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In this Letter, an elastic twisted kagome lattice at a critical twist angle, called self-dual kagome lattice, is

shown to exhibit peculiar finite-frequency topological modes which emerge when certain conditions are

satisfied. These states are topologically reminiscent of the zero energy (floppy) modes of Maxwell lattices,

but they occur at a finite frequency in the band gap of the self-dual kagome lattice. Thus, we present a

completely new class of topological modes that share similarities with both the zero frequency floppy

modes in Maxwell lattices and the finite energy in-gap modes in topological insulators. We envision the

presented mathematical and numerical framework to be invaluable for many technological advances

pertaining to wave phenomena, such as reconfigurable waveguide designs.
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Introduction.—In the past few years, the concept of
topological mechanical or elastic systems [1–18] and other
bosonic systems [19–22] have led to a variety of intriguing
development. In analogy to topological states in quantum
many-body systems, the nontrivial topology structure from
phonon bands grants these materials novel properties such
as topologically protected edge, surface or corner modes. In
general, current studies about topological mechanical or
elastic systems can be classified into two categories. In the
first category, the dynamic matrix of an elastic system
is mapped to the Hamiltonian of an electronic system.
Utilizing topological classifications developed for elec-
tronic systems [23–28], this mapping enables mechanical
systems to achieve the same type of topological phenom-
ena, such as topological edge states in quantum Hall (or
spin-Hall or valley-Hall) insulators [3–6,10–15,17]. The
second category is known as Maxwell systems [1,2,8,9,16].
For these systems, the nontrivial topology is not coded in
the dynamic matrix. Instead, it focuses on the connection
between elastic constraints and the degrees of freedom,
which maps the elastic problem into a superconductor
known as the BDI class [1,25,26]. From there, topological
indices can be defined, which govern zero-energy topo-
logical states at edges.
These two classes of topological mechanical systems

involve totally different concepts and theoretical descrip-
tions. More importantly, they exhibit distinct topological
phenomena. For topological systems in the first category,
the topological phenomenon has to manifest itself as high-
frequency physics, i.e., the topological edge, surface or
corner states can only arise between two phonon bands
(above the acoustic bands), and fundamental physics
principles prevent such topological states from emerging
below the acoustic band. This is because the acoustic band

is the lowest phonon band, and thus if mapped to electrons,
topological indices are required to be zero below the lowest
available energy bands. For the second category, on the
contrary, topological states must be at (or close to) zero
energy, which is below the lowest phonon bands, and
fundamental physics principles prohibit such topological
states from arising above the acoustic band. In other words,
these two classes of topological phenomena are separated
in frequency by fundamental principles. There is also an
important difference between these two categories regard-
ing the dispersion of edge modes. In the first category,
topological edge modes are typically disperse (usually
connect the bulk bands above and below the gap). In
contrast, topological edge modes in Maxwell systems are
dispersionless (i.e., they form flat bands).
Very recently, a new phenomenon was discovered in

the elastic lattices called mechanical duality, where the
mechanics of two apparently different physical systems is
related via mathematical mappings. If the system maps
onto itself, then it is called self-dual, and it shows
remarkable properties. Recently, Fruchart et al. [29] found
that the elastic twisted kagome lattices show duality while
transitioning through their collapse mechanism [30] where
two different structural configurations, equidistant from a
mechanical critical point, have the same dynamic character-
istics and related elastic moduli. At the critical point, the
twisted kagome lattice is self-dual and has a two-fold
degenerate dispersion band structure. Later, Gonella [31]
numerically demonstrated the duality in twisted kagome
lattices by stitching together two dual configurations
forming a heterogeneous bidomain structure. More
recently, Danawe et al. [18] observed peculiar (d − 2)-
dimensional in-gap corner modes in a self-dual kagome
lattice occurring at a finite in-gap frequency.
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In this Letter, we show that with the help of mechanical
duality, a new type of topological mechanical system arises,
which exhibits properties of both categories discussed
above. Same as the first category, these topological states
arise at a high frequency above acoustic bands, in band
gaps between various phonon bands. However, the origin
and topological structure of these topological states follow
the same principle as Maxwell systems, and the topological
edge (or domain-wall) states are dispersionless. We dem-
onstrate this new topological phenomenon in the self-dual
kagome lattice which satisfies the Maxwell condition
relating the degrees of freedom and applied constraints.
However, the finite frequency topological Maxwell modes
may also be observed in other self-dual lattices.
Self-dual kagome lattice.—A kagome lattice is charac-

terized by three equal massesm located at lattice sites A, B,
and C on the vertices of an equilateral triangle, as shown in
Fig. 1(a). The masses are interconnected by elastic bonds of
stiffness k. In the self-dual kagome lattice, the neighboring
bonds connecting same types of lattice sites are
perpendicular to each other. For example, in Fig. 1(a),
the two CA bonds are at 90° to each other, and similarly, the
two CB bonds and two AB bonds are perpendicular to each
other as well. The mass at each node can translate in the x
and y directions, and the displacement of the lth node can

be represented by a 2D vector uT
l
¼ ðux

l
; u

y
l
Þ, i.e., two

degrees of freedom per node. By virtue of the periodicity,
the displacements of nodes 2–4 and 3–5 are related and
governed by Bloch’s theorem, such that

u4 ¼ eik·e1u2 ¼ eiq1u2 ð1aÞ

u5 ¼ eik·e2u3 ¼ eiq2u3 ð1bÞ

where k is the Bloch wave vector, e1, e2 are direct lattice

basis vectors such that je1j ¼ je2j ¼
ffiffiffi

2
p

L (L is the bond
length) and q1, q2 are reduced (normalized) wave vectors
given by q1 ¼ k · e1, q2 ¼ k · e2. Thus there are a total of
six degrees of freedom (DOF) per unit cell corresponding to
the three nodes 1, 2, and 3. The dispersion band structure of
a self-dual kagome lattice is shown in Fig. 1(b), having

three doubly degenerate dispersion branches (solid lines),
i.e., for every wave vector k there are three pairs of
identical eigenfrequencies. Now, if the C sites of the lattice
are pinned, the unit cell is left with only four DOF, and the
band structure reduces to two doubly degenerate flat bands,
as shown by dotted lines in Fig. 1(b) (see Supplemental
Material for more details [32]). Interestingly, the flat bands

at Ω ¼ 1 (where Ω is normalized frequency given as

Ω ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm=kÞ
p

) are in the band gap of the lattice with

all free sites and that at Ω ¼
ffiffiffi

3
p

passes through the Dirac
point of the free lattice band structure. For more details on
the band structure calculation of a twisted kagome lattice as
a function of the twist angle, see Ref. [18], where the author

demonstrated the existence of corner modes in a self-dual
kagome lattice which also evidently happen to appear at
Ω ¼ 1 characterized by zero deformation of the same type
of lattice sites as if they are pinned. In this Letter, we further
investigate the localized states near intentionally pinned
sites of the same type (A, B, or C) in the bulk of a self-dual
kagome lattice lattice, seeking the reason for their existence

and topological nature.
Finite-frequency localized modes.—What will happen if

some (but not all) of the C sites are pinned? For such a
partially pinned self-dual kagome lattice, it turns out that
an intriguing phenomenon emerges: no matter how many C
sites we choose and regardless of which C sites are

selected, each pinned C site always generates four modes
localized around this site, two at frequency Ω ¼ 1 and two

at Ω ¼
ffiffiffi

3
p

(see Supplemental Material for more details
[32]). In a lattice system, localized modes induced by a
pinned site are not uncommon. However, if we pin two (or

more) sites close to each other, these localized modes will
typically hybridize with each other, and thus their fre-
quency shall shift depending on the distance between these
pinned sites. Such hybridization never arises in the self-
dual kagome lattice, and the frequencies of these localized

modes always remain exact Ω ¼ 1 or
ffiffiffi

3
p

, even if two
pinned C sites are right next to each other. This absence of
hybridization is a unique property of this self-dual lattice
and is one of the key results of this study. The lack of
hybridization results from the unique displacement fields
that characterize these modes (see section Topology and

analytic theory for more details).
In addition, these localized modes also have some

other intriguing properties. First, although only some of

the C sites are pinned, for all these Ω ¼ 1 or
ffiffiffi

3
p

modes,
all C sites in the entire lattice exhibit zero displacement
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FIG. 1. (a) A self-dual twisted kagome lattice and its unit cell
with three equal masses at lattice sites A, B, and C interconnected
by bonds of stiffness k, e1 and e2 are the direct lattice basis
vectors. (b) The dispersion band structure of a self-dual kagome
lattice with all free lattice sites (solid lines) and pinned C lattice
sites (dotted lines). The flat bands for a lattice with pinned C sites

appear at Ω ¼ 1 (in the band gap of free lattice) and Ω ¼
ffiffiffi

3
p

(at

Dirac point of free lattice), where Ω ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm=kÞ
p

. The first

irreducible Brillouin zone K-Γ-M-K is shown in the inset.
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(i.e., all C sites are effectively pinned) similar to the corner
modes observed in Ref. [18]. Second, this phenomenon is
extremely robust and doesn’t exhibit any finite-size or
boundary effect. The same phenomenon and exact frequen-
cies are observed regardless of system size (from a few unit
cells to infinite lattices) or boundary conditions (open or
periodic). The location of the pinned sites (near the edge or
in the bulk) has no impact either.
Because these localized modes never hybridize with each

other, we can use them as the building blocks to create more
complicated structures. For example, if we pin one row ofC
sites along a straight or zigzag line, these localized modes
will form a 1D waveguide, with four 1D flat bands, two

at Ω ¼ 1 and two at Ω ¼
ffiffiffi

3
p

. If two rows of C sites are
pinned, two such waveguides are obtained. Even if the two
waveguides are very close to each other, the waveguide
modes will not hybridize between the two waveguides. If
we pin all the C sites, these localized modes produce four
2D flat bands, as shown in Fig. 1(b). To better demonstrate
this effect, in Fig. 2(a), we present the phonon band
structure with one row of C sites pinned down, calculated
using the supercell shown in Fig. 2(b). Two flat 1D bands at

Ω ¼ 1 and two at Ω ¼
ffiffiffi

3
p

are obtained. These modes are
localized near the row of pinned C sites (except at q1 ¼ 0,

Ω ¼
ffiffiffi

3
p

) with exponentially decaying mode shapes away
from the pinned sites, as shown in Fig. 2(b). Note that the

slightly nonflat shape of the flat bands at Ω ¼
ffiffiffi

3
p

is due to
the finite size of the supercell and very low decay rate near

q1 ¼ 0 [see Fig. 3(a)]. The edge modes at Ω ¼
ffiffiffi

3
p

and
q1 ¼ 0 coexist with bulk modes corresponding to the Dirac
point [see Fig. 1(b)].
Topology and analytic theory.—It turns out that these

robust features have the same topological origin as the
zero-frequency topological edge modes in Maxwell
systems, i.e., a topological winding number from the
Maxwell counting argument [1,2,8]. However, because

the topological modes here are at finite frequencies, a
new type of localized basis needs to be introduced.
In a lattice system, any deformation can be characterized

by the displacement field W ¼ ðuT
1
;uT

2
;…;uT

Ns
ÞT , where

ui is the deformation vector of the ith lattice site. This
deformation vector has d × Ns components, where d is the
space dimension, and Ns is the number of sites. We define

two special sets of deformation fields, Wþ
hi;ji and W−

hi;ji,

which will serve as a basis of our topological modes. Here,
hi; ji represents a bond connecting two neighboring sites i

and j. For the deformation W
þ
hi;ji, all other lattice sites

exhibit zero displacement, except sites i and j, which share
the same displacement vector, ui ¼ uj ¼ nhi;ji with ni;j is

the unit vector along the bond hi; ji. For W−
hi;ji, it is very

similar except that i and j have opposite displace-
ments ui ¼ −uj ¼ nhi;ji.
Here, we focus on symmetric deformations Wþ, which

give eigenmodes at Ω ¼ 1. The antisymmetric ones W−

follow exactly the same physics, and they produce eigenm-

odes at Ω ¼
ffiffiffi

3
p

. Using symmetric deformations Wþ, we
can construct the following displacement field:

WAB ¼
X

hAi;Bji
AhAi;BjiW

þ
hAi;Bji: ð2Þ

This deformation is a linear superposition of Wþ, and

AhAi;Bji is the amplitude for each Wþ. Here, we only use

bonds connecting an A site and a B site, and therefore all C
sites have zero deformation. Similarly, we can define WCA

orWBC using CA or BC bonds, respectively. Here, we shall
focus on WAB, and the same results can be easily
generalized to WCA and WCB.
In general, WAB is not an eigenmode of the dynamic

matrix. However, it is straightforward to verify that for the
self-dual lattice, WAB becomes an eigenmode with fre-
quency Ω ¼ 1 if the following constraint is obeyed: all C

 = 1

 = 3

2

0
0

F
re

q
u

en
cy

 

1

Wavevector q 
–

Bandgap

1

Two modes

Two modes

Pinned C site

 = 1

 = 3

Max0

Displacement magnitude

(b)(a)

FIG. 2. (a) Eigenfrequencies of a supercell with a pinned lattice
site in the bulk. The two doubly degenerate flat bands appear at
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localized near the pinned lattice
site for q1 ¼ 2π=10. The two modes, at the same frequency,
decay away from the pinned lattice site in opposite directions
with the same decay rate.
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FIG. 3. (a) The decay rate of edge modes obtained from the
compatibility matrix formulation compared with the decay rate
from supercell simulations. (b) The mode shape of a infinite
ribbon with pinned row of A lattice sites for q1 ¼ π at which the
decay rates approach −∞ resulting in the highly localized edge
mode near the pinned row of lattice sites.
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sites stay at their equilibrium positions (pinned or at force
balance). Therefore, to study the Ω ¼ 1 modes, we can use
the linear space of WAB, where the number of degrees of
freedom is the number of AB bonds NDOF ¼ NAB. At the
same time, without pinning, the total number of constraints
is Nc ¼ 2NC, because the x and y components of the total
force on each C site need to remain zero. Remarkably, for a
kagome lattice, these two numbers coincide, NDOF ¼ Nc,
and thus the system is at the Maxwell point.
Same as in topological mechanics, here we can define an

effective compatibility matrix to connect the degrees of
freedom and the constraints.

F ¼ CeffA ð3Þ

Here, F ¼ ðF1;x; F1;y; F2;x; F2;x…ÞT is a Nc component

vector, where Fi;x and Fi;y are the x and y components of

the total force on the ith C site. A is a NDOF dimensional
vector composed of the coefficients A in Eq. (2).
In analogy to Maxwell topological mechanics, the null

space of the Ceff matrix (i.e., all modes obeying

CeffA ¼ 0) corresponds to Wþ modes at Ω ¼ 1. For a
lattice with periodic boundary conditions and without any
pinning sites, Nc ¼ NDOF, and thus Ceff is a square matrix.
As shown in the Supplemental Material [32], here
detCeff ≠ 0, and thus the null space is empty, indicating
the absence of any Ω ¼ 1 modes. However, once some C
sites are pinned, Ceff is no longer a square matrix. Instead,
the number of degrees of freedom now exceeds the number
of constraints NDOF > Nc, and thus the null space shall
contain NDOF − Nc independent modes. It is easy to realize
that for every pinned C site, Nc reduces by 2 and thus
NDOF − Nc increases by 2. This is the reason why we
obtained two Ω ¼ 1 modes for every pinned C site. The
same approach and conclusions also apply toW− modes at

Ω ¼
ffiffiffi

3
p

, except that we have bulk W− modes at the zero
wave vector corresponding to the Dirac point.
Same as in Maxwell topological mechanics, a topologi-

cal index can be defined for thisCeff matrix, which dictates
the number of topologically protected edge or domain-wall
modes [1,2,8,16]. To define this index, we need to switch
to the momentum space, where the Ceff becomes (see
Supplemental Material [32])

Ceff ¼ k

 

1

2
þ 3

4
ðeiq1 þ eiq2Þ

ffiffi

3
p

4
ðe−iq1 − e−iq2Þ

−
ffiffi

3
p

4
ðeiq1 − eiq2Þ 1

2
þ 3

4
ðe−iq1 þ e−iq2Þ

!

:

ð4Þ

For each value of q1, a topological winding number can be
defined as

n ¼
I

dz

2πi
trðC−1

eff
∂zCeffÞ ð5Þ

where z ¼ eiq2 . Using the gauge-invariant integral contour
introduced in Ref. [16], (i.e., the unit circle on the complex
z plane and remove the residue at z ¼ 0 or z ¼ ∞), we can
obtain two integer topological indices. For a line of pinned
C sites (Fig. 2), at each q1, these two topological indices
dictate the number of topologically protected modes
localized above and below the pinned line, respectively
(i.e., with a negative or positive decay rate). For the Ceff

matrix here, both of the two indices are unity, which means
that for each q1, we have two modes at Ω ¼ 1 localized
near this 1D line, one above and one below, in full
agreement with numerical simulations.
In addition to the number of modes, the Ceff matrix also

dictates their localization length and mode shape, the same
as Maxwell zero mode [1,2,7,8,16,33]. For a given q1, the
equation detCeff ¼ 0 has a complex q2 solution, and its
imaginary part is the decay rate

Imq2¼ ln

�

14þ6cosq1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

142þ96cosq1þ18cos2q1
p

12cosq1
2

�

:

ð6Þ

As shown in Fig. 3(a), this analytic prediction perfectly
agrees with the decay rates measured from supercell
simulations.
Loosely pinned waveguides.—Instead of complete pin-

ning, loosely pinning the lattice sites using an elastic
foundation of finite spring stiffness (here 4k) results
in eigenfrequency solutions of a supercell as depicted in
Fig. 4(a). The flat bands appearing in the band gap of a
supercell with pinned lattice sites [Fig. 2(a)] are not flat
in the case of a supercell with loosely pinned sites;
however, they are still twofold degenerate. The nonzero
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FIG. 4. (a) Eigenfrequencies of a supercell with a loosely
pinned lattice site. The flat bands of the supercell with pinned
lattice site become dispersive due to loose pinning, but they
remain twofold degenerate. (b) Wave propagation along the
loosely pinned C sites in a finite lattice due to nonzero group
velocity. The unit cell at the middle of the zigzag waveguide with
a pinned lattice site is excited using a harmonic excitation and the
displacement field is obtained as a function of time. The time
snapshots are taken at different instances indicated in terms of
time period, T, of harmonic oscillation.
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group velocity allows transmission of wave energy along
the row of loosely pinned lattice sites, whereas the bulk of
the lattice remains isolated due to the band gap. We
demonstrate this selective wave propagation in a finite
lattice by loosely pinning lattice sites forming a zigzag
shape waveguide, as shown in Fig. 4(b). The time snapshots
and root mean square (rms) of the displacement field show
that the disturbance at the middle of the zigzag-shaped
waveguide travels symmetrically in either direction along
the row of loosely pinned lattice sites (see Supplemental
Material for animations [32]). The loosely pinned wave-
guide is reconfigurable by simply pinning and unpinning
lattice sites, which is not so trivial in the case of quantum
spin-Hall or valley Hall systems. Moreover, by controlling
the pinning stiffness, the wave speed along the loosely
pinned waveguide can be tuned for faster or slower trans-
mission. Note that, unlike quantum Hall systems, the wave
propagation along the loosely pinned waveguide is not
unidirectional and thus does not offer protection against
backscattering. However, the new topological phenomenon
avoids unwanted hybridization (interference) between two
neighboring waveguides and offers reconfigurability and
tunability of waveguides which may have a significant
impact on wave propagation applications.
Previously, duality in kagome lattices was experimen-

tally demonstrated using LEGO™ bricks [29]. Also, floppy
modes of Maxwell lattices were realized in experiments
using near-to-ideal hinges [9]. Moreover, 3D printing [34],
bistable structures [35], and nanoparticle self-assembly
[36] have also been used in previous studies to realize
kagome or topological kagome lattices. Thus, in principle,
similar setups can be used to experimentally demonstrate
the observed topological modes in the current study.
Nonetheless, designing a proper experimental setup to
validate the present topological phenomenon would be
part of our future work, along with exploring non-
Hermitian effects [37–39] on these modes.
Conclusions.—In this Letter, we analyzed a new type

of topological state in a self-dual kagome lattice, which

exists at two specific frequencies Ω ¼ 1;
ffiffiffi

3
p

localized near
pinned sites of a sublattice. These states appear at the
Maxwell point, where the number of degrees of freedom is
equal to the number of constraints. Although analogous to
topological mechanics in Maxwell lattices, the Maxwell
relation obtained for the self-dual kagome lattice is funda-
mentally different, and the modes are at finite frequency
instead of zero frequency floppy modes, but they retain
their dispersionless (flat band) behavior. These modes
exhibit special deformation fields, which are characterized
by equal deformation of two lattice sites along the bond
connecting them while the deformation of the rest of the
sites is zero. For a row of pinned sites of a sublattice, the
topological modes are localized near the pinned sites while
decaying exponentially in bulk. The decay rate is obtained
from the determinant of the effective compatibility matrix,

and it is compared with supercell simulations with excellent
agreement. The topological index for these modes is the
same as that for zero-frequency modes in Maxwell lattices,
and it corroborates the existence of two topological modes

at frequencies Ω ¼ 1 and
ffiffiffi

3
p

.
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