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ARTICLE INFO ABSTRACT

Editor: Ouyang Wei The ability of 5 Best Management Practice (BMP) allocation methods that consider 8 pre-selected BMPs, to control 4
Nonpoint Source (NPS) constituents in 4 watersheds with contrasting land covers, is investigated. The methods range
from random selection of BMPs on randomly selected sites, to optimized selection of BMPs at optimized locations, and
the land covers range from natural to ultra-urban. The optimization methods rely on Genetic Algorithms (GA), and a

method that uses expert systems is also applied. Watershed hydrologic and water quality response models are devel-

Keywords:
Nonpoint source (NPS) pollution
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Targetin;
op gmizftion oped, using the Soil Water Assessment Tool (SWAT), to compute baseline outputs from the 4 study watersheds without
SWAT BMPs, and to obtain predicted reductions in NPS constituent outputs when BMPs are implemented in accordance with

the 5 allocation plans. Methods used to represent BMPs in SWAT and to speed up optimization processes are also pre-
sented. Results indicate that the most computationally intensive methods produce the best results across landscape
types. Results also show that opportunities exist for less intensive methods, particularly in less-built environments.
For these, however, siting BMPs to hotspots remains an important requirement. The need to select the most appropri-
ate BMP for each implementation site is observed to increase with the level of urbanization of the landscape. Results
indicate that optimized selection of BMPs, sited at optimized locations, results in the highest-performing BMP alloca-
tion plans across landscape types. Also, the focus on hotspots has the advantage of resulting in BMP plans requiring
involvement of fewer stakeholders than when BMPs are located in non-hotspot zones. This targeted hotspot approach
could help reduce cost and increase efficiency of implementation.

1. Introduction

Nonpoint source (NPS) pollution is an important environmental prob-
lem worldwide (Lian et al., 2019; McCoy et al., 2015), responsible for ap-
proximately 60 % of water quality impairments in the U.S. (Liu et al.,
2014). It arises from spatially extended areas within landscapes and is dif-
ficult to capture and treat (McCoy et al., 2015). Agricultural landscapes,
where excess fertilizers, herbicides, and insecticides are common causes
of water quality degradation, account for approximately 60 % of total
NPS pollution loads (USEPA, 2017). Urban and suburban areas are, how-
ever, also major sources of NPS pollution due to the large amount of runoff
per unit area they produce. The USEPA estimates, for example, that urban
runoff (including storm sewer outfall) is the second leading cause of impair-
ment in estuaries, third in lakes, and fourth in rivers (USEPA, 2002).

The control of NPS pollution is commonly approached through the im-
plementation of Best Management Practices (BMPs) (Benedict and
McMahon, 2002; Eckart et al., 2017), which may function by reducing or
delaying the volume of stormwater entering the sewer system, lengthening
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the discharge hydrograph duration while reducing peak flow rate, and im-
proving water quality by volume reduction. They may further perform
physical filtering of runoff water, and promote biological processes that ex-
tract pollutants from the water, or convert them to innocuous forms
(Ahiablame et al., 2013; Ahiablame et al., 2012; Drake et al., 2014;
Hamel et al., 2013; Liu et al., 2015; Mao et al., 2017). BMPs, such as rain
gardens, rain barrels, downspout disconnections, and native landscaping,
among others, are potentially less expensive and better integrated into the
landscape than large-scale stormwater treatment plants (Debo and Reese,
2002). They also help control NPS pollution by reducing overflow events
from aging combined sewer infrastructure (green retrofitting) and have
the advantage of spatially-variable target-specificity, whereby each
implemented measure can be designed to address specific impairment
agents, that are of concern at precisely identified landscape positions
(e.g., hotspots, or Critical Source Areas, CSAs) (Djodjic et al., 2002; Shore
etal., 2014; Liu et al., 2016; Wang et al., 2016; Ice, 2004).

A widespread and non-specific approach to BMP implementation may
be cost-prohibitive and socially-challenging (O'Donnell et al., 2008;
Srinivasan and McDowell, 2007; White et al., 2009). Relatively random im-
plementation of non-specific BMPs often occurs when stakeholders are
broadly encouraged to adopt BMPs, leading to sub-par pollutant control,
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relative to costs (Liu et al., 2016; Wang et al., 2016; Ice, 2004). The devel-
opment of BMP allocation plans is aimed to overcome these issues by focus-
ing on the geographical implementation of BMPs in areas that generate
higher concentrations of pollutants (i.e., hotspots, CSAs) that are specifi-
cally suited to the environmental conditions and specific pollutants of the
areas (Zhang and Chui, 2018). This targeted approach commonly uses a hy-
drologic model to identify hotspots within impaired watersheds, followed
by decision tools that find appropriate BMPs for each hotspot (Wang
et al., 2017). This approach is most efficient in watersheds where hotspots
are clearly identifiable, such as in natural and agricultural areas rather than
built environments where the original variability of the landscape has been
altered by construction.

In urban zones, a optimization approach that considers BMP types and
locations beyond hotspot targets (unconstrained) may provide additional
cost reductions and exploit synergies between BMPs and landscape features
(Zhang and Chui, 2018). Optimization methods can treat the BMP selection
process as a multiobjective optimization problem and consider several NPS
pollutants simultaneously more readily than expert system-oriented
methods. They can also readily incorporate socioeconomic and institutional
constraints (Chen et al., 2015; Coello et al., 2007; Kumar et al., 2022; Liu
et al., 2019; Liu et al., 2013; Oraei Zare et al., 2012; Wang et al., 2020).
For example, the USEPA SUSTAIN and Opti-Tool software illustrate some
of these features (Mao et al., 2017; Lee et al., 2012; Tech, 2016). However,
the main disadvantage of optimization approaches is their computational
cost, which is substantially larger than that of targeting methods (itself
greater than that of random allocation). The effectiveness of targeting and
optimization approaches to BMP allocation has been demonstrated in sev-
eral research studies, but they have mainly focused on single land covers
like urban or agricultural land (Kumar et al., 2022; Liu et al., 2019; Geng
et al., 2019; Gitau et al., 1923; Veith et al., 2003; Srivastava et al., 2002;
Veith et al., 2004).

The current knowledge regarding the generalizability and efficacy of
BMP allocation methods across various land cover types, ranging from nat-
ural to ultra-urban, is limited. There is a lack of understanding of the degree
to which optimization methods outperform targeting approaches in gener-
ating BMP plans with lower costs. Additionally, the potential suitability of
random allocation for BMP allocation across diverse land covers has yet
to be evaluated. The overall objective of this paper is to analyze the appli-
cability of BMP allocation methods in different land covers and determine
if any of them is more suitable across landscape types. Five methods are
investigated, from random BMPs at random locations, through random,
expert-selected, and optimized BMPs on hotspots, to optimized BMPs at
optimized sites. The investigation is carried out on two real-world and
two synthetic watersheds, representing landscapes ranging from natural
to ultra-urban.

The research primarily focuses on controlling four environmentally-
significant NPS constituent pollutants: total surface runoff (SurfQ), total
sediment (Sed), total nitrogen (TN), and total phosphorus (TP). Results
are expected to help researchers, watershed stewards, and policymakers
better understand trade-offs between BMP implementation strategies and
choose allocation methods most suited to various land cover types. This
should help to address the hydrologic and water quality impacts of climate
variability in cost-effective ways and further help to adapt BMP-adoption
social intervention strategies to different types of watersheds.

2. Materials and methods
2.1. Study watersheds

Two existing watersheds (Watts Branch and Watershed 263) and two
synthetic watersheds were used in this study (Fig. 1). Watts Branch is
located partly in Washington, D.C., and partly in Prince George's County,
Maryland. It has a suburban land cover and spans an area of 10.4 km?,
with a moderate average slope of 7.8 %. The landscape in Watts Branch
consists of 24.2 % of high-density residential areas (URHD), 37.2 %
of medium-density residential areas (URMD), 22.1 % of low-density
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residential areas (URLD), and 12.9 % of natural regions. The watershed is
monitored for streamflow at USGS gauging station No. 01651800, where
water samples are also occasionally obtained for sediment and nutrient con-
tent analyses. Watershed 263 is located in Baltimore City, Maryland, and
has an urban landscape, an area of 4.63 km?, and a moderate slope that av-
erages 5.3 %. Its land cover includes 51.2 % of industrial urban areas
(UIDU) and 33 % of high-density residential areas. The watershed is
ungauged, but the USDA Forest Service and Cary Institute of Ecosystem
Studies (CIES) monitored two of its sub-catchments, for flow and nutrients,
over a 7-year period (Belt et al., 2012). These two real-world watersheds
are approximately 56 km from each other and are, therefore, subject to
the same climate patterns. Two synthetic watersheds were designed to
extend the range of land covers of the BMP allocation analysis. The Watts
Branch watershed was used as a base (topography, hydrography, soils),
and its land cover was modified to produce a synthetic natural watershed
and a synthetic ultra-urban watershed. The synthetic natural watershed
was developed by changing medium-density residential and low-density
residential areas of Watts Branch to a natural land cover (e.g., forest).
This resulted in a landscape with 73 % of natural or forested areas and
27 % of residential land (URHD). The synthetic ultra-urban watershed
was constructed by changing residential areas of low-density, medium,
and high-density residential areas to industrial urban land use. The land-
scape of the resulting synthetic ultra-urban watershed is 86 % industrial
(UIDU).

2.2. Watershed response models

The SWAT (Soil Water Assessment Tool) modeling software was used to
develop computational models of the study watersheds and to simulate
their response to local weather time series, with and without implemented
BMPs (Arnold et al., 1998). The computational models produced by SWAT
represent watersheds as collections of multiple subwatersheds, that are fur-
ther subdivided into Hydrologic Response Units (HRUs), consisting of ho-
mogeneous land use, soil type, slope, and management characteristics.
SWAT uses physically-based formulas to compute the hydrologic and
water quality response of HRUs to weather, combine these responses
among subwatersheds, and route the results to the outlet of the modeled
watershed. The parameters of interest of the model formulas are specified
separately for each HRU (spatially-distributed), and are derived from phys-
ical characteristics of the landscape, obtained from spatial databases. These
parameters include the surface slope (HRU_SLP), SCS runoff curve number
(CN2), soil available water capacity (SOL_AWC), soil saturated hydraulic
conductivity (SOL _K), soil erodibility (USLE_K), Manning's roughness coef-
ficient for surface flow (OV_N), and maximum canopy storage (CANMX),
among others. The spatial input data used in this study to derive SWAT
parameters included 10 m resolution (1/3 arc/s) USGS Digital Elevation
Models (DEM), USDA SSURGO soils data, and NLCD land cover data.
These spatial data were stored in ArcGIS and converted to SWAT parame-
ters by the ArcSWAT software (Arnold et al., 2012; Srinivasan et al.,
2010). Weather time series of daily temperature and precipitation, used
to drive the simulations, were obtained from NWS databases and
complemented with solar radiation, wind speed, and relative humidity gen-
erated by the CLIGEN weather generator (Nicks, 1985) available in SWAT
(Williams et al., 1996).

Computational models of the two real-world watersheds were built for
this study using ArcSWAT/Version 2012. The resulting Watts Branch
model consisted of 2148 HRUs grouped into 23 subwatersheds, while
Watershed 263 was represented as 566 HRUs distributed among 21
subwatersheds (Zhang et al., 2023). Models of the two synthetic watersheds
were derived from that of Watts Branch, by reassigning its land use layer,
resulting in 1293 HRUs for the natural landscape and 1007 HRUs for the
ultra-urban model. The computational models of the real-world watersheds
were calibrated and validated against observed data using the SUFI-2
algorithm in the SWAT-CUP software (Abbaspour, 2013). Ten years of
USGS gauge data (2002-2011), and up to 7 years of sediment and nutrient
data, were used for this purpose in Watts Branch, and in Watershed 263,
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Fig. 1. Location and land cover of the study watersheds: (a) real-world urban watershed 263, (b) synthetic natural watershed, (c) real-world suburban Watts Branch
watershed, (d) synthetic ultra-urban watershed. URLD, URMD, and URHD: urban residential low-, medium-, and high-density, respectively. UIDU: industrial ultra-urban.

respectively. Total Surface runoff (SurfQ, mm), total sediment (Sed, T/ha),
total nitrogen (TN, kg/ha), and total phosphorus (TP, kg/ha) were chosen
sequentially for calibration and validation. Diagnostic statistics (Moriasi
etal., 2007) indicated good results for both watersheds, with correlation co-
efficient (r), Nash-Sutcliffe coefficient (NSE), and bias (PBIAS) values of
r = 0.88, NSE = 0.64, and PBIAS = 30 % at daily step for Watts Branch,
and r = 0.82, NSE = 0.50, and PBIAS = 5.3 % at annual step for Water-
shed 263 (Zhang et al., 2023). The calibrated models were then used to
identify NPS hotspots, and to simulate and compare the response of these
watersheds with different BMP allocation methods. For the two synthetic
watersheds, calibration was not performed as no observed data exists for
them, and simulations were performed with the ArcSWAT default
spatially-variable parameters derived by ArcSWAT from the spatial input
data of these watersheds. This approach has been successfully demon-
strated in the study where the focus is on relative changes in watershed be-
havior (with and without BMPs) rather than absolute values, and it was
found that calibration has little effect on nutrients distribution and hotspot
locations (Liu et al., 2016; Srinivasan et al., 2010).

2.3. Study BMPs

Eight commonly used BMPs applicable to the control of at least one
target NPS constituent (runoff, sediment, nitrogen, phosphorus) and
characterized by different costs and modes of action were selected for this
research: porous pavement (PP), vegetated filter strip (VFS), rain barrel
(RB), green roof (GR), native landscaping (NL), rain garden (RG), infiltra-
tion trench (IT), and downspout disconnection (DD). The fact sheets of
these BMPs are summarized in “Guidance for Federal Land Management
in the Chesapeake Bay Watershed” (USEPA, 2010). Some of these BMPs re-
duce runoff volume by intercepting rainfall (RB, GR, NL, RG), and all of
them also reduce it by increasing opportunities for infiltration (to varying
degrees). A few BMPs also reduce peak runoff rate by increasing surface

roughness (PP, GR, NL), and those with increased vegetation help to control
sediment and nutrients (VFS, GR, RG). NL reduces nutrients by decreasing
fertilizer input (switching from lawns to less-demanding native plants).

The construction costs of the selected BMPs (King and Hagan, 2011)
were estimated from the guidance document for the Maryland Department
of the Environment Science Services Administration, from University of
Maryland Center for Environmental Science (UMCES), and from discus-
sions with local professionals. Maintenance costs or differences in
functional lifespans were not considered in this study due to a lack of appro-
priate data. The obtained cost figures were expressed as an overall value in
terms of either dollar per house or dollar per square meter, as appropriate
for each individual BMP. In most cases, the implementation of BMPs
could not cover throughout the hotspots, an Area Factor was defined to
represent the fraction of the area of an HRU to be covered by the specific
BMP (for cost computation). The cost figures and area factors retained for
the selected BMPs are presented in Table 1. These costs range from a low
of $25 per house for DD to a high of $160/m? for a GR (the area of which
would be 10 % of the destination HRU).

A step-wise procedure (Arabi et al., 2008; Waidler et al., 2011) was used
to determine quantitative adjustments of model parameter values that accu-
rately represent the effects of the selected BMPs on HRU response. The pro-
cess started with identification of the working mechanisms of each BMP, as
listed above, followed by selection of those SWAT parameters most related
to these modes of action, and sensitivity analysis of the model to those pa-
rameters (using the one-at-a-time method, applied to calibrated watershed
models) (Arnold et al., 2012). The most sensitive parameters, relative to
SurfQ, Sed, TN, and TP outputs, were identified, analyzed at the HRU
level, and adjusted in accordance with individual modes of action, to repli-
cate values of BMP effectiveness reported in the literature (Waidler et al.,
2011). Results of this analysis are presented in Table 1 for the eight study
BMPs. As expected, rainfall interception by BMPs is mostly represented
by increasing CANMX. Reductions in runoff volume are characterized
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Table 1
BMP costs and representative parameter changes in SWAT.
BMPs Costs ($/m2) Area Factor Representation
SOL AWC CN2 CANMX FILTERW OV.N SOL K USLEK FIMP/FCIMP AUTO_NAPP/AUTO_NYR
Porous Pavement (PP) 107.64 0.1 120 % 0.5 1100 % 1100 % 180 %
Filter Strip (VFS) 7.53 0.25 150 % 120 % 5 mm 4
Rain Barrel (RB) 150/house 120 % 10 mm
Green Roof (GR) 161.46 0.1 1100 % 120 % 8 mm 1 1100 % 130 %
Native Landscaping (NL) 5.38 0.1 1100 % 10 mm 1 150 % 10 %
Rain Garden (RG) 86.11 0.1 1100 % 130% 10mm 1 1100 % 50 % |30 %
Infiltration Trench (IT) 53.82 0.1 130 % 5 mm 1900 % 130 %
Downspouts Disconnection (DD)  25/house 150 % 120 % 5 mm 0.5

SOL_AWC: soil available water capacity; CN2: SCS runoff curve number; CANMX: maximum canopy storage; FILTERW: filter strip width; OV_N: Manning's roughness coef-
ficient; SOL _K: soil saturated hydraulic conductivity; USLE K: soil erodibility; FIMP: fraction of impervious land; AUTO_NAPP: max. N to apply.

mostly by decreases in CN2, increases in SOL_K and SOL,_AWC, and also re-
ductions of SWAT's fraction of impervious land parameters (FIMP and
FCIMP). Reductions in peak runoff rate are reflected by increased OV_N
values. Sediment and nutrient filtering by vegetation are specified by
non-zero values of the FILTERW parameter. Native Landscaping leads to a
reduction in nitrogen fertilizer input as represented by lowered values of
the parameters AUTO_NAPP and AUTO_NYR.

2.4. BMP allocation methods

In this study, the BMP allocation process assigned one of 9 control mea-
sures (either one of the 8 selected BMPs, or no BMP) to each of the m HRUs
in a given watershed (where m = 2148 for Watts Branch, m = 1293 for the
natural watershed, m = 1007 for the ultra-urban basin, and m = 566 for
Watershed 263). BMP allocation methods are summarized in Table 2.
Three categories of BMP selection methods were investigated: 1) random,
2) targeted, and 3) optimized. These methods were applied to BMP selec-
tion over NPS hotspots, in which case they were labeled with a suffix of
HS (i.e., Random_HS, DDSS_HS, and GA_HS), and the random approach
was also applied to random HRUs (labeled Random), while the optimiza-
tion method was further applied to unconstrained HRUs (labeled GA), for
atotal of 5 different allocation techniques. For hotspot-centered allocations,
the target CSAs were identified by, first, simulating the response of the
study watersheds to observed weather time series without BMPs. The
hotspots were then defined as those HRUs that contribute the most of
each constituent (runoff, sediments, nitrogen, and phosphorus) on a per-
area basis, selected such that their cumulative area corresponds to 40 %
of the area of each study watershed. The 40 % was chosen as we found
that these areas could account for more than 60 % of the total NPS constit-
uents output in Watts Branch watershed (Zhang et al., 2023; Wang, 2015).
HRUs that were hotspots for a given constituent are frequently hotspots for
other constituents as well, such that the total area targeted for BMP imple-
mentation in HS methods was of the order of 40 % of the watershed area.

For each study watershed, the Random and unconstrained GA alloca-
tions were designed to target the same percentage of the watershed area
as the corresponding HS method. The two random approaches to BMP
selection were meant to represent a baseline of what may occur when stake-
holders are broadly encouraged to implement BMPs on the most
impaired area of their land without the knowledge of which specific NPS
constituent(s) such BMP should seek to control (Random_HS), nor

Table 2
Lists of BMP allocation methods.
Category Description Symbol
1) Random Random BMP selection on whole watershed (same  Random
areal extent as hotspots)
Random BMP selection on hotspots Random_HS
2) Targeted DDSS method for BMP selection on hotspots DDSS_HS
3) Optimized Genetic algorithm on hotspots GA_HS

Genetic algorithm on whole watershed (same areal ~GA
extent as hotspots)

information on whether any BMP would actually be useful at any particular
location (Random). Either situation was likely to arise in real life as rela-
tively few watersheds have been analyzed to locate their hotspots, and
lack of widespread availability of the knowledge and skills needed to select
appropriate BMPs for specific topographic, soil, and land cover conditions.
Still, random implementation of control measures is expected to be more
beneficial than no BMP at all, especially if those BMPs were located at
hotspots. This was because several BMPs reduce surface runoff, which in
turn leads to reductions in sediment generation and downgradient trans-
port of plant nutrients. These benefits may, however, vary with land
cover. In this study, the random allocation of BMPs was performed based
on uniform distributions of the chosen BMPs (no individual preference
by stakeholders) and of HRUs where they were located (except for
Random_HS, which targets hotspots). Randomization was, however,
limited by local landscape conditions; for example, green roofs and porous
pavements were not part of the set of BMPs considered for random alloca-
tion in forested HRUs.

The targeted approach to BMP allocation, labeled DDSS_HS, is a method
that leverages both information and knowledge to produce better NPS con-
trol at lower cost than random methods. This approach focuses BMP imple-
mentation to hotspots that have been previously located by hydrologic
modeling, and for which the NPS constituents to be controlled are known
as a result of this modeling. BMP selection knowledge, encoded as rules
and implemented in expert systems, is then applied to each hotspot to
choose the most appropriate BMP for it, based on local conditions and on
the constituent(s) to be controlled. The approach is exemplified by the
work of Wang et al. (Wang et al., 2016; Wang et al., 2017), in which BMP
selection was split into a diagnosis phase, aimed at identifying the reasons
for which a hotspot generated excessive constituents, and a prescription
phase, aimed at choosing the proper corrective measure based on diagnosis
and local conditions. Diagnosis and prescription were implemented as sep-
arate expert systems, and the overall framework, including the SWAT soft-
ware and spatial databases, was referred to as a Diagnostic Decision
Support System (or DDSS). This approach was followed in this study for
targeted BMP allocation in the four investigated watersheds.

The two optimized BMP allocation approaches applied in this study rely
on the use of Genetic Algorithms (GAs) (Sivanandam and Deepa, 2008) to
select control measures (method labeled GA_HS), and to additionally posi-
tion them in the watershed (method labeled GA) in ways that maximize
NPS control and minimize costs. GAs are a set of multiobjective search algo-
rithms inspired by the mechanics of natural selection and evolutionary ge-
netics (Kumar et al., 2010). They are particularly suited to nonlinear
problems with discontinuous or discrete search spaces, where gradient-
based techniques are not applicable. A typical GA computation process is
shown in Fig. 2. It starts with an initial population of different types of chro-
mosomes, and then produces a new generation of offspring from it, with al-
tered chromosomes, resulting from random crossovers and mutations. An
evaluation function quantifying desired characteristics is computed over
each offspring, and those that best satisfy it are selected for the next itera-
tion of the process, taking care not to over-represent any overly similar
sub-group of offsprings. The process continues until either the value of
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the evaluation function reaches a pre-selected threshold of acceptability on
at least one offspring (successful solution), or a pre-set maximum number of
generations has been reached. In the context of BMP allocation, a chromo-
some consists of as many genes as there are either hotspots (GA_HS) or
HRUs (GA) in a watershed, and each gene represents the specific BMP se-
lected for that HRU (including cases of no BMP in the unconstrained GA
method). In other words, each chromosome represents a potential alloca-
tion of BMPs to HRUs, and the algorithm seeks to improve these allocations
in terms of NPS control and costs. Mutations lead to testing of alternative
untested BMPs for a given HRU, and crossovers swap an HRU's BMPs be-
tween two different allocations (or chromosomes) that both survived
evolutive competition thus far. To address the simultaneous, yet conflict-
ing, objectives of the lowest generation of runoff, sediment, nitrogen, and
phosphorus and of the lowest cost, a composite evaluation function is
used in the GA:

ArgminF (x) = Argmin{ f,(x), f2(x), ..., [, (x)} @
where the individual functions (f;, f», ...) correspond to each of the simul-
taneous goals. Here, they are the predictions of watershed models for outlet
values of runoff, sediment, nitrogen, and phosphorus, and the computed
cost of the corresponding BMP allocation. The solution to such a
multiobjective problem is, however, no longer a single “best” solution,
but a Pareto-optimal set of solutions consisting of the optimal trade-offs
achievable between the m simultaneous objectives (Maringanti et al.,
2009; Vrugt, n.d.). The Pareto-optimal set of solutions forms the Pareto
front from which specific BMP allocations can be picked, corresponding,
for example, to the least-cost solution that provides a pre-selected level of
runoff reduction or to that which provides the highest runoff reduction at
a fixed cost.

The use of the optimization approach to BMP allocation is computation-
ally intensive, not just because of the iterative nature of the algorithm, but
also because of the potential need to simulate watershed response for each
of the chromosomes generated during this process. To reduce this signifi-
cant computational burden, we pre-computed a database of watershed
responses to individual BMPs, implemented in individual HRUs, assuming
independence of BMP effects, and linearity of routing processes. The
database for a watershed with n HRUs contains a total of 5 x n x 9 entries
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which are stored as five tables (corresponding to the four NPS constituents
and total cost) of n x 9 values. The rows of these tables represent HRUs, and
their columns BMPs (including the base case with no BMP). If we denote by
a;j, the value found in row i and column j of a given table, and consider the
table related to total surface flow at the watershed outlet (SurfQ), then a4 3
will contain the value of the reduction in SurfQ predicted to occur by the
watershed model when BMP number 3 (e.g., Rain Barrel) is implemented
in HRU number 4 of the watershed, and no other BMP is installed. With
this representation, during GA optimization, the yield of NPS constituents
of a watershed where several BMPs are allocated (chromosome) can be cal-
culated efficiently as a summation process of properly selected rows and
columns of the database tables, rather than re-simulating the watershed's
response; essentially:

air o Qm

XTarget, = XTarget,(HRUs, BMPs) = P @
an,l an,m

where the symbol Target; can refer to total surface flow (SurfQ), total sedi-
ment (Sed), total nitrogen (TN), total phosphorus (TP), or total cost of im-
plementation (Cost).

The GA optimization process is regulated by a set of hyperparameters,
including population size, the number of generations, crossover rate, and
mutation probability that should be fine-tuned for each specific problem
to ensure that Pareto-optimal fronts are reached efficiently. We analyzed
the behavior of the algorithm for the BMP allocation problem in Watts
Branch, and in Watershed 263, using a sensitivity approach that varied a
single hyperparameter at a time, with other parameters fixed at default
values. The investigated ranges of population size, number of generations,
crossover rate, and mutation probability, were 100 to 5000, 100 to 5000,
0.5 t0 0.9, and 0.0001 to 0.1, respectively. Both this analysis, and the ensu-
ing application of GAs to optimized BMP allocation, were performed using
the NSGA-II algorithm implemented in the Pymoo software, which is a Py-
thon toolkit for GA optimization (Blank and Deb, 2020). Results of the
hyperparameter analysis are presented in Fig. 3 for the trade-offs between
total outflow and BMP cost. With respect to population size, the Pareto
front for this pair of variables is reached with a minimum of 500 chromo-
somes in Watershed 263, while 1000 chromosomes appear to be needed
in Watts Branch. For both watersheds, 1000 generations are observed to
be sufficient to identify the optimal trade-off curve. GA solutions are less
sensitive to crossover rate (in the investigated range), but higher values
are observed to provide slightly better fronts. Finally, mutation probabili-
ties of 0.01 and lower are found to be needed for the convergence of the op-
timization process. Based on these results, the GA hyperparameters for
population, generation, crossover, and mutation were given values of
1000, 1000, 0.9, 0.001, respectively, for the Watts Branch Watershed,
and 500, 1000, 0.9, 0.001, respectively, for Watershed 263. Synthetic wa-
tersheds having a similar structure to Watts Branch, their hyperparameters
were selected to be the same as those of that watershed.

3. Results and discussions
3.1. BMP allocation maps

BMP allocation maps produced by the five selected allocation methods
in the four study watersheds are presented in Fig. 4. Percentage of area cov-
ered by BMPs in all these scenarios are summarized in Supplementary
Fig. 1. The first column of the figure shows the results of random BMP allo-
cation to random HRUs (Random). The three central columns display the
results of allocations targeted to hotspots using random (Random_HS), ex-
pert system (DDSS_HS), and optimization (GA_HS) methods, respectively.
The last column shows the results of unconstrained optimization (GA)
where BMPs could be placed on non-hotspot HRUs. The computational ef-
fort required to produce these plans increases from left to right in the figure,
being the least (less than 1 s) for the fully random approach, intermediate
for hotspot-oriented methods, and greatest (larger than 15 min) for the
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Fig. 3. Sensitivity analysis of Genetic Algorithm (GA) hyperparameters in two watersheds: population size, number of generations, crossover rate, and mutation rate.

unconstrained optimization technique. The first and second rows of maps
on the figure are for the real-world Watts Branch watershed, and Watershed
263, respectively. The two bottom rows are for the synthetic natural and
synthetic ultra-urban watersheds. The least built-up landscape is accord-
ingly found in the third row, and the level of urbanization then increases
as one moves through to the first, second, and then fourth row of the figure.

We first considered the results for the synthetic natural watershed
(Fig. 4, third row) as they were somewhat atypical. The watershed was
under a mostly natural land cover (73 %) for which the only applicable
BMP, out of the eight selected for this study, was the vegetated filter strip
(VFS). Accordingly, the five allocation methods agreed that VFS should
be the prevalent BMP for this watershed, especially as more hotspots
occur in its natural areas, due to adverse combinations of slope and soil,
than in its residential zones. It was quite noticeable, however, that hotspots
were somewhat spatially localized in this synthetic watershed, with a wide
and visible band that runs from southwest to northeast in its eastern half.
Hotspot allocation methods (_HS) and the unconstrained GA method
agree that this zone was where BMPs should be concentrated, but the ran-
dom method with random locations (Fig. 4, first column) allocated BMPs
(of the correct VFS type) more uniformly throughout the watershed. Ac-
cordingly, irrespective of its cost, we expected this random allocation to re-
sult in significantly smaller improvements in NPS control than that
provided by the other four methods in this watershed. Similarly, despite
its simple nature, we expected the method of random BMP selection on
hotspots (Random_HS) to produce NPS control that was like that of the
more computationally expensive methods, since (through lack of choice)
it resulted in allocation of the right BMP, at the suitable locations. Confir-
mation of such expectations will be discussed in Section 3.3.

Hotspots in the suburban Watts Branch watershed (Fig. 4, first row)
were more spatially spread-out than in the synthetic natural watershed
(Fig. 4, third row), which was especially visible in the northwest section
of the watershed. Hotspots were distributed over a broader variety of
land covers, for which several BMPs were applicable, and this better high-
lighted the differences between the BMP selection methods. We first
noted, similar to in the synthetic natural watershed (Fig. 4, third row),
BMP allocation to random HRUs resulted in a BMP allocation that was
still more spatially spread-out than the distribution of hotspots, and this
was expected to lower the effectiveness of this approach for NPS control.

The hotspot-oriented expert system and optimization approaches
(DDSS_HS and GA_HS) agreed with each other on the use of native land-
scaping (NL) and VFS in most of the southern half of the watershed but dif-
fered in BMP selection in its upper portion where infiltration trench (IT)
and green roofs (GR) were favored by DDSS_HS method, while porous pave-
ment (PP) was preferred in GA_HS method, for the same total cost. BMPs se-
lected at random (Random_HS) were much less similar to those of the
expert and optimized methods than in the synthetic natural watershed
(Fig. 4, third row) because of the broader choices of applicable BMPs in
this more typical landscape. This dissimilarity was expected to lead to a
lower performance of the random method relative to that of these two
more computationally advanced approaches in NPS control. The uncon-
strained GA method produced a BMP allocation map that generally resem-
bles that of GA_HS, with VFS, NL, and PP as dominant BMPs, but it was
notable that it abandoned allocation of some of the northern hotspots in
favor of placing BMPs in non-hotspot areas located near the central band
of NPS CSAs. The initial population of BMP implementation locations
used in this method coincided with hotspots and the allocation results,
therefore, indicated that the optimization process succeeded in finding al-
ternate HRUs, where BMP implementation could be more beneficial to
the control of NPS constituents than when all BMPs are sited on hotspots.
Pollution hotspots in the urban Watershed 263 (Fig. 4, second row)
were more spatially distributed than those of the suburban watershed,
Watts Branch (Fig. 4, first row), continuing the trend also observed with
the synthetic natural watershed (Fig. 4, third row). A consequence of a
more dispersed hotspots in the ultra-urban Watershed 263 was that the per-
formance of random BMP allocation at random locations was expected to
be more similar to that of Random_HS in this watershed than the other,
less urban, watersheds. Since hotspots were nearly evenly distributed in
space in Watershed 263, a selection of random BMPs may provide nearly
the same NPS control level whether they were located at hotspots, or at
evenly distributed random locations. BMPs allocated by expert systems
and by optimization were more similar to one another in this watershed
than in the suburban Watts Branch watershed, with only slight differences
inlocalized selection of IT, NL, and rain barrel (RB), resulting in similar NPS
control performances. Random BMP selection on hotspots, however, led to
quite different (and more varied) choices, which should, unfortunately lead
to a lower performance for this simpler technique. As with Watts Branch,
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downspouts disconnection) allocation maps produced by five methods (Random, Random_HS, DDSS_HS, GA_HS, and GA) in four watersheds (suburban Watts Branch, urban

Watershed 263, synthetic natural, and synthetic urban watersheds).

the unconstrained GA approach also abandoned some hotspots, this time in
the southern half of the watershed, in favor of BMP allocation to non-hotpot
HRUs located in the northern portion of Watershed 263. This modified spa-
tial allocation presumably leveraged hidden synergies that result in higher
constituent control performance, at a given cost level, than when BMPs are
targeted only to hotspots.

The BMP allocation maps for the synthetic ultra-urban watershed
(Fig. 4, bottom row) shared some characteristics with those of the urban
Watershed 263 (Fig. 4, second row). In the synthetic ultra-urban watershed,
hotspots (as seen on _HS maps) were observed to be more spatially spread-
out than in the suburban (Wats Branch, Fig. 4, top row) and natural (syn-
thetic natural, Fig. 4, third row) watersheds, especially as the southwest
to the northeast band of congregated hotspots was no longer present. This
suggested, here again, in this heavily built environment, that random allo-
cation of BMPs to random locations (Random) may result in a level of NPS
constituent control that was similar to that of random BMPs placed on
hotspots (Random_HS). These random BMPs, however, seldom agreed
with those selected by the DDSS_HS and GA_HS methods, leading to re-
duced performance. The expert and optimized methods mostly agreed on
BMP selection in the southern half of the watershed, with more disagree-
ment in the choice between rain garden (RG), RB, and PP, in the north.
The degree to which optimized BMPs (on hotspots) perform better than
expert-selected ones was discussed in Section 3.3. The BMP allocation
map produced by unconstrained optimization (GA) differed more from
those of hotspot methods in this heavily built watershed than in the less

urban ones. The unconstrained GA abandoned some hotspots where PP
and RB were selected by GA_HS, and introduced NL and VFS in selected
non-hotspot HRUs. It also converted some of the RB selected by GA_HS to
NL, and some PP to RB. By design of the method, these changes were ex-
pected to improve NPS control performance, with the same implementation
cost as DDSS_HS and GA_HS.

3.2. Coincidence of hotspots and optimized implementation sites

The unconstrained optimization approach (GA), in which both the type
and location of BMPs were determined by the allocation algorithm, was the
most computationally demanding of those selected for this study, and was
expected to provide a boost in NPS constituent control performance relative
to the other approaches. In the analysis of BMP allocation plans presented
above, it was noted, qualitatively, that the degree to which optimized im-
plementation sites differ from hotspots varies in relation to landscape
type. In particular, the optimized locations of BMPs were observed to be
quite similar to those of hotspots in the synthetic natural watershed, and
most different from hotspots in the synthetic ultra-urban landscape. Devia-
tions between optimized sites and hotspots were intermediate in the subur-
ban and urban environments. Fig. 5 quantified this spatial coincidence of
optimized BMP implementation sites and hotspots in the four study water-
sheds, which represent landscapes that progress from natural to heavily-
built. In the synthetic natural watershed, 95 % of optimized implementa-
tion sites were found to also be NPS constituent hotspots. This coincidence
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Fig. 5. Coincidence of optimized BMP implementation sites and hotspots in relation
to land cover.

decreased to approximately 70 % in the suburban and urban landscapes,
and eventually reached a low of 45 % in the synthetic ultra-urban water-
shed. This trend in coincidence indicates that the potential benefits of opti-
mized BMP siting were landscape-dependent and increased with its degree
of urbanization. Accordingly, the extra effort required by unconstrained op-
timization may be increasingly justified as the environment for which a
BMP allocation plan was designed becomes more heavily built. This justifi-
cation eventually depended also on the actual improvement in NPS constit-
uent control performance that resulted from optimized siting of BMPs to
non-hotspot HRUs.

The trend in coincidence with land cover type was likely a result of the
spatial characteristics of hotspots, which were also observed to vary with
increasing urbanization. In this study, and in prior analyses, hotspots
were observed to be more spatially concentrated in natural and agricultural
landscapes, and more spread-out in constructed urban environments. The
denser hotspots of the less-built landscapes typically produced higher levels
of NPS constituents per unit area (relative to non-hotspot areas of the
landscape) than found in urbanized watersheds, and were consequently
more important targets for BMP implementation than the less well-
differentiated hotspots of urban land. In built-environments, where the dif-
ferentiation between hotspot and non-hotspot areas was not as evident
(e.g., as a result of the homogenizing effect of construction; esp. pavement),
more opportunities arise to replace higher-cost BMPs, targeted to hotspots
with lower-cost BMPs implemented in other HRUs. Such substitutions
were observed in the BMP allocation maps presented earlier for the ultra-
urban watershed, where unconstrained GA swapped the porous pavement
(PP) selected by GA_HS for some hotspots, with native landscaping and
vegetated filter strips (NL and VFS) in other non-hotspot areas. This
type of substitution resulted in equal control of NPS constituents at
lower cost than a purely hotspot-oriented allocation, or better control
at the same cost. It, however, also increased the percentage of water-
shed areas where BMPs were to be implemented. Hence, it eventually
required a higher level of stakeholder participation to successfully real-
ize the designed plan.

In some cases, unconstrained optimization may also resulted in alloca-
tion plans that swapped BMPs from hotspots to other HRUs while maintain-
ing the percentage of the targeted watershed area. Such an outcome would
result from the identification and exploitation of spatial synergies by the op-
timization process, whereby hydromodifications positioned in the vicinity
of a hotspot would have a higher impact on NPS control than operating di-
rectly on the hotspot itself. An example of this would be the positioning of
runoff control measures upland of a sediment-generating hotspot to reduce
the velocity of surface inflows to the hotspot, thereby reducing soil detach-
ment in this CSA. Another example may be to reduce infiltration upgradient
of a nitrogen-producing hotspot to reduce its subsurface lateral inflow and
ensuing transport of the pollutant. This type of synergies, and others, may
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be at play in the allocation plans produced by the unconstrained optimiza-
tion method and will need to be studied in future investigations. Their prac-
tical advantage is that the realization of the resulting BMP plan does not
require involvement of additional stakeholders relative to a hotspot-
focused allocation. Suppose it can be determined that unconstrained GA
did exploit such synergies. In that case, it should be valuable to identify
the conditions leading to their existence and possibly define expert system
rules, or other analytical tools, that can be used to take advantage of them in
hotspot-based methods as well, without the extra computational burden of
spatial optimization. One could imagine, for example, the development of a
GA_HS method that selects optimal BMPs for hotspots and specific HRUs,
with pre-identified synergistic potential, located in their vicinity. Expert
systems that integrate spatial reasoning subsystems could similarly be
used for this purpose, with reduced computational requirements relative
to optimization approaches.

3.3. Performance of BMP allocation plans

The predicted reductions in the four target NPS constituents (runoff,
sediments, nitrogen, and phosphorus), at the outlet of the four study
watersheds (natural to ultra-urban), in response to the five investigated
BMP allocation methods (random to unconstrained optimization), were
presented in Fig. 6. These results were obtained by simulating the response
of these watersheds to a 10-year long time-series of observed weather, with
HRU parameters adjusted in accordance with Table 1 to represent the allo-
cated BMPs. The outputs of these simulations were then compared to the
baseline responses of the study watersheds when no BMPs were imple-
mented, such that the corresponding percentage reductions in NPS constit-
uents could be calculated. In Fig. 6, results for the synthetic natural
watershed are displayed in subplot (c), and those for the other watersheds,
with increasingly urban landscapes, follow in clockwise order, ending with
the synthetic ultra-urban watershed at subplot (d). The leftmost set of bars
in each plot represents the reductions in total surface runoff (SurfQ) ob-
tained with BMPs allocated in accordance to plans produced by each of
the five studied methods, as shown in the maps of Fig. 4. The second and
third sets of bars represent reductions in total sediments (TS) and total ni-
trogen (TN), respectively, and the rightmost set shows the reductions in
total phosphorus (TP). In all cases, taller bars represent better control of
the corresponding NPS constituent.

In 78 of the 80 presented cases, the degree of NPS constituent control
(quantified by the percentage reductions) either remained the same or in-
creased, as the computational effort required by the BMP allocation method
increased, which was as expected. In other words, in almost all studied sit-
uations, unconstrained GA produced equal to, or better, control than
GA_HS, which provided greater or equal control to DDSS_HS, which was it-
self better or similar to Random_HS, that bested or equaled fully Random
BMP allocation. The two exceptions were for sediment control in Watts
Branch and runoff control in the ultra-urban watershed. In the first case,
Random_HS produced a reduction in sediment yield that is 2 % greater
than that resulting from DDSS_HS, and in the second case, fully Random al-
location resulted in a reduction of runoff volume that is 1.5 % larger than
random allocation on hotspots (Random_HS). We interpreted these outliers
as being the result of chance, since they both involve at least one random
allocation method, and considered them to be of minimal significance be-
cause of the small magnitude of the non-monotonic disruption that they
represent.

To address the goal of determining the applicability of the selected BMP
allocation methods across land covers, we divided our analysis of the results
of Fig. 6 into three parts. We first compared NPS reductions produced by
the simplest and less computationally intensive fully random method (Ran-
dom) to those of random BMP selection on hotspots (Random_HS), across
watersheds and NPS constituents. We then evaluated how proper selection
of BMPs improved NPS control by comparing the Random_HS results to
those of the DDSS_HS method. Thirdly, we evaluated the NPS control ben-
efits resulting from optimization by comparing results of DDSS_HS with
those of GA_HS and unconstrained GA.
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Fig. 6. Reduction of NPS constituents (surface runoff: SurfQ; total sediment: TS; total nitrogen: TN; total phosphorus: TP) for five allocation methods (Random, Random_HS,
DDSS_HS, GA_HS, and GA) in four watersheds: (a) Watts Branch watershed, (b) Watershed 263, (c) synthetic natural watershed, and (d) synthetic urban watershed.

Random allocation of BMPs at random locations was meant to represent
the undirected behavior of stakeholders in their adoption of BMPs, resulting
potentially from a broad, untargeted sensitization or publicity campaign for
such measures, and contrasted with Random_HS where the corresponding
social interventions may instead have been focused specifically in the vicinity
of pre-identified hotspots. The difference in NPS control performance be-
tween these two methods was observed to be largest in the synthetic natural
watershed (Fig. 6(c)), where random BMPs sited at hotspots reduce NPS con-
stituents nearly twice as much as random siting (e.g., reductions of 28 %,
74 %, 19 % and 47 % in runoff, sediments, nitrogen, and phosphorus, respec-
tively, for Random_HS, versus 17 %, 42 %, 7 %, and 26 % for Random). The
difference between these allocation methods was also significant in the sub-
urban landscape of Watts Branch (Fig. 6(a)), where hotspot targeting reduces
NPS constituents approximately 1.5 times better than random siting
(e.g., 26 % vs. 16 % reduction in nitrogen, and 31 % vs. 21 % reduction in
phosphorus). The difference in control performance between these random
approaches was however observed to mostly disappear in the urban and
ultra-urban landscapes, where hotspot siting was at most 2 % better than
the fully random approach in 7 out of 8 comparisons (the exception being
sediments in the synthetic ultra-urban catchment). The observed trend,
with changing land cover, of the comparative performance between these
random methods, agreed with our earlier observations of the trend in the spa-
tial distribution of CSAs with landscape type (cf. discussion of Fig. 4).
Hotspots were observed to become more evenly spatially spread-out as the
landscape became increasingly built-up, and the NPS control results con-
firmed that this spatial spreading leaded to a lesser need to specifically target
hotspots, at least when BMPs were selected randomly. In other words, our re-
sults indicated that random siting of random BMPs (non-targeted, broad en-
couragements of stakeholders) was as valid as random selection of BMPs
sited on hotspots, in the more highly urbanized landscapes. Random siting

of random BMPs was, however, much less effective than hotspots sitting in
suburban and natural landscapes.

The degree to which proper selection of BMPs in hotspots (DDSS_HS)
improved the control of NPS constituents relative to random selection
(Random_HS) followed a trend that was largely the opposite of that be-
tween fully random and random-hotspot allocations. For 6 out of 8 cases
in the natural and suburban watersheds, expert allocation of BMPs to
hotspots improved NPS reductions by just 3 % or less when compared to
random BMPs sited at hotspots. The two outliers were for runoff and nitro-
gen control in the synthetic natural watershed where proper BMPs provide
additional reductions of 8 % and 20 %, respectively (i.e., from 27 % and
18 % reductions in SurfQ and TN, respectively, by Random_HS, to 35 %
and 38 % by DDSS_HS). Conversely, in the urban and ultra-urban land-
scapes, appropriate selection of BMPs always (8 out of 8 cases) provided a
5 % or better increase in NPS constituent reductions compared to random
BMPs (the observed maximum is 13 % for sediments in the ultra-urban
watershed, that Random_HS reduces by 22 %, and DDSS_HS reduces by
35 %). These results suggest that, in landscapes where hotspots are well-
differentiated and localized, the choice of which BMP to apply to them
was not as critical as it was in environments with spatially spread-out
CSAs. In other words, the key analytical step for the less-built landscapes
was probably the localization of hotspots, such that BMPs can be sited on
them, and the key step for more heavily built environments was the selec-
tion of appropriate BMPs, for the NPS constituents of concern, identified
at their siting location. Whereas the NPS control performance of BMPs
that were randomly located and selected was found, above, to be similar
to that of random BMPs sited on hotspots in urban and ultra-urban zones,
the greater impact of proper BMP selection in these landscapes implied
that random methods should not be favored there, particularly when cost
and performance of the allocation plan were important considerations.
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The improvements in the control of NPS constituents resulting from op-
timization approaches (GA_HS and GA), as compared to expert selection of
BMPs on hotspots (DDSS_HS) were not observed to follow a simple trend
with land cover. In the synthetic natural watershed, optimization provided
up to a 2 % greater reduction in NPS control than expert selection and this
relatively small improvement in performance reflected the greater impor-
tance that targeting BMPs to hotspots plays in such landscapes, relative to
the selection of specific BMPs. In the other 3 watersheds, just under half
of cases (5 out of 12) showed a greater than 5 % decrease in NPS constituent
production when optimized allocation was applied, and in most of these
cases (4 out of 5) it was the transition from expert BMP selection to opti-
mized selection on hotspots (DDSS_HS to GA_HS) that provided most of
the performance improvement. More specifically, in the suburban water-
shed, the reduction of NPS outputs produced by GA_HS was 6 % and 5 %
larger than that of DDSS_HS for sediments and nitrogen, respectively, and
in the ultra-urban catchment it was 4 % and 6 % larger than DDSS_HS for
runoff and nitrogen, respectively. On the other hand, unconstrained optimi-
zation (GA) was found to produce its largest control improvement, of 7 %
when compared to GA_HS, for the case of sediments in the urban water-
shed. The largest increase provided by GA, in comparison to DDSS_HS
was 8 %, which occurs for sediment control in both Watts Branch (35 %
to 43 %), and Watershed 263 (26 % to 34 %). In other cases, optimization
improved NPS reductions by 1 % to 3 % between DDSS_HS and GA_HS, and
also between GA_HS and GA, but with a total that was less than 5 % from
DDSS_HS to unconstrained GA. Overall, our results indicated that NPS con-
trol benefits resulting from optimized allocation varied with both land
cover type and specific constituents, without specific trends, and can pro-
vided 8 % of additional reductions compared to expert selection of BMPs
on hotspots.

Combining results from the three parts of this analysis leads to the fol-
lowing perspective on the applicability of the studied BMP allocation
methods to landscapes with different land covers. Optimized selection of
BMPs, sited at optimized locations, results in the highest performing BMP
allocation plans across landscape types. It is not particularly beneficial in
natural environments, and its substantial computational burden can be alle-
viated by focusing it on hotspots, with frequently similar results. The focus
on hotspots has the advantage of resulting in BMP plans requiring involve-
ment of fewer stakeholders than when BMPs are also sited in non-hotspot
zones. Expert selection of BMPs targeted to hotspots is also broadly applica-
ble, across land cover types, and results in reductions of NPS constituents
that are slightly smaller than with optimization (up to 8 % here), but at
lower computational cost, which can be particularly valuable when plan-
ning is performed for a large watershed or region. These methods, where
specific appropriate BMPs are selected for each implementation site, are re-
quired for the production of allocation plans with good performance in
built-environments, from urban to ultra-urban. Targeting BMP implemen-
tation to hotspots, without selection of the most appropriate such measures
(as in the Random_HS approach), is acceptable in the less-built landscapes
only, where precise localization of hotspots is the most important activity,
and may be useful in the most computationally-challenged environments.
Random sitting of randomly selected BMPs is generally not advisable in
any landscape, except possibly as a last resort approach that is “better
than nothing”. Because this method yields fewer NPS control benefits at
higher costs than the others, it has greater potential for eventually discour-
aging stakeholders from further participation as they wonder why so few
improvements in environmental quality have resulted from such large
and long-term efforts, and resource investments.

4. Summary and conclusions

This study explored the effectiveness of five BMP allocation methods in
managing four NPS constituents (runoff, sediments, nitrogen, and phospho-
rus) across different land covers (natural, suburban, urban, and ultra-
urban). Eight BMPs were considered, including porous pavement, filter
strip, rain barrel, green roof, native landscaping, rain garden, infiltration
trench, and downspout disconnection. Real-world and synthetic watersheds
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were analyzed using watershed response models calibrated against ob-
served data. BMP implementation costs were determined based on
literature and BMPs were represented by modifying SWAT parameters.
Rule-based expert systems and Genetic Algorithms were used to select
appropriate BMPs and optimize their location. The study assessed the
percentage reduction in NPS constituents achieved through each
method, presenting results as maps of BMP allocation and bar plots of
percentage reductions.

Results indicated that implementing BMPs on hotspots is particularly
important in less-built landscapes, and that the selection of specific BMPs
becomes more important as urbanization increases. The most computation-
ally demanding optimized allocation methods work well across all land
cover types. They are not particularly needed in natural landscapes and
can be simplified slightly by sitting BMPs on hotspots without substantial
performance reductions. The less computationally demanding method of
expert selection of BMPs on hotspots also applies across land covers but
may result in slightly reduced performance for some constituents when
compared to optimization. Random selection of BMPs sited on hotspots is
acceptable in less-built environments, but random selection of randomly lo-
cated BMPs is mostly unacceptable.

Results also showed that different BMPs may be suitable for different
environments and financial constraints. For natural areas, the vegetated fil-
ter strip is recommended as it is effective in reducing nonpoint source pol-
lution while maintaining the natural aesthetic. Porous pavement, on the
other hand, is recommended for urban environments due to its ability to re-
duce stormwater runoff and alleviate urban flooding. However, rain gar-
dens are a good choice for any environment if there are enough financial
resources available to support their implementation. When resources are
limited, the rain barrel can be a reasonable choice as it is a low-cost BMIP
that can still contribute to reducing stormwater runoff. Additionally, down-
spout disconnection can be a good choice for reducing stormwater runoff
and preventing flooding at a lower cost, if the conditions for implementa-
tion are met.

An implication of the results obtained in this study is that broad cam-
paigns aimed at increasing BMP adoption by stakeholders may not produce
the desired control of NPS constituents, and may simultaneously consume
more human and financial resources than necessary. For natural and subur-
ban landscapes, hotspot identification efforts, and the targeting of social in-
terventions to their vicinity, should produce much higher NPS control
returns on stakeholder investments. For urban and ultra-urban landscapes,
adoption campaigns should further focus on fostering the adoption of the
“right BMP”, as required by site characteristics, and by the specific NPS con-
stituent(s) of concern.

To ensure the success of BMP allocation plans, it is important to con-
sider social factors in addition to hydrological, physical, and chemical con-
siderations. Variations in the socioeconomic characteristics of watershed
stakeholders can affect their willingness to adopt BMPs, potentially
impacting the efficacy of the physical BMP allocation plan. Spatial analysis
can help identify areas where positive and negative correlations exist be-
tween physical and social factors, allowing for targeted social interventions
that maximize the return on investment. This can be facilitated through the
use of behavioral models, such as Bayesian Belief Networks or Agent-Based
Modeling, informed by survey data and BMP implementation databases
(Bonabeau, 2002; Kavak et al., 2018; Montalto et al., 2013). Incorporating
social components into BMP planning systems can help target educational
and promotional programs, financial incentives, and other interventions
to areas where they are most needed to improve NPS constituent control
while keeping costs low. Such socio-hydrologic analysis should be a focus
of future research in this field.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.164428.
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