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Abstract: Nonpoint source (NPS) pollution is a severe problem in the U.S. and worldwide. Best
management practices (BMPs) have been widely used to control stormwater and reduce NPS pol-
lution. Previous research has shown that socio-economic factors affect households’ adoption of
BMPs, but few studies have quantitatively analyzed the spatio-temporal dynamics of household BMP
adoption under different socio-economic conditions. In this paper, diverse regression approaches
(linear, LASSO, support vector, random forest) were used on the ten-year data of household BMP
adoption in socio-economically diverse areas of Washington, D.C., to model BMP adoption behaviors.
The model with the best performance (random forest regression, R? = 0.67, PBIAS = 7.2) was used
to simulate spatio-temporal patterns of household BMP adoption in two nearby watersheds (Watts
Branch watershed between Washington, D.C., and Maryland; Watershed 263 in Baltimore), each of
which are characterized by different socio-economic (population density, median household income,
renter rate, average area per household, etc.) and physical attributes (total area, percentage of canopy
in residential area, average distance to nearest BMPs, etc.). The BMP adoption rate was considerably
higher at the Watts Branch watershed (14 BMPs per 1000 housing units) than at Watershed 263
(4 BMPs per 1000 housing units) due to distinct differences in the watershed characteristics (lower
renter rate and poverty rate; higher median household income, education level, and canopy rate in
residential areas). This research shows that adoption behavior tends to cluster in urban areas across
socio-economic boundaries and that targeted, community-specific social interventions are needed to
reach the NPS control goal.

Keywords: best management practices (BMPs); adoption behaviors; spatio-temporal patterns;

socio-economic features

1. Introduction

The control of water quality and quantity in natural and constructed landscapes is a
major challenge worldwide. In the U.S., for example, the National Water Quality Inventory
(NWIQ), produced by the Environmental Protection Agency (EPA), states that 46% of rivers
and stream miles, 21% of the nation’s lakes, 18% of the coastal lakes and Great Lakes, and
32% of the nation’s wetlands suffer from poor water conditions [1]. The degradation of
these water bodies can be attributed to both point sources of runoff, pollution, and nonpoint
sources (NPS) that are distributed throughout the landscape [2]. Point sources are readily
identifiable (e.g., outlet pipes) and relatively straightforward to control, but the spatially
distributed and intermittent NPS processes are much more challenging to handle [3-7]. As
a result, these processes, in which runoff and pollutants that enter a water body cannot be
tied to a specific spatial point, have been the leading pollution problem in the U.S. for more
than 40 years [2,8]. The general principle behind these challenging processes is that runoff
is generated from rainfall and snowmelt in a spatially heterogeneous manner; it collects
pollutants that are themselves unevenly distributed on the land surface (e.g., sediments,
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nutrients), transporting them into rivers, lakes, wetlands, and groundwater at rates that
depend on local topography, soil, and land cover, which are also non-evenly distributed in
the landscape, to eventually cause a degradation of the receiving water bodies [9-11].

In view of their spatially extended nature, NPS processes are best addressed via control
measures that are similarly spatially distributed throughout the landscape. These measures
are referred to as best management practices (BMPs), green infrastructure (Gl), low-impact
development (LID), sustainable urban drainage systems (SUDSs), water-sensitive urban
designs (WSUDs), or stormwater control measures (SCMs), and their implementation
seeks to control runoff, urban stormwater, and NPS pollutants, either individually or
jointly [12-18]. In this paper, to simplify the terminology, we will use the terms BMP, GI,
and LID interchangeably, as the differentiation between them is more a question of sub-
culture than of science or technology. These control measures may reduce surface runoff by
intercepting rainfall, fostering infiltration, or promoting evapotranspiration (e.g., rain barrel,
infiltration trench, pervious pavement, green roof). They may also delay runoff, reducing its
peak rate while maintaining its volume, by modulating the surface roughness in the path of
surface flow (e.g., downspout disconnection, green roof, vegetated filter strips). Some BMPs
further promote biological and physical processes that reduce pollutant loading in surface
runoff (e.g., rain gardens, bioretention structures, and vegetated filter strips). Other BMPs
can also reduce the inputs of potential pollutants, e.g., fertilizer reduction (e.g., for lawns);
they may arise either by itself or in association with native landscaping [17,19]. Clearly, a
single BMP can also be multimodal in its action and can provide more than one control
vector. Additionally, beyond stormwater management and water quality improvement,
the benefits of BMPs can include temperature reduction, noise reduction, improved energy
efficiency, air pollution reduction, and habitat provisioning [20-25].

Despite the substantial benefits of BMPs and a recent increase in their popularity, their
widespread use remains limited [26,27]. As the majority of BMPs are implemented at the
household scale on private property in residential areas, understanding the BMP adoption
behaviors of residents and enhancing their voluntary adoption is of great importance in
managing urban stormwater and in reducing NPS pollution. Previous research has sought
to address these concerns by examining the barriers to BMP adoption and by identifying
socio-economic and cultural factors, institutional aspects, and other social processes that
affect whether or not BMPs are implemented [28-34]. A growing body of research has
identified critical social factors that are related to BMP adoption. For example, Maeda
et al. showed that residents who had greater knowledge of water resources and BMPs
lived in households that implemented a greater numbers of BMPs, and BMP knowledge
strongly varied with race and ownership status [33]. Other studies have illustrated the
benefits of community-based social marketing tools, including social diffusion, where
communities are informed of neighboring BMP implementation to help shift social norms
and increase overall BMP adoption rates [30,35]. Understanding the key social and environ-
mental predictors of BMP adoption informs the construction of community-specific social
intervention strategies that target those key elements to efficiently foster BMP adoption
and implementation; those approaches, however, are more explanatory than predictive.
They provide likely reasons for which adoption rates are low in a given community but do
not predict the expected level of adoption based on community characteristics.

A predictive model of BMP adoption likelihood that predicts BMP adoption based on
community characteristics would be most useful for identifying the specific communities
where social interventions would be most beneficial for NPS control. Applying such a
model spatially over a study area, for example, could produce spatially heterogeneous
maps of BMP adoption likelihood; this can then be intersected with NPS process hotspots
that are predicted by hydrologic models to help guide social intervention efforts to the
sub-areas where BMPs are jointly most needed and where BMPs are least likely to be
spontaneously adopted by the community. In other words, such a predictive tool would
make it possible to focus resources aimed at restoring the environmental health of a coupled
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human-natural system to sub-areas where both the human and natural components have
the greatest need for such an intervention, producing the most significant benefits.

The objectives of this study were to develop a predictive model of BMP adoption likeli-
hood and to demonstrate its use in two watersheds. The model was aimed at predicting the
spatio-temporal dynamics of urban residential BMP adoption behavior based on selected
physical and socio-economic factors, including social diffusion effects in BMP adoption,
whereby individuals located closer to an installed BMP are more likely to implement a
BMP themselves. After a brief description of the study areas, the approach and results are
presented in two major parts: (1) the model development and (2) the model application.
The study area used for the model development consists of Washington, D.C.; the model
application was applied to two contrasting watersheds that are mainly located in Maryland
(Watts Branch and Watershed 263) that exhibit divergent socio-economic conditions [36,37].
The model was developed by selecting the most accurate of five linear and nonlinear
regression approaches (linear regression, LASSO regression, ridge regression, support
vector, random forest [38—41]) for predicting the levels of reported BMP adoption from a
twelve-year database, which is maintained by Washington, D.C. [42]. An algorithm was
then developed to apply the model to study areas where, in contrast to the D.C. database,
the spatial coordinates of BMPs are not known. This algorithm was used to demonstrate
the application of the BMP adoption model to the Watts Branch watershed and Watershed
263, and the algorithm was also used to compare its predictions to maps of NPS constituent
hotspots. The results of this research help to advance our understanding of the dynamic
interactions between natural and human processes in NPS control and contribute to the
development of effective social intervention plans for promoting BMP adoption.

2. Study Areas

The study areas used in this research consist of Washington, D.C., and two neighbor-
ing watersheds: the Watts Branch watershed, which straddles Prince George’s County,
Maryland; and Watershed 263, which is in Baltimore City, Maryland (Figure 1). Washing-
ton, D.C., the capital of the United States of America, and it is located between Maryland
and Virginia. It is one of the earliest cities in the U.S. to advocate for local households to
adopt BMPs to control stormwater and NPS pollution via its RiverSmart Homes program.
Detailed data about the program, including the location, type, and implementation date of
each BMP, is publicly available [43], making it a valuable source for the model development
activity that was undertaken in this research project (Figure 1c).

The Watts Branch watershed and Watershed 263 are two watersheds that have been ex-
tensively studied for urban development and pollution control [32-34,44-46] (Figure 1b,d).
They are in similar climatic, physiographic, and socio-cultural areas to Washington, D.C.

Table 1 summarizes the major physical and demographic features of the studied wa-
tersheds based on socio-economic data from the 2010 and 2020 U.S. Censuses. The Watts
Branch watershed has a suburban land cover and an area of approximately 19 km? that
partly extends into Washington, D.C., and partly into Prince George’s County, Maryland. It
intersects with ten census tracts in Washington, D.C. (7803-9905), and five census tracts
in Maryland (802,600-803,001), and it contains 13,327 residential lots where BMPs may
be installed. Its population in 2010 was 48,168 people distributed among 20,536 house-
holds, and the population increased by nearly 15% in 10 years to 55,002 people occupying
22,021 households in 2020. The median household income increased by more than 40%
over the same period, starting from USD 37,176 in 2010 and increasing to USD 52,798 in
2020. This watershed is considered to be healthy from a socio-economic perspective as it
has undergone population and economic growth, a reduction in vacant lots, a reduction
in poverty, and an increase in college education. In contrast, Watershed 263, which is in
Baltimore City, Maryland, has a highly urban landscape and an area of approximately
7 km?. Tt intersects with 14 census tracts and contains 11,863 residential lots for possible
BMP implementation. The population of this watershed decreased by 10% between 2010
and 2020, decreasing from 30,344 people to 27,594 people. The median household income
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increased by 18% from USD 27,125 in 2010 to USD 32,362 in 2020, but the vacancy rate,
renting rate, and poverty rate all increased by approximately 10% during that period. The
percentage of residents who attended college increased by nearly 40% during these 10 years,
but the percentage of those with a bachelor’s degree did not change. From a socio-economic
perspective, this watershed is considered to be less healthy than Watts Branch due to its
mixed educational trajectory and increasing vacancy and poverty rates.
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Figure 1. Study area and locations. (a) Relative location of the Washington, D.C., Watts Branch
watershed and Watershed 263; (b) census tracts and residential lots in Watershed 263; (c) total
BMPs installed between 2009 and 2020 in Washington, D.C.; (d) census tracts and residential lots in
Watts Branch.

Table 1. Major features of the Watts Branch watershed and Watershed 263 in 2010 and 2020.

Watts Branch Watershed 263

2010 2020 2010 2020
Physical
Total area (km?2) 18.81 7.43
Residential area (km?) 6.91 1.33
Total residential lots 13,327 11,863
Demographic
Total population 48,168 55,002 30,344 27,594
Total housing units 20,536 22,021 16,668 17,054
Vacant rate (%) 11 10 30 33
Renter rate (%) 51 47 67 69
Poverty rate (%) 24 21 35 39
College (%) 22 27 16 22
Bachelor’s degree (%) 8 13 9 9
Median household income USD 37,176 USD 52,798 USD 27,125 USD 32,362




Water 2023, 15, 2549

50f22

3. Materials and Methods

The goal of our BMP adoption model is to provide a quantitative prediction that a
BMP will be implemented at a given location and time in a given study area based on the
physical and demographic features at that location, including whether other BMPs are
already implemented in its vicinity. The model was developed using BMP implementation
data from the RiverSmart Homes program, spatial data on land cover, and U.S. Census
data at the tract level. The spatial resolution of the predictions uses that of the U.S. census
tract, which is the least spatially precise of the datasets, and its temporal resolution is one
year, which is the time step used to record new BMPs in the RiverSmart Homes program.
From these datasets, we defined the model’s measure of BMP adoption likelihood as the
number of new BMPs predicted to be implemented per 1000 households in a given census
tract, over a one-year period, based on current physical and demographic conditions in that
tract, including the number of BMPs already implemented there. Predictive approaches
that range from linear regression to random forests were considered and evaluated using
common diagnostic statistics. The best approach was then selected as the desired BMP
adoption model, and the relative importance of its physical and demographic input features
(model sensitivity) was evaluated to enhance our appreciation of its behavior.

3.1. BMP Data Used for Model Development

The BMP data used in this research came from the RiverSmart Homes program
in Washington, D.C. This program of the Washington D.C. Department of Energy and
Environment (DOEE) offers incentives to homeowners to reduce stormwater runoff from
their properties. Homeowners can receive financial and technical assistance to install
BayScaping (native planting), permeable pavers, shade trees, rain barrels, and rain gardens
on their property. Homeowners make a copayment corresponding to the features installed
on their properties, and the DOEE subsidizes the rest of the cost, as summarized in Table 2.
Copayment of shade trees is USD 0 without any limit, and copayment for rain barrels is
either USD 50 or USD 70 per unit. The remaining three BMPs are more expensive, resulting
in fewer of them being installed by landowners than rain barrels and shade trees.

Table 2. BMP and copayment details.

Features Copayment Total Costs
Rain barrels USD 50 or USD 70 per rain barrel, depending on the types (limit two) USD 150 per rain barrel
Shade trees USD 0 per shade tree (no limit) USD 50 per shade tree
Rain gardens USD 100 per 50 sq. ft. (USD 21/m?) (limit two) USD 86/m?
BayScaping USD 100 per 120 sq. ft. (USD 8.96/m?) (limit two) USD 13/m?
(Native Landscaping) P q- ’

Permeable pavers

USD 10/sq. ft. (USD107/ m?) for replacing impervious surface with
permeable pavers and/or USD 5/sq. ft. (USD 53.82/m?) for
removing and replacing impervious surface with vegetation; limit of
USD 4000.

USD 128/m? or USD 60/m?

The RiverSmart Homes program started in 2009, and more than 15,000 BMPs have been
installed across Washington, D.C., through this project. For each installation, the precise
geographic location of the BMP, its type, and its date of implementation have been recorded
in the publicly available RiverSmart Homes program database (Figure 1c). Most BMPs
are found in residential areas of the northern and northeastern parts of Washington, D.C.,
where wealthier neighborhoods are located, and fewer BMPs are found in the southwestern
and southeastern neighborhoods. The number of new BMPs installed each year, from the
year 2009 to the year 2020, is shown in Figure 2. Approximately 400 BMPs were installed
in the first year of the program (2009), and this substantially increased to 1200 new BMPs
installed in the second year (2010), stabilizing at approximately 1400 new BMPs per year in
the following ten years. The majority of BMPs installed under this program are rain barrels
and shade trees, as shown in Figure 2b, which account for 39% and 38% of the BMP total,
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respectively. BayScaping is the third most popular BMP installed in this program (12% of
participants). Rain gardens and permeable pavers are less popular, accounting for 8% and
3% of the installed total, respectively.
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Figure 2. BMPs installed through the RiverSmart Home project in Washington, D.C.; (a) BMPs
installed each year; (b) Percentages of the different types of all BMPs installed between 2009 and 2020.

3.2. Physical and Demographic Factors for BMP Adoption Model

The socio-economic conditions of neighborhoods and the physical characteristics of
landscapes have been proposed as major drivers for residential landowners and stakehold-
ers in the decision to install BMPs [27,29,33,47-49]. Higher incomes and education levels
are thought to foster adoption, while the percentage of rental properties in a neighborhood
has the opposite effect. BMPs might also be found more frequently in neighborhoods with
more abundant tree cover, suggesting a presumably more environmentally friendly dispo-
sition of residents, than in those that are more intensely paved. The behavioral propensity
to install a BMP is further thought to be affected by the number of existing BMPs in one’s
neighborhood, occurring as a socially diffusive process whereby contact with BMPs or
communications with neighbors with BMPs enhances one’s likelihood of installing such a
control measure as well.

To consider these potential factors in the development of the BMP adoption model,
the set of input features considered in this work initially included 4 physical features and
17 demographic features (Table 3). Most of these features were obtained from the 2010 U.S.
Census and 2010 ACS 5-year survey. The mean, median, standard deviation, minimum,
and maximum values of each feature are included in the table below based on the values
obtained for the 179 census tracts in Washington, D.C.

The selected physical features were the total area, total residential area, percentage
of canopy in residential area, and average distance to nearest BMPs. The total area is the
size of the census tract and ranges from 0.17 to 11 km?, with a median size of 0.6 km?.
The total residential area is the sum of the areas of residential parcels in each census tract
and ranges from 0 to 1 km?, which generally represents approximately 20% of the size
of a tract. It should be noted that as this study concentrated on the adoption of BMPs by
households in residential lots, and tracts where the residential area is zero were neglected
in the model development and application processes here. The percentage of canopy in
residential areas was calculated by dividing the total canopy area in residential parcel lots
by the total area of residential parcels in each census tract, and the percentages ranged from



Water 2023, 15, 2549

7 of 22

0 to 48%. The average distance to the nearest BMP is the average of the minimum distance
between each residential parcel lot and the registered location of the nearest BMP in the
RiverSmart Homes database, ranging from 0 to approximately 3 km.

Table 3. Physical and demographic features for model development.

Mean Median Std Min Max
Physical features
Total area (m?) 988,714 601,065 1,338,461 171,894 11,417,542
Total residential area (mz) 234,567 165,268 228,058 0 1,392,595
Percentage of canopy in residential area (%) 29.44 26.96 9.16 0 47.71
Average distance to nearest BMPs (m) 275 154 298 0 2845
Demographic features

Total population 3362 3072 1301 33 7436
Total household 1658 1507 807 2 5375
Population/1000 m? 6 5 4 0 26
Household /1000 m? 3 3 3 0 17
Population/1000 residential m? 34 17 75 0 732
Household /1000 residential m? 15 8 25 0 196
Percentage of White (%) 34.69 25.56 32.04 0.3 90.88
Percentage of Black (%) 55.4 60.24 35.38 2.15 98.35
Percentage of Asian (%) 3.16 2.1 3.44 0 21.27
Vacant rate (%) 10.15 9.29 4.79 0 27.78
Renter rate (%) 55.2 58.24 23.24 0 98.05
Median household income (USD) 47,433 37,400 25,810 12,202 166,298
Median age 35 35 7 20 63
Average area per house (m?) 172.59 124.27 23491 0 2676.01
Poverty rate (%) 14.15 8.5 14.34 0 58.1
College degree rate (%) 18.52 18.34 8.79 0 42.86
Bachelor’s degree rate (%) 20 20.15 11 1 48.34
BMPs adoptions from 2010 to 2019 77 41 107 0 619

Seventeen demographic features related to population and household characteristics
were also considered in the set of potential model inputs in this research. These features
were separately computed for each tract and included the total population, total number of
households, population density and household density per 1000 m?, percentage of different
population groups, median household income, median age, poverty rate, vacant rate, rental
rate, and education level. We also considered the average area per household, which is
calculated as the total residential parcel size divided by the total number of households in
each tract. It is expected that a subset of these 17 demographic features and of the 4 physical
inputs have a larger effect on BMP adoption than the rest; therefore, a reduced model that
uses this subset could be used in practical applications. The identification of such a subset
will be pursued below once the best form of the model has been identified.

For the linear regression model, we employed a statistical f-test to determine the
significance of each variable. This test provides a p-value for each variable, reflecting
the probability that the variable’s actual effect is null (insignificant). By selecting only
those variables with p-values that are less than 5%, we adhere to a common convention in
statistical analysis: only accepting variables that have less than a 5% probability of having
a null effect as significant (i.e., there is at least 95% probability that they have a significant
effect). This technique aids in preventing the model from overfitting by incorporating
irrelevant variables. For LASSO regression, ridge regression, support vector regression
(SVR), and random forest regression, we included all available variables in the census tracts,
as these techniques have built-in mechanisms for handling a large number of predictors.

3.3. Potential BMP Adoption Models and Evaluation Metrics

Five predictive models were selected in this study for their evaluation as potential
predictors of yearly BMP adoption likelihood based off of the physical and demographic
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features of the census tracts: linear regression, LASSO regression, ridge regression, support
vector regression, and random forest models [38—41]. The ordinary linear regression
model is of the form shown in Equation (1), expressed here for a single year of prediction,
for simplicity:

fi = Bo+ Prxin + Paxin + ... 1)

where f; is the predicted BMP adoption likelihood in census tract i (output variable),
expressed as the number of newly installed BMPs per 1000 households in this tract one
year after conditions were as described in the model inputs on the right-hand side of the
equation. The physical and demographic features of the tract, which are the model’s inputs,
are represented by the variable x;;, where i is the tract number and j is the feature index.
The parameters denoted by §; are the coefficients that weigh the importance of feature j in
producing the model’s output and are determined by the common least-square-error (LSE)
process applied between the 1969 target values obtained from the RiverSmart database,
denoted as y;, and the 41,349 values of input features from the Census (i.e., 1969 x (17 + 4)).
The LSE approach guarantees that this linear model has a bias of zero (i.e., zero mean
error) but does not imply that the model accurately predicts BMP adoption. In particular,
the model is limited by its linear form, and the interpretability of its parameters may be
affected by a non-zero covariance between input variables.

The accuracy of the simple linear model and of the other candidates for BMP adoption
prediction was evaluated using 3 commonly used metrics: the coefficient of determination
(R?), the percentage of bias (PBIAS), and the mean-square-error (MSE). The mathematical
forms of these metrics are presented in Equations (2)—(4):

2
R2:1_Zi(fi_yi) (2)
Yi(yi —y)°
PBIAS = Zl(gyyl) % 100 ®)
MSE = - (fi — 1)’ (4)

1

where f; and y; have the same meaning as used earlier and y is the mean value of v;.
The coefficient of determination, R2 (also called the Nash-Sutcliffe efficiency coefficient,
NSE), quantifies the amount of variance in the observed variable (y) that is explained
by the model. A value of 1 (the maximum possible) indicates a perfect prediction. In
linear regression, R? is equal to the square of the coefficient of linear correlation, but this
equivalence breaks down under nonlinear parameterization approaches. PBIAS measures
the average tendency of the predicted values to be larger or smaller than observed ones (it
is the ratio of the mean error to the mean observed value). A value of 0 indicates perfect
predictions. MSE is the mean of squared errors between the model output and observations,
with 0 indicating a perfect fit once again. In addition to these metrics, for the case of linear
regression, a t-test was conducted to evaluate the significance of each of the model’s input
variables, with an early view towards potential model simplification.

LASSO and ridge regressions use a linear predictive model that is of the same form as
that shown in Equation (1) but they substitute nonlinear parameter estimation techniques
to the linear LSE process [40]. As a result, the model coefficients, ﬁj, are determined in
ways that may increase R? relative to that obtained by LSE but no longer guarantee zero
bias (and this also breaks the equivalence between R? and the square of the correlation
coefficient). Both methods have found uses in machine learning as well as statistics. LASSO
(least absolute shrinkage and selection operator) and ridge regression were developed to
mitigate issues related to high degrees of covariance between model input variables, which
may occur with the socio-economic variables that are in the present study. To this effect,
LASSO regression adds an L1 regularization term (A} |B;|) into the ordinary regression
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system, while ridge regression adds an L2 regularization term (A)_|B; |2) [39]. These terms
can be viewed as penalty terms in the form of the resulting optimization problem and
serve as the trade-off bias accuracy for determination (or efficiency). In this study, both
LASSO and ridge regressions were applied for the prediction of BMP adoption likelihood
using the same dataset as that used for the ordinary least squares, and both regressions
were evaluated using the 3 metrics discussed above and were compared with the linear
regression model.

The support vector and random forest modeling approaches are extensions of super-
vised classification methods in which the model’s outputs can be arbitrary numbers rather
than just individual classes. These methods seek to partition the space of model input
values into characteristic sub-spaces, wherein simple predictive sub-models can be applied
within each sub-space. Support vector models perform this partitioning by using hyper-
planes, as shown in Figure 3a; random forest models use binary classification (or decision)
trees instead (Figure 3b). In support vector methods, various mathematical functions, such
as linear and polynomial functions, can be used to transform the input data into hyper
dimensions, where classification may be achieved with greater accuracy. The coordinates
of hyperplanes are iteratively adjusted using gradient descent methods to minimize the
model prediction error. In random forest methods, decision trees replace hyperplanes, and
their structure starts with the tree’s root on the first selected input variable, then splits
based on threshold comparisons until a leaf node is reached. A large number of trees
(above 100) is constructed using the random sequences of input variables, and thresholds
are adjusted to approach the desired model outputs in each tree. The mean output from all
trees is then taken as the prediction of this random forest. In this study, support vector and
random forest approaches were used to construct corresponding models of BMP adoption
likelihood. The accuracy of these models was assessed using the same metrics as those
used for the LASSO, ridge, and linear regression, with the goal of identifying the most
appropriate model for this behavior.

Hyperplane

Treel - Tree2 Tree3
Class A . .\ Q

Class B

Sample inputs

e o e o o o

\, | N . L™ “n‘
S ¢ 000 © 00 o 0 00
uppo
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. | sl

(a)

(b} Average all predictions

Support Vector Regression Random Forest Regression

Figure 3. Illustration of a hyperplane used in support vector regression; (a) decision trees used in
random forest regression (b).

4. Results and Discussion
4.1. Results of BMP Adoption Model Development

The results of the ordinary least squares linear regression modeling of BMP adoption
likelihood when considering all variables are detailed in Table 4. The results of the ordinary
least squares linear regression modeling that only selected variables with p < 0.05 are shown
in Table 5. Columns 2 and 3 in both Tables 4 and 5 are coefficient ; and the standard
error of regression coefficients of each feature. Columns 4 and 5 present parameters related
to the significance of the model coefficients, the t-value, and the corresponding p-value.
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The t-value is the t-statistic of the overall model, and the associated p-value represents
the likelihood that the t-statistic occurs by chance if the null hypothesis of no relationship
between the dependent variable and independent variable is true.

Table 4. Ordinary least squares linear regression.

Coefficient Standard Error of Coefficient t p> Itl
Physical
Total area (m?) —2.26 x 107 5.29 x 1077 —4.266 0
Total residential area (m?) 4.89 x 107° 2.44 x 1070 2.006 0.045
Percentage of canopy in residential area 0.117 0.033 3.547 0
Average distance to nearest BMPs (m) —0.0037 0.001 —6.054 0
Demographic
Total population —0.0004 0 —0.878 0.38
Total household 0.0003 0.001 0.333 0.739
Population /1000 m? —0.6524 0.223 —2.921 0.004
Household /1000 m? 0.438 0.362 1.21 0.227
Population/1000 residential m? 0.1788 0.069 2.605 0.009
Household /1000 residential m2 —0.1433 0.093 —1.532 0.126
Percentage of White —0.0647 0.045 —1.442 0.149
Percentage of Black —0.1077 0.037 —2.903 0.004
Percentage of Asian —0.1403 0.101 —1.387 0.166
Vacant rate —0.0422 0.037 —1.137 0.256
Renter rate —0.1316 0.012 —11.23 0
Median household income (USD) —0.0002 1.97 x 107> —9.474 0
Median age 0.0431 0.044 0.987 0.324
Average area per house 0.0305 0.003 9.036 0
Poverty rate —0.0264 0.018 —1.483 0.138
College degree rate —0.041 0.028 —1.474 0.141
Bachelor’s degree rate 0.0442 0.028 1.557 0.12
Const 23.854 4.783 4.988 0

Table 5. Ordinary least squares linear regression with features (p < 0.05).

Coefficient Standard Error of Coefficient t p> Itl
Physical
Total area (m?) —1.86 x 10~ 3.78 x 1077 —4.916 0.000
Percentage of canopy in residential area 0.1376 0.029 4.785 0.000
Average distance to nearest BMPs (m) —0.0038 0.001 —6.456 0.000
Demographic
Population /1000 m? —0.3351 0.056 —5.982 0.000
Population/1000 residential m? 0.0643 0.012 5.269 0.000
Percentage of Black —0.0740 0.009 —7.996 0.000
Renter rate —0.1548 0.009 —17.373 0.000
Median household income (USD) —0.0002 1.36 x 107> —14.482 0.000
Average area per house —0.0336 0.002 —14.719 0.000
Const 21.057 1.541 13.665 0.000

In this model, the correlation with BMP adoption rate is positive for canopy cover,
residential population density, and average lot area per household, but negative for the
other six input features. Increasing BMP adoption likelihood with canopy cover and lot size
appears reasonable, as does a decreasing rate of adoption with increasing rental rates and
population density (at tract-level), which is consist with former research [50]. The identified
negative association between BMP adoption rate and distance to the nearest BMP further
seems consistent with social diffusion theory, whereby individuals located closer to an
installed BMP are more likely to also implement a BMP themselves in the upcoming year.
Negative associations of BMP adoption rate with median household income may be due to
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the fact that higher-income households may have access to alternatives that achieve similar
goals without the need for BMPs or that these households may have installed such BMPs
before the program. Poverty rate, which still disproportionately affects African American
populations in the area of Washington, D.C., and elsewhere in the U.S. more than other
groups, could be a more likely explanation for low BMP adoption rates.

The performance metrics for all regression models of BMP adoption likelihood are
presented in Table 6. All models were trained using 70% of the dataset and were tested on
the other 30%. The testing values are shown here. Linear regression and linear regression
with features (p < 0.05) are shown in the first and second rows. The coefficient of determi-
nation of the linear regression model and linear regression model with features, R?, are
0.51 and 0.52, respectively, which indicates that the model explains just over half (51% or
52%) of the observed variability in BMP adoption rates in the study area. LASSO and ridge
regression approaches attempt to limit the negative impacts of correlated inputs by trading
determination for bias. LASSO regression accordingly produced a model that has a slightly
higher coefficient of determination than ordinary least squares (R? = 0.52) but at the cost of
a negative bias, where the adoption rates are generally underpredicted. Ridge regression
performs more poorly by providing no improvement in the coefficient of determination
and causing a more significant underprediction than the LASSO model. Neither approach
can be considered better than the ordinary least squares model in this study.

Table 6. Accuracy of the linear, LASSO, ridge, support vector, and random forest regression models
of BMP adoption likelihood developed in this study.

Methods R? PBIAS MSE
Linear regression 0.51 —1.88 28.09
Linear regression with features (p < 0.05) 0.52 —-1.22 27.50
LASSO regression 0.52 —0.62 27.84
Ridge regression 0.51 -1.87 28.09
Support vector regression 0.13 —8.05 50.68
Random forest regression 0.67 —7.24 19.11

The accuracy of the support vector and random forest models of BMP adoption like-
lihood are also presented in Table 6. These modeling approaches use different methods
to extend the classification, resulting in globally nonlinear models with quite different
behaviors. The support vector model is found to explain only 13% of the variability in
observed BMP adoption rates (R? = 0.13) and produces predictions with the most bias
out of the tested methods. The random forest model, on the other hand, explains the
largest amount of observed variability in adoption rates at 67%, although it also tends to
underpredict adoption, which is listed here by an average of over 7%; this suggests that it
predicts low BMP adoption rates better than larger ones wherein most of its underpredic-
tions would be located. The accurate prediction of the lower adoption rates corresponds
to the preferred behavior for this model, which is targeted at the identification of zones
with low likelihoods of spontaneous BMP installation, where social interventions should
be focused for maximum return on environmental investments.

Based on the results of the performance evaluation of the six candidate BMP adoption
likelihood models presented above, the random forest model was selected as the model
of choice for this study. Accordingly, this model was subjected to a sensitivity analysis to
determine the relative importance that each of its 21 input features had in producing its
predictions. The sensitivity of a random forest model (or feature importance) is calculated
by randomly shuffling each feature and computing the resulting change in its accuracy
(R?) [51]. This process breaks the relationship between the selected feature and the model’s
output, resulting in a drop in the value of R? that reflects the degree to which the shuffled
input impacts the accuracy of model predictions. The results of this process are presented
in Figure 4 for each of the 21 model inputs and are expressed in terms of the reduction
in R? resulting from shuffling out that input. Four of the model’s inputs stand out as
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most significant from this analysis: (1) average distance to the nearest BMP; (2) residential
housing density; (3) percentage of residents with a college degree; and (4) average area
per house. If these features were entirely uncorrelated with each other, then removing
just the first two from the model (i.e., average distance to the nearest BMP and residential
housing density), would decrease its coefficient of determination down to essentially zero,
indicating their substantial importance. The percentage of residents with a college degree
is also very important, as shuffling it out reduces the model’s R? value by 0.23 (from its
original value of 0.67). Out of these four significant input features, two were also identified
in the less accurate linear regression model: distance to BMPs and area per house. The less
plausible features of the least squares model (median income and percentage of African
American residents) are not identified as particularly significant in the more accurate
random forest model. Conversely, the more plausible adoption factor of college education,
which could reflect a better appreciation of environmental matters, is highlighted by this
higher performing formulation.
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Figure 4. Feature importance of the random forest regression model of BMP adoption likelihood
identified using the input feature permutation approach.

Overall, the BMP adoption likelihood model developed in this study that was based
on the random forest approach was found to show a better agreement to expected behavior
than the other tested models. Its significant input features further suggest potential social
intervention strategies aimed at increasing BMP adoption. For example, pilot BMP imple-
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mentation projects could be started in areas of low spontaneous adoption to decrease the
distance to the nearest BMP in these zones and jumpstart the social diffusion process of
increasing BMP installation. Stormwater education campaigns could also be prioritized to
zones with a lower percentage of college-educated residents to boost the environmental
awareness of residents there and enhance their desire for BMP adoption.

4.2. Application of the BMP Adoption Likelihood Model

The application of the BMP adoption likelihood model was demonstrated on two
watersheds with contrasting land cover and socio-economic conditions that are located in
the region surrounding Washington, D.C. (Figure 1). The model predicted the yearly BMP
adoption rates in the two watersheds and compared them on a whole watershed basis at the
tract level over time. The model’s responses to changing the value of the initial density of
BMPs in these watersheds and to changing socio-economic conditions were demonstrated.
The NPS constituent control effectiveness that could be expected from spontaneous BMP
adoption in each watershed, as predicted by the model and the need for targeted social
interventions, were also evaluated and discussed. The description of these activities starts
with that of the two study watersheds, which is followed by the algorithm used to apply
the BMP adoption model spatio-temporally to these watersheds and by the outcomes of
the resulting simulations.

4.2.1. BMP Adoption Simulation Algorithm

The BMP adoption likelihood model developed using the random forest approach
mostly relies on census and land cover data for its inputs, which are readily transferable
across study areas. However, one of its key input features, the distance to the nearest
BMP, requires that specific spatial locations be selected for BMP installation within specific
residential lots, which are contained within census tracts. An algorithm was developed
to enable such selection, such that the predictions of BMP adoption rates can be applied
over successive years by re-calculating the distances to the nearest BMPs, including those
most recently implemented. This is an important component of the simulation process as it
represents the effect of social diffusion on the temporal progression of BMP adoption by
watershed residents. The developed simulation algorithm applies a random placement
strategy to the positioning of new BMPs. In this approach, the number of new BMPs to
install within a given tract is based on the random forest prediction of BMP adoption per
1000 households (multiplied by the number of households in the tract). These BMPs are
randomly assigned to residential lots within the tract, with a probability that is calculated
by following the binomial distribution, in inverse proportion to the distance between each
lot and the nearest BMP. The resulting algorithm for BMP allocation proceeds along the
following steps:

Step 1 Based on the initial BMP density setting (e.g., 1 per 1000 housing units), randomly
selected N residential parcels for BMP allocation. Set step t = 0.

Step 2 Calculate the distance of all residential lots to the nearest BMPs. Update the average
minimum distance to BMPs for all census tracts.

Step 3 Predict the number n; new BMP adoption for census tract i based on the regression
model.

Step4 Randomly select n; residential parcels in census tract i for BMP adoption based on
possibility p as detailed below:

4.1. For each residential lot, find the maximum distance to the nearest BMP and
use the maximum value minus the current distance to the nearest BMP for
each residential lot as the weight.

42.  Calculate the allocation probability for each residential parcel as weight/
sum_of_all_weights

Step 5 If the stop criterion is satisfied, terminate the process; else, set t = t + 1, and go to
Step 2.
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This BMP adoption simulation was run for both watersheds in different settings.
First, a basic ten-year simulation was run for the Watts Branch watershed and Watershed
263 using socio-economic data from the 2010 Census and an initial density of 1 BMP per
1000 households to establish baseline BMP adoption dynamics in both watersheds. Second,
the socio-economic input features of the model were updated to those of the 2020 Census,
and a new ten-year simulation was performed to evaluate the impact of these real-world
changes on BMP adoption. The initial spatial density of BMPs was then changed to assess
how that initial condition affected BMP adoption dynamics over a ten-year period. Lastly,
adoption simulations were run for a long enough period to achieve the NPS pollution
control target of having BMPs be implemented in 20% of the area of each watershed, and
the time needed to achieve this coverage was compared between the two watersheds, as
well as the eventual position of the BMPs, relative to that of the NPS constituent hotspots.

4.2.2. Baseline Simulation Results for BMP Adoption

Figure 5 presents the results of baseline BMP adoption simulations aggregated over the
set of census tracts in each of the two study watersheds, with 1 BMP per 1000 households
being the initial condition. In Watts Branch, the predicted BMP adoption rate is observed
to increase relatively quickly during the first 4 years of the simulation, stabilizing at
approximately 15 new BMPs per 1000 households per year. In contrast, Watershed 263’s
BMP adoption rate initially increases somewhat quickly but more slowly than in Watts
Branch and only for 2 years, after which it nearly stabilizes at approximately 5 new BMPs
per 1000 households per year. Even though the initial BMP density is the same in the
two watersheds, the overall BMP adoption rate in Watts Branch is much higher than in
Watershed 263. We also note that an initial increase in BMP adoption rate followed by a
stabilization of this rate, as predicted here by the adoption model for both watersheds,
agrees with the adoption rate behavior observed for Washington, D.C., from the RiverSmart
Homes data (Figure 2).

- BMP Adoption in Two Watersheds

—+— Watts Branch
Watershed 263

= [ =
N = o

—
o

BMP Count per 1000 Housing Units

2010 2012 2014 2016 2018 2020
Year

Figure 5. BMP adoption in two watersheds in a ten-year simulation.



Water 2023, 15, 2549

15 of 22

The details of the BMP adoption rates at the census tract level in both watersheds are
shown in Figure 6. All census tracts show an increasing trend in the first several years,
where the BMP adoption rates then remain unchanged for the following years; and the
overall BMP adoption rates in most census tracts in Watts Branch are more significant than
that in Watershed 263. In Watts Branch, initial BMP adoption densities are between zero
and two in all tracts; then, they most sharply increase in the second year, reach the peak rate
in about five years, and then fluctuate in the following five years. The census tracts of Watts
Branch in the Maryland part (802,600-803,001) have higher BMP adoption rates than those
in Washington, D.C. (7803-9905). A comparison of the socio-economic features between the
census tracts in Maryland and in Washington, D.C., indicates better conditions in Maryland
than in D.C. For example, the average number of housing units per 1000 residential square
meters is close to 5 in Washington, D.C., but is only 2 in Maryland. The average canopy
percentage (34% vs. 48%), median household income (USD 28,563 vs. USD 56,123), average
area per housing unit (246 m? vs. 556 m?), and poverty rate (29% vs. 13%) also favor
Maryland above DC. Even though these tracts are in the same watershed, those located
in Maryland correspond to “healthier” socio-economic conditions and have higher BMP
adoption rates than those located in Washington, D.C. In contrast, all of the census tracts
located in Watershed 263 have similar BMP adoption rates in the ten-year simulation results.
Most tract-level BMP adoption rates increase in the first two or three years and then remain
stable for the following seven years. The peak BMP adoption rate is between 3 and 10, with
an average of 5 new BMPs per 1000 housing units per year. Compared with the census
tracts in Watts Branch in Washington, D.C., about half of the census tracts in Watts Branch
have a similar BMP adoption rate to that of Watershed 263. Overall, the BMP adoption rate
is higher in Watts Branch than in Watershed 263, and this better performance results from
the five “healthier” census tracts that are located in Maryland in this watershed.
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Figure 6. Annual BMP adoption rate in each census in Watts Branch (a) and Watershed 263 (b).

Spatio-temporal maps of BMP adoption in Watts Branch and Watershed 263 are
presented in Figure 7. Gray areas in this figure represent residential lots, green lines are
the watershed boundaries, and red dots depict the predicted BMPs installed in those
watersheds. The initial BMPs were randomly assigned to residential parcels at a density
of 1 BMP per 1000 residential lots. Then, new BMPs were iteratively added to randomly
selected parcels using the simulation algorithm; the results of that process are shown in the
figure with a three-year time step. The results indicate that BMPs tend to be allocated in
clusters, possibly as a result of social diffusion. For example, in Watts Branch, new BMPs
accumulated higher density in tracts 802,600, 802,700, 802,901, and 803,001 in Maryland
and 7809, 9604, and 9903 in Washington, D.C. This clustering also happens in Watershed
263. Census tracts such as 190,200, 190,300, 200,100, and 200,300 in the southern part of
the watershed have a higher BMP density than tracts in the northern regions. The total
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Year 0

predicted BMPs implemented in Watts Branch and Watershed 263 are 1727 (about 95 BMPs
per km?) and 521 (about 70 BMPs per km?), respectively, for the duration of nine years.
This difference in the level of implementation appropriately corresponds with differences
in factors affecting BMP adoption rate in the two watersheds, such as median household
income and poverty rate, all of which motivate the BMP adoption.

Year 3 Year 6 Year 9

BMPs : 10

BMPs: 1727

BMPs: 445 BMPs: 1090

(d)

(e)

BMPs : 10

BMPs : 149 e BMPs : 326 pEy BMPs : 521
~ads s

() (h)

Figure 7. Spatio-temporal BMP adoption in both watersheds in a three-year step. Red dots: predicted
BMPs adoption, gray areas: residential lots; green lines: watershed boundary; (a-d) BMPs adoption
in a 3-year step around Watts Branch Watershed, (e-h) BMPs adoption in a 3-year step around
watershed 263.

4.2.3. BMP Adoption Response to Changing Conditions

The impact of different BMP initial densities is shown in Figure 8. The initial BMP den-
sity changes from 0.5 per 1000 households to 1 per 1000 households, 2 per 1000 households,
and 4 per 1000 households. The BMP adoption rates increased to a saturated platform after
rising in the first several years. In the Watts Branch watershed, the BMP adoption rate
increases to around eight in the second year and arrives at a peak rate of fourteen in five
years. As for Watershed 263, lower initial BMP densities, such as 0.5 per 1000 households,
need about three years to reach the top BMP adoption rate. In contrast, a higher initial BMP
density of 2 per 1000 or 4 per 1000 needs only one year to achieve the peak BMP adoption
rate. Therefore, BMP density will affect BMP adoption in the first several years, but this
impact decreases as more and more BMP are implemented in the watersheds.

Figure 9 compares the BMP adoption rates with 2010 and 2020 census data in two
watersheds. With the same initial BMP density, the BMP adoption rate in the Watts Branch
watershed increased by about 10% when using the 2020 census data, whereas Watershed
263’s BMP adoption rate remains unchanged. Compared with the socio-economic data in
these two watersheds (Table 1), many features in the Watts Branch watershed improved in
ten years. For example, the total population in Watts Branch increased from 48,168 to 55,002,
whereas the number in Watershed 263 decreased from 30,344 to 27,594. The poverty rate
dropped from 24.29% to 21.21% in Watts Branch but increased from 35.45% to 39.24% in
Watershed 263. We can also find some improvement in both watersheds, such as in median
household income, vacant rate, and renter rate. This could explain why the peak BMP
adoption rate in Watershed 263 remains unchanged in these two different year conditions.
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Figure 8. Impacts of initial BMP density on BMP adoption in (a) Watts Branch Watershed and
(b) Watershed 263.
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Figure 9. BMP adoption rates simulated by the random forest model for ten years using 2010 and
2020 census tract data for Watts Branch and Watershed 263.

4.2.4. BMP Adoption and NPS Constituent Control

The percentage of residential lots covered by BMPs in 30 years is shown in Figure 10.
In ten years, about 15% of the residential lots in Watts Branch will be covered by BMPs,
but this number is only 6% in Watershed 263. If the simulation period extends to 30 years,
then 48% of residential lots in Watts Branch will be covered by BMPs, but only 18% will
be in Watershed 263. The BMP peak adoption rate is much higher in Watts Branch than in
Watershed 263.
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Figure 10. Percentage of the residential lot covered by BMPs in 30 years.

Based on our former research, 20% of the hotspot area in Watts Branch can account for
40-50% of the sediment, nitrogen, and phosphorus output and about 50% of the sediment
and phosphorus in Watershed 263. Thus, if we choose 20% of the area as the BMP allocation
goal, 14 years are needed in the Watts Branch watershed and more than 30 years are needed
in Watershed 263 (37 years in simulation). As such, more social interventions should be
required to have enough BMPs allocated in hotspot areas for NPS pollution control in
Watershed 263.

To compare the BMP allocation with the nutrient’s (N and P) hotspots, we simulated
the model in Watts Branch and Watershed 263 for 20 years. BMPs covered 20% of the
residential lots in Watts Branch by year 14 (Figure 11a) but only 7.6% in Watershed 263
(Figure 11d). A SWAT model was used to simulate both watersheds, and the N and P
hotspots (20% and 50% of the total output of N and P) are shown in Figure 11b,c,e,f. Looking
at Watts Branch, most of Maryland’s N and P hotspots are covered by BMPs. Most of these
are in residential areas, so the BMP allocation scenario in 14 years can potentially treat the
NPS pollutants (N and P) effectively.

In contrast, a significant portion of nutrient hotspots in the southwest of Watershed
263 is open space, and BMPs neglect these nitrogen hotspots. Moreover, the northern part
of the watershed is also open space, where the BMPs also ignore nitrogen and phosphorus
hotspots. Thus, 14 years of simulation have not tackled the nutrients properly. In summary,
to effectively control the NPS pollutants in watershed 263, social intervention is needed to
increase the BMP adoption speed. Moreover, as some NPS pollutants hotspots are not in
residential areas, BMPs that are implemented by local stakeholders as opposed to residents
are necessary to treat the NPS pollution.
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Figure 11. BMP allocation and nutrient hotspots in two watersheds. (a) Map depicting 20% of
residential lots covered by BMPs in Watts Branch in 14 years; (b,c) map depicting nitrogen and phos-
phorus output hotpots in Watts Branch, as calculated by SWAT simulation; (d) map depicting 7.6% of
residential lots covered by BMPs in Watershed 263; (e f) map depicting nitrogen and phosphorus
output hotpots in Watershed 263, as calculated by SWAT simulation.

5. Conclusions

This research developed regression BMP adoption models based on the actual physical
and demographic features data from Washington, D.C. The best-performing model is
the random forest regression, with its R? value of 0.67, PBIAS of —7.24, and MSE of
19.11. Based on this model, the spatio-temporal dynamics of BMP adoption behavior in
two urban watersheds, Watts Branch (relatively “healthy”) and Watershed 263 (relatively
“unhealthy”), were quantitatively analyzed. This research shows that distance to the nearest
BMPs, education level, residential property (size, canopy value), and economic factors
significantly impact BMP adoption. This simulation of BMP adoption in two watersheds
also conforms to our estimation of “healthy” (Watts Branch) and “unhealthy” (Watershed
263) watersheds, where the BMP adoption rate in Watts Branch is much higher than
that of Watershed 263. Even in the same watershed, “healthy” census tracts will have a
much higher BMP adoption rate than “unhealthy” census tracts. Compared with the BMP
adoption scenarios, to achieve 20% of residential parcels being covered by BMPs, Watts
Branch will need 14 years; Watershed 263 will need more than 30 years. However, this
three-fold longer time could not ensure the NPS pollutants control goal. A significant
portion of the NPS pollutants hotspots are in open space, and other stakeholders aside from
residents are needed to implement the BMPs.

The adoption of BMPs is influenced by a range of factors. These include the percentage
of canopy coverage, average distance to the nearest BMPs, population density in residential
areas, and average area per household, all of which have been found to have positive
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correlations with BMP adoption. In contrast, certain factors are observed to negatively
impact BMP adoption. These include a high renter rate and a higher percentage of under-
represented population in the area. These factors can potentially represent socio-economic
barriers to BMP adoption. Given these insights, it is imperative to design social inter-
ventions aimed at mitigating these negative impacts. Such interventions could focus on
improving awareness about the benefits of BMPs, providing resources for the implemen-
tation or advocation of policy changes that encourage BMP adoption in all community
sectors, thereby making environmental sustainability more accessible and equitable.

In order to counter factors that negatively affect BMP adoption, such as high renter
rates and socio-economic disparities, a targeted approach is essential. For instance, educa-
tional programs can be designed to inform and engage renters about the benefits of BMPs,
which could lead to increased uptake, even among this transient population. Efforts should
also be made to increase BMP adoption within underrepresented communities. This could
involve outreach programs to raise awareness about BMPs and their environmental and
health benefits or by partnering with community leaders to drive adoption. Subsidies or
other financial incentives could be introduced to make BMP implementation more feasi-
ble for households in these communities. In areas where BMP adoption is lower due to
population density or lack of canopy coverage, green initiatives can be promoted.

Overall, this research quantitatively demonstrates the spatio-temporal patterns of
BMP adoption in urban areas. This research confirms that a “healthy” watershed will
treat NPS pollutants effectively and emphasizes the importance of social intervention
in the “unhealthy” watershed or census tracts. More work is needed in the pollutant
hotspots to promote BMP adoption and achieve NPS control goals. Beyond the scope of
residential areas, the cleanup and transformation of non-residential zones such as industrial
regions, which are termed “brown-field development”, offers significant potential benefits.
However, this research did not include an assessment of the “brown-field” areas within
the study’s watersheds. Future research should explore the economic incentives and
environmental remediation possibilities that are associated with such initiatives.
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