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Synthesizing doubly threaded [3]rotaxanes requires the use of larger rings than more traditional singly

threaded [2]rotaxanes. A key challenge in accessing stable doubly threaded [3]rotaxanes with large rings is

finding the right combination of ring to stopper size. In this study, a series of doubly threaded [3]rotaxanes

derived from five different sized macrocycles in the size range of 40–48 atoms and two different stopper

groups, which contain 1 or 2 tris(p-t-butylbiphenyl)methyl moieties, were prepared and their kinetic stabi-

lity examined. These interlocked compounds were synthesized using a metal-templated approach and

fully characterized utilizing a combination of mass spectrometry, NMR spectroscopy, and size-exclusion

chromatography techniques. The effect of ring size on the stability of the doubly threaded [3]rotaxane

was investigated via kinetic stability tests monitored using 1H-NMR spectroscopy. By tightening the

macrocycle systematically every 2 atoms from 48 to 40 atoms, a wide range of doubly threaded inter-

locked molecules could be accessed in which the rate of room temperature slippage of the macrocycle

from the dumbbells could be tuned. Using the larger stopper group with a 48-atom ring results in no

observable rotaxane, 46–44 atom macrocycles result in metastable rotaxane species with a slippage half-

life of ∼5 weeks and ∼9 weeks, respectively, while macrocycles of 42 atoms or smaller yield a stable

rotaxane. The smaller sized stopper is not able to fully stabilize any of the [3]rotaxane structures but meta-

stable [3]rotaxanes are obtained with slippage half-lives of 25 ± 2 hours and 13 ± 1 days using macro-

cycles with 42 or 40 atoms, respectively. These results highlight the dramatic effect that relatively small

ring size changes can have on the structure of doubly threaded [3]rotaxanes and lay the synthetic ground-

work for a range of higher order doubly threaded interlocked architectures.

Introduction

Mechanically interlocked molecules (MIMs) are compounds
comprised of multiple components that are connected as a
result of their topology as opposed to a standard covalent
bond.1 This unusual connectivity has been exploited by scien-
tists over the past few decades resulting in the exploration of
MIMs in a wide range of applications including catalysis,2,3

drug and gene delivery,4,5 switchable surfaces,6,7

mechanophores,8–10 molecular machines11,12 and more.13,14

Specifically, their use as molecular machines received inter-
national acclaim with the awarding of the 2016 Nobel Prize in
Chemistry to Sauvage,15 Feringa,16 and Stoddart.17 A key
aspect of MIMs for many such applications is how the individ-
ual components interact and are able to move relative to one
another.18

Rotaxanes are a class of MIMs comprised of ring and dumb-
bell components.19 The most elementary version is a singly
threaded [2]rotaxane comprised of one macrocycle component
kinetically trapped between the stopper groups of a second
dumbbell component.20 Matching the correctly sized ring to
stopper group is critical for achieving a stable interlocked
molecule,21,22 and prior studies have shown that depending on
the relative size of stopper and macrocycle, the ring may
undergo a slippage process where it dethreads from the dumb-
bell yielding the noninterlocked components.23–26 Accessing
different slippage rates in these metastable rotaxanes is poss-
ible and such interlocked compounds have been shown to be
useful as a means of chemical protection,27,28 constructing
molecular pumps,29–31 and the assembly of more complex
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architectures such as molecular containers32 and supramole-
cular networks.33

An important design parameter that has emerged in rotax-
ane synthesis and application is macrocycle size.34–43

Specifically, control over the size of the ring(s) employed in
rotaxane structures has allowed researchers to influence their
ring mobility,35 impact their electrochemical properties,38

access molecular shuttles,39 develop means of programmable
chemical protection40 and more. In these studies, relatively
small changes (1–2 atoms) in macrocycle size result in dra-
matic effects in the resulting rotaxane function. However, the
above-mentioned studies into metastable [2]rotaxanes, high-
light that careful design and chemical consideration must be
given to both rotaxane components if the goal is to access a
stable rotaxane that can perform a useful function.

The rotaxanes discussed above are all based on a simple
singly threaded [2]rotaxane motif. As researchers continue to
access more complex interlocked structures, there is a growing
interest in looking towards higher order rotaxanes44 such as mul-
tiply threaded45 architectures in order to achieve more compli-
cated function. Bundling multiple threads within the same
macrocyclic cavity opens the door to the possibility of tuning
their inter-thread interactions through means such as non-
covalent interactions or proximity-induced covalent chemistries.
However, to date, the synthesis of doubly threaded [3]rotaxanes
remains a challenging task,45 and the effect of macrocycle size
variation on the rotaxane structure has been far less explored in
doubly threaded systems.46–48 Recently, the synthesis and charac-
terization of a series of metastable doubly threaded [3]rotaxanes
that vary in stopper group size with one of the largest macro-
cycles to date (46 atoms) was reported.49 Using a metal-templated
strategy,50 a ditopic 2,6-bis(N-alkyl-benzimidazolyl)pyridine
(Bip)51 containing macrocycle was complexed to two linear Bip-
containing thread components before being stoppered using Cu-
catalyzed click chemistry. Changing the stopper group size
through varying the number of tris(p-t-butylbiphenyl)methyl
(tBBM) moieties (from 1 to 4 tBBM units) made it possible to
tune the interlocked stability of the metastable [3]rotaxanes with
a resultant half-life in deuterated chloroform from <1 min to ca.
6 months at room temperature. However, in these initial studies,
a stable [3]rotaxane structure was not fully realized, highlighting
the difficulty of fully stoppering such large rings.

The goal of this work was to examine the effect that both ring
and stopper size has on the stability of these Bip-derived doubly
threaded [3]rotaxanes. Specifically, four additional macrocycles in
the size range of 40–48 atoms (Fig. 1a) were synthesized and,
after metal-templated assembly with the linear Bip-containing
thread (Fig. 1b), were tested for their ability to form doubly
threaded [3]rotaxanes with two different sized stopper groups
consisting of either one or two tBBM moieties (Fig. 1c).

Results and discussion

The ditopic Bip-containing macrocycles 1N (where N = 40, 42,
44, 46, or 48 atoms, Fig. 1a) were synthesized and fully charac-

Fig. 1 Chemical structure of the (a) macrocycle components 140–48, (b)
alkyne terminated thread component 2, and (c) two differently sized
azide functionalized stopper groups that have either one (3) or two (4)
tris(p-t-butylbiphenyl)methyl (tBBM) moieties.
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terized from their corresponding bis-phenolic Bip derivatives
via Williamson ether synthesis (see ESI, Fig. S1–S4† for full
synthetic details). The five rings all contain a different rigid
aromatic linker resulting in the ability to systematically vary
the ring size (defined here as the total number of atoms that
comprise the inner circumference of the macrocycle52,53) by 2
atoms from 48 to 40. The bis-alkyne linear thread component
2 and azide-functionalized stopper groups 3 (with one tBMM
moiety) and 4 (with two tBMM moieties) were synthesized
according to previously published methods (Fig. 1b and c).49

With these components in hand, the first step towards
attempting [3]rotaxane synthesis with these four new rings was
to form a series of doubly threaded pseudo[3]rotaxanes with
the thread component 2. In order to do this, a metal-templated
assembly process was used (Fig. 2a).49 First 1 : 2 solutions of
the appropriate ring components (140–48) with the thread com-
ponent 2 were prepared and checked via 1H-NMR spectroscopy
to obtain the correct 1 : 2 stoichiometry. Then, 2 equivalents of
Fe(NTf2)2 was titrated into each mixture of components fol-
lowed by heating for 1 day at 45 °C to reach full equilibration
and form the doubly threaded pseudo[3]rotaxanes 140–48:22:Fe
(II)2. Each self-assembly reaction was monitored using 1H-NMR
spectroscopy. This revealed the appearance of new signals that
are shifted from the unbound components, and based on pre-
viously published metal-templated Bip complexes49,54,55 the
diagnostic pyridyl peaks can be easily assigned (see ESI,
Fig. S5–S12†). The obtained doubly-threaded pseudo[3]rotax-
anes 140–48:22:Fe(II)2 in each case is a result of the principle of

maximal site occupancy,56 the rigidity present in the ring com-
ponents, and the exact stoichiometry used.

With the range of pseudo[3]rotaxanes in hand, efforts then
turned to stoppering them with either of the two stoppers 3
and 4 (Fig. 2b). Stoppering 140–48:22:Fe(II)2 with 3 would allow
access to the doubly threaded compounds 540–48 while the
larger stopper group 4 was used to access the doubly threaded
series 640–48 (Fig. 3). Copper-catalysed azide–alkyne
cycloaddition57,58 was employed as the stoppering chemistry
in order to ensure efficient addition of the stopper group (see
ESI, Fig. S13–S21† for full synthetic details including the syn-
thesis of the free dumbbell components 7 (stoppered with 3)
and 8 (stoppered with 4)). After the stoppering reaction was
completed, demetallation of the iron templating agent from
the Bip ligands was achieved using base. As 546 and 646 are
both known to be metastable species,49 (specifically t1/2 546 ≪
1 min and 646 = 5 weeks at ambient conditions in CDCl3) ana-
lyzing each [3]rotaxane as quickly as possible upon demetalla-
tion was critical. As such, each crude demetallated product
was analysed immediately via 1H-NMR spectroscopy and
MALDI-TOF mass spectrometry.

In the attempt to synthesize 648, only the free components
8 and 148 were obtained in the resulting crude reaction
mixture, as confirmed by 1H-NMR spectroscopy (Fig. 4a–b and
see ESI Fig. S22†) which showed no upfield shifted signals that
are diagnostic in prior interlocked Bip-based compounds.49,59

In addition, only the free dumbbell and ring were detected
using MALDI-TOF mass spectrometry (see ESI, Fig. S23†).
Similarly, only the free components 7 and 144 were observed in
the attempt to make 544 as no upfield shifted product was
observed via 1H-NMR spectroscopy and no peak corresponding
to the [3]rotaxane was detected using MALDI-TOF mass spec-
trometry (Fig. 4a and c and see ESI Fig. S24–S25†). Taken
together, these results imply the ring size of 148 (48 atoms) is
too large for the stopper group 4 and the 44 atom ring is too
big for the smaller stopper group 3 to successfully stabilize
either [3]rotaxane on any appreciable timescale (Fig. 5a and b).
These results set the upper ceiling of ring sizes for these two
stoppering groups in this Bip-based doubly threaded [3]rotax-
ane system.

The analysis of the crude reaction mixtures of [3]rotaxanes
540, 542, 640, 642, and 644 provided a significantly different
result. In all five cases, dominant upfield shifted signals rela-
tive to the corresponding noninterlocked components were
observed via 1H-NMR spectroscopy (Fig. 4 and see ESI
Fig. S26–S30†). In all five cases the crude yield (based on
1H-NMR) of the interlocked product averaged 83 ± 2%. The
presence of these upfield shifted signals is consistent with the
shielding effect seen from interlocking molecules derived from
the Bip ligand.49,59 Preparative thin layer chromatography was
then used to isolate the lower Rf interlocked products in
varying amounts (11.1 mg – 33.5 mg) and yields (70% for 640,
73% for 642, 75% for 644, 42% for 540, and 34% for 542).
MALDI-TOF mass spectrometry confirmed the expected isoto-
pic distribution of the high molecular weight [3]rotaxane peak
for each 540, 542, 640, 642, and 644 (see ESI, Fig. S31–S35†), as

Fig. 2 (a) Scheme showing assembly of doubly threaded pseudo[3]
rotaxanes 140–48:22:Fe(II)2. (b) Stoppering with component 3 followed by
demetallation to access the series of doubly threaded [3]rotaxanes
540–48 (top) and stoppering with component 4 followed by demetalla-
tion to access the series of doubly threaded [3]rotaxanes 640–48

(bottom). Reaction conditions: (i) 6 eq. 3, 10 eq. NaAsc, 1eq. Cu
(SO4)·5H2O, DCM/H2O, 25 °C, 24 h (ii) 6 eq. 4, 10 eq. NaAsc, 1 eq. Cu
(SO4)·5H2O, DCM/H2O, 25 °C, 24 h (iii) excess TBAOH, DCM/MeCN/
MeOH, 15 min.
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well as the observed fragmentation pattern of the interlocked
structure. In addition, GPC analysis revealed a lower retention
time peak for 540, 542, 640, 642, and 644 relative their corres-
ponding noninterlocked components, consistent with the for-
mation of the larger sized interlocked molecules (Fig. 6 and
see ESI Fig. S36–S40†).

1H-NMR analysis of the purified [3]rotaxanes 540, 542, 640,
642, and 644 combined with 1H–1H COSY, comparison to each
[3]rotaxane’s noninterlocked components, and previously pub-
lished NMR spectra49 on 646 allows the full 1H-NMR spectra of
540, 542, 640, 642, and 644 to be assigned (see ESI, Fig. S41–
S50†). As noted, in all cases similar upfield shifting (relative to
their noninterlocked components) of the component peaks is
observed via 1H-NMR spectroscopy upon formation of the [3]
rotaxanes. However, there are some slight differences in the
amount of upfield shifting. For instance, when comparing the
1H-NMR spectra of 540 and 640 and their components, the
larger stopper group in 640 results in a slightly larger shift
(0.18 ppm vs. 0.13 ppm) of the diagnostic aromatic peaks in
140 (Fig. 7a and see ESI Fig. S51†), and a similar result is

observed in the 42-atom system (542 vs. 642, see ESI Fig. S51†).
When comparing different ring sizes among compounds with
the same stopper, the aromatic pyridinyl Bip resonances
become particularly diagnostic with ring size in the 640–46
series (labelled A and B in Fig. 7b). As the ring is tightened
from 46 atoms in 646 to 40 atoms in 640 the pyridinyl reso-
nances shift downfield incrementally, implying the pyridine
ring in the dumbbell components spends less time close to
the ring (Fig. 7b). To probe this 640–46 [3]rotaxane series
further, a full 1H–1H NOESY NMR analysis of each rotaxane
and its corresponding noninterlocked control (2 : 1 solution of
free dumbbell : macrocycle at same concentration) was con-
ducted at the slightly reduced temperature of 278 K to
enhance the NOE interactions. This analysis revealed a signifi-
cant increase in the number of observable intercomponent
NOEs (9 in 646 increasing to 38 in 640) in the [3]rotaxanes upon
ring tightening consistent with a closer proximity of the dumb-
bell components within the ring (see ESI, Fig. S52–S57†).
Further examination of the specific NOE interactions that
appear with ring size reduction reveal that the majority inter-

Fig. 3 Chemical structure of the doubly threaded [3]rotaxane series 540–48 and 640–48.
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act with the dumbbell component near the middle pyridine
ring of the dumbbell and the end diethylene glycol linker near
the stopper group (see ESI, Fig. S58†) which is consistent with
previously published all-atom molecular dynamics simulations
of 646 that suggest an asymmetric orientation of the two dumb-
bells where the ring assumes a position near a stopper group
of one dumbbell and in the middle of the other.49

As a result of the known metastability49 of 646 and the
observed instability of 648 and 544, investigating the kinetic
stability of 540, 542, 640, 642, and 644 was of particular interest.
As the most widely accepted definition of a rotaxane is that the
interlocked structure must remain stable at ambient
conditions,60,61 a 3-week kinetic experiment at room tempera-
ture in deuterated chloroform was conducted. Freshly prepared
solutions (1 mM 5 or 6, CDCl3) of 540, 542, 640, 642, and 644
were monitored twice a week at 25 °C via 1H-NMR spectroscopy
which allowed determination of stability for these interlocked
molecules (Fig. 8).

For 542, 540, and 644, the upfield shifted peaks assigned to
interlocked product decreased during the experiment while
the signals corresponding to the free noninterlocked com-

Fig. 4 (a) Selected 1H NMR assignments for spectra. Partial crude
1H-NMR overlay (500 MHz, CDCl3, 25 °C) showing the region corres-
ponding to the HB peaks of (b) crude 640, 642, 644, the attempt to make
648, and the free dumbbell 8 for comparison, and (c) crude 540, 542, the
attempt to make 544, and the free dumbbell 7 for comparison.

Fig. 5 Scheme depicting the observed rapid dethreading of (a) 648 and
(b) 544–48 and (c) schematic representation of the isolatable [3]rotaxanes
considered in this study.

Fig. 6 GPC (eluent 3 : 1 THF : DMF) comparison of [3]rotaxanes 540, 542,
640, 642, and 644, dumbbell components 7 and 8, and macrocycle com-
ponents 140–44.
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ponents increased indicating that these [3]rotaxanes are meta-
stable (Fig. 8a–c and see ESI, Fig. S59–S62†). No [2]rotaxane
intermediates were observed in any of the slippage experi-
ments suggesting the corresponding [2]rotaxanes (542, 540, and
644) are not stable on any appreciable timescale. Kinetic
analysis revealed that the observed slippage processes followed
first-order kinetics dependent on the metastable [3]rotaxane
concentration. Varying half-lives were obtained for the
different interlocked compounds ranging from ∼1 day to
∼9 weeks highlighting the ability of component design to
control the stability of the interlocked structure (Fig. 9 and see
ESI Fig. S62† for full kinetic analysis).

542 displayed the fastest observable slippage process as this
[3]rotaxane rapidly fell apart to its noninterlocked components
with a half-life of 25 ± 2 hours. In fact, 542 had to be kinetically
analysed faster than the other [3]rotaxanes (once a day vs.
biweekly) in order to obtain enough usable kinetic data for
analysis (see ESI, Fig. S61†). 540 exhibited a significantly slower
rate of slippage of 13 ± 1 days on account of the tighter fitting
40-atom ring. Even slower, the larger stoppered 644 slipped at a
rate of 9 ± 1 weeks on a more similar timescale as the pre-
viously published 646 (t1/2 = 5 weeks).49 For 642 and 640, on the
other hand, the upfield shifted peaks remained unchanged
indicating that no slippage was observed (Fig. 8d–e and see
ESI Fig. S63 and S64†) confirming these compounds are
indeed stable doubly threaded [3]rotaxanes. The reduction
from 44 atoms to 42 atoms in the ring component appears to
be a critical point in this Bip-based [3]rotaxane series from a
stability standpoint as this transition makes the [3]rotaxane 6
stable and 5 become isolatable. Given the fact that it is poss-
ible to access stable [3]rotaxanes (642 and 640), metastable [3]
rotaxanes (540, 542, and 644), and species that are not observa-
ble on any reasonable timescale (648 and 544–48), it can be seen
that the entire kinetic window of stability can be accessed with

Fig. 7 Partial 1H-NMR overlay (500 MHz, CDCl3, 25 °C) of (a) [3]rotax-
anes 540 and 640 and their free components 140, 7, and 8 and (b) [3]
rotaxanes 640–46 and dumbbell component 8 (labels correspond to
Fig. 1).

Fig. 8 Partial 1H-NMR overlay (500 MHz, CDCl3, 25 °C) of the 3-week slippage experiments of (a) 542, (b) 540, (c) 644, (d) 642, and (e) 640.

Paper Organic & Biomolecular Chemistry

Org. Biomol. Chem. This journal is © The Royal Society of Chemistry 2023

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 1
5 

A
ug

us
t 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/2
9/

20
23

 6
:0

4:
08

 P
M

. 
 T

hi
s a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

Li
ce

nc
e.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ob01123b


this system. The stable [3]rotaxanes 642 and 640 described here
are particularly exciting as they lay the synthetic groundwork
for a range of doubly threaded polyrotaxane materials which
have proven particularly challenging to access.62–66

Conclusions

In this study a series of doubly threaded [3]rotaxanes with two
different sized stopper groups and five different rings in the
size range of 40–48 atoms was considered. Kinetic stability
tests revealed that the size of the ring had a profound effect on
the [3]rotaxane stability. In particular, the entire kinetic stabi-
lity window of these [3]rotaxanes, from not stable on any
appreciable timescale to metastable to fully stable, could be
observed by tightening the ring from 48 to 40 atoms using the
larger stoppered system. The smaller stoppered system could
not fully be stabilized at room temperature highlighting the
difficulty of achieving a stable rotaxane with large rings. It is
worthwhile pointing out that while the number of atoms is
used here as a proxy for ring size other factors such as ring
flexibility and conformation may also play a role in determin-
ing the stability of a rotaxane. Overall, the fully stable [3]rotax-
anes described in this work open the door to an array of
doubly threaded interlocked materials. The wide range of
macrocycle size variation available in this system provides a
versatile platform to investigate the effect of ring tightness on
the sliding transition and unique interthread interactions
available. This is currently being extended to the corres-
ponding doubly-threaded polyrotaxane and slide-ring

materials in our lab. For example, combining the optimized
rotaxane component sizes determined in this work with syn-
thetic procedures from slide-ring polycatenane networks66 may
provide one route to the little studied doubly threaded slide-
ring networks.
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