This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265605

JOURNAL OF , VOL. , NO., 2022

DP2-Pub: Differentially Private
High-Dimensional Data Publication with
Invariant Post Randomization

Honglu Jiang, Senior Member, IEEE, Haotian Yu, Xiuzhen Cheng, Fellow, IEEE, Jian Pei, Fellow, IEEE,
Robert Pless, Member, IEEE, and Jiguo Yu, Fellow, IEEE,

Abstract—A large amount of high-dimensional and heterogeneous data appear in practical applications, which are often published to
third parties for data analysis, recommendations, targeted advertising, and reliable predictions. However, publishing these data may
disclose personal sensitive information, resulting in an increasing concern on privacy violations. Privacy-preserving data publishing has
received considerable attention in recent years. Unfortunately, the differentially private publication of high dimensional data remains a
challenging problem. In this paper, we propose a differentially private high-dimensional data publication mechanism (DP2-Pub) that
runs in two phases: a Markov-blanket-based attribute clustering phase and an invariant post randomization (PRAM) phase.
Specifically, splitting attributes into several low-dimensional clusters with high intra-cluster cohesion and low inter-cluster coupling helps
obtain a reasonable allocation of privacy budget, while a double-perturbation mechanism satisfying local differential privacy facilitates
an invariant PRAM to ensure no loss of statistical information and thus significantly preserves data utility. We also extend our DP2-Pub
mechanism to the scenario with a semi-honest server which satisfies local differential privacy. We conduct extensive experiments on
four real-world datasets and the experimental results demonstrate that our mechanism can significantly improve the data utility of the

published data while satisfying differential privacy.

Index Terms—High-dimensional data, differential privacy, Bayesian network, Markov-blanket, invariant PRAM.

1 INTRODUCTION

HE rapid development of information technology has
Topened up the era of big data. Collecting and publish-
ing an unprecedented amount of data, as well as mining
data correlations and generating insights have become an
important component of social statistical research [1]. A
large amount of high-dimensional and heterogeneous data
appear in various applications, which are often published to
third parties for data analysis, recommendations, targeted
advertisements, and reliable predictions. Examples include
healthcare data, social networking data, Internet of Things
data (i.e., IoT device monitoring data, location data, trajec-
tory data), financial market data (i.e., electronics commercial
data, credit card data), which can be used to dig out valuable
information hidden behind the massive data for modern
life. However, publishing these data may disclose personal
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sensitive information, resulting in an increasing concern
of privacy violations. Privacy-preserving data publishing
(PPDP) has gained significant attentions in recent years
as a promising approach for information sharing while
preserving data privacy [2].

Generally speaking, commonly used approaches for
PPDP can be characterized into three categories: encryp-
tion technology [3], -anonymity [4] and its derivative ap-
proaches ( -diversity [5], -closeness [6]), and differential
privacy [7]. Differential privacy has gradually become the
de facto standard privacy definition and provides a strong
privacy guarantee. It rests on a sound mathematical foun-
dation with a formal definition and rigorous proof while
making the assumption that an attacker has the maximum
background knowledge.

However, the differentially private publication of high
dimensional data remains a challenging problem — it suffers
from the “Curse of High-Dimensionality” [8], that is, when
the dimensionality increases, the complexity and cost of
multi-dimensional data processing and analysis increases
exponentially. Specifically, this curse is manifested in two as-
pects: first, since the high-dimensional data space is usually
sparse, high dimensions and large attribute domains lead to
a low “Signal-to-Noise Ratio” and low data utility; second,
complex correlations exist between high-dimensional data,
therefore the change of a single record may have a great
impact on query results, leading to increased sensitivity.

To address these challenges, an effective way is to
decompose high-dimensional data into a set of low-
dimensional marginal tables along with inferring the joint
distributions of the data, thus generating a synthetic dataset.
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A representative solution is PrivBayes [9], which constructs
a Bayesian network to model the data correlations and
conditional probability distributions, allowing one to ap-
proximate the distributions of the original data using a set of
low-dimensional marginal distributions. However, such an
approach suffers from poor data utility and high communi-
cation cost, since too much noise is added when there are
too many attribute pairs resulting in unreliable conditional
probabilities. Moreover, most approaches generally ignore
the different roles a dimension may play for a specific query
- one dimension may be more important than another for
a particular query. Additionally, one dimension may release
more information than another if the same amount of noise
is added; thus evenly allocating the total privacy budget to
each dimension degrades the performance.

In this paper, we provide a two-phase mechanism (DP2-
Pub) consisting of a Markov-blanket-based learning process
and an invariant post randomization (PRAM) process satis-
fying local differential privacy to overcome the above diffi-
culties. Our contributions can be summarized as follows:

To capture the dependencies between the attributes
in the dataset, we resort to differentially private
Bayesian network construction, employing the ex-
ponential mechanism to attribute pairs using the
mutual information as the score function.

We propose the procedure of attribute clustering
with a Markov blanket learning algorithm based on
the constructed Bayesian network. Our most funda-
mental purpose is to split attributes into several low-
dimensional clusters with high intra-cluster cohesion
and low inter-cluster coupling, thus obtaining a rea-
sonable allocation of privacy budget determined by
the conditional independence among attributes and
the importance of each cluster.

Invariant PRAM is an important perturbation tech-
nique for privacy protection, which transforms each
record stochastically in a dataset using delicately
pre-selected probabilities. It ensures no loss of sta-
tistical information, thus can significantly preserve
data utility. Motivated by this, we provide a double-
perturbation mechanism to achieve invariant PRAM
and differential privacy for two-valued and multival-
ued attributes, then apply it to each attribute cluster.
Resorting to the randomized mapping based post-
processing property for differential privacy, we prove
that the proposed double-perturbation mechanism
satisfies differential privacy.

To tackle the data privacy preservation problem for
the scenario where each individual contributes a
single data record to a semi-honest server, we ex-
tend our DP2-Pub mechanism to handle the high-
dimensional data publication in a local-differential-
privacy manner, in which each user locally perturbs
its data satisfying local differential privacy, then the
server conducts all the operations including attribute
clustering and post randomization over the priva-
tized data.

We evaluate the performance of data utility on four
real-world datasets from two aspects, the total vari-
ation distance between the original dataset and the

2

perturbed dataset and the classification error rate of
SVM classification on the perturbed dataset. Experi-
mental results indicate that our approach can obtain
higher data utility of the published data compared
with the state-of-the-art.

The rest of this paper is organized as follows. We provide
a literature review in Section 2. Section 3 formulates our
problem and presents necessary background knowledge on
Bayesian network, differential privacy, random response
and post randomization. In Section 4, we propose our DP2-
Pub mechanism by detailing the constructions of differen-
tially private Bayesian network, attribute clustering, and
invariant PRAM. Comprehensive experimental studies on
four real-world datasets are presented in Section 6. Section
7 concludes the paper with a future research discussion.

2 RELATED WORK

Various differentially private mechanisms for high-
dimensional data publications have been proposed in recent
years. In this section, we briefly review the most relevant
works from two perspectives: under centralized setting or
distributed setting, and discuss how our work differs from
the existing ones.

2.1

A powerful approach of dimensionality reduction is the
Bayesian network model proposed in [9], in which Zhang
et al. developed a differentially private scheme PrivBayes
for publishing high-dimensional data. PrivBayes first con-
structs a Bayesian network to approximate the distribution
of the original dataset, then adds noise into each marginal
of the Bayesian network to guarantee differential privacy,
next constructs an approximate distribution of the original
dataset, and finally samples the tuples from the approximate
distribution to construct a synthetic dataset.

Researchers also have developed sampling techniques to
support differentially private high-dimensional data publi-
cations. In [10], Chen et al. provided a solution to protect the
joint distribution of the dimensions in a high-dimensional
dataset compared with PrivBayes. They first established a
robust sampling-based approach to investigate the depen-
dencies over all attributes for constructing a dependence
graph, then applied a junction tree algorithm to provide an
inference mechanism for deriving the joint data distribution.
Both [9] and [10] constructed a dependency graph and
generated a differentially private marginal table to enforce
consistency constraints over all marginals, during which
they evenly split the privacy budget into portions, each
being used for a pair of attributes.

In [11], Li et al. proposed a differentially private data
synthetization technique called DPCopula using Copula
functions to handle multi-dimensional data. In [12], Xu et
al. developed a high-dimensional data publishing algorithm
under differential privacy to optimize the utility by first
projecting a -dimensional vector of user’s attributes into a
lower -dimensional space using a random projection, then
adding Gaussian noise to each resultant vector to obtain a
synthetic dataset. The authors represent each user’s feature
attributes as a -dimensional vector and ignore the different

Private Mechanisms Under Centralized setting
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roles a dimension may play for a specific query and the
correlation between different attributes.

2.2 Private Mechanisms Under Distributed setting

The approaches mentioned above mainly consider central-
ized scenarios. Some efforts have also been devoted to dif-
ferentially private high-dimensional data publications un-
der distributed setting. Based on PrivBayes, Cheng et al. [13]
considered a multi-party setting from multiple data owners
and proposed a differentially private sequential update of
the Bayesian network (DP-SUBN) approach, allowing the
parties to collaboratively identify the Bayesian network that
best approximates the joint distribution of the integrated
dataset. Wang et al. [14] introduced a framework with a
simple and generic aggregation and decoding technique.
This framework can analyze, generalize and optimize sev-
eral local differential privacy protocols [15-17] for frequency
estimation. In [8], Ren et al. proposed a solution LoPub to
realize high-dimensional data publication with local differ-
ential privacy in crowdsourced data publication systems.
LoPub can first learn from the distributed data records
to build correlations and joint distributions of attributes,
then synthesize an approximate dataset achieving a good
compromise between local differential privacy and data
utility. In [18], Ju ef al. also considered the high-dimensional
data publication problem under local differential privacy
in the crowdsourced-sensing system. They proposed an ag-
gregation and publication mechanism which provides local
privacy guarantees for crowd-sensing users, approximates
the statistical characteristics of high-dimensional percep-
tion data and publishes synthetic data. Wang et al. [19]
proposed two mechanisms for collecting and analyzing
users’ private data under local differential privacy, which
can collect multidimensional data with both numerical and
categorical attributes. In [20], Domingo-Ferrer developed
several random-response-based complementary approaches
for multi-dimensional data preservation. In [21], Takagi et
al. presented a privacy-preserving phased generative model
(P3GM) for high-dimensional data, which employs a two-
phase learning process for training the model to increase
the robustness to the differential privacy constraint.

In light of the above analysis, the following aspects
distinguish our work from the existing approaches. First,
since the sensitivity of distinct dimensions are different and
evenly allocating the total privacy budget to each dimension
cannot obtain good performance, we consider the privacy
budget allocation problem to realize attribute clustering
with a reasonable allocation of privacy budget. Second,
we design a double-perturbation mechanism to achieve
invariant PRAM instead of generating noisy conditional
distributions of the Bayesian network, then apply it to each
attribute cluster, which can significantly improve the data
utility while satisfying local differential privacy.

3 PROBLEM FORMULATION AND PRELIMINARIES
3.1

In this paper, we consider the following problem: a data
server collects data containing a vast amount of individual
information and aims to release an approximate dataset to

Problem Formulation

3

third parties for their uses such as data analysis and rec-
ommendations. Let  be the dataset, be the total number
of records, and A be the set of unique
attributes. Assume that all attribute values are categorical as
one can always discretize all numerical data. The domain of
an attribute is denoted by , whose size is

3.2 Bayesian Network

A Bayesian network is a type of probabilistic graphical
model that approximately describes the joint distribution
over a set of variables by specifying their conditional inde-
pendence [22]. More specifically, a Bayesian network is a di-
rected acyclic graph (DAG) whose nodes represent attribute
variables and edges model the direct dependence among
attributes. Formally speaking, a Bayesian network N over
A (the set of attributesin ) is defined as a set of attribute-
parent (AP) pairs, , where each AP
contains a unique attribute and all its parent nodes in V.
If the maximum size of any parent set in V' is , we define
N tobea -degree Bayesian network. Let .4 denote the
joint distribution over all attributes in . A Bayesian net-
work N defines a way to approximate A with  condi-
tional distributions ,
thatis, , A .If N accurately captures
the dependencies between the attributes in A, A A can
be a good approximation to A . Moreover, the compu-
tation of 5 A can be efficient and simple if the degree
of N is small. Figure 1 illustrates the Bayesian network
over a set of five attributes, namely, age, gender, exposure to
toxins, smoking, and cancer. Table 1 shows the AP pairs in the
sample Bayesian network.

Fig. 1. A Bayesian network over five attributes.

TABLE 1
The attribute-parent pairs in the Bayesian network shown in Fig. 1

Attribute A; I1;
Age
Gender
Exposure to toxins {Age}
Smoking {Age, Gender}

Cancer {Exposure to toxins, Smoking}

Given a dataset , our goal is to construct a -degree
Bayesian network A" which provides an accurate approxi-
mation to the full distribution of .Thatis, s A should
be close to A . As -divergence [23] is commonly
used as a measure of the similarity between a probability
distribution and a candidate (estimated) distribution, in this
paper, we adopt the ~ -divergenceof A and A
to measure the difference between these two probability
distributions:

A N A A
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where denotes the entropy of the random variable

7

and denotes the mutual information between the two

variables:

Here, is the joint distribution of and ,
and are the marginal distributions of
and , respectively, and A is the joint entropy of all

attribute variables in A, which is defined as:

A

Therefore, learning a Bayesian network is to find A/ from
with the minimum ~ A . The construction
of NV can be modeled as choosing a parent set  for each
attribute  to maximize since

A s fixed once the dataset is given.

3.3 Differential Privacy

Differential privacy (DP) has become the de facto standard of
privacy preservation, which ensures that query results of
a dataset are insensitive to the change of a single record.
Differential privacy is defined based on the neighboring
datasets and , where differs from by only one
record:

Definition 1 (Differential privacy [24]). A randomized algo-

rithm  is -differentially private if for any pair of neighboring
datasets and , and for all sets  of possible outputs, we have
where is often a small positive real number.

The smaller the , the higher the level of privacy preser-
vation. A smaller provides greater privacy preservation
at the cost of lower data accuracy with more added noise.
Differential privacy can be achieved by two best known
mechanisms, namely the Laplace mechanism [24] and the
exponential mechanism [25]. We provide the formal definition
of the exponential mechanism as follows:

Definition 2 (Exponential Mechanism [25]). Given a random
algorithm — with the input dataset  and the output entity ob-
ject , where is the output range. Let be the utility
function and be the global sensitivity of function .
If algorithm selects and outputs  from  at a probability
proportional to ,then  is -differentially private.

DP techniques implicitly assume a trusted third party
to collect data and thus can hardly be applied to the case
where a server is not reliable. Therefore local differential pri-
vacy (LDP) emerges, in which each user independently and
locally conducts data perturbation. The formal definition of
LDP can be shown as follows:

Definition 3 (Local Differential Privacy [26]). Consider
records. A privacy algorithm with domain and

range satisfies the -local differential privacy if
obtains the same output result on any two

records and with

Local differential privacy ensures the similarity between
the output results of any two records. Random response
(RR) [27] is currently the most widely used technique for
achieving local differential privacy.

3.4 Random Response and Post Randomization

Random response (RR) is a technique developed in social
science to collect statistical data about individuals’ sensitive
information. Its main idea is to provide data privacy pro-
tection by making use of the uncertainty of responses to
sensitive questions. Privacy comes from the randomness of
the answers while accuracy comes from the noise generation
procedure [28].

Post randomization (PRAM) is another important per-
turbation technique for privacy protection, which stochasti-
cally transforms each record in a dataset using pre-selected
probabilities. For a random variable = with  categories

, let , and
. The basic idea of PRAM is to select a transition
probability matrix with for

. Then the original category is changed to  with

probability . Let denote the transformed variable. We
have , ,
and

Mathematically, PRAM is equivalent to RR. Therefore
many mathematical results developed for RR such as the
local differential privacy guarantee can be applied to PRAM
[29]. In this paper, we employ PRAM for the case when a
trusted data server is available (Section 4), where all the
data can be processed at the server to maintain differential
privacy, and RR for the case when the server is semi-
honest, in which case local differential privacy is adopted
for collecting data from each user to the server (Section 5).

4 DP2-PuB WITH A TRUSTED SERVER

In this section, we propose a novel differentially private
high-dimensional data publication mechanism based on a
double-perturbation process, namely DP2-Pub, assuming
the availability of a trusted server that can access the orig-
inal data. We first present an overview on DP2-Pub, then
detail its modules in the following subsections.

4.1

Figure 2 illustrates the main procedure of DP2-Pub, which
runs in two phases of attribute clustering and data random-
ization, with both being performed by the trusted server.
Since both phases require access to the original dataset, we
divide the total privacy budget into two portions with
being used for the first phase and  for the second phase,
and demonstrate that the two phases are both differentially
private.

1. Bayesian Network and Attribute Clustering. To learn
the correlations between different attribute variables, we
adopt the approach of constructing a differentially private

Overview

Authorized licensed use limited to: The George Washington University. Downloaded on August 14,2023 at 18:42:56 UTC from IEEE Xplore. Restrictions apply.
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

304

305

306

307

308

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

335

336

337
338
339
340
341

342

343

344
345
346
347
348
349
350
351
352
353

354



355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378

379

380

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265605

JOURNAL OF , VOL. , NO., 2022

Original Data Data Server Correlation

Ay Ay Az Ay Asg Ay Ay Ay Ay Asg Ay Ay Az Ay As
0
2%

N
A
NN
NN

€,-DP €,-DP

A1Az A, AyAs A1 Az Ay Az A

Perturbed Data
Publishing

PRAM

Attribute Clustering
Perturbation

Fig. 2. Overview of DP2-Pub.

Bayesian network through the exponential mechanism pre-
sented in [9]. Based on the constructed Bayesian network,
we propose the procedure of attribute clustering using the
Markov blanket model to achieve high intra-cluster cohe-
sion and low inter-cluster coupling. Each cluster is com-
posed of a cluster head and its Markov blanket members,
thus the attribute set can be divided into a number of
disjoint clusters denoted as . Our most funda-
mental purpose is to realize attribute clustering, and then
to obtain a reasonable allocation of privacy budget for each
cluster based on its importance.

2. Data Randomization. We propose a detailed double-
perturbation mechanism to achieve invariant post random-
ization and differential privacy, then apply it to each at-
tribute cluster. Note that PRAM is an important technique
for data perturbation, and that a PRAM is invariant if the
transition probability matrix satisfies (except
for the identity matrix I). The appealing advantage of an
invariant PRAM lies in that there is no loss of statistical
information and thus can significantly preserve data utility.
The key point to construct an invariant PRAM is to del-
icately solve  satisfying . We design a double-
perturbation mechanism to achieve the invariant property
of PRAM for two-valued and multivalued attributes.

4.2 Differentially Private Bayesian Network Construc-
tion

In this section, we adopt the algorithm proposed in [9] to
construct our Bayesian network in a differentially private
manner, which employs the exponential mechanism to se-
lect , using the mutual information as the score
function. For completeness, we present the algorithm in
Algorithm 1.

At the beginning of Algorithm 1, we initialize the
Bayesian network V to be an empty set. Let  denote the set
containing the attributes whose parent sets have been fixed
and the initial set of  is empty (Line 1). Then we randomly
select an attribute from the attributes as the initial node
and set its parent set empty (Line ). For each , its AP
pair is selected in a differentially private manner by the
exponential mechanism (Lines - ), of which the mutual in-
formation is taken as the score function, and  is its global
sensitivity. Algorithm 1 ensures that each invocation of
the exponential mechanism satisfies -differential

Algorithm 1: DP-Bayesian Network Construction

Input: Dataset D; k, the degree of the Bayesian network; and
the set of attributes A
Output: Bayesian network N/

1 Initialize N and V ;
2 Randomly select an attribute as A ,add A toV,add A ,
toN;

3 fori 2toddo

4 initialize ¥ ;

5 foreach A A V and each II ,add A 1T to¥;
// denotes the set of all subsets of V' with size of
min k, V

6 Select an AP pair A ,II from V¥ at a probability

proportional to exp — ; / /A denotes the
sensitivity of the mutual information function.
7 | AddA toVand A ,II toN;

s return N

privacy, and the exponential mechanism is invoked
times, so the construction of A/ is -differentially private
based on DP’s composability property (Lines ). We
adopt the calculation of the sensitivity =~ of the mutual
information in [9], which is shown as follows:

- — — if or isbinary,

otherwise.

)

4.3 Attribute Clustering

Given a Bayesian network, the Markov blanket of
an attribute variable can be intuitively represented as the
set of parent nodes and child nodes of as
well as the set of parent nodes of ’s child nodes, which can
be formalized as follows:

We propose a procedure of attribute clustering shown in
Algorithm 2. First, we initialize the set  to include all the
attributes of V. Then we randomly select an attribute , add

and into a cluster, and delete all these attributes
from . Repeat this procedure until is empty. Each cluster
is composed of a cluster head (an attribute variable ) and
its Markov blanket members. Thus, the attribute set can be
divided into a number of disjoint clusters, which can be
denoted as

Algorithm 2: Attribute Clustering
Input: Bayesian Network N

Output: Cluster CL ,CL ,CL
1 S=Set of all attributes of N;
2 i=0;
3 while § do
4 i=i+1;
5 Randomly select the attribute x in S and let

CL MB x T ;
6 S S (CL;

return CL ,CL

N}

,CL

The key to overcome the curse of dimensionality is
to decompose high-dimensional data into a set of low-
dimensional data based on the conditional independences
of the data. Bayesian network and Markov blanket are the
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most widely used graphical models for identifying a min-
imal set of attributes with strong correlations. Specifically,
for any attribute variable A; in the Bayesian network, its
Markov blanket is the set of attributes which are strongly
corelated to A;, while the attributes not in A;’s Markov
blanket are loosely correlated with A; or even condition-
ally independent of A;. Therefore, our clustering algorithm
yields attribute clusters with high intra-cluster correlation
(cohesion) and low inter-cluster coupling which can im-
prove the accuracy of the estimated joint distribution of the
data. Note that the input of Algorithm 2 is the differentially
private Bayesian network constructed from Algorithm 1,
which guarantees that the operation of attribute clustering
does not break differential privacy.

According to the attribute clustering process, a reason-
able allocation of the privacy budget for the next data ran-
domization phase is determined by the conditional indepen-
dence among the attributes in a cluster and the importance
of the cluster based on the probability distributions over the
dataset. Thus we define the importance factor (CIF) of each
cluster CL;,1 < i < £, in (2), which measures the importance
of each cluster. The higher the CIE, the more important the
cluster.

Y H(A))
AECL;
CIF(CL;)) = ———— )

Y H(Ap)
=1

Based on the CIF, one can allocate a privacy budget to
each cluster, following the principle stating that the smaller
the privacy budget, the higher the level of privacy preser-
vation. Therefore, we define the privacy budget coefficient
(PBCQ) for each cluster C'L; as follows:

1
CIF(CL;)

PBC(CL;) = &)

Vi 1
£, CIF(CLy)

Note that (3) conducts a normalization of PBC so that
it falls into the [0, 1] interval. As the privacy budget of the
data randomization is €5, which will be carried out on each

cluster at the server, the privacy budget allocated for cluster
CL,; is PBC(CL;) - €.

4.4 Invariant PRAM

The characteristic of an invariant PRAM lies in that the
transition probability matrix P satisfying P = 7. In this
section, we propose a detailed double-perturbation scheme
to achieve invariant PRAM and differential privacy, which is
suitable for categorical attributes. The main idea of our ap-
proach is to compute P via double-perturbation, as shown
in Figure 3. For an attribute variable X, let X; denote
the perturbed variable after the first perturbation, and X5
denote the one after the second perturbation. We first con-
struct a transition probability matrix @@ = (g;;) satisfying
differential privacy and conduct the first perturbation on
the attribute variable X according (). Then we compute the
estimate of 7 based on the perturbed data Xy, denoted as T,
construct the transition probability matrix () = (gi;) for the
second perturbation according to a specific rule to achieve
Q- Q-7 =, and finally carry out the second perturbation

6

on X based on Q to obtain X 5. More specifically, the rule of
constructing () is to set §;; = Pr(X = ¢;|X; = ¢;), where gj;
denotes the probability of X; being changed from category
¢; to ¢; in the second perturbation. In other words, ) can
be considered as the inverse of () while ensuring that Q
is also a transition probability matrix. Thus, the double-
perturbation is an invariant PRAM with P = Q - (), and
it satisfies differential privacy since the first perturbation
satisfies differential privacy and the second perturbation is
a randomized mapping of the first one.

i=0Qmn

Fig. 3. Process of Double Perturbation.

The attribute variables can be either two-valued or mul-
tivalued. For better elaboration, we detail the construction
of the transition probability matrix for a two-valued at-
tribute first and then extend the procedure to multivalued
attributes. Following that, we apply the construction to
compound variables and present the analysis on the privacy
guarantee.

4.4.1 Two-Valued Attributes

We start from the case of a categorical attribute variable X
with only two possible values of ¢; and cg. Let m; = Pr[X =
c1] and 3 = Pr[X = c3]; denoted by 7 = (ﬂ],ﬂg)T. The
data randomization process is conducted in a way that ¢;
or ¢z either remains unchanged with probability g, or is
changed to the other value with the probability of 1 - g; that
is g11 = q22 = g and g2 = @21 = 1 — q. Thus, the transition
probability matrix ¢} of the two-valued variable X isa2x 2
matrix, which can be shown as follows:

g g 1l-g
T [ =g ]
_ Let Ay = Pr[X; = 1] and Ay = Pr[X; = c3]; set
X = (A1, A2)T. Note that the transition probability matrix
satisfies X = Q7. .
In this setting, let ¢ = ;7. Then the local differential
privacy can be satisfied as:
PriX;=c|X=c) _ 4 Py
Pr(X;=c¢|X=c) 1—¢
As mentioned earlier, our mechanism achieves invariant
post randomization to preserve the statistical information
and data utility to the greatest possible extent, which first
adopts transition probability matrix () on the original at-
tribute variable X, estimates the probability distribution
of the variable X based on the perturbed data after the
first perturbation, and constructs the transition probability
matrix @ for the second perturbation according to the tran-
sition probability matrix () and the probability distribution
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of the perturbed data . The advantage of this double-
perturbation mechanism lies in that there is no need to know
the probability distribution of the original data in advance—
we actually do not know the probability distribution of

—the transition probability matrix of the original data is
thus constructed adaptively. After obtaining the perturbed
data with , we can obtain the estimate of the original
attribute variable distribution:

*)

Then we compute the transition probability of each variable
for the second perturbation as follows:

Accordingly, we obtain the transition probability matrix
for the second perturbation:

\ ]
Therefore, to obtain the invariant PRAMed data of
the attribute variable , we apply to the perturbed data
during the second perturbation. These two phases of

data perturbation with  and  successfully realize an
invariant PRAM with ,where can be considered
as the inverse of ~ while ensuring that is also a transition

probability matrix.

4.4.2 Multivalued Attributes

The perturbation of the multivalued attributes is similar
to that of the two-valued one. We consider a categorical
random variable with  possible values . Let

and . Given
that  belongs to category , it either remains unchanged
with probability , or is changed uniformly at random with
the probability of to one of the other categories.
That is, the transition probability matrix is a one, which
can be formalized as follows:

— I

\ — ]

To satisfy local differential privacy, we set
;then can be denoted as:

7

The PRAMed variable can be denoted as  after applying
to . Correspondingly, let ,
. In this setting, the local differential pri-

vacy condition can be satisfied as:

We can compute the estimated
variable as

of the original attribute

Then the elements of the transition probability matrix  for

the second perturbation can be computed as:

It can be observed that , which satisfies the

property of a transition probability matrix. We take

as an example:

in the second
of the

After applying  to the perturbed data
perturbation, we obtain the invariant PRAM result
attribute variable

4.4.3 Compound Variables

Since an attribute cluster may include more than one two-
valued or multivalued attribute variables which are strongly
correlated, one can treat all these variables as a compound
one. Thus an invariant PRAM for compound variables [29]
is needed, which first computes the transition probabil-
ity matrix for each attribute variable, then computes the
transition probability matrix for the compound one. For
example, for two categorical variables ~ with categories
and with categories, we may first compute the invariant
PRAM transition probability matrix of and , denoted as
and , respectively. Then the combination
can

of and

Similarly, when there exist three categorical variables
with respectively categories, we may first
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compute the invariant PRAM transition probability matrix

of , and , denoted as , and

. Then the combination of |, and can be
regarded as a compound variable with categories,
whose transition probability is the Kronecker product
of , and ,whichisa matrix.

As mentioned earlier, when applying the proposed in-
variant PRAM to each cluster, we need to allocate privacy
budget to cluster . If a cluster
includes more than one attribute variable, we first compute
the transition probability matrix for each attribute variable
with uniformly allocated privacy budget , then
compute the transition probability matrix for the compound
variable.

4.5 Privacy Analysis

As discussed in Section 4.2, Algorithm 1 satisfies -
differential privacy, i.e., the procedure of Bayesian network
construction satisfies differential privacy. The procedure of
attribute clustering just simply cluster the attributes based
on the constructed Bayesian network, which does not dis-
close more information. Therefore, one can say that the first
phase of DP2-Pub, i.e., Bayesian network construction and
attribute clustering, satisfies -differential privacy.

Now we analyze the second phase, i.e., the phase of data
randomization. According to [28], differential privacy is re-
sistant to any randomized mapping of differentially private
results. More specifically, with randomized mapping, a data
analyst cannot make the output of a differentially private
algorithm less differentially private without any addi-
tional knowledge about the private dataset [28]. That is, if an
algorithm is differentially private, simply conducting ran-
domized mapping on the output of the algorithm without
any additional knowledge does not leak any extra private
information, which has been proved by the following Post-
Processing Proposition [28]:

Proposition 1. (Post-Processing [28]) Let - bea
randomized algorithm that is -differentially private. Let -
be an arbitrary randomized mapping. Then -

is -differentially private.
Theorem 1. The double-perturbation of Invariant PRAM satis-
fies  -differential privacy.

Proof. The first perturbation of each attribute variable is a
post randomization satisfying local differential privacy for
both two-valued and multivalued variables:

of which and  are determined by the privacy budget
allocated for each attribute variable in a cluster. According
to Proposition 1, the second random perturbation of our
invariant PRAM mechanism can be considered as a random-
ized mapping of the differentially private algorithm output,
that is, a randomized mapping based post-processing of
differential privacy.

Since each cluster is
private, the

-differentially
clusters can be regarded as a -dimensional

8

dataset achieving -differential privacy according to the
sequential composition theorem [30]. O

Accordingly, one can obtain the following theorem.

Theorem 2. The DP2-Pub satisfies -differential privacy
according to sequential composition theorem [30].

5 DP2-PuB WITH A SEMI-HONEST SERVER

The emergence of Internet of Things (IoT) has changed
people’s daily life and the way the world learns, where
mobile devices, home appliances, transportation facilities
and crowd sensors can all be used as data acquisition
equipment in IoT. It provides a platform for the seamless
communication between smart devices and sensors in a
smart environment and allows information sharing across
platforms. IoT devices and the generated data can reveal
personal information of the users including their behaviors
and preferences [31]. Despite the benefits of the IoT, it
raises privacy concerns of the sheer amount of data. Most
of existing privacy-preserving data publishing mechanisms
focus on the processing of the collected data with a trustful
central server. However, what is stored in the server is
unprotected while the central server is vulnerable to internal
attacks or single-point attacks; even the server itself may not
be trustworthy — it is generally semi-honest, i.e., honest-but-
curious, which faithfully follows the protocol but tries its
best to infer as much knowledge as possible. Moreover, the
data or updates (under federated learning framework) held
by the resource-constrained devices can be easily observed
or analyzed, which may pose a threat to the privacy pro-
tection of participating devices and ultimately discourages
participation in the distributed model.

Therefore, in this section, we extend our DP2-Pub mech-
anism to consider a semi-honest server. A number of
users generate multi-dimensional data records, then send
them to a server who intends to release an approximate
dataset to third-parties for various applications. Formally,
each user contributes a data record constituting a dataset

, where denotes the data record of

user and is the total number of records/users.

Figure 4 illustrates the main procedure of DP2-Pub
with a semi-honest server, which includes three main steps:
privacy preservation of local data satisfying local differen-
tial privacy, Markov-blanket-based cluster learning based
on Bayesian network, and the PRAM perturbation on the
private data. Both the attribute clustering and PRAM per-
turbation are conducted at the data server, while the local
differential privacy protection is performed by each user.
Although the data server is semi-honest, it can only access
the private data processed by each user.

We first propose a local randomization using RR on each
user’s data making it satisfy LDP, then the sanitized data
is sent to and aggregated at the central server. Each user
hasa -dimensional data record ,and the
perturbation process is conducted on each dimension with
the privacy budget
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Fig. 4. Overview of DP2-Pub with a Semi-honest Server.

If .’ is the value of a two-valued attribute, it is randomly
ﬂ_lpped] according to the following rule in RR:

e | with probability of g = +
with probability of

i
1—u,
31 1+e

If o j is the value of a multivalued attribute with s
possible values ¢, ¢g, +++¢,, it is randomly flipped according
to the following rule in RR:

i

i Wjs
u; = i
cr # Uy,

of whichk=1,2,+--.s

After receiving the noisy data from each user, the server
computes the marginal probability distribution ), estimates
the original distribution 7, and then calculates Q for each
attribute variable according to the methods presented in
Sections 4.4.1 and 4.4.2. Then it constructs a Bayesian net-
work and conducts attribute clustering on the aggregated
data to learn the correlations between different attribute
variables. The processes of Bayesian network construction
and attribute clustering are similar to those in Sections 4.2
and 4.3 except for a few minor changes: replace Line 6 of
Algorithm 1 with a procedure that selects (A;,II;) with the
largest I(A,1II), since the process of the Bayesian network
construction does not need to satisfy differential privacy, as
the aggregated data at the server is already differentially
private (guaranteed by local differential privacy). To further
improve accuracy, Line 5 of Algorithm 2 can be replaced by
“Select the attribute = with the maximal entropy in §”.

Next the server calculates Q for each attribute variable
based on 7 and Q. Then the server conducts the randomized
perturbation by applying @ on the aggregated data to
achieve invariant PRAM. According to the attribute clus-
tering, each cluster may include more than one attribute
variable which are strongly correlated. Thus we compute
the transition probability matrix of the compound variable
following the procedure presented in Section 4.4.3.

with probability of g, = are .

5— 1+e‘-

with probability of

1+e‘-

Theorem 3. The DP2-Pub with a semi-honest server satisfies
e-local differential privacy.

Proof. Each user perturbs its data record individually with
the help of random response to get the privatized data,

9

which provides local differential privacy. The operations of
the server are all conducted on the privacy-preserved data,
and the PRAM perturbation can be considered as a ran-
domized mapping (post processing) without breaking dif-
ferential privacy. Therefore, the DP2-Pub mechanism with
a semi-honest server is differentially private with privacy
budget ¢. -

6 EXPERIMENTAL EVALUATIONS

In this section, we conduct extensive experiments to demon-
strate the performance of our DP2-Pub mechanism and
compare it with two benchmark approaches, PrivBayes [9]
and DPPro [12], on four real-world datasets of NLTCS [32],
ACS [33], BR2000 [33] and Adult [34]. The data utility
is evaluated and analyzed from two aspects, namely the
total variation distance between the original dataset and
the perturbed dataset, and the classification error rate of the
SVM classification on the perturbed datasets.

6.1 Experimental Settings
6.1.1 Datasets

We make use of four real-world datasets in our experiments:
NLTCS [32] consists of records of 21574 individuals partic-
ipated in the National Long Term Care Survey, and each
record has 16 attributes; ACS [33] includes 47461 records of
personal information from the 2013 and 2014 ACS sample
sets in IPUMS-USA, where each record has 23 attributes;
BR2000 [33] consists of 38000 census records with 14 at-
tributes collected from Brazil in the year 2000; and Adult
[34] contains personal information such as gender, salary,
and education level of 45222 records extracted from the 1994
US Census, where each record has 15 attributes. The first
two datasets only contain binary attribute values while the
last two possess continuous as well as categorical attributes
with multiple values. We summarize the statistics of these
datasets in Table 2.

TABLE 2
Data Statistics
Dataset | Cardinality | Dimensionality | Domain size
NLTCS 21574 16 =~ 918
ACS 47461 23 =25
BR2000 38000 14 =27
Adult 45222 15 = 2°%

6.1.2 Evaluation Metrics

We consider two tasks to evaluate the performance of
DP2-Pub. The first task is to study the accuracy of a-way
marginals of the ?ert‘urbed datasets. We evaluate the a-way
marginals of the datasets by adoptm the total variation
distance [23] between the noisy margin distribution and
that of the original datasets, which is shown in Eq. (5).

Pzl = %

AVD(X,Z) = 5|Px - Y IPx(w) - Pz(w)] (5)

weR
where (1 is the domain of the probability variable X and Z;
Py and Py are the probability distributions of the original
attribute variable X and the perturbed one Z, respectively.
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Then we compute the average results of the total vari-
ation distance over all -way marginals as the final result
— a lower distance implies a better utility. More specifi-
cally, in our experiments, we evaluate the -way and -
way marginals on binary datasets NLTCS and ACS, and

-way and -way marginals on BR2000 and Adult, since
the domain size of BR2000 and Adult are prohibitively large
leading to very complex joint distributions.

The second task is to evaluate the classification results
of SVM classifiers. The purpose of data publication is to
conduct data analysis and data mining. We adopt SVM
to evaluate the data utility from the perspective of data
applications, as SVM is the most popular classification ap-
proach among various data mining techniques with pow-
erful discriminative features both in linear and non-linear
classifications [35]. Specifically, we train two classifiers on
ACS to predict whether an individual: (1) goes to school,
(2) lives in a multi-generation family; four classifiers are
constructed on NLTCS to predict whether an individual: (1)
is unable to go outside, (2) is unable to manage money, (3)
is unable to bathe, and (4) is unable to travel; two classifiers
are trained on BR2000 to predict whether an individual (1)
owns a private dwelling, (2) is a Catholic; and two classifiers
are trained on Adult to predict whether an individual (1) is
a female, (2) makes over K a year. For each classifier, we
use of the tuples of the dataset for training and the
other as the testing set. The prediction accuracy of each
SVM classifier is measured by the misclassification rate on the
testing set.

6.1.3 Comparison Approaches

For the two evaluation metrics mentioned above, we com-
pare our mechanism DP2-Pub with two existing approaches:
(1) PrivBayes [9], which first constructs a Bayesian network
to model the correlations among the attributes in a dataset,
then injects noise into each marginal distribution in the
Bayesian network to realize differential privacy, and finally
constructs an approximation to the data distribution of the
original dataset using the Bayesian network and the noisy
marginal distributions; (2) JTree [10], which first develops a
robust sampling-based framework to systematically explore
the dependencies among all attributes based on the junction
tree algorithm and subsequently build a dependency graph;
(3) DPPro [12], which projects a -dimensional vector repre-
sentation of a user’s attributes into a lower -dimensional
space by a random projection, and then adds noise to
each resultant vector. Note that we choose PrivBayes, JTree
and DPPro for our comparison study because the first two
are benchmark solutions in a way of decomposing high-
dimensional data into a set of low-dimensional marginal
distributions while the latter is an effective approach of
random projection.

6.1.4 Parameter Settings

In our experiments, we use DP-Pub to denote the case
with a trusted server and DP-Pub the one with a semi-
honest server. The privacy budget of DP-Pub is evenly
distributed to the two phases, i.e., - . For DP-
Pub , there is no need to partition the privacy budget since
the data is first locally differentially privatized, i.e., the
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privacy budget is completely allocated to the local privacy
procedure. For the parameter used in the construction of
the Bayesian network, we test . Since the time
cost for larger  values is typically higher, we do not try the
cases of . Based on our experiments, we observe that
the influence of on the experimental results is not obvious.
The reason possibly lies in that the structure of the Markov
blanket can help to accurately learn the data correlations
between different attributes. In the following section, we
present the experimental results of

6.2 Experimental Results

In this subsection, we carry out  independent runs for
each of the experiments mentioned above and report the
averaged results for statistical confidence.

6.2.1 Results on Average Variation Distance

For the task of examining the accuracy of -way marginals,
we compute all the -dimensional attribute unions and
compare the averaged variation distance of PrivBayes, JTree,
DPPro, DP-Pub and DP-Pub , with a varying privacy bud-
get from to .

Figure 5 shows the average results of the variation dis-
tance of each approach on the four datasets. From Figure
5, one can see that the average variation distances of these
three approaches decrease when increases over the four
datasets. It is obvious that when is larger, smaller noise
is required, and the data utility is higher. One can also
observe that our approach clearly outperforms PrivBayes
and DPPro in all cases for ACS and NLTCS, while for
BR2000 and Adult, the relative superiority is more pro-
nounced when is small. There are several reasons that
DP2-Pub outperforms PrivBayes, JTree and DPPro. First,
PrivBayes constructs a Bayesian network while JTree adopts
a junction tree algorithm to model the data correlation, and
both of them generate a set of noisy conditional distributions
of original datasets. That is, for each attribute-parent pair,
both PrivBayes and ]JTree generate differentially private
conditional distributions by adding Laplace noise which
makes the data utility of the dataset drastically decrease.
In our approach, we only utilize the Bayesian network
to learn the correlations between different attributes and
adopt our proposed invariant post randomization to achieve
data perturbation, which ensures that there is almost no
loss of statistical information. The probability distribution
of each attribute variation is basically unchanged after the
double-perturbation. Second, the random projection method
DPPro does not consider the data characteristics and only
preserves the pairwise distance when generating the
random projection matrix, thus it may lead to relatively low
utility especially when there exist data correlations between
different attributes. In our approach DP2-Pub, we learn
the data correlations of the original dataset and consider
the importance of different attributes when allocating the
privacy budget.

DP-Pub performs better than DP-Pub according to
the results shown in Figure 5. This is counter-intuitive as
centralized differential privacy usually performs better than
local differential privacy because centralized differential
privacy adds noise based on the sensitivity of a particular
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Fig. 5. Results of a-way marginals with different e.

query function while in local differential privacy noise is
added via post randomization. But in DP-Pub , noise is
added for differentially private Bayesian network construc-
tion and for post randomization, with none of them consid-
ering the sensitivity of a particular query function, which is
more general at the cost of lower utility. Moreover, at the
same budget level, adding noise at two phases increases
the total amount of noise as the added noise amount is not
linearly proportional to the privacy budget - it is super-
linear, which also contributes to the lower utility of DP-
Pub .

6.2.2 Results on SVM classification

For the second task, we evaluate the performance of
PrivBayes, JTree, DPPro, DP2-Pub DP-Pub , and Non-
Private (no DP is considered) for SVM classification. Figure
6 shows the misclassification rate of each approach under
different privacy budgets. One can see that the error of
Non-Private remains unchanged for all since it does not
consider differential privacy. One can also see that both
DP-Pub and DP-Pub outperform PrivBayes, JTree and
DPPro on almost all datasets. The reason for the higher
classification accuracy of our approach lies in that it can
achieve higher data utility with a better retention of corre-
lations among attribute variables and a higher accuracy of
joint distributions. More specifically, both DP-Pub and DP-
Pub retain the data characteristics while satisfying privacy
guarantee, thus can help to obtain good results of SVM
classifications. Moreover, the misclassification rate decreases
faster when increases from to , and the decrease of
the misclassification rate is not obvious when is larger than
. This indicates that a higher privacy level with a small
leads to a lower data utility.

7 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we propose a differentially private data
publication mechanism DP2-Pub consisting of two phases,
attribute clustering and data randomization. Specifically,

02 04 06 08 L0 12 14 L6 02 04 06 08 L0 12 14 16

privacy budget ¢ privacy budget ¢

(g) Adult, 2-way marginals (h) Adult, 3-way marginals

in the first phase, we present the procedure of attribute
clustering using the Markov blanket model based on the
differentially private Bayesian network to achieve attribute
clustering and obtain a reasonable allocation of privacy
budget. In the second phase, we design a detailed invari-
ant post randomization method by conducting a double-
perturbation while satisfying local differential privacy. Our
privacy analysis shows that DP2-Pub satisfies differential
privacy. We also extend our mechanism making it suit-
able for the scenario with a semi-honest server in a local-
differential privacy manner. Comprehensive experiments
on four real-world datasets demonstrate that DP2-Pub out-
performs existing methods and improves data utility with
strong privacy guarantee.

In our future research, we intend to combine other effec-
tive dimensionality reduction techniques [36, 37] with differ-
ential privacy to investigate their impact on the data utility
of published data. Particularly, we intend to combine DP
with manifold learning [36], which is a popular approach
for non-linear dimensionality reduction that maps a high
dimensional data space into a low-dimensional manifold
representation of the data while preserving a certain form
of geometric relationships between the data points.
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