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Abstract—A large amount of high-dimensional and heterogeneous data appear in practical applications, which are often published to

third parties for data analysis, recommendations, targeted advertising, and reliable predictions. However, publishing these data may

disclose personal sensitive information, resulting in an increasing concern on privacy violations. Privacy-preserving data publishing has

received considerable attention in recent years. Unfortunately, the differentially private publication of high dimensional data remains a

challenging problem. In this paper, we propose a differentially private high-dimensional data publication mechanism (DP2-Pub) that

runs in two phases: a Markov-blanket-based attribute clustering phase and an invariant post randomization (PRAM) phase.

Speci cally, splitting attributes into several low-dimensional clusters with high intra-cluster cohesion and low inter-cluster coupling helps

obtain a reasonable allocation of privacy budget, while a double-perturbation mechanism satisfying local differential privacy facilitates

an invariant PRAM to ensure no loss of statistical information and thus signi cantly preserves data utility. We also extend our DP2-Pub

mechanism to the scenario with a semi-honest server which satis es local differential privacy. We conduct extensive experiments on

four real-world datasets and the experimental results demonstrate that our mechanism can signi cantly improve the data utility of the

published data while satisfying differential privacy.

Index Terms—High-dimensional data, differential privacy, Bayesian network, Markov-blanket, invariant PRAM.
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1 INTRODUCTION

1 THE rapid development of information technology has2

opened up the era of big data. Collecting and publish-3

ing an unprecedented amount of data, as well as mining4

data correlations and generating insights have become an5

important component of social statistical research [1]. A6

large amount of high-dimensional and heterogeneous data7

appear in various applications, which are often published to8

third parties for data analysis, recommendations, targeted9

advertisements, and reliable predictions. Examples include10

healthcare data, social networking data, Internet of Things11

data (i.e., IoT device monitoring data, location data, trajec-12

tory data),  nancial market data (i.e., electronics commercial13

data, credit card data), which can be used to dig out valuable14

information hidden behind the massive data for modern15

life. However, publishing these data may disclose personal16
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sensitive information, resulting in an increasing concern 17

of privacy violations. Privacy-preserving data publishing 18

(PPDP) has gained signi cant attentions in recent years 19

as a promising approach for information sharing while 20

preserving data privacy [2]. 21

Generally speaking, commonly used approaches for 22

PPDP can be characterized into three categories: encryp- 23

tion technology [3], k-anonymity [4] and its derivative ap- 24

proaches (l-diversity [5], t-closeness [6]), and differential 25

privacy [7]. Differential privacy has gradually become the 26

de facto standard privacy de nition and provides a strong 27

privacy guarantee. It rests on a sound mathematical foun- 28

dation with a formal de nition and rigorous proof while 29

making the assumption that an attacker has the maximum 30

background knowledge. 31

However, the differentially private publication of high 32

dimensional data remains a challenging problem – it suffers 33

from the “Curse of High-Dimensionality” [8], that is, when 34

the dimensionality increases, the complexity and cost of 35

multi-dimensional data processing and analysis increases 36

exponentially. Speci cally, this curse is manifested in two as- 37

pects:  rst, since the high-dimensional data space is usually 38

sparse, high dimensions and large attribute domains lead to 39

a low “Signal-to-Noise Ratio” and low data utility; second, 40

complex correlations exist between high-dimensional data, 41

therefore the change of a single record may have a great 42

impact on query results, leading to increased sensitivity. 43

To address these challenges, an effective way is to 44

decompose high-dimensional data into a set of low- 45

dimensional marginal tables along with inferring the joint 46

distributions of the data, thus generating a synthetic dataset. 47
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A representative solution is PrivBayes [9], which constructs48

a Bayesian network to model the data correlations and49

conditional probability distributions, allowing one to ap-50

proximate the distributions of the original data using a set of51

low-dimensional marginal distributions. However, such an52

approach suffers from poor data utility and high communi-53

cation cost, since too much noise is added when there are54

too many attribute pairs resulting in unreliable conditional55

probabilities. Moreover, most approaches generally ignore56

the different roles a dimension may play for a speci c query57

– one dimension may be more important than another for58

a particular query. Additionally, one dimension may release59

more information than another if the same amount of noise60

is added; thus evenly allocating the total privacy budget to61

each dimension degrades the performance.62

In this paper, we provide a two-phase mechanism (DP2-63

Pub) consisting of a Markov-blanket-based learning process64

and an invariant post randomization (PRAM) process satis-65

fying local differential privacy to overcome the above dif -66

culties. Our contributions can be summarized as follows:67

To capture the dependencies between the attributes68

in the dataset, we resort to differentially private69

Bayesian network construction, employing the ex-70

ponential mechanism to attribute pairs using the71

mutual information as the score function.72

We propose the procedure of attribute clustering73

with a Markov blanket learning algorithm based on74

the constructed Bayesian network. Our most funda-75

mental purpose is to split attributes into several low-76

dimensional clusters with high intra-cluster cohesion77

and low inter-cluster coupling, thus obtaining a rea-78

sonable allocation of privacy budget determined by79

the conditional independence among attributes and80

the importance of each cluster.81

Invariant PRAM is an important perturbation tech-82

nique for privacy protection, which transforms each83

record stochastically in a dataset using delicately84

pre-selected probabilities. It ensures no loss of sta-85

tistical information, thus can signi cantly preserve86

data utility. Motivated by this, we provide a double-87

perturbation mechanism to achieve invariant PRAM88

and differential privacy for two-valued and multival-89

ued attributes, then apply it to each attribute cluster.90

Resorting to the randomized mapping based post-91

processing property for differential privacy, we prove92

that the proposed double-perturbation mechanism93

satis es differential privacy.94

To tackle the data privacy preservation problem for95

the scenario where each individual contributes a96

single data record to a semi-honest server, we ex-97

tend our DP2-Pub mechanism to handle the high-98

dimensional data publication in a local-differential-99

privacy manner, in which each user locally perturbs100

its data satisfying local differential privacy, then the101

server conducts all the operations including attribute102

clustering and post randomization over the priva-103

tized data.104

We evaluate the performance of data utility on four105

real-world datasets from two aspects, the total vari-106

ation distance between the original dataset and the107

perturbed dataset and the classi cation error rate of 108

SVM classi cation on the perturbed dataset. Experi- 109

mental results indicate that our approach can obtain 110

higher data utility of the published data compared 111

with the state-of-the-art. 112

The rest of this paper is organized as follows. We provide 113

a literature review in Section 2. Section 3 formulates our 114

problem and presents necessary background knowledge on 115

Bayesian network, differential privacy, random response 116

and post randomization. In Section 4, we propose our DP2- 117

Pub mechanism by detailing the constructions of differen- 118

tially private Bayesian network, attribute clustering, and 119

invariant PRAM. Comprehensive experimental studies on 120

four real-world datasets are presented in Section 6. Section 121

7 concludes the paper with a future research discussion. 122

2 RELATED WORK 123

Various differentially private mechanisms for high- 124

dimensional data publications have been proposed in recent 125

years. In this section, we briefly review the most relevant 126

works from two perspectives: under centralized setting or 127

distributed setting, and discuss how our work differs from 128

the existing ones. 129

2.1 Private Mechanisms Under Centralized setting 130

A powerful approach of dimensionality reduction is the 131

Bayesian network model proposed in [9], in which Zhang 132

et al. developed a differentially private scheme PrivBayes 133

for publishing high-dimensional data. PrivBayes  rst con- 134

structs a Bayesian network to approximate the distribution 135

of the original dataset, then adds noise into each marginal 136

of the Bayesian network to guarantee differential privacy, 137

next constructs an approximate distribution of the original 138

dataset, and  nally samples the tuples from the approximate 139

distribution to construct a synthetic dataset. 140

Researchers also have developed sampling techniques to 141

support differentially private high-dimensional data publi- 142

cations. In [10], Chen et al. provided a solution to protect the 143

joint distribution of the dimensions in a high-dimensional 144

dataset compared with PrivBayes. They  rst established a 145

robust sampling-based approach to investigate the depen- 146

dencies over all attributes for constructing a dependence 147

graph, then applied a junction tree algorithm to provide an 148

inference mechanism for deriving the joint data distribution. 149

Both [9] and [10] constructed a dependency graph and 150

generated a differentially private marginal table to enforce 151

consistency constraints over all marginals, during which 152

they evenly split the privacy budget into portions, each 153

being used for a pair of attributes. 154

In [11], Li et al. proposed a differentially private data 155

synthetization technique called DPCopula using Copula 156

functions to handle multi-dimensional data. In [12], Xu et 157

al. developed a high-dimensional data publishing algorithm 158

under differential privacy to optimize the utility by  rst 159

projecting a d-dimensional vector of user’s attributes into a 160

lower k-dimensional space using a random projection, then 161

adding Gaussian noise to each resultant vector to obtain a 162

synthetic dataset. The authors represent each user’s feature 163

attributes as a d-dimensional vector and ignore the different 164
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roles a dimension may play for a speci c query and the165

correlation between different attributes.166

2.2 Private Mechanisms Under Distributed setting167

The approaches mentioned above mainly consider central-168

ized scenarios. Some efforts have also been devoted to dif-169

ferentially private high-dimensional data publications un-170

der distributed setting. Based on PrivBayes, Cheng et al. [13]171

considered a multi-party setting from multiple data owners172

and proposed a differentially private sequential update of173

the Bayesian network (DP-SUBN) approach, allowing the174

parties to collaboratively identify the Bayesian network that175

best approximates the joint distribution of the integrated176

dataset. Wang et al. [14] introduced a framework with a177

simple and generic aggregation and decoding technique.178

This framework can analyze, generalize and optimize sev-179

eral local differential privacy protocols [15–17] for frequency180

estimation. In [8], Ren et al. proposed a solution LoPub to181

realize high-dimensional data publication with local differ-182

ential privacy in crowdsourced data publication systems.183

LoPub can  rst learn from the distributed data records184

to build correlations and joint distributions of attributes,185

then synthesize an approximate dataset achieving a good186

compromise between local differential privacy and data187

utility. In [18], Ju et al. also considered the high-dimensional188

data publication problem under local differential privacy189

in the crowdsourced-sensing system. They proposed an ag-190

gregation and publication mechanism which provides local191

privacy guarantees for crowd-sensing users, approximates192

the statistical characteristics of high-dimensional percep-193

tion data and publishes synthetic data. Wang et al. [19]194

proposed two mechanisms for collecting and analyzing195

users’ private data under local differential privacy, which196

can collect multidimensional data with both numerical and197

categorical attributes. In [20], Domingo-Ferrer developed198

several random-response-based complementary approaches199

for multi-dimensional data preservation. In [21], Takagi et200

al. presented a privacy-preserving phased generative model201

(P3GM) for high-dimensional data, which employs a two-202

phase learning process for training the model to increase203

the robustness to the differential privacy constraint.204

In light of the above analysis, the following aspects205

distinguish our work from the existing approaches. First,206

since the sensitivity of distinct dimensions are different and207

evenly allocating the total privacy budget to each dimension208

cannot obtain good performance, we consider the privacy209

budget allocation problem to realize attribute clustering210

with a reasonable allocation of privacy budget. Second,211

we design a double-perturbation mechanism to achieve212

invariant PRAM instead of generating noisy conditional213

distributions of the Bayesian network, then apply it to each214

attribute cluster, which can signi cantly improve the data215

utility while satisfying local differential privacy.216

3 PROBLEM FORMULATION AND PRELIMINARIES217

3.1 Problem Formulation218

In this paper, we consider the following problem: a data219

server collects data containing a vast amount of individual220

information and aims to release an approximate dataset to221

third parties for their uses such as data analysis and rec- 222

ommendations. Let D be the dataset, n be the total number 223

of records, and A � A 1;A 2;� A d be the set of d unique 224

attributes. Assume that all attribute values are categorical as 225

one can always discretize all numerical data. The domain of 226

an attribute A i is denoted by 
 i, whose size is 
 i . 227

3.2 Bayesian Network 228

A Bayesian network is a type of probabilistic graphical 229

model that approximately describes the joint distribution 230

over a set of variables by specifying their conditional inde- 231

pendence [22]. More speci cally, a Bayesian network is a di- 232

rected acyclic graph (DAG) whose nodes represent attribute 233

variables and edges model the direct dependence among 234

attributes. Formally speaking, a Bayesian network N over 235

A (the set of attributes in D ) is de ned as a set of d attribute- 236

parent (AP) pairs, �A 1;� 1�;� ;�A d;� d�, where each AP 237

contains a unique attribute and all its parent nodes in N . 238

If the maximum size of any parent set in N is k, we de ne 239

N to be a k-degree Bayesian network. Let P r�A�denote the 240

joint distribution over all attributes in D . A Bayesian net- 241

work N de nes a way to approximate P r�A�with d condi- 242

tional distributions P r�A 1 � 1�;P r�A 2 � 2�;� ;P r�A d � d�, 243

that is, P rN �A� � 4
d
i� 1 P r�A i � i�. IfN accurately captures 244

the dependencies between the attributes in A, P rN �A� can 245

be a good approximation to P r�A�. Moreover, the compu- 246

tation of P rN �A� can be ef cient and simple if the degree 247

of N is small. Figure 1 illustrates the Bayesian network 248

over a set of  ve attributes, namely, age, gender, exposure to 249

toxins, smoking, and cancer. Table 1 shows the AP pairs in the 250

sample Bayesian network. 251

Gender

Age

Smoking

Exposure   

to toxins

Cancer

Fig. 1. A Bayesian network over  ve attributes.

TABLE 1
The attribute-parent pairs in the Bayesian network shown in Fig. 1

Attribute Ai Πi

Age
Gender

Exposure to toxins {Age}
Smoking {Age, Gender}
Cancer {Exposure to toxins, Smoking}

Given a dataset D , our goal is to construct a k-degree 252

Bayesian network N which provides an accurate approxi- 253

mation to the full distribution of D . That is, P rN �A� should 254

be close to P r�A�. As K L -divergence [23] is commonly 255

used as a measure of the similarity between a probability 256

distribution and a candidate (estimated) distribution, in this 257

paper, we adopt the K L -divergence of P rN �A� and P r�A� 258

to measure the difference between these two probability 259

distributions: 260

K L �P r�A�;P rN �A�� �
d

=
i� 1

H �A i� �
d

=
i� 1

I�A i;� i� � H �A�
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where H �A i� denotes the entropy of the random variable261

A i,262

H �A i� � � =
�x 
 i�

P r�A i � x�log P r�A i � x�

and I��;��denotes the mutual information between the two263

variables:264

I�A i;� i�

� =
x 
 i

=
y dom �� i�

P r�A i � x;� i � y�log
P r�A i � x;� i � y�

P r�A i � x�P r�� i � y�

Here, P r�A i;� i� is the joint distribution of A i and � i,265

P r�A i� and P r�� i� are the marginal distributions of A i266

and � i, respectively, and H �A� is the joint entropy of all267

attribute variables in A, which is de ned as:268

H �A� � H �A 1;A 2;� ;A d�

� � <
�x 1 
 1 �

� <
�x d 
 d �

P r�A 1 � x1;� ;A d � xd�log P r�A 1 � x1;� ;A d � xd�

Therefore, learning a Bayesian network is to  nd N from D269

with the minimum K L �P r�A�;P rN �A��. The construction270

of N can be modeled as choosing a parent set � i for each271

attribute A i to maximize <
d
i� 1 I�A i;� i� since <

d
i� 1 H �A i��272

H �A� is  xed once the dataset D is given.273

3.3 Differential Privacy274

Differential privacy (DP) has become the de facto standard of275

privacy preservation, which ensures that query results of276

a dataset are insensitive to the change of a single record.277

Differential privacy is de ned based on the neighboring278

datasets D and D , where D differs from D by only one279

record:280

De nition 1 (Differential privacy [24]). A randomized algo-281

rithm M is �-differentially private if for any pair of neighboring282

datasets D and D , and for all sets S of possible outputs, we have283

P r�M �D � S � e
�
P r�M �D � S �;

where � is often a small positive real number.284

The smaller the �, the higher the level of privacy preser-285

vation. A smaller � provides greater privacy preservation286

at the cost of lower data accuracy with more added noise.287

Differential privacy can be achieved by two best known288

mechanisms, namely the Laplace mechanism [24] and the289

exponential mechanism [25]. We provide the formal de nition290

of the exponential mechanism as follows:291

De nition 2 (Exponential Mechanism [25]). Given a random292

algorithm M with the input dataset D and the output entity ob-293

ject o R , where R is the output range. Let q�D ;o� be the utility294

function and � q be the global sensitivity of function q�D ;o�.295

If algorithm M selects and outputs o from R at a probability296

proportional to exp��q�D ;o�

2� q
�, then M is �-differentially private.297

DP techniques implicitly assume a trusted third party298

to collect data and thus can hardly be applied to the case299

where a server is not reliable. Therefore local differential pri-300

vacy (LDP) emerges, in which each user independently and301

locally conducts data perturbation. The formal de nition of302

LDP can be shown as follows:303

De nition 3 (Local Differential Privacy [26]). Consider n
records. A privacy algorithm M with domain D om �M � and

range R an�M � satis es the �-local differential privacy if M
obtains the same output result t �t R an�M �� on any two
records t and t �t;t D om �M �� with

P r�M �t� � t � e
�
� P r�M �t� � t �

Local differential privacy ensures the similarity between 304

the output results of any two records. Random response 305

(RR) [27] is currently the most widely used technique for 306

achieving local differential privacy. 307

3.4 Random Response and Post Randomization 308

Random response (RR) is a technique developed in social 309

science to collect statistical data about individuals’ sensitive 310

information. Its main idea is to provide data privacy pro- 311

tection by making use of the uncertainty of responses to 312

sensitive questions. Privacy comes from the randomness of 313

the answers while accuracy comes from the noise generation 314

procedure [28]. 315

Post randomization (PRAM) is another important per- 316

turbation technique for privacy protection, which stochasti- 317

cally transforms each record in a dataset using pre-selected 318

probabilities. For a random variable X with s categories 319

c1;c2;� ;cs , let �i � P r�X � ci�;i � 1;� ;s, and �� � 320

��1;� ;�s�
T
. The basic idea of PRAM is to select a transition 321

probability matrix P � �pij� with < j pij � 1 for i � 322

1;2;� ;s. Then the original category ci is changed to cj with 323

probability pij . Let Z denote the transformed variable. We 324

have pij � P r�Z � cj X � ci�, �i � P r�Z � ci�;i� 1;� ;s, 325

and �� � ��1;� ;�s�
T
. 326

Mathematically, PRAM is equivalent to RR. Therefore 327

many mathematical results developed for RR such as the 328

local differential privacy guarantee can be applied to PRAM 329

[29]. In this paper, we employ PRAM for the case when a 330

trusted data server is available (Section 4), where all the 331

data can be processed at the server to maintain differential 332

privacy, and RR for the case when the server is semi- 333

honest, in which case local differential privacy is adopted 334

for collecting data from each user to the server (Section 5). 335

4 DP2 PUB WITH A TRUSTED SERVER 336

In this section, we propose a novel differentially private 337

high-dimensional data publication mechanism based on a 338

double-perturbation process, namely DP2-Pub, assuming 339

the availability of a trusted server that can access the orig- 340

inal data. We  rst present an overview on DP2-Pub, then 341

detail its modules in the following subsections. 342

4.1 Overview 343

Figure 2 illustrates the main procedure of DP2-Pub, which 344

runs in two phases of attribute clustering and data random- 345

ization, with both being performed by the trusted server. 346

Since both phases require access to the original dataset, we 347

divide the total privacy budget � into two portions with �1 348

being used for the  rst phase and �2 for the second phase, 349

and demonstrate that the two phases are both differentially 350

private. 351

1. Bayesian Network and Attribute Clustering. To learn 352

the correlations between different attribute variables, we 353

adopt the approach of constructing a differentially private 354

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265605

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 14,2023 at 18:42:56 UTC from IEEE Xplore.  Restrictions apply. 





J O U R N A L O F , V O L. , N O. , 2 0 2 2 6

m o st wi d el y u s e d g r a p hi c al m o d el s f o r i d e ntif yi n g a mi n-4 2 2

i m al s et of att ri b ut e s wit h st r o n g c o r r el ati o n s. S p e ci fi c all y,4 2 3

f o r a n y att ri b ut e v a ri a bl e A i i n t h e B a y e si a n n et w o r k, it s4 2 4

M a r k o v bl a n k et i s t h e s et of att ri b ut e s w hi c h a r e st r o n gl y4 2 5

c o r el at e d t o A i , w hil e t h e att ri b ut e s n ot i n A i ’ s M a r k o v4 2 6

bl a n k et a r e l o o s el y c o r r el at e d wit h A i o r e v e n c o n diti o n-4 2 7

all y i n d e p e n d e nt of A i . T h e r ef o r e, o u r cl u st e ri n g al g o rit h m4 2 8

yi el d s att ri b ut e cl u st e r s wit h hi g h i nt r a- cl u st e r c o r r el ati o n4 2 9

( c o h e si o n) a n d l o w i nt e r- cl u st e r c o u pli n g w hi c h c a n i m-4 3 0

p r o v e t h e a c c u r a c y of t h e e sti m at e d j oi nt di st ri b uti o n of t h e4 3 1

d at a. N ot e t h at t h e i n p ut of Al g o rit h m 2 i s t h e diff e r e nti all y4 3 2

p ri v at e B a y e si a n n et w o r k c o n st r u ct e d f r o m Al g o rit h m 1,4 3 3

w hi c h g u a r a nt e e s t h at t h e o p e r ati o n of att ri b ut e cl u st e ri n g4 3 4

d o e s n ot b r e a k diff e r e nti al p ri v a c y.4 3 5

A c c o r di n g t o t h e att ri b ut e cl u st e ri n g p r o c e s s, a r e a s o n-4 3 6

a bl e all o c ati o n of t h e p ri v a c y b u d g et f o r t h e n e xt d at a r a n-4 3 7

d o mi z ati o n p h a s e i s d et e r mi n e d b y t h e c o n diti o n al i n d e p e n-4 3 8

d e n c e a m o n g t h e att ri b ut e s i n a cl u st e r a n d t h e i m p o rt a n c e4 3 9

of t h e cl u st e r b a s e d o n t h e p r o b a bilit y di st ri b uti o n s o v e r t h e4 4 0

d at a s et. T h u s w e d e fi n e t h e i m p o rt a n c e f a ct o r ( CI F) of e a c h4 4 1
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of the perturbed data X 1 . The advantage of this double-513

perturbation mechanism lies in that there is no need to know514

the probability distribution of the original data in advance–515

we actually do not know the probability distribution of516

X –the transition probability matrix of the original data is517

thus constructed adaptively. After obtaining the perturbed518

data X 1 with �� , we can obtain the estimate of the original519

attribute variable distribution:520

�̂� � Q
� 1 �� (4)

Then we compute the transition probability of each variable521

for the second perturbation as follows:522

~q11 � P r�X � c1 X 1 � c1� �
�̂1 �q

q ��̂1 � �1 � q� ��̂2

523

~q22 � P r�X � c2 X 1 � c2� �
�̂2 �q

q ��̂2 � �1 � q� ��̂1

524

~q12 � P r�X � c2 X 1 � c1� �
�̂2 ��1 � q�

q ��̂1 � �1 � q� ��̂2

� 1 � ~q11

525

~q21 � P r�X � c1 X 1 � c2� �
�̂1 ��1 � q�

q ��̂2 � �1 � q� ��̂1

� 1 � ~q22

Accordingly, we obtain the transition probability matrix526

for the second perturbation:527

~Q � �
~q11 ~q12

~q21 ~q22
� �

\

�̂ 1 �q

q �̂� 1 � �1� q��̂� 2

�1� q��̂� 2

q �̂� 1 � �1� q��̂� 2

�1� q��̂� 1

q �̂� 2 � �1� q��̂� 1

�̂ 2 �q

q �̂� 2 � �1� q��̂� 1

[

]

Therefore, to obtain the invariant PRAMed data X 2 of528

the attribute variable X , we apply ~Q to the perturbed data529

X 1 during the second perturbation. These two phases of530

data perturbation with Q and ~Q successfully realize an531

invariant PRAMwith P � Q � ~Q , where ~Q can be considered532

as the inverse of Q while ensuring that ~Q is also a transition533

probability matrix.534

4.4.2 Multivalued Attributes535

The perturbation of the multivalued attributes is similar536

to that of the two-valued one. We consider a categorical537

random variable with s possible values c1;c2� ;cs . Let538

�i � P r�X � ci�;i � 1;� ;s and �� � ��1;� ;�s�
T
. Given539

that X belongs to category ci, it either remains unchanged540

with probability qii, or is changed uniformly at randomwith541

the probability of 1� qii
s� 1

to one of the other s � 1 categories.542

That is, the transition probability matrix is a s� s one, which543

can be formalized as follows:544

Q �

\

q11
1� q1 1
s� 1

� 1� q1 1
s� 1

1� q2 2
s� 1

q22 � 1� q2 2
s� 1

� � � �
1� qs s
s� 1

1� qs s
s� 1

� qss

[

]

To satisfy local differential privacy, we set q11 � q22 �545

� � qss � e�

s� 1� e�
; then Q can be denoted as:546

Q �

\

e
�

s� 1� e�
1

s� 1� e�
� 1

s� 1� e�

1

s� 1� e�
e
�

s� 1� e�
� 1

s� 1� e�

� � � �
1

s� 1� e�
1

s� 1� e�
� e

�

s� 1� e�

[

]

The PRAMed variable can be denoted as X 1 after applying 547

Q to X . Correspondingly, let �i � P r�X 1 � ci�;i � 1;� ;s, 548

�� � ��1;� ;�s�
T
. In this setting, the local differential pri- 549

vacy condition can be satis ed as: 550

P r�X 1 � ci X � ci�

P r�X 1 � ci X ci�

qii
qji�j i�

e
�

We can compute the estimated �̂� of the original attribute 551

variable X as 552

�̂� � Q
� 1

���

Then the elements of the transition probability matrix ~Q for 553

the second perturbation can be computed as: 554

~qij � P r�X � cj X 1 � ci� �
�̂j �qji

s

<
k � 1

�̂k �qk i

It can be observed that
s

<
j� 1

~qij � 1, which satis es the 555

property of a transition probability matrix. We take
s

<
j� 1

~q1j 556

as an example: 557

s

=
j� 1

~q1j � ~q11 � ~q12 � � � ~q1s

� P r�X � c1 X 1 � c1� � P r�X � c2 X 1 � c1� � � � P r�X � cs X 1 � c1�

�
�̂1 �q11
s

<
k � 1

�̂k �qk 1

�
�̂2 �q21
s

<
k � 1

�̂k �qk 1

� �
�̂s �qs1

s

<
k � 1

�̂k �qk 1

� 1

After applying ~Q to the perturbed data X 1 in the second 558

perturbation, we obtain the invariant PRAM result X 2 of the 559

attribute variable X . 560

4.4.3 Compound Variables 561

Since an attribute cluster may include more than one two- 562

valued or multivalued attribute variables which are strongly 563

correlated, one can treat all these variables as a compound 564

one. Thus an invariant PRAM for compound variables [29] 565

is needed, which  rst computes the transition probabil- 566

ity matrix for each attribute variable, then computes the 567

transition probability matrix for the compound one. For 568

example, for two categorical variables X with r categories 569

and Y with s categories, we may  rst compute the invariant 570

PRAM transition probability matrix of X and Y , denoted as 571

E � �eij� and F � �fij�, respectively. Then the combination 572

of X and Y can 573

Q E F � E F �

\

e11f11 e11f12 � e11f1s e1rf11 e1rf12 � e1rf1s
� � � � � � �

e11fs1 e11fs2 � e11fss e1rfs1 e1rfs2 � e1rfss
� � �

er1f11 er1f12 � er1f1s errf11 errf12 � errf1s
� � � � � � �

er1fs1 er1fs2 � er1fss errfs1 errfs2 � errfss

[

]

Similarly, when there exist three categorical variables 574

X ;Y;Z with respectively r;s;t categories, we may  rst 575
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compute the invariant PRAM transition probability matrix576

of X , Y and Z , denoted as E � �eij�, F � �fij� and577

G � �gij�. Then the combination of X , Y and Z can be578

regarded as a compound variable with r �s �t categories,579

whose transition probability Q E F G is the Kronecker product580

of E , F and G , which is a �r �s �t� � �r �s �t�matrix.581

As mentioned earlier, when applying the proposed in-582

variant PRAM to each cluster, we need to allocate privacy583

budget P B C �C L i� � �2 to cluster C L i. If a cluster C L i584

includes more than one attribute variable, we  rst compute585

the transition probability matrix for each attribute variable586

with uniformly allocated privacy budget
P B C �C L i���2

C L i
, then587

compute the transition probability matrix for the compound588

variable.589

4.5 Privacy Analysis590

As discussed in Section 4.2, Algorithm 1 satis es �1 -591

differential privacy, i.e., the procedure of Bayesian network592

construction satis es differential privacy. The procedure of593

attribute clustering just simply cluster the attributes based594

on the constructed Bayesian network, which does not dis-595

close more information. Therefore, one can say that the  rst596

phase of DP2-Pub, i.e., Bayesian network construction and597

attribute clustering, satis es �1 -differential privacy.598

Now we analyze the second phase, i.e., the phase of data599

randomization. According to [28], differential privacy is re-600

sistant to any randomized mapping of differentially private601

results. More speci cally, with randomized mapping, a data602

analyst cannot make the output of a differentially private603

algorithm M less differentially private without any addi-604

tional knowledge about the private dataset [28]. That is, if an605

algorithm is differentially private, simply conducting ran-606

domized mapping on the output of the algorithm without607

any additional knowledge does not leak any extra private608

information, which has been proved by the following Post-609

Processing Proposition [28]:610

Proposition 1. (Post-Processing [28]) Let M � D → R be a611

randomized algorithm that is �-differentially private. Let f �R →612

R be an arbitrary randomized mapping. Then f M �D → R613

is �-differentially private.614

Theorem 1. The double-perturbation of Invariant PRAM satis-615

 es �2 -differential privacy.616

Proof. The  rst perturbation of each attribute variable is a617

post randomization satisfying local differential privacy for618

both two-valued and multivalued variables:619

P r�X 1 � c1 X � c1�

P r�X 1 � c1 X � c2�

q

1 � q

620

P r�X 1 � ci X � ci�

P r�X 1 � ci X ci�

qii
qji�j i�

of which q and qii are determined by the privacy budget621

allocated for each attribute variable in a cluster. According622

to Proposition 1, the second random perturbation of our623

invariant PRAMmechanism can be considered as a random-624

ized mapping of the differentially private algorithm output,625

that is, a randomized mapping based post-processing of626

differential privacy.627

Since each cluster C L i is P B C �C L i� ��2 -differentially628

private, the t clusters can be regarded as a t-dimensional629

dataset achieving �2 -differential privacy according to the 630

sequential composition theorem [30]. 631

Accordingly, one can obtain the following theorem. 632

Theorem 2. The DP2-Pub satis es ��1 � �2�-differential privacy 633

according to sequential composition theorem [30]. 634

5 DP2 PUB WITH A SEMI HONEST SERVER 635

The emergence of Internet of Things (IoT) has changed 636

people’s daily life and the way the world learns, where 637

mobile devices, home appliances, transportation facilities 638

and crowd sensors can all be used as data acquisition 639

equipment in IoT. It provides a platform for the seamless 640

communication between smart devices and sensors in a 641

smart environment and allows information sharing across 642

platforms. IoT devices and the generated data can reveal 643

personal information of the users including their behaviors 644

and preferences [31]. Despite the bene ts of the IoT, it 645

raises privacy concerns of the sheer amount of data. Most 646

of existing privacy-preserving data publishing mechanisms 647

focus on the processing of the collected data with a trustful 648

central server. However, what is stored in the server is 649

unprotected while the central server is vulnerable to internal 650

attacks or single-point attacks; even the server itself may not 651

be trustworthy – it is generally semi-honest, i.e., honest-but- 652

curious, which faithfully follows the protocol but tries its 653

best to infer as much knowledge as possible. Moreover, the 654

data or updates (under federated learning framework) held 655

by the resource-constrained devices can be easily observed 656

or analyzed, which may pose a threat to the privacy pro- 657

tection of participating devices and ultimately discourages 658

participation in the distributed model. 659

Therefore, in this section, we extend our DP2-Pub mech- 660

anism to consider a semi-honest server. A number of 661

users generate multi-dimensional data records, then send 662

them to a server who intends to release an approximate 663

dataset to third-parties for various applications. Formally, 664

each user contributes a data record constituting a dataset 665

D � U 1;U 2;� U n
, where U i

denotes the data record of 666

user iand n is the total number of records/users. 667

Figure 4 illustrates the main procedure of DP2-Pub 668

with a semi-honest server, which includes three main steps: 669

privacy preservation of local data satisfying local differen- 670

tial privacy, Markov-blanket-based cluster learning based 671

on Bayesian network, and the PRAM perturbation on the 672

private data. Both the attribute clustering and PRAM per- 673

turbation are conducted at the data server, while the local 674

differential privacy protection is performed by each user. 675

Although the data server is semi-honest, it can only access 676

the private data processed by each user. 677

We  rst propose a local randomization using RR on each 678

user’s data making it satisfy LDP, then the sanitized data 679

is sent to and aggregated at the central server. Each user i 680

has a d-dimensional data record U i
� �ui

1;u
i
2;� ui

d�, and the 681

perturbation process is conducted on each dimension with 682

the privacy budget � � � d. 683
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If u i
j i s t h e v al u e of a t w o- v al u e d att ri b ut e, it i s r a n d o ml y6 8 4

fli p p e d a c c o r di n g t o t h e f oll o wi n g r ul e i n R R:6 8 5

u
i
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u
i
j , wit h p r o b a bilit y of q = e

ϵ ′

1 + e ϵ ′

1 − u
i
j , wit h p r o b a bilit y of 1

1 + e ϵ ′

If u i
j i s t h e v al u e of a m ulti v al u e d att ri b ut e wit h s6 8 6

p o s si bl e v al u e s c 1 , c2 , ⋯ c s , it i s r a n d o ml y fli p p e d a c c o r di n g6 8 7

t o t h e f oll o wi n g r ul e i n R R:6 8 8

u
i
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u
i
j , wit h p r o b a bilit y of q s s = e

ϵ i

s − 1 + e ϵ ′

c k ≠ u
i
j , wit h p r o b a bilit y of 1

s − 1 + e ϵ ′

of w hi c h k = 1 , 2 , ⋯ , s.6 8 9

Aft e r r e c ei vi n g t h e n oi s y d at a f r o m e a c h u s e r, t h e s e r v e r6 9 0

c o m p ut e s t h e m a r gi n al p r o b a bilit y di st ri b uti o n λ⃗ , e sti m at e s6 9 1

t h e o ri gi n al di st ri b uti o n ˆ⃗π , a n d t h e n c al c ul at e s Q f o r e a c h6 9 2

att ri b ut e v a ri a bl e a c c o r di n g t o t h e m et h o d s p r e s e nt e d i n6 9 3

S e cti o n s 4. 4. 1 a n d 4. 4. 2. T h e n it c o n st r u ct s a B a y e si a n n et-6 9 4

w o r k a n d c o n d u ct s att ri b ut e cl u st e ri n g o n t h e a g g r e g at e d6 9 5

d at a t o l e a r n t h e c o r r el ati o n s b et w e e n diff e r e nt att ri b ut e6 9 6

v a ri a bl e s. T h e p r o c e s s e s of B a y e si a n n et w o r k c o n st r u cti o n6 9 7

a n d att ri b ut e cl u st e ri n g a r e si mil a r t o t h o s e i n S e cti o n s 4. 26 9 8
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v a ri a bl e w hi c h a r e st r o n gl y c o r r el at e d. T h u s w e c o m p ut e7 1 2

t h e t r a n siti o n p r o b a bilit y m at ri x of t h e c o m p o u n d v a ri a bl e7 1 3

f oll o wi n g t h e p r o c e d u r e p r e s e nt e d i n S e cti o n 4. 4. 3.7 1 4

T h e or e m 3. T he D P 2- P u b wit h a se mi- h o nest ser ver s atis fies7 1 5

ϵ -l o c al differe nti al pri v a c y.7 1 6
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a s e mi- h o n e st s e r v e r i s diff e r e nti all y p ri v at e wit h p ri v a c y 7 2 4

b u d g et ϵ . 7 2 5
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I n t hi s s e cti o n, w e c o n d u ct e xt e n si v e e x p e ri m e nt s t o d e m o n- 7 2 7

st r at e t h e p e rf o r m a n c e of o u r D P 2- P u b m e c h a ni s m a n d 7 2 8
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a n d D P P r o [ 1 2], o n f o u r r e al- w o rl d d at a s et s of N L T C S [ 3 2], 7 3 0

A C S [ 3 3], B R 2 0 0 0 [ 3 3] a n d A d ult [ 3 4]. T h e d at a utilit y 7 3 1

i s e v al u at e d a n d a n al y z e d f r o m t w o a s p e ct s, n a m el y t h e 7 3 2

t ot al v a ri ati o n di st a n c e b et w e e n t h e o ri gi n al d at a s et a n d 7 3 3

t h e p e rt u r b e d d at a s et, a n d t h e cl a s si fi c ati o n e r r o r r at e of t h e 7 3 4

S V M cl a s si fi c ati o n o n t h e p e rt u r b e d d at a s et s. 7 3 5

6. 1  E x p eri m e nt al S etti n g s 7 3 6

6. 1. 1  D at a s et s 7 3 7

We m a k e u s e of f o u r r e al- w o rl d d at a s et s i n o u r e x p e ri m e nt s: 7 3 8
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r e c o r d h a s 1 6 att ri b ut e s; A C S [ 3 3] i n cl u d e s 4 7 4 6 1 r e c o r d s of 7 4 1

p e r s o n al i nf o r m ati o n f r o m t h e 2 0 1 3 a n d 2 0 1 4 A C S s a m pl e 7 4 2

s et s i n I P U M S- U S A, w h e r e e a c h r e c o r d h a s 2 3 att ri b ut e s; 7 4 3

B R 2 0 0 0 [ 3 3] c o n si st s of 3 8 0 0 0 c e n s u s r e c o r d s wit h 1 4 at- 7 4 4

t ri b ut e s c oll e ct e d f r o m B r a zil i n t h e y e a r 2 0 0 0; a n d A d ult 7 4 5

[ 3 4] c o nt ai n s p e r s o n al i nf o r m ati o n s u c h a s g e n d e r, s al a r y, 7 4 6

a n d e d u c ati o n l e v el of 4 5 2 2 2 r e c o r d s e xt r a ct e d f r o m t h e 1 9 9 4 7 4 7

U S C e n s u s, w h e r e e a c h r e c o r d h a s 1 5 att ri b ut e s. T h e fi r st 7 4 8

t w o d at a s et s o nl y c o nt ai n bi n a r y att ri b ut e v al u e s w hil e t h e 7 4 9

l a st t w o p o s s e s s c o nti n u o u s a s w ell a s c at e g o ri c al att ri b ut e s 7 5 0

wit h m ulti pl e v al u e s. We s u m m a ri z e t h e st ati sti c s of t h e s e 7 5 1
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1
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Then we compute the average results of the total vari-763

ation distance over all � -way marginals as the  nal result764

– a lower distance implies a better utility. More speci -765

cally, in our experiments, we evaluate the 3-way and 4-766

way marginals on binary datasets NLTCS and ACS, and767

2-way and 3-way marginals on BR2000 and Adult, since768

the domain size of BR2000 and Adult are prohibitively large769

leading to very complex joint distributions.770

The second task is to evaluate the classi cation results771

of SVM classi ers. The purpose of data publication is to772

conduct data analysis and data mining. We adopt SVM773

to evaluate the data utility from the perspective of data774

applications, as SVM is the most popular classi cation ap-775

proach among various data mining techniques with pow-776

erful discriminative features both in linear and non-linear777

classi cations [35]. Speci cally, we train two classi ers on778

ACS to predict whether an individual: (1) goes to school,779

(2) lives in a multi-generation family; four classi ers are780

constructed on NLTCS to predict whether an individual: (1)781

is unable to go outside, (2) is unable to manage money, (3)782

is unable to bathe, and (4) is unable to travel; two classi ers783

are trained on BR2000 to predict whether an individual (1)784

owns a private dwelling, (2) is a Catholic; and two classi ers785

are trained on Adult to predict whether an individual (1) is786

a female, (2) makes over 50K a year. For each classi er, we787

use 80% of the tuples of the dataset for training and the788

other 20% as the testing set. The prediction accuracy of each789

SVM classi er is measured by the misclassi cation rate on the790

testing set.791

6.1.3 Comparison Approaches792

For the two evaluation metrics mentioned above, we com-793

pare our mechanismDP2-Pub with two existing approaches:794

(1) PrivBayes [9], which  rst constructs a Bayesian network795

to model the correlations among the attributes in a dataset,796

then injects noise into each marginal distribution in the797

Bayesian network to realize differential privacy, and  nally798

constructs an approximation to the data distribution of the799

original dataset using the Bayesian network and the noisy800

marginal distributions; (2) JTree [10], which  rst develops a801

robust sampling-based framework to systematically explore802

the dependencies among all attributes based on the junction803

tree algorithm and subsequently build a dependency graph;804

(3) DPPro [12], which projects a d-dimensional vector repre-805

sentation of a user’s attributes into a lower d-dimensional806

space by a random projection, and then adds noise to807

each resultant vector. Note that we choose PrivBayes, JTree808

and DPPro for our comparison study because the  rst two809

are benchmark solutions in a way of decomposing high-810

dimensional data into a set of low-dimensional marginal811

distributions while the latter is an effective approach of812

random projection.813

6.1.4 Parameter Settings814

In our experiments, we use DP-Pub
1
to denote the case815

with a trusted server and DP-Pub
2
the one with a semi-816

honest server. The privacy budget � of DP-Pub1 is evenly817

distributed to the two phases, i.e., �1 � �2 � 1
2
�. For DP-818

Pub
2
, there is no need to partition the privacy budget since819

the data is  rst locally differentially privatized, i.e., the820

privacy budget � is completely allocated to the local privacy 821

procedure. For the parameter k used in the construction of 822

the Bayesian network, we test k � 1;2;3. Since the time 823

cost for larger k values is typically higher, we do not try the 824

cases of k 3. Based on our experiments, we observe that 825

the influence of k on the experimental results is not obvious. 826

The reason possibly lies in that the structure of the Markov 827

blanket can help to accurately learn the data correlations 828

between different attributes. In the following section, we 829

present the experimental results of k � 2. 830

6.2 Experimental Results 831

In this subsection, we carry out 50 independent runs for 832

each of the experiments mentioned above and report the 833

averaged results for statistical con dence. 834

6.2.1 Results on Average Variation Distance 835

For the task of examining the accuracy of � -way marginals, 836

we compute all the � -dimensional attribute unions and 837

compare the averaged variation distance of PrivBayes, JTree, 838

DPPro, DP-Pub
1
and DP-Pub

2
, with a varying privacy bud- 839

get � from 0:2 to 1:6. 840

Figure 5 shows the average results of the variation dis- 841

tance of each approach on the four datasets. From Figure 842

5, one can see that the average variation distances of these 843

three approaches decrease when � increases over the four 844

datasets. It is obvious that when � is larger, smaller noise 845

is required, and the data utility is higher. One can also 846

observe that our approach clearly outperforms PrivBayes 847

and DPPro in all cases for ACS and NLTCS, while for 848

BR2000 and Adult, the relative superiority is more pro- 849

nounced when � is small. There are several reasons that 850

DP2-Pub outperforms PrivBayes, JTree and DPPro. First, 851

PrivBayes constructs a Bayesian network while JTree adopts 852

a junction tree algorithm to model the data correlation, and 853

both of them generate a set of noisy conditional distributions 854

of original datasets. That is, for each attribute-parent pair, 855

both PrivBayes and JTree generate differentially private 856

conditional distributions by adding Laplace noise which 857

makes the data utility of the dataset drastically decrease. 858

In our approach, we only utilize the Bayesian network 859

to learn the correlations between different attributes and 860

adopt our proposed invariant post randomization to achieve 861

data perturbation, which ensures that there is almost no 862

loss of statistical information. The probability distribution 863

of each attribute variation is basically unchanged after the 864

double-perturbation. Second, the random projection method 865

DPPro does not consider the data characteristics and only 866

preserves the pairwise L 2 distance when generating the 867

random projection matrix, thus it may lead to relatively low 868

utility especially when there exist data correlations between 869

different attributes. In our approach DP2-Pub, we learn 870

the data correlations of the original dataset and consider 871

the importance of different attributes when allocating the 872

privacy budget. 873

DP-Pub
2
performs better than DP-Pub

1
according to 874

the results shown in Figure 5. This is counter-intuitive as 875

centralized differential privacy usually performs better than 876

local differential privacy because centralized differential 877

privacy adds noise based on the sensitivity of a particular 878

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3265605

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on August 14,2023 at 18:42:56 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF , VOL. , NO. , 2022 11

0

0.05

0.1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

a
v
er
a
g
e
v
a
ri
a
ti
o
n
d
is
ta
n
ce

privacy budget ε

ACS, α = 3

PrivBayes
JTree

DPPro
DP2-Pub1

DP2-Pub2

(a) ACS, 3-way marginals

0

0.05

0.1

0.15

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

a
v
er
a
g
e
v
a
ri
a
ti
o
n
d
is
ta
n
ce

privacy budget ε

ACS, α = 4

PrivBayes
JTree

DPPro
DP2-Pub1

DP2-Pub2

(b) ACS, 4-way marginals

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

a
v
er
a
g
e
v
a
ri
a
ti
o
n
d
is
ta
n
ce

privacy budget ε

NLTCS, α = 3

PrivBayes
JTree

DPPro
DP2-Pub1

DPPro2

(c) NLTCS, 3-way marginals

0

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

a
v
er
a
g
e
v
a
ri
a
ti
o
n
d
is
ta
n
ce

privacy budget ε

NLTCS, α = 4

PrivBayes
JTree

DPPro
DP2-Pub1

DP2-Pub2

(d) NLTCS, 4-way marginals

0

0.025

0.05

0.075

0.1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

a
v
er
a
g
e
v
a
ri
a
ti
o
n
d
is
ta
n
ce

privacy budget ε

BR2000, α = 2

PrivBayes
JTree

DPPro
DP2-Pub1

DP2-Pub2

(e) BR2000, 2-way marginals

0

0.05

0.1

0.15

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

a
v
er
a
g
e
v
a
ri
a
ti
o
n
d
is
ta
n
ce

privacy budget ε

BR2000, α = 3

PrivBayes
JTree

DPPro
DP2-Pub1

DP2-Pub2

(f) BR2000, 3-way marginals

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

a
v
er
a
g
e
v
a
ri
a
ti
o
n
d
is
ta
n
ce

privacy budget ε

Adult, α = 2

PrivBayes
JTree

DPPro
DP2-Pub1

DP2-Pub2

(g) Adult, 2-way marginals

0

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

a
v
er
a
g
e
v
a
ri
a
ti
o
n
d
is
ta
n
ce

privacy budget ε

Adult, α = 3

PrivBayes
JTree

DPPro
DP2-Pub1

DP2-Pub2

(h) Adult, 3-way marginals

Fig. 5. Results of α-way marginals with different ϵ.

query function while in local differential privacy noise is879

added via post randomization. But in DP-Pub
1
, noise is880

added for differentially private Bayesian network construc-881

tion and for post randomization, with none of them consid-882

ering the sensitivity of a particular query function, which is883

more general at the cost of lower utility. Moreover, at the884

same budget level, adding noise at two phases increases885

the total amount of noise as the added noise amount is not886

linearly proportional to the privacy budget – it is super-887

linear, which also contributes to the lower utility of DP-888

Pub
1
.889

6.2.2 Results on SVM classification890

For the second task, we evaluate the performance of891

PrivBayes, JTree, DPPro, DP2-Pub
1;DP-Pub2 , and Non-892

Private (no DP is considered) for SVM classi cation. Figure893

6 shows the misclassi cation rate of each approach under894

different privacy budgets. One can see that the error of895

Non-Private remains unchanged for all � since it does not896

consider differential privacy. One can also see that both897

DP-Pub
1
and DP-Pub

2
outperform PrivBayes, JTree and898

DPPro on almost all datasets. The reason for the higher899

classi cation accuracy of our approach lies in that it can900

achieve higher data utility with a better retention of corre-901

lations among attribute variables and a higher accuracy of902

joint distributions. More speci cally, both DP-Pub
1
and DP-903

Pub
2
retain the data characteristics while satisfying privacy904

guarantee, thus can help to obtain good results of SVM905

classi cations. Moreover, the misclassi cation rate decreases906

faster when � increases from 0:2 to 0:6, and the decrease of907

the misclassi cation rate is not obvious when � is larger than908

0:8. This indicates that a higher privacy level with a small �909

leads to a lower data utility.910

7 CONCLUSIONS AND FUTURE RESEARCH911

In this paper, we propose a differentially private data912

publication mechanism DP2-Pub consisting of two phases,913

attribute clustering and data randomization. Speci cally,914

in the  rst phase, we present the procedure of attribute 915

clustering using the Markov blanket model based on the 916

differentially private Bayesian network to achieve attribute 917

clustering and obtain a reasonable allocation of privacy 918

budget. In the second phase, we design a detailed invari- 919

ant post randomization method by conducting a double- 920

perturbation while satisfying local differential privacy. Our 921

privacy analysis shows that DP2-Pub satis es differential 922

privacy. We also extend our mechanism making it suit- 923

able for the scenario with a semi-honest server in a local- 924

differential privacy manner. Comprehensive experiments 925

on four real-world datasets demonstrate that DP2-Pub out- 926

performs existing methods and improves data utility with 927

strong privacy guarantee. 928

In our future research, we intend to combine other effec- 929

tive dimensionality reduction techniques [36, 37] with differ- 930

ential privacy to investigate their impact on the data utility 931

of published data. Particularly, we intend to combine DP 932

with manifold learning [36], which is a popular approach 933

for non-linear dimensionality reduction that maps a high 934

dimensional data space into a low-dimensional manifold 935

representation of the data while preserving a certain form 936

of geometric relationships between the data points. 937
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