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Bifurcation analysis of confined salt-finger convection using single-mode equations
obtained from a severely truncated Fourier expansion in the horizontal is performed.
Strongly nonlinear staircase-like solutions having, respectively, one (S1), two (S2) and
three (S3) regions of mixed salinity in the vertical direction are computed using numerical
continuation, and their stability properties are determined. Near onset, the one-layer S1
solution is stable and corresponds to maximum salinity transport among the three
solutions. The S2 and S3 solutions are unstable but exert an influence on the statistics
observed in direct numerical simulations (DNS) in larger two-dimensional (2-D) domains.
Secondary bifurcations of S1 lead either to tilted-finger (TF1) or to travelling wave (TW1)
solutions, both accompanied by the spontaneous generation of large-scale shear, a process
favoured for lower density ratios and Prandtl numbers (Pr). These states at low Pr are
associated, respectively, with two-layer and three-layer staircase-like salinity profiles in
the mean. States breaking reflection symmetry in the midplane are also computed. In
two dimensions and for low Pr, the DNS results favour direction-reversing tilted fingers
resembling the pulsating wave state observed in other systems. Two-layer and three-layer
mean salinity profiles corresponding to reversing tilted fingers and TW1 are observed in 2-
D DNS averaged over time. The single-mode solutions close to the high wavenumber
onset are in an excellent agreement with 2-D DNS in small horizontal domains and
compare well with 3-D DNS.
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1. Introduction

Oceanographic measurements have widely reported staircase-like structures with regions
of nearly constant density in the vertical direction separated by interfaces with a sharp
density gradient (Tait & Howe 1968, 1971; Schmitt et al. 1987, 2005; Padman & Dillon
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1989; Muench, Fernando & Stegen 1990; Zodiatis & Gasparini 1996; Morell, Corredor &
Merryfield 2006; Timmermans et al. 2008; Fer et al. 2010; Spear & Thomson 2012). Such
structures are typical of tropical and subtropical regions where warm salty water often
overlies cold fresh water and have been ascribed to the presence of salt-finger convection.
Indeed, staircases have been observed in the western tropical Atlantic (Schmitt et al.
1987, 2005), Tyrrhenian Sea (Zodiatis & Gasparini 1996), and the Mediterranean outflow in
the Northeast Atlantic (Tait & Howe 1968, 1971), where conditions for salt-finger
convection prevail. These staircases are typically characterised by a large coherence
length in the horizontal, much larger than the step height in the vertical. For example, the
Caribbean-Sheets and Layers Transect (C-SALT) field programme showed that the well-
mixed layers were 5-30 m thick and laterally coherent over scales of 200-400 km
(Schmitt et al. 1987). The presence of staircases also enhances the tracer mixing rate. For
example, the North Atlantic Tracer Release Experiment (NATRE) (Schmitt et al. 2005)
revealed a mixing rate in the western tropical Atlantic five times larger than that in the
eastern subtropical Atlantic. Spontaneous formation of staircases has also been observed in
idealised laboratory experiments (Linden 1978; Krishnamurti 2003, 2009) and direct
numerical simulations (DNS) (Piacsek & Toomre 1980; Radko 2003, 2005; Stellmach et
al. 2011; Yang et al. 2020).

Understanding the origin of spontaneous staircase formation is important for
parameterisation and accurate modelling of oceanographic processes. Various mechanisms
for staircase formation have been proposed (Radko 2013, § 8). The collective instability
mechanism (Stern 1969; Holyer 1981) identifies conditions for the formation of a staircase
based on the instability of the salt-finger field to internal gravity waves, but requires a
closure model for the Reynolds stress and the temperature and salinity fluxes based on
laboratory measurement and ocean observation. The onset of staircase formation is also
predicted by models with negative density diffusion (Phillips 1972; Posmentier 1977).
The related y-instability of Radko (2003) requires a parameterisation of the Nusselt
number and the flux ratio but shows good agreement with 2-D and 3-D DNS of salt-finger
convection (Radko 2003; Stellmach et al. 2011). However, these predictions generally only
focus on the onset of a large-scale instability suggesting the appearance of a staircase, but
do not provide a detailed profile of the final staircase or its parameter dependence. In this
connection the model of Balmforth, Llewellyn Smith & Young (1998) is of particular
interest. The model parametrises the coupling between buoyancy flux and local turbulent
kinetic energy but succeeds in generating robust staircases. Nevertheless, the use of closure
models employed in all these predictions results in uncertainty in the applicable parameter
regime.

This work aims to discuss an alternative mechanism for spontaneous staircase formation
from a bifurcation theory point of view (figure 1), focusing on the computation of
strongly nonlinear staircase-like solutions and analysing their stability. Bifurcation analysis
has been widely employed to provide insight into pattern formation in fluid dynamics
(Crawford & Knobloch 1991). For example, a secondary bifurcation of steady convection
rolls in Rayleigh—Bénard convection to tilted rolls was shown to be accompanied by the
generation of large-scale shear (Howard & Krishnamurti 1986; Rucklidge & Matthews
1996), resembling both experimental observation (Krishnamurti & Howard 1981) and
DNS (Goluskin et al. 2014). A sequence of local and global bifurcations of such tilted
convection cells in magnetoconvection was shown to lead to a pulsating wave characterised
by periodic reversals in the direction of the tilt and the accompanying large-scale shear
(Matthews et al. 1993; Proctor & Weiss 1993; Proctor et al. 1994; Rucklidge & Matthews
1996). In the diffusive configuration in which cold fresh water overlies warm salty

952 A4-2



https://doi.org/10.1017/jfm.2022.865 Published online by Cambridge University Press

Staircase solutions and stability in salt-finger convection

(a) ®)

z=1 w Horizontal average (*),
L | -
8

Horizontal harmonic ()

z=0

Figure 1. (a) The salt-finger convection set-up. The red colour indicates a hot plate while the blue colour
suggests a cold plate. The number of circles on top and bottom plates suggests the salinity at the top is higher
than at the bottom. (b) Nonlinear interaction within the single-mode equations (2.7): horizontal averages ()
influence the horizontal harmonics ( * ) through (2.7a)—(2.7d), whereas the horizontal harmonics ( * ) contribute
to the horizontal averages ( - )o through (2.7¢)—(2.7g).

water, a similar analysis found stable travelling waves near onset (Knobloch et al. 1986)
and provided insight into the transition to chaos (Knobloch, Proctor & Weiss 1992).
Such chaotic or even fully developed turbulent states generally visit neighbourhoods of
(unstable) steady, periodic or travelling wave solutions, and these visits leave an imprint on
the flow statistics; see, e.g. Kawahara & Kida (2001), van Veen, Kida & Kawahara
(2006) and the reviews by Kawahara, Uhlmann & van Veen (2012) and Graham & Floryan
(2021).

This work focuses on vertically confined salt-finger convection in order to understand the
interior between two well-mixed layers. Although stress-free velocity boundary conditions
are suitable for understanding oceanographic scenarios, no-slip boundary conditions
are more relevant to laboratory experiments (Hage & Tilgner 2010). A wide range of
bifurcation analyses of related problems have been performed on vertically confined
systems with different boundary conditions including Rayleigh—Bénard convection. In the
salt-finger case the fluxes generated in a vertically confined system agree quantitatively
with those obtained in a vertically periodic domain when normalised by the bulk
conductive fluxes (Li & Yang 2022) despite the elimination of the elevator mode that is
present in vertically periodic domains; see, e.g. Stern (1969), Holyer (1984) and Radko
(2013, §2.1).

In order to facilitate bifurcation analysis, we focus here on the single-mode equations
obtained from a severely truncated Fourier expansion in the horizontal. Such single-mode
equations reduce the two (or three) spatial dimensions in the primitive equations to one
vertical dimension, with the dependence on the horizontal direction parameterised by a
single assumed horizontal wavenumber. Such a truncation may provide insight into salt-
finger convection as the underlying flow structures are dominated by well-organised
columnar structures; see, e.g. the visualisation of confined salt-finger convection by
Yang, Verzicco & Lohse (2016, figure 7). This single-mode formulation also explicitly
isolates and describes the interaction between horizontally averaged modes (corresponding
to the staircase or large-scale shear) and the horizontal harmonics (corresponding to
fingers), in the spirit of mean-field theory; see, e.g. Garaud (2018, § 3.2.1). Moreover, the
single-mode equations do not require any closure assumptions for the Reynolds stress and
the temperature and salinity fluxes to parametrise the feedback between the fluctuations
and horizontally averaged quantities, while preserving the nonlinear interaction between
them; see figure 1(b).

Single-mode equations have been widely employed to provide insight into related
problems. For example, single-mode solutions (also called ‘single-a mean-field theory’)
for Rayleigh—Bénard convection with stress-free boundary conditions have been shown
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to reproduce the mean temperature profile expected at high Rayleigh numbers (Herring
1963). For no-slip boundaries at high Prandtl numbers, the Nusselt number predicted from
this framework is within 20 % of the experimental value and the root-mean-square velocity
and temperature fluctuations also resemble the profiles seen in experimental measurements
(Herring 1964). Single-mode theory has since been extended to the time-dependent
problem (Elder 1969) and to more general planforms (e.g. hexagonal) (Gough, Spiegel &
Toomre 1975; Toomre, Gough & Spiegel 1977), showing qualitative agreement with
experimental results. The vertical vorticity mode was included within the single-mode
equations with hexagon planform by Lopez & Murphy (1983), Murphy & Lopez (1984),
Massaguer & Mercader (1988), Massaguer, Mercader & Net (1990) and is excited beyond a
secondary bifurcation of convection rolls. Such single-mode equations have also proved to
provide insight into many other problems including rotating convection (Baker & Spiegel
1975), plane Poiseuille flow (Zahn et al. 1974) and double-diffusive convection (Gough &
Toomre 1982; Paparella & Spiegel 1999; Paparella, Spiegel & Talon 2002). In particular,
DNS of single-mode solutions of salt-finger convection show that fingers can tilt leading to
the spontaneous formation of large-scale shear, which may be steady or oscillate, together
with a staircase-like profile in the horizontally averaged salinity (Paparella 1997; Paparella
& Spiegel 1999). Moreover, in certain asymptotic regimes single-mode solutions may be
exact; see, e.g. the high wavenumber (tall and thin) limit of Rayleigh—Bénard convection
(Blennerhassett & Bassom 1994), convection in a porous medium (Lewis, Rees & Bassom
1997) or salt-finger convection (Proctor & Holyer 1986). Such high wavenumber regimes
are naturally achieved in convection with strong restraints such as rapid rotation (Julien &
Knobloch 1997) or strong magnetic field (Julien, Knobloch & Tobias 1999; Calkins et al.
2016; Plumley et al. 2018) and the resulting exact single-mode equations have proved
immensely useful for understanding these systems; see the review by Julien & Knobloch
(2007).

This work performs bifurcation analysis of vertically confined salt-finger convection
using single-mode equations. The resulting equations are solved for the vertical structure of
the solutions as a function of the density ratio, the Prandtl number and the assumed
horizontal wavenumber. We fix the diffusivity ratio and thermal Rayleigh number and
focus almost exclusively on no-slip velocity boundary conditions. We found staircase-like
solutions with one (S1), two (S2) and three (S3) steps in the mean salinity profile in the
vertical direction, all of which bifurcate from the trivial solution. In each case salinity
gradients are expelled from regions of closed streamlines, leading to a mixed layer.
Secondary bifurcations of S1 lead to either tilted fingers (TF1) or travelling waves (TW1),
both of which break the horizontal reflection symmetry via the spontaneous formation of
large-scale shear. Secondary bifurcations of S2 and S3 lead to asymmetric solutions (A2
and A3) that spontaneously break midplane reflection symmetry.

The stability and accuracy of the single-mode solutions are further analysed with the
assistance of 2-D DNS. Near onset, the one-layer solution S1 is stable and corresponds to
maximum salinity transport among all known solutions, a fact that is consistent with the
prediction of the ‘relative stability’ criterion (Malkus & Veronis 1958). The associated
Sherwood number (or salinity Nusselt number) near the high wavenumber onset is in
excellent agreement with DNS in small horizontal domains. In large domains the DNS
reveals a tendency to revert to the characteristic finger scale but the wavenumber of the
final state exhibits a strong dependence on initial conditions (if the final state is steady) or
the state may remain chaotic. The S2, S3, A2 and A3 solutions are all unstable within the
explored parameter regimes, but may be imprinted on the statistics of the chaotic state. At
lower density ratios, the S1, S2 and S3 salinity profiles all sharpen and the large-scale shear
and tilt angle of the TF1 state increases. The TW1 solutions are also present in this
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regime, whereas low Prandtl numbers favour direction-reversing tilted fingers (RTF), a
state in which the tilt direction and associated large-scale shear reverse periodically as in
the pulsating wave.

The remainder of this paper is organised as follows. Section 2 describes the problem
set-up and the formulation of the single-mode equations. The equations are solved using
numerical continuation and their stability properties are established for Prandtl number
Pr=71n § 3. The tilted finger and travelling wave states are analysed for Pr= 0.05 in § 4.
The paper concludes with a brief summary and discussion in § 5.

2. Single-mode equations for confined salt-finger convection

We consider a fluid between two infinitely long parallel plates separated by a distance 4.
The temperature and salinity at these two plates are maintained at constant values with the
top plate maintained at a higher temperature and salinity, as illustrated in figure 1(a). The
equation of state (pg - p,a)/pra = -a(Te — Tya) + 6(Sy - S,z) is linear, with constant
expansion/contraction coefficients a, 8 and reference density, temperature and salinity p,q,
T,m and S,q, respectively. The subscript @ denotes a dimensional variable. In the following
we non-dimensionalise the temperature 7 by the temperature difference between the top
and bottom layer, = Tg/1T (1T > 0), and likewise for the salinity Sg, S= Sa/1S (1S
> 0). Spatial variables are non-dimensionalised by the height / of the layer whereas time
and velocity are non-dimensionalised using the thermal diffusion time 42/k7 and the
corresponding speed k7/h, respectively. Here k7 is the thermal diffusivity. We decompose
the temperature and salinity into a linear base state and deviation,

T=z+T, S=z+3, 2.1a,b)

and introduce the velocity field v := (u, v, w) in Cartesian coordinates (x, y, z) with
z in the upward vertical direction. Dropping the tildes and assuming the Boussinesq
approximation the system is governed by

o+ u-Bu= Prd*u- Bp+ PrRarT - R™'Se., (2.2q)
B-u= 0, ? (2.2b)

0T+ u-BT+ w= BT, (2.2¢)

0,S+ u-BS+ w= tl%S. (2.2d)

Here p is the dimensionless pressure p = phz/szr whereas e; in (2.2a) is the unit vector in

the vertical direction associated with buoyancy. The governing parameters include the
Prandtl number, the diffusivity ratio, the density ratio and the thermal Rayleigh number

defined by

v K alTh3
B T S (2.3a-d)
T T 818 T

Pr:=

K K K Vv
where v is the viscosity and kg is the salinity diffusivity.

952 A4-5



https://doi.org/10.1017/jfm.2022.865 Published online by Cambridge University Press

C. Liu, K. Julien and E. Knobloch

We impose constant temperature and salinity as boundary conditions at the top and the
bottom plates,

T(x,yv,z=0,t)= T(x,y,z= 1,t) = 0, (2.4a)
S(x,y,z=0,t) = S(x,y,z=1,t) = 0, (2.4b)

whereas for the velocity we adopt no-slip boundary conditions:

ulx,y,z= 0,t) = u(x,y,z= 1,t) = 0. (2.5)

Periodic boundary conditions in the horizontal are imposed on all variables.

We next formulate single-mode equations following the procedure in Herring (1963,
1964), Gough et al. (1975), Gough & Toomre (1982), Paparella & Spiegel (1999) and
Paparella ef al. (2002). The single-mode ansatz is

S(x,y,2,t) = So(z,t) + S(z, t) exp(ilkex + kyy)) + c.c., (2.6a)
T(x,y,zt) = To(z,t) + T(zt)exp(ilkex + kyy)) + c.c., (2.6b)
u(x,y,z,t) = Uo(z, t)ex + G(z, 1) exp(ifkex + kyp)) + c.c., (2.6¢)
p(x,y,z,t) = Po(z, t) + p(z, t)exp(i(kxx + kyy)) + c.c., (2.6d)

where c.c. denotes the complex conjugate. Equation (2.6a) decomposes the departure of
the salinity from the linear profile into a horizontally averaged quantity So(z, ¢) and a single
harmonic in the horizontal direction associated with the wavenumber pair (ky, k) and

characterised by the complex amplitude S(z, ¢). The temperature is decomposed similarly.
To allow for mean flow in the horizontal we decompose the velocity into a large-scale shear
Uy(z, t)ex and a harmonic associated with the same wavenumber pair (k, k) as in (2.6¢),
assuming that the large-scale shear Uy is generated in the x-direction. This is appropriate in
a 2-D configuration, but in three dimensions the large-scale shear can be oriented in
principle in any horizontal direction, a possibility that is left for future study. The
horizontally averaged vertical velocity is zero based on the continuity equation (2.2) and
the boundary conditions w(z = 0) = w(z = 1) = 0. The horizontally averaged quantities
(~)o are real and the amplitudes of the horizontal harmonics (- ) are in general complex.
Equations (2.6) assume a horizontal planform in the form of square or rectangular cells, an
assumption that also includes 2-D rolls when &, = 0. Other planforms such as hexagons
generate additional self-interaction terms in the single-mode equations (Gough ef al. 1975)
and we leave this extension to future work.

We now substitute (2.6) into the governing equations (2.2), dropping all harmonics
beyond the first, and balance separately the horizontally averaged components and the
harmonic components. We eliminate the horizontally averaged pressure via -d.Pg +
PrRar(To - R-185p) = 0 and eliminate the harmonic component of the pressure using the
continuity equation (2.2b). The resulting single-mode equations can then be expressed in
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terms of the vertical velocity w and vertical vorticity { := 0yu - Oyv:
0@ + ik UoB*W - k(™= Pra*w+ P2 Rar(T - R;ls), (2.7a)
0. + ikcUol + ik, USW = Pria?g, (2.7b)
0T + ik, UyT + Wo.To + W= 02T, (2.7¢)
0,8+ ik, UpS+ Wd-So + W= T3, (2.7d)
0:Uo + 0P+ wil®) = Pro? U, (2.7e)
0:To+ 0-(WPT + WT?) = 02T, (2.7
9,30+ 0-(W78 + W8?) = 19?25, (2.72)

ik, 0 ik,¢ ik, 0w ikl

R R :Zkf' e A fkyz' (271

where the superscript ? denotes a complex conjugate and B2": = 92 - k? - k2, By i =2-k?
- KB 2 0t - 2k« K2)02 « (K24 K22, 1P := 0:Up and U := 02Up. The

x . z X Lyoz X Ly 0 0 z
corresponding boundary conditions for the salinity and temperature are:

Sz=0,t)= 8(z= 1,t)= T(z= 0,¢)= T(z= 1,1) (2.8a)
= 8o(z=0,8) = So(z= 1,t)= To(z= 0,t) = To(z= 1,t) = 0, (2.8b)

whereas the no-slip boundary conditions in (2.5) correspond to
Wiz=0,t)= Wwz=1,1)= d:Ww(z= 0,t) = ;W(z=1,1) (2.9a)
={(z=0,t)={(z=1,8)= Up(z= 0,¢) = Up(z= 1,¢) = 0. (2.9b)

Equations (2.7a)—(2.7d) are the governing equation for the first harmonic in the presence
of the large-scale fields Uy, Ty and Sp. In particular, (2.7a) is the Orr—Sommerfeld
equation modified by an additional buoyancy term, whereas (2.7b) is known as the
Squire equation for the vertical vorticity (Schmid & Henningson 2012). Note that the
large-scale shear Up is self-induced (i.e. a variable to be solved for) instead of an
imposed background shear. Thus, the terms involving Uy in (2.7a)~(2.7d) are also
nonlinear. The remaining equations (2.7¢)—~(2.7g) are the governing equations for the
horizontally averaged quantities, distorted by the harmonic fluctuations. The resulting
nonlinear interaction between horizontally averaged quantities and horizontal harmonics is
summarised schematically in figure 1(b). Equation (2.74) is used to obtain the horizontal
velocity # from the W and ¢ required for the computation of the Reynolds stress in (2.7¢).

Similar single-mode equations were previously used to study double-diffusive
convection focusing on the diffusive regime (see e.g. Gough & Toomre 1982, (3.7)—(3.11)),
but did not include the coupling to the large-scale shear Uy. A numerical simulation of
the above single-mode equations in a 2-D configuration (i.e. with k, = 0,V = 0) and
stress-free boundary conditions was employed to study double-diffusive convection in both
the fingering regime (Paparella & Spiegel 1999) and the diffusive regime (Paparella et al.
2002).

Here we focus on the bifurcation properties of the single-mode equations (2.7). These
reflect the symmetries of the primitive equations (2.2), including midplane reflection,
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Formulation
Symmetry name Primitive equations in (2.2) Single mode in (2.7)
Midplane reflection z>1-z z> 1-z
(w,T,8) > =(w, T,S) w, T, To, 8, So) > ~(W, T, To, S, So)
Horizontal reflection x> -x ke > —kx
u-> -u {ﬁ/ UO/ 2) -> _{12/ UO/ f)
Horizontal translation x> x+ bx (%) = (*)exp(ikybx)

Table 1. Symmetry properties of the primitive equations in (2.2) and the single-mode equations in (2.7).

horizontal reflection and horizontal translation, as summarised in table 1. In the following,
we use the numerical software pde2path (Uecker, Wetzel & Rademacher 2014; Uecker
2021a) to compute strongly nonlinear solutions of the above problem as a function of the
system parameters and analyse their stability. The vertical direction is discretised using
the Chebyshev collocation method with derivatives calculated using the Chebyshev
differentiation matrix (Weideman & Reddy 2000) implemented following Uecker (20215).
The number of grid points used, including the boundary, ranges from N, = 65 for results at
R, = 40 to N; = 257 for results at R, = 2; our continuation in R, also uses N; = 257 grid
points. The solutions are obtained by arclength continuation including prediction and

Newton-correction steps from a given solution profile at a nearby parameter; see Uecker
et al. (2014, §2.1) and Uecker (20214, § 3.1). The tolerance of the maximal absolute value
of the residue at each vertical location (L. norm) is set to 107,

The presence of horizontal translation symmetry within the single-mode equations
requires a phase condition whenever k. # 0 in order to fix the solution phase and
obtain a unique solution. The implementation of this condition following Rademacher &
Uecker (2017) requires the predictor ¢ (z, ¢) from a solution ¢ ,,(z, t) to be orthogonal
to iwold(Z/ t):

Z,
. W oz (2, 1) = Woalz t)]7dz = 0, (2.10)

where
Wiz t) = Dz 1), 8z 1), Tz, 1), Sz, t)]T. (2.11)

The horizontally averaged modes are not involved in setting the phase.
To compute a steady nonlinear wave travelling in the x direction with speed ¢ we write
(2.7a)—(2.7d) in the comoving frame,

0B + ik UplW - ick@W - ik U= Prd*iv+ Pr® Rgr(T = R71S), 9,0 (2.12a)

+ ik Upl - ickl + ik, UPW = Pra’g; ", o oT+ (2.12b)
~iky U F = ickyT + W0, Ty + W= B2F, (2.12¢)
0.8+ ik UoS — ick S+ Wd.So+ w= 1S, (2.12d)

and set the time derivatives in these equations and in (2.7¢)—(2.7g) to zero. With the
phase condition (2.10) the resulting problem has a unique nonlinear eigenvalue ¢ and
associated solution profile. Both are updated at each step of the continuation procedure.
Steady solutions have ¢ = 0, typically within the order of machine precision.
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The stability of each solution is examined via the eigenvalues of the associated
Jacobian matrix. The eigenvalue computation uses the eigs command in MATLAB to
compute a subset of the eigenvalues. We compute 40 eigenvalues near 0 to identify
bifurcation points and also compute 1 eigenvalue near 100 to help identify unstable
eigenvalues; see the discussion in Uecker (2021a, Remark 3.12(b)). For validation
we reproduced the results for single-mode equations for Rayleigh—Bénard convection
(Herring 1963, 1964; Toomre et al. 1977), as well as the high-wavenumber asymptotic
single-mode equations for this problem (Bassom & Zhang 1994, §3) and for porous
medium convection (Lewis et al. 1997, § 3). Selected solution profiles and eigenvalues
obtained from pde2path were also validated against the results obtained from the
nonlinear boundary value problem (NLBVP) and eigenvalue problem (EVP) solvers in
Dedalus (Burns et al. 2020), where the EVP solver is chosen to return the full set
of eigenvalues. Finally, selected predictions from the bifurcation diagram and stability
properties (figure 20a) were also validated against DNS (initial value problem solver)
of the single-mode equations (2.7) using Dedalus (Burns et al. 2020).

We also performed 2-D DNS of the primitive equations (2.2) using Dedalus (Burns et
al. 2020) to further analyse the accuracy and stability of the solutions obtained from the
bifurcation analysis of the single-mode equations. We focus on 2-D domains with
periodic boundary conditions in the horizontal and the no-slip boundary conditions (2.5) in
the vertical direction. We use a Chebyshev spectral method in the vertical direction with
N; = 128 grid points with a Fourier spectral method in the horizontal direction with Ny =
128 and a dealiasing scaling factor 3/2. To check the accuracy we doubled the number of
grid points in both x and z directions for selected results and confirmed that the resulting
Sherwood number S in figure 18 (steady rolls resembling the S1 solution) does not change
up to eight decimal places. Time is advanced using a third-order four-stage diagonal
implicit Runge—Kutta (DIRK) scheme coupled with a four-stage explicit Runge—Kutta
(ERK) scheme (RK443) (Ascher, Ruuth & Spiteri 1997, § 2.8). We mention that we do not
expect the DNS results to coincide in all cases with the single-mode results. This is because
the former include, in principle, all spatial harmonics of the fundamental wavenumber; it
is precisely these that are omitted from the single-mode theory. We are interested in
identifying parameter regimes in which the single-mode theory provides quantitatively
accurate results as well as regimes in which it fails. In all cases, the horizontal domain is
selected based on the wavenumber employed in constructing the single-mode solutions, as
described in detail in the next section.

The single-mode equations are parametrised by the horizontal wavenumbers 4, and &,
in addition to the physical parameters, and the main challenge of the approach is
therefore the correct choice of these wavenumbers, cf. Toomre et al. (1977). In fact, salt
fingers have a reasonably well-defined horizontal scale d that depends on both the
thermal and salinity Rayleigh numbers, and hence on the density ratio, as seen in both 3-
D DNS (Yang et al. 2016a) and in experiments (Hage & Tilgner 2010). Our approach
permits us to examine the properties of fingers of different widths through the choice of
the wavenumber k.. In the following, we find that if k, (and k) is close to the onset
wavenumber the resulting single-mode solution represents an accurate description of the
system, in the sense that DNS in a domain of width L, = 2n/k, returns solutions with the
same properties. However, wider fingers in DNS with L, = 2mn/k, generally break up into
fingers with wavenumber £, @ 21/d. In the following we use the wavenumber £, as a proxy
for the domain size and note when such states are in fact unstable to perturbations
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Abbreviation Description Bifurcate from  Stability o(z) Colour

S1 Symmetric one-layer solutions Trivial S/U =0 Black ()
S2 Symmetric two-layer solutions Trivial U =0 Red (__)
S3 Symmetric three-layer solutions Trivial U =0 Blue ()
TF1 Tilted fingers S1 S/u #0  Magenta( _)#
TWI1 Travelling waves S1 S/u 0 Green(__)
A2 Asymmetric two-layer solutions S2 U =0 Cyan (__)
A3 Asymmetric three-layer solutions S3 U =0 Brown (__)

Table 2. Summary of solution features, stability, induced large-scale shear Up(z) and line colour employed in
the bifurcation diagrams (figures 2, 11, 14, 18 and 20). Symmetry is with respect to midplane reflection. Here
S/U indicates both stable and unstable solutions exist along this solution branch and U indicates that only
unstable solutions were found.

with a higher wavenumber, resulting in several fingers in the original 2n/k, domain; in
single-mode theory such instabilities are of course excluded.

3. Single-mode solutions and stability at Pr = 7

We start with the results for Pr = 7, a Prandtl number value appropriate to oceanographic
applications, and fix T = 0.01, corresponding to the diffusivity ratio between salinity and
temperature. The thermal Rayleigh number is fixed at Ray = 10° for a direct comparison
with DNS results (Yang et al. 2015, 2016a). Table 2 provides a summary of the solutions, all
of which are described in more detail in the following. All the solutions in the table are
steady-state solutions, including the travelling waves (TW1) which are computed as steady
states in a frame moving with the phase speed ¢ of the wave. This speed solves a nonlinear
EVP. The bifurcation diagrams presented in this work (figures 2, 11, 14, 18 and 20) all
show the time-averaged Sherwood number S% as a function of the horizontal domain size L,
or equivalently the fundamental wavenumber &, = 2m/Ly, where

Sh:= ho.S|.=oip; + 1 3.1)

with h-ij, indicating average in both the horizontal direction and over time. Without
confusion, h - iy, is also referred to as a mean. In particular, for steady-state single-mode
solutions, we obtain

Sh = hdz_SO|z=Oil + 1= szO|z=O + 1, (32)

where h - i; denotes time-averaging. We also use h - i, to denote averaging in the horizontal.
For time-dependent solutions such as those obtained from DNS, these two types of
averaging yield distinct results.

In the bifurcation diagrams reported in the following, we use thick lines to indicate stable
solutions whereas thin lines represent unstable solutions. When the maximum amplitude
of the large-scale shear mode max; |Up(z)| along a branch is of the order of machine
precision or smaller we report it as zero (table 2). In all other cases Up(z) # 0. When a
large-scale shear is not generated, Uy = 0, the harmonic quantities W(z, t), di(z, t) :=
-iu(z, t), S(z, t) and T(z, t) are real for a suitably chosen phase. Here, the definition of
ii (z, t) is motivated by the continuity equation ikyit + d,w = 0 indicating that for a suitable
choice of phase both i (z, t) and Ww(z, t) may be simultaneously real-valued. This is the case
whenever Up = 0. However, for solutions associated with an induced large-scale shear
(Up # 0) this is no longer so, and we denote the real and imaginary parts of the harmonic
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profile by Re[ -] and Im[ - |, respectively. We refer to the base state in which all variables
within the single-mode theory vanish as the trivial state. This state corresponds to S4 = 1.
Instabilities of this state generate the primary solution branches referred to as S1, S2 and
S3. These branches are continued from their respective origin on the trivial branch, and
their stability and secondary bifurcation points are examined. These give rise to the TF1,
TW1, A2 and A3 solution branches which are also continued as detailed in table 2. Except
for the results with stress-free velocity boundary conditions in § 3.2, all our results are
computed for no-slip boundary conditions.

3.1. Solution profiles and comparison with DNS at R, = 40

We start from the dynamics near onset when R, = 40, i.e. for R,t @ O(1). This is the
parameter regime close to the onset of the salt-finger instability, which occurs at Ry, .
= 1/t in vertically periodic domains (Radko 2013, (2.4)) previously studied by Radko
& Stern (1999, 2000), Xie et al. (2017) and Xie, Julien & Knobloch (2019). We focus on
the bifurcation diagram as a function of k, measuring the finger width, and compare the
results with DNS in domains of length L, = 2mn/k,. This approach provides insight into the
effects of the domain size on a system with a characteristic scale, here d, much as in
Rayleigh—Bénard convection (van der Poel er al. 2012; Wagner & Shishkina 2013;
Goluskin et al. 2014).

Figure 2 shows the bifurcation diagram at R, = 40 with no-slip boundary conditions.
We consider both 2-D results with k, = 0 in figure 2(a) and 3-D results with &k, = k&, in
figure 2(b) indicating the same aspect ratio in the x and y horizontal directions. Here, the
bifurcation diagram for the 3-D states with no large-scale flow Uy can be transformed into
the diagram for the 2-D states upon defining an equivalent 2-D horizontal wavenumber

q
kio-p = K2+ K2 (3.3)

This is because the horizontal wavenumbers in the single-mode equations (2.7) for these
states always appear in the combination k)% + k2. This is not the case when Uy # 0 and in
this case the TF1 states are indeed no longer identical as elaborated in figures 14 and 20.

The solutions S1, S2 and S3 all bifurcate from the trivial solution. The S1, S2 and S3
solution profiles with k, = 8, k, = 0 are shown in figure 3. The horizontally averaged
total salinity profiles z + So(z) in figure 3(a) show that these solutions are associated
with one, two and three mixed layers, respectively, with reduced vertical gradient,
resembling the staircase structures observed in field measurements (e.g. Schmitt et al.
1987). Staircase-like solutions are also shown in some snapshots from 2-D DNS (Piacsek &
Toomre 1980, figure 2) and reproduced by Zhang et al. (2018, figure 3). Recent 3-D DNS
results show the coexistence of multiple states with one, two or three mixed regions using
different initial conditions (Yang et al. 2020, figure 2). In all three cases the mixed regions
correspond to large values of the salinity amplitude S as shown in figure 3(b),
as well as a large vertical velocity W as shown in figure 3(d). In contrast, the horizontal
velocity in figure 3(c) peaks outside of the mixed region in each solution. See § 3.3 for
further discussion.

The second row of figure 3 reconstructs the total salinity using (2.6a) and (2.1), whereas
the third row of figure 3 shows the isocontours of thg 2-D streamfunction computed as

W(x,z) = golz) + PY(z)e™ + c.c. with Yo(z) = - Uo(€)d€ and ) = W/(iky). The
isocontours are equispaced between £0.9 of the maximum value. The solid (black) line is
used for positive (clockwise) streamlines whereas the dashed (blue) line indicates negative
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(a) 2-D:k,= 0 (b) 3-Dik, =k,

Sh 3 TF1 3 L ITF1
S 2 81 )
2 RS DRl 2 P
2 3 4 5 6 7 1 2 3 4 5
X kx

Figure 2. Bifurcation diagrams as a function of the fundamental wavenumber 4, from the single-mode
equations (2.7) for (a) two dimensions, ky, = 0, (b) three dimensions, k, = k, and the parameters R, = 40, Pr
= 7, = 0.01 and Rar = 10°. The black squares show the Sh of the steady state reached using 2-D DNS in
domains of size Ly = 2n/k, (table 3); the black pentagram corresponds to DNS with L, = 2mn displaying
persistent chaotic behaviour. Panels (¢) and (d) show enlarged views of the 2-D and 3-D results near the TF1
branch, respectively.

(counterclockwise) streamlines throughout this work. These results suggest that each
mixed region is associated with one downward and one upward moving plume. As salinity
tends to be homogenised in regions of closed steady streamlines (Rhines & Young 1983)
whereas salinity gradients are expelled from these regions, the resulting mean salinity
exhibits an overall staircase-like profile.

Previous analysis of salt-finger convection in the spirit of single-mode solutions (Proctor
& Holyer 1986; Radko & Stern 2000) also found the S1 type of solution, but S2 and S3
solutions were not found. This is likely because these studies (Proctor & Holyer 1986;
Radko & Stern 2000) focused on the asymptotic behaviour close to the onset of instability
but did not go beyond the first bifurcation point from the trivial solution.

We also examined secondary bifurcations of the solutions S1, S2 and S3 in figure 2(a),
focusing on the bifurcation points closest to their high wavenumber onset. The resulting
secondary branches are of two types, corresponding to tilted fingers (TF1) and asymmetric
layer spacing (A2 and A3). These states break the left-right reflection and the midplane
reflection symmetry, respectively, as revealed by the corresponding solution profiles shown
in figures 4 and 5. The mean salinity profile z+ Sy for TF1 in figure 4(a) is associated

with two mixed regions near z & [0.2, 0.4] and z & [0.6, 0.8], whereas in the interior

z@[0.4, 0.6] the profile is close to linear. The corresponding profile of S in figure 4(b) has
both real and imaginary components with even and odd symmetry with respect to the
midplane, respectively, indicating that the harmonics are no longer in phase in the
vertical. The reconstructed total salinity shown in figure 4(c) reveals that the finger is
now tilted; see also the streamfunction shown in figure 4(d). The tilted finger generates a
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Figure 3. Solution profiles from the single-mode equations (2.7) in the form of S1, S2 and S3 when &k, = 8, k;
= 0,Rp = 40,Pr= 7,t= 0.01 and Rar = 105. The first row shows the profiles of (@) z+ So, (b) S, (¢) éiand (d)
w. The second row shows the reconstructed total salinity using (2.6a) and (2.1) for (e) S1, (f) S2 and (g) S3
solutions. The third row shows isocontours of the streamfunction for (%) S1, (i) S2 and (j) S3 solutions.

non-zero large-scale shear with max, Up(z) = 3.16 x 107*. The profile of the large-scale
shear is shown farther below (figures 17a and 21b) for parameter values for which it is
much stronger. A similar tilted finger state accompanied by large-scale shear was observed
in earlier simulations of the single-mode equations (Paparella & Spiegel 1999) whereas
observations of tilted fingers are reported in the NATRE (St. Laurent & Schmitt 1999,
figure 3) and C-SALT field measurements (Kunze 1990, figure 15) as well as in laboratory
experiments on salt-finger convection; see, e.g. Taylor & Bucens (1989, figure 2) and
Krishnamurti (2009, figure 2). Shear-associated tilting has also been widely reported in
experiments on Rayleigh—Bénard convection (Krishnamurti & Howard 1981) as well as in
DNS of 2-D Rayleigh—Bénard convection (Goluskin et al. 2014); see the review by Siggia
(1994).
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Figure 4. Solution profiles of the TF1 state from the single-mode equations (2.7) with kx = 4, k= 0,Rp =
40, Pr= 7,7 = 0.01 and Rar = 10°. Panels (a) and (b) show the profiles of z + So and S; respectively, whereas
panels (c¢) and (d) show the reconstructed total salinity using (2.6a) and (2.1) and the isocontours of the
streamfunction.
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Figure 5. Solution profiles of the A2 and A3 states from the single-mode equations (2.7) with kx = 8,k, = 0, Rp
= 40, Pr= 7, T = 0.01 and Rar = 10°. The first row shows the profiles of () z+ So, (b) S, (¢) it and (d)
w. The second row shows the reconstructed total salinity using (2.6a) and (2.1) and the isocontours of the
streamfunction for (e) A2 and (f) A3.

The solution profiles in figures 5(a)-5(d) indicate that the A2 and A3 solutions
spontaneously break the midplane reflection symmetry; states obtained via reflection in the
midplane are therefore also solutions. In particular, the profile z + So(z) no longer passes
through (1/2, 1/2). However, the reconstructed total salinity profile and the isocontours of
the streamfunction in figures 5(e) and 5(f) still resemble, qualitatively, the S2 and S3
profiles that distinguish these two asymmetric solutions. In particular, the A2 streamlines
show two counter-rotating but unequal rolls in the vertical whereas the A3 solution exhibits
three counter-rotating rolls, much as in the S2 and S3 states shown in figures 3(i) and
3(j). Solutions that are asymmetric with respect to midplane reflection have been seen in
magnetoconvection with a depth-dependent magnetic diffusivity (Julien, Knobloch &
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Figure 6. DNS results showing the total salinity z + S(x, z, #) across an S1 fingeratz = 0.1,0.3 and 0.5ina
Ly = 21/10 domain with parameters R, = 40, Pr= 7,t = 0.01 and Rar = 10°.

Tobias 2000, figure 17) but are a consequence of forced symmetry breaking. Here, such
asymmetric solutions originate from spontaneous symmetry breaking.

The stability of these solutions is indicated by thick (stable) and thin (unstable) lines in
figure 2. The single-mode S1 solution is stable near both ends but loses stability to TF1 for
intermediate wavenumbers k. However, in either case the stable solution corresponds to
the largest Sh among all the solutions shown in the figure, a finding that is broadly
consistent with the ‘relative stability’ criterion of Malkus & Veronis (1958). However, this is
no longer so for smaller Prandtl numbers, as discussed in § 4.

The dynamics of unstable solutions are typically not easy to isolate and analyse without
suitable initial conditions. Here, we use our single-mode solutions as initial conditions for 2-
D DNS to provide additional insight into their stability. We set the horizontal domain size
as Ly B [21/18, 4m] and then use the single-mode solution profile at ky = 2n/Ly, k, =
0, to construct a 2-D initial condition using the ansatz in (2.6). The final state after ¢ =
3000 for different L, and initial conditions based on S1, S2, S3 and TF1 solutions is
summarised in table 3. For small horizontal domains (L, 6 2m/10) the domain constrains
the finger to be tall and thin and the DNS results with S1, S2 and S3 initial conditions all
transition to a solution resembling the one-layer solution S1. This is consistent with the
stability observation in the bifurcation diagram in figure 2. The DNS also provides the
final Sh numbers and these values are plotted using black squares in figure 2(a). The
predicted S& from the single-mode solution is close to the DNS results, especially close to
the high wavenumber onset of the S1 solution (kx = 19.251). The accuracy of the single-
mode equations close to the high wavenumber onset is a consequence of the strong damping
of modes with wavenumbers &, = 2nn/Ly (nBZ andn> 2, e.g. ky = 4n/Ly, ky = 61/Ly)
that leaves only the trivial solution at these wavenumbers (see figure 2). As k, decreases, the
DNS results start to deviate from the single-mode predictions (figure 2a), a consequence of
the departure of the horizontal salinity profile from the assumed sinusoidal form; see, e.g. the
total salinity atz = 0.1 in figure 6.

The final states in a domain of size L, = 2m/8 initialised by S2 and S3 show
different flow structures. Figure 7 shows DNS results initialised with S2 and Ly = 2n/8.
The horizontally averaged salinity deviation hSiy(z, ¢) in figure 7(a) takes the requisite
two-layer form for short times but then begins to oscillate in time. After averaging over
time and in the horizontal direction, the total salinity profile z + hSi,, in figure 7(b)
shows two mixed regions, with a broad interior region that is close to a linear profile. In
fact, this oscillation and the two associated mixed regions in the mean salinity profile
persist to at least # = 30,000 (not shown). This behaviour is similar to the TF1 single-mode
solution as shown in figure 4(a). The mean salinity profile in figure 7(b) also resembles the
mean temperature profile in Rayleigh—Bénard convection with induced large-scale shear
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Ly
1C 2rn/18  2m/16  2m/14  2n/12  2m/10 2n/8 2n/6 2n/4 2n/2 2n 4n
S1 S1 S1 S1 S1 S1 S1(2) S1(@2) S1@3) S1() C C
S2 — S1 S1 S1 S1 RTF S1(2) S1(3) S1(5 — —

S3 — — Sl Sl SI  S1(2 Sl S13 — @— —
TF1  — — — — — — 812 SI(3) Sl — —

Table 3. The flow structures from 2-D DNS simulations at # = 3000 in domains of size L, and initial condition
(IC) constructed from S1, S2, S3 and TF1 solutions using the ansatz (2.6) with kx = 2n/Ly, k, = 0. RTF
indicates direction-reversing tilted fingers and C represents chaotic behaviour; ‘—’ indicates that a non-zero
single-mode solution at kx = 2m/Ly is not present based on figure 2(a). The number n B Z inside a bracket
indicates that the final horizontal wavenumber reached by the solution is ky = 2mn/Ly, n > 1, i.e. that the
evolution results in a changed wavenumber.
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Figure 7. Two dimensional DNS showing (a) horizontally averaged salinity hSiy(z, t) and (b) time-averaged
and horizontally averaged total salinity z + hSij,. The second row shows isocontours of the total salinity z +
S(x,z,t)at(c)t= 32,(d)t= 35and(e)t= 38. The horizontal domain size is Ly = 2m/8 with initial condition in
the form of a S2 single-mode solution with &x = 2rn/Ly = 8, &y, = 0. The parameters are Rp = 40, Pr= 7,7 =
0.01 and Rar = 103, See supplementary movie 1 available at https://doi.org/10.1017/jfm.2022.865.

(Goluskin et al. 2014, figure 5b), where the temperature profile shows two mixed regions
close to the boundary, and an interior that approaches a linear profile with increasing
Rayleigh number. The three snapshots of the total salinity in figures 7(c)-7(e) reveal
that this behaviour is associated with a new state, a direction-reversing tilted finger
(RTF). Such behaviour is also observed within simulations of the single-mode equations
(Paparella & Spiegel 1999) (termed a layering instability there) and is accompanied by an
oscillating large-scale shear. The direction-reversing tilted finger state also resembles (at
least phenomenologically) the ‘pulsating wave’ found by Proctor et al. (1994, figure 7) and
Matthews et al. (1993, figure 5) in magnetoconvection as well as large-scale flow reversals
observed in Rayleigh—Bénard convection (Sugiyama et al. 2010; Chandra & Verma 2013;
Winchester, Dallas & Howell 2021). We have not explored the origin of this state but note
that similar ‘pulsating waves’ in other systems originate from a sequence of local and
global bifurcations of a tilted convection roll (Matthews et al. 1993; Proctor et al. 1994;
Rucklidge & Matthews 1996).
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Figure 8. Two dimensional DNS results showing (a) the horizontally averaged salinity hSis(z, t) and (b) the
total salinity z + S(x, z, t) at z = 0.1. The horizontal domain size is based on Ly = 2n/8 with S3 single-mode
initial condition with ky = 2n/Ly = 8 and k,, = 0. The parameters are Rp = 40, Pr= 7,7 = 0.0l and Rar = 103.
See supplementary movie 2 available at https://doi.org/10.1017/jfm.2022.865.
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Figure 9. Two dimensional DNS results for the total salinity z + S(x, z, t) at £ = 3000 in a horizontal domain
of size Ly = m initialised by (a) S1, (b) S2 and (c) TF1 single-mode solutions with kx = 2rn/Ly = 2and k, = 0.

Figure 8 shows the DNS results with an S3 initial condition and L, = 21/8 and displays
the dynamics that are typically involved in transitioning to a higher wavenumber S1
solution. The profile of hSij, in figure 8(a) initially shows a three-layer structure but starts to
oscillate prior to a transition to the one-layer state S1 at # = 30. After ¢t = 160, this one-
layer solution transitions to another one-layer solution but with a smaller magnitude in
hSi,. The total salinity near the lower boundary, z = 0.1, is shown in figure 8(b) and
further explains this transition scenario. The one-layer solution starts to tilt at # = 110
and begins to show oscillations at # = 130. Beyond # = 160, the horizontal wavenumber
doubles leading to the S1 (2) state in table 3. Such a transition to a higher wavenumber S1
solution is also observed with horizontal domains L, B [21/6, 21/2], albeit with different
possibilities for the final wavenumber. Note that such transitions between different
horizontal wavenumbers are not possible within the single-mode approach.

For L, = m, the final state shows different horizontal wavenumbers depending on the
three different initial conditions S1, S2 and TF1 as indicated in table 3. The total salinity at
t = 3000 in these three final states is shown in figure 9. Although the horizontal domain size
and the governing parameters are the same, different initial conditions lead to different final
horizontal wavenumbers and the DNS results suggest that these persist up to at least ¢ =
3000. This observation suggests that for L, = m the three initial conditions S1, S2 and TF1
all lie in the basin of attraction of S1 solutions but associated with different and larger
horizontal wavenumbers. This is, of course, a consequence of the preferred horizontal
scale of the fingers. Note that the S3 solution does not exist for this domain size; see
figure 2(a) and table 3. Rolls with different horizontal wavenumber obtained from different
initial conditions are a familiar phenomenon in Rayleigh—Bénard convection (Wang et al.
2020) and in spanwise rotating plane Couette flow (Xia et al. 2018; Yang & Xia 2021).
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Figure 10. Two dimensional DNS results displaying (a) total salinity z+ S(x,zt) at z= 1/2, (b)
h[Fx(S)|ic(z; kx), (c) h| Fx(u)|is(z; kx), (d) z+ hSij¢(z), and snapshots of the horizontally averaged total salinity z
+ hSin(z, t) at (e) t = 416, (f) t = 437 and (g) ¢t = 478. The horizontal domain size is L, = 2m initialised by a
S1 solution with &y = 2rn/Ly = 1, k, = 0. The governing parameters are Rp = 40, Pr= 7, t = 0.01 and Rar =

10.

Solutions that do not reach a well-organised structure will be referred to as chaotic.
Such behaviour is observed in large L, domains. For example, single-mode S1 solutions
with by = 1 (Ly = 2m) and ke = 0.5 (L, = 4m) are stable as shown in figure 2(a) but DNS
initialised by these solutions ultimately exhibit chaotic behaviour. This is a consequence of
the harmonics of the fundamental wavenumber £, included in the DNS. The total salinity
in the midplane for L, = 2m is shown in figure 10(a), and displays chaotic behaviour with
multiple downward and upward plumes in the horizontal. In order to further characterise
the horizontal length scale, we computed h|Fy(S)|i/(z; kx) and h|Fy(u)|is(z; k), where
E x(+) is the Fourier transform in the x-direction and |-| represents the modulus of the
obtained complex Fourier coefficients. The results are shown in figures 10(b) and 10(c).
The ky = 0 component of h|Fy(-)|i;(z; k) is related to the amplitude of the horizontal
mean (- )9 whereas the k # 0 contributions to hIF () \is(z; ky) are associated with the
harmonic components (*) in the single-mode ansatz (2.6). Figure 10(b) displays a peak
at k. = 0 that corresponds to the deviation of the mean salinity from its linear profile.
A second peak around &y = 9 in figure 10(b) corresponds to a wavenumber that is close
to that providing the largest Sh in the S1 solution shown in figure 2(a). However, in the
midplane, the peak wavenumber shifts to &, = 13.

The Fourier transform of the horizontal velocity enables us to isolate the role of the S1,
S2 and S3 solutions. The plot of h| F.(u)|i;(z; k) in figure 10(c) reveals a stronger peak at
ky = 9 but now at multiple locations dominated by regions near the boundaries, with a
lower amplitude near z = 1/3 and 2/3, the peak region of the horizontal velocity i in the
three-layer solution S3 shown in figure 3(c). Note that the horizontal velocity in the S1
and S2 solutions almost vanishes at these locations as shown in figure 3(c). Furthermore,
h|Fy(u)|i;(z; ky) also shows a local peak at ky = 1 near the midplane resembling the
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horizontal velocity i of the two-layer solution S2, whereas the horizontal velocity in the S1
and S3 single-mode solutions vanishes in the midplane as shown in figure 3(c). These
observations suggest that the unstable S2 and S3 solutions both play a role in the chaotic
behaviour and that their properties may manifest themselves in the statistics of the chaotic
state, cf. Kawahara & Kida (2001) and the reviews by Kawahara et a/. (2012) and Graham &
Floryan (2021).

In order to further quantify the role of unstable solutions, we plot in figures 10(e)—10(g)
the horizontally averaged profiles at three different times for comparison with the
horizontally averaged time-averaged state in figure 10(d). Although the salinity profile in
the latter state does not show a significant staircase, the horizontally averaged salinity
profiles at the two times shown in figures 10(e) and 10(f) do in fact show a tendency
towards three and two steps, respectively, whereas the snapshot in figure 10(g) shows
instead a salinity profile that temporarily breaks the midplane reflection symmetry. These
results provide evidence that the chaotic state visits the neighbourhood of not only the
unstable staircase-like solutions S2 and S3 but also of the asymmetric solution. The
time-averaged Sh within ¢ @ [100, 500] is Sh = 2.8693, a value lower than the maximum
Sh for S1 but higher than those for S2 and S3 at the suggested peak wavenumber £, = 9 as
shown in figure 2(a), and suggests that these states may play a role in determining the time-
averaged salinity transport in this chaotic state.

3.2. No-slip versus stress-free boundary conditions

Although no-slip boundary conditions are relevant for experiments (Hage & Tilgner 2010),
stress-free boundary conditions are more appropriate for oceanographic applications. Here
we compare the bifurcation diagram in the no-slip case with the corresponding diagram
with stress-free boundary conditions. For this purpose we replace the original no-slip
boundary conditions in (2.5) by the stress-free boundary conditions

w(x,y,z= 0,t)= w(x,y,z=1,t)= 0, (3.4a)
o-u(x,y,z= 0,t) = Ozu(x,y,z= 1,t)= 0, (3.4b)
o:v(x,y,z= 0,t)= 0.v(x,y,z= 1,1) = 0. (3.4¢)

Within the single-mode equations, the corresponding velocity boundary conditions in (2.9)
are thus replaced as

W(z= 0,8)= Wwz= 1,1)= 02W(z= 0,1)= 02(z= 1,1) (3.5a)
= 0.0(z= 0,¢)= 0.8(z= 1,1) = 0.Up(z= 0,¢) = 0.Up(z= 1,1) = 0. (3.5b)

Note that the governing equations with stress-free boundary conditions admit an additional
Galilean symmetry: the large-scale shear can be shifted by an arbitrary constant,

o > Uy + C. To obtain unique solutions we therefore impose the additional constraint
o Uolz, t)dz = 0 following the procedure in Uecker (20214, § 6.9).

Figure 11 shows the resulting bifurcation diagrams for comparison with figure 2. The
diagrams are very similar: all of the previously discussed solution branches are still
present. The main difference is that the stress-free boundary conditions typically lead to a
larger Sk than the no-slip boundary conditions at the same horizontal wavenumber. This
behaviour is also consistent with the observation by Yang, Verzicco & Lohse (2016b),
where 3-D DNS results indicate that the flow morphology is qualitatively similar but
stress-free boundary conditions display a larger Sh. Figure 11(a) compares the single-mode
results with the corresponding steady state S/ reached using 2-D DNS in domains of
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Figure 11. Bifurcation diagrams computed from the single-mode equations (2.7) with the same parameter
values as in figure 2 but stress-free velocity boundary conditions at the top and bottom. The black squares show
the corresponding steady state Sh reached using 2-D DNS in domains of size L, = 2n/k,. Panels (¢) and (d)
show enlarged views of the 2-D and 3-D results near the TF1 branch, respectively.

size Ly = 2n/ky (black squares) showing good agreement provided the domain width L, is
sufficiently narrow, i.e. for k, sufficiently close to the stress-free onset wavenumber £k,
= 19.298.

Figure 12 displays solution profiles and total salinity for the S1, S2 and S3 solutions at
the same parameter values as in figure 3 but with stress-free instead of no-slip boundary
conditions. Here, the horizontally averaged total salinity z + Sy still displays the one-layer,
two-layer and three-layer solution profiles in the vertical. The horizontal structure of these
states is qualitatively similar to the no-slip results in figure 3. The main difference is that
the horizontal velocity i1 and the gradient of vertical velocity d,w no longer vanish at the
boundaries.

Figure 13(a) displays the A2 and A3 solution profiles with stress-free boundary
conditions. The A2 solution exhibits a similar profile as in the no-slip boundary condition
case shown in figure 5(a), whereas the horizontally averaged salinity in A3 differs from
that found with the no-slip boundary conditions. Figure 13(») shows the isocontours of
the streamfunction in A3, and shows two large and one small recirculation cell in the
vertical direction, whereas figure 5(f) shows one large and two small cells in the
vertical. Here, the A3 solution in the stress-free boundary condition case originates from a
secondary bifurcation at k, = 13.665 on the S3 branch, whereas there is another secondary
bifurcation at k, = 13.703 (not shown in figure 11) that is closer to the high wavenumber
onset of the S3 state (k, = 15.573) and that preserves midplane reflection symmetry.
The mean salinity of the state shown in figure 13(c) resembles the mean temperature
profile in magnetoconvection (Julien et al. 2000, figure 7b), and the isocontours of the
streamfunction in figure 13(d) show one large and two small closed streamlines that are
similar to those in the A3 solution with no-slip boundary conditions in figure 5( /). The fact
that this additional secondary bifurcation appears closer to the high wavenumber onset of
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Figure 12. Solution profiles from the single-mode equations (2.7) in the same parameter regime as figure 3
but with stress-free velocity boundary conditions at the top and bottom. The first row shows the profiles of (a)
z+ 8o, (b) 8, (¢) it and (d) . The second row shows the reconstructed total salinity using (2.6a) and (2.1) for
(e) S1, (f) S2 and (g) S3 solutions.
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Figure 13. Solution profiles on the secondary branches computed from the single-mode equations (2.7) in the
same parameter regime as figure 5 but with stress-free velocity boundary conditions at the top and bottom.
Panel (a) shows the profiles of z + Sp of the A2 and A3 solutions, whereas panel (b) displays the isocontours of
the streamfunction of the A3 solution. Panels (¢) and (d) show z + Sp and the isocontours of the streamfunction
for a steady solution preserving midplane reflection symmetry generated in a secondary bifurcation of the S3
solution.

S3 than the bifurcation to the A3 branch likely contributes to the difference in the solution
profiles of the A3 state with stress-free and no-slip boundary conditions.

3.3. Dependence on density ratio

Oceanographic conditions display a wide range of density ratios, and this subsection
therefore explores the dependence of our results on the density ratio. In particular, the
staircases observed in oceanographic observations, laboratory measurements and DNS
are typically associated with the parameter regime R, B O(1) (Schmitt et al. 1987;
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Figure 14. Bifurcation diagrams as a function of the wavenumber &y from the single-mode equations (2.7)
with (a) two dimensions, &k, = 0 and () three dimensions, k, = ky. The governing parameters are R, = 2, Pr
= 7,T= 0.01,and Rar = 10°. Panels (c—d) are enlarged views of the 2-D results in panel () and panels (e—f)
are enlarged views of the 3-D results in panel (b).

Krishnamurti 2003, 2009; Radko 2003) that is far away from the onset of the salt-finger
instability Rp,crir = 1/T with T = 0.01.

Figure 14 shows the bifurcation diagram with density ratio R, = 2 and no-slip boundary
conditions for (a) 2-D results with k, = 0 and (b) 3-D results with k, = k.. Here, we
focus on the S1, S2, S3 and TF1 solution branches, as well as a new travelling wave
(TW1) solution branch that does not exist when R, = 40. Note that in this case non-trivial
solutions exist over a wider range of horizontal wavenumbers than for R, = 40 (figure 2),
suggesting that the finger width depends not only on Ra7 but also on the density ratio R,.
Here, the Sk of the S1, S2 and S3 solutions in the 2-D and 3-D configurations are still
the same after converting the results by rescaling the horizontal wavenumber according
to (3.3). However, the stability of the S1 solutions is now different and the secondary
bifurcation points on S1 that lead to TF1 and TWI1 also differ. This can be seen in
the enlarged views of regions close to the appearance of TF1 and TW1 in figures 14(c)—
14(f). Specifically, the bifurcation points leading to the TF1 and TW1 branches in two
dimensions are closer to the high wavenumber onset &, = 46.884 of the S1 solution than
in three dimensions, suggesting that the 2-D configuration forms tilted
fingers or travelling wave solutions more readily. This is consistent with the suggestion
that large-scale shear is generated more easily in a 2-D configuration than in a 3-D
configuration (Goluskin et al. 2014).

The S1, S2 and S3 solution branches at R, = 2 in figure 14 exhibit much larger Sk than
those at R, = 40 in figure 2. This is expected as a lower density ratio indicates stronger
destabilisation by the salinity gradient. Figure 15 shows profiles of the S1, S2 and S3
solutions at R, = 2 and k = 17.5, k, = 0. Here, the mixed region in the horizontally

averaged total salinity z + So(z) in figure 15(a) corresponds to almost constant salinity
compared with the solution profile at R, = 40 in figure 3(a). Outside of this region, both
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Figure 15. Solution profiles from the single-mode equations (2.7). The first row shows the profiles of (a)
z+ 8o, (b) S, (c) it and (d) . The second row shows the reconstructed total salinity using (2.6a) and (2.1) for (e)
S1, (/) S2 and (g) S3 solutions. The parameter values are ky = 17.5,k,= 0,Rp = 2,Pr= 7,7 = 0.01 and Rar =

10°.

the profile z + So(z) and the isocontours of total salinity in figures 15(e)—15(g) exhibit
sharper interfaces than those at R, = 40 in figure 3. This is consistent with the observation of
well-defined staircases in flow regimes with R, @ O(1) in field measurements (Schmitt et al.
1987) and laboratory experiments (Krishnamurti 2003, 2009) as well as in DNS

(Radko 2003). The vertical profiles of the salinity harmonic S in the S1, S2 and S3 states
shown in figure 15(b) all show a local overshoot associated with the sharp interfaces.
Both the horizontal velocity and the vertical velocity in figures 15(¢)—15(d) show a larger
magnitude compared with the R, = 40 results in figures 3(c)-3(d).

Figure 16 combines the mean salinity profiles of the S1, S2 and S3 single-mode solutions in
figure 15(a) with constant salinity outside of the region z @ [0, 1] on the assumption that
each layer is well mixed. The figure shows that salt-finger convection can distort a linear
mean salinity profile into a staircase-like profile in z B [0, 1], particularly when R, is
relatively small. Although other mechanisms may be involved in the ocean leading to layer
formation, merger and migration, including the presence of a diffusive regime (cold fresh
water on top of warm salty water) (Timmermans et al. 2008; Radko 2016; Yang et al. 2022)
or stratified shear flow (Oglethorpe, Caulfield & Woods 2013; Lucas, Caulfield & Kerswell
2017; Taylor & Zhou 2017; Lucas, Caulfield & Kerswell 2019), our work suggests that in
horizontally extended domains shearing instabilities may disrupt the finger zones that form
the S1, S2 and S3 profiles without destroying the associated staircase structure, leading to
well-mixed layers of the type observed in the oceans.

We now focus on the solutions TF1 and TW1 originating from secondary bifurcations of
the S1 state. Figure 17(a) shows the associated large-scale shear Uy(z) of TF1 and TWI.
This shear is antisymmetric with respect to the midplane for TF1 but symmetric for TW1.
Figure 17(b) shows the total salinity profile for a tilted finger with a larger tilt angle
compared with the tilt at R, = 40 shown in figure 4(c). Figure 17(c) shows the total
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Figure 16. Sketch of the mean total salinity profile z + So(z) between two well-mixed regions, where the
interior z @ [0, 1] is associated with (a) a linear base state, (b) S1 solution, (c¢) S2 solution and (d) S3 solution. The
S1, S2 and S3 single-mode solutions are obtained from figure 15(a) associated with ky = 17.5, &k, = 0,Rp = 2,

Pr= 7,7t = 0.01 and Rar = 10°.
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Figure 17. Solution profiles from the single-mode equations (2.7) showing (a) the large-scale shear Uy and the
total salinity for (b) TF1 and (c) TW1. The governing parameters are ky = 17.5,k, = 0,Rp = 2, Pr= 7,1 =
0.01 and Rar = 10°.

salinity of TW1 in the comoving frame, with structures that tilt in opposite directions
above and below the midplane. This alternating tilt direction resembles the ‘wavy fingers’
tilted either left or right observed in experiments (Krishnamurti 2003, figure 7), although
whether such ‘wavy fingers’ travel depends on the boundary conditions in the horizontal.

The stability properties of these solutions are also indicated in figure 14 and are similar to
those for high density ratios (figure 2). Here, the S1 solution is stable near the onset, but
loses stability to tilted fingers. The solutions S2 and S3 are still unstable within all of the
current parameter regime. The travelling wave appears to gain stability within a certain
wavenumber regime close to the low wavenumber onset, as indicated in the enlarged views in
figures 14(c) and 14(e). As the single-mode solutions are expected to be more accurate in
the high wavenumber regime, cf. figure 2(a), we postpone a study of the dynamics of TF1
and TW1 to the lower Prandtl number considered in § 4 where these states form at higher
wavenumbers.

Figure 18 displays the dependence of the Sh on the density ratio R, for r = 0.01 for 3-D
results with &, = k, based on the scaling law

ke = ky = RO1251/(14.8211Rag"?4%), (3.6a)
gB1Sh3  Rar
Ras := KS—V = m, (36b)

obtained through a least-squares fit of the finger width computed from 3-D DNS (Yang et
al. 2016a, figure 13b). Here, we can see that the S1 solution remains stable near onset, and
then bifurcates to stable tilted fingers (TF1) as R, decreases. The figure also shows the
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Figure 18. (a) Bifurcation diagrams displaying Sk as a function of the density ratio R, from the single-mode
equations (2.7) with wavenumbers k, and &, given by the scaling law (3.6a). The other parameters are Pr= 7, T
= 0.01 and Rar = 10°. The black star (@) is obtained from 3-D DNS (Yang et al. 2015, table 1). The black
square () is obtained from 2-D DNS results in a horizontal domain of size Ly = 2n/ky,2-p = 21/( 2ky) With
ky given by (3.6a). (b) Plot of the results in (a) in compensated form to exhibit the scaling exponent.

Sh from 3-D DNS data (Yang et al. 2015, table 1) psing black stars. We also perform 2-D
DNS in domains of size Ly = 2n/ky 2-p = 21/( 2k,) with k, given by (3.6a). Note that our
simulation results do not display a smooth transition to the S4 from the 3-D results (Yang
et al. 2015), which is likely due to the intrinsic difference between 2-D and 3-D
simulations and possibly different domain sizes. However, the Si obtained from the S1
single-mode solutions agree well with the DNS results near the high density ratio onset. At
lower density ratios, the single-mode solution S1 and TF1 both overpredict the DNS
results. This may be because both are steady-state solutions, whereas the DNS results
exhibit time-dependent behaviour which likely reduces the time-averaged S/ number.

We find that Sh @ R=9-3 for the single-mode solutions within the range R, @ [0.1, 2]
and fixed Ra; = = 10° and t = 0.01, indicating that for these values of Ra r and T,
Sh RaO 30 as a function of the salinity Rayleigh number defined in (3.6b). This result
agrees well with the scaling law of the Nusselt number, Nu & Rao 30(1n Rar)%2°, obtained
from single-mode solutions for Rayleigh—Bénard convection and Wavenumber scahng as ky

@ Ra'* (Gough et al. 1975, p. 713). The scaling law in (3.6a) employed here with a fixed
R, is also compatible with k, B Ra" emplloyed in Rayleigh—Bénard convection (Gough
et al. 1975). Figure 18(b) displays the compensated Sherwood number S R%-30,

showing that the S1 solutions from both the single-mode approach and DNS (Yang efal.
2015) follow the same Sh [ R 0.3 scaling law. Note that the DNS results for salt-finger

convection in the asymptotic reg1me of high Rag instead suggest Sh & Ra 13 (Yang et al.

2015, figure 7a) whereas experimental results suggest Si [ Ra4/ ? (Hage & Tilgner 2010,
figure 8). The parameter regime considered here is within the reglme Ras 6 108, a value
that may be insufficient to reliably establish the asymptotic scaling; see, e.g. Yang et al.
(2015, figure 7a) and Yang et al. (20165, figure 3a). The TF1 solutions suggest the scaling
law Sh B R7927 or Sh Ra0'257 for fixed Ray and t. This is consistent with the observation in
Rayleigh—Bénard convection that the formation of the large-scale shear decreases the
scaling exponent n of Nu & Ra ’7’, see, e.g. Goluskin et al. (2014, figure 4).

Figure 19 shows the corresponding mean salinity and temperature profiles at the same
parameter values as those used for the 3-D DNS results in Yang et al. (2015, figure 2a).
The solution profiles from the single-mode equations closely match the qualitative trend of
the mean salinity and temperature profiles as a function of the density ratio in the DNS
results (Yang et al. 2015, figure 2a). In particular, both the single-mode and DNS
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Figure 19. Solution profiles from the single-mode equations (2.7) displaying horizontally averaged total
salinity (black solid lines) and horizontally averaged total temperature (blue dashed lines). Solution profiles
are labeled by integers and correspond to Ry, = 10,5,2,1,0.5,0.2 and 0.1 from left to right. Other parameter

values are Pr= 7,7 = 0.01 and Rar = 103, with ky = ky given by the scaling law in (3.6a).

results show that the mean salinity profile displays a mixed region in the layer interior, and
that both show a small overshoot (a thin stably stratified region) near the top and bottom
boundaries. The mean total temperature remains close to a linear profile, however, and
shows a visible deviation from a linear profile only at R, = 0.1, a fact also consistent with

DNS observation (Yang et al. 2015, figure 2a).

4. Tilted salt fingers and travelling waves at Pr = 0.05

The bifurcation diagram for a low density ratio, R, = 2, and Pr = 7 displays a branch of
steady tilted fingers (TF1) and a branch of travelling waves (TW1), both of which bifurcate
from the symmetric one-layer solution S1 at intermediate wavenumbers. Here, we study
these states in the low Prandtl number regime that pushes the bifurcations to TF1 and TW1
to higher wavenumbers and, hence, closer to the high wavenumber onset, where we expect
the single-mode solutions to be accurate. Low Prandtl number salt-finger convection is of
interest in astrophysical applications, where molecular weight gradients compete with
thermal buoyancy but heat transport is dominated by photon diffusion (Garaud 2018).
However, to keep the notation consistent with the previous sections, we continue to use the
symbol S to represent the higher molecular weight component and refer to it as salinity.
The results presented here for Pr = 0.05 parallel those for Pr= 7 in §3.1 in order to
highlight the effect of a low Prandtl number.

Figure 20 shows the bifurcation diagram for the parameter values used in figure 2 but
with Pr = 0.05. Here, we focus on the solution branches S1, TF1 and TW1; the S2 and S3
branches are omitted because neither their Sherwood number nor their overall stability
changes when the Prandtl number changes from Pr= 7 to Pr= 0.05. Compared with the
Pr = 7 results in figure 2, we see that the S/ associated with the S1 solution remains
the same, but the bifurcation to TF1 (ky = 17.593) now occurs much closer to the high
wavenumber onset of the S1 solution (ky = 19.251). Moreover, the travelling wave branch
TW1 that is present here does not appear at R, = 40, Pr = 7 in figure 2. Evidently low
Prandtl numbers favour spontaneous formation of large-scale shear, as found in DNS by
Radko (2010, figures 1-2) and Garaud & Brummell (2015) as well as in a reduced model
valid in the asymptotic limit of low T and low Pr (Xie et al. 2019). A related phenomenon is
found in Rayleigh—Bénard convection, where at low Pr a steady convection roll becomes
immediately unstable to a large-scale (zonal) mode (Winchester, Howell & Dallas 2022).

A comparison between 2-D and 3-D results at Pr = 0.05 in figure 20 shows that the
bifurcation point of TF1 and TW1 is closer to the high wavenumber onset of S1 in the 2-D
configuration. The difference between the 2-D and 3-D configurations at Pr = 0.05 in
figure 20 is more evident than that at Pr = 7 in figure 2, as is the case in Rayleigh—Bénard
convection (van der Poel, Stevens & Lohse 2013). Recalling that both TF1 and TW1 are
associated with the formation of large-scale shear (see table 2, and figures 17a and 215),
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Figure 20. Bifurcation diagrams as a function of the wavenumber £y from the single-mode equations (2.7) in
(a) two dimensions, k, = 0 and (b) three dimensions, k, = ky. Other parameters are R, = 40, Pr= 0.05,T =
0.01 and Rar = 10°. The markers correspond to the Sk associated with steady states resembling S1 (), TF1 (O,

magenta) and TW1 (4, green) solutions from 2-D DNS in domains of size Ly = 2m/ky (table 4). The black
pentagrams corresponding to the Sh at Ly = 2n/ky (ky = 1,2, 4) indicate chaotic behaviour.

this difference suggests that the 2-D configuration favours the formation of large-scale
shear (cf. Garaud & Brummell 2015).

Figure 21 shows the solution profiles in the TF1 and TW1 states. Here we choose a
3-D wavenumber k, = ky = 6.873 close to the wavenumber that maximises the S in the
S1 solution. Similar to the earlier observation of tilted fingers in figure 4, the mean total
salinity profile z + So(z) of TF1 shows two mixed regions with a linear profile in the
middle of the layer. In contrast, the TW1 shows instead a three-layer structure in z +
So(z). Figure 21(b) displays the associated large-scale shear Uy(z), and exhibits a similar
structure to that observed at R, = 2, Pr = 7 in figure 17(a). Figures 21(c) and 21(d)
display the vertical profile of the first harmonic of the horizontal velocity i in the TF1 and
TWI states showing local peaks close to z = 1/3, 1/2 and 2/3, in contrast to the
corresponding S1 solution that displays peaks near the boundaries. These properties are,
in turn, reflected in the staircase profile of the mean salinity shown in figure 21(a).

Furthermore, in three dimensions the TF1 and TW1 solutions are also associated with
non-zero vertical vorticity as shown in figures 21(e) and 21(f). Here, the generation of
the vertical vorticity originates from the large-scale horizontal shear Uj, which provides a
source term for the vertical vorticity equation (2.7b). Vertical vorticity is also generated in
bifurcations of steady convection rolls (resembling S1) in single-mode solutions of
Rayleigh—Bénard convection on a hexagonal lattice (Lopez & Murphy 1983; Murphy &
Lopez 1984; Massaguer & Mercader 1988; Massaguer et al. 1990) with a source term
provided by self-interaction on this lattice (e.g. Massaguer et al. 1990, (2.2b)). As the
current single-mode formulation is limited to roll or square planforms, this source term is
not present. Instead, it is the associated large-scale shear Uy that provides the source term
for vertical vorticity, a possibility not included in the previous work (Lopez & Murphy
1983; Murphy & Lopez 1984; Massaguer & Mercader 1988; Massaguer et al. 1990).

The isocontours of total salinity of TF1 and TW1 are shown in figures 21(g) and 21().
These panels show qualitative similarity with the TF1 and TW1 shown in figures 17(b)
and 17(c), where the TF1 solution is tilted in one direction, whereas the TW1 is tilted in
opposite directions above and below the midplane. However, the TF1 and TW1atR, = 2, Pr
= 7 infigure 17 show a relatively well-mixed region in the interior, z = 1/2, compared with
the TF1 and TW1 at the higher density ratio R, = 40 but small Prandtl number, Pr =
0.05, shown in figure 21.
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Figure 21. Solution profiles from the single-mode equations (2.7) for the TF1 and TW1 solutions displaying («)
z+ So, (b) Up and the horizontal velocity & for (¢) TF1 and (d) TWI1. The second row shows the vertical
vorticity mode for (¢) TF1 and (f) TW1 and the total salinity for (g) TF1 and (4) TW1 using (2.6a) and (2.1).
Other parameter values are kx = k, = 6.873, R, = 40, Pr= 0.05,t = 0.01 and Rar = 103.

The stability of these solutions is indicated in figure 20 by thick (stable) and thin
(unstable) lines. In 2-D TF1 is stable near the onset of this branch, but becomes unstable at
an intermediate wavenumber. The travelling wave is instead unstable near the onset, but then
gains stability over an interval of intermediate wavenumbers before losing it again, cf. the
TW1branchatR, = 2and Pr= 7infigure 14. In three dimensions the TF1 branch is always
stable, as in the high Prandtl number regime, cf. figures 2 and 14, whereas the TW1 branch
is always unstable, cf. figure 20(b).

We next compare these results with those from 2-D DNS following our analysis ofthe
Pr = 7 results in table 3. The domain length L, in the horizontal is taken from
[21/18, 4] and the initial conditions are, respectively, constructed using the S1, TF1 and
TWI1 single-mode solutions with k, = 2n/Ly and k, = 0. In this L, interval single-mode
theory predicts that S1, TF1 or TW1 may be stable. In table 4 we record the state
reached in each case at = 3000. We find that the DNS returns S1 or TF1 depending on
initial conditions but also supports direction-reversing tilted fingers (RTF) and chaotic
states (C). In particular, with horizontal domain L, = 2mn/18, the final state exhibits S1
behaviour consistent with the single-mode prediction and the Sh from DNS overlaps with
the prediction from single-mode equations as shown in figure 20(a). For Ly = 2n/16, the
final state in table 4 shows TF1, which is the only stable solution in single-mode theory at
ky = 16. The corresponding Sh at L, = 2m/16 from DNS also overlaps with the TF1
single-mode solution as shown in figure 20(a).

In order to demonstrate the fidelity of the single-mode TW1 solutions near the high
wavenumber onset, figure 22 compares one DNS run with Ly = 2n/14 and a TW1
single-mode initial condition. The solution takes the form of a travelling wave up to ¢ =
400, and consequently we compare the time average of this state over ¢ @ [100, 300] with
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Figure 22. Two dimensional DNS of a travelling wave showing (a) huix(z, t), (b) z + hSij,(z) and (¢) hui,¢(z)
averaged over ¢ @ [100, 300] (black lines) for comparison with z+ Sy and Up from the single-mode TW1
branch (red dashed lines). The parameters are R, = 40, Pr= 0.05, t = 0.01 and Rar = 105. The initial

condition is a TW1 solution with Ly = 2rn/14 for the DNS; the single-mode solutions are computed for &y =
2n/Ly = 14,k = 0.

the corresponding single-mode results. Specifically, figure 22(a) shows the horizontally
averaged horizontal velocity huij(z, ¢) corresponding to the large-scale shear mode Uy(z, ¢)
in the single-mode equations. Figures 22(b) and 22(c) demonstrate an essentially perfect
agreement between the z + hSiy, and huiy, profiles computed from the DNS in this
time interval and their counterparts z+ Sy and Uy computed from the TW1 branch of the
single-mode solutions at & = 2n/L, = 14 and the same parameters. The Si also agrees
with the single-mode prediction as indicated in figure 20(a). At ¢ = 400, the TW1 state
undergoes an abrupt transition to an oscillatory state with an antisymmetric mean shear
profile suggesting that this state is a tilted finger state whose tilt direction reverses
periodically in time, i.e. it is direction-reversing tilted finger (RTF). Similar behaviour was
also found at Pr = 7 with L, = 2m/8 initialised by an S2 solution; see table 3 and figure 7.
All RTF states in tables 3 and 4 were identified based on the direction-reversing behaviour of
the associated large-scale shear huiy(z, t).

Direction-reversing tilted fingers are also observed as the final state in larger horizontal
domains with L, = 2n/12, 2n/10 and 2n/6 as indicated in table 4. Figure 23 shows the
DNS results with L, = 2n/10 and initial condition S1. The total salinity z+ S at the
midplane z = 1/2 in figure 23(a) shows that the initial state is sinusoidal in space and
steady, corresponding to the prescribed S1 solution. After 7 = 80, the SI state
transitions into a travelling wave and subsequently, at # = 220, into an RTF state. Figure
23(b) shows that huin(z, ) = 0 at ¢t = 0 but then this quantity becomes non-zero and
midplane-symmetric at the transition to the TWI1 state with superposed periodic
oscillations. Figures 23(c) and 23(d) present the horizontally averaged total salinity
profiles, averaged over ¢ @ [80, 180] and ¢ & [280, 380], respectively, corresponding to the
travelling wave and the direction-reversing tilted fingers, and compared with z + S for the
single-mode TW1 and TF1 solutions with &, = 2n/L, and the same parameter values.
Here, both the DNS results and the single-mode solutions show a modest three-layer
staircase characteristic of the travelling wave state, whereas both show a two-layer staircase
with a linear profile in the middle that is associated with direction-reversing tilted fingers in
DNS and the tilted finger state of the single-mode equations.

Figure 23(e) shows hui,; from the DNS averaged over ¢ @ [80, 180] corresponding to
the travelling wave, and compares it with Uy from the corresponding single-mode TW1
solution. Here, the large-scale shear from the single-mode theory overpredicts the
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Figure 23. Two dimensional DNS showing space—time plots of (a) z+ S(x, z, t) atz = 1/2 and (b) huin(z, t).
Panels (c,d) show the profiles of z + hSiy, ¢(z) averaged over ¢ @ [80, 180] for the travelling wave episode, and ¢
[280, 380] for direction-reversing tilted fingers, and compared with z + Sp from the single-mode TW1 and TF1
solutions. Panel (e) shows huij; averaged over ¢ B [80, 180] and compared with Up for the single-mode TW1
branch, whereas (f) shows huin(z, t) at ¢t = 332, 333 and 334 for comparison with Uy from the single-mode
TF1 solution. The initial condition is the S1 solution with L, = 2m/10, and other parameters are R, = 40, Pr
= 0.05, T = 0.01 and Rar = 10°. The single-mode solutions are calculated for &y = 2m/Ly = 10, k, = 0. See
supplementary movie 3 available at https://doi.org/10.1017/jfm.2022.865.

amplitude compared with that observed in DNS. This is expected as figure 23(b) indicates
that the state is, in fact, a modulated travelling wave with superposed oscillations in huij in
t@[80, 180]. Moreover, as shown previously in figures 2(a) and 20(a), the accuracy of the
single-mode equation is expected to decrease with decreasing wavenumber (here £, = 10),
a fact that may account for the difference in the solution profiles between DNS and
single-mode theory. This difference in the large-scale shear may also contribute to the
difference in the mean salinity profiles in figure 23(c) and the associated S# in figure
20(a). As the TF1 solution in the single-mode equation is steady, we compare the large-
scale shear Uy with three different snapshots of huiy(z, t) at t = 332, 333 and 334 in figure
23(f). The shape and magnitude of hui; at t = 333 is close to a TF1 single-mode solution,
but the maximum amplitude of the large-scale shear of RTF observed in 2-D DNS is
larger than Uy from the TF1 single-mode solution.

For larger Ly, the solution may transition to a double wavenumber RTF, see L, = 21n/6 in
table 4, and such a transition to a higher wavenumber flow structure was already
described for Pr = 7 as summarised in table 3 and figures 8 and 9. As the final state does not
exhibit well-organised flow structures when L, B [2n/4, 4n] we refer to it as chaotic.
Figure 24 presents (a) the total salinity at the midplane, (b) the Fourier-transformed salinity
deviation h|F.(S)|i; and (c) the Fourier-transformed horizontal velocity h|Fy(u)|i;. Here,
we select Ly = 2m and the initial condition is the S1 solution, so the only difference
between the results in figures 24 and 10 is the value of the Prandtl number. The total
salinity at the midplane z = 1/2 in figure 24(a) at Pr = 0.05 does not show a very clear
difference from figure 10(a) at Pr = 7, whereas the Fourier spectrum of the salinity at Pr
= 0.05 in figure 24(b) is broader than the same quantity at Pr = 7 in figure 10(b).
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Figure 24. Two dimensional DNS results showing (@) total salinity at z = 1/2, (b) h|Fx(S)|is(z; kx), (¢)
h|Fx(u)|ii(z; kx) and (d) huip(z, t). The horizontal domain size is Ly = 2m initialised by the corresponding S1
solution. The parameters are R, = 40, Pr = 0.05, 7 = 0.01 and Rar = 10°.

Ly
1C 2r/18  2m/16  2n/14  2n/12  2m/10  2m/8 2n/6 2n/4  2n/2  2n 4n
S1 S1 TF1 RTF RTF RTF C RTF (2) C C C C
TF1 — TF1 RTF RTF RTF C RTF (2) C C — —
TWI1 — TF1 RTF RTF RTF C RTF (2) C — — —

Table 4. The flow structures from 2-D DNS at z = 3000 in domains of different sizes L, and initial conditions
(IC) constructed from the single-mode approximations to the S1, TF1 and TW1 states using the ansatz (2.6)
with &y = 2n/Ly, ky = 0. RTF indicates direction-reversing tilted fingers and C represents chaotic behaviour;
‘— indicates that a non-zero single-mode solution at kx = 2m/L, is not present based on figure 20(a). The
number n B Z inside a bracket indicates the horizontal wavenumber ky = 2mnn/Ly reached at ¢t = 3000 if
different from the initial wavenumber n = 1.

The Fourier-transformed horizontal velocity in figure 24(c) shows a greater difference
from the corresponding result at Pr= 7 in figure 10(c), where the peaks near z= 1/3 and
z = 2/3 and the peak at z = 1/2 at k. = 1 have magnitudes similar to those near the
boundary. This suggests that both TF1 and TW1 are involved in the chaotic behaviour.
Moreover, h|Fy(u)|i; shows a non-zero value at kx = 0 corresponding to the large-scale
shear in figure 24(c), whereas the white region in h|F,(u)|i; at k, = 0 in figure 10(c) for Pr
= 7 indicates a value close to zero. This is consistent with the fact that low Prandtl
numbers favour the formation of large-scale shear. Indeed, huiy(z, #) in figure 24(d) reaches a
maximum value of 0.065, whereas the same quantity has the maximum amplitude 5.37
x 10~* when Pr = 7.

At other times, the large-scale shear huiy(z, t) in figure 24(d) resembles the large-scale
shear U(z) associated with either TF1 or TW1 in figure 21(b) based on the parity of
huip(z, t) with respect to z = 1/2. The observed time series suggests that the solution
visits the neighbourhoods of both the travelling waves and the tilted fingers in a chaotic
manner. The mean S/ associated with this state in domains of size L, = n/2, m and 2m,
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and initialised using the S1 single-mode solution, are shown in figure 20(a), and fall within
the range predicted by S1, TF1 and TW1 single-mode states. Note that for these relatively
large domain sizes, transition to a higher wavenumber mode is also possible but cannot be
predicted within the single-mode approach. The comparison in figure 20(a) supports the
role of the (unstable) TF1 and TW1 solutions in determining the salinity transport in this
chaotic state.

5. Conclusions and future work

We have performed a bifurcation analysis of vertically confined salt-finger convection
using single-mode equations obtained from a severely truncated Fourier expansion in
the horizontal. The resulting equations were solved for the vertical structure of the
solutions as a function of the density ratio, the Prandtl number and the assumed horizontal
wavenumber. We fixed the diffusivity ratio and thermal Rayleigh number and focused
almost exclusively on the case of no-slip velocity boundary conditions. We computed
strongly nonlinear staircase-like solutions having one (S1), two (S2) and three (S3)
well-mixed mean salinity regions in the vertical direction. These bifurcate in successive
bifurcations from the trivial solution. In each case, salinity gradients are expelled from
regions of closed streamlines resembling the mechanism described by Rhines & Young
(1983), leading to a well-mixed interior. Secondary bifurcations of S1 lead to tilted fingers
(TF1) or travelling waves (TW1) both of which spontaneously break reflection symmetry in
the horizontal owing to the spontaneous generation of large-scale shear. Secondary
bifurcations from S2 and S3 lead to asymmetric solutions (A2 and A3) that spontaneously
break symmetry with respect to the horizontal midplane.

The stability and relevance of the single-mode solutions we obtained were further
analysed with the assistance of 2-D DNS. Near onset, the one-layer solution S1 is stable
and corresponds to maximum salinity transport among the solutions, an observation
consistent with the prediction from the ‘relative stability’ criterion (Malkus & Veronis
1958). However, when a secondary bifurcation destabilises S1 the superseding stable
states (TF1 or TW1) may result in reduced salinity transport as found in the low Prandtl
number regime. The associated Sherwood number near the high wavenumber end of the
S1 solution is in excellent agreement with DNS in small horizontal domains.

In larger domains DNS reveals that the final state reverts to a higher wavenumber S1
state closer to the natural finger scale or exhibits chaotic behaviour, a process that begins to
set in once the domain size is comparable to approximately twice the finger scale. In
general, the final state exhibits a strong dependence on initial conditions. The S2, S3, A2
and A3 solutions are all unstable within the parameter regime explored, although the
chaotic solutions we found appear to visit neighbourhoods of these unstable solutions at
different instants in time. With stress-free velocity boundary conditions the S1, S2, S3,
TF1, A2 and A3 solutions persist but exhibit larger Sherwood numbers.

At lower density ratios, the S1, S2 and S3 solutions exhibit sharper staircase structures,
whereas the TF1 solution displays stronger large-scale shear and tilt angle. In addition, S1
also bifurcates to the TW1 state, a bifurcation that is not present at high density ratio. The
scaling of the S1 Sherwood number with the density ratio closely matches the DNS results
within the currently explored parameter regime, whereas the corresponding change in the
mean salinity and temperature profiles resembles that seen in DNS.

The dynamics of the secondary TF1 and TW1 states in the low Prandtl number regime
also show excellent agreement with the 2-D DNS results in small domains, likely because
they appear, in this regime, quite close to the high wavenumber onset of S1. These states
are typically associated with two- and three-layer mean salinity profiles, respectively.
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The final state seen in low Prandtl number 2-D DNS is a prominent direction-reversing
tilted finger (RTF) in which the tilt and the associated large-scale shear reverse with time in
a manner that resembles the ‘pulsating wave’ state identified in magnetoconvection
(Matthews et al. 1993; Proctor et al. 1994) as well as the large-scale flow reversals
observed in Rayleigh—-Bénard convection (Sugiyama et al. 2010; Chandra & Verma 2013;
Winchester et al. 2021). In smaller domains the time-averaged salinity and shear profiles
computed from 2-D DNS resemble the two-layer and three-layer mean salinity and shear
profiles corresponding to RTF and TW1, respectively, whereas in larger domains such
profiles are still evident but only episodically.

The bifurcation diagrams of single-mode solutions shown here also shed light on the
difference between 2-D and 3-D configurations. Although the corresponding S1, S2, S3,
A2 and A3 states in three dimensions can be obtained from the 2-D results by a simple
wavenumber rescaling, this is no longer so for states associated with large-scale shear,
i.e. TF1 and TW1. The resulting difference is most prominent at low density ratio or low
Prandtl numbers. A comparison shows that the 2-D configuration favours the generation of
large-scale shears, a fact consistent with DNS observations (Garaud & Brummell 2015).

The bifurcation diagram presented here is far from complete. Whether other primary or
secondary bifurcations possess the potential to provide stable staircase solutions is an
interesting question for future exploration. The secondary Hopf and global bifurcations
are also of interest because they provide additional insight into the origin of the
direction-reversing tilted finger state and of chaotic salt-finger convection, respectively.
Extension of the present framework to 3-D states with hexagonal coordination in the
horizontal is also of interest, as is a study of the doubly or triply periodic configuration
with periodic boundary conditions in the vertical as well as in the horizontal, a formulation
that is likely to have greater relevance to oceanography. Finally, density staircases have
also been widely observed in the diffusive regime of double-diffusive convection (cold
fresh water on top of warm salty water) (Timmermans et al. 2008; Radko 2016; Yang et al.
2022) as well as in stratified shear flow (Oglethorpe et al. 2013; Taylor & Zhou 2017; Lucas et
al. 2017, 2019) and elsewhere. It is of interest to explore the applicability of the present
bifurcation-theoretic approach to the study of staircase states in these flow regimes.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.865.
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