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a b s t r a c t

Cellulose is earth-abundant and has exceptional intrinsic mechanical properties. Cellulose-based
materials, however, exhibit a large variation in their mechanical properties (e.g., strength, toughness),
which calls for the understanding of the sensitivity of these materials to flaws, an area that remains
largely unexplored. In this paper, we report a systematic study of the flaw sensitivity of cellulose
paper by measuring the fractocohesive lengths of cellulose paper made of cellulose fibers with various
diameters (from nanometers to microns) and lengths (from sub-microns to millimeters). Unlike the
strength of cellulose paper which depends strongly on the diameter of the constituent cellulose fibers,
the flaw sensitivity of cellulose paper is closely related to the aspect ratio (length/diameter) of the
cellulose fibers. The larger the aspect ratio of the cellulose fibers, the larger the fractocohesive length,
and thus the more flaw tolerant the cellulose paper is. Findings in this paper shed light on designing
cellulose-based materials with desirable mechanical performance that is pivotal for the widespread
use of this sustainable material.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Cellulose, the most abundant natural polymer in the world,
as attracted considerable attention recently owing to its su-
erior mechanical properties [1–3], biodegradability [4,5], and
ow cost [6,7]. Various cellulose-based materials have been de-
eloped, e.g., cellulose-based films (paper) [8,9], hydrogels
10–12], aerogels [13,14], fibers [15], and composites [16,17].
hese materials feature a broad range of desirable functions such
s optical transparency [18], high strength and toughness [19],
rogrammable hydrophilicity and hydrophobicity [20,21], and
lectrical/ion/thermal conductivity [22–24], with the potential to
e used in diverse applications such as energy storage [25–28],
extile engineering [29,30], biomedicine [31–33], and packag-
ng [34].

Among various material forms, cellulose paper is of particular
nterest as a versatile form to decipher its structure-performance
elationship, which in turn sheds light on the design of other
ellulose-based materials with desirable properties [35,36]. For
xample, it has been shown that by decreasing the diameter of
he constituent cellulose fibers from microns to nanometers, both
he strength and toughness of the resulting cellulose paper can
e drastically increased simultaneously, suggesting an anomalous
ut desirable scaling law to defeat the well-known conflict be-
ween strength and toughness [37]. It is also found that the elastic
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modulus of cellulose paper can be enhanced by increasing the
packing density and inter-fiber interaction of the cellulose fiber
network of the paper [38,39].

To date, existing studies on the mechanics of cellulose-based
materials focus on properties such as elastic modulus, strength,
toughness, and hardness [40–48]. Despite the superior intrinsic
mechanical properties of cellulose, there exist large variations
in the mechanical properties of cellulose-based materials. The
disparity between the intrinsic mechanical performance of cel-
lulose and that of cellulose-based materials calls for the study
of sensitivity to flaws in cellulose-based materials, a topic that
remains largely unexplored so far.

Herein, we report a systematic study of the flaw sensitivity
of cellulose paper by measuring the fractocohesive lengths of
cellulose paper made of cellulose fibers with various diameters
(from nanometers to microns) and lengths (from sub-microns to
millimeters). Fractocohesive length is a material-specific length
defined as the ratio of the fracture energy Γ (in J/m2 as measured
by rupturing a sample with a long pre-cut) to the work of fracture
(in J/m3 as measured by rupturing a sample of no pre-cut) of a
material. The fractocohesive length of a material measures the
sensitivity of the material to flaws [49–52]. That is, the larger the
fractocohesive length, the more flaw tolerant the material is, and
vice versa.

Earlier studies demonstrate a strong dependence of the
strength of cellulose paper on the diameter of the constituent
cellulose fibers, which can be attributed to the reduced defect
size in the paper made of finer cellulose fibers [37]. The present
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Fig. 1. Photos of (a) microfibrillated cellulose (MFC) paper and (b) nanofibrillated cellulose (NFC) paper prepared by TEMPO treatment using 3 mol, 5 mol, and 7
ol NaClO per kg dried pulp (referred to as NFC3, NFC5, NFC7, respectively), from left to right. (c) Stress–strain curves of the tensile tests of specimens of four

ypes of cellulose paper without pre-cut. The area underneath a curve denotes the work of fracture of the specimen. (d) Load–extension curves of the tensile tests
f specimens of four types of cellulose paper with a long pre-cut (half of the specimen width), which is used to measure the fracture energy of the specimen (see
ethods). (e) The fracture energy of MFC, NFC3, NFC5, and NFC7 paper is plotted against their corresponding work of fracture. The dashed lines define the contour

ines of fractocohesive length.
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tudy reveals that the flaw sensitivity of cellulose paper is closely
elated to the aspect ratio (length/diameter) of the cellulose
ibers, rather than the diameter or the length of the cellulose
ibers alone. The larger the aspect ratio of the cellulose fibers,
he larger the fractocohesive length, and thus the more flaw
olerant the cellulose paper is. Further characterization finds that
he fracture of cellulose paper made of fibers of a large aspect
atio features significant crack bridging in the wake of rupture
ath, while cellulose paper made of fibers of a small aspect ratio
uptures in a rather brittle nature. The mechanistic understanding
f the flaw sensitivity of cellulose paper shed light on designing
law-tolerant cellulose-based materials, a desirable feature for the
idespread use of this sustainable material.

. Results and discussion

Cellulose paper is prepared by first obtaining a wet ‘‘gel cake’’
rom vacuum filtrating ∼1 wt% cellulose fiber dispersion and then
ot pressing it overnight at 60 ◦C. The dispersion of microfibril-
ated cellulose (MFC) is prepared by mechanical disintegration of
ry wood pulp in deionized water. The resulting MFC paper is
hown in Fig. 1a as being nearly opaque (see Methods).
We then conduct oxidation treatment mediated by 2,2,6,6-

etramethylpiperidine 1-oxyl (TEMPO) to the as-prepared MFC
ispersion to disintegrate the micro-sized cellulose fibers down
o nanoscale (see Methods) [53]. By controlling the amount of
odium hypochlorite (NaClO) added to the oxidation treatment
i.e., 3 mol, 5 mol, and 7 mol per kg dried pulp, respectively),
e can control the degree of TEMPO oxidation (more NaClO
eans a higher degree of oxidation) and thus tailor the size

diameter and length) of the resulting nanofibrillated cellulose
NFC). The cellulose paper made of NFC of the above three degrees
f TEMPO oxidation is hereafter referred to as NFC3, NFC5, and
2

NFC7 paper, respectively. As shown in Fig. 1b, as the oxidation
degree increases, the resulting NFC paper becomes more and
more transparent, which can be attributed to the decreasing
diameter of the cellulose fibers well below the wavelengths of
visible light [54].

To investigate the mechanical performance of the as-prepared
four types of cellulose paper, we perform tensile tests on pristine
specimens of cellulose paper with no pre-cut, whose stress–
strain curves are plotted in Fig. 1c. The area underneath each
curve measures the work of fracture W of the corresponding
pecimen, in a unit of J/m3. We next perform tensile tests of cel-
ulose paper specimens with a long pre-cut (half of the specimen
idth), whose load–displacement curves are plotted in Fig. 1d.
he fracture energy of the cellulose paper (in a unit of J/m2) can
hen be obtained from results in Fig. 1c and d using the method
escribed in [55] (detailed in Methods and Fig. 5). The fracture
nergy of MFC, NFC3, NFC5, and NFC7 paper is plotted against
heir corresponding work of fracture in Fig. 1e. The ratio between
he fracture energy and work of fracture of each type of paper
efines its fractocohesive length. The dashed lines in Fig. 1e define
he contour lines of fractocohesive length (with corresponding
alues labeled). As shown in Figs. 1e and 3d, among the four types
f cellulose paper, MFC paper shows the largest fractocohesive
ength (2.38 mm). For NFC paper, the fractocohesive length is
hown to decrease modestly as the degree of TEMPO oxidation
ncreases (1.35 mm for NFC3, 0.80 mm for NFC3, and 0.28 mm
or NFC7, respectively).

To understand the parameters that govern the fractocohesive
ength of cellulose paper, we characterize the length and diameter
f the cellulose fibers used to make the four types of cellulose
aper, as plotted in Fig. 2. The dimensions of MFC fibers are
easured using optical microscopy (Fig. 2a–c) while those of
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Fig. 2. (a) Optical microscopy image of MFC fibers and the corresponding distribution of (b) fiber diameter and (c) fiber length. (d–f) (g–i) (j–l) Atomic Force
Microscopy (AFM) image and the corresponding distribution of fiber diameter and fiber length of NFC3, NFC5, and NFC7 fibers, respectively.
NFC fibers are measured using atomic force microscopy (Fig. 2d–
l). The mean values and standard deviations of the length and
diameter of the four types of cellulose fiber are listed in Table 1.

It is evident that the TEMPO oxidation treatment effectively
disintegrates the MFC fibers into nanoscale and results in a de-
crease by orders of magnitude in both diameter (from 10 s µm
to around 10 nm) and length (from several mm to 100 s nm).
For example, the mean diameter of MFC fibers is 3617 times,
6384 times, and 8510 times larger than that of NFC3, NFC5, and
NFC7 fibers, respectively. The mean length of MFC fibers is 2298
times, 2850 times, and 3464 times larger than that of NFC3,
NFC5, and NFC7 fibers, respectively. As the degree of TEMPO
oxidation increases, the diameter and length of the resulting
NFC fibers decrease modestly, which can be attributed to the
increasing number of carboxyl groups introduced to the cellulose
fibers to facilitate fibrilization [53,56] and decreasing degree of
polymerization of cellulose chains [57,58], respectively.

Fig. 3a–c compare the tensile strength, work of fracture, and
fracture energy of the four types of cellulose paper made of MFC,
NFC3, NFC5, and NFC7, respectively. As the mean diameter of the
3

constituent cellulose fibers decreases from 39.25 µm for MFC to
17.08 nm for NFC3, 13.77 nm for NFC5, and 11.33 nm for NFC7,
the tensile strength of the cellulose paper increases from 29.20
MPa to 90.96 MPa (3.12 times higher), 129.95 MPa (4.25 times
higher), and 145.11 MPa (4.97 times higher), respectively. Such
a dependence of the tensile strength of cellulose paper on the
diameter of cellulose fiber can be attributed to the decrease in
defect size in the paper as the constituent fibers become thinner.
The work of fracture measures the energy dissipation during the
rupture of the specimen and is shown to increase as the diameter
of the cellulose fibers decreases, which can be understood by
the nature of the failure mechanism of the cellulose paper. The
rupture of cellulose paper results from relative sliding among
neighboring cellulose fibers. Such a sliding process features a
cascade of events of forming, breaking, and reforming hydrogen
bonds between neighboring cellulose fibers in the paper, the
dominant mechanism of energy dissipation during the rupture of
the paper [37]. The smaller the diameter of the cellulose fibers,
the larger the surface area of the cellulose fibers, and thus the
higher the number of hydrogen bonds that can contribute to the
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Table 1
Dimensions of the four types of cellulose fibers.

MFC (µm) NFC3 (nm) NFC5 (nm) NFC7 (nm)

Lengtha 2074.01 ± 938.98 573.25 ± 319.05 324.86 ± 251.34 243.71 ± 151.74
Diametera 39.25 ± 9.07 17.08 ± 4.99 13.77 ± 3.97 11.33 ± 3.5

aMean ± standard deviation.
Fig. 3. Comparison of the mechanical properties of the four types of cellulose papers: (a) tensile strength, (b) work of fracture, (c) fracture energy. (d) plots the
fractocohesive length of the four types of cellulose paper against the length-diameter ratio of the corresponding constituent cellulose fibers, which shows a linear
dependence with a goodness-of-fit measure of R2

= 0.983.
nergy dissipation as the cellulose paper ruptures. Fig. 3c shows
he fracture energies of the four types of cellulose papers, where
FC paper exhibits the highest fracture energy over NFC papers,
hich can be attributed to the significant crack bridging effect of
he MFC fibers during fracture.

The ratio between the fracture energy and work of fracture
f the cellulose paper defines its fractocohesive length, which is
lotted in Fig. 3d for the four types of cellulose paper against
he corresponding length-to-diameter ratio of the constituent
ellulose fibers. A linear dependence of the fractocohesive length
f cellulose paper on the aspect ratio of cellulose fibers emerges,
ith a goodness-of-fit measure of R2

= 0.983. It is worth noting
hat, even as the TEMPO oxidation leads to a decrease of three
rders of magnitude in both the diameter and length of the cel-
ulose fiber, the fractocohesive lengths of the resulting cellulose
aper only decrease from 2.87 mm for MFC paper to 1.35 mm
or NFC3 paper (2.16 times lower), 0.80 mm for NFC5 paper (3.59
imes lower), and 0.28 mm for NFC7 paper (10.25 times lower),
espectively. In other words, the fractocohesive length of cellulose
aper is closely related to the aspect ratio of the cellulose fibers,
ather than the diameter or the length of the cellulose fibers
lone.
4

To further illustrate the difference in the rupture behavior of
cellulose paper made of cellulose fibers of different sizes, Fig. 4a
and b compare the failure process of an MFC paper specimen
and an NFC3 paper specimen under tension. A pre-cut of the
length of the half-width of the specimen is introduced before
applying the tensile loading in both specimens. As the applied
tensile strain increases, the pre-cut in the MFC paper opens up.
The increasing stress level near the tip of the pre-cut leads to
substantial relative sliding of the MFC fibers around the tip. Given
that the mean length of MFC fibers (2.07 mm) is significantly
larger than the crack opening (∼96 µm), the MFC fibers ahead
of the crack tip can effectively blunt the initially sharp tip of the
pre-cut, as evident in Fig. 4a. Further propagation of the crack
features a substantial bridging effect of the MFC fibers along the
crack path, leading to a rather gradual rupture process.

By contrast, the tensile rupture of the NFC paper with a pre-
cut is a brittle manner. As the applied tensile strain increases, the
sharp pre-cut results in stress concentration near its tip, driving
an abrupt propagation of the pre-cut along its initial direction and
leading to the rupture of the specimen. The crack opening during
the rupture process is significantly smaller than that in the MFC
paper. Zoom-in photo in Fig. 4b shows a smooth crack surface of
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Fig. 4. Comparison of tensile rupture behavior of (a) MFC paper and (b) NFC paper. The left and middle panels show the optical photos of the specimen before and
fter tension is applied. Zoom-in optical photos reveal distinct rupture behaviors of MFC paper (featuring significant crack bridging by the long cellulose fibers) and
FC paper (in a brittle manner with a rather smooth crack surface). Photos of NFC3 paper are shown in (b). Similar rupture behavior is also observed in NFC5 and
FC7 paper. (c–e) SEM images of the crack surface of NFC3 paper in (b) further reveal the fracture behavior.
he ruptured NFC paper, without appreciable crack bridging by
he NFC fibers, in sharp contrast with the rupture process of the
FC paper. All three types of NFC paper are shown to have similar
rittle rupture behavior under tension. Further characterization
ia Scanning Electron Microscopy (SEM) on the crack surface of
FC paper in Fig. 4c–e shows that even though fiber pullout is
vident at the crack surface, the great reduction in both length
nd diameter of the fiber leads to a rather trivial and negligible
rack bridging effect, explaining the brittle rupture behavior of
FC paper.

. Conclusions

In summary, we investigate the flaw sensitivity of cellulose
aper by measuring the fractocohesive lengths of cellulose paper
ade of cellulose fibers with various diameters (from nanometers

o microns) and lengths (from sub-microns to millimeters). We
ind that the fractocohesive length of fiber-constituted cellulose
aper is dependent on the aspect ratio (length/diameter) of the
ellulose fibers in a linear fashion. The larger the aspect ratio
f the cellulose fibers, the larger the fractocohesive length, and
hus the more flaw tolerant the cellulose paper is. Further inves-
igations are desirable to better understand the dependence of
ractocohesive length of cellulose paper synthesized via different
ethods on the dimension of the constituent fibers.

ethods
• Preparation of microfibrillated cellulose (MFC)
5 g of Kraft bleached softwood pulp (International Paper, USA)

s immersed in 300 mL DI water and stirred harshly overnight by
5

RW 20 Digital (IKA-Werke, Germany) to obtain the mechanically
disintegrated MFC solution.

• Preparation of nanofibrillated cellulose (NFC)
First, 0.1 mol of 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO)

(Sigma-Aldrich) per kg dried pulp, 1 mol of sodium bromide
(NaBr) per kg dried pulp are added into 300 mL MFC solution and
stirred for 20 min. Then, a certain amount Sodium hypochlorite
(NaClO) is added into the mixture dropwise to initiate TEMPO
oxidation of the cellulose under stirring. The amounts of NaClO
are 3 mol, 5 mol, 7 mol NaClO per kg dried pulp for NFC3, NFC5,
and NFC7, respectively. During the reaction process, the pH of
the solution is maintained at 10.5 by dropwise adding 3 mol/L
of NaOH. The reaction ends when NaClO is fully consumed. After
TEMPO treatment, the fibers are washed thoroughly with distilled
water and disintegrated into NFC by one pass through a Nano
DeBEE Laboratory Homogenizer (BEE International, USA). The NFC
dispersion is obtained with a content of 1 wt% by weight.

• Preparation of cellulose paper
Around 250 mL cellulose fiber dispersion (with a constant

mass content of 0.19 g) is poured into the filtration apparatus
containing a nitrocellulose ester filter membrane with 0.65-µm
pore size. The filtration time varies from 15 min to 3.5 h de-
pending on the cellulose fiber diameter. After filtration, a strong
gel forms on top of the filter membrane. This gel ‘‘cake’’ is sand-
wiched between two smooth filter membranes and twelve filter
papers and compressed overnight at 60 ◦C under a pressure of
10 MPa by a hot press machine (YLJ-HP300, MTI). The resulting
cellulose paper is ∼90 mm in diameter, 15∼25 µm in thickness,
and 1.04∼1.32 g/cm3 in density.
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Fig. 5. Measurement of fractocohesive length (Γ /W ) of cellulose paper. (a) A typical stress–strain curve of a specimen with no pre-cut, the area underneath the
curve defines the work of fracture W (J/m3); (b) Load–extension curves of specimens with no pre-cut (blue) and with a half-width pre-cut (red). The partial area
under the former load–extension curve up to the corresponding critical extension (the extension at the maximum load) of the latter load–extension curve defines
the product of fracture energy Γ and the cross-sectional area A of the specimen with no pre-cut. . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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• Materials characterization
The morphology of NFC fibers is obtained utilizing an Atomic

Force Microscope (Cypher ES Environmental AFM, Oxford Instru-
ments) in tapping mode. The dimensions of NFC fibers are col-
lected by the software Gwyddion. The morphology of MFC fibers
as well as the crack surface of MFC paper are obtained utilizing an
optical microscope (Olympus Accura Zoom BX30) with both bright
and cross-polarized light illuminations. The dimensions of MFC
fibers are collected by software INFINITY ANALYZE. The morpholo-
gies of the crack surface of cellulose papers are characterized
by Tescan XEIA3 SEM. The SEM samples are processed by gold
sputtering before the test.

• Mechanical tests
Mechanical tests are conducted on an Instron 5940 Series

Single Column Table Frames with a 1000 N load cell and a
nominal displacement rate of 0.1 mm/min. Specimens are cut into
a 25 mm by 20 mm rectangle from cellulose paper (see insets
of Fig. 5a). Half-width pre-cuts on specimens are introduced by
a sharp razor for determination of fracture energy (see insets
of Fig. 5b). The initial grip distance is set as 5 mm to ensure
the ratio between the grip distance and the sample thickness is
∼200:1. At least ten specimens were measured for each type of
cellulose paper. Fig. 5 explains how the fractocohesive length of
ellulose paper is measured. The work of fracture W is measured
y the area underneath the stress–strain curve of a specimen
ith no pre-cut, as shown in Fig. 5a. The fracture energy Γ is
etermined by comparing two load–extension curves; one is from
specimen with no pre-cut, the other is from a specimen with a
alf-width pre-cut, as shown in Fig. 5b. The partial area under
he former load–extension curve up to the corresponding critical
xtension (the extension at the maximum load) of the latter load–
xtension curve defines the product of fracture energy Γ and
he cross-sectional area A of the specimen with no pre-cut. The
atio between fracture energy and work of fracture defines the
ractocohesive length (Γ /W ) of cellulose paper.
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