSS software do not contain operational data after re-
manufacturing. To model the reduction in lifetime after remanu-
facturing, we modify the nominal transition probability matrix ob-
tained for new turbofan engines (i.e., k = 0) for each k (the num-
ber of completed remanufacturing operations). Specifically, we as-
sume that the mean time to failure of a system is reduced by ap-
proximately 7% each time it is remanufactured. This percentage is
arbitrarily chosen. We then adjust the nominal transition proba-
bility matrix to achieve this reduction by trial and error. If post-
remanufacturing operational data are available (i.e., the transition
histories) for all k, then for each number of completed remanu-
facturing operations, one can repeat the estimation procedure de-
scribed in Section 5.2 to obtain the nominal (empirical) transition
matrix, which is the center of the ball that contains all possi-
ble transition matrices. The radius of the ball can be determined
by either choosing the desired confidence level (as described in
Section 4) or using the data-driven approach which uses out-of-
sample tests to select the best-performing radius (as described in
5.3.3).

5.3. Experiments

Next, we demonstrate the structure of the optimal robust re-
manufacturing policy and examine the out-of-sample performance
of the optimal robust policies. We arbitrarily choose cost pa-
rameters that satisfy Assumption 3 in all the following exper-
iments: g(s, k) =4 —0.25s — 0.25k, e(s, k) =1+ 0.25s + 0.25k, ¢; =
2, and c¢; = 0.5. We follow the convention in the MDP works that
arbitrarily select a value of the discount factor no less than 0.8
(Delage & Mannor, 2010; Goh et al., 2018; Wiesemann et al., 2013).
Thus, the discount factor 8 is 0.9 for all the following experiments.
We use the Kullback-Leiber distance to demonstrate the perfor-
mance of general ¢-divergence. For Wasserstein distance, we con-
sider order m = 1. In our experiments, the nominal policy refers
to the optimal remanufacturing policy obtained using the nomi-
nal transition probabilities (i.e., the MLE estimates) which does not
consider parameter uncertainties, and we refer to this approach as
the nominal approach.

5.3.1. Policy structures

We have established conditions to ensure control-limit poli-
cies for Model (RRmPO) with ¢-divergence ambiguity sets and for
Model (RRmPO) with Wasserstein ambiguity sets. For illustration
purposes, we show the structure of optimal robust policies for
Kullback-Leibler ambiguity sets and Wasserstein ambiguity sets.
As Fig. 2 shows, the remanufacturing policies exhibit control-limit

structure. We can also see that as 6 increases, the remanufacturing
threshold ¢rm (k) increases and k* decreases (i.e., the scrap action is
performed earlier). This implies that when parameter uncertainty
is large, a decision maker needs to be cautious about remanufac-
turing used products and to consider scrapping at an earlier stage.
This is because (1) the remanufacturing cost may not be offset by
the subsequent operational gains due to large parameter uncertain-
ties and (2) securing the fixed salvage value better hedges against
uncertainties in future gains.

As stated earlier, the condition of Theorem 2(a) is restrictive
and difficult to satisfy. We further examine whether the optimal
robust policies are still of control-limit type when this condition
is violated. We test a total of 5000 instances and the generation
of the test instances is described in Appendix B.1. Out of the 3060
test instances that violate the condition of Theorem 2(a), only 209
(i.e., approximately 6.8%) instances violate the monotone structure.
Therefore, we believe that a control-limit policy with respect to k
can be obtained in most practical cases even when the condition
that guarantees it is violated.

We further investigate the structure of the optimal robust pol-
icy when remanufacturing costs and salvage values are state-
dependent. We conducted a numerical study that considers more
parameter values to examine whether the control-limit structures
in Theorems 1 and 2, still exist. We assume c;(s, k) and cs(s, k) are
linear with respect to s and k. Suppose c(s, k) = d; + ars + bk and
cs(s, k) = ds + ass + bsk, where a, by, dr, as, bs, and ds are parame-
ters. The ranges of parameters are all bounded by 0 and 2. The op-
erational gain function is the same as the one used in other exper-
iments, i.e., r(s,k) =3 — 0.5s — 0.5k. There are approximately 20%
cases that violate Theorems 1 and 2 for Kullback-Leibler-distance-
based ambiguity sets. For Wasserstein-distance-based ambiguity
sets, there are about 25.7% cases that violate Theorem 1 and 26.8%
cases that violate Theorem 2. This shows that in the majority of
cases with state-dependent costs, the optimal robust policies are
still of the control-limit type.

5.3.2. Impact of the parameter uncertainty

We first conduct experiments to investigate the impact of
the parameter uncertainty on the out-of-sample performance. We
sample a training set A/ from the data set to obtain nominal tran-
sition probability p using the maximum likelihood estimator in
Section 5.2, where m = |\/|. The optimal robust policies of Model
(RRmPO) with ambiguity sets constructed under different hyper-
parameter values using the training dataset, 7w (6) (0 determines
the size of an ambiguity set), are then implemented in a test
dataset M to assess the out-of-sample performance. We examine
two performance measurements: the average reward and the relia-
bility of performance guarantees. The average reward is defined as
Vv (0) = Y iy Vi(ra(0))/IM|, where v;(mp(0)) is the expected



Z. Zhu, Y. Xiang, M. Zhao et al.

European Journal of Operational Research 309 (2023) 102-116

Sr E Remanufacture H [ -i i_lemanu-i
1 .
5 | Remanufacture ! 5 —mmmmmme- ‘ i 5 ©2 chiee _;: Scrap
i = ! ! Scrap :
' craj |
v 1 S ' P 4+ Looomee -s 4 I-------~:
)
: : 3 : 3 :
s3F  beeeee- ] s - TTT==== 1 s> TTTE=ms 1
! i i
H 2 (A L I
2 - Wait Lo-mme- : - Wait i & Wait :
1 L HE 1k Lo 1 k- Lo
0 | ! ! ! | 0 1 ! 1 ! ) L L 1 1 ]
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
k k k
(@) 6=0 (b) 6= 0.5 () 0=1
Fig. 2. Optimal robust policies for different 6s.
16.65 1 - 16.65 10 .
- — y — - — p —
1660 / \ Errr[\)lzal mop) | osp /7 Errr?i:al MDP 660 Ve Eg‘rr?i:al mop| | 09r / my?i:m MDP
1655 | \ 1 08 | 16.55 // \ 1 08} /
T/ | i | i
=AU o6 gess| o6
2 1640 / \ 8 oer | 2 1640/ \ 8 o6 /
@ 1635 o gos | @ 1635 oo g0 /
16.30 \ 04 16.30 \ o4r
16.25 \ 03/ 16.25 \ 03 /
16.20 — 02 16.20 ~—_ 027/
16.15 16.15

0.1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
0 0

(a) (b)

0.1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
0 0

(c) (d)

Fig. 3. Out-of-sample reward vy (6) and reliability Pr{i, (6) > Vi (0)} as a function of 1. (a) and (b) Kullback-Leibler ambiguity set. (c) and (d) Wasserstein ambiguity set.

reward of robust policy mx(6) for test sample i € M when the sys-
tem is brand new (s =0, k = 0). The reliability is defined as the
proportion of the event v;(mwx(6)) > Vy(6) for all i e M, where
Vi (0) is the in-sample value of V (0, 0) given 6.

Figure 3 depicts the experiment results when the size of the
training dataset is 5 (|A| = 5) and the size of the test dataset is 50
(]M| = 50). The value iteration algorithm and the monotone robust
value iteration algorithm (Algorithm 1) are used to efficiently ob-
tain the nominal policy and the robust policy, respectively. From
Fig. 3(a), we observe that the average reward of the robust policy
is better than that of the nominal policy when 6 is not too large.
As 6 increases, the average reward of the robust policy deteriorates
because the robust policy is too conservative. The empirical relia-
bility in Fig. 3(b) is in general non-decreasing in 6, and the relia-
bility of the performance guarantee under the robust approach is
much higher than that under the nominal approach. We also find
that the out-of-sample average reward using a robust approach is
better as long as the reliability of the performance guarantee is
noticeably smaller than 1 and deteriorates when it is close to 1.
Figure 3(c) and (d) present the out-of-sample performance and the
reliability of Model (RRmPO) with the Wasserstein-distance-based
ambiguity sets, respectively. Similar patterns are observed. Results
of this experiment provide an empirical justification of adopting a
robust remanufacturing approach, especially when the size of the
dataset is small.

5.3.3. Remanufacturing planning driven by out-of-sample
performance

From the previous experiment on the impact of the parame-
ter uncertainty, it is shown that different hyperparameter 6 values
may lead to robust remanufacturing policies with different out-of-
sample performance vy (60). It is desired to select a 6 that max-
imizes the average award vy (6). This, however, requires the true
transition probability that is not precisely known. We select the

110

optimal 6 via validation using the training data. Specifically, we
randomly select 60% of the training dataset A for training and
the remaining 40% of the training data is used for validation. Us-
ing newly formed training dataset to construct the ambiguity sets,
Model (RRmPO) is solved for a finite number of candidate hyper-
parameter 6. We then use the validation dataset to evaluate the
out-of-sample performance of m(0), select the optimal 6* as the
one that maximizes vy (0) of the validation set, and report m (6*)
as the data-driven solution.

Figure 4(a) shows the mean value of the out-of-sample perfor-
mance vy (6*) as a function of the sample size |V|. We also ob-
serve that both out-of-sample and in-sample performances exhibit
asymptotic consistency. Figure 4(b) shows the mean of the relia-
bility of the guaranteed performance under different sample sizes.
We can see that the robust policy significantly outperforms the
nominal one, particularly when the training data is scarce. As more
data become available, the optimal robust policy converges to the
nominal policy, and so does the performance of the robust policy.
Figure 4(c) reports in-sample estimate V/(6). We can see that the
nominal approach is over-optimistic while the robust approaches
act on the cautious side.

5.3.4. Comparison with the alternative Bayesian approach

To demonstrate the performance of the parameter uncertainty
modeling approach used in this study as a viable alternative, we
further compare the performance of the Bayesian approach and
the proposed robust approach in remanufacturing planning. Specif-
ically, we compare the out-of-sample performance of the Bayesian
approach for prior distributions that are randomly chosen with
that of the proposed robust approach. For computational efficiency,
we consider Dirichlet priors because the Dirichlet distribution is
the conjugate prior for the multinomial distribution. Let Dir(&:As)
be the Dirichlet distribution given state s € S and k = 0 with pa-
rameter &As, where & € Rt and As € RIS satisfying AT1 =1 and



Z. Zhu, Y. Xiang, M. Zhao et al.

European Journal of Operational Research 309 (2023) 102-116

16.95 08 19.00
T 7 RMDP 0.7 | [z==Nominal MDP 18.50 - lominal MDP
g i -~~~ Nominal MDP \
/ 1800
! 0.6 g
£ 16851 | £ © 1750
% 05 - 2
@ 16,80 | | e y E 17.00
] 04 / @
/ / £ 16.50
16.75 |/
| 03 y 16.00
16.70 02 15.50
10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
[N IN| IN|
(a) (b) (c)
16.95 08 19.00
MDP ==~Nominal MDP 18.50 ~--- Nominal MDP
16.90 H B lominal MDP
/ T 18.00
' E
1685 £ 2 17.50
@ i 8 o
: i S S
O 1680 | K E17.00
: @
! £ 16.50
16.75
/ 16.00
16.70 024 15.50
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
INI [N [N

(d)

(e)

(f)

Fig. 4. Out-of-sample reward Dy (6*), reliability Pr{Dy (6*) > V\+(6*)}, and in-sample reward Vy (6*) as a function of |A]. (a)-(c) Kullback-Leiber ambiguity set. (d) and (f)

Wasserstein ambiguity set.

Table 2 Table 3
Average out-of-sample reward with respect to 50 priors and hyperparameter 6. Parameter bounds in sensitivity analysis.
Training Bayesian approach Robust approach d a b cr Cs
sample size
P & Mean 6 Mean (KL) Mean (Wass.) (0, 12) 0, 2) (0, 2) (0, 5) (0, 3)
1 5 16.12 0.1 16.62 16.34
10 14.56 0.5 16.62 16.62
20 14.56 1.0 16.23 16.20 . .
5.3.5. Sensitivity analysis
5 5 16.62 0.1 16.62 16.60 In thi f duct . ts t . th
10 16.62 05 16.23 16.62 n 1S section, we con UC. more exp.erlmen S to examine e
20 16.12 1.0 16.20 16.20 performance of the robust policy under different parameter values.

As > 0. We use the same random priors for all states (s, k) € S x K.
We consider three levels of & € {5, 10, 20}, and a larger value im-
plies a smaller variance of priors when randomly generated. For
each level of variance &, we randomly generate A. For each prior,
the posterior distribution is obtained using the training data based
on Bayes’ theorem. The posterior predictive transition probabilities
are then served as the transition probabilities in an MDP, which is
solved to obtain the optimal policy. We report the average reward
of all 50 optimal policies in the test set. The same training set and
the test set in Section 5.3.2 are used in this experiment. Table 2
compares the results of the Bayesian approach and the robust ap-
proach for two different training sample sizes. From Table 2, we
can see that the two approaches have similar performances in
some cases and that the robust approach has a slightly better av-
erage reward than the Bayesian one when data are limited. In par-
ticular, when £ increases, the performance of the Bayesian ap-
proach decreases, especially when training sample size is small
This is because a smaller & leads to more sparse priors (i.e.,
higher variance), which can reduce the chance of concentrating
on transition probabilities that are largely deviated from the true
one.

m

Specifically, we assume r(s, k) = g(s, k) —e(s, k) = d — as — bk, and
test 1000 instances where parameters d, a, b, ¢;, and ¢s are drawn
randomly from uniform distributions. The parameters of the uni-
form distributions are provided in Table 3.

We first examine the performance of the robust approach under
different cost parameters and 6s. Table 2 summarizes the percent-
ages of test instances where the robust policy is no worse than
the nominal policy given 6. From Table 4, we can see that there
is a very high chance that the robust policy is no worse than the
nominal policy when 6 is small, and this chance decreases as 6 in-
creases because the robust policy can be overly conservative. This
is consistent with the conclusion in Section 5.3.2.

We further compare the robust policy and the nominal policy
given different training sample sizes. In this new experiment, we
similarly test sample sizes of 5, 10, and 15. For all 1000 test in-
stances of each training sample size, the robust policies are no
worse than the nominal ones. This agrees with our conclusion in
Section 5.3.3.

Table 5 compares the performance of the robust approach and
Bayesian approach with different hyperparameter £ and 6. From
Table 3, we can see that when 6 is small, the robust policy has a
higher percentage of outperforming the policy using Bayesian ap-
proach.
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Table 4
Percentage of cases where robust policy is no worse than the nominal policy.
6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
KL 96.6% 90.7% 84.7% 80.4% 779% 75.5% 73.2% 709% 69.7%  60.9%
Wass  99.9% 98.9% 93.6% 96.4% 79.7% 749% 72.9% 703% 68.8% 67.4%
Table 5
Percentage of instances where robust policy is no worse than the Bayesian policy.
& 5 10 20
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
KL 59.6%  43% 37.6% 62.4% 456% 39.6% 69.1% 55.1% 47.3%
Wass  52.3% 439% 36.9% 55.9% 47.5% 388% 63% 56.7%  46.5%

6. Conclusion and future work

In this paper, we consider the problem of remanufacturing
planning in the presence of parameter uncertainty. We formulate
the problem as a robust Markov decision process in which the
true transition probability is unknown but lies in an ambiguity set
with high confidence. Two distance-metric based ambiguity sets
are considered: ¢-divergence and Wasserstein distance. We inves-
tigate the structure of the optimal robust policies and establish
conditions to ensure the policies are of control-limit type. We also
establish sufficient conditions for some of the intuitive results seen
in our computational study. We demonstrate the structure of the
optimal robust policies via a computational study using the simu-
lated operational data of the turbofan engine operated by NASA,
investigate the out-of-sample performance, and derive the data-
driven solutions to improve the out-of-sample performance.

In this paper, we consider a remanufacturing planning problem
with a scrap action that takes a system to an absorbing state, in
which case the remanufacturing planning problem ends. It is worth
considering a replacement action taking the system to a new state
in the remanufacturing decision-making process to ensure the con-
tinuity of business in the future. Remanufacturing cost and salvage
value are assumed to be constants in this study; extending our
model to incorporate state-dependent remanufacturing cost and
salvage value in remanufacturing planning is a natural future ex-
tension of this work. Moreover, at each decision epoch, decision
makers make new observation about the system, and an important
question that arises is how the information that becomes available
in the decision process can be leveraged to resolve some ambigu-
ity, so that the optimal robust policies are not overly conservative.
In addition, an implicit assumption made in this paper is that the
states of a system are directly observable (i.e., the sensor data re-
veal the underlying state of the system with certainty). In practice,
many systems are not directly observable and the states have to
be inferred from signals collected. Future work will investigate the
partially observable Markov decision process with parameter un-
certainty.
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Appendix A
Al. Proof of Proposition 1

Since Proposition 1 applies to all (s,k) € S x K, we drop
(s, k) in the value function when proving this proposition for

the notational convenience. The value function defined in Model
(RRmPO) involves solving an inner problem for any given s € S and

k € K as follows

w(s, k:0) = min r+ " p(sHV(s)

s'eS
st. Y ps)=1, }:p6)¢< ) p(s)
s'eS s'eS
>0,5eS. <6 (A1)
The Lagrangian dual problem of (A.1) is
A f{gg;(zo LG
where the Lagrangian dual objective function is
LG p) = minL(2, p. p)
p=
= m1nr+ﬁ2p(s)V(s)+A 1->"p(s)
s'eS s'eS
S
+i }:p6)¢<p()>
s'eS
(BV(s")—A ~l
= minr+A - no+iy (ts B ,fj ) )+¢(ts’)>p(s)
s'eS
(A.2)
ty(A— BV (s .
=r+A-— M@ H/Z<t>0 5 ( :3 (s)) ¢(t5'))p(5)
s'eS
.« A—BV(
—r k-l — Zp(s’)qs*(i”), (A3)
s'eS

where ¢*(a) = sup;.gat —¢(t) and Eq. (A.2) is implied by the
change of decision variables t = p/p. Because the terms r, A, and
u0 in Eq. (A.2) are independent of the decision variable t, and
there is no constraint on each entry of t, we obtain Eq. (A.3) by
switching min;-o and )"y s, and replacing min f by —max —f.

A2. Proof of Corollary 1

The value function defined in (RRmPO) involves solving an in-
ner problem for any given s € S and k € K as follows

w(s, k; 0) =min r(s, k) + B p(s'ls. k)V (s, k)

s'eS
s.t. s'Is, k) =1, log s'ls. k
S&Mﬂamzqye& (A4)
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The Lagrangian dual problem of (A.4) is
LA, ) st LA, )= min L(A, u, p(-[s, k)
0 p(-s.k)=0

-Is,

max
A free, >

where the Lagrangian function is

L(h, 1, pCIs k) = 1(s, k) + B ) p(s'Is, k)V (5, k)

s'eS

+A (l -> pG'ls. k))

s'eS
pGs'ls k)
<ﬁ<s/|s, k)) 9)
=1, k) + A —ub+ > (BV( k) — A

s'eS
p(s'ls, k) /
log | ——= s'|s, k).
+u g<p(s,|syk) p(s'ls, k)
The strong duality holds because p(-|s, k) is a strictly feasible solu-

tion to the problem (A.4) and the Slater condition holds. The first
order conditions of the Lagrangian function give

LA, pu, p(ls, k) / p(s'ls, k)
ap(s’|s, k) =BV(s, k) =2+ pulog (ﬁ(s’|s, k))

+u=0 Vses
s, k) = p(s'|s, k) exp (

Vs' eS.

s'eS

+u (Z p(s'|s, k) log

= p(s

—BV (' k) + A — ,u)
m ,
(A.5)

By substituting (A.5) into the Lagrangian function, the dual prob-
lem becomes

OL(A, w) =r1(s,k)+A—ub

~ exp (A;")ustWs, )

s'eS

—-BV (s, k)
exp (M )

Again, the first order conditions give
> p(s'ls. k)

oL@ p) _ 1—exp <)L — M)
K s'eS

)
—BV (s’ k)
SUASCEL) B
exp< L )

= A=—ulog (Z P(s's, k) exp

s'eS

max
A free, >

(_ﬁvlisg k))) i
(A.6)

The dual problem can be rewritten as

s'eS

max L(u)=r(s. k)—plog (Z (s’

By combining (A.5) and (A.6), we have the worst-case transitional
probabilities as

P(s'ls. k) exp (—=BV (s'. k) /1) Vs
Ygres D" Is. k) exp (—BV (s k) /uz,)’

where u, is the optimal solution of the dual problem with given
s and k.

p*(s'ls k) = €S.

s, k) exp <_ﬂvlis/k)>)—u9
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A3. Proof of Proposition 2

Let V"'(s, k) = maXqeq W' (S, k; a) denote the value function at
the nth iteration of the robust value iteration algorithm in
Section 4.3 (Iyengar, 2005). We will show that V"(s, k) is non-
increasing in s € S and k € K for any integer n > 0 by induction.
Then, the theorem follows because the robust value iteration algo-
rithm converges to an optimal policy.

We set the initial value as VO(s, k) =0 for all s€ S and k € K.
First, we show that V (s, k) is non-increasing in s € S for all k € K.
Because VO(s, k) = 0 for all s € S, the induction holds at the initial
iteration. Assume that V"(s, k) is non-increasing in s S for n =
1,...,N—1.Lets' seS withs' >sand A}, and u?, be the optimal
solution of the dual problems for any give state (s, k) € S x K. We
consider two cases at iteration N. If a =0, for ¢-divergence, we
have

wN(s' k;0) = max (s’ k) + A — ub
n>0,A

(x — BUN-I(s”, k))
w

(A;‘,k — BVNI(s k)
M:’k

s’eS

- M(Z p(s"Is' k)¢

=1 k) + AL, — i 0

Sy <Z B(s"I k)"
s"eS

<1(s, k) + AL, — i 0

_ M:[}{(Z 13(5”

)
)

)L:’k _ lng—l (S//, k)
Mg

s, k)¢*<

s"eS
(A7)
<7(s, k) + Ay — 1y d
. )\'*/ _ IBvN—] (S”, k)
- ujzk<2 pEs"[s. k)d)*( e
s7eS Hegi
< max r(s,k) +A — ub
n>0,A
. A — BVN-1(s" k
o 3 s kg (’3”)
oy 2
=wN(s, k; 0) (A.8)

The inequality (A.7) holds because r(s’, k) < r(s, k). The inequal-
ity (A.8) follows Lemma 4.7.2 in Puterman (2014) because P(-|-, k)
is IFR and ¢*((A — BVN-1(s,k))/p) is non-decreasing in s due to
VN-1(s k) is non-increasing in s by the induction hypothesis.

If a=1, we have wN(s, k; 1) = wN(s', k; 1) = —¢c; + BVN-1(0, k +
1). Therefore, wN(s,k; 1) is non-increasing in s given k. Simi-
larly, since wN(s, k; 2) = wN(s', k; 2) = cs, wN(s, k;2) is also non-
increasing in s given k. Since VN(s, k) = maxqe4wN(s, k;a) >
maxge s WN(s', k; a) = VN (s, k), the induction hypothesis holds at
iteration N.

Next, we show that V (s, k) is non-increasing in k € K, Vs € S.
Because VO(s, k) = 0, Yk € K, the induction holds at the initial iter-
ation. Assume for any s € S, V"'(s, k) is non-increasing in k € K for
n=0,...,N—1. We consider two cases at iteration N. If a = 0, we
have

wN(s, k+1;0)
=max r(s,k+1)+Xi—ub
n>0,A

—u (Z pes’

s'eS

A— BYNI(S k+1)
o

s,k+1)¢>*<

)



Z. Zhu, Y. Xiang, M. Zhao et al.

=1, k+1) + A1 — Mi 10

s,k+1
BVN-1(s' k+1)

(A‘;kﬂ B
'u:,kﬂ

— Mgt (Z P(s'ls. k+ 1)g*

s'eS

)

ST(S,R) + Af g — M0

s,k+1

(A;k-ﬂ — BVN-1(s' k)
'u:,k-ﬂ

— Wk (Z P(s'|s, k+1)¢p*

s'eS
(A.9)
= T(S k) + )“s k+1 H’;kﬂg
. - BVNTI(s' k)
_ I’L:_k+] Z p(S/|S, k)d)*( s, k+1 _
s'eS 'us.kﬂ
< max r(s,k) +A — ub
M>0,)\.
N * A_/ngil(Sl,k)
—plog [ 3 p(s"Is. kyg | 22
s'eS M
N (s, k; 0) (A10)
The inequality (A.9) holds because r(s,k+1) <r(s,k) and
VN-1(s . k+1) <VN-1(s,k) by the induction hypothesis.
The inequality (A.10) follows Lemma 4.7.2 in Puterman

(2014) because P(:|-,k+1) =P(:|-,k) by Assumption 2(b) and
¢*((A — BVN-1(s,k))/t) is non-decreasing in s due to VN=1(s, k)
is non-increasing in s by the induction hypothesis.

If a=1, we have wN(s, k; 1) = —c; + BVN-1(0,k+ 1) > —¢c; +
BVN-1(0,k+2) =wN(s,k+1;1). Therefore, wN(s,k;1) is non-
increasing in k for all s € S. Similarly, since wN(s, k; 2) = wN(s, k +
1;2) =c5, wN(s,k;2) is also non-increasing in k for all se
S. Since VN(s, k) = maxqea WV (s, k; @) > maxqeaWN(s,k+1;a) =
VN (s, k+ 1), the induction hypothesis holds at iteration N.

A4. Proof of Theorem 1

We first show that the optimal policy is of control-limit type for
all k e K. Let s’ > s. We consider two cases: (i) If a*(s, k) = 1, then
V(s,k) =w(s,k;1) = —c; + BV(0,k+1) =w(s'. k; 1) <V (s, k). Be-
cause V(s,k) is non-increasing in s for all ke Kk, V(s k) >
V (s, k). Thus, we have V(s’, k) =w(s’,k; 1) and a*(s’, k) = 1. (ii)
If a*(s,k) =2, then V(s, k) =w(s, k;2) =cs =w(s', k;2), and by
Proposition 2, V(s, k) >V (s', k), we have V(s', k) = w(s', k; 2) and
a*(s', k) = 2.

Next, we show the existence of the threshold k*. This is equiv-
alent to show that if a*(s, k) =2 for some k, then a*(s,k+1) =
2. Since V(s,k) =w(s, k;2) =cs=w(s,k+1;2) <V(s,k+1) and
V(s, k) >V(s,k+1), we have V(s,k+ 1) =w(s,k+ 1;2) and hence
a*(s,k+1)=2.

A5. Proof of Theorem 2

We first prove that ¢mm(k) is non-increasing in k, Vke
k* —1}. This is equivalent to show that a*(s,k+1) =1 if
a*(s,k) =1 Vke{0,...,k* —2}. We prove this by contradiction.

Suppose a*(s,k) =1 but a*(s,k+1) =0 for some s<S and
ke{0,...,k*—2}. Then, we have w(s,k;1) > w(s, k; 0), w(s,k+
1;1) <w(s,k+1;0) and hence,

w(s, k; 1) —w(s,k+1;1) > w(s, k; 0) —w(s, k+1;0). (A1)

For ¢-divergence, the right hand side (RHS) of Eq. (A.11) be rewrit-
ten as

RHS =r(s, k) + max (A — uf
n>0,A
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)

(x — BV k+1)

1Y BGs'ls k)

s'eS

(x — BV (s, k)
"

—1(s,k+1) — max (A — ub
n>0,A

— Y p(s'ls. k+1)¢*

s'eS

"

z r(s k) + )‘s k+1 /“L;kﬂg

s, k+1 IBV(S k)
()

—r(s,k+1) - (A;‘,kﬂ — Wiki10 = Mo Y D[S k+ 1)

s'eS
5 < Skt ))

> (s, k) = (s, k+1) + plpq _ B(ls k+1)

— W Y B Is. k)¢

s'eS s.k+1

- BV k+1)

M“s,k+1

s'eS
¢ ( s, k+1 ,BV(S k)>
M ki
— Wper 2 D(SIs k)" (“‘H’B‘/(Sk)>
s'eS /,LS k+1
>r(s,k) —r(s,k+1), (A12)
where inequality (A.12) follows Lemma 4.7.2 in Puterman

A—BV(s, k)
0

P(|-. k+1) = P(|- k) in Assumption 2. The left hand side (LHS) of
Eq. (A.11) be rewritten as

LHS = —¢; + BV (0, k+1) + ¢ —

_ ,Bcs < M _ ﬁcs,

-B
where the first inequality holds because V(0,k+2) > w(s, k+
2;2) =5, and the second inequality holds because V(0,k+1) <
> 20 Bir(0,0) =r(0,0)/(1 — B). By (A12) and (A.13), we have
Br(0,0)/(1 - B) — Bcs >1(s, k) —r(s,k+ 1), which violates condi-
tion in Theorem 2(a) and implies that a*(s,k+1) =1 if a*(s, k) =
1.

(2014) because ¢*< ) is non-decreasing in s € S and

BV(0,k+2) < BV, k+1)
(A.13)

Now we show that Cim(k* —1) > Cscrap(k*). This is equiv-
alent to show that a*({m(k* —1),k*) =2. From the proof
above, we can easily show that w({im (k* — 1), k*; 1) > W(&m (k* —
1),k*;0). By the definition of k* there exists a s’ that
a*(s', k*) = 2. Therefore, w(s, k*; 2) > w(s, k*; 1) for all s € S. Thus,
we have w(gm(k* — 1), k*; 2) = w(&m (k* — 1), k*; 1) = w(&m (k* —
1), k*; 0), which shows a*({mm (k* — 1), k*) = 2. It is straightforward
that scrap (k) is non-increasing in k € K because a*(s,k+1) =2 if
a*(s, k) = 2 as shown in the proof of Theorem 1.

A6. Proof of Proposition 3

For notational convenience, we drop s and k. The value func-
tion defined in (RRmPO) involves solving an inner problem for any
given s € S and k € K as follows

w(s, k:0) =min r+ " p(sHV(s)
s'eS

> opH)=1, Wi(p.p) <0™. p(s) = 0,5 €S.

s'eS

s.t.

(A14)
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The Lagrangian dual problem is

min

L(u,
L (1, p)

Up = maa( L(w) st L(pn) =
W=

where the Lagrangian function is

D pEHV(E) + (Wi (p. B) — 0™)

L(u, p)

—n0™+ 3" p(sHV () + uWir (p. B)-
.

For dual objective function, we have

L(“)_p>o£‘,‘p<s> —Hb +sZp(s W(s) + uWi(p.p)  (A15)
=—ub o in 1{ZP(S)V(5)

Zu(x)p(x>+2v(y>p@) V()

yes

< min{d(x, y)" ~u()}. ¥y < s}}

® uel! (p) i/eL‘(p) {
(A16)

Let u=-V/u for wu>0 then uel'(p) and

minges{d(x, )™ —u(x)} € L1(p). Thus,

y() =

L(u) = — pno™ + mlﬂ {M Y bW min{d(x, y)" +V(X)/M}}

yes

=— O™+ Yy P min{d(x.y)" +V(x)/u} = L'(w)
yes

Based on Theorem 1 of Gao & Kleywegt (2016), there exists an op-
timizer w* such that L(u*) = L'(n*) and vp = vp, i.e., strong dual-
ity holds.

A7. Proof of Proposition 4

To prove V (s, k) is non-increasing in s € S, the key step is to
show wN(s’, k; 0) < wN(s, k; 0) at iteration N. Therefore, it suffices
to show inequality (A.8) holds for Wasserstein-distance-based am-
biguity sets, which is equivalent to show g(y) = miny g(x, y) is non-
increasing in y, where g(x,y) =d(x,y) +V(x) (k is dropped here).
To see this, let y; <y, and x, = argminyg(x,y,) for a=1,2. If
Y2 <x1, we have g(y2) < g(x1,y2) =d(x1,¥2) +V(x1) <d(x1,y1) +
V(x1) = g(y1). Otherwise if y, > xq, we have g(y,) <g(2,y2) =
V(y2) <V(x1) <d(x1,y1) +V(x1) = gW1).

Since g(y) is non-increasing in y, the inequality (A.10) holds
for Wasserstein-distance ambiguity sets, which leads to
wN(s, k+1;0) <wV(s, k; 0). Therefore, V(s, k) is non-increasing
in k e K.

Appendix B
B1. Experiment parameters

The following table provides the experiment parameters used in
the experiment that examines the existence of control limit poli-
cies when the condition of Theorem 2(a) is violated. Note that for
the ease of parameter control, we redefine the reward as r(s, k) =
ag — a;k — ays. Parameter values are drawn from their respective
uniform distributions.

Cs 0
U(0,10) U(0,2)

B
U(0.01,0.99)

do

U(10, 50)

a

UQ,15)

a

U(1,15)

Cr

U(0, 10)
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B2. Data-driven decision process

Algorithm B.1 Data-driven decision-making process.

Input: Sensor data collected by continuous monitoring the opera-
tion of units after the kth remanufacturing before the (k + 1)th
remanufacturing, k=0, 1, ...

1: Data Processing
(a): Data Compression. Apply a data compression technique
(e.g., PCA) to reduce the high-dimensional data to one dimen-
sion to represent the overall health of a component; discretize
the health into several intervals representing different discrete
states.
(b): Data Preparation. Separate the entire dataset into a training
set A and a test set M
(c): Parameter Estimation. Use a subset of the training dataset
N to obtain the nominal transition probability I3k

2: Hyperparameter Tuning
for each 6 do
(a): Construct the ambiguity set using the nominal transition
probability Pk and the radius 6.
(b): Solve the robust MDP under the constructed ambiguity set
and obtain a robust policy 7 (6)

(c):  Evaluate the out-of-sample performance ©v(6)
of m(f) wusing the remaining data in set N
end for

3: Obtain Data-Driven Solution
(a): Select the optimal 6* out of all candidate 6’s in Step 2 that
maximizes v (6)
(b): Obtain the data-driven solution  (6*)

4: Evaluate the out — of — sample per formance of the data—
driven solution
for each unit i ¢ M do ]
(a): Obtain the nominal transition probability IA’L for each k
(b): Obtain the reward v; by implementing 7 (6*) for unit i
end for
(c): Calculate the average reward 7 (6*) for all i ¢ M
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