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Abstract: This work employs single-mode equations to study convection and double-diffusive
convection in a porous medium where the Darcy law provides large-scale damping. We first consider
thermal convection with salinity as a passive scalar. The single-mode solutions resembling steady
convection rolls reproduce the qualitative behavior of root-mean-square and mean temperature
profiles of time-dependent states at high Rayleigh numbers from direct numerical simulations
(DNS). We also show that the single-mode solutions are consistent with the heat-exchanger
model that describes well the mean temperature gradient in the interior. The Nusselt number
predicted from the single-mode solutions exhibits a scaling law with Rayleigh number close to
that followed by exact 2D steady convection rolls, although large aspect ratio D NS  results indicate
a faster increase. However, the single-mode solutions at a high wavenumber predict Nusselt
numbers close to the DNS results in narrow domains. We also employ the single-mode equations to
analyze the influence of active salinity, introducing a salinity contribution to the buoyancy, but with
a smaller diffusivity than the temperature. The single-mode solutions are able to capture the
stabilizing effect of an imposed salinity gradient and describe the standing and traveling wave
behaviors observed in DNS. The Sherwood numbers obtained from single-mode solutions show a
scaling law with the Lewis number that is close to the DNS computations with passive or active
salinity. This work demonstrates that single-mode solutions can be successfully applied to this
system whenever periodic or no-flux boundary conditions apply in the horizontal.

Keywords: convection in a porous medium; single-mode solutions; double-diffusive convection

1. Introduction

The single-mode equations (‘single-a mean-field theory’) obtained from a severely
truncated Fourier expansion in the horizontal were likely first proposed by J. Herring [1,2] in
analyzing the thermal transport of Rayleigh–Bénard convection (RBC) with either stress-free
or no-slip boundary conditions at the top and bottom. Such single-mode equations reduce
the governing equations from three spatial dimensions to equations for the vertical solution
profile associated with a prescribed horizontal planform. Although the single-mode
approach significantly simplifies the horizontal structure, solution profiles in the vertical
and the Nusselt number (Nu) from single-mode equations show the expected be-havior
when compared with experimental measurements [1,2]. The single-mode equations are not
only able to provide a useful approximation to steady convection rolls, but their time-
dependent behavior also provides a reasonable approximation to that observed in two-
dimensional (2D) simulations [3]. The single-mode equations can also incorporate more
general planforms such as hexagonal planforms by introducing appropriate self-interaction
terms [4,5], again with qualitative agreement with experimental results.

Single-mode equations have also been applied to double-diffusive convection. For ex-
ample, Gough and Toomre [6] focused on oscillatory double-diffusive convection (ODDC)
characterized by the competition between a stabilizing salinity gradient and a destabilizing
temperature gradient, a configuration that is subject to a diffusion-driven instability even
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when the fluid density is dynamically stable, and showed that the flux ratio is insensitive
to the density ratio (called stability parameter there) consistent with experimental mea-
surements [7–9]. Paparella et al. [10] employed single-mode equations allowing for the
formation of large-scale shear, and described its interaction with oscillatory convection,
producing intermittent overturning of the fluid with significant mixing. Single-mode
equations can also be used to characterize the case where a destabilizing salinity gradient
competes with a stabilizing temperature gradient, and used to demonstrate that the result-
ing salt-finger convection may trigger large-scale shear, producing a staircase-like profile
in density [11] with mixed regions separated by an interface with a large density gradient.
In fact such staircase profiles form even in the absence of shear instabilities, and their
stability properties for Prandtl numbers relevant to both oceanographic and astrophysical
conditions can be analyzed [12].

The severe truncation of the horizontal Fourier modes within the single-mode equa-
tions is expected to be valid for well-organized columnar structures associated with limited
interaction between different horizontal harmonics. Such limited interaction between
harmonics arises naturally when the dominant flow structures are associated with a small
horizontal length scale. This is the case in the asymptotic limit of high wavenumber
convection leading to tall and thin flow structures, a limit employed to provide insight
into high Rayleigh number RBC [13], convection in a porous medium [14], and salt-finger
convection [15]. This high wavenumber asymptotic limit corresponds to small horizontal
domain size in two-dimensional numerical simulations. As  a result, single-mode solu-
tions show an excellent agreement with D N S  results in a small horizontal domain as is
the case in vertically confined salt-finger convection [12]. Well-organized columnar flow
structures also arise in the presence of strong restraining body forces [16]. For example,
rotation constrains the flow variation in the direction of the rotation axis as described by the
Taylor–Proudman theorem [17,18]. In the rapidly rotating regime, single-mode solutions
of the asymptotically reduced equations show a close agreement with direct numerical
simulations (DNS) at moderate reduced Rayleigh numbers; see, e.g., Figures 12 and 13
from [19] and [16,20]. A  strong imposed magnetic field plays a similar role, and D NS  of
rotating magnetoconvection also show results approaching the single-mode solutions [21]
at moderate reduced Rayleigh numbers [22]. The stabilizing temperature gradient in
salt-finger convection serves as large-scale damping [23,24], leading to well-organized
columnar structures known as salt fingers, and single-mode solutions of vertically confined
salt-finger convection agree well with DNS near the onset of instability and display scaling
laws between the Sherwood number (Sh) and density ratio with a scaling exponent that
agrees well with DNS  [12].

In this work, we focus on convection in a porous medium modeled by a Darcy law,
which also provides large-scale damping as compared with the Navier–Stokes equation
describing pure fluids. In contrast to RBC, convection in a porous medium is dominated by
well-organized columnar structures even at high Rayleigh numbers as shown in D NS in
both 2D [25,26] and 3D [27,28] configurations; see the review [29]. Flow structures in the
interior of convection in a porous medium are well approximated by a heat-exchanger model
obtained by assuming no vertical variation of fluctuations and a constant mean
temperature gradient [25,27,29]. Such well-organized structures are also characterized by a
power spectrum density [27] and time-averaged Fourier coefficients [26] that both suggest
that a single mode dominates in the interior. The horizontal wavenumber of the dominant
flow structures in both the interior and near the boundaries increases with increasing
Rayleigh number [25,27,29] leading to improved agreement with the heat-exchanger model at
high Rayleigh numbers [27].

Convection and double-diffusive convection in a porous medium have a wide range
of geophysical and engineering applications [30–32], for example, in understanding large-
scale convection in a geothermal reservoir [33]. Convection in a porous medium driven by
concentration gradients models groundwater transport in saline aquifers [34,35] and may
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be used to understand the possibility and risks of storing carbon dioxide (CO2 ) in large
porous underground reservoirs to mitigate CO2 emissions [36,37].

Porous media convection is also widely studied in enclosures that are closer to an
experimental setup [38–45]. Such an enclosure configuration typically adopts impermeable
boundary conditions (B.C.) in the horizontal, with no horizontal thermal and salinity fluxes,
a configuration that will be referred to as the no-flux case. One major difference between
no-flux and periodic boundary conditions in the horizontal is that the latter allow well-
defined traveling waves, while no-flux B.C. require a large horizontal domain in order
to observe propagating disturbances [43]. Such traveling waves are typically associated
with reduced heat transport compared with steady convection rolls [43]. Two-dimensional
traveling waves in horizontally periodic domains have been widely studied theoretically in
the context of oscillatory double-diffusive convection [46,47] and oscillatory binary fluid
convection [48,49] as well as experimentally using Hele-Shaw geometry [50,51]. Moreover,
standing waves that are unstable to perturbations in the form of traveling waves within a
horizontally periodic domain become stable with no-flux B.C., suggesting that standing
waves can also be observed in direct numerical simulations [43].

This work employs single-mode equations to analyze convection and double-diffusive
convection in a porous medium and to explore the physics aspects that can be included
within this approach. The single-mode equations preserve the nonlinear interaction
be-tween the horizontally averaged mode and a single Fourier mode while fully
resolving the vertical direction leading to strongly nonlinear solutions. We first focus
on thermal convection with salinity as a passive scalar. The single-mode solutions show
qualitative agreements with DNS results for the root-mean-square (RMS) temperature,
vertical velocity and horizontal velocity. The RMS values in the interior also exhibit certain
trends with the Rayleigh number similar to the DNS results [25,27]. We demonstrate that
the single-mode solutions are consistent with the heat-exchanger model, which
describes well the mean temperature gradient in the interior obtained in D N S  [25,27].
The Nusselt number N u scaling with the Rayleigh number obtained from the single-
mode solutions is consistent with that for exact 2D steady convection rolls computed
numerically [26] and respects upper bound theory [52].

We further employ single-mode solutions to analyze the influence of active salinity
that provides an additional contribution to the buoyancy term, but with a smaller diffusivity
than the temperature. The single-mode solutions are able to capture the stabilizing effect of
the imposed salinity gradient with progressively lower N u and Sh as the salinity gradient
increases [40]. The single-mode solutions are also able to predict traveling and standing
waves and the associated N u and Sh, both of which are reduced in comparison with
steady convection rolls, a prediction also consistent with DNS observations [43]. The Sh
obtained from single-mode solutions shows a scaling law with the Lewis number (Le)
close to the DNS observation for both active [40] and passive [39] salinity. Single-mode
solutions also show agreement with D NS  with no-flux boundary conditions in the
horizontal [39,40,43] after mirroring the domain.

The remainder of this paper is organized as follows. Section 2 describes the formu-
lation of the single-mode equations for double-diffusive convection in a porous medium.
Section 3 then compares the single-mode solutions against a wide range of D N S  re-
sults [25–28,39,40,43], exact 2D steady convection rolls [26] and upper bound theory [52].
We conclude the paper with a discussion of future directions in Section 4.

2. Single-Mode Solutions for Double-Diffusive Convection in a Porous Medium

We consider a fluid-saturated porous layer between two infinitely long parallel hori-
zontal plates separated by a distance h. The temperature and salinity at these two plates are
maintained at constant values with the lower plate maintained at a higher temperature and
salinity. The equation of state ( r  r r ) / r r  =   a (T   T  )  +  b(S Sr ) is linear, with
constant expansion/contraction coefficients a, b and reference density, temperature, and
salinity rr, T  , Sr, respectively. The subscript  indicates a dimensional quantity. In the
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following, we normalize the temperature T by the temperature difference between the
bottom and top layer, T  =  T/ D T  (DT =  Tbot   T  op >  0), and likewise for the salinity, S  =
S / D S (DS =  Sbot   Stop >  0). Spatial coordinates are normalized by the height h of the
layer while time and velocity are normalized using the time s h / k T  and the speed kT /h,
respectively. Here, s  is the saturated porous medium to fluid heat capacity ratio and kT is the
thermal diffusivity of the saturated porous medium, respectively. We decompose the
temperature and salinity into a linear base state and deviation,

T  =  1 z +  T, S  =  1 z +  S, (1)

and introduce the velocity field u : =  (u, v, w) in Cartesian coordinates (x, y, z) with z as the
upward vertical direction. Dropping the tildes and adopting the Darcy–Oberbeck–Boussinesq
equations [30] in the infinite Darcy–Prandtl number limit, we arrive at the governing equations:

u =  r p  +  R a T ( T   R r S)ez , (2a)
r   u = 0,                                                                                   (2b)

¶t 
+  u  r T       w = r 2 T ,                                                                             (2c) 

#

¶t 
+  u  r S       w =

L e
r 2 S .                                                                       (2d)

Here, the governing non-dimensional parameters include the Rayleigh–Darcy number
RaT , the density ratio R r ,  the Lewis number Le and the normalized porosity # of the
porous medium:

Ra : =  
gaDTKh

,
T

R r  : =  
aDT

, Le : =  
kT ,

S
# : =  

s
, (3)

where g is the gravitational acceleration, K  is the permeability of the porous medium, n is
the viscosity of the fluid, kS is the salinity diffusivity, e is the porosity of the porous medium,
and ez is the unit vector in the vertical direction. In this work, we fix the normalized porosity as
# =  1 and suppose that the top and bottom boundaries are impermeable and maintained at
constant temperature and salinity, i.e., that w and the temperature and salinity deviations T
and S satisfy

w(x, y, z =  0, t) =  w(x, y, z =  1, t) (4a)

=  T(x, y, z =  0, t) =  T(x, y, z =  1, t) (4b)

=  S(x, y, z =  0, t) =  S(x, y, z =  1, t) (4c)

=  0.                                                                                                          (4d)

We impose periodic boundary conditions in the horizontal on all variables.
We now formulate the single-mode equations following similar procedure in related

problems [1,2,6,12,14]. We decompose the temperature into a horizontally averaged temper-
ature deviation T0 (z, t) from the conduction state and a single harmonic in the horizontal
direction associated with the wavenumber pair (kx, ky ) and a complex amplitude T(z, t).
The salinity, velocity and pressure are decomposed similarly:

u(x, y, z, t) =ū 0 (z, t) +  ub(z, t) ei(kx x+ky y) +  c.c., (5a)

T(x, y, z, t) = T0 (z ,  t) +  T(z, t) ei(kx x+ky y) +  c.c., (5b)

S(x, y, z, t) =S0 (z,  t) +  S(z, t) ei(kx x+ky y) +  c.c., (5c)

p(x, y, z, t) = p0 (z, t) +  p(z, t) ei(kx x+ky y) +  c.c.,                                   (5d)
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where c.c. indicates a complex conjugate. Equation (5) assumes a horizontal planform in
the form of a square (kx =  ky) or a roll (ky =  0), both motivated by the heat-exchanger
model (Equation (3.2) from [27]), although more general planforms can be included within
the single-mode approach [4,5].

We next substitute (5) into the governing equations (2) and balance the horizontally
averaged component and the harmonic components, respectively. Using the boundary
conditions in (4) and the momentum equation in (2a), we obtain ū0 =  0, a major difference
from the nonporous case described by Navier–Stokes equations where large-scale shear is
allowed and may play an important role [10–12]. We eliminate the horizontally averaged
pressure ¶z p0 =  R a T (T0   R r S0 ) and the harmonic components of the horizontal velocity
and pressure using the horizontal momentum equations and the continuity equation:

u(z, t) =   ikx p(z, t), v(z, t) =   iky p(z, t), p(z, t) =       
¶zw(z, t)

. (6)
x y

Dropping all higher-order harmonics, we obtain the desired single-mode equations:

r 2 w  = r ? R a T ( T    R r S) , (7a)

¶T 
+  w¶z T0 w = r 2 T , (7b)

# 
¶t 

+  w¶zS0 w =
L e

r 2 S , (7c)

¶T0 +  ¶z (w
T
 +  wT ) =¶2 T0 ,                                                              

 
(7d)

# 
¶t 

+  ¶z (wS +  wS) =
Le

¶2 S0 , (7e)

where r 2  : =  ¶2   (k2 +  k2 ), r 2  : =   (k2 +  k2 ) and the superscript  denotes a complex
conjugate. The corresponding boundary conditions obtained from (4) are:

w(z =  0, t) =  w(z =  1, t)                                                                                   (8a)

=  T (z =  0, t) =  T (z =  1, t) =  S(z =  0, t) =  S(z =  1, t)                               (8b)

=  T0 (z =  0, t) =  T0 (z =  1, t) =  S0 (z =  0, t) =  S0 (z =  1, t)                         (8c)

=  0.                                                                                                                               (8d)

The harmonic terms in the single-mode equations in (7a)–(7c) are closely related to
the heat exchanger model that is an exact solution in a vertically periodic domain and that
describes well the interior of the convecting state in a porous medium [25,27,29]. These
harmonic components also resemble the elevator mode that plays an important role in
double-diffusive convection; see. e.g., [53–55]. However, the single-mode equations in (7)
also apply to a vertically confined domain with the nonperiodic B.C. (8) as well as to the
nonlinear interaction between harmonic components and the horizontally averaged modes.
As a result, the single-mode equations used here can be understood as an extension of the
heat exchanger model to a vertically confined domain with the nonlinear interaction with
the horizontally averaged mode included.

In the following, we use the numerical software pde2path [56,57] to compute strongly
nonlinear solutions of the single-mode equations in (7) as a function of the system parameters.
The vertical direction is discretized using the Chebyshev collocation method with derivatives
computed using the Chebyshev differentiation matrix [58] implemented following Uecker [59].
The number of grid points used, including the boundary, is chosen as Nz =  257 for the thermal
convection results, while all other results use Nz =  129. Selected solution profiles of steady
convection rolls are validated against the nonlinear boundary value problem (NLBVP) solver in
Dedalus [60] with grid points Nz =  1024. In order to validate the single-mode equations and
associated nonlinear solutions, we reproduce the steady convection rolls of single-mode
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equations for RBC [1,2,5] as well as the high wavenumber asymptotic single-mode solutions
of RBC (Section 3 in [61]) and convection in a porous medium (Section 3 in [14]). We deter-
mine the stability of steady solutions and of traveling waves in a comoving frame from the
eigenvalues of the associated Jacobian matrix computed with the eigs  command focusing
on a finite subset of the eigenvalues.

The horizontal translation symmetry in the governing Equation (2) corresponds to the
observation that w, T  and S in (7) multiplied by eiq (q is a constant phase angle) continue to
satisfy the equations. The presence of horizontal translation symmetry within the single-
mode equations requires a phase condition whenever kx =  0 in order to fix the solution
phase and obtain a unique solution. The implementation of this condition following
Rademacher and Uecker [62] requires the predictor f ( z ,  t) from a solution f (z, t) to be
orthogonal to ifold (z, t):

Z

0

1 
ifold (z, t ) [ f ( z ,  t) fold (z,  t)]dz =  0, (9)

where

f ( z ,  t) : =  
h

T(z, t), S(z, t )
i T

. (10)

The horizontally averaged modes are not involved in setting the phase. The vertical velocity
w does not need to be involved in (9) because its phase is completely determined by the
phase of T  and S; see Equation (7a).

To compute a steady nonlinear wave traveling in the x direction with speed c, we
write Equations (7b)–(7c) in the comoving frame,

¶T 
i
ckx T +  w¶z T0 w = r 2 T , (11a)

# 
¶t 

ickx#S +  w¶zS0 w =
L e

r 2 S , (11b)

and set the time derivatives in these equations and in (7d)–(7e) to zero. With the phase
condition in (9), the resulting problem has a unique nonlinear eigenvalue c and associated
solution profile. Both are updated at each step of the continuation procedure. Steady
solutions are associated with c =  0.

To compute standing waves, we perform the numerical simulation of single-mode
equation using the initial value problem (IVP) solver in Dedalus [60] with the additional
assumption that w, T  and S are real functions. This assumption breaks the horizontal
translation symmetry and mimics no-flux boundary conditions in the horizontal. As  a
result, supercritical but unstable standing waves in a horizontally periodic domain are
stabilized, allowing the use of DNS to compute such solutions.

3. Comparisons of Single-Mode Solutions with Direct Numerical Simulations

In this section, we compare the single-mode solutions with DNS for two types of bound-
ary conditions in the horizontal. The first uses periodic boundary conditions [25–28,43,52],
and thus the horizontal wavenumber kx =  2 p / L x  corresponds to a domain size Lx whenever
a single harmonic corresponding to a pair of counter-rotating convection rolls is present. If
multiple horizontal modes are present, we use the wavenumber scaling law obtained from
DNS data [25,27] as described later. We also compare the single-mode solutions with the corre-
sponding results for an enclosure described by no-flux B.C. in the horizontal, i.e., impermeable
boundaries with zero thermal and salinity fluxes corresponding to Neumann boundary con-
ditions (NBC) [39,40,43]. Combining such a no-flux solution with a horizontally reflected
solution generates a solution of the periodic B.C. case. Thus, the associated wavenumber is
computed as kx =  np / L x ,NBC , where n is the number of convection cells in the enclosure and
Lx,NBC is the enclosure domain size with no-flux horizontal B.C. Note that traveling wave
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solutions are excluded in no-flux cases. We also compare the single-mode solutions with
exact 2D steady convection rolls computed by Newton–Kantorovich iteration [26] or reached
by DNS [39,40,43]. The exact 2D steady convection rolls obtained by these methods include
higher-order harmonics in the horizontal, an effect not included in the single-mode solutions.

3.1. Thermal Convection with Passive Salinity R r  =  0
In this subsection, we set R r  =  0, indicating that the salinity is passive, in order to

compare the results with thermal convection and transport of a passive scalar in a porous
medium without additional contributions to the driving buoyancy term [25–28,39,52]. This
subsection first compares the single-mode solutions with D N S  results [25–28], as well as
exact 2D steady convection rolls [26] and upper bound theory [52], all with periodic
boundary conditions in the horizontal. We also compare the single-mode solutions with
exact 2D steady convection rolls reached by DNS  with no-flux B.C. in the horizontal [39].

Selecting a suitable wavenumber is the main difficulty of applying single-mode so-
lutions [1,4]. Here, we choose ky =  0 to model a 2D flow and the wavenumber scaling kx
=  0.48Ra0.4 obtained from the Fourier spectrum at z =  0.5 in 2D DNS (Figure 10a in [27]) and
(Figure 5 in [29]). For 3D results, we select the wavenumber kx =  ky =  0.17Ra0.52 based on
measurement at z =  0.5 in 3D D N S  (Figure 10a in [27]). These scaling laws represent
the best-fit power laws over the range of R a T accessible to DNS.

We first compare the harmonic components of single-mode solutions resembling
steady convection rolls with the RMS temperature and velocity from DNS. We compute the
RMS value over the horizontal direction from steady single-mode convection rolls using

T  ms(z) =  
p

2j T (z ) j ,  wrms(z) =  
p

2jw(z ) j / R a T ,  urms(z) =  
p

2ju(z) j / R a T , (12)

consistent with the corresponding DNS results [25,27], where the buoyancy velocity scale
is employed to normalize velocities. Figure 1 shows that the RMS distribution over the
vertical direction z of the single-mode solutions reproduces the qualitative behavior of the
RMS values from 3D D N S  (Figure 8b in [27]). For example, the temperature RMS values
from both the single-mode solutions and the D NS  results exhibit a peak near the top and
bottom boundaries, and the location of this peak is closer to the boundary at a higher
Rayleigh number. The RMS values of both temperature and vertical velocity show a nearly
uniform profile in the interior (z =  0.5) for both single-mode solutions and D NS  results.
For the RMS value of the horizontal velocity, the single-mode solutions also reproduce
the peak values at the top and bottom boundaries as observed in the DNS. However, the
single-mode solutions always predict a zero horizontal velocity RMS in the interior similar
to the heat-exchanger model [25,27], although the DNS results indicate a non-zero value.

(a) (b) (c)

Figure 1. RMS profiles of (a) T  ms(z), (b) wrms(z) and (c) urms(z) at R aT  =  4000, 8000, 16,000
associated with the 3D wavenumber kx =  ky =  0.17Ra0.52 obtained from single-mode solutions
(lines) compared with DNS results (Figure 8b in [27]) (lines with markers). Legend for all three panels
is provided in panel (b).
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Figure 2 then compares the mean temperature 1 z +  T0 obtained from single-mode
solutions with DNS results in both 2D (Figure 3a in [25]) and 3D (Figure 7 in [27]) at the cor-
responding Rayleigh number. Here, we observe that the single-mode solutions accurately
reproduce the mean temperature gradient in the interior from DNS, in particular at high
Rayleigh numbers. The heat-exchanger model which is an exact solution for unbounded
convection in a porous medium was shown to describe well the mean temperature gradient
in the interior; see 2D (Equations (3) and (4) in [25]) and 3D (Equation (3.2) in [27]). Con-
sidering the single-mode solutions satisfying (7) and making the reasonable assumption
¶z w(z =  0.5) =  0 (cf. Figure 1), we notice that the single-mode solutions reduce to

 1 +  ¶z T0 (z =  0.5) =       
kx +  ky . (13)

The mean temperature gradient in (13) is the same as that within the heat-exchanger
model [25,27]. Here, the single-mode solutions also reproduce the trend observed in
D NS  data [25,27] that the mean temperature gradient is closer to zero (isothermal inte-
riors) at a larger Rayleigh number in 2D results (Figure 2a), but farther from zero in 3D
results (Figure 2b), observations based on the assumed wavenumber scaling kx  Ra0.4 in
2D [25] and kx =  ky  Ra0.52 in 3D [27]. This wavenumber-Rayleigh-number scaling
explains, in conjunction with (13), the different Rayleigh number trends of the interior
mean temperature gradient observed in 2D and 3D using single-mode solutions.

(a) 2D (b) 3D

(c) 2D (d) 3D

Figure 2. Comparisons of the mean temperature profiles obtained from single-mode solutions (lines)
with DNS (lines with markers). Panel (a) displays 2D results at R aT  =  10, 000, 20,000 and 40,000 using
kx =  0.48Ra0.4 and ky =  0 compared with 2D D NS  (Figure 3a in [25]). Panel (b) shows 3D results at
R aT  =  4000, 8000 and 16,000 using kx =  ky =  0.17Ra0.52 compared with 3D D N S  (Figure 7 in [27]).
Panels (c) and (d) show zooms of panels (a) and (b) near the bottom boundary, respectively.

The comparisons presented in Figure 2 also show that the single-mode solutions repro-
duce the mean temperature overshoot, a thin stably stratified layer near both boundaries.
This overshoot appears closer to the boundary at higher Rayleigh numbers, a fact evident
in both the single-mode solutions and DNS results; see the zoom near the bottom boundary
in Figure 2c,d. Although the precise values of the overshoot temperature in the single-mode
solutions are not fully accurate, this observation nonetheless suggests that the single-mode
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solutions preserve certain physical mechanisms responsible for this overshot, which is
also present in single-mode solutions for RBC [1–3]. In the high Rayleigh number and
high wavenumber asymptotic regime of porous media convection, an overshoot near the
boundary is also found (Figure 3 in [14]), but is absent in the same asymptotic regime in
RBC [13]. Such mixed convective-stably-stratified fluids are extensively studied in pen-
etrative convection (Section 7.3.4 in [63]) using both numerical simulations [64–67] and
experiments [67–71]; see the recent review [72].

In Figure 3, we compare the Rayleigh number trend of the RMS values in the interior, at
z =  0.5, obtained from single-mode solutions with DNS results in both 2D (Figure 3b in [25])
and 3D (Figure 8a in [27]). Evidently, the single-mode theory substantially underestimates
T  ms(z =  0.5) and wrms(z =  0.5) at large RaT , which appear to saturate with increasing
R a T in DNS results, but continue to decrease within single-mode theory, although the latter
reproduces the D N S  observation that these quantities approach one another at high RaT .
In fact, the single-mode quantities overlap at large Ra , a direct consequence of (7a) and the
assumption that ¶2w(z =  0.5) =  0 at high RaT , together with (12). However, this relation
breaks down at low Rayleigh numbers as shown in both D NS and single-mode solutions.
We also examined the profiles of the single-mode solutions at a low Rayleigh number
(not shown here), and found that w is no longer uniform in the interior, leading directly to
the observed difference between T  ms(z =  0.5) and wrms(z =  0.5). For high Rayleigh
numbers, the D NS  results indicate that both T  ms(z =  0.5) and wrms(z =  0.5) tend to a
constant value, which is not observed in the single-mode solutions. Moreover, in single-
mode theory urms(z =  0.5) remains zero at the Rayleigh numbers reported here, while
the D N S  data show a non-zero value with a slow decrease to zero as R a T increases.

(a) 2D (b) 3D

Figure 3. Comparisons of the RMS values at z =  0.5 obtained from single-mode solutions (lines) with
D NS  (markers). Panel (a) shows 2D results with D N S  data obtained from Figure 3b in [25], while
panel (b) displays 3D results with DNS data obtained from Figure 8a in [27].

We next analyze the heat transport by computing the Nusselt number

N u : =  1 h¶zT0(z =  0, t)it . (14)

where hit is the average over time. Figure 4a shows N u as a function of Ra obtained
from single-mode solutions with the 2D kx =  0.48Ra0.4 wavenumber scaling compared
with 2D DNS data (Figure 2 in [25] and Figure 5b in [26]), exact 2D steady convection rolls
(Figure 5b in [26]), and upper bound theory (Figure 5 in [52]). Figure 4b shows the corre-
sponding results with the 3D kx =  ky =  0.17Ra0.52 wavenumber scaling compared with
DNS data (Figure 2a in [27] and Table 1 in [28]) and upper bound theory (Figure 5 in [52]).
Near onset, R a T  100, the single-mode solutions deviate from the D NS  results because
the employed wavenumber scaling based on high R a T D NS  data may not apply in this
regime. Compared with D N S  data [25–27], the single-mode solutions overpredict N u in
the small Rayleigh number regime Ra 2  [100, 1000], but underestimate it in the high Ra
regime. We also fit N u over R a T for R a T 2  [103, 8.4  104] to obtain N u  0.154Ra0.666 for
single-mode solutions with the 2D wavenumber scaling. For the 3D results, the N u scaling
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is N u  0.108Ra0.723 for R a T 2  [103, 5.8  104]. Here, we note that the scaling exponent h of N u
Ra is lower than that observed in D NS  suggesting N u  R a T at high R a T [25–28]. Such an
inconsistent N u scaling may result from the underlying single-mode assumption
precluding the presence of proto-plumes that emerge near the boundary [25,27] but
display a different wavenumber scaling from that employed here (Figure 10 in [27]).
The steady-state assumption may also lead to a difference in N u from DNS results: the
exact 2D steady convection rolls involving higher order harmonics computed by
Newton–Kantorovich iteration exhibit a scaling law N u  Ra0.6 [26] that differs from
the N u  R a T scaling observed in DNS [25–28,52]. Moreover, the secondary Hopf
bifurcation of exact 2D steady convection rolls present in D NS  leads to secondary
boundary modes [26,73–75], but such a secondary bifurcation is absent from the single-
mode formulation. However, the N u scaling obtained from the single-mode solutions
remains lower than the upper bound from upper bound theory [52], as shown in Figure
4.

(a) 2D (b) 3D

Figure 4. N u as a function of R aT  from single-mode solutions (black lines). Panel (a) shows 2D
results with kx =  0.48Ra0.4, ky =  0 compared with DNS  data (Figure 2 in [25] and Figure 5b in [26]),
exact 2D steady convection rolls (Figure 5b in [26]), and upper bound theory (Figure 5 in [52]). Panel
(b) displays 3D results with kx =  ky =  0.17Ra0.52 compared with D NS  data (Figure 2a in [27] and
Table 1 [28]) as well as upper bound theory (Figure 5 in [52]). The single-mode solutions are stable
within this severe truncation.

The N u scaling obtained from single-mode solutions also depends on the assumed
wavenumber, and the single-mode solutions of RBC suggest a suitable wavenumber re-
sulting in N u close to experimental measurement [5]. Here, we further investigate the
wavenumber influence on N u to identify the parameter regime in which the single-mode
solutions provide a valid description of the system, focusing on 2D results (ky =  0).
Figure 5 shows N u for a range of kx and RaT . These values are then compared with the N u of
exact 2D steady convection rolls reached in D N S  (Figure 6 and Table 3 in [39]), where the
domain size of the enclosure is varied. Note that the enclosure is associated with no-flux
horizontal boundary conditions, and thus the associated wavenumber is computed as
kx =  np / L x ,NBC . In the high wavenumber regime corresponding to a narrow convection
cell, the single-mode solutions predict N u close to the D NS  results, but the prediction
begins to deviate for larger horizontal domain sizes (smaller kx). This deviation can be
traced to the interaction between different horizontal harmonics present in larger domains
that lead to non-sinusoidal solution profiles in the horizontal (Figure 5 in [39]). A  similar
result is found in salt-finger convection when the corresponding single-mode solutions
are compared against DNS results (Figures 2, 6 and 11 in [12]). At  lower RaT , closer to the
onset, the agreement between the single-mode solutions and DNS improves; see Figure 5b,
as also found in salt-finger convection (Figure 18 in [12]).
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(a) (b)

Figure 5. N u as a function of the horizontal wavenumber kx for R aT  =  50, 100, 200, 400, 1000 and
2000 (from bottom to top) obtained from single-mode solutions (lines) and compared with D N S
results (black squares) with kx =  np / L x, N BC  using n and Lx, N BC  appropriate to no-flux
horizontal B.C. (Figure 4 and Table 2 in [39]). Panel (b) is a zoom of panel (a).

Figure 6 shows isocontours of the streamfunction y ,  the total temperature 1 z +  T
and the total salinity 1   z +  S. Here, the streamfunction for a two-dimensional flow is
constructed as

y (x, z, t) = y ( z ,  t)eikx x +  c.c. with                                              (15a)

y  =w/( ik x ) .                                                                         (15b)

The total temperature and total salinity are both constructed from the single-mode ansatz
in (5) and adding the background linear profile as in Equation (1). Figure 6 reproduces
the qualitative behavior in the parameter regime of Figure 5 in [39] despite its sinusoidal
structure in the horizontal. In fact, the nonsinusoidal nature of the streamfunction of the
exact 2D steady convection rolls reached in DNS accounts for the N u difference between the
single-mode equations and D NS shown in Figure 5. The total salinity at the higher Lewis
number Le =  20 shown in Figure 6d displays a relatively well-mixed interior compared
with the corresponding result at Le =  4 in Figure 6c, as also found in D N S  observations
(Figure 5 in [39]).

(a) y (b) 1 z +  T (c) 1 z +  S (d) 1 z +  S

Figure 6. Solution profile of single-mode solutions displaying isocontours of (a) streamfunction y ,
(b) total temperature 1   z +  T  and (c) total salinity 1   z +  S  at R aT  =  200, kx =  1.89p, and Le
=  4. Panel (d) shows the isocontours of total salinity 1      z +  S at Le =  20 with other parameters
unchanged. This figure is to be compared with the corresponding DNS results (Figure 5 in [39]).

We now turn to the properties of the Sherwood number quantifying salinity transport
and defined as

Sh : =  1 h¶zS0(z =  0, t)it . (16)

Figure 7 shows Sh as a function of Le for passive salinity (R r  =  0) for a range of RaT ,
compared with the DNS results (Figure 6 and Table 3 in [39]), on the assumption that kx =  p ,
1.25p, 2p , 3p and 5.83p for R a T =  50, 100, 200, 400 and 1000, respectively, based on the
expression kx =  np / L x , NBC  with n and Lx,NBC obtained from [39]. Here, the single-mode
solutions predict Sh that overlaps with the D N S  results at R a T =  50 over a wide range
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of Le. For high Ra and Le & 1 the single-mode equations over-predict Sh in comparison
with the DNS. The single-mode solutions show a scaling law Sh  Leh with h =  0.52 for Ra
=  50 and h =  0.51 for Ra =  100, 200, 400 and 1000 fitted within Le 2  [10, 100]. This scaling
law is close to the scaling law Sh  Le0.5 observed in DNS results [39].

Figure 7. Sh as a function of Le from single-mode solutions (lines) with R r  =  0 compared with
DNS (markers) from Figure 6 and Table 3 in [39]. The horizontal wavenumbers are chosen as kx =  p ,
1.25p, 2p , 3p , 5.83p for R aT  =  50, 100, 200, 400, 1000 based on kx =  np / L x , N BC  with n and

Lx, N BC  as in [39].

3.2. Double-Diffusive Convection with R r  =  0
In this subsection, we investigate the effect of an active salinity that also contributes to the

buoyancy (R r  =  0). Here, R r  >  1 corresponds to an overall stably stratified (bottom-heavy)
configuration. The resulting configuration differs substantially from the passive case R r  =  0 in
that it admits oscillations about the conduction state. This overstable case manifests itself in the
presence of a Hopf bifurcation that precedes the steady onset studied in the preceding
section. In this subsection we compare the resulting standing waves, traveling waves and
steady convection rolls computed from the single-mode equations with the corresponding 2D
DNS results using both no-flux and periodic B.C. in the horizontal [40,43].

Figure 8a shows a standing wave (SW) over one oscillation period obtained from a
simulation of the single-mode equations with real [w, T, S] in terms of the quantities

nu(t) : = 1       ¶z T0(z =  0, t),                                                    (17a)

sh(t) : = 1       ¶zS0(z =  0, t),                                                    (17b)

ymid (t) :=max y (x, z =  0.5, t),                                                (17c)

displaying values close to the 2D DNS results with no-flux B.C. in the horizontal (Figure 5 in [43])
as compared in Table 1. The oscillation period from the single-mode equations is Tp =  1.568,
which is also close to the DNS  observation of Tp =  1.535 [43], p. 77. Figures 8b,c show
isocontours of the streamfunction at the minima and maxima of ymid(t), indicating a complete
flow reversal between these instants, in agreement with DNS  results (Figure 6 in [43]) and
SW observed in related problems [47,76]; the quantities nu(t) and sh(t) are quadratic and so
oscillate with half the oscillation period.

Figure 9a shows the bifurcation diagram for the single-mode equations at R a T =  53,
Le =  5, kx =  2p / L x  =  p  corresponding to Lx =  2. This parameter regime displays travel-
ing waves (TW) in DNS with periodic B.C. in the horizontal at R r  =  0.1 (Figure 8b in
[43]). Here, the single-mode solutions also show a branch of TW (in red) and the TW
branch is stable at R r  =  0.1, consistent with D NS  observation [43]. The TW branch
loses sta-bility at R r  =  0.0954 through a secondary Hopf bifurcation prior to its
termination on the lower branch of steady convection (in black). Figure 9a shows
that both TW and SW bifurcate supercritically from the trivial solution, and that the
TW branch displays a larger N u than the SW branch. This is consistent with the
prediction that a stable branch
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emerges from a Hopf bifurcation with O(2) symmetry whenever both TW and SW branches
bifurcate supercritically and that the larger amplitude branch measured by N u is then
stable [46,48,77].

(a) (b) (c)

Figure 8. (a) One period of a standing wave computed from the single-mode equations at R aT  =  55,
R r  =  0.1, Le =  5, kx =  p  and ky =  0 displaying 10[nu(t)      1], sh(t) and ymi d (t) as a function of
t 2  [13.077, 14.645] with oscillation period Tp =  1.568. Panels (b) and (c) show the isocontours of
the streamfunction at t =  13.077 and t =  13.861, respectively. This figure is to be compared with the
corresponding DNS results (Figures 5 and 6 in [43]).

Table 1. Comparison of max ymid (t), max nu(t), max sh(t) and the oscillation period Tp of standing

waves obtained from the single-mode equations and D N S  (Figure 5 and p. 77 in [43]) at R aT  =  55,
R r  =  0.1 and Le =  5. The single-mode solutions are associated with kx =  p ,  ky =  0 while the D NS  results

[43] are computed with no-flux B.C. in a horizontal domain of size Lx,N BC  =  p / k x  =  1.

Standing waves from DNS [43]
Standing wave from single-mode

max ym i d ( t )

0.670
0.705

max nu(t )

1.052
1.058

max sh (t )

1.594
1.652

Period Tp

1.535
1.568

(a) (b)

Figure 9. (a) Bifurcation diagram of single-mode solutions at R aT  =  53, Le =  5, kx =  p  and ky =  0,
showing steady convection rolls ( ), SW () and TW ( ). Thick lines indicate stable solutions and
thin lines represent unstable solutions. (b) The temporal frequency w =  2p / Tp  of SW () and TW (

), the latter computed from w =  jcjkx. The Hopf frequency is wHopf =  5.36981 at the
Hopf bifurcation point R r  =  0.10615 ( 4 )  from the trivial solution. Near the termination of the SW

branch, the frequency w decreases to zero at R(SW) as w  1/[      ln( R r    R(SW) )] ( .  ) as predicted
theoretically [78]. Near the termination of the TW branch, the phase velocity c of the waves decreases

to zero at R(TW) as c R r    R(TW) (      ) as also predicted theoretically [79,80].

Figure 9b displays the oscillation frequency w =  2p / Tp  for both TW and SW. Both
start at wHopf =  5.36981 at the Hopf bifurcation point R r  =  0.10615 from the trivial solution,
and both decrease to zero with decreasing R r ,  at which point they terminate on the lower
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branch of (unstable) steady rolls. The TW terminate in a local parity-breaking bifurcation

at R (TW) =  0.0918 and do so as w        R r    R(TW) [49,79,80] while the SW terminate

at R(SW) =  0.06966838 in a global bifurcation and do so as w  1/[      ln( R r    R(SW) )],
cf. [48,78]. The resulting bifurcation diagram resembles those found in [47,49,79].

At  the slightly different Rayleigh number R a T =  55, the other parameters being the
same (Le =  5, R r  =  0.1, Lx =  2), D N S  with periodic B.C. in the horizontal instead shows
the existence of steady convection rolls (Figure 8a in [43]), while the single-mode solutions
also give steady convection rolls, as shown in the top row of Figure 10. For comparison, the
bottom row of Figure 10 shows the corresponding solution profiles for the TW at R a T =  53.
Here, both steady convection rolls and traveling waves show streamlines resembling
counter-rotating rolls, but the isocontours of the total temperature and total salinity of the
traveling waves reveal profiles that are less well-mixed than in steady convection, as also
found in D NS  (Figure 8 in [43]). The left-right asymmetry of the TW profiles is indicative
of propagation.

(a) y (b) 1 z +  T

(d) y (e) 1 z +  T

(c) 1 z +  S

(f) 1 z +  S

Figure 10. Top: solution profiles for steady convection rolls from the single-mode equations at
R aT  =  55 with isocontours of (a) streamfunction y ,  (b) total temperature 1   z +  T  and (c) total
salinity 1      z +  S. Bottom: solution profiles for a left traveling wave with c =   1.07 in the comoving
frame from the single-mode equations at R aT  =  53 with isocontours of (d) streamfunction y ,  (e) total
temperature 1      z +  T  and (f) total salinity 1      z +  S. Other parameters are R r  =  0.1, Le =  5, kx =  p
and ky =  0 as used in 2D D N S  with periodic B.C. in the horizontal and period Lx =  2p /k x =  2
(Figure 8 in [43]).

Table 2 further reports the maximum value of streamfunction ymax : =  max y (x , z, t),

N u and Sh of steady convection rolls and traveling waves obtained from single-mode
solutions. These values are then compared with the DNS values reported in Figure 8 in [43].
Table 2 also includes the phase speed c of traveling waves obtained from single-mode
solutions for comparison with DNS results [43], p. 79. Note that c =  0 for steady solutions
by definition. The comparison in Table 2 shows that the single-mode solutions quite
accurately predict the correct values of ymax , Nu, Sh and c for both steady convection rolls
and traveling waves.
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Table 2. Comparison of ymax, Nu, Sh and c between single-mode solutions and D NS  for steady
convection rolls at R aT  =  55 and traveling waves at R aT  =  53. Other parameters are R r  =  0.1, Le =  5, kx

=  p  and ky =  0; the D NS  results are computed with periodic B.C. in the horizontal with period
Lx =  2p /k x =  2 (Figure 8 and p. 79 in [43]).

ymax Nu

Steady convection rolls from DNS ( R aT  =  55) [43] 1.924 1.371
Steady convection rolls from single-mode ( R aT  =  55) 1.812 1.341
Traveling wave from DNS ( R aT  =  53) [43] 0.869 1.087
Traveling wave from single-mode ( R aT  =  53) 0.848 1.083

Sh c

3.320 0
3.387 0
1.865            1.03
1.828            1.07

Figure 11a shows the bifurcation diagram for R a T =  100, Le =  20, kx =  p  and ky =  0.
Here, the stable TW branch connects to the upper branch of steady convection rolls instead
of the lower branch. The connection stabilizes steady rolls for R r  <  R(TW) . A  similar
bifurcation diagram with the TW branch terminating at the upper branch was computed
for binary fluid convection (Figure 1 in [81]). The transition between the diagrams in
Figures 9 and 11 is the result of increasing R a T and Le and occurs when the TW termination

point R(TW) passes through the fold on the branch of steady rolls, cf. Figure 3 in
[49]. Figure 11a also shows N u for the unstable SW but these may undergo a fold at
lower R r  that renders them unstable even with no-flux B.C. Figure 11b displays w =
2p / Tp  for SW and w =  jcjkx for TW, both of which start from wHopf =  23.40889 at the
Hopf bifurcation point R r  =  0.58548 from the trivial solution and decrease with
decreasing R r .  Near R(TW) =  0.129, where the TW branch connects to the upper branch
of steady convection

rolls, the TW branch once again displays the c R r    R(TW) behavior consistent with
theoretical analysis [49,79,80].

(a) (b)

Figure 11. (a) Bifurcation diagram of single-mode solutions at R aT  =  100, Le =  20, kx =  p  and
ky =  0 showing steady convection rolls (  ), SW () and TW ( ). Thick lines indicate stable solutions and
thin lines represent unstable solutions. (b) The temporal frequency w =  2p / Tp  of SW () and TW (
), the latter computed from w =  jcjkx. The Hopf frequency is wHopf =  23.40889 at the Hopf
bifurcation point R r  =  0.58548 ( 4 )  from the trivial solution. Near the termination of the TW branch

the phase velocity c of the waves decreases to zero at R(TW) as c R r    R(TW) (      ) as predicted
theoretically [79,80].

Figure 12 shows the solution profile at R r  =  0.4 for both unstable steady convection
rolls and stable traveling waves. Here, the mean temperature of the traveling waves is
closer to a linear profile, a fact that is consistent with the lower N u of traveling waves
shown in Figure 11. The isocontours of total temperature and salinity of traveling waves
also show profiles that are less well-mixed in the interior than in the corresponding steady
convection rolls, cf. Figure 10.
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(a) (b) y

(e) (f) y

(c) 1 z +  T

(g) 1 z +  T

(d) 1 z +  S

(h) 1 z +  S

Figure 12. Top: unstable steady convection rolls from single-mode equations showing (a) mean
temperature 1      z +  T0 and isocontours of (b) streamfunction y ,  (c) total temperature 1      z +  T  and
(d) total salinity 1      z +  S. Bottom: stable left traveling wave convection in the comoving frame with
phase speed c =   5.31 from single-mode equations showing (e) mean temperature 1      z +  T0 and
isocontours of (f) streamfunction y ,  (g) total temperature 1      z +  T  and (h) total salinity 1      z +  S.
The parameters are R aT  =  100, R r  =  0.4, Le =  20, kx =  p  and ky =  0.

Figure 13 shows Sh and N u for single-mode solutions in the form of steady con-
vection rolls as a function of R r  for R a T =  100, 150, 300 and 600 with wavenumbers
kx =  np / L x , NBC  =  p ,  2p , 2p , and 4p , respectively. We select these wavenumbers
based on Lx,NBC =  1 and the number of convection cells observed in the D NS  [40],
p. 1266. Here, single-mode solutions also reproduce the qualitative trend observed in
DNS (Figure 5 in [40]), namely that Sh and N u decrease as R r  increases, corresponding to a
stronger stabilizing effect of the salinity gradient. In particular, the single-mode solutions
predict N u and Sh larger than or equal to those of steady convection rolls reached by
D NS  for these R a T values, similar to the observations in Figures 5 and 7 as well as the
comparison in salt-finger convection [12]. Single-mode solutions in the form of steady
convection rolls also exist in the stably stratified regime R r  >  1 as a result of diffusivity
difference between temperature and salinity. The single-mode solutions fold at R r  =  1.665
when R a T =  600, which is consistent with DNS observation showing that the final state at
R r  =  3 is the conduction state (Figure 7 in [40]).

(a) (b)

Figure 13. (a) Sh and (b) Nu, both as a function of R r  from the single-mode equations (lines) at Le
=  20, ky =  0 and R aT  =  100, 150, 300 and 600 with wavenumbers kx =  np / L x, N BC  =  p ,  2p , 2p , 4p ,
respectively, compared with the corresponding DNS results (markers) (Figure 5 in [40]).
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Finally, Figure 14 fixes R r  =  0.2 and presents Sh and N u as a function of Le. The
wavenumber kx employed for each R a T is selected in the same way as in Figure 13 to
facilitate direct comparison with the corresponding DNS results (Figure 4 in [40]). We see
that for the single-mode solutions Sh  Leh within Le 2  [10, 100] with h =  0.53, 0.56, 0.53 and
0.54 for Ra =  100, 150, 300 and 600, respectively. These scaling laws closely follow the
trend Sh  Le0.5 observed in the D N S  data [40], although a slight difference exists. The
influence of Le on N u is also relatively smaller compared with Sh, as also found in D NS
[40]. Moreover, the plot of N u as a function of Le within the range Le 2  [10 2, 102] shows
a minimum near Le  1 similar to the trend y   Le at R r  =  0.1 (Figure 11b in [43]). This is
undoubtedly a consequence of the fact that when Le =  1 the system ceases to be double-
diffusive.

(a) (b)

Figure 14. (a) Sh and (b) Nu, both as a function of Le, from the single-mode equations (lines) at R r

=  0.2, ky =  0, and R aT  =  100, 150, 300 and 600 and wavenumbers kx =  np / L x , N BC  =  p ,  2p , 2p , 4p ,
respectively, compared with the corresponding DNS results (markers) (Figure 4 in [40]).

4. Conclusions and Future Work

This work employs single-mode equations to analyze both convection and double-
diffusive convection in a porous medium where the Darcy law provides large-scale damp-
ing. The single-mode equations are obtained from a severely truncated Fourier expansion
in the horizontal, but preserve the nonlinear interaction between horizontally averaged
mode and a single harmonic mode of the convective state. The single-mode equations
fully resolve the vertical direction providing strongly nonlinear solutions. Despite the
shortcomings of this approach, we found the single-mode solutions reproduce much of the
observed phenomenology identified in high Rayleigh number simulations.

We first considered thermal convection where salinity can be viewed as a passive
scalar (R r  =  0). In this case, convection sets via a steady state bifurcation. The resulting
steady convection rolls are well captured by steady solutions of the single-mode equations,
which reproduce the qualitative behavior of the RMS profiles (vertical velocity, horizontal
velocity and temperature), and the mean temperature profile of the time-dependent state
at high Rayleigh numbers, obtained using D NS  [25,27]. The single-mode solutions are
also consistent with the heat-exchanger model that describes well the mean temperature
gradient in the interior [25,27]. The N u predicted by the single-mode solutions lies below
the theoretical upper bound [52] and reveals a scaling law with Rayleigh number close to
that followed by exact 2D steady convection rolls [26]. This prediction differs from large
aspect ratio DNS results [25–28] where the presence of additional degrees of freedom
apparently enhances heat transport but agrees with DNS in small horizontal domains [39]
where such degrees of freedom are suppressed.

When the salinity gradient is stabilizing (R r  =  0) the situation is quite different: the
system becomes overstable and the conduction state loses stability to oscillations. The
resulting traveling and standing waves can still be computed within single-mode theory
and both are found to bifurcate supercritically and terminate on the subcritical branch of
steady rolls as predicted by theory [78–80]. Of the two competing states, TW and SW, the
larger amplitude state as measured by the Nusselt number, is stable, also in agreement with
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theoretical prediction [48] and consistent with DNS observations [43]. The Sh obtained from
single-mode solutions shows a scaling law over Le close to DNS observation for both active
[40] and passive [39] salinity. The single-mode solutions are derived with the assumption
of horizontal periodic boundary conditions, but also show agreement with D NS  using
no-flux boundary conditions in the horizontal [39,40,43] after mirroring the domain.

The results here suggest the promise of this computationally tractable single-mode
approach and open up new directions for future work. For example, single-mode solutions
may be further applied to other flow configurations where columnar coherent structures are
dominant due to inherent or imposed large-scale damping. The single-mode equations also
have the potential to be further improved by systematically including higher-order harmon-
ics in a computationally efficient manner. For example, D NS  results show a wavenumber
scaling near the boundary different from that in the interior in high Rayleigh number
convection [27], directly motivating a "two-mode" reduced-order model. Including higher
order harmonics may also suffice to capture the secondary Hopf bifurcation of exact 2D
steady convection rolls leading to wall modes [26,73–75], promising further improvement
in the predictive power of this approach.
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