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53Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT),
Madrid 28040, Spain

54Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
55Department of Astronomy, University of Michigan, Ann Arbor, Michigan 48109, USA

56Institute of Theoretical Astrophysics, University of Oslo. P.O. Box 1029 Blindern,
NO-0315 Oslo, Norway

57Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain
58Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA,

United Kingdom
59Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA,

United Kingdom
60Laboratório Interinstitucional de e-Astronomia—LIneA, Rua Gal. José Cristino 77, Rio de Janeiro,
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We present a cosmological analysis using the second and third moments of the weak lensing mass
(convergence) maps from the first three years of data (Y3) data of the Dark Energy Survey. The survey
spans an effective area of 4139 square degrees and uses the images of over 100 million galaxies to
reconstruct the convergence field. The second moment of the convergence as a function of smoothing scale
contains information similar to standard shear 2-point statistics. The third moment, or the skewness,
contains additional non-Gaussian information. The data is analyzed in the context of the ΛCDM model,
varying five cosmological parameters and 19 nuisance parameters modeling astrophysical and measure-
ment systematics. Our modeling of the observables is completely analytical, and has been tested with
simulations in our previous methodology study. We obtain a 1.7% measurement of the amplitude of
fluctuations parameter S8 ≡ σ8ðΩm=0.3Þ0.5 ¼ 0.784$ 0.013. The measurements are shown to be inter-
nally consistent across redshift bins, angular scales, and between second and third moments. In particular,
the measured third moment is consistent with the expectation of gravitational clustering under the ΛCDM
model. The addition of the third moment improves the constraints on S8 and Ωm by ∼15% and ∼25%
compared to an analysis that only uses second moments. We compare our results with Planck constraints
from the cosmic microwave background, finding a 2.2–2.8σ tension in the full parameter space, depending
on the combination of moments considered. The third moment, independently, is in 2.8σ tension with
Planck, and thus provides a cross-check on the analyses of 2-point correlations.

DOI: 10.1103/PhysRevD.106.083509

I. INTRODUCTION

Gravitational lensing is one of the cleanest probes for
studying the mass distribution in the Universe. General
relativity predicts that the trajectories of photons emitted
by distant galaxies are bent as they pass through regions of
space-time perturbed by the mass distribution between
the galaxy and the observer [1]. When studying the light
emitted by distant galaxies, the level of distortion induced
by the mass distribution of the Universe, or large scale
structure (LSS), is usually small, at the percent level—the
regime of weak gravitational lensing. By collecting obser-
vations and measuring the shapes of many galaxies,
statistical tools can be used to infer the mass distribution

of the Universe [2–8]. Ongoing and future surveys (DES,
Dark Energy Survey Collaboration [9]; Kilo-Degree
Survey KIDS, Kuijken et al. [10]; Hyper Suprime-Cam
HSC, Aihara et al. [11]; Vera C. Rubin Observatory’s
Legacy Survey, LSST Science Collaboration et al. [12];
Euclid, Laureijs et al. [13]) are currently measuring (or
planning to measure) the shapes of tens to hundreds of
millions of galaxies, spanning thousands of square degrees
of the sky. In particular, DES recently measured 100 million
galaxies spanning ∼5000 square degrees of the southern
hemisphere [14], and created the largest map of the mass
distribution of the Universe from a galaxy survey [4].
For a given cosmological model, the statistical properties

of the mass distribution can be predicted over time. Second-
order statistics, such as correlation functions [15–19], the
power spectrum [20], or the waveletlike COSEBIs*marcogatti29@gmail.com
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(complete orthogonal sets of E/B integrals) [21], are
standard tools used to exploit the Gaussian information
of the mass maps. However, a weak lensing mass map
contains information beyond that captured by second-order
statistics, as its probability distribution function (PDF) has
non-Gaussian features induced by gravitational evolution.
In particular, the PDF of the mass distribution in the late
Universe is roughly approximated by a log-normal [22–24],
a fact that has also been investigated for the weak lensing
convergence field with DES data [25].
Higher-order statistics are appealing, as their use can

improve constraints on cosmological parameters [26–29]
over standard 2-point statistics, or can help discriminate
between extended models such as modified gravity theories
[30,31]. Numerous tools have been developed to extract the
non-Gaussian information from mass maps. Higher-order
statistics commonly used with weak lensing include shear
peak statistics [5,29,31–37], higher moments of the weak
lensing convergence field [2,7,26,27,31,38,39], three-point
correlation functions or bispectra [40–43], Minkowski
functionals [27,44–46], and machine-learning methods
[47–50]. Many of these have recently been applied to data
[5,34,36,47,49], often performing well in terms of cosmo-
logical constraints. The theoretical modeling of some of
these statistics is often complex, and large suites of N-body
simulations, spanning the parameter space considered in
the analysis, are used to model the observables.
This work focuses on the use of second and third

moments of weak lensing mass maps to constrain cosmol-
ogy. Moments have been studied in the past, and have been
measured both in data and simulations [2,7,27,28,51–54],
although they have not been used to place constraints on
cosmological parameters. Tests using simulations have
shown improvements to cosmological constraints arising
from using moments of order higher than second [26–28].
The methodology used in this paper has been developed
and tested using simulations in a companion paper, [26]
(hereafter G20). Although the methodology can be applied
to any dataset, the analysis in G20 was geared towards the
first three years of data of DES. The modeling of second
and third moments developed in G20 is based on theoretical
predictions, therefore it does not rely on large suites of
N-body simulations (though the predictions are tested
against simulations); moreover, observational systematics
errors such as photometric redshift uncertainties or intrinsic
alignment are modeled and marginalized during the analy-
sis. This work applies that methodology to the first three
years of data (Y3) from DES, presenting the cosmological
constraints, discussing a number of observational system-
atic null tests, and comparing the results with constraints
from other DES Y3 probes and/or external datasets
(e.g., Planck).
The paper is organized as follows: Section II describes

the data and simulations used in this work; Sec. III provides
a short description of the theoretical modeling of the

observables used in the analysis (the second and third
moments of the convergence field); Sec. IV describes the
likelihood and the covariance used in the cosmological
parameter inference, and discusses the priors adopted in the
analysis; Sec. V summarizes the preunblinding tests;
Sec. VI presents the cosmological results, along with a
number of internal consistency tests and comparisons with
results from other DES analyses or from analyses using
external data sets; Sec. VII summarizes our findings.

II. DATA AND SIMULATIONS

A. Data

The main goal of our analysis is to measure second and
third moments of the convergence field and use them to
estimate cosmological parameters. To this aim, we use the
weak lensing catalog from the first three years (Y3) of the
DES [14].
DES [9] is a six-year survey that spans ∼5000 deg2 of

the southern hemisphere. Images have been taken in grizY
filters by the 570 megapixel Dark Energy Camera [DECam,
[55] ], mounted on the Cerro Tololo Inter-American
Observatory (CTIO) four-meter Blanco telescope in
Chile. The raw images were processed by the DES Data
Management (DESDM) team [56–58]. Full details about
the image processing are provided in [56,57].
The DES Y3 weak lensing sample is described in detail

in [14] and builds upon the Y3 Gold catalog [59]. It is
created using the METACALIBRATION algorithm [60,61],
which infers the galaxy ellipticities starting from noisy
images of the detected objects in the r, i, z bands. The
METACALIBRATION algorithm was used previously in the
DES Y1 analysis [62]. METACALIBRATION uses an approxi-
mate estimator of the shear field and self-calibrates it using
the response of the estimator to shear as well as to selection
effects. A number of selection cuts are designed to remove
objects in the catalog potentially affected by systematic
effects [14]. An inverse variance weight is also assigned to
galaxies in order to enhance the overall signal-to-noise. The
final DES Y3 shear catalog has 100,204,026 objects, with a
weighted neff ¼ 5.59 galaxies arcmin−2, over an effective
area of 4139 square degrees.
Although the METACALIBRATION self-calibration pro-

cedure removes most of the multiplicative bias, for the
DES Y3 weak lensing sample there is a known residual
additional multiplicative bias at the level of 2 or 3 per cent
[63]. This residual bias stems mostly from a shear-redshift-
dependent detection bias due to blending of galaxy images,
for which the METACALIBRATION implementation adopted
in DES Y3 is unable to account [64]. We do not calibrate
for this factor at the catalog level, but we do marginalize
over it in the analysis. In [14] the weak lensing sample has
also been tested for additive biases (e.g., due to point-
spread-function residuals). In particular, the catalog is
characterized by a nonzero mean shear whose origin is
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unknown and which is subtracted at the catalog level before
performing any analysis.
The weak lensing sample is divided into four tomo-

graphic bins of roughly equal number density using the
SOMPZ method [65]; SOMPZ, in combination with
constraints from clustering redshifts [66], also provides
redshift distribution estimates (see Fig. 1). The nðzÞ’s are
further tweaked to take into account the redshift-dependent
effects of blending [63]. During the cosmological analysis,
additional constraints on the redshift distributions are
provided by shear ratios [67]. Shear ratios are ratios of
small-scale galaxy-galaxy lensing measurements obtained
using different source samples (in this case, different weak
lensing tomographic bins) and a common lens sample. Not
only do they improve constraints on redshift distributions,
but they also help constraining both intrinsic alignment
parameters and cosmological parameters.
A two-stage blinding scheme was implemented for all

DES Y3 cosmological analyses in order to avoid intentional
or unintentional confirmation bias. First, the weak lensing
sample was blinded by means of a multiplicative factor, in a
fashion similar to what was adopted in the Y1 analysis [62].
In particular, the ellipticities e of the catalog were trans-
formed via jηj≡ 2arctanhjej → fjηj, with a hidden value
0.9 < f < 1.1. After all the catalog and map-based system-
atic tests were passed [4,14], the hidden value was revealed
and the catalog unblinded. This work ignores this first level
of blinding, as when we started analysing the DES Y3 data
the catalog had already been validated and unblinded. The
second level of blinding, which follows the work of [68],
was applied to the summary statistics under examination; in
this case, it was applied to the measured second and third
moments of the convergence field. In particular, to each
element d̂i of the observable vector (i.e., both second and
third moments), the following transformation was applied,

d̂blindedi ¼ d̂i þ diðΘref þ ΔΘÞ − diðΘrefÞ: ð1Þ

In the above equation, di is a theory data vector computed at
a given cosmologyΘ;Θref is a fiducial cosmology (we used

theDESY13 × 2pt cosmology from [69]), andΔΘ is a blind
shift in the cosmological parameters (drawn from a distri-
bution three times larger than theDESY1 3 × 2pt posterior).
A number of systematic tests were performed on blinded

data vectors (see Sec. V) before proceeding to inspect the
unblinded cosmological results.

B. Simulations

Covariance matrices for our measurement are generated:
(a) for our fiducial covariance, using log-normal realiza-
tions from FLASK [70], (b) for testing, using the N-body
simulation hereafter called “T17” [71], and (c) also for
testing, using the N-body simulation PKDGRAV [72].
Moreover, both T17 and PKDGRAV simulations are used
to validate our modeling (Appendix B). Such a validation
was already performed in G20, but using only T17
simulations; we repeat that here, for both sets of N-body
simulations, with updated analysis choices.

1. FLASK realizations

We use the FLASK (Full-sky Lognormal Astro-fields
Simulation Kit) software [70] to rapidly generate full-
sky, log-normal realizations of the convergence field.
FLASK assumes the convergence field to be described by
a zero-mean shifted log-normal distribution, where the
parameters of the log-normal probability distribution func-
tion (PDF) are chosen to match the variance and skewness
of the input. We use here the 1000 independent FLASK

realizations produced for the validation of the DES Y3 3 ×
2pt covariance [73]. The lognormal approximation for the
covariance has been shown to be sufficient to not bias
the recovery of the cosmological parameters in G20. The
cosmological parameters of the input power spectra used
for the FLASK realizations are Ωm ¼ 0.3, σ8 ¼ 0.82355,
Ωb ¼ 0.048, ns ¼ 0.97, h100 ¼ 0.69 and Ωνh ¼ 0.00083.
We also assumed DES Y3 redshift distributions. The FLASK

convergence realizations were provided in maps using the
Hierarchical Equal Area isoLatitude Pixelation scheme
(HEALPIX, [74]) with resolution NSIDE ¼ 4096. In order
to create a simulated weak lensing galaxy catalog, we then
used the position, shape noise (obtained by randomly
rotating each galaxy), and weight of the galaxies of the
fiducial DES Y3 weak lensing catalog; depending on the
position of each individual galaxy, we sampled the simu-
lated shear maps and added shape noise accordingly. This
procedure allows us to generate 1000 independent simu-
lated shear catalogs.

2. T17 simulations

The first set of N-body simulations used in this work are
the T17 [71] simulations. The set consists of 108 full-sky
lensing convergence and shear maps, spanning a wide
redshift range (between z ¼ 0.05 and 5.3) at intervals of
150 h−1 Mpc comoving distance. The N-body simulations

FIG. 1. Redshift distributions as estimated in data for the four
DES Y3 tomographic bins [65].
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assume a WMAP 9 cosmology (Ωm ¼ 0.279, σ8 ¼ 0.82,
Ωb ¼ 0.046, ns ¼ 0.97, h ¼ 0.7), and were run using
L-GADGET2 [75]. Initial conditions were generated using
2LPTIC [76].
The simulations begin with 14 boxes in steps of

450 h−1 Mpc, with total side lengths of L ¼ 450; 900;
1350;…, 6300 h−1 Mpc. There are six independent copies
at each box size and 20483 particles per box. Lens plane
snapshots are taken at intervals of 150 h−1 Mpc comoving
distance. The expected accuracy of the average matter
power spectra from the simulations (compared to predic-
tions from the revised HALOFIT, [77]) is within 5% for k < 1
h Mpc−1 at z < 1, for k < 0.8 h Mpc−1 at z < 3, and for
k < 0.5 h Mpc−1 at z < 7 [71]. Weak lensing quantities for
each simulation were estimated using the multiple plane
ray-tracing algorithm GRAYTRIX [78], and shear and con-
vergence HEALPIX maps with resolution NSIDE ¼ 4096 are
provided.
For each of the 108 simulations, we cut out four

independent (i.e., nonoverlapping) regions corresponding
to the DES Y3 footprint. We then stacked the convergence
and shear snapshots at different redshift to produce con-
vergence and shear maps for the four weak lensing tomo-
graphic bins. This gave us 432 independent realizations of
the shear field for each tomographic bin. In order to create a
simulated weak lensing galaxy catalog, we used the posi-
tion, shape noise (obtained by randomly rotating each
galaxy), and weight of the galaxies of the fiducial DES
Y3 weak lensing catalog; depending on the position of each
individual galaxy, we sampled the simulated shear maps and
added shape noise accordingly. We ended up with 432
independent simulated shear catalogs fromT17 simulations.

3. PKDGRAV simulations

The second set of N-body simulations is the DarkGridV1
suite, produced using the PKDGRAV3 code [72] and described
in detail in [29,79]. In particular, we use 50 independent
realizations at the fixed cosmology Ωm ¼ 0.26, σ8 ¼ 0.84,
Ωb ¼ 0.0493, ns ¼ 0.9649, h ¼ 0.673. All simulations
include three massive neutrino species with a mass ofmν ¼
0.02 eV per species [79]. The simulations were obtained
using 14 replicated boxes in each direction (143 replicas in
total) so as to span the redshift interval between z ¼ 0 and
z ¼ 3. Each individual box contains 7683 particles and has a
side length of 900 h−1 Mpc. Such a configuration is known
to yield a field variance that is too small at very large scales
[47]; however, such scales are not considered in this work.
For each simulation, lens planes are provided at ∼87
redshifts between z ¼ 3.0 and z ¼ 0.0, equally spaced in
proper time. Lensing quantities (shear and convergence)
were obtained under the Born approximation. For each
simulation, we cut out four independent DES Y3 footprints
and thereby created 200 independent catalogs in a fashion
similar to the T17 simulations.

III. THEORETICAL MODELING

We provide here a short summary of the theoretical
modeling of our observables. Further details are provided
in G20.
Our cosmological analysis relies on the theoretical

modeling of the second and third moments of convergence
maps, which is based on cosmological perturbation theory
[80–82]. Consider three convergence maps, obtained from
different tomographic bins (labeled i, j, k) of the weak
lensing catalog (the equations below apply for more
tomographic bins as well, taken two or three at a time).
The maps are smoothed by a top-hat filter of smoothing
length θ0. The second and third moments are then given by

hκ2θ0i
i;j;EE=BB ¼

Z
dχ

qiðχÞqjðχÞ
χ2

×
X

l

2lþ 1

4π
f−1l Wlðθ0Þ2

×
X

l0
MEE=BB;EE

ll0 PNLðl0=χ; χÞF2
l0fl0 ; ð2Þ

hκ3θ0i
i;j;k;EE=BB¼

Z
dχ

qiðχÞqjðχÞqkðχÞ
χ4

×S3

!X
l

2lþ1

4π
f−1l Wlðθ0Þ2

×
X

l0
MEE=BB;EE

ll0 PNLðl0=χ;χÞF2
l0fl0

"
2

: ð3Þ

Here the lensing kernel term qi is given by

qiðχÞ ¼ 3H2
0Ωm

2c2
χ

aðχÞ

Z
χh

χ
dχ0niðzðχ0ÞÞdz=dχ0 χ

0 − χ
χ

; ð4Þ

where χ is comoving distance, χh is the horizon comoving
distance, H0 the Hubble constant at the present time, c the
speed of light, niðzÞ the normalized redshift distribution
of a given tomographic bin, and aðχÞ the scale factor.
Furthermore, in Eqs. (2) and (3), Wlðθ0Þ represents the
top-hat filter of smoothing length θ0 in harmonic space,
defined as

Wlðθ0Þ ¼
Pl−1ðcosðθ0ÞÞ − Plþ1ðcosðθ0ÞÞ

ð2lþ 1Þð1 − cosðθ0ÞÞ
; ð5Þ

where Pl are Legendre polynomials of order l. Other terms
in Eqs. (2) and (3) are the mode-coupling matrices
MEE=BB;EE

ll0 (e.g., [83,84], or Appendix B of G20), which
take into account the effects of masking; the factor
fl ¼ ½ðlþ 2Þðl − 1Þ'=½lðlþ 1Þ', which accounts for the
mode-coupling matrix being applied to the shear field rather
than to the convergence field directly, the pixel window
function Fl, the nonlinear power spectrum PNLðl=χ; χÞ,
modeled using HALOFIT as detailed in [85], and the reduced
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skewness parameter S3. The full derivation of S3 is provided
in Appendix A of G20, where it is evaluated to leading order
in perturbation theory with the addition of a small-scale
refinement (in the form of analytical fitting formulas) based
onN-body simulations from [81]. In G20we determined the
range (i.e., angular scales and redshift interval) of validity
of our S3 model to ensure that modeling uncertainties will
not affect our cosmological analysis. Since G20, however,
some of our analysis choices changed; in particular, we
updated the redshift distributions, the catalog shape noise,
the measurement covariance, and the nuisance parameters
priors, to reflect the updates in the DES Y3 data and
modeling. Moreover, we include galaxy-galaxy lensing
information from small scales in the form of shear ratios.
Therefore, we repeated the modeling validation performed
in G20 in Appendix B, using our updated analysis choices.
Moreover, we validated our modeling on two different sets
of N-body simulations (T17 and PKDGRAV).

A. Systematic effects

We model astrophysical and measurement systematic
effects through nuisance parameters, over which we mar-
ginalize when estimating the cosmological parameters.
Here is a short description of the nuisance parameters used
in this work; priors are summarized in Table I.
Photometric redshift uncertainties. The first type of

nuisance parameters are “calibration” parameters that
model uncertainties in the photometric redshift estimates
from the SOMPZ method. Such uncertainties are para-
metrized through a shift Δz in the mean of the redshift
distributions

niðzÞ ¼ n̂iðzþ ΔzÞ; ð6Þ

where n̂i is the original estimate of the redshift distribution
for bin i. We assume DES Y3 priors for the shift parameters.
The priors also include the additional photo-z uncertainty
due to blending [63]. This parametrization of the redshift
uncertainties was shown to be adequate for the DES Y3
2-point analysis [15,86]; we nonetheless explore in Sec. VI
a more complex parametrization of redshift uncertainties
that also accounts for uncertainties in the shape of the
redshift distributions.
Multiplicative shear biases. Biases coming from the

shear measurement pipeline are modeled through an
average multiplicative parameter 1þmi for each tomo-
graphic bin. The effect of multiplicative shear biases on the
measured moments can be modeled via,

hκ2θ0i
i;j → ð1þmiÞð1þmjÞhκ2θ0i

i;j; ð7Þ

hκ3θ0i
i;j;k→ ð1þmiÞð1þmjÞð1þmkÞhκ3θ0i

i;j;k: ð8Þ

We assume Gaussian priors for each of the mi estimated
following [63].

Intrinsic galaxy alignments (IA). We model IA following
the nonlinear alignment (NLA) model [87–89]. It can be
included in our modeling introducing δI ¼ AðzÞδ, which is
the density contrast responsible for the intrinsic alignment,
related to the matter density contrast δ. In the NLA model,
the IA amplitude can be written as a power law,

AðzÞ ¼ −AIA;0

#
1þ z
1þ z0

$
αIA c1ρm;0

DðzÞ
; ð9Þ

TABLE I. Cosmological and nuisance parameters. The cosmo-
logical parameters considered are Ωm, σ8, Ωb, ns, and h. The
“calibration” nuisance parameters are the multiplicative shear
biases mi and the mean photometric uncertainties of the weak
lensing samples Δzi, where the index i runs over the tomographic
bins. The “astrophysical” nuisance parameters AIA;0 and αIA
describe the intrinsic alignment model. The parameters Δzlensi ,
δlensz;i and big describe the mean photometric uncertainty, the width
of photometric uncertainty, and the galaxy matter bias of the lens
sample used for the shear ratio likelihood (Sec. IV). Note that the
fact that the lens mean photometric uncertainties priors are not
centred at 0 is related to a different definition of the priors
compared to the sources’ ones. In the “Prior” column we report
either lower and upper boundaries (for flat priors) or the mean and
standard deviation (for Gaussian priors; note that in this case we
sample over a range much broader than the one σ width). Priors
are described in Sec. III A.

Parameter Prior

Cosmological parameters
Ωm U½0.1; 0.9'
σ8 U½0.5; 1.4'
Ωb U½0.03; 0.07'
ns U½0.87; 1.07'
h U½0.55; 0.91'
Calibration parameters
m1 N ð−0.0063; 0.0091Þ
m2 N ð−0.0198; 0.0078Þ
m3 N ð−0.0241; 0.0076Þ
m4 N ð−0.0369; 0.0076Þ
Δz1 N ð0.0; 0.018Þ
Δz2 N ð0.0; 0.015Þ
Δz3 N ð0.0; 0.011Þ
Δz4 N ð0.0; 0.017Þ
Intrinsic alignment parameters
AIA;0 U½−5; 5'
αIA U½−5; 5'
Shear ratios parameters
Δzlens1 N ð−0.009; 0.007Þ
Δzlens2 N ð−0.035; 0.011Þ
Δzlens3 N ð−0.005; 0.006Þ
δlensz;1 N ð0.975; 0.062Þ
δlensz;2 N ð1.306; 0.093Þ
δlensz;3 N ð0.870; 0.054Þ
b1g U½0; 3'
b2g U½0; 3'
b3g U½0; 3'
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with z0 ¼ 0.62, c1ρcrit ¼ 0.0134, with ρcrit ¼ ρm;0=Ωm [87]
and DðzÞ the linear growth factor [90]. For second
moments, the NLA model can be incorporated in our
theoretical predictions by modifying the lensing kernel,

qiðχÞ → qiðχÞ þ AðzðχÞÞ n
iðzðχÞÞ
hnii

dz
dχ

: ð10Þ

For third moments, we make the assumption that the NLA
contribution follows the perturbation theory relation for the
actual signal. [89] have shown this is in reasonable agree-
ment with measurements from hydrodynamical simula-
tions, so we follow them and modify Eq. (3) as follows:

qiqjqk→qiqjqkþA2þ2A
3

ðqiqjnkþcycl:Þ

þA2þ2A3

3
ðqinjnkþcycl:ÞþA4ðninjnkÞ; ð11Þ

where in the above equation we dropped the redshift
dependence for sake of simplicity; moreover, we used
n ¼ niðzðχÞÞ

hnii
dz
dχ, and cycl. refers to the cyclic permutation of

the indexes i, j, k for the terms in parenthesis. We
marginalize over AIA;0 and αIA assuming flat priors. The
fiducial DES Y3 3 × 2pt analysis adopted a different, more
general model for the intrinsic galaxy alignment, called
“TATT” (Tidal Alignment and Tidal Torquing; [91]), that
can capture the “tidal torquing” relevant for determining the
angular momentum of spiral galaxies. Tidal torquing is
ignored in the NLA model, which can account only for the
tidal alignment of galaxies. We did not implement such a
general model here; the DES Y3 cosmic shear analysis [18]
found a weak preference for simpler IA modeling (i.e., for
NLA rather than TATT), obtaining consistent cosmological
constraints when different IA prescriptions were assumed.
For this reasonwe use theNLAmodel as our fiducial choice.
Shear ratio parameters. We include in the analysis

galaxy-galaxy lensing small scale information in the form
of ratios of galaxy-galaxy lensing measurements [67].
These measurements use as lenses the first three tomo-
graphic redshift bins of the MAGLIM lens galaxy sample
[92]. When modeling the shear ratio measurements, we
marginalize over the uncertainties in the photo-z estimates
of the lens samples through a shift Δzlens in the mean of the
redshift distributions and a stretch δlens in their widths,

nlens;iðzÞ¼ δlensn̂lens;iðδlens½z− hzi'þΔzlensÞ; ð12Þ

where hzi is the mean redshift of the lens sample. Priors on
Δzlens and δlens are provided in [93]. We also marginalize
over the galaxy-matter bias big of the three lens samples
using broad flat priors.

B. Map making and moments estimator

We describe here how we measure the second and third
moments of the convergence field starting from a weak
lensing catalog. The following applies to both data and
simulated catalogs, as they come in the same format.
Starting from the catalog, we first generate convergence

maps for each tomographic bin. The convergence maps
used in this work are estimated using a full-sky generali-
zation of the [94] algorithm, first developed by [95]. The
map-making process for the DES Y3 convergence maps is
explained in full detail in [4], together with a thorough
validation of the maps. Here, we briefly summarize the
procedure.
We use the weak lensing catalog shear estimates to create

pixelized maps for the two components of the shear field.
The maps are constructed using HEALPIX with NSIDE ¼
1024 (corresponding to a pixel size of 3.44 arcmin). The
estimated value of the complex shear per pixel is given by

γνobs ¼
Pn

j¼1 ϵ
ν
jwj

R̄
Pn

j¼1 wj
; ν ¼ 1; 2; ð13Þ

where ϵj is the per-galaxy observed ellipticity, ν refers to
the two shear field components, n is the total number of
galaxies in the pixel, R̄ is the average METACALIBRATION

response of the sample (R̄ ¼ 1 for simulated catalogs), and
wj is the per-galaxy inverse variance weight. The sum runs
over all the galaxies in the pixel. Shear maps for each
tomographic bins are created. As specified in Sec. III A, we
do not explicitly correct for the multiplicative shear bias
when making the maps, but rather we account for it during
the cosmological inference. Any nonzero mean shear is
subtracted from the catalog before creating the maps.
We then convert the shear maps into a curl-free E-mode

convergence map κ̂E and a divergence-free B-mode con-
vergence map κ̂B using a spin transformation. This is
achieved by using the HEALPIX function MAP2ALM to
decompose the shear maps in spherical harmonic space
obtaining the coefficients γ̂E;lm, γ̂B;lm, and then calculating
κ̂E;lm, κ̂B;lm as

γlm ¼ γ̂E;lm þ iγB;lm

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðl − 1Þ

lðlþ 1Þ

s

ðκE;lm þ iκB;lmÞ: ð14Þ

Next we use the HEALPIX function ALM2MAP to convert
these coefficients back to real space κE and κB maps. The
maps are smoothed using a top-hat filter and different
smoothing scales θ0. In practice, this is achieved by
multiplying the coefficients of the harmonic decomposi-
tions of the κE and κB maps by Eq. (5), prior to the
conversion to real space. Simple estimators then give the
moments of a smoothed map,
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hκ̂2θ0i
i;j ¼ 1

Ntot

XNtot

pix

κiθ0;pixκ
j
θ0;pix

; ð15Þ

hκ̂3θ0i
i;j;k ¼ 1

Ntot

XNtot

pix

κiθ0;pixκ
j
θ0;pix

κkθ0;pix; ð16Þ

where i, j, k refers to different tomographic bins. We
estimate the moments for both the E- and B-mode con-
vergence maps, although only the E-modes moments are
used for the cosmological analysis. The sum runs over all
the pixels on the sky (thus including regions outside the
footprint). This is needed for two reasons; first, the trans-
formation from the shear field to the convergence field is
nonlocal and some power is transferred outside the foot-
print during the transformation, and second, the smoothing
of the maps also transfers some of the power from the pixels
close to the edge to pixels outside the footprint. We have
shown in G20 that our modeling, together with the use of
mode-coupling matrices, is able to take into account these
effects (also including the lack of shear data outside the
footprint, since the shear field is not defined there).
Due to the presence of shape noise, the measurement of

galaxy shapes is only a noisy estimate of the shear field γ.
This also means that our estimate of the convergence field
is noisy,

κE;obs ¼ κE;true þ κE;noise; ð17Þ

κB;obs ¼ κB;true þ κB;noise: ð18Þ

In the above equations, we omitted the smoothing angle θ0.
The contribution of the noise to the convergence field can
be estimated by randomly rotating the shapes of the
galaxies and applying the full-sky spherical harmonics
approach to obtain the convergence [2,7]. As the random
rotation should completely erase the cosmological contri-
bution, the resulting convergence signal just contains noise
and averages to zero (but with a non-negligible variance).
It follows that when estimating second and third

moments from noisy convergence maps, it is necessary
to properly denoise the measured moments. Following [7],

hκ2ii;j→ hκ2ii;j− hκκrandii;j− hκrandκii;j− hκ2randii;j; ð19Þ

hκ3ii;j;k → hκ3ii;j;k − hκ3randii;j;k

− ½hκ2randκii;j;k − hκrandκ2ii;j;k þ cycl:'; ð20Þ

where cycl. refers to the cyclic permutation of the indexes i,
j, k for the terms in parenthesis. In the above equations, the
term hκ2randii;j (hκ3randii;j;k) is the noise-only contribution to
the second (third) moments of the tomographic bins
i; j; ðkÞ. Under certain conditions, most of these terms
vanish; those terms that do not vanish need to be subtracted

from the measured moments. We verified which terms
vanish in Appendix D.

IV. LIKELIHOOD AND COVARIANCE

This section provides details about our data vector,
likelihood, and covariance. Our data vector consists of
all the possible combinations of second and third moments
involving the four weak lensing tomographic bins. This
adds up to a total of ten combinations of second moments
and 20 combinations of third moments. For each of these
second and third moments, we consider 10 equally (log-
arithmic) spaced smoothing scales θ0 ∈ ½3.2; 200' arcmin.
We then remove scales following G20, i.e., we remove
angular scales smaller than a corresponding comoving scale
R0 given by θ0 ¼ R0=χðhziÞ, where χðhziÞ is the comoving
distance of the mean redshift of a given tomographic bin. In
the case of moments from different tomographic bins, we
took the average of the mean hzi of the two bins. This scale
cut is designed to remove scales significantly affected by
modeling uncertainties that could contaminate the cosmo-
logical analysis, with the dominant uncertainty being
contamination due to baryonic effects. G20 determined
the fiducial scale cut to be 24h−1 Mpc when combining
second and third moments. We adopt here a scale cut of
28h−1 Mpc. This change is necessary because the simu-
lated analysis in G20 did not use the final setup for the
analysis (e.g., inclusion of the shear-ratio likelihood, final
values for redshift distributions, shape noise, effective
number densities, covariance, etc.); we therefore repeated
the scale cut analysis with all the analysis ingredients
updated, and determined 28h−1 Mpc to be the correct scale
cut to be used in this analysis (see Appendix A for more
details).
We then compress our data vector using the massively

optimized parameter estimation and data compression
(MOPED) algorithm [96–98] based on the Karhunen-
Loève algorithm, which allows us to reduce the dimension-
ality of our data vector to the number of model parameters
considered. In our case, the number of parameters used to
model the moments data vector is 15; therefore, the size of
the compressed moments data vector is 15. The compres-
sion allows us to reduce the enlargement of the parameters
posterior due to noise in the precision matrix estimate, as
the covariance matrix is estimated from a limited number of
simulations [99]. The final enlargement depends on the size
of the compressed data vector rather than on the size of the
uncompressed data vector, which makes having an efficient
compression scheme desirable. In particular

dcompr
i ¼ hdiT;iĈ−1d≡ bid; ð21Þ

where d is the full-length data vector, Ĉ is the measurement
covariance, and dcompr

i is the i-th element of the compressed
data vector. The index i refers to the ith model parameter p
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considered, and hdiT;i is the derivative of the model data
vector with respect to that parameter.
We evaluate the posterior of the parameters conditional

on the data by assuming a Gaussian likelihood for the
data, i.e.,

−2 lnL ¼ f2f1½d̂ −MðpÞ'Ĉ−1½d̂ −MðpÞ'T: ð22Þ

Here MðpÞ is our theoretical model, d̂ is the data vector,
and Ĉ−1 is the inverse of our covariance estimate. The
posterior is then the product of the likelihood and the priors.
Note that the quantities MðpÞ, d̂ and Ĉ−1 in Eq. (22) are to
be considered compressed quantities. The terms f1 and f2
account for noise introduced when the covariance matrix is
estimated from random realizations of the data [99–101]
and are given by

f1 ¼
Nsims − Ndata − 2

Nsims − 1
; ð23Þ

f2¼
!
1þ

ðNdata−NparÞðNsims−Ndata−2Þ
ðNsims−Ndata−1ÞðNsims−Ndata−4Þ

"−1
; ð24Þ

where in our case the number of independent realizations
used to estimate the covariance is Nsims (i.e., the number of
independent simulations) and Ndata is the length of the data
vector. In the case of compressed quantities, f1, f2 ∼ 1
as Nsims ≫ Ndata.
To correctly infer cosmological parameters from our

data, we need an accurate estimate of the measurement
uncertainty. Our fiducial method to estimate the covariance
uses 1000 independent realizations of the convergence
maps generated from the FLASK simulations. As an addi-
tional check, we also estimate the covariance using the
PKDGRAVand T17 simulations. The PKDGRAVand T17
simulations (Fig. 2) have been produced at cosmologies
different to that of the FLASK simulations; hence, these
alternative covariances provide extra validation against the
dependency of our covariance on the value of cosmological
parameters. More details are given in Appendix G. Given a
set of N-body simulations, for each realization we measure
the second and third moments of the smoothed convergence
field and build the covariance matrix as

Ĉ ¼ 1

ν

XNs

i¼1

ðd̂i − d̂Þðd̂i − d̂ÞT; ð25Þ

where ν ¼ Ns − 1with Ns the number of realizations, d̂i the
data vector measured in the ith simulation, and d̂ the sample
mean. The data vector is made of a combination of second
and third moments as measured at different smoothing
scales. We also add to our covariance a “modeling uncer-
tainty” related to the analytical fitting formulas describing
the third moments at small scales (see G20 for more details).
We then compress the covariance following

FIG. 2. Top: measured correlation matrix of second and third
moments from FLASK simulations (lower right triangle) and
from T17 simulations (upper left triangle). No scale cut has been
applied. From bottom left to top right, we show the bins: [1, 1],
[2, 2], [3, 3], [4, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4], [1, 1,
1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [2, 1, 1], [3, 1, 1], [3, 2, 2], [4, 1, 1],
[4, 2, 2], [4, 3, 3], [1, 2, 2], [1, 3, 3], [1, 4, 4], [2, 3, 3], [2, 4, 4], [3,
4, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]. The main difference
between the two covariances is that the FLASK one has on
average 5–10% larger amplitude at large scales. The difference
vanishes at small scales since those are dominated by shape noise.
Bottom: same as the top image, but focusing on a few elements
(from bottom left to top right, we show [1, 1], [1, 4], [4, 4] for
second moments and [1,1, 1], [1, 4, 4] and [4, 4, 4] for third
moments), and showing only the dynamical range [−0.1, 1.0]
effectively spanned by the elements of the correlation matrix. The
diagonal blocks of the correlation matrix contain essentially all
the non-negligible contributions. On large scales, where the
cosmic variance contribution to the covariance dominates, the
window function of the moments generates off-diagonal terms
(within the block diagonal matrix) while on small scales these
are due to the pixel window function. Note that in the absence
of shape noise we also expect a contribution from nonlinear
evolution on small scales.The third moments correlation matrices
are more diagonal than second moments ones owing to a larger
shape noise contribution. Non-negligible cross-covariance be-
tween second and third moments is limited to very large scales,
and is generally small (10–15% at most).
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Ĉcompr
ij ¼ bTi Ĉbj: ð26Þ

We tested that using the FLASK covariance we were able to
correctly recover the input cosmology in simulations
(Appendix B).
In the inference, we also add an independent “shear

ratio” likelihood [67]. The shear ratio likelihood uses small
scale information from the ratio of galaxy-galaxy lensing
measurements (the mean tangential shear around lens
galaxies) between two weak lensing source tomographic
bins and a shared lens sample. Its inclusion improves the
constraints on the redshift distributions and on other
nuisance parameters of our model. The shear ratio data
vector consists of nine scale-averaged ratios. We use as a
lens the first three tomographic redshift bins of the MAGLIM

lens galaxy sample [92]. The shear ratios likelihood is
modeled as an independent Gaussian likelihood, and uses
an analytical covariance matrix. The assumption of inde-
pendency is justified by the smallness of the scales involved
in the shear ratio measurements (less than 6 h−1 Mpc).
We note that the scale cut for this work is 28 h−1 Mpc,
although the two scale cut limits cannot be directly
compared since the mass map smoothing function and
the galaxy-galaxy lensing angular bin kernels weight scales
slightly differently. Nonetheless, the independency of the
shear ratio likelihood has been proven in the context of the
DES Y3 3 × 2pt analysis [67]. Because we adopt the same
scale cut criteria as the DES 3 × 2pt analysis, we assume
independency holds here as well. Lastly, since the shear
ratio covariance is analytical, we do not compress the shear
ratio data vector.
Having defined the likelihood, we sample the posteriors

of our parameters using POLYCHORD [102,103]; this is a
nested sampler that uses slice sampling within the nested
isolikelihood contours. For the cosmological parameters,
we assume a flat ΛCDM cosmology and vary five param-
eters; Ωm (the density of the total matter today), σ8 (the
amplitude of structure fluctuations in the present day
Universe, parametrized as the standard deviation of the
linear overdensity fluctuations on a 8 h−1 Mpc scale), Ωb
(the baryonic density in units of the critical density), ns (the
spectral index of primordial density fluctuations), and h
(the dimensionless Hubble parameter). We assume wide
flat priors onΩm and σ8 and adopt the informative priors on
h, ns, andΩb that were used in the DES Y3 2-point function
3 × 2pt analysis (see Table I). When constraining cosmo-
logical parameters, we marginalize over nuisance param-
eters describing mean photo-z uncertainties, multiplicative
shear biases and IA effects in our measurements. The
modeling of our nuisance parameters is described in
Sec. III A. Photo-z uncertainties are parametrized by a
shift in the mean of the distribution (one for each tomo-
graphic bin). Priors for the shifts come from Myles and
Alarcon et al. [65]. Multiplicative shear bias priors are
described in MacCrann et al. [63]. We also assume wide

flat priors for intrinsic alignment amplitudes. The addition
of the shear-ratio likelihood to the analysis necessitates
additional modeling parameters, summarized in Table I.
These are lens redshift parameters (modifying the mean
redshift and the width of the lens sample redshift distri-
butions) and one free (linear) galaxy bias parameter per
lens bin.
Last, we note that since the theory predictions described

in Sec. III are time consuming to compute due to the large
number of cross-correlations and integrations involved,
we implemented an emulator [104,105] to speed up the
calculations. In our implementation, the emulator provides
fast theoretical predictions by interpolating over a number
of predictions computed at a set of training points spanning
the parameter space of interest (in our case, the five
cosmological parameters). In particular, the quantities
emulated are the terms

hδ2θ0i
EE=BBðχÞ≡

X

l

2lþ1

4π
f−1l Wlðθ0Þ2

×
X

l0
MEE=BB;EE

ll0 PNLðl0=χ;χÞF2
l0fl0 ; ð27Þ

hδ3θ0i
EE=BBðχÞ≡ S3 × ½hδ2θ0i

EE=BBðχÞ'2; ð28Þ

which enter in the modeling of Eqs. (2) and (3). The
accuracy of the emulator is sufficient to not bias the
cosmological analysis, as demonstrated in G20.

V. PREUNBLINDING TESTS

Before proceeding to unblind the data vector and analyse
the results of the unblinded analysis, we performed a
number of tests. These tests complement the ones per-
formed at the catalog and map level presented in [4,14]. We
remind the reader that when this analysis was performed,
the shape catalog was already deemed science ready and
unblinded, and only the data vector level of blinding was
enforced. The whole cosmological pipeline had already
been demonstrated in G20 to recover the true cosmology
using realistic simulations. We nonetheless repeated the
validation in simulations with the updated analysis choices
(e.g., redshift distributions, shape noise, priors, etc.) in
Appendix B, using both T17 and PKDGRAV simulations.
We also slightly changed the scale cut decided in G20, due
to updates in the analysis choices. More details concerning
the scale cuts are given in Appendix A.
We first performed two tests at the data vector level:
(i) We checked that additive biases due to PSF model-

ing errors were negligible at the data vector level,
i.e., if neglected they would not bias our cosmo-
logical analysis. This test is similar to the test
performed for the DES Y3 cosmic shear analysis
[15]; more details are given in Appendix C.
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(ii) We tested that mixed moments between convergence
maps E-mode and noise (e.g., hκNii;j) are consistent
with expectations based on tests on N-body simu-
lations; more details are given in Appendix D.

We then ran our analysis on blinded data vectors, and
checked that:

(i) Cosmological constraints obtained using (blinded)
second and third moments were consistent with each
other. To this aim, we used posterior predictive
distributions (PPD, [106]); see Appendix F.

(ii) The (blinded) posteriors of the systematic parame-
ters did not concentrate at the edge of the prior.
The level of agreement/disagreement with the prior
was tested using a Gaussian estimator called the
“update difference-in-mean” (UDM) statistic [107]
(Appendix H).

We then unblinded the data vectors and ran the fiducial
analysis; before looking at the unblinded posteriors, we
further checked that:

(i) The goodness-of-fit p—value on unblinded data
vectors was larger than 1%; see Sec. VI.

(ii) The best-fitting cosmology provided a good descrip-
tion to second and third moments B-modes (which
are not included in the data vector), see Appendix E.
This was done in an automated fashion such that we
did not look at the actual best-fitting values.

In order to quantify goodness-of-fit and internal con-
sistency among different parts of our data vector, we use the
PPD methodology developed by [106] and adopted in the
main DES Y3 3 × 2pt analysis. The PPD methodology
derives a calibrated probability-to-exceed p; in the case of
goodness-of-fit tests, this is achieved by drawing realiza-
tions of the data vector for parameters drawn from the
posterior under study; for consistency tests (e.g., second
moments vs. third moments), the realizations are drawn
from disjoint subsets of the data vector. These realizations
are then compared to actual observations and a distance
metric (χ2) is computed in data space, which is then used to
compute the p-value.
Once all these tests were passed, we looked at the

unblinded posteriors of our analysis.

VI. COSMOLOGICAL CONSTRAINTS

We present here the cosmological constraints obtained
assuming the ΛCDM model, varying five cosmological
parameters and 19 nuisance parameters (10 for the
moments likelihood and 9 additional ones for the shear
ratio likelihood), as summarized in Table I. In addition to
these parameters, we will also quote results in terms of the
S8 parameter, defined as

S8 ≡ σ8ðΩm=0.3Þα: ð29Þ

The value of α can be chosen such that S8 best constrains
the degeneracy between Ωm and σ8. However, the second

and third moments have a slightly different degeneracy
direction and so there is no value of α that simultaneously
optimizes both. For sake of simplicity we adopt α ¼ 0.5.
Figure 4 shows the posteriors for S8,Ωm, and σ8 from the

second and third moments individually, and from the
combinations of the two. Third moments are much less
constraining than second moments alone, but they are
characterized by a slightly different degeneracy tilt in the
σ8-Ωm plane compared to second moments. The margin-
alized mean values of S8,Ωm, and σ8 for the combination of
second and third moments, along with the 68% confidence
intervals, are

Ωm ¼ 0.27$ 0.03; ð30Þ

σ8 ¼ 0.83$ 0.05; ð31Þ

S8 ¼ 0.784$ 0.013: ð32Þ

We report the constraints from the analysis of second and
third moments individually in Table II, and for S8 we
additionally provide a visual comparison in Fig. 5. The
combined moments analysis places a 1.7% constraint on S8
and a 10% constraint on Ωm, improving by ∼15% and
∼25% over constraints from second moments only. This
level of improvement is expected (G20), and is due to the
additional non-Gaussian information probed by third
moments and the degeneracy breaking when second and
third moments are combined. Table II also reports the
p-values for the goodness-of-fit tests; these are well above
the p-value ¼ 0.01 threshold. The unblinded data vectors,
along with the best-fitting models from our posteriors, are
shown in Fig. 3. We caution the reader from any χ2-by-eye
estimate, as the different scales are highly correlated
(especially for second moments, where adjacent scales
have a correlations higher than 90%). Constraints from
second and third moments are consistent with each other,
although it is evident from Fig. 4 that they probe different
parts of the parameter space in the σ8-Ωm plane.
In Appendix F we use PPD to quantify the internal

consistency of our data sets. In particular, we tested the
compatibility between second and third moments con-
straints, between small and large scales, and between parts
of the data vector using different redshift bins. These tests
were performed prior to unblinding, using blinded data
vectors, and were repeated after unblinding (although only
the compatibility of second and third moments was
considered as an unblinding criterion). In Appendix F
we also perform a test analysing the data vector using a
different parametrization of the redshift uncertainties,
called hyperrank [86].
The results reported here were obtained using the FLASK

covariance; in addition, we tested that our results do not
change significantly when using the covariances estimated
using the T17 or PKDGRAV simulations (Appendix G).
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A. Intrinsic alignment constraints and impact of the
shear ratio likelihood

Intrinsic alignment (IA) is a potentially important con-
tribution to the shear signal. We show in Fig. 6 the posterior
of the IA amplitude parameter AIA for the combination of
second and third moments. Our results are compatible with
a null IA signal, as the amplitude of the IA signal is
constrained to AIA ¼ −0.09$ 0.17. Most of the constraint
on IA comes from the shear ratio likelihood (Fig. 6),
although when performing the analysis without shear ratio
we also obtain a null IA signal of AIA ¼ 0.09$ 0.6. The
improvement in the IA constraints due to the inclusion of
shear ratio is expected [67]; moreover, because of the slight
degeneracy between the IA amplitude parameter and S8,
shear ratio also improves the S8 constraints (∼25%). The
constraints obtained analysing second and third moments
only are also very similar: −0.08$ 0.17 and −0.10$ 0.15
for second and third moments, respectively. The tighter
constraint on AIA from third moments is due to a projection
effect related to the broader constraints on Ωm. These
results are compatible with the DES Y3 cosmic shear and
3 × 2pt analyses results [15,18,108], which also find an IA
amplitude consistent with zero. Lastly, we ran an additional
test analysing our data vector assuming no IA (AIA ¼ 0);
the results are shown in Fig. 6 and are almost identical to
the fiducial results. The only difference between the no IA
model and the fiducial analysis is that the former strongly
constrains the nuisance parameter Δz1 (redshift uncertainty
of the first redshift bin). In particular, the posterior of that

parameter is shrunk by half, although it is still consistent
with zero. The IA model (NLA) used in this work is simpler
than the fiducial model (TATT) adopted by the DES Y3
3 × 2pt analysis [91]. However, [18] finds that simpler IA
models such as NLA are sufficient for modeling the DES
Y3 data, so we do not think any of the conclusions in this
work are affected by our (simpler) IA modeling choice.

B. Comparison with DES constraints

We discuss here how the parameter constraints obtained
from this work compare with the ones obtained by other
cosmological analyses using DES Y3 data (cosmic shear,
3 × 2pt, and lensing peaks). Marginalized posteriors for S8
and Ωm are shown in Fig. 7 and (for S8 only) in Fig. 5; we
also report the numerical values in Table II. While the level
of agreement can be noted in these figures, we cannot
quantify it using the PPD metric, as we do not have the
cross-covariance of moments with the other data vectors (a
requirement of the PPD method).
The comparison that is probably the most relevant is with

cosmic shear, which is a two-point correlation of the same
lensing field. Our second moment should be consistent with
it, although as discussed below the weighting of different
scales (in particular in Fourier space) differs. The peaks
statistic uses different non-Gaussian information from the
third moment, so that is an interesting comparison as well.
For completeness we include the 3 × 2pt results although
these use the clustering of lens galaxies (a different probe of
the mass distribution). However within the context of

TABLE II. Constraints on the cosmological parameters S8,Ωm, and σ8. For each parameter we report the mean of the posterior and the
68% confidence interval. For the fiducial results (second moments, third moments, and the combination of the two) we also report the
PPD goodness-of-fit p-value.

S8 Ωm σ8 p-value

Fiducial
Second moments 0.799$ 0.015 0.21$ 0.04 0.98$ 0.10 0.21
Third moments 0.72$ 0.05 0.33$ 0.16 0.73$ 0.16 0.63
Second þ third moments 0.784$ 0.013 0.27$ 0.03 0.83$ 0.05 0.26

Variations

Second þ third moments, no bin 1 0.785$ 0.014 0.30$ 0.04 0.79$ 0.06
Second þ third moments, no bin 2 0.779$ 0.015 0.27$ 0.04 0.83$ 0.06
Second þ third moments, no bin 3 0.789$ 0.019 0.27$ 0.05 0.83$ 0.08
Second þ third moments, no bin 4 0.791$ 0.018 0.23$ 0.04 0.92$ 0.08
Second þ third moments, hyperrank 0.779$ 0.014 0.26$ 0.03 0.83$ 0.05
Second þ third moments, small scales 0.780$ 0.017 0.32$ 0.05 0.76$ 0.07
Second þ third moments, large scales 0.76$ 0.02 0.28$ 0.04 0.79$ 0.07
Second þ third moments, no shear ratio 0.782$ 0.017 0.27$ 0.04 0.83$ 0.06
Second þ third moments, FLASKþ T17 0.785$ 0.015 0.27$ 0.03 0.82$ 0.06
Second þ third moments, FLASKþ PKDGRAV 0.788$ 0.015 0.28$ 0.03 0.82$ 0.06

Other works

DES Y3 Cosmic Shear, TATT free neutrino [15,18] 0.772$ 0.016 0.29$ 0.05 0.79$ 0.08
DES Y3 Cosmic Shear, NLA fixed neutrino [15,18] 0.788$ 0.016 0.28$ 0.04 0.82$ 0.08
DES Y3 3 × 2pt, TATT free neutrino [108] 0.779$ 0.014 0.33$ 0.03 0.74$ 0.04
DES Y3 Peaks þ Cls [79] 0.797$ 0.014 0.28$ 0.07 0.85$ 0.11
KIDS-1000 [109] 0.751$ 0.021 0.29$ 0.08 0.79$ 0.13
HSC Y1 CLs [110] 0.778$ 0.031 0.18$ 0.07 1.05$ 0.16
Planck 2018 TT,TE,EE þlowlþ lowE [111] 0.834$ 0.016 0.316$ 0.008 0.812$ 0.007
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FIG. 3. Measured second moments (upper plots) and third moments (lower plots). Red points represent the measurement. Gray shaded
regions highlight the scales removed by the analysis. The conservative scale cut implemented in this analysis removes a large part of our
data vector. Solid, dotted, and dashed lines represent the predictions obtained using the best-fitting cosmology of second and third
moments analysis (either considered in combinations or alone). Data points are very correlated (Fig. 2), so we caution the reader from
any χ2-by-eye estimation.
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ΛCDM, the results should agree provided the theoretical
predictions are accurate and the mitigation of systematic
errors in each analysis is reliable.
DES Y3 cosmic shear. The first comparison with other

DES Y3 constraints is with the cosmic shear analysis
[15,18]. We compare with the constraints from two slightly
different cosmic shear analyses: the first one is a ΛCDM
analysis which assumes a more complex IA model (the
TATT model), and marginalizes over the neutrino mass,
whereas the second one, which better matches the analysis
choices adopted in this work, assumes NLA as IA model
and fixes the neutrino mass to zero.1 Both adopt the DES
Y3 ΛCDM optimized scale cut.2 The constraints from the

combination of second and third moments are in good
agreement with the constraints from both cosmic shear
analyses.
In terms of constraining power on the S8 and Ωm

parameters, the NLAþ fixed neutrino cosmic shear analy-
sis is similar to the analysis using second moments only.
The combined moments analysis is more constraining, due
to the additional non-Gaussian information and the degen-
eracy breaking of the third moments. Although both cosmic
shear and second moments are Gaussian statistics and
they both probe the shear power spectrum, their posteriors
do not have to perfectly overlap, as they weight power
spectrum multipoles differently (Appendix I). In particular,
our scale cuts exclude some of the higher wave number
contributions to ξþ−. Nonetheless, the peaks of the second
moments and the combination of second and third moments
posteriors are consistent with the peak of the NLAþ fixed
neutrino cosmic shear posterior in the S8-Ωm plane (1σ and
0.15σ, respectively).
DES Y3 3 × 2pt. Similar to the DES Y3 cosmic shear

analysis, we compare to two different versions of the DES
Y3 3 × 2pt analysis [108]: a first one that assumes ΛCDM,

FIG. 4. Posterior distributions of the cosmological parameters Ωm, σ8, and S8 for the second moments, third moments, and the
combination of second and third moments. We note that our fiducial analysis include small-scale galaxy-galaxy lensing ratios (a.k.a.
shear ratios, Sec. IV). The 2D marginalized contours in these figures show the 68% and 95% confidence levels.

1We remind the reader that neutrinos are not included in the
modeling of moments, so their mass is automatically fixed to zero.

2The DES Y3 ΛCDM optimized scale cuts are similar to the
ones adopted in this work. In particular, they have been chosen
so as to have the DES Y3 3 × 2pt S8-Ωm constraints unbiased
(i.e., <0.3σ) for a ΛCDM cosmology, with respect to potential
baryonic contamination. The scale cuts adopted for the fiducial
DES Y3 3 × 2pt results are more conservative because they also
consider a wCDM cosmology.
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the TATT model and marginalizes over the neutrino mass,
and a second one which better matches the analysis choices
adopted in this work, assuming NLA as IA model and
fixing the neutrino mass to zero. We report the latter
analysis for a visual comparison of the constraining power,
but we caution the reader that it is unlikely to pass our scale
cuts criteria, which impose a maximum bias of 0.3σ in
the S8-Ωm plane in case of baryonic contamination. This
analysis was not presented in [108], and no adequate scale
cut was determined. For sake of simplicity, we decided to
use the same scale cut adopted in the 3 × 2pt TATTþ free
neutrino mass analysis, which is likely too aggressive. This
is because we know that the 3 × 2pt TATTþ free neutrino
mass analysis passes the scale cuts criteria with exactly a
0.3σ bias [108]; the NLAþ fixed neutrino analysis, having
slightly more constraining power, is likely to fail those
criteria. To avoid misinterpreting these results, we decided
to shift the contours to lie on top of the DES 3 × 2pt TATT
posterior, such that the real position is unknown and the
posterior can only be used to get a sense of the effect of
different analysis choices on the constraining power of the
3 × 2pt analysis. The DES 3 × 2pt analysis relies on three

different probes: cosmic shear, galaxy-galaxy lensing, and
galaxy clustering. Remarkably, the S8 constraining power
from the moments analysis is 10% better than that from the
DES Y3 3 × 2pt analysis, despite not relying on a lens
sample or the 2 × 2pt part of the data vector. The DES Y3
3 × 2pt constraints are, however, slightly more stringent in
terms of Ωm (by 10%), due to the significant contribution
from the galaxy-galaxy lensing and galaxy clustering part
of the analysis. The posteriors show good overlap, with the
moments peak being ∼1.1σ away from the DES Y3 3 × 2pt
TATTþ free neutrino analysis peak in the S8-Ωm plane.
Given that the constraints come from different probes
we can consider the posteriors to be in reasonably good
agreement.
DES Y3 Peaksþ Power spectrum analysis. [79] use peak

counts to extract non-Gaussian information from the
convergence field, and combine this with constraints from
the power spectrum of convergence maps. The comparison
of our analysis with theirs is interesting for two reasons:
(1) similar to this analysis, it exploits some non-Gaussian
information of the convergence field to constrain cosmo-
logical parameters; (2) the Peaksþ Power spectrum

FIG. 5. Constraints on the cosmological parameter S8; we report the mean of the posterior and the 68% confidence interval. The first
three lines are the fiducial results from this analysis. Following that are the S8 values for a number of variations and systematic tests;
removing one redshift bin at a time, using a different parametrization for the redshift distribution called “hyperrank”, considering only
small or large scales, considering the case with no intrinsic alignement or no shear ratio (SR), and using different covariance matrixes
(FLASKþ T17 or FLASKþ PKDGRAV), as explained in Appendices F and G. Lastly, we compare with a number of results from
other works, either with DES or external data.
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analysis uses an independent, completely different frame-
work to provide theory predictions for the observables—
they forward model the measurements using a Gaussian
process emulator built using N-body simulations of differ-
ent cosmologies. The analysis choices of the Peaksþ
Power spectrum analysis and our moments analysis are
very similar, the main difference being that the former does
not use the shear ratio likelihood and uses somewhat tighter
priors for the ns, h100, and Ωb parameters. The results from
these two analyses are in agreement (Fig. 7), with the peaks
of their posterior within 1σ of ours in the S8-Ωm plane.
Similar to the moments analysis, the Peaksþ Power
spectrum analysis finds an IA amplitude consistent
with zero.

C. Comparison with external data sets

We compare here our parameter constraints with the
results obtained using external data sets. In particular, we
compare with the recent results of the KIDS-1000 survey
[21], HSC [16], and Planck [111]. In order to estimate
the tension between different analyses, we calculate a
Monte Carlo estimate of the probability of a parameter
difference [107,112], using the TENSIOMETER software. In
the case of uncorrelated data sets, the probability of the
parameter difference reads

PðΔθÞ ¼
Z

Vp

PAðθÞPBðθ − ΔθÞdθ; ð33Þ

where Vp is the prior support and PA and PB are the two
posterior distributions of the parameters. The probability of
an actual shift in parameter space is obtained from the
density of parameter shifts,

Δ ¼
Z

PðΔθÞ>Pð0Þ
PðΔθÞdΔθ; ð34Þ

FIG. 7. Posterior distributions of the cosmological parameters
Ωm and S8. Top panel: we show the posteriors for the moments
analysis, two versions of the DES Y3 cosmic shear analysis, and
the DES Y3 Peaksþ Power spectrum analysis. For readability
we do not show the third moments constraints separately. Bottom
panel: we show the posteriors for the moments analysis and for
two versions of the DES Y3 3 × 2pt analysis. **: the DES 3 × 2pt
NLAþ fixed neutrino analysis is unlikely to pass our scale cut
criteria, see Sec. VI B for more details. For this reason, we shifted
the contours on top of the DES 3 × 2 TATT posterior, so as to not
unveil the exact location of the (potentially biased) posterior. The
2D marginalized contours in these figures show the 68% and
95% confidence levels.

FIG. 6. Posterior distributions of the cosmological parameters
Ωm and S8, and the IA amplitude parameter AIA, for the
combination of second and third moments. “SR” stands for shear
ratio. The 2D marginalized contours in these figures show the
68% and 95% confidence levels.
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which is the posterior mass above the contour of constant
probability for no shift, Δθ ¼ 0. Due to the discrete nature
of our posterior samples, the integral in Eq. (34) is
evaluated using a Monte Carlo approach [112].
A visual comparison between the results of the moments

analysis and the results obtained from external data sets is
provided in Fig. 8 for the S8 and Ωm parameters and in
Fig. 5 for S8 only; additionally, the probability of the
parameter difference is reported in Table III. The moments
analysis is in good agreement with the other weak lensing

analyses considered here (≲1σ), and it is the most
constraining one (owing both to the larger data set and
to the extra non-Gaussian information probed by the
moments).
When comparing with the results from the Planck

analysis, however, we measure a larger tension, at the level
of 2.2 − 2.8σ, depending on the combination of moments
considered (see Fig. 8). The third moment independently is
in 2.8σ tension with Planck, which provides a cross-check
on the other analyses of 2-point correlations. Note that the
joint constraint, though tighter, is in slightly lower tension.
Interestingly, the moments analysis is significantly more
constraining than Planck for the S8 parameter.
When comparing results from different analyses, we

did not try to unify different analysis choices (e.g., priors,
scale cuts, etc.); this complicates the comparison [113].
Nevertheless, the moments analysis, in line with other weak
lensing analyses, favours lower S8 values than Planck.

VII. SUMMARY

We presented a cosmological analysis of the second and
third moments of weak lensing mass (convergence) maps
from the Y3 data of the DES. The second moment of the
convergence as a function of smoothing scale contains
information similar to standard shear 2-point statistics,
whereas the third moment, or skewness, contains additional
non-Gaussian information. Several theoretical studies have
explored the use of statistics beyond 2-point correlations to
extract additional non-Gaussian information from lensing
data. The 3-point function is the lowest order statistic in
perturbation theory and is the simplest to model and
interpret. Its signal-to-noise is significantly smaller than
for 2-point correlations, but its dependence on the key
cosmological parameters (S8 and Ωm) differs, enabling
partial degeneracy breaking and improved constraints on
cosmological parameters. Our study is the first to test these
theoretical expectations with data in a comprehensive way,
following an end-to-end analysis of mock catalogs that
included the expected leading sources of systematic uncer-
tainty (see G20). We note that the counts of peaks in the
lensing field are analyzed in a separate DES paper [79] and
other non-Gaussian statistics such as the topological

FIG. 8. Posterior distributions of the cosmological parameters
Ωm and S8, for the moments analysis and for the recent results of
the KIDS-1000 survey [21], HSC [16], and Planck [111]. Table III
shows the tension between the DES moments and other analyses.
The upper panel only shows the combination of second and third
moments, whereas the lower panel shows second and third
moments constraints individually.

TABLE III. Probability of the parameter difference (computed
over the full parameter space) between the DES Y3 moments
analysis and three analyses using external data sets: KIDS-1000
survey [21], HSC [16], and Planck [111].

Planck
TTTEEE
lowl lowE

HSC Y1
Power

spectrum
KIDS-
1000

Second moments 2.7σ 0.3σ 0.9σ
Third moments 2.8σ 1.2σ 0.2σ
Secondþ third moments 2.2σ 0.9σ 0.6σ
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Minkowski functionals as well as deep learning approaches
have been proposed as well (see Sec. I for a review).
Our analysis relies on 100 million galaxy shapes

measured over 4139 square degrees, which have been used
to reconstruct the convergence field in four source redshift
bins. The data has been analyzed in the context of the
ΛCDM model, varying five cosmological parameters (Ωm,
σ8, ns,Ωb, and h100) and 19 nuisance parameters (modeling
astrophysical and measurement uncertainties). One of our
goals is to quantify the tension between CMB and late time
estimates of S8 and other relevant parameters. In view of
several recent measurements reporting tension between the
amplitude of mass fluctuations in the late times vs. early
universe (as probed by the CMB), we have carried out
measurements and consistency tests of ΛCDM rather than
pursue extended cosmological models. The modeling used
to describe the second and third moments measured in data
is analytical: as described in G20 we have built an emulator
to obtain rapid predictions from perturbation theory cal-
culations well tested with N-body simulations. Thus the
cosmological analysis here does not rely on large suites of
N-body simulations to forward model the signal.
The combined analysis of second and third moments

was able to constrain S8 ≡ σ8ðΩm=0.3Þ0.5 with 1.7%
uncertainty and Ωm with 10 percent: in particular, we
obtained S8 ¼ 0.784$ 0.013 and Ωm ¼ 0.27$ 0.03. The
third moments improved the constraints on S8 and Ωm by
∼15% and ∼25%, respectively, in line with the expectation
based on simulations (G20). The improvement is due to the
degeneracy breaking and the non-Gaussian information
probed by the third moments. The goodness-of-fit
p—value of the data vectors (second, third, and the
combination of second and third moments) was found
to be way larger than 1%, which is our criterion for a
reasonable goodness-of-fit.
We performed our analysis following the blinding

scheme proposed by [68]. Before unblinding the analysis,
we performed a number of systematic tests which had been
defined as unblinding criteria: we checked that additive
biases due to PSF modeling errors were small enough to not
bias the cosmological analysis; that mixed moments
between convergence map E-modes and noise were con-
sistent with expectations based on tests on N-body simu-
lations; that cosmological constraints obtained using
second and third moments were consistent with each other
using posterior predictive distributions (PPD, [106]); that
the best-fitting cosmology provided a good description of
the B-modes of the second and third moments as well (the
B-modes were not included in the data vector used for the
cosmological analysis); that the posteriors of the nuisance
parameters did not concentrate at the edge of the prior,
tested using the Gaussian estimator update difference-in-
mean (UDM) statistic [107]. All these tests were success-
fully passed. After unblinding, we further used PPD to
assess the internal consistency of other subsets of the data

vector (small vs. large scales, or across redshift bins); we
also tested that our results were robust against different
modeling choices for the covariance matrix used in the
analysis, or the inclusion of small-scale galaxy-galaxy
lensing ratios (a.k.a. shear ratios, [67]). All tests performed
after unblinding validated the robustness of our results.
Constraints from the combination of second and third

moments were found to be compatible with constraints
from the DES Y3 cosmic shear analysis [15,18], the DES
Y3 3 × 2pt analysis [108], and the DES Peaksþ Power
spectrum analysis [79]. In terms of constraining power, the
addition of non-Gaussian information via the third
moments in the analysis may be regarded as successful
—the constraints on S8 and Ωm were shown to be tighter
than fromDES cosmic shear, and, for S8, similar to the DES
3 × 2pt constraint.
We compared our constraints to two contemporaneous

lensing surveys: the KIDS-1000 survey [21] and the HSC
Y1 data [16], finding agreement (≲1σ).
When compared to predictions based on CMB data from

the Planck satellite [111], we estimate a 2.2 − 2.8σ tension
in the full parameter space, depending on the combination
of moments considered (see Table III). The moments
analysis favours lower S8 values compared to Planck, in
line with other weak lensing analyses. Interestingly the third
moment by itself is in tension with Planck at the 2.8σ level:
this is significant since additive lensing systematics are
more likely to impact the second moment than the third. So
the third moment provides a useful check on the “low S8”
cosmic tension between the late time and early universe.
We expect to improve the analysis presented in this work

and apply it to future data, such at the final DES Y6 data.
Based on the investigation performed in G20 we expect to
further improve our constraining power on S8 by roughly
20%, if we take into account the expected increase in the
source number density. We plan to be able to model
baryonic effects, which should allow us to push our
analysis to smaller scales, improving constraints (up to
20%, Appendix A) and learning about baryonic physics.
We are also planning to expand our modeling to include
massive neutrinos and the full wCDM parameter space.

The simulated data used in this work has been generated
using the public code FLASK (http://www.astro.iag.usp.br/
∼flask/), the public T17 simulations (http://cosmo.phys.
hirosaki-u.ac.jp/takahasi/allsky_raytracing/), and the public
code PKDGRAV [72]. The full METACALIBRATION catalog
will be made publicly available following publication, at
the URL https://des.ncsa.illinois.edu/releases. The code
used in this article will be shared on request to the
corresponding author.
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APPENDIX A: SCALE CUTS

We repeat on DES Y3 data the scale cut test we
performed on simulated data in G20 in order to determine
which part of the data vector can be used in the cosmo-
logical analysis. The reason the test is repeated is that some
details of the analysis have been updated since G20 (mostly
the nuisance parameters priors and the redshift distribu-
tions). The scale cut test is performed by contaminating a
theory data vector with the known dominant systematic
effect that is not part of our model; namely, baryonic
feedback based on hydrodynamical simulations as
described in G20. Then, we check that the cosmological
parameters posterior obtained by analysing the contami-
nated data vector is not substantially biased with respect to
the posterior with an uncontaminated data vector.
We adopted the “optimized scale cut criteria” for the

ΛCDM cosmology adopted by the main DES cosmological
analysis [15,18,108]. The criterion requires the peak of the
marginalized 2D posterior of Ωm and S8 ≡ σ8ðΩm=0.3Þ0.5
obtained by analysing the contaminated data vector to be
within 0.3σ of the values obtained with the uncontaminated
one. As we partially constrain ns, we also require the peak
of the marginalized 2D posterior of ns and S8 to be within
0.5σ of the baseline value. We arbitrarily chose a larger
value for the ns and S8 criteria because ns is only partially
constrained and the posterior might be artificially too sharp.
We also note that the DES Y3 3 × 2pt analysis does not
assume any scale cut criteria on ns. We also check that the
χ2 of the best-fitting cosmology of the analysis of the
contaminated data vector is within 0.3 of the expected
spread of the χ2 distribution. Since the length of the
compressed data vector is 15, we require the best-fitting
χ2 < 1.6.3 This second criterion ensures that the best-fitting
χ2 from the analysis on data is unbiased. We note that these
last two checks have not been included in the scale cut
criteria in the main DES cosmological analysis.
In G20, we determined that a scale cut of R0 ¼

24h−1 Mpc was sufficient (such that scales smaller than
θ0 ¼ R0=χðhziÞ were removed, where hzi is the average of
the mean redshift of different tomographic bins). When
repeating this test, we had to use slightly large scales

3Note that we are considering a χ2 statistic and not a reduced χ2
statistic. The reported χ2 might seem small due to the small
number of d.o.f (15, due to data-compression) and due to the lack
of measurement noise in the input data vectors. For negligible
contamination we would expect a best-fit χ2 ¼ 0 (instead of χ2 ∼
d:o:f: for a noisy data vector).
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(R0 ¼ 28h−1 Mpc) to pass the scale cut criteria, due to our
updated analysis choices (e.g., inclusion of the shear-ratio
likelihood, final values for redshift distributions, shape
noise, effective number densities, covariance, etc.). Results
are shown in Fig. 9; the peak of the 2D posterior of the
contaminated data vector is 0.28σ off the baseline value in
the Ωm-S8 plane, and 0.48σ in the ns-S8 plane; we also
obtain a best-fitting χ2 ¼ 0.91 < 1.6 for the contaminated
data vector. Therefore, the scale cut of R0 ¼ 28h−1 Mpc is
deemed sufficient.
We note that our scales cut removes a significant number

of data points from our measurement. This has a non-
negligible impact on our constraining power. Using a
simulated data vector, we estimate that we would improve
our constraints on S8 and Ωm by a further 20% if we could
apply no scale cut. This assumes we had a perfect knowl-
edge of the baryonic effects on our data vector, which,
unfortunately, is not the case for this analysis.

APPENDIX B: VALIDATION OF THE
MODELING ON N-BODY SIMULATIONS

We repeat in this appendix the validation of our
theoretical modeling performed in G20. We repeat that
validation for two reasons: (1) some of our analysis choices
have been updated (e.g., priors, redshift distributions,
covariance, etc.); (2) we perform the validation on two
independent N-body simulations (whereas in G20 we
compared only to one).
We show first in Fig. 10 the comparison between theory

predictions and the data vector as measured in the two sets
of N-body simulations. For the data vector, we take the
average of the data vector measured in every realization
available. The mean offset between measurements and
predictions is 0.5% and 8% for second and third moments
of the T17 simulations, and 0.005% for both second and

third moments of the PKDGRAV simulations (note that
there are scale dependent residuals that are larger, but they
average down when computing a mean offset). Note also
that these numbers for the second moments are in agree-
ment with the quoted uncertainties for the power spectrum
for the two sets of simulations [71,72]; in particular, the
pattern seen for the second moments of the PKDGRAV
simulations is similar to that shown in [79].
We used the measured data vector (averaged over all

the available realizations) and the scale cut determined in
Appendix A to run two simulated cosmological analyses,
one for each set of simulations. We compared the posteriors
of Ωm and S8 ≡ σ8ðΩm=0.3Þ0.5 with the posteriors obtained
running the same cosmological analysis on a synthetic data
vector at the “true” cosmology of the two simulations.
Results are shown in Fig. 11, showing a good recovery of
the true cosmological parameters.

APPENDIX C: ADDITIVE BIASES DUE
TO PSF ERROR

We quantify in this appendix the level of contamination
of our data vector due to additive biases related to PSF
misestimation. PSF misestimation can cause additive
biases in the measured galaxy shapes such that γest ¼
γ þ δesysPSF þ δenoise. These spurious contributions can be
characterized assuming amodel for the PSFmodeling errors
and using a catalog of “reserved” stars that have not been
used to train the PSFmodel. Inwhat follows, we parametrize
additive biases due to PSFmisestimation following [14,114]
(other modeling choices also exist in literature, e.g., [115]).
In particular, we assume that

δesysPSF ¼ αemodel þ βðe( − emodelÞ

þ η

#
e(

T( − Tmodel

T(

$
; ðC1Þ

FIG. 9. Parameter posteriors used to determine the scale cuts for the cosmological analysis. Constraints from the combination of
second and third moments are shown. “Baseline” refers to an analysis performed on a theory data vector, “Contaminated” refers to the
analysis performed on a data vector contaminated by the impact of baryonic feedback (see Appendix A). The dashed lines demarcate the
0.3σ or 0.5σ contours for the 2D marginalized constraints of the contaminated data vector; the filled square and circle show the peak of
the posteriors for the contaminated and baseline data vectors, respectively.
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where α, β, and η are coefficients estimated from data, e( is
the PSF ellipticity measured directly using the reserved stars
catalog, Tmodel is the modeled PSF size, and T( is the PSF
size measured from the reserved stars catalog. The coef-
ficients α, β, and η for the DES Y3 shape catalog have
already been estimated in [14] for the nontomographic case
and in [15] for the tomographic case. In what follows, we
will use the values from [15], as we are interested in the
contamination of our tomographic moments.

An empirical method was used to estimate the contri-
bution to the measured moments due to PSF additive
biases. We first created maps of emodel, e(, and

T(−Tmodel
T(

from the reserved stars catalog. Using the estimated values
for α, β, and η, we then created maps of δesysmodel, one for
each tomographic bin. Last, we computed the second and
third moments of the smoothed version of the δesysmodel maps,
in exactly the same way that we estimated the moments of
the convergence maps (Sec. III B). In order to estimate the

FIG. 10. Comparison between theory predictions and moments as measured in N-body simulations. The red bands encompass the
68 percentile of the moments as measured on all the realizations from the T17 or PKDGRAV simulations. The gray bands represent the
expected measurement uncertainty for one individual realization, which represents the DES Y3 survey. No scale cut is applied here.
Only “auto” moments are shown. It is evident that the theoretical model agrees with N-body simulations to well within the statistical
uncertainty of the survey.
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contribution due to noise (that has to be subtracted from the
raw, measured moments), we adopted a different technique
as the two components of the δesysmodel field cannot just be
randomly rotated as in the case of galaxies. We created
two additional versions of the δesysmodel maps, obtained by
sampling two disjoint halves of the reserved stars catalog.
We made sure the two halves spanned the footprint
uniformly. We then measured the moments of the differ-
ence of the two maps, δesysmodel;DIFF. In this way, the true
signal should cancel, leaving only a contribution due to
noise. The noise contribution to the moments of the δesysmodel
maps can be related to the signal measured from δesysmodel;DIFF
as follows:

hðδesysmodel;NOISEÞ2ii;j ¼ 4hðδesysmodel;DIFFÞ2ii;j; ðC2Þ

hðδesysmodel;NOISEÞ3ii;j;k ¼ 8hðδesysmodel;DIFFÞ3ii;j;k; ðC3Þ

for any combination of tomographic bins i, j, and k. The
second and third moments contribution due to PSF biases,
once the noise term has been subtracted, is shown in
Fig. 12. It can be seen clearly that such contribution is
subdominant with respect to the moments of the conver-
gence field, and that it mostly affects the large scales of
the second moments. To further evaluate the impact of
PSF modeling errors, we ran a cosmological analysis on a
theory data vector contaminated by the measured moments
of the PSF bias, and compared to the results obtained with a
cosmological analysis performed on an uncontaminated
theory data vector. The results are shown in Fig. 13,
demonstrating that PSF additive biases have a negligible
impact on our analysis.

APPENDIX D: NOISE TERMS AND SOURCE
CLUSTERING

We can only have a noisy estimate of the shear field and
so when computing the moments of the convergence maps
the contribution due to noise has to be properly subtracted,
as explained in Sec. III B [Eqs. (19) and (20)]. It is standard
procedure to subtract only the contributions that are known
to differ from zero, so as to not unnecessarily inflate the
statistical uncertainty of our measurement. We show in
Fig. 14 the noise terms as measured from the data. The
noise contribution to the convergence map κN has been
obtained by randomly rotating the galaxy shapes and
repeating the map-making procedure. For the second
moments, we do not show the terms hκNii;j when i ¼ j,
as they are much larger than the measurement hκEii;j (at
small scales, they are one order of magnitude larger) and
are always subtracted. All the other terms are compatible
with zero; the only exception concerns mixed terms of the
form hκκ2Nii;j;k, which presents some deviations from zero
at small scales, especially in the moments involving the
first tomographic bin (with a significance of χ2 ∼ 20–25=
10 d:o:f:, depending on the bin combinations). This is in
line with what we found in simulations in G20, where such
terms did not vanish due to correlations between the pixels’
shape noise and the shear field value, induced by the
intrinsic clustering of the sources [116]. These terms are
subtracted from the measured moments before proceeding
with the cosmological analysis; due to our scale cut this has
a very small impact on the data vector used for the
cosmological analysis. By using simulated data vectors
with and without source clustering effects, we tested that
this procedure is sufficient to remove the effect of source

FIG. 11. Parameter posteriors used to validate our modeling of second and third moments with N-body simulations. Constraints from
the combination of second and third moments are shown. “Theory” points refer to the peak of the posteriors of the synthetic data vectors
computed at the cosmology of either the T17 or PKDGRAV simulation, “sims” squares refer to the peaks of the posteriors of the
analyses run on the average data vectors from all the realizations of the N-body simulations. The lines demarcate the 0.3σ contours for
the 2D marginalized constraints of the contaminated data vector.
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clustering and to have unbiased cosmological constraints
(ignoring source clustering effects produces a shift in 2D
Ωm-S8 plane of only 0.08σ).

APPENDIX E: B MODES

We show in this appendix the measured moments of the
B-modes of the convergence maps. As we used the Kaiser-
Squires algorithm to obtain the mass maps, non-null
B-modes are expected as a consequence of mask effects
[4], and are not necessarily associated with any observa-
tional systematic. The measured second moments are
shown in Fig. 15. B-modes second moments are signifi-
cantly nonzero; in the same figure, we also overplot the
predicted B-modes given the best-fitting cosmology of the
E-modes second moments, showing good agreement with
the observed B-modes moments (χ2 ¼ 51=50 d:o:f:). We
do not detect any B-modes third moments at a significant
level (χ2 ¼ 127=108 d:o:f:); this is in line with the
expected sensitivity of our data set and with the tests
performed in G20.

APPENDIX F: INTERNAL CONSISTENCY TESTS

We quantify here the internal consistency of our data
sets. Such tests, which rely on the PPD method, were
performed prior to unblinding (using blinded data vectors)

and were repeated after unblinding (although only the
compatibility of the second and third moments was
considered as an unblinding criterion).
Compatibility between second and third moments. This

first test was one of the unblinding criteria. Using PPD, we
can check that second and third moments posteriors are
consistent with each other, so that we can run the analysis
using the combined data vector. The PPD p-values for
pðhκ2ijhκ3iÞ and pðhκ3ijhκ2iÞ are reported in Table IV and
are well above the p ¼ 0.01 threshold. We note that these
values need not be the same as the two PPDs are not
symmetric.
Redshift tests. Two types of internal consistency checks

involving redshift distributions are performed. We per-
formed these checks only using the combination of second
and third moments; we did not perform them for second or
third moments only.
The first check concerns the impact of removing indi-

vidual redshift bins from the analysis. In order to perform
this test, we again use the PPD. We first repeated our
cosmological analysis removing all the second and third
moments pairs and triples involving one particular redshift
bin. We then sampled from those posteriors (one per bin),
and compared using PPD to the observed second and third
moments pairs and triples involving that particular redshift
bin. This test is meant to highlight potential biases that

FIG. 12. Contribution of PSF modeling errors to the second and third moments of the convergence fields. The contribution, estimated
as explained in Appendix C, is shown as the black lines. Due to its small amplitude, the signal has been multiplied by a factor of 10. The
red points represent the measured moments of the convergence field. We only show “auto” moments here, although the pattern is very
similar for all the other moments. Gray shaded regions highlight the scales removed by the scale cut used in the analysis.
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might preferentially impact the low or high redshift end of
our sample. The p-values from the PPD test, for each
tomographic bin removed, are reported in Table IV; all the
values are safely within our threshold. Fig. 16 shows the
peaks of the posteriors in the Ωm-S8 plane of the analyses
performed removing one bin at a time, and they are within
the 1σ contour of the fiducial analysis. The biggest changes
are obtained removing bin 4 (the posterior moves towards
lower Ωm values) and removing bin 3 (the constraining
power deteriorates more than with the other bins, see
Table II). This is not unexpected as bin 3 and 4 are the
most constraining ones.
The second test involves using a different parametriza-

tion of the redshift uncertainties, called “hyperrank” [86].
With the hyperrank setup, a number of realizations of
redshift distributions that encompass the redshift calibra-
tion uncertainties are provided. During the cosmological
analysis, such realizations are marginalized over, instead
of simply marginalizing over the mean of the redshift
distributions. Hyperrank is more complete as a method
because it also accounts for uncertainties on the higher
order moments of the redshift distributions. In the DES Y3
cosmic shear analysis, hyperrank has been proven to deliver
very similar results compared to the simpler marginaliza-
tion over the mean of the redshift distributions [15]. We
perform here a similar test, analysing our data vector
marginalizing over the hyperrank realizations. The results

of this alternative approach are shown in Fig. 16. We
measure no significative difference with respect to our
fiducial setup, demonstrating that for our analysis margin-
alizing over the uncertainties of the mean of the redshift
distribution is sufficient.
Small scales vs. Large scales. We check for internal

consistency between the small and large scales of our data
vector. In order to do so, we split our data vector in two
halves that have similar constraining power and that retain
only either small or large scales. This is achieved by
imposing a cut at the comoving scale of 56h−1 Mpc, which
we converted to an angular scale cut as explained in Sec. IV.
Weuse PPD to check for consistency between the two halves
of the data vector. The PPD values are reported in Table IV;
all thevalues are safelywithin our threshold.Wenote that for
this test we considered the combination of second and third
moments; we did not perform this test for second or third
moments only. We show in Fig. 17 the posterior obtained
using the two halves of the data vector; interestingly, the two
halves of the data vector are associated to posteriors with a
slightly different degeneracy direction in the S8-Ωm plane.
This is a similar behaviour to what has been found in the
DES Y3 cosmic shear analysis [15].

APPENDIX G: TESTS WITH ALTERNATIVE
COVARIANCES

We explore in this appendix the effect on our posteriors
of using different covariances. We have at our disposal
three covariances, obtained using FLASK realizations,
T17 N-body simulations, and PKDGRAV N-body simu-
lations. These covariances assume different cosmologies,
and in particular, model the higher-order moments of
the convergence field slightly differently. This is easy to
understand for FLASK covariance, since FLASK assumes
the convergence field to be lognormal, which is only an
approximation. We should also expect some differences
between the T17 and PKDGRAV simulations, based on the
different agreement with theory predictions shown in
Fig. 11. Such differences probably stem from the different
resolution settings of the two sets of N-body simulations.
When using the PKDGRAVand T17 covariances for the

inference, we still use the FLASK covariance to compress
the data vector since FLASK comes with the largest
number of independent realizations.4 According to [117],
this should not bias the inference, but (in the worst case)
makes the compression suboptimal. We show in Fig. 18
the posteriors obtained using different covariance matrices

FIG. 13. Parameter posteriors used to determine the level of
PSF additive bias contamination. Constraints from the combi-
nation of second and third moments are shown. “Baseline” refers
to an analysis performed on a theory data vector, “contaminated”
refers to the analysis performed on a data vector contaminated by
the impact of PSF additive biases (see Appendix C). The dashed
lines demarcate the 0.3σ contours for the 2D marginalized
constraints of the contaminated data vector; the filled square
and circle show the peak of the posteriors.

4We cannot use PKDGRAV realizations to do the compres-
sion, for instance, because the number of independent realizations
is similar to (or, depending on the scale cut choice, smaller than)
the length of the uncompressed data vector. This would imply that
the covariance used for the compression is barely (or not)
invertible, making the compression inaccurate (or impossible
to be performed).
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FIG. 14. Measured moments involving the noise contribution to the convergence map. We do not show hκNii;j for i ¼ j, as these
moments are much larger than the signal hκEii;j and are always subtracted. The gray line is shown for reference and represents the
expected theoretical signal for E-mode second and third moments. Gray shaded regions highlight the scales removed by the analysis.
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for the combined second and third moments on data, and
report the values of S8 in Table II; the posteriors and the
values of the constraints are very similar in the three cases,
implying that our modeling of the covariance matrix is
adequate.

APPENDIX H: PARAMETER 1D POSTERIORS
AND TENSION WITH THE PRIORS

We test here whether the best-fitting models are in
tension with their priors. This test was performed prior

to unblinding. The 1D posteriors and their priors for all the
parameters varied in this analysis are shown in Fig. 19. In
order to quantify the level of tension with the priors we use

FIG. 15. Measured second and third moments of the B-modes convergence maps. Gray shaded regions highlight the scales removed
by the analysis. The solid line represents the predicted B-modes at the best-fitting cosmology of E-modes second and third moments.

TABLE IV. Summary of internal consistency test p-values. All
internal consistency tests pass the predefined (arbitrary) threshold
of 0.01. Besides the second vs. third moments tests, all the other
tests have been performed on the data vector including the
combination of second and third moments.

PPD test p-values

Data splits
Bin 1 vs. no bin 1 0.648
Bin 2 vs. no bin 2 0.148
Bin 3 vs. no bin 3 0.659
Bin 4 vs. no bin 4 0.260
Large vs. small scales 0.391
Small vs. large scales 0.350
Second vs. third 0.32
Third vs. second 0.49

FIG. 16. Posterior distributions of the cosmological parameters
Ωm and S8 for the combination of second and third moments. We
compare the 2D marginalized posterior obtained using hyperrank
to model redshift uncertainties to the fiducial results. We also
show the peak of the posteriors (the colored stars in the plot)
obtained removing one redshift bin at a time from the analysis
(and using the fiducial redshift uncertainties model).
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a Gaussian estimator called the “update difference-in-
mean” (UDM) statistic [107]. The UDM statistic compares
the mean parameters from the prior θ̂p with the updated
values θ̂pþd obtained running the analysis on data. In
particular, we can define

QUDM ¼ ðθ̂pþd − θ̂pÞTðCp − CpþdÞ−1ðθ̂pþd − θ̂pÞ; ðH1Þ

where the difference in the mean of the parameters ðθ̂pþd −
θ̂pÞ is weighted by the inverse covariance of the parameters.
If the parameters are Gaussian distributed then QUDM is
chi-squared distributed with rankðCpþd − CpÞ degrees of
freedom. The UDM tension for second moments, third
moments, and the combination of second and third
moments is 0.6σ, 1.2σ, and 0.8σ, respectively, indicating
no tension. We note that most of the parameter posteriors
are actually prior dominated (without being in tension with
the prior). This is fine as long as we trust our priors. The
main parameters constrained by the analysis (σ8 and Ωm
through S8, and the intrinsic alignment amplitude AIA),
however, are not prior dominated. The effective number
of parameters Neff constrained by the analysis can be
computed as

Neff ¼ N − tr½ðCpÞ−1Cpþd'; ðH2Þ

where N is the number of free parameters in the analysis.
For instance, if we restrict to the five cosmological
parameters, Neff is only 2.6, 1.5, and 2.6 for second
moments, third moments, and the combination of second
and third moments, respectively.

APPENDIX I: COMPARISON BETWEEN SECOND
MOMENTS AND COSMIC SHEAR WINDOW

FUNCTION

We discuss here a potential explanation for the ∼1σ
difference between the peaks of the DES Y3 cosmic shear
and the second moments analysis in the S8-Ωm plane
(Fig. 7). Both cosmic shear and second moments are
Gaussian statistics and they both probe the shear power
spectrum, but their posteriors do not have to perfectly
overlap, as they weight power spectrum multipoles differ-
ently. Moreover, the process adopted to determine the
scales that can be used for each tomographic bin is different
for the two analyses; for the moments analysis we adopted
a cut based on a well-determined physical scale θ0 ¼
R0=χðhziÞ (Appendix A), whereas the cosmic shear analy-
sis adopted a criterion that evenly distributed a given Δχ2
among tomographic bins (where the Δχ2 is computed
between a synthetic data vector contaminated with baryonic
effects and an uncontaminated data vector). Although both
criteria are designed to minimize the impact of baryons on
the S8-Ωm constraints, they can contribute to the different

FIG. 18. Posterior distributions of the cosmological parameters
Ωm and S8 for the combination of second and third moments. The
2D marginalized contours in this figure show the 68% and
95% confidence levels. The figure shows the posteriors obtained
using the T17 and PKDGRAV covariances, with the data vector
compressed using the FLASK covariance.

FIG. 17. Posterior distributions of the cosmological param-
eters Ωm and S8 for the combination of second and third
moments. The 2D marginalized contours in these figures show
the 68% and 95% confidence levels. The figure shows the
posteriors obtained using only the small or the large scales of
the data vector.
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FIG. 19. 1D marginalized posteriors for each parameter varied in the cosmological analysis. We show posteriors for second moments,
third moments, and the combination of second and third moments, and compare them with their prior. Note that in some cases the edges
of the 1D posteriors might look to extend over the prior edges; however, it is only a visual effect due to the smoothing of the plotting
script close to the edge of the prior.
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sensitivity of the statistics to the shear power spectrum
multipoles.
Figure 20 shows, for the first and the last redshift bins,

how the different statistics weight the multipoles of the
shear power spectrum at the minimum angular scale
allowed by their scale cut. The cosmic shear scale cut
allows ξþ− to probe significantly higher multipoles com-
pared to the second moments, whose window function
is more compact. When considering the redshift bin 1 (4),
∼30 (∼25) per cent of the S/N of the ξþ− data vector passing
the scale cut comes from l > 200. For second moments the
contribution to the S/N from l > 200 is significantly
smaller; ∼1 (∼10) per cent. Although a more quantitative
assessment of the compatibility between the second
moments and cosmic shear constraints should be performed
via PPD, we consider the pieces of evidence provided in
this appendix sufficient to justify the differences between
the two analyses shown in Fig. 7.
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