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Abstract—In this paper, we explore the potential of utiliz-
ing time-stamps as labels for Deep Learning from webcams,
surveillance cameras, and other fixed viewpoint image situations.
Specifically, we explore if learning to classify images by the time
they were taken uncovers interesting patterns and behaviors in
the scenes captured by these cameras. We describe approaches
to building datasets with large quantities of images and their
accompanying labels, making them suitable for large-scale deep
learning approaches. We share our results from the initial deep
learning experiments.

I. INTRODUCTION

One of the reasons to place cameras outdoors is to under-
stand the patterns of behaviors and change that are visible. In
urban environments, these patterns capture typical behaviors:
people coming to a coffee shop, parking at their workplace,
etc. Understanding these patterns is critical to next generation
surveillance and urban planning paradigms.

But these patterns may be difficult to detect automatically,
especially if there are patterns that you don’t know to look for
(e.g. the bird that lands on the roof at the same time each day),
so it is interesting to think about ways of automatically learning
these patterns that define the passing of time. Our approach to
this problem is to think about the converse of this problem. In
scenarios where we have a large collection of images of one
scene with time-stamps, we hypothesize that those patterns of
change can be used to infer the time the image was taken —
and furthermore that learning to classify images by time of
day will create representations that highlight interesting things
about the scene. In this sense, we are using a time-stamp as a
label which is a proxy for understanding the scene, similar to
the way that image colorization was used as a proxy for other
visual understanding problems in single images [11].

To support this effort we need a large collection of time-
stamped imagery. There have been a few datasets created
before, including the AMOS (“Archive of Many Outdoor
Scenes”) dataset [6], [5], [16], and the smaller but better
stabilized Webcam Clip Art dataset [10], and the SkyFinder
dataset [15], which annotates ground vs. sky pixels and in-
cludes weather data. These datasets are now quite old, difficult
to get access to, and relatively low frame rate (often one image
per 30 minutes).

To address these limitations, we have created a strategy
to create a new, large, meta-index of webcam imagery. This is
based on the recognition that a large collection of sites already
create long-term webcam imagery archives. We characterize

Fig. 1. We index existing webcam archives that retain outdoor webcam
images for many years and publicly share those images, as a resource for
long-term scene understanding research. Our index comprises 377 different
webcams, with especially dense representation in regions of Europe and North
America. For each of these cameras, we index when images were captured
— for one camera, the data availability plots are shown for 2018-2022 in
the bottom set of figures. Data availability for cameras like this is typical, as
webcam providers start capturing images, they often changes the frequency
with which they capture or archive imagery, and they often have substantial
downtimes.

these archives, understand the structure of the URLs that
provide links to their images. This allows us to keep the native
temporal and image resolution without adding to the network
bandwidth, and simplifies our task of sharing the data. This
meta-index captures images that are up to 12 Megapixels, have978-1-5386-5541-2/18/$31.00 ©2018 IEEE
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images every minute and have archive durations lasting from
2 to 15 years.

We train deep learning algorithms on images from single
scene to classify imagery by time of day and time of year.
Because the network is trained for a single scene, the classifi-
cation often becomes very good, and because there are so many
images from that scene, the classification generalizes well to
unseen images from that camera. Because the images usually
come with time-stamps, this classification is less interesting
than the set of features in the scene that were most important
for that classification. Depending on the scene, those features
include natural processes from lighting (shadow direction,
dawn and dusk times), natural weather processes (consistent
fog and cloud patterns), and human patterns (like a restaurant
consistently rolling down an awning, or a city square bringing
in ).

To automatically find these features, we create neural
network visualizations that highlight the image regions most
salient for the time-of-day and day-of-year classifications.
We share preliminary results across a number of different
scenes and highlight how choices in Deep Learning visual-
ization affect the interpretability of the results. Our initial
results highlight limitations of this approach, primarily that
weather/lighting cues dominate the scene, with very strong
cues about time of day, making it harder to find the human
activities than we expect. This suggests that further work is
needed to find patterns of human behavior, such as explicitly
extracting cues unrelated to lighting.

II. RELATED WORK

1) Webcam research in computer vision: The first webcam
viewed a critical element in the patterns of human life, a
coffee pot [18], a coffee pot at the University of Cambridge,
which became network accessible in 1993, and shared images
until 2001. Some of the earliest works used outdoor webcams
to explore extracting intrinsic images from natural lighting
variations [?], and analysing traffic flow in cities [17].

Larger scale efforts to understand statistics of variations
across many webcams include finding low-dimensional linear
structures [6], geo-location cues [7], and understanding tran-
sient patterns of weather [9], [1], [12]. Webcams have been
used to characterize long term patterns of human behavior at
the city scale in terms of urban traffic density [20] and in
characterizes pedestrian and bicycling behavior [4].

Explicit datasets that have been shared to supported we-
bcam research include AMOS (“Archive of Many Outdoor
Scenes”) dataset [6], [5], [16], and Webcam ClipArt, a smaller
collection of cameras with mostly high quality and whose
images are approximately aligned [10], and the SkyFinder
dataset [15], which makes great efforts to exactly align the
imagery and provides pixel-specific annotations of sky and
not-sky pixels.

2) Webcam or Outdoor Time-Lapse and Estimating Time:
There is quite limited work in looking at long term outdoor
imagery that relates to estimating time of day. Recent work
seeks to automatically detect and read analog clocks that are
visible in outdoor imagery [19], and validating a time-stamp of
outdoor imagery [13], and estimating location/time of cameras

Fig. 2. An example web page that is found by search for open directory
access pages that share image that contain the word ”webcam”.

based on tracking shadows [8]. To our knowledge, there is
no prior work trying to estimate time-of-day from a single
webcam image.

III. A META-ARCHIVE OF WEBCAM IMAGERY

In this section we explain an approach to create and curate
a list of existing webcam imagery archives. This process
consisted of finding existing webcam archives, indexing them
them to find and time-stamp the URLs of imagery in them,
and adding meta-data to make the archive useful.

A. Webcam Archive Discovery

Our approach to discovering existing webcam archives was
not automated. We used extensive human effort to discover
webcam archives with a variety of explicit searches. In order
to find a small collection of distinct webcams per search we
used a collection of searching strategies:

• Include: ”Index of” in the search. This appears on
websites that permit directory access, and this direc-
tory access is often necessary for us to be able to parse
long URLs to determine time and date information.

• Include: site:.ca, site:.fr, etc. in order to limit the
search results to specific countries.

• Include: ”webcam archive”, or ”live stream archive”
to limit results to pages that are likely to have webcam
archive images.

• Include: ”inurl:2019/07” or similar patterns consistent
with common year/month directory structures to iden-
tify long term webcam archives.

Using such searches, we have to date found 377 different
webcams that have existing long term archives, and whose
image URLs are publicly available to download. Figure 2
shows an example of a webpage that we found using similar
searches, a directory-accessible webpage that provides web-
viewable image directories. Visible inspection of this shows
that images are archived every minute.

B. Webcam Archive URL scraping

For such sites, we use a python script to recursively search
the directory tree for all images from the same webcam, and
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Example image URLs

https://www.avo.alaska.edu/webcam/arch//Redoubt_2/2020/09/10/redoubt-2-20200910T085100Z.jpg
https://ok.water.usgs.gov/scripts/webcam/archive/202009/20200911/USGS07196320_20200911_101505.jpg
http://209.97.184.57/webcamarchive/2019-11-November/13-Wednesday/11%3A53.jpg

Fig. 3. The image URLs had significant variability making some hand-tuning necessary to parse each to record time and date of the images.

to extract the date and time in UTC format. The latitude and
longitude of each camera was determined manually, and the
interpretation of the time listed in the filename was manually
examined to determine if it was likely to be listed in local time
or UTC time.

The script was designed to handle a variety directory
structures. Some examples of URLs highlight the variability
that we observed. For each camera we hand coded regular
expression pattern matchers to extract the time and date of
each image, and used the estimated GPS coordinate of the
camera to translate local times to UTC, if necessary.

In other cases, the webdirectory was not visible through
HTTP, but looking at the URLs through their visualization
infrastructure had clear patterns that allowed us to generate
the URLs.

C. Statistics to Date

We have found and indexed webcam archives from 377
different outdoor webcams. The oldest images for which we
currently have URLs date back to 2005. The median camera
refresh reate is 10 minutes, and the highest frame rate archive
contains images every minute. The median duration of images
for the archive of a single camera is 1600 days. The cameras
are concentrated largely in the United States and Western
Europe. We believe there are likely more webcam archives for
cameras in these regions, but our approach to finding webcams
was also limited by our language skills (largely English) and
intuitions of how to best search for these.

IV. NETWORK TRAINING AND SAMPLE RESULTS

One possible use of a very large, time-stamped dataset is to
take advantage of time as an always available proxy label for
interesting behaviors that happen in the scene. In this section
we share initial directions of this research.

A. Data preparation and method

We select two webcam scenes for this task. One is the
parking lot at an university which has 47000 images, and
another one is a river port with a sculpture which contains
71000 images. Some example images are shown in Figure 4.
Images from the camera are partitioned by the hour they were
taken (so all images taken between 2:00 and 2:59 are in one
class), so the ground truth is known for all images.

Next we randomly select a few years in the dataset, and
divide the dataset to our training dataset and test dataset.
Then for the training set, we divide them to training set and
validation set. The proportion is 7:3. In our paper, We use
images from 2017,2018 and 2020 in the training/validation
set, and images from 2019 as the test set.

Fig. 4. Example images from two scenes river port (left) and parking lot
(right) in our experiments. Both were chosen because the scenes contain
significant human activity, (although that is sometimes small in the image).

We tried both ResNet and Vision transformer for this task.
For ResNet, we use the ResNet-101 and start with weights
pretrained on ImageNet [3]. The images are pre-processed so
that timestamps are not visible, then blurred with a Gaussian
filter with kernel size of 5× 5, and standard deviation of 0.5.
Images are then resized to 224× 224 and normalized to have
zero mean and unit variance.

In the other experiment we use the ViT-B/32 [2], which
also pretrained on ImageNet. Images are pre-processed as
same as the ResNet experiment despite the images are resized
to 448 × 448 In both cases we train the network using the
standard cross-entropy loss function with batch size 24. We
use cosine scheduler with warm restart [14] to schedule the
learning rate. We set the minimum learning rate to 0.0001,
number of iterations for the first restart is 24 and T mult is
2. The learning rate start from 0.01 for ViT and 0.001 for
ResNet.

B. Results and Visualizations

Here we show results of the training process, and some
results of visualizations that try to highlight the most important
features. Figure 5 shows results from a scene containing a
parking lot. Over the course of the day, the parking lot fills in
the morning and empties in the evening, so there are human
patterns that are defined by the time of day. We show the
confusion matrix for the 24 classes (each out of the day).
On the training data, the confusion matrix is nearly diagonal
because the accuracy is very high, indicating some degree of
over-training.

The bottom left of the figure shows results on testing data
taking from the same year as the training data (but from days
that were not used during training). The daylight hours are very
accurately predicted, but there is less variation at night, so the
results are less accurate then. We also tested on images from
the following year (bottom right) and see that the variations
over long time scales in this scene are small enough that the
prediction results are largely similar.
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Fig. 5. For the scene shown in the top left, we summarize prediction accuracy
by showing confusion matrices. On training data (top right), the accuracy is
very high and there are no trends in what errors there are. On test data from
the same year (bottom left) and test data from a different year (bottom right),
the accuracy is quite high during daylight hours, but worse at night.

Figure 6 shows the Class Activation Maps [21] highlighting
the image regions most responsible for the predicted class.
Although this scene has a strong variation in appearance due
to human activity (the cars in the parking lot, among other
things), the 7am classification is driven largely by the bright
morning appearance of poles on the rooftop near the webcam,
and the 11am classification is driven by shadows of poles in
the parking lot and the visibility of buildings in the distance.

Visualizations using ResNet as the basic machine learning
model are shown in Figure 7. We show the CAM saliency map
for a sequence of images captured at different times of day.
The model always focuses on the tall statue, but at different
times of day focuses on the shadows in the foreground and
parts of the harbor. Inspection of many images like this make
it clear that the status appearance changes consistently, the
shadows move consistently, but the appearance of the building
in the harbor was more difficult to interpret.

Visualizations using Vision Transformer architecture are
shown in Figure 8. The class activation maps for the final
layer of the ViT are less strongly correlated with location
than the ResNet architecture. Possible explanations consistent
with these salience visualizations might include the thinness of
clouds in the sky, the amount and location of unshaded areas
on the ground and the amount of sunlight reflected off the
lake, but extensive observation of many images like this failed
to find very coherent cues.

V. DISCUSSION AND CONCLUSION

We have shown results of learning to classify an image
by the hour of day in which the image was taken. For two
example scenes, we find that we can reliably predict the time
of day in the daytime, and have more mixed results in the

Fig. 6. Saliency visualization showing the image regions that have the highest
impact on the classification. (Top) An image from the 7am hour correctly
classified, and (bottom) an image from the 11am hour correctly classified.

evening. But predicting the time an image was taken is rarely
a useful task in itself.

Our hypothesis was that the network would learn to tell
the time of day based on varying patterns in the scene that
were caused by human activity, and therefore the time-label
would be a proxy for learning interested features of human
activity in the scene. In these two cameras we have shown
results that highlight that the lighting cues seem to dominate
the explanations of the time of day, probably because the
lighting cues are very strong (in terms of the magnitude of
the image changes that they cause) and, in the case of long
cast shadows, for example, very specific. Initial efforts to find
cameras where this wasn’t the case were not successful.

This does not show that using time cannot be a good
proxy for human behavior. We believe that Deep Learning
that integrates time-sequence modeling (e.g. LSTM), and/or
otherwise focusses on images captured with a much higher
frame rate may be more successful. A scene where the mail-
truck reliable comes around 1pm will not have this be a
consistent cue if an entire hour is considered as one class,
or if images are captured only once per hour.

The processing of finding cameras and indexing the images
was also instructive. Future work in this area should consider
several issues. First, anecdotally, about 5% of the webcam
archives that we discovered have since changed their directory
structures or permissions over the course of the 6 months doing
this project. This is consistent with the ”lifetime” of a webcam
being approximately 10 years (even for good ones!). We think
this is likely because most webcams are sharing images ”for
fun” and the institutional support to maintain them is not
infinite.

Second, there are other sources of long term time-lapse
imagery that are not shared as large directories of .jpg files.
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Fig. 7. Images on the left is the class activation maps of test images on
trained ResNet. The activation is highlighted by red. Images on the right is
the original images. These images are from 9 AM to 1 PM within same day.
The shadow of building moves from left to right in these images

Increasingly, webcams are live-streams and not archived at
all, or a daily summary video is created. Working to integrate
this image sources could dramatically increase the number of
possible scenes (with a cost of introducing video artifacts that

Fig. 8. Class activation maps of time predictions using the ViT architecture
show much less consistent structure, because the ViT architecture does not
preserves spatial structure after the first layer of the network.

are consistent over multiple frames).

Third, we have found that it is vital to build visualization
tools to search through the dataset and explore data availability.
Visualizations such as the annual summary of which images
are available in the bottom of Figure 1 were unexpectedly
valuable debugging tools across every step of our process.
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