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—— Abstract
In this self-contained paper, we present a theory of the piecewise linear minimal valid functions for the 1-row
Gomory—Johnson infinite group problem. The non-extreme minimal valid functions are those that admit effective
perturbations. We give a precise description of the space of these perturbations as a direct sum of certain finite- and
infinite-dimensional subspaces. The infinite-dimensional subspaces have partial symmetries; to describe them, we develop
a theory of inverse semigroups of partial bijections, interacting with the functional equations satisfied by the
perturbations. Our paper provides the foundation for grid-free algorithms for the Gomory—Johnson model, in particular
for testing extremality of piecewise linear functions whose breakpoints are rational numbers with huge denominators.
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1 Introduction

1.1 Finite group relaxations R,(P,7Z) of integer programs and hierarchies of valid
inequalities

A powerful method to derive cutting planes for unstructured integer linear optimization problems is to study
relaxations with more structure and convenient properties. The pioneering relaxation in this line of research
on general-purpose cutting planes is Gomory’s finite group relazation [10], whose convex hull is known as the
corner polyhedron.

The relaxations are structured around the simplex method, applied to the continuous relaxation, and
are therefore suitable for generating cuts in a linear-programming-based cutting-plane procedure. The group
relaxation is obtained by forgetting about the nonnegativity of all basic variables, retaining only their integrality.
Viewed in the space of nonbasic variables, the equations of the simplex tableau are replaced by congruences
modulo the abelian group (Z-module) generated by the columns of the basis matrix. Quotienting out by this
group, one obtains a “group equation,” which gives the relaxation its name. Further relaxations are obtained by
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2 Equivariant Perturbation VII

picking just one or a few rows of the system, or more generally by condensing the system by means of group
homomorphisms; see [10] for its remarks on the use of (additive) group characters.

In the present paper, we restrict ourselves to 1-row (“cyclic”) group relaxations, which after aggregation of
non-basic variables with identical coefficients can be brought to the form

Z yip)p € f+Z, y(p) € Z4 forallpe P (1)

peEP
where P is a finite subset of an additive group G = éZ DZand f € G\Z,so f+7Zis a coset of the subgroup
Z in G. This is called Gomory’s finite (cyclic) group problem. We denote the convex hull of y by R;(P,Z); it
is a polyhedron of blocking type. Therefore every nontrivial valid linear inequality can be written in the form
(m,y) =2 pep T(P)y(p) = 1; then we call 7 a valid function. If 7" < 7 are two valid functions, then the valid
inequality (7, y) > 1 is a conic combination of (7’,y) > 1 and nonnegativity inequalities y(p) > 0. Thus it suffices
to consider the minimal (valid) functions 7, defined by the property

if 7’ is valid and 7’ < 7, then ' = 7. (M)
A stronger notion is that of extreme functions w, defined by the property

if 7,7~ are minimal and 7 = (7" + 77), thenr =7t =7". (E)

Extreme functions correspond to facet-defining inequalities for R;(P,Z). Following the traditions of polyhedral
combinatorics, we are interested in describing families of extreme functions and making them available for
cutting-plane algorithms.

1.2 Master problems R;(G,Z) and the subadditive characterization of minimal functions

Gomory’s approach was to consider master problems for this purpose. The sets of solutions y to 1-row group
relaxations R (P, Z) for subsets P of the same group G inject into the master group relazation

Z yp)pe f+2 y: G — Z has finite support (2)
peG
by setting y(p) = 0 for p ¢ P. We denote its convex hull by R(G,Z). This is an infinite-dimensional set. By
Gomory’s master theorem [10, Theorem 13], every extreme function n’ for R;(P,Z) is obtained from some
extreme function 7 for a master problem R;(G,Z) with P C G by restricting the function, 7’ = 7|p. Moreover,
Gomory [10] gave a characterization of the minimal functions for the master problem R;(G,Z) by the following
functional inequalities and equations:

m(x) >0 for x € G, (3a)
w(z +2) =7(x) forreG,zeZ (periodicity) (3b)
7(0) =0, 7(f) =1, (3¢)
Am(x,y) >0 for z,y € G (subadditivity), (3d)
An(z, f —x)=0 forz € G (symmetry condition), (3e)

where Am(x,y) = w(x) +7(y) — 7n(z + y) is the subadditivity slack function. By quotienting out by Z, this system
describes a polyhedron in R%/%. Extreme functions are then simply the vertices of this polyhedron; thus some of
the subadditivity inequalities Ax(z,y) > 0 are tight, i.e., additivity holds.

1.3 Continuous interpolations of extreme functions and the infinite group problem
Ry (R, Z)

Gomory and Johnson, in their seminal papers [11, 12], noted that many extreme functions for finite master group
problems follow simple patterns that become apparent in the piecewise linear interpolations of these functions.
The simplest pattern is that of the well-known two-slope function giving the Gomory mixed integer cut (gmic
——\), which can be found in all finite group problems; see Figure 1 (left).! Gomory and Johnson initiated a
program to study such functions of a real variable systematically. The technical framework is that of the infinite
group problem, in which the group G in (2) is enlarged from %Z to R. Gomory and Johnson proved that the
characterization (3) of minimal functions still holds in this setting.

1 A function name shown in sans serif font refers to the software [21], which includes the Electronic Compendium of Extreme
Functions [17].
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Figure 1 Extreme functions for finite master group problems following simple patterns that become
apparent in the piecewise linear interpolations. Left, the Gomory mixed-integer cut (gmic). Right,
another two-slope extreme function.

For an extreme function 7|¢ for a finite master problem R¢(G,Z), the piecewise linear interpolation
7 = interpolate_to_infinite_group(7|¢) is a minimal function, but not necessarily extreme. (A partial converse is
true; the restriction of a continuous piecewise linear extreme function 7 for R¢(RR,Z) to a group G that includes
all breakpoints of 7 is extreme for R¢(G,Z).) There is a possible viewpoint on the extreme functions for the
infinite group problems as “robust” cut-generating functions that ignore the specific number-theoretic properties
of a particular group problem R f(%Z, 7). As a matter of fact, in a numerical implementation, the value ¢ and
exact rational value of f would not be readily available.

A natural algorithmic focus lies on piecewise linear valid functions, though a part of the literature [1, 2] also
studies more complicated functions. (When we discuss piecewise linear functions in this paper, we include the
discontinuous case with possible jumps at breakpoints, which includes important examples such as the Gomory
fractional cut, gomory_fractional /)

For Z-periodic piecewise linear functions, the characterization (3) of minimal functions gives a simple
algorithm for testing minimality, based on enumerating the vertices of a certain polyhedral complex; see [3,
Section 2.2] and [16, Section 5|. For testing the extremality of a piecewise linear minimal function, however, in
contrast to the finite group case, we cannot directly use polyhedral methods any more. Since the quotient R/Z
is not finite, we have to use infinite-dimensional methods of functional equations and inequalities. The most
important lemma from this theory is the Gomory—Johnson interval lemma, variants of which has been used in
virtually all proofs of extremality in the literature.

1.4 The space II" of effective perturbations 7 of a minimal valid function

Recall that by definition (E), a minimal valid function 7 is extreme if it cannot be written as a convex combination
of two other minimal valid functions 7+, 7=. A fruitful approach to extremality testing, introduced by Basu et al.
in Part T of the present series of papers [3], has been to consider the difference function (perturbation) © = 7+
which allows us to write 77 =7 + 7 and 7~ = 7 — 7. (Recently, Di Summa [9] obtained a breakthrough result
on the question of piecewise linearity of extreme functions using this approach.) It is convenient to build a space
from the notion of perturbation functions. Following Part V [16, Section 6], we define the space

-,

" = {#:R—=R|Je>0s.t. 7 = 7 + ef are minimal valid } 4)

of effective perturbation functions for the minimal valid function 7. This is a vector space (Lemma 68), a subspace
of the space of bounded functions. The function 7 is extreme if and only if the space II” is trivial.
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If additivity (Am(z,y) = 0) holds for some (x,y), then by convexity also A7 (x,y) = 0 holds for every effective
perturbation 7 € TI™. This is also true for additivity in the limit [3, Lemma 2.7]; see also [16, Lemma 6.1].
Because 7 is assumed to be piecewise linear, the infinite system of functional equations describing additivity and
limit-additivity of 7 can be structured (“combinatorialized”) according to a certain polyhedral complex [3, 16].

1.5 Finite-dimensional and equivariant perturbations

In Part I of the present series, Basu et al. [3] gave the first algorithm to decide extremality of a piecewise linear
function with rational breakpoints in some “grid” (group) G = %Z.

In a first step, one tests whether there exists a nontrivial perturbation for 7 in the finite-dimensional subspace
of II™ that consists of the functions interpolate_to_infinite_group(7|g), where 7|g is an effective perturbation
function for the restriction 7| to the finite group problem R;(G,Z).

Otherwise, one may assume that 7| = 0. Under this assumption, the interval lemma forces 7|c = 0
for certain directly covered intervals C. Basu et al’s crucial observation was that if there are any remaining
uncovered intervals, then one-dimensional families of additivity equations impose a type of symmetry of the
perturbation function. By analyzing the required symmetry, one can construct a perturbation function and prove
nonextremality of 7.

Consider the additivity equations

Aft(z,t) =7(x) +7(t) —7(x+t) =0, forxzeD, (5)
where D is a proper interval and ¢ € %Z is a grid point. Because 7(t) = 0, this simplifies to
7(z) =7(x+t) forz e D. (6a)

We then say that 7 is invariant under the action of the translation 7: x — x + t (restricted to the proper
interval D). Likewise, a second type of one-dimensional families of additivity equations simplifies to

w(x) = —7(r—z) forxeD. (6b)

Here a negative sign comes in. We call p,.:  — r — = a reflection. By assigning a character x(7;) = +1 and
X(pr) = —1 to the translations and reflections, we can unify equations (6) as 7(z) = x(v) 7(y(z)) for x € D,
where v is either a translation or a reflection. We say that 7 is equivariant under the action of ~.

By analyzing the group I" of affine transformations of R generated by all relevant translations and reflections,
Basu et al. constructed a universal template function ¥: R — R, a continuous piecewise linear function with
breakpoints in 4—1qZ7 which is equivariant under the action of the group I'. Taking

(7)

(2) {w(x) for & in uncovered intervals,
) —

0 for x in covered intervals

then gives an effective perturbation function. (A revised construction in Basu et al’s survey [6, Section 8.2] gives
a continuous piecewise linear function 7 with breakpoints in B—IqZ.)

1.6 Contributions of the present paper

It has been a long-term research project to develop a complete, grid-free algorithmic theory and software
implementation for piecewise linear minimal valid functions, extending the reach of the grid-based extremality
test introduced in Part T of the series [3], which we described in (1.5) above. While Parts II-IV develop a
grid-based theory for 2-row relaxations, Part V of our series [16] returned to the one-row case. It introduced our
software [21] and prepared the grid-free theory with several results. Part VI of the series [20] discussed the case
of piecewise linear functions that are discontinuous on both sides of the origin and have irrational breakpoints.
The present paper, Part VII of the series, and a computational companion paper, Part VIII of the series, are the
culmination of the project for the case of piecewise linear functions of one variable.

1.6.1 Method: Inverse semigroups as the language of partial symmetries

Group actions are the standard language to describe symmetries of mathematical objects. The use of group
actions was fruitful in Part I of our series to obtain the first algorithm for testing extremality. However, group



Robert Hildebrand, Matthias Koppe & Yuan Zhou

1 1 : 1 -
b+f1 [0 N—— / SR H b+{| . — / S —
@ty A at+t +—¢F———
e - / S
b+t —1 b+ti—1
T T T T T T
a b a+ts—1 a+it,—1
1 1 : 1
r—a - r—a 4 \j’ e
SR IS S N S i SR S
? P
i b+t —1 b+th—1
T T T T T T
a b a+ts—1 a+ta—1
1 1 1 : :
R e o - S R \
a+t; a+t; 1 (R

[ T—a

r—b

Figure 2 Operations of the inverse semigroup I: Composition

actions do not provide a complete theory of the effective perturbations. This becomes most apparent in [3,
Section 5], where Basu et al. introduce a family of extreme functions with irrational breakpoints, bhk_irrational
~\. Here the group I" generated by the translations and reflections only gives the correct result when a certain
non-group-theoretic reachability condition [3, Assumption 5.1, Lemma 5.2] is satisfied. The underlying reason is
that the restriction of the translations and reflections to the interval domains D in (6) is not considered in the
reflection group. Indeed, what the translations and reflections describe is not a full symmetry of the perturbation
function, but only a partial symmetry within the uncovered intervals.

The correct language to describe partial symmetries is the less well-known theory of inverse-semigroup actions.
An inverse semigroup (T, o,-~1), following [22, p. 7], is a semigroup, i.e., a set I' closed under an associative
operation o, satisfying the additional axiom that

for every w € T, there exists a unique element w™* € T (3! inverse)

such that w =wow lowand w ! =w towow™.
The equations in the axiom describe the familiar properties of a pseudoinverse, but due to the required uniqueness,
we will simply refer to w™! as the inverse of w. In his monograph [22], Lawson points out that the relationship
between inverse semigroups and partial symmetries is a generalization of the relation between groups and
symmetries.

Concretely, inverse semigroups arise as semigroups of partial bijections of a set, where the operation o is the
composition and -~! is the inverse of a partial bijection. We define the restrictions of the previously defined
translations and reflections to open intervals D. We denote them by 7;|p and p,|p and consider them as partial
bijections of R to itself, with domains dom(7¢|p) = D = dom(p,|p) and images im(7¢|p) = (D) = D + ¢ and
im(pr|p) = pr(D) =r — D. We refer to these partial bijections as moves. The composition of two moves v1|p,



6 Equivariant Perturbation VII

1 1
b+f| [ P — ]
a+t, 4———
! pr— b
a
5 b+t
T T T T
a b 1 a+t; 1
1 1 —
r—a
r—b - |
ad
[ T+a
T T T T
a b 1 r—b 1

Figure 3 Operations of the inverse semigroup II: Inverse

1 1 1
bty A g
at+t; 1
b O — b
] a -
T T T T
1 a b 1 a b 1
1 1 1
b+t bty 4 /
PP — ait,
O b7 — Lo
a
L b1ty b+t
T T T 1 : !
a b 1 a+t; 1 a+t; 1

I Figure 4 Operations of the inverse semigroup III: Composition with inverse. The partial identities
To|p are the idempotents of the inverse semigroup.

and 2| p, is defined as

"2|D, © 1|Dy =72 ° Nl p, Ay (Dy) (8)

see Figure 2. The domain of the composition is an open interval (including possibly the empty set). (By definition,
there are exactly two empty moves: the empty translation 7|y and the empty reflection p|g.) The inverse of a
move 7|p is given by (y|p)~! = 771|’Y(D)v see Figure 3. Note that it is not an inverse in a group-theoretic sense:
The compositions

Ypo(vp) ™" =70lypy and (ylp) " ovlp =70lp 9)
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are only partial identities (restrictions of the identity 7y to intervals) and therefore not neutral elements but
merely idempotents (Figure 4).

We develop methods that center around inverse semigroups of moves and their generating sets. We study the
set of moves that are respected by the effective perturbations of a given minimal function 7. We analyze the
closure properties (axioms) that it satisfies: algebraically, it is an inverse semigroup; but additional order-theoretic
and analytic closure properties come in. Starting from an initial set (move ensemble) Q°, we can then form the
closure with respect to the axioms. We call it the moves closure of Q° (or closed move semigroup generated
by ) and denote it by clsemiz (), where A is the maximal open subset of (0,1) on which 7 is continuous.
(The additional subscript A is important because certain properties apply where 7 is continuous.)

In the first part of the paper, we develop these methods in full generality, without using any specific properties
of the Gomory—Johnson model. Then we turn to the study of piecewise linear functions; here we make the
assumption of continuity from at least one side of the origin.

For all piecewise linear functions with rational breakpoints, we will show that clsemis(92°) has a simple
structure: Its graph consists of a finite union of line segments and rectangles. (We say that it is finitely presented.)
It will become clear that we can compute clsemi(2°) in finitely many steps using a completion-type algorithm,
using only the algebraic and order-theoretic axioms, by manipulating finite presentations of generating systems.
However, this algorithm is not the focus of the present paper: We defer all computational questions to the
forthcoming companion paper [15].

Instead, an important point of our paper is that finitely presented closures clsemi4(2°) arise in a more
general context, through the interplay of the order-theoretic, algebraic, and analytic closure properties. Move
ensembles whose graphs are connected open sets extend to open rectangles already in the joined semigroup
(Corollary 12). Our key theorem using the analytic properties is Theorem 40: Rectangles appear in the closure
whenever there is a convergent sequence of moves. (In Part I of our series, we have observed a glimpse of this
phenomenon already, in a specific arithmetic context.) Empirically, for all families of piecewise linear minimal
valid functions in the literature (see [17] for an electronic compendium), even if the breakpoints are irrational,
the closure has a finite presentation. This includes the function bhk_irrational ~~"\, which we mentioned above.
Again, we defer questions regarding the computation of this closure, which then needs to use the additional
axioms, to our forthcoming paper [15].

1.6.2 Result: Precise description of the space of equivariant perturbations

Under the above assumptions, the finite presentation of clsemi4 (Q°) allows us to read off a precise description of
the space of equivariant perturbations as a direct sum decomposition of vector subspaces (Theorem 102).

One component in the decomposition is a finite-dimensional space, consisting of (possibly discontinuous)
piecewise linear functions. In contrast to the grid-based algorithm, the set of breakpoints of these functions is
not fixed, but it is computed by our algorithm. The finite-dimensional space is then described by a system of
finitely many linear equations (Lemma 97).

Then, for each of the finitely many uncovered components (defined in Section 10), there is a component that is
an infinite-dimensional space isomorphic to the space of Lipschitz functions on a compact interval that vanish on
the boundary. More specifically, our algorithm computes an open interval D, the fundamental domain, on which
we take the space of Lipschitz functions # that vanish on the boundary dD. Additionally there are finitely many
moves ;| p with pairwise disjoint images 7;(D) that together extend the functions equivariantly to the whole
uncovered component. Outside of the component, the functions in this space are zero. This is Theorem 100.

This description of the space strengthens previous results. The method of Part I [3], described in Subsection 1.5,
guarantees to construct a piecewise linear effective perturbation if the space is nontrivial; but it does not provide
a complete description of the space. A theorem regarding direct sum decomposition appeared in [5, Theorem
3.14], but it is limited to the grid case.

We remark that the precise description of the perturbation space of a minimal function 7 enables us to
strengthen (lift) it by constructing a direction in the space of effective perturbations. By our theorem, the
problem of finding such a direction decomposes into subproblems; one finite-dimensional, the others independent
variational problems over Lipschitz functions.
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1.6.3 Computational implications: Grid-free algorithms, natural proofs

We only sketch the computational implications of the present paper because we will elaborate on them in our
companion paper. The inverse semigroup theory lays the foundation for grid-free algorithms for minimal valid
functions, including automated extremality tests, which are detached from the finite group problem. A grid-free
test is faster for functions whose breakpoints are rational numbers with huge denominators; and it enables
computations for functions with irrational breakpoints. More importantly, the grid-free algorithms can give
natural extremality proofs, similar to the general proof pattern of extremality proofs in the published literature.
In this way, the grid-free algorithms enable automated extremality proofs for smoothly parameterized families of
extreme functions, as described in [18].

Key to our grid-free algorithm is the breakpoint stabilization theorem (Theorem 89), which allows us to
dynamically determine the set of breakpoints needed for our tests. This result could pave the way to generalizations
in higher dimensions. See Remark 90 for more details.

1.7 Structure of the paper

In Sections 24, we introduce moves as partial bijections of R. We study ensembles (sets) of such moves, which
can be equipped with both an order-theoretic structure (restriction and continuation) and an algebraic structure
(inverse semigroups). In Section 5 we describe how move ensembles and semigroups describe partial symmetries of
a function by a system of functional equations. Move ensembles for bounded functions have additional properties,
which we explore in Section 6. Then, in Section 7, we study closure properties that capture the additional
properties of move ensembles for continuous functions. This development culminates in the notion of closed move
semigroups in Subsection 7.3.

We then apply this theory to compute the effective perturbation space of a piecewise linear minimal valid
function 7. In Section 8, we introduce the initial additive move ensemble Q2°, which describes functional equations
satisfied by every effective perturbation of 7. For piecewise linear functions =, it is related to the additive faces of
a polyhedral complex (Section 9). In Section 10, working with a finite presentation of the closed move semigroup
clsemi 4 (Q2°) generated by Q°, we prove the main theorem of the paper, the decomposition theorem for the space
of effective perturbations of 7. Finally, in Section 11, under the same assumptions, we establish the precise
relation between clsemi4 (£2°) and semigroups of all moves respected by perturbations.

We end the paper in Section 12 with a discussion of the limitations of our approach and an outlook on the
computational companion paper [15].

2 Translation and reflection moves. Their algebraic and order-theoretic structure

2.1 Group I'(R) of unrestricted translations 7; and reflections p,, character x

» Definition 1. For a point r € R, define the (unrestricted) reflection p.: R = R, x +— r —x. For a vector t € R,
define the (unrestricted) translation 7: R - R, x — x + ¢.

The set T'(R) = {p,,7 | 7 € R, t € R} of all translations and reflections, with the operations of function
composition o and inverse - ~!, has the structure of a group. It is a subgroup of the group Aff(R) of regular affine
transformations of R.

To denote an element that can be either a translation or a reflection, we will usually use the letter . To recover
whether an element ~ is a translation or a reflection, we assign a character x(p,) = —1 to every reflection and
x(7¢) = +1 to every translation. The map v — x(7) is a group character, i.e., a homomorphism, so compositions
of elements follow the rule x(y1 0 v2) = x(711) - X(72).

2.2 Restricted moves v|p € '(R) as partial bijections of R

As we mentioned in the introduction, compared to [3], where finitely generated subgroups of I'(R) were used for
the grid-based extremality test algorithm, in this paper we develop a more detailed theory using restricted moves
with domains. Our terminology is based on the monograph [22] on inverse semigroups. We begin by restricting
translations and reflections v € T'(R) to open interval domains D C R.

» Definition 2. Let v € T(R) be a translation or reflection, and let D C R be an open interval. The move |p
is the partial function with domain D and image v(D), defined by v|p(x) = vy(x) for x € D. The character of



Robert Hildebrand, Matthias Koppe & Yuan Zhou

Table 1 Notation for move ensembles and semigroups

I'(R) Group of unrestricted translations and reflections of R 8
Tty Pr translation, reflection
¥ some element
I'S(R) Inverse semigroup of translations, reflections with domains 8
T¢|p translation restricted to open interval D
prlD reflection restricted to open interval D
b unrestricted move restricted to open interval D
Q A move ensemble: a subset of T'S(R) 10
Qinv . satisfying (inv) 12
r A move semigroup: an inverse subsemigroup of I'S (R) 12
O, 1< A move ensemble, or semigroup, satisfying (restrict) 10
Qv, v . satisfying (restrict), (cont) 12
QX ¥ . satisfying (restrict), (cont), (kaleido) 17
Q T . satisfying limit axiom (lim) or (arblim) 19
Qv, T . satisying (extenda)
Qfin A finite move ensemble . .
finite presentation 17
C Connected covered components
Qred A reduced finite move ensemble 18
L, M Families of move ensembles 24
Table 2 List of axioms for move ensembles
(comp) move semigroup 12
(inv) I' = isemi(2) joined 12
semaigroup
(restrict) joined ensemble 'Y = jsemi(€2) closed move 10
(cont) QY = join(Q) semigroup 10
TV =
(kaleido) kaleidoscopic ensemble QF clsemia () 17
(lim), (arblim) limits-closed ensemble € = arblim() 19
(extend ) extended ensemble QY = extenda(Q) 22

v|p is that of v. Two moves v1|p,,V2|p, with nonempty open interval domains D1, Dy are equal if v1 = v2 and
D1 = Dsy. A move with a nonempty open interval domain is not equal to a move with an empty domain. We
identify all translations with empty domain and denote this object by 7|g. Likewise, we identify all reflections
with empty domain and denote this object by plyp. The empty translation and the empty reflection are not equal;
they are distinct objects with x(7|g) = +1 and x(plgp) = —1. Finally, the set of all moves is denoted by I'=(R).

» Remark 3. Inverse semigroups of partial homeomorphisms between open subsets of a topological space are
known as pseudogroups [22, Section 1.2]. However, our theory differs in the following ways: (1) We only allow
open intervals (and the empty set) as domains of the partial functions, rather than arbitrary open subsets. The
reason for our choice will become clear in Section 5, where we will use moves to describe systems of functional
equations. (2) Less importantly, we have two empty moves, one for each possible character, rather than a unique

empty move.
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2.3 Graphs of moves

We find it convenient to describe the graphs of moves. The graph of v|p is the set Gr(y|p) = {(z,y) e R xR |
x € D, v(x) = y }. Figures showing the graphs have already appeared in Figure 2 and Figure 3. To emphasize
that the domains of all moves are open intervals, we decorate the endpoints of the nonempty moves by hollow
circles, indicating that the endpoints are not part of the graphs.

2.4 Restriction partial order C on moves

The set of all moves comes with a natural partial order. v |p, is a restriction of y2|p,, denoted v1|p, C Ya|p,, if
Dy C Ds, x(71) = x(72), and 71 (x) = ¥2(z) for € D;. Thus, in this partial order, translations and reflections
are incomparable. We have 7|y C 7¢|p for all translations and likewise plg C pr|p.

Given v|p and an open interval D’ C D, the restriction of y|p to D’ is the move (v|p = 7|ps. Given an

s
open interval I’ C v(D), the corestriction of v|p to I’ is the move

(YIp) = YDAy (17)-

2.5 Inverse semigroup structure (I'S(R), o, 1)

Let v1|p, and v2|p, be two moves. As noted in the introduction, their composition v2|p, o y1|p, is defined as
Y2 © 71|D1m1‘1(D2) (Figure 2). The domain of this partial bijection is an open interval; so it is again a move. It is
clear that the composition operation o is associative. Hence the moves form a semigroup (I'S(R), o).

As we have noted already, a move 7|p also has a (unique) inverse given by (v[p)~' =y ![,(p) (Figure 3)
satisfying the laws (9) (Figure 4). Hence the moves form an inverse semigroup (I'S(R),o0,-~1). Its idempotent
elements are exactly the partial identities, which are restrictions of the identity translation 7y to open intervals D.
(The empty translation 7|p is idempotent. The empty reflection is not idempotent; we have plg o plg = 7|p.)

The inverse semigroup structure interacts with the restriction partial order (Subsection 2.4) as follows
[22, Proposition 1.1.4]. If v|p, C 7|p, then ’y|5} - 7|Bl; moreover, this restriction can be expressed as a
composition with an idempotent: v|p = ('Y|D)‘D/ = v|p o 19|pr. Finally, if %\D; C 7ilp, for i = 1,2, then

72|Dé 071|D; - 72|D2 O’}/1|D1'

3| Ensembles () of moves

Now we consider move ensembles Q, i.e., arbitrary subsets of the inverse semigroup I'S(R). We denote elements
by v|p, where v € T'(R) is an unrestricted move and D is the domain.

3.1 Order-theoretic structure

We shall say that a move ensemble Q€ is restriction-closed if it satisfies the following axiom.
If v|p € QS and D’ C D is an open interval, then ~|p € QS. (restrict)

(Throughout the paper, a superscript like C in Q< indicates an axiom that the set QS satisfies. See Table 1 for an
overview of notation.) For a move ensemble €, the restriction closure restrict(f2) is the smallest restriction-closed
move ensemble containing ). It consists of all restrictions of moves of ).

» Example 4. The inverse semigroup I'S(R) of all restricted translations and reflections is a restriction-closed
move ensemble.

A move ensemble QV is said to be (completely) join-closed if it satisfies (restrict) and the following continuation
condition, which connects overlapping intervals.

If there is a family Q5 = {~]; [/ € 3} C Q" s.t. D = J;5 ] is an open interval, then v|p € QY. (cont)

We define the joined ensemble join(€2) of Q as the smallest set of moves containing € that satisfies (cont)
and (restrict).

» Lemma 5. For a move ensemble ), the joined ensemble join(§2) consists of the following moves.

{'y|D ’ DC U I st~ €Q forI €3, D open interval}. (10)
Iey



Robert Hildebrand, Matthias Koppe & Yuan Zhou 11

Proof. This set clearly satisfies (cont) and (restrict), i.e., it is join-closed. On the other hand, join({2) needs to
contain this set. <

For a move ensemble Q, let Max(€2) denote the set of maximal elements of {2 in the restriction partial order.

» Lemma 6. A join-closed move ensemble 2V is equal to the restriction closure and to the joined ensemble of
its maximal elements in the restriction partial order:

QY = restrict(Max(2")) = join(Max(Q")) (11)

Proof. Let v|p € QV. Let ® = { D' D D | y|pr € QY }. Let D = |JD, an open interval. Then 7|5 € 2 because
Y satisfies (cont). Moreover, v|p C 7|5 € Max(Q2") and thus v|p € restrict(Max(Q")). The other inclusions
are trivial. <

3.2 Move ensembles as set-valued maps R — 2%

Let €2 be a move ensemble and R be a disjoint union of proper open intervals, R = (Jp, 5 R'. The restriction Q|r
is the move ensemble consisting of the restrictions 7| pnr’ whenever v|p € Q, R' € 3, and D =0 or DN R’ # (.
Similarly, we define the corestriction r|€? and the double restriction r|QY|r. In the restrictions, domains of moves
are restricted to subintervals of R. Note that by our definition, the restrictions contain empty moves if and only
if Q2 contains empty moves. Therefore we have the following two convenient properties:

» Lemma 7. For a move ensemble QS that satisfies (vestrict), the restrictions satisfy (restrict), and we have
Qg ={1lp Q< | DC R},

rRIQS  ={4lp € QS| y(D) C R},
rRIQS|r={7lp € Q< | D,v(D)C R }.

Likewise, restrictions also preserve (cont).

» Lemma 8. Let Q™ = Max(QY), where Q is a joined ensemble. Then each of the restrictions Q™|g,
R|Q™EX " and g|QYMX| g consists of the mazimal elements of QV|g, R|QV, and r|QY|r, respectively.

We associate with any = € R a subset () of R, defined as Q(z) = { v(z) ‘ v|p € Q, x € D }. Define the
domain of a move ensemble 2 as dom(Q2) = J{ D ’ o € Q for some 'y} and its image as im(Q) = J{ (D) ‘
v|p € Q for some 'y} In these notions, a move ensemble behaves like a set valued map Q: R — 28 Now if
X CRis a set, we also define the image of the set under the ensemble, Q(X {fy ’ YVNp €N, xeXND }

3.3 Graphs Gr(Q2), Gr,(Q2), Gr_(2) of move ensembles )

We introduced graphs of moves in Subsection 2.3. For a move ensemble {2 we define the translation moves graph

Gry(Q U{Gr’y|D |W|D€Qandx —1}
consisting of line segments with slopes +1, and the reflection moves graph
Gr_ U{Gr vp) | 7lp € Qand x(v) = -1},

consisting of line segments with slopes —1. The graph of Q is Gr(Q) = Gr4(Q) U Gr_(Q). Further, the character
conflict graph is Gry () = Gry(Q)NGr_(Q). The map Q — (Gry(2), Gr_(€2)) becomes an injection if restricted
to the join-closed move ensembles QY. Hence these pairs of graphs faithfully represent all join-closed move
ensembles. (In figures showing these graphs, we superimpose the translation graph (blue) and reflection graph
(red).)

We can go back from graphs to ensembles using the following notation. Let O C R?. We define the (join-closed)
move ensembles

moves (O) = { 7|p | Gr(r|p) € O, D an open interval },
moves_(0) = {pT\D ’ Gr(p:|p) € O, D an open mterval}
) =

moves(0) = {7|p | Gr(y|p) € O, D an open interval }.

Thus, moves(O) = moves (0O) Umoves_(O).
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4 Inverse semigroups generated by move ensembles

Now we turn to the study of inverse semigroups generated by move ensembles.

4.1 Move semigroups I'; move semigroups isemi({2) generated by ensembles (2

A move ensemble T is said to be a move semigroup (or, an inverse subsemigroup of I'S(R)) if it satisfies the
following axioms:

Y'|prov|p €T for all v|p,+|pr €T, (comp)
(v|p)~t €T for all y|p €T. (inv)

For a move ensemble Q, the move semigroup isemi(f2) generated by € is the smallest move semigroup
containing 2. A move semigroup I is finitely generated if there exists a finite set Q2 such that T' = isemi(2).
Let Q" be a move ensemble satisfying (inv). Then isemi(Q™) clearly is the set of all finite compositions
b, 0+ 07!p, of moves 7i|p, € .

» Remark 9. Since the domains of moves in €2 are open intervals, any move «|p € isemi({2) also has a domain D
that is an open interval. If 7|p € ©, then the idempotent (v|p)~! o], = 70| is an element of isemi(2). The
inverse semigroup generated by the empty set is the empty set.

4.2 Move semigroups and joins; joined move semigroups jsemi({)) generated by
ensembles ()

Move semigroups generated by joined ensembles are not automatically join-closed. On the other hand, joining
does preserve the semigroup properties.

» Lemma 10. Let T be a move semigroup. Then the joined ensemble join(T') is a move semigroup. In particular,
for a move ensemble 2, we have

join(isemi(Q)) = isemi(join(isemi(£2))).

Proof. Let v|p,7'|p € join(T"). We first show that join(T') satisfies the axiom (comp). By equation (10), there
exist collections J and J’ of open intervals, such that D C J;c5 I, D" € Uy I', and v|1,7/[ € T for all
Ie€73,I'e3. We know that

’}/|I/ O"}/‘I = (’y/ O’}/)|'y*1([’)ﬁf € F, for all I € J and I, € j/,

since T satisfies (comp), and that

vio)npey (U nnlUn= U G'a)n).

ey 1€ 1€3, '€y

Therefore, by equation (10), 7'[p o y|p = (v' o ¥)|y-1(prynp € join(T').

We will now show that join(I") satisfies axiom (inv). We know that (y|;)™* =y~ !, € T forall I € 7,
since I satisfies (inv), and that (D) € v(U;e5 1) = Ujes 7(D). Therefore, (v]p) ™' =7, (p) € join(T). We
conclude that join(T") is a move semigroup, so join(I') = isemi(join(I")). <

Let © be a move ensemble. Then the joined move semigroup of Q is defined as jsemi(€2) = join(isemi(f)).

4.3 Move semigroups moves(O), moves, (O), moves_(O) generated by connected open
ensembles

Finitely generated inverse semigroups, as defined in Subsection 4.1, are not general enough for our purposes. As
we will see later, we need to consider move ensembles {2 whose graphs are open connected sets. They generate
inverse semigroups isemi({2) that are not finitely generated. However, they have the following simple structure
(see Figure 5).
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[ Figure 5 Tllustrations for Theorem 11 and Corollary 12. Here, only a finite set of moves is considered.
If, however, an infinite set is used by considering all moves in the O-shaped set in the left plots, then
the entire rectangles would be filled in on the right plots. The numbering on the left corresponds to the
numbering in Corollary 12.



14 Equivariant Perturbation VII

» Theorem 11. Let Q be an ensemble of moves. Let O C R? be a non-empty connected open set. Let D =
dom(O) := dom(moves(0)) and I = im(O) := im(moves(O)).

1. If Gry () contains O, then Gry (isemi(§2)) contains (DU T) x (D UI).

2. If Gr_(Q) contains O, then Gr_(isemi(Q)) contains (D x I)U(I x D) and Gry(Q) contains (D x D)U (I x I).
3. If Gr4(Q) contains O, then Gry (isemi(Q?)) contains (DUI) x (DUI).

Proof. Part 2. We show that (2a) Gr_ (isemi(f2)) contains D x I and (2b) Gr; (isemi(2)) contains D x D; the
other two containments of I x D and I x I follow from the fact that isemi(f2) is closed under inverse.

Let (z,y), (z’,y") € O be two arbitrary points in the connected open set O. Since there is a path between (z, y)
and (z’,1’) contained in O, and the path is compact, it is covered by finitely many open £,-balls O4,...,0, C O
with (z1,11) := (z,y) € O1, (z2,y2) € O1 N Oq, ..., (Tn,yn) € Op—1 N Oy, and (zpi1,Ynt1) = (2',y) € O,
Since (1’17 yl)v (1’2, yl)a (1'27 y2)a AR (xm yn)v (‘rnJrlv yn)? (anrlv yn+1) € Oa there exist Pry |D1a p?‘i |Di’ Pro ‘Dw R
Pro|Dys P |pr and pr, . |D,,, € Q such that p,|p,(z;) = y; for i = 1,...,n+ 1 and pr§|D§(xi+1) = y; for
i=1,...,n. Notice that the inverse restricted reflections (p, \D;)_l € isemi($2) with (p, D;)_l(yi) = ;41 for
i=1,...,n. We have

—1 —1
(PT’1|D’1) (pr’nlDfn) Prpqa D

lprllDl I
y 1’2’_)""_)%1' Tn+1t

T hn Yn+1-

The composition of the 2n + 1 reflections

1 _
prlD, = Prois|Duis © (Prr 1D2) " 0 prylD, 0+ 0 (oo D) ™! 0 pry |,

is a restricted reflection, satisfying that p,|p, € isemi(?) and p,|p.(z) = y'. Therefore, (2a) holds. The
composition of the 2n reflections

—1 —
7|, == (pr, D) © pro|p, 00 (prelpr) ™ 0 pry |y
is a restricted translation, satisfying that 7¢|p, € isemi(Q2) and 7¢|p, () = «’. Therefore, (2b) holds.

Part 1. It follows exactly the same proof as part 2 using instead restricted translations 7, |p,, 7¢[p/, Te,| D,
ey Tt

D, Tt;‘Diﬂ Ttni1 ‘Dn+1 €.

n

Part 3. Let (z,y),(2',y") € O. By part 1 and 2, there exist restricted translation and reflection 7¢|p,, pr

. . 7',|D P7‘| r .. . . . . . .
isemi(Q) such that z ——5 y ©~“2 z/. The composition p,|p, o 7¢|p, is a restricted reflection in isemi().

Therefore, Gr_ (isemi(2)) contains D x D. By part 1, part 2 and the fact that isemi(f2) is closed under inverse,
we obtain that part 3 holds. <

D, €

The following corollary sharpens the result.

» Corollary 12. Let O C R? be a non-empty connected open set, with D = dom(O) = dom(moves(0)) and
I = im(0O) = im(moves(0)).
1. jsemi(moves (0)) = moves; (DUIT) x (DUI)).
(0)) =moves_((D x I) U (I x D))Umovesy ((D x D)U (I x 1)), if DNI=1.
2b. jsemi(moves_(0)) = moves ((DUI) x (DUI)), if DN I # 0.
(0)) =moves ((DUI) x (DUI))

2a. jsemi(moves_

3.  jsemi(moves

Proof. By applying Theorem 11 (1), (2) and (3) to © = moves(0), Q = moves_(O) and Q = moves(O), we
obtain that jsemi({2) on the left-hand side of the equation in (1), (2a) and (3) contains the move ensemble on
the right-hand side, respectively. In case (2b) where D NI # (), by applying Theorem 11 (2) to 2 = moves_(O),
we have that jsemi(€2) contains moves (DU ) x (D N1I)). It then follows from Theorem 11 (3) that jsemi(2)
contains the right-hand side of (2b), moves ((D UT) x (D UI)). Conversely, the right-hand side of the equation
in each case is a joined move semigroup that contains 2. Hence, the equality holds. <

» Remark 13. Theorem 11 suggests to consider the following class of generating ensembles for inverse semigroups.
Take a finite ensemble Q" = {y!|p,,...,7"|p,} together with a finite list of infinite ensembles of the form
moves (D; x I;),i=n+1,...,n+m and moves_ (D; x I;), i=n+m+1,...,n+m+ £, where D; and I; are
proper open intervals. However, we suppress the details of this. In Section 6, an additional assumption will allow
us to use a more convenient class of generating ensembles.
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5 (-equivariant functions

5.1 Spaces of (2-equivariant functions
Move ensembles encode a system of functional equations as follows.

» Definition 14. Let Q be a move ensemble and let 0: R — R be a function.

a. We say that 0 is affinely Q-equivariant (in short, 6 respects Q) provided that for every v|p € Q) there exists a
constant C?/ID such that

0(p(2)) = x(7)8(z) + ¢, forz € D, (12)

where x(v) = £1 is the character of .
b. If all constants CZ‘D can be chosen to be zero, then we say that 6 is Q-equivariant (or, equivariant under the
action of ).

Throughout the paper, we will be working with affinely Q-equivariant functions. At the very end, in Section 10,
an important space of 2-equivariant functions will appear.
» Remark 15. It now becomes clear why singletons {z} are not allowed as the domain D of a move. The functional
equation (12) would degenerate to a single equation with an independent constant sz}' The equation and the
constant can be eliminated from the system.

Some trivial relations between the constants C(Z/ID are induced by the restriction partial order on moves

(Subsection 2.4). If § # D C D', thus v|p C v|p and D # ), then necessarily cle =

. Thus it is natural to
"/|D’

work with restriction-closed ensembles, as defined in Section 3.

» Lemma 16. For a set © of functions, we denote by O the set of affinely Q-equivariant functions in ©. If ©
is a vector space, then so is ©%.

Proof. Let 61,05 € © and a1,as € R. Let 6 = a101 + asfs. Then 6 € ©. Moreover, let czl‘D for v|p €  and czTD

(2% 6o
asc
7o +az 7p

for «v|p € Q is a family of constants that satisfy (12) for 6. <

for v|p € Q be the families of constants that satisfy (12) for 6; and 65, respectively. Then cf)le =aic

5.2 Join-closed semigroup '™ of moves respected by given functions

» Definition 17. For a function 0: dom(f) — R, we denote the ensemble of moves respected by 6 as
() = {7|p € T(R) | D,4(D) € dom(0), 3}, € R s.t. (12) holds }.

(Clearly T™P(0) is the largest move ensemble that 0 respects.) For a set © of functions, we denote T**P(0') =
Nocer I™P(6).

» Theorem 18. Let Q) be a move ensemble. If a function 6 respects S, then 0 respects the joined semigroup
jsemi(92).

To prove this, we use the following lemma.

> Lemma 19. Let T be a collection of proper open intervals that cover the open interval (I, u). If a function g is
constant over each interval I from the collection J, then g is constant over (I, u).

Proof. Let m = £ and a = g(m). Consider the interval J = {y € (I,m) | g(z) = a for all z € [y, m] }. Since
m is contained in some open interval I € J and g(z) = a for x € I, we know that J is non-empty. Let I’ = inf J.
We now show that [ = I’. Suppose that [ # I’. Then there exists an open interval I € J such that I’ € I, and g is
constant over I. Since I NJ # 0 and g(z) = a for z € J, we have that g(z) = a for x € I, a contradiction to
I =inf J. Hence g(x) = a for all | < z < m. Similarly, one shows that g(x) = a for all m < z < u. Therefore, g
is constant over (I, u). <

Proof of Theorem 18. Let v|p € jsemi(f2). Thus, there exists a collection J of proper open intervals, such that
D C ey 1 and |; € isemi(€2) for each I € J.

Define g(z) = 0(y(z)) — x(7)0(z) for x € D. We first show that ¢ is constant over each interval I € J. Let
I € 3. Since 7|7 € isemi(?), we can write it in the form v|; = vk|p, © Ye—1|Ds_, © - ©71|D,, Where v;|p, € Q or
(vilp,) "t € Q fori=1,2,...,k. Since 0 respects 2, according to (12), we have that
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a. 0(vilp,(x)) = x(vi)0(x) + constant for all x € D;, when 7;|p, € Q; and

b. 0((ilp,) " () = x(3; ")8(y) + constant for all y € 7 (D), when (yi|p,)”" € Q.

By using y = v;|p, (z) and x(y;) = x(7; ') = %1, the equation in (b) can be rewritten as that in (a). As a result,
if 0 respects a move, then 6 also respects its inverse. Let xg € I and denote x; = ~;(z;—1) for i = 1,2,... k.
Then, z; € Dijyq for i =0,1,...,k — 1, and z = 7|r(xg) = v(x0). Since 8 respects all the moves ~;|p,, the
equation 0(z;) = x(7:)0(xi_1) + ¢! holds for every i = 1,2, ..., k, where the constants ¢! are independent of the
choice of oy € I. We also know that x(v) = x(71)x(72) - - . x(7&). Therefore,

k
g(w0) = 0(y(w0)) = x(1)0(x0) = O(xx) — x(v)x(v-1) - - x(71)0(x0) = > | [ x(v) | &

j=1 \i=j+1
is constant for xy € I. Then, it follows from Lemma 19 that ¢ is constant over D. <

» Corollary 20. For a function 0, the ensemble I'"**P(0) defined in Definition 17 is a join-closed move semigroup.
The same holds for the ensemble T™P(0'), where ©' is a space of functions.

6 Kaleidoscopic joined ensembles and bounded functions. Finite presentations by
moves and components

6.1 Cauchy—Pexider functional equation f(z) + g(y) = h(xz + y)

Recall from Subsection 5.1 that move ensembles encode systems of functional equations. We now bring a first
result on functional equations to use. The following result on the Cauchy—Pexider functional equation on bounded
domains appeared in [5, Theorem 4.3]. Here we state it for functions of a single real variable. It is a variant of
the Gomory—Johnson interval lemma, which has been used throughout the extreme functions literature. Note
that it requires a weak assumption regarding the function space. Boundedness is sufficient; see [5] for a more
detailed discussion.

» Lemma 21 (Convex additivity domain lemma). Let f, g, h: R — R be bounded functions and let E C R? be open,
convez, and bounded. Suppose that f(x) + g(y) = h(x +y) for all (z,y) € E. Define the projections p1(z,y) = z,
po(z,y) =y, ps(z,y) = z +y as functions from R? to R. Then f,g,h are affine with the same slopes on the
domains p1(E), p2(E), ps(E), respectively.

6.2 Kaleidoscopic move ensembles

When we are only interested in bounded functions that respect a move ensemble (2, then it follows from Lemma 21
that we can replace Q by a move ensemble Q¥ with more convenient properties.

» Lemma 22. Let 0: R — R be a bounded function. Let D, I C R be proper open intervals. The following are
equivalent:

1. 0 respects moves; (D x I),

2. 0 respects moves_ (D x I),

3. 0 respects moves(D x I),

4. 0 is affine on D and I with the same slope.

Proof. We first show that (1) implies (4). By assumption, the function 6 satisfies equation (12) for all ¢|p,,
wheret € {y—x|zeD,yel}and D, ={x € D|x+tec I} Thus, there exists a function c: I +(—D) - R
such that

O(x+1t) =0(x)+c(t) for all (z,x +1t) € D x I.

The function ¢ is bounded because 6 is bounded. Then, by Lemma 21 with f = h = 6 and g = ¢, we have that
is affine on D and I with the same slope. The proofs that each of (2) and (3) implies (4) are similar; we omit
them.

Now we show that (4) implies (1). Fix t = y — x for some z € D,y € I. Since 6 is affine on D and I with
the same slope, there exist scalars a,b,b’ such that 0(z) =a-z+0bfor all z € D and 0(z) = a -z + V' for all
x € I. But then for all x € D such that z +t € I, we have that 6(z +t) — 0(z) = a-t+ b — b, which is constant.
Therefore, 0 respects 7;|p,. Again the proofs that (4) also implies (2) and (3) are similar and we omit them. <«



Robert Hildebrand, Matthias Koppe & Yuan Zhou 17

Motivated by these results, we make the following definitions.

» Definition 23. A move ensemble Q¥ is a kaleidoscopic joined ensemble if it satisfies (restrict), (cont), and
the following axiom:

for proper open intervals D,I C R (kaleido)
moves; (D x 1) C Q¥ if and only if moves_(D x I) C O¥.

6.3 Covered intervals, connected covered components

» Definition 24. For a kaleidoscopic joined ensemble Q% and a proper open interval D such that moves(D x D) C
O we say that D is a covered interval in Q¥.

Let I'™ be a kaleidoscopic joined move semigroup. For two proper open intervals Dy, D, if moves((D1 U
Ds) x (D1 UDy)) C '™, then we say that both Dy and D, are covered intervals in the same connected covered
component of I'™. (Here the word “connected” does not refer to the topology of R, in contrast to Subsection 4.3.)
It follows from Corollary 12 that this is an equivalence relation. However, we want to define the notion of a
connected covered component also for kaleidoscopic joined ensembles Q¥ that are not semigroups. In this case
there is no equivalence relation (transitivity fails), but we still use the word “components” in the following
definition.

» Definition 25. Let Q¥ be a kaleidoscopic joined ensemble. Let C' be a non-empty open set such that moves(C' x
C) C Q¥. Then C is called a connected covered component of Q% Any two covered intervals Dy, Dy C C are
said to be connected by the component C.

The connected covered components of Q% are partially ordered by set inclusion. The maximal elements in
this partial order suffice to describe all covered intervals.

» Corollary 26. Let 0 be a bounded function. Suppose 0 respects a kaleidoscopic joined ensemble Q%. Let C be a
connected covered component of Q¥. Then 6 is affine on all open intervals in C with a common slope.

Proof. Let D,I C C be proper open intervals. Then D x I C C x C, and hence 6 respects moves(D x I). By
the equivalence of conditions (3) and (4) of Lemma 22, 0 is affine on D and I with the same slope. <

(In Section 10, we will also consider connected uncovered components.)

6.4 Presentations by moves Q" and components C = {C, ..., C}}

Now we are prepared to define a convenient finite presentation for a large class of kaleidoscopic joined ensembles,
which we announced in Remark 13.

» Definition 27. Take a finite list of connected covered components C = {C1,...,Cy}, where each C; is a finite
union of disjoint proper open intervals. Define

k
moves(C) = U moves(C; x C;) = {v|p € TS(R) | D,v(D) C C; for somei=1,...,k}.
i=1

The graph Gr(moves(C)) is a union of open rectangles. See Figure 6 for a visualization. We plot the components
with different colors.

Note that any ensemble of the form moves(C) or restrict(Q") Umoves(C), where Qfi" is a finite move ensemble,
satisfies (restrict) and (kaleido), but is not necessarily join-closed. To make a kaleidoscopic joined ensemble, we
use the following.

» Definition 28. For any finite move ensemble Q" and a finite list C of connected covered components, define
jmoves (27 C) = join(Qf" U moves(C)). If Q" = 0, we simply write jmoves(C).
» Definition 29. The ordered pair (", C) is said to be a finite presentation (by moves Q" and components C)

of the kaleidoscopic joined ensemble jmoves(Q*,C).

» Corollary 30. Let 6 be a bounded function. Suppose 6 respects a move ensemble Q% that has the finite
presentation (", C). Then 0 is affine on all intervals in C and shares a common slope on all intervals of each
component C; of C.
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Figure 6 Move ensemble moves(C) from connected covered components C. Left, C = {C1} (one

component), where C; = (lig, 1%) U (%, 1—%), shown in red. Right, C = {C1,C2} (two components), where
C1= (3, 3)U (S, 5) U (S, 13) is shown in red and Co = (35, %) U (3, ) U (1, 12) is shown in
cyan.
Proof. This is a restatement of Corollary 26. <

It is clear that these presentations are not unique, which motivates the next subsection.

6.5 Finite presentation in reduced form (274 ()

A finite presentation (2, C) of a kaleidoscopic joined ensemble Q¥ is said to be in (long) reduced form if the
following holds:

Qred € Max(Q%) \ jmoves(C), (reduce)

that is, each move v|p € Q¢ is maximal in O™ with respect to the restriction partial order C, and the graph
Gr(v|p) is not covered by the union of open rectangles C; x C;, C; € C.

» Lemma 31. If a kaleidoscopic joined ensemble Q2 has a finite presentation (Qfin ), then there is a unique
finite ensemble Q' such that (4, C) is in reduced form and Q% = jmoves(Q*9,C).

Figure 7 illustrates the operation of going from a finite presentation to a reduced presentation of the same
ensemble.

» Remark 32. As the examples in Figure 7 illustrate, the domains of moves in Qf" may be extended.

6.6 Finite presentations of generating ensembles of move semigroups

Move ensembles have a crucial role as generating sets of move semigroups. We now describe an operation that
changes the generating ensemble, but preserves the move semigroup that is generated by it.

» Lemma 33 (Extend component by move). Let C be a list of connected components and let Q be a move
ensemble such that moves(C) C Q. If y|p € Q and D C C; for some C; € C, then moves(C') C isemi(), where
C! = C; U~(D) and all other components of C' are the same as C.

See Figure 8 for an illustration.

Proof. Let x € C;, z € ¥(D), and y = v~ 1(2) € D. Since x € C;, z is in the domain of moves 75 and pp in €.
Thus, we can both translate and reflect x to z by

Ty—az Ty—a
=y s 2 and o ey s 2

Note that which one above is a translation or reflection depends on the character x (7). <
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I Figure 7 Finite presentation in reduced form. Left, finite presentations (Q°",C) of kaleidoscopic
joined ensembles Q. Right, finite presentations (4, C) in reduced form of the same ensembles. (a) A
move poking into a component is extended to become a maximal move of Q% (b) Two restrictions of
the same move are extended to become a maximal move of Q%. (c) A move that lies completely in a
component is removed.

. Limit-closed ensembles and continuous functions. Closed move semigroups

Let A C R be an open set. We now consider the space C,(A) of bounded continuous functions on A. For Cy(A),
some notions of convergence of moves are natural to study.

7.1 Limit-closed move ensembles Q; closures lim(Q), arblim(Q)

We consider a sequence {7'};eny C T'(R) of unrestricted moves to converge to an unrestricted translation 7, € T'(R)
if all but finitely many ~¢ are translations 7, and ' — ¢; and to an unrestricted reflection p, € T'(R) if all but
finitely many +* are reflections p, and r* — r.

We define the limits closure lim(§2) of a moves ensemble € to be the smallest (by set inclusion) moves
ensemble Q containing ) that satisfies the following axiom.

Let D be an open interval. If v* — v and +!|p € Q for all 4, then v|p € Q. (lim)

We note that the domain D is fixed for all moves in the sequence. Thus, the limits closure will in general not
satisfy (cont) and (inv). Instead we can consider the following axiom.

» Definition 34. Define arblim(Q) to be the smallest moves ensemble Q containing Q that satisfies the following
aziom.

Ifv' = ~, 1" = 1, vt — u and ~

(i) € Q for all i, then Yu) € Q. (arblim)
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I Figure 8 Extending components by moves, Lemma 33. Left, reduced finite presentations of a
kaleidoscopic joined ensemble Q%. Right, reduced finite presentations of iserni(Qg).

For our purposes, when considered together with (cont), the notions turn out to be equivalent.

» Theorem 35. Let QY be a join-closed move ensemble. Then
join(lim(2Y)) = join(arblim(Q2")).

Proof. Tt is clear that lim(2V) C arblim(Q2"). Hence, it suffices to show that arblim(2V) C join(lim(2V)). Let
Tel(,u) € arblim(QY), where I < u. By (arblim), there is a sequence {7 (i 4i)}ien of moves in QY such that
I =1, u" — u and t* — t. For every integer j > %, there exists a large integer n; such that for any ¢ > n;, we
have [; < l—l—% and u— 1 < ;. Since OV satisfies (restrict), 74 p,; € QY for any i > n;, where D; := (I+ %, u— %)
Since t; — t, we have 7¢|p, € lim(Q) for every j, hence 7|, € join(lim(22¥)). The proof for reflections is

similar. |
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» Theorem 36. Let QY be a join-closed move ensemble. The following are equivalent:
i. QY satisfies (lim).
ii. QY satisfies (arblim).

The proof is essentially the same and we omit it.

7.1.1 Respecting limits

» Lemma 37 (Limits). Let D be an open interval and let 6 be continuous on D. If there exists a sequence v* —
such that 0 respects ¥¢|p for all i, then 0 also respects v|p.

Proof. We prove the lemma for a sequence t; — ¢ such that 0 respects the translations 7, |p for all 7. We will
show that 6 also respects 7¢|p. Since 6 is continuous on D, 6 is also continuous on 7, (D) for all i. Fix z € D.
Since t; — t, and Z € int(D) since D is open, there exists an 7 such that for all i > 7, we have T+t € D + t;.
Hence, for a neighborhood Nz of z, 6 is continuous in Nz + t. Now, for all x € Nz,
7 N — 1 0
Oz +1t)—0(x) = thglt O(x+t;) —0(x) = leglo Crolp
Since the limit on the right-hand side is independent of x, we define cftINi to be this limit. Thus, 0 respects
Tt|n,. Now the connected open set D is covered by the open neighborhoods N; of each z € D. It follows that

cﬁth = cﬁt‘N for all z,z' € D. Therefore, 6 respects 7|p. Moreover, 6 is continuous on 7¢|p. The proof for a
LI Nz 5!
sequence of reflections is the same. <

7.1.2 Limit-closed move semigroups
» Lemma 38. Let T be a move semigroup. Then arblim(T') is also a move semigroup.

Proof. It is clear that arblim(T") satisfies (inv), as I" satisfies (inv). We now show that arblim(T") satisfies (comp).
Let v1|p,,72|p, € arblim(T") such that v1|p, © ¥2|p, is not an empty move. v1|p, and ¥2|p, are the arblim of

sequences of moves {'YﬂDi'}ieN and {’Y%|D;}z‘eN in . Since I satisfies (comp), v¢|p: := (’Y“D;’) o (v p;) €T for
every i. The arblim of the sequence {¥¢|p: }ien is Y1|p, © V2| p,. Thus, we obtain that v1|p, © v2|p, € arblim(T).
This show that arblim(T") is a semigroup. <

» Lemma 39. Let TV be a join-closed move semigroup. Then join(lim(T"V)) = join(arblim(T'V)) is a semigroup.
Proof. It follows from Lemma 38, Lemma 10 and Theorem 35. <

» Theorem 40 (Limits imply components). Let T'V be a join-closed move semigroup. Assume that y|p is the
limit move (in the sense of lim or arblim) of a sequence {¥*|pi }ien of moves in TV with ~* # ~ for every i. Let
I =~(D). Then the following holds.

1. If v is a translation, then moves ((DUI) x (DUI)) C join(lim(T'V)).

2. If v is a reflection, then moves_((D x I) U (I x D)), movesy ((D x D)U (I x I)) C join(lim(T'V)).

Proof. Let D = (I,u). If a sequence {7*|pi }ien of moves in I'V with v¢ # « converges to |p in the sense of
arblim, then ’yi|Dm(l+E,u76) — V|(14e,u—e) in the sense of lim for any small € > 0. Thus, it suffices to prove
the statement for a limit move 7|p in the sense of lim; the statement for arblim follows from Lemma 39 and
continuation.

We first show that moves, (D x D) C join(lim(I'V)). Let ¢ > 0 be an arbitrary small number. Since
v|p is a limit move, there exist v¢|p,7’|p € T'V in the convergent sequence such that the constant-valued
functions v — 7% and v — 47 have the same sign, and 0 < § < ¢, where § denotes the constant value of
77 —~% Let D' = (I,u) N (I — §,u — §). We notice that (v!|p)~! 0 ¥7|p = 75|p1 when ~ is a translation, and
(v9|p) "t o~|p = 75| pr when 7 is a reflection. Therefore, 75|p1 € T'V. Let D := (I,u) N (I — k6, u — k&) for k € Z.
For k > 1, T4s|pw is the k times composition of 75| p1, hence it is in I'V. For k = —1, 7_5|p-1 = (15|p1) "t € V.
For k < —2, 75| pr is the —k times composition of 7_s|p-1, and hence is in T'V. Finally, for k& = 0, we have
(15]p1) o (T—s|p-1), (T—s|p-1) o (75| p1) € TV, so their join 79| po is also in T'V. Therefore, for every k € Z such
that DF is not empty, we have 75| pr € I'V. By letting € — 0, we obtain that moves, (D x D) C join(lim(T'V)).

Since y|p € im(I'V) C join(lim(T"")) and join(lim(I'V)) is a semigroup by Lemma 39, we have that moves (D x
I) C join(lim(I'V)) when ~ is a translation, and moves_ (D x I) C join(lim(I'V)) when v is a reflection.

The other two subsets follow from applying the above argument to (y|p)~! instead of v|p. |
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I Figure 9 Extended move ensembles extend 4 (Q2) of ensembles 2. Points not in the set A are indicated
by black circles at the top and left border. The set A is R\ {a single point} in the top example, and
A =R in the bottom two examples.

7.2 Continuous domain extension extend 4({2)

Next we introduce a topological version of axiom (cont). Let 2 be a move ensemble with dom(£2),im(Q2) C A,
where A C R is an open set. Then the extended move ensemble extend 4(Q) of € is defined to be the smallest set

QY containing  that satisfies the following axiom:

Let v € T'(R) and let D be an open interval. (extend 4)
If there is an ensemble {7|pi}ics € QY s.t. D C cl(U;ey D) N AN~y 1 (A), then v[p € QY.

Clearly an ensemble satisfying (extend4) is join-closed. The most simple application of (extend,) allows us
to join two adjacent moves across a point of continuity; see Figure 9.

» Lemma 41. Let QV be a move ensemble satisfying (extend ). Then we have:
If Yl mys YV m,u) € QY, where | < m < u, and m,vy(m) € A, then Yy € Q. (2-extend 4)

The following is clear from the definition.

» Lemma 42. Let Q be a move ensemble with dom(Q) = im(Q2) C A. Let Q¥ = extend (). Then dom(QV) =
im(QY) C A.

» Remark 43. If QV is a joined ensemble with finite Max ("), then repeated application of (2-extend 4 ), followed
by applying (cont), suffices to obtain extend (V).
However, this is not true for arbitrary joined ensembles V. As an example, let A = R and consider QV

consisting of the restrictions of a move v to all subintervals of (—1,0) and (=3, 1

710 5) for n € N (These maximal
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intervals are disjoint.) Domains of moves of extend 4(2V) are all subintervals of (—1,1). The domains of moves

of 2-extend4(QV) are (—1,0) and its subintervals and the infinite chain (,1) for m € N and some of its

subintervals; the supremum of the chain, (0,1) is not an element. Then the domains of maximal moves of
join(2-extend 4 (2V)) are (—1,0) and (0,1). It takes another round of 2-extend4 to arrive at extend 4 (V).
We have an explicit description of the moves in the extended move ensemble extend 4(§2), similar to Lemma 5
for join(Q2).
» Remark 44. For a move ensemble Q with dom(Q2),im(2) C A, where A C R is an open set, we have
extenda(Q) = {7|p |7 € T(R), D open interval, D C cl(C,)NAN~y"'(4) }, (13)

where C., := J{I | 7|r € Q}, which is a subset of AN~y~1(A).

7.2.1 Domain extension and semigroups

» Lemma 45. Let T be a move semigroup with dom(T),im(T") C A, where A C R is an open set. Then extend 4(T")
is a move semigroup that satisfies (extend4).

Proof. Since T satisfies (inv), it is clear that extend 4 (I") satisfies (inv). We now show that extend 4(T") satisfies
(comp), too. Let v1|p,, V2| p, € extend4(T). Let

Clzc,YIZU{I"le[EF} and CQZC,YZZU{I|’)/2|[EF}.
By equation (13), the open sets D; and Do satisfy that
Dy Cc(Ch)NANy A  and Dy Ccl(Cy)NANy, LH(A).

Let y=9204',C=C,=U{I|v]; €T} and let D =~;'(D2) N D; be a non-empty open set. We will show
that
D Cd(C)nAn~y(A). (14)

It then follows again from (13) that v2|p, ov1|p, = ¥|p € extend4(T"), and hence extend 4 (T') is a move semigroup.
It suffices to show (14) for

Dy =int(cl(C1) NAN~; ' (A)) and Do = int(cl(Co) N AN~; ' (A)).
We have on the left hand side of (14)
D =~ (D2) N Dy
=int(y; ' (cl(C2)) Ny H(A) Ny~ (A)) Nint(cl(C1) N AN~ H(A))
= int(cl(C1)) Ny (int(cl(Ca))) N AN~ H(A) Ny (A,

and on the right hand side of (14) cl(C') N AN~~(A). Thus, it suffices to prove that if € int(cl(C1)) such
that 1 (z) € int(cl(C2)), then z € int(cl(C)). This holds since T' satisfies (comp). <

7.2.2 Respecting extensions

> Lemma 46 (Extend moves by continuity). Let 8 be a function that respects a move ensemble 2 with
dom(Q),im(Q) C A. Then it respects the extended move ensemble extend 4 ().

Proof. We use the characterization of extend 4(f2) from Remark 44. Let v € I'(R) and let C,, C AN~ *(A) be
as in Remark 44. The function  — 6(y(z)) — x(v)f(x) is constant on the connected components of C, and it is
continuous on A N~~1(A). Then it is constant on the connected components of cl(C,) N AN~y~1(A). <

Applied to the simple case of Lemma 41, we have the following.

» Corollary 47. Suppose 0 respects the moves v|(1,m)s V| (m,u) With | <m < u and suppose 0 is continuous at m,
v(m). Then 6 respects 7|(.u)-

» Remark 48. The assumption regarding continuity at both m and «(m) cannot be removed, which explains
why we use AN ~y~1(A) in (extend4). We illustrate this by the following example. Let A = (0,2) U (2,3). Let
v =71 and Q = {v|0,1),V|(1,2)}, so dom(Q) = (0,1) U (1,2) € A and im(Q2) = (1,2) U(2,3) C A. Then 1 € A4,
but v(1) =2 ¢ A. Define § =0 on A and 6(2) = 1, so it is continuous at 1 but not at v(1) = 2. Then 6 respects
Q, but it does not respect the move 7| 2).
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7.3 Closed move semigroups, the moves closure clsemiy(§2)
Now all axioms that we have introduced above come together.

» Definition 49. A closed move semigroup is a limits-closed extension-closed kaleidoscopic joined move semigroup,
i.e., a move ensemble that satisfies the azioms: (comp), (inv), (cont), (restrict), (extend4), (lim), and (kaleido).

» Definition 50. Let Q be a move ensemble with dom(Q2),im(Q2) C A. We define the closed move semigroup
clsemiz () generated by Q0 (or just moves closure of Q) to be the smallest (by set inclusion) closed move
semigroup containing 2.

» Lemma 51. Let L be the family of closed move semigroups containing Q. Then clsemix () = L = g o, .

Proof. First of all, (L contains Q. We show that [|L is a closed move semigroup. Note that each axiom is a
closure property of a set Q' of the form: For all pairs of moves ensembles (1, 2s) obtained from the operation
in the axiom (see an example below), if 0 C €, then Qs C Q. Now if Q; C L, then Q; C Q' for all Q' € L,
and thus Qo C @ for all Q' € L. This implies Qy C (L.

For example, we show that (L satisfies the axiom (lim) as follows. Let D be an open interval, and let
Q1 €L be an ensemble of moves {v*|p}i—12... in (L such that y* — v as i — co. We want to show that
vlp € L. Let Q9 = {7|p}. Since Q3 C L, @y C ' for all Q' € L. Each Q' € L is a closed move semigroup,
which satisfies the axiom (lim) in particular, so 2 C ©’. This implies Q2 C (L.

On the other hand, (L is contained in each of the ensembles €2’ € L and is therefore the smallest closed
move semigroup containing 2. <

» Remark 52. In contrast to Lemma 10 (regarding (cont) and (restrict) and the axioms of an inverse semigroup),
we do not know whether clsemi4(£2) can be obtained by applying a finite sequence of closures with respect to
the individual axioms.

» Theorem 53 (Main theorem on the moves closure). Suppose 0 is bounded and continuous on A. If § respects a
move ensemble Q with dom(Q),im () C A, then 6 respects the moves closure clsemiz(£2).

Proof. Let 0|4 denote the restriction of 6 to A. We consider the ensemble I' = I'"**P (0] 4) of moves that 0|4
respects, introduced in Subsection 5.2. By definition, dom(I"),im(I") C A. Since, by assumption, 0 respects €2,
we have I' O Q. By Theorem 18, I is a join-closed move semigroup. By Lemma 22, because 6|4 is bounded, I'
satisfies the axiom (kaleido). Because 6|4 is continuous, we can apply Lemma 37 to all convergent sequences
{4!|p}ien C T, and thus I satisfies the axiom (lim). Finally, by Lemma 46, it satisfies the axiom (extend ).
Hence, TP (0) is a closed move semigroup. By Lemma 51, we conclude that 6 respects clsemi, (Q2). <

8 The initial additive move ensemble ° of a subadditive function

We will now apply the theory of the previous sections to compute the effective perturbation spaces of minimal
valid functions. Let 7: R — R be a minimal valid function. Recall from the introduction that 7 is nonnegative,
Z-periodic, and satisfies 7(0) = 0, w(f) = 1. Its key property is subadditivity, which we express using the
subadditivity slack function An(x,y) = 7(z) +7(y) —7m(z+y) as An(z,y) > 0. Moreover, the symmetry condition
Amn(z, f —x) = 0 holds for all z. This is the characterization that appeared in the introduction as (3).

Since 7 is Z-periodic, we will work with its fundamental domain [0, 1]. For the rest of the paper, we will let
A = A(r) be the maximal open subset of (0,1) on which 7 is continuous.

8.1 The initial move ensemble

We begin by defining an ensemble of initial moves Q° = Q°(r) that consists of additive moves and limit additive
moves, together with their inverses and the empty moves. We define these moves v|p on domains D that are
open intervals such that the domain D and the image (D) are subsets of A .

» Definition 54.

i. An additive move is any translation 7¢|p, where t € (—1,1) and D C A is a proper open interval such that
(D) C A and

An(z,t) =7n(x)+7(t) —w(zx+t) =0 Yo € D
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or any reflection p,.|p, where r € (0,2), and D C A is a proper open interval such that p.(D) C A such that
Ar(z,r—z)=n(x)+7n(r—z)—m(r)=0 Vz € D.

ii. A limit-additive move is any translation 7¢|p, where t € (=1,1) and D C A is a proper open interval such
that 73(D) C A and

lim An(z,t) =0 or lim An(z,t)=0 Ve e D

t—tt t—t—

or any reflection pr|p, where ¥ € (0,2), and pr(D) C A such that

lim An(z,r—2z)=0 or lim An(z,r—z)=0 Vo € D.
r—rt r—T

iii. An initial move in Q°() is a move that is either additive or limit-additive, or an inverse of such a move, or
an empty move.

» Remark 55. The property of the moves v|p € Q0 that the function 7 is continuous on the domain D and
image (D) will be preserved throughout.
» Remark 56. The initial move ensemble Q° is join-closed. Therefore, by Lemma 6, it is equal to the restriction
closure of its maximal elements. Moreover, by definition, Q0 satisfies (inv). However, Q° in general is not a
semigroup.

The function 7 is affinely Q2%-equivariant (Subsection 5.1), i.e., it respects all moves in Q.

8.2 Moves from connected open sets of additivities

We now specialize our results from Subsection 4.3 regarding connected open ensembles to the initial moves.
We have the following corollary. Recall from Subsection 6.1 the projections pi(x,y) = x, p2(z,y) = y, and
p3(z,y) = = + y as functions from R? to R.

» Corollary 57. Let E C R? be a connected open set on which w is additive, i.e., An(x,y) =0 for (z,y) € E.
Let C = p1(E) Upa(E) Ups(E) and assume that C C A. Then moves(C x C) C jsemi(QP).

See Figure 12 for an illustration. We remark that in [16], the intervals pi (E),p2(E), ps(E) are referred to as
directly covered intervals.

Proof of Corollary 57. Denote I'V = jsemi(Q2°). By Lemma 10, TV = isemi(I'V). We first show that Gry(T')
contains E. Let (z,y) € E. Since E is open, there exists an open interval D 5 z such that the diagonal segment
{(z/,r—2') |2’ € D} C E, where r = z + y. By Definition 54, we have p,|p € Q°, with p.|p(z) = y. Thus,
(z,y) € Gr_(T"V). There exist open intervals D, 3 y and D, > x such that the vertical segment {z} x D,, and the
horizontal segment D, x {y} are contained in E. Again by Definition 54, we have 7,|p, , 72| p, € Q2°. Notice that

Tyl Dy (t]Dy) 7"
z— (z+y)
Thus, (z,y) € Gry(I'V). We showed that Gry (I'Y) contains E. By Theorem 11 (3), moves((p1(E) Up2(E)) x
(p1(B) Upa(E))) C TV.
For any point & +y € p3(F), where « € p1(E) and y € p2(F), the above translation move 7,|p, satisfies that
7ylp, € Q% and 7|p, (z) = z 4+ y. By applying Lemma 33 to C = {p1(E) U p2(E)} and all such moves 7,|p,, we
obtain that moves((p1(E) U p2(E) Ups(E)) x (p1(E) Upa(E)Ups(E))) CTV. <

9 Piecewise linear functions, polyhedral complexes, effective perturbations

We now specialize our theory to the important case of piecewise linear functions. We begin with the basic
definitions and review some tools that were developed in the previous papers of the present series.
9.1 Continuous and discontinuous piecewise linear functions 7, complex Pg

We begin by giving a definition of Z-periodic piecewise linear functions 7: R — R that are allowed to be
discontinuous, following [20]. [16] discusses how these functions are represented in the software [21].
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Figure 10 Left, additive edges (one-dimensional additive faces) in APg. Right, the corresponding
initial moves (additive moves and their inverses) in Q°.

Let 0=zg <21 <+ <@p_1 <Zp =1 Denote by B={zo+t, 1+t ..., Tp_1+1t|tEZ} the set of all
breakpoints. The 0-dimensional faces are defined to be the singletons, {z}, € B, and the 1-dimensional faces
are the closed intervals, [z; + t, 2,41 +t],4=0,...,n— 1, t € Z. The empty face, the 0-dimensional and the
1-dimensional faces form P = Pp, a locally finite polyhedral complex, periodic modulo Z.

» Definition 58. We call a function 7: R — R piecewise linear over Pg if for each face I € Pg, there is an
affine linear function mr: R — R, wr(x) = crx + dr such that w(x) = wr(x) for all x € relint([).

Under this definition, piecewise linear functions can be discontinuous. Let I = [a,b] € Pg be a 1-dimensional
face. The function 7 can be determined on int(I) = (a,b) by linear interpolation of the limits 7(at) =
limg g p5e m(x) = mr(a) and 7(b7) = limy_sp p<p 7() = 71 ().

9.2 Two-dimensional polyhedral complex AP and additive faces

For a piecewise linear function (see Subsection 9.1 for our notation), we now explain the structure of the initial
moves. We will use the notion of the polyhedral complex AP and its additive faces from [16, Section 4]. AP
is a two-dimensional polyhedral complex, which expresses the domains of linearity of the subadditivity slack
Am(x,y) introduced in Subsection 1.2.

» Definition 59. The polyhedral complex AP of R x R consists of the faces
FI,JJK)={(z,y) eRxR|zel,yeJ x+yec K},

where 1, J, K € P, so each of I,J, K is either empty, a breakpoint of @, or a closed interval delimited by two
consecutive breakpoints.

In the continuous case, since the function 7 is piecewise linear over P, we have that Ax is affine linear over
each (closed) face F' € AP. We say that a face F' € AP is additive if Am = 0 over all F. If 7 is subadditive,
then the set of additivities E(m) = { (z,y) | An(x,y) = 0} is the union of all additive faces F' € AP; see [7,
Section 3.4].

For a discontinuous function m, the subadditivity slack Ax is affine linear only over the relative interior of
each face F. For additivity, beside the subadditivity slack Ax(z,y) at a point (z,y), we also consider its limits.

» Definition 60. The limit value of Axw at the point (x,y) approaching from the relative interior of a face
F € AP containing (x,y) is denoted by

Arp(z,y) = lim Am(u,v).
(u0)=(z,y)
(u,v)€relint(F)
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» Definition 61. Let I' € AP. Define the set of additivities and limit-additivities approaching from the relative
interior of F' as

Ep(m) ={(z,y) € F | Arp(z,y) exists, and Anp(z,y) =0}, (17)

» Remark 62. The points (z,y) € Ep(n) that lie in rel int(F') capture all additivities of 7, whereas those that lie
on the relative boundary capture all limit-additivities. The set F(7) that we introduced in the continuous case
can be partitioned as E(7) = |Jpcap(Er(m) Nrelint(F)).

» Lemma 63. Let m be a subadditive function that is piecewise linear over P. Let F € AP. Let (xo,y0) €
Ep(m) CF and let E be the unique face of F containing (xo,yo) in its relative interior. Then E C Ep(w).

We make the following general definition, which is equivalent to the one found in [16, 20].

» Definition 64. In the situation of Lemma 63, we say that the face E is additive.
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Now the following lemma is clear from the definition. [16] only states this fact for the case of continuous .

» Lemma 65. Let w be a subadditive function that is piecewise linear over P. Then the set of additive faces of
is a polyhedral subcomplex of AP, i.e., it is closed under taking subfaces. In particular, each additive face is the
convez hull of some additive vertices (zero-dimensional additive faces).

For a piecewise linear function 7, a finite presentation of the initial moves is easy to compute using the additive
faces of the complex AP. For a detailed explanation of diagrams visualizing the additivities and limit-additivities,
we refer to [16, Sections 4.2-4.3]. See Figure 10 for the moves from one-dimensional additive faces (edges) and
Figure 11 and Figure 12 for the moves from two-dimensional additive faces. In the forthcoming paper [15], we
will give a more detailed description how to compute the finite presentation of the initial moves.

» Remark 66. The zero-dimensional additive faces (i.e., additive vertices) of APp do not give rise to moves
(cf. Remark 15). Instead they will be considered in Section 10 to determine a refinement of Pp for the
decomposition of perturbations.

9.3 Effective perturbations 7

We recall the notion of effective perturbations from Subsection 1.4. An effective perturbation is a function
#: R — R for which there exists an € > 0 such that 7% = 7 & ¢7 are minimal valid functions.
» Remark 67. Let m be a minimal valid function for R¢(R,Z). From (3a), (3c), and (3e) it follows that 0 < w < 1,

+ = 1 4 €7 for some € > 0, where also

so 7 is a bounded function. Now if 7 is an effective perturbation, then m
0 < 7% <1, and so 7 is a bounded function as well.

We note that the space II™ of effective perturbations, introduced in Subsection 1.4, is a vector space.

» Lemma 68. Let 7 be a minimal valid function. The space II™ of effective perturbation functions is a vector
space, a subspace of the space B(R) of bounded functions.

For the case of piecewise linear functions 7 that are continuous from at least one side of the origin, we have
the following regularity theorem for effective perturbations.

» Lemma 69 ([16, Lemma 6.4]). Let w be a piecewise linear minimal valid function that is continuous from the
right at 0 or continuous from the left at 1. If w is continuous on a proper interval I C [0,1], then for any & € II™
we have that 7 is Lipschitz continuous on the interval I.

(This is a strengthening of [8, Theorem 2].)

The purpose of the additive move ensemble is to infer properties of the effective perturbation functions. For
additive moves v|p, it follows from convexity that every effective perturbation 7 respects v|p. In the case of
piecewise linear functions, this extends to limit-additive moves. The following lemma is shown by the proof of
[16, Theorem 6.3], along with [16, Footnote 13] and also by [20, Theorem 3.3] in the case where 7 is two-sided
discontinuous at the origin.

» Lemma 70. Let 7 be a piecewise linear minimal valid function for R¢(R,Z). Let y|p € Q° be an initial move,
where D C (0,1) is an open interval. Then m respects v|p, and every effective perturbation function 7@ € II™
respects | p.

» Corollary 71. Let 7 be a piecewise linear minimal valid function for R¢(R,Z). Then m respects the moves
closure clsemis (Q°). If 7 is continuous from at least one side of the origin, then every effective perturbation
function 7 € II™ also respects the moves closure clsemi(2°).

Proof. Let 7 be a function that satisfies the assumptions in the corollary. Let # € II™ be an effective perturbation.
By Lemma 70, 7 and 7 both respect the initial move ensemble Q°. Recall that dom(92°),im(Q°) C A, and 7
is continuous on A. By Lemma 69, 7 is also continuous on A. By Remark 67, 7 and 7 are bounded functions.
Therefore, ™ and 7 both respect the moves closure clsemi(2°) by Theorem 53. <

9.4 Closed move semigroup generated by Q°, rational case

We have the following theorem.

» Theorem 72 (Finite presentation of the moves closure, rational case). Let m be a piecewise linear function whose
breakpoints are rational, i.e., B C G = %Z for some q € N. Then the moves closure clsemia(Q°) has a finite
presentation (Q°%,C) in reduced form, where (i) the endpoints of all domains and the values t and r of moves
7, pr|p € Q74 lie in G N[0,1], (%) the endpoints of all maximal intervals of all C; € C lie in G N[0, 1].



Robert Hildebrand, Matthias Koppe & Yuan Zhou 29

Proof sketch. We can compute clsemi4(2°) in finitely many steps using a completion-type algorithm that
manipulates finite presentations, maintaining properties (i) and (ii), using only the algebraic and order-theoretic
axioms and (extend ). The initialization is provided by Corollary 12, noting that vertices of additive faces of AP
lie in G x G. There are only finitely many finite presentations satisfying (i) and (ii); this implies the finiteness of
the algorithm. |

We defer all details about such an algorithm, as well as its generalization to non-rational input, to the forthcoming
paper [15].

Instead, in the next section, we assume that a finite presentation (21, C) of the moves closure clsemi (Q°)
is given. Using the finite presentation, we can give a description of the space of effective perturbations.

10 Perturbation space

Let 7: R — R be a minimal valid function. In this section, we work with the following assumptions. (We will
mention them explicitly only in statements of main theorems.)

10.1 Assumptions: Piecewise linear 7, one-sided continuous at 0, finitely presented
moves closure clsemi4 (Q2°)

» Assumption 73. The minimal valid function 7 is piecewise linear (Subsection 9.1) and continuous from at least
one side of the origin.
» Assumption 74. The set B is minimal, i.e., Pp is the coarsest polyhedral complex over which 7 is piecewise
linear.

Let Q° = Q°(7) be the initial additive move ensemble (Section 8) of 7. Recall that A = A(r) is the maximal
open subset of (0,1) on which 7 is continuous.
» Assumption 75. The moves closure clsemi 4 (£2°) has a finite presentation (€2,C) in reduced form (Subsection 6.5).
Thus €2 has finitely many moves and C has finitely many connected covered components Cy, Co, ..., Cy, each
of which is a finite union of proper open intervals. Each v|p €  is maximal in the restriction partial order
of clsemi4 (92°) and is not contained in jmoves(C). Figures 13 (right), 15, and 16 show examples of clsemi (02°)
satisfying Assumption 75.

10.2 Properties of the finitely presented moves closure

Let C := C1UC2U---UCy, denote the open set of points in (0, 1) that are covered. We will refer to the open set
U :=(0,1)\ cl(C) as the set of points in (0, 1) that are uncovered. Let

X :={0}uoCuU{l} ={0}UuoU U{1} (18)
be the set of endpoints of all covered and uncovered intervals. Thus we have the partition [0,1] =CUX UU.

» Example 76. Consider the discontinuous minimal valid function for f = %, defined by

0 ifx=0
m(xr) =91 ifo<az<3
210—xz) if3<az<l

It is provided by the software [21] as m = equiv7_example_1(). Figure 13 shows the two-dimensional polyhedral
complex AP and the moves closure clsemi(22°). The interval C' = (3,1) is covered, U = (0, ) is uncovered. We
have X = {0, %, 1}.

» Example 77. Consider the continuous minimal valid function 7 that is provided as equiv7_example_xyz_2() by
the software [21], shown in Figure 14. Figures 14 and 15 show the additive faces and the moves closure. See the

caption of Figure 15 for a description of C'. We have, according to (18), that X = {0, &4, 1,1 1 2 319 7 "11 11

» Example 78. Consider the minimal valid function 7 that is provided as equiv7_minimal_2_covered_2_uncovered()
by the software [21]; see Figure 16. It has two connected covered components. The set of uncovered points is

U=(%,£)U(%,£)U~-U(%,%). Thus we have X = {0, 12,42, ..., 20 21 1}
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I Figure 13 (Left) Two-dimensional polyhedral complex AP of the one-sided discontinuous minimal
valid function 7 = equiv7_example_1() from Example 76 (blue graph at the left and top borders), where
the additive faces are colored in green. (Right) The graph of the moves closure clsemia (Q2°) of 7. Tt
has a finite presentation by Q = {7o0|(0,1/2), P1/2l(0,1/2)} (blue and red line segments of slopes +1) and

one (maximal) connected covered component C' = (1,1) (the brown square shows C x C). The set
CUX UY U Z of covered points and refined breakpoints is marked in magenta on the left and top
borders.

Recall the two-dimensional polyhedral complex APpg and its additive faces, introduced in Subsection 9.2. Let
V= {pi(z,y) | (z,y) additive vertex of APp, i =1,2,3}N][0,1] (19)

be the set of p1, ps and ps projections (within the fundamental domain) of the zero-dimensional additive faces
(i.e., additive vertices). By Remark 56, the initial move ensemble QY is join-closed. We consider the ensemble
Q0] of moves restricted to U, as defined in Subsection 3.2. By Lemma 7 it is also join-closed and therefore, by
Lemma 6, has a presentation by its maximal elements. It follows from Lemma 65 that its maximal elements have
the following relation to the set V.

» Lemma 79. If 7|4 € Max(Q°|y), then the endpoints a,b lie in VN U or dU.

The following lemma shows the relation between the breakpoints B and the sets U, V. In particular, it implies
that BN C = {, i.e., the connected covered components do not contain any breakpoints under Assumption 74.

» Lemma 80. Let b € BN [0, 1]. Then, the breakpoint b lies in V NU or OU.

Proof. Since (b,0) is an additive vertex of APg, and p;(b,0) = b, we have b € V. We now show that b & C.
Suppose, for the sake of contradiction, that b in contained in some connected covered component C; . Then,
Corollary 26 implies that the function 7 is affine on an open interval containing b, which is a contradiction to
Assumption 74. <

Next we consider the orbit of V N U under €2, which is a finite set by Assumption 75,
QVNU)={~|p(x)|z2€eVNU, x€Dandv|p € N} (20)

In terms of graphs of ensembles, the above set can be rewritten as {y | 3= € V NU such that (z,y) € Gr(2) }.
We define the set Y to be V N U union its orbit under €2,

Y :=(VnU)uQVnu). (21)
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[ Figure 14 The function 7 = equiv7_example_xyz_2() from Example 77 (blue graph at the left and top
borders) and its two-dimensional polyhedral complex AP (solid gray lines), where the additive faces are
colored in green. The refined complex AT is shown with dotted gray lines.

» Lemma 81. We haveY C U.

Proof. Suppose for the sake of contradiction that there is y € Y but y € cl(C). Then, y € Q(V NU). We can
write y as y = y|p(z) where z € VN U, z € D and 7|p € . Under Assumption 75, by Lemma 33 applied to C
and clsemiz (2°), we have that C is invariant under the action of moves from clsemi4 (02°). Since the inverse
move (7|p)~! € Q C clsemia(2°), we obtain that x = (v|p)~1(y) € cl(C). This contradicts = € U. <

» Example 82 (Example 77, continued). In the example shown in Figure 15, we have VN U = {%, %, %, %}
This set is already closed under the action of 2, as p11/12(%) = 1—72 and p11/12(1—52) = % Thus Y =V NU in the
example.

We consider the ensembles |y and y|Q|y of moves restricted and double-restricted to U, as defined in
Subsection 3.2. We have the following results.

» Lemma 83. The move ensemble Q|y satisfies:

a. Qv =vlQu.
b. Q|y is a finite move ensemble.

Proof. It follows directly from Assumption 75. <

» Lemma 84 (Filtration of isemi(Q°|;;) by word length; maximal moves). For k € N, let

QO|Uk: {’}/k|DkO---O’yl|D1 |’yi|Di EQO|U fOT’lSiSk}.
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Figure 15 The function m = equiv7_example_xyz_2() from Example 77 (colored graph at the left and top
borders) and the graph of the moves closure clsemia (Q°) of 7, as computed by the command igp.equiv7_
mode = True; igp.extremality_test(igp.equiv7_example_xyz_2(), True, show_all_perturbations=True). It has
a finite presentation by Q = {70](0,1), p11/12](0,11/12)} (blue and red line segments of slopes £1) and a

set C = {C1,C5,C3} of (maximal) connected covered components C, = (%, 1) (the lavender square

shows C1 x C1), C2 = (0, 57) U (%, 13) (coral), and Cs = (55, 5) U (5,3) U (3,3) U (33, L) (lime). The
set CUB' = CUX UY U Z of covered points and refined breakpoints is marked in magenta on the left
and top borders.

Then Q0! € Q%% C ... and isemi(Q°y) = Uyey Q°0*. For each k € N, the ensemble Q°|y* satisfies
(restrict) and has a presentation by the set Max(Q°|*) of its mazimal elements, which is a finite set. For
V] (a,p) € Max(Q0[%), we have a,b,y(a),y(b) € X UY.

Proof. Because QU satisfies (inv), (cont), and (restrict) by Remark 56, so does its double restriction ¢7|Q2°|; to
the uncovered set U. Clearly, Q°|; is a subset of the moves closure with the finite presentation (£2,C). Since
U N dom(moves(C)) = 0, we have Q°|;; C restrict(Q|y), and hence im(Q°|y) € im(Q2|y). By Lemma 83 (a),
im(Q|y) = im(y|Q|y) € U. Thus, Q°|y = ¢|Q°|y. Recall that Q0| is join-closed and therefore has a presentation
by its maximal elements. We note that the initial move ensemble ¥ is constructed from the additive faces of
APp (see Definitions 54 and 64). By Corollary 57 (see also Figures 11 and 12), a two-dimensional additive face
E gives rise to moves in moves(C), whose domains are outside U. This shows that Q°|¢; only corresponds to the
additive edges of APp (see Figure 10), which are finitely many. Thus, Max(Q°|;) is finite.

Let Max(Q0[p)% = {~+*|pr 00 | p1 | 7| p: € Max(Q°]yy) }, a finite set. Then Max(Q°|*) C Max(Q°|y)k
is finite, and every element of Q°|;/* is the restriction of an element of Max(92°|;/*). The chain of inclusions
0%t € Q2 C ... holds because the idempotents 7o|p for intervals D C U are elements of Q°|.

Last, we prove the claim regarding the endpoints; we actually prove the slightly stronger claim a, b, v(a),y(b) €
OU UY by induction on word length k. Since each Q0|;* satisfies (inv), it suffices to prove a,b € U UY . For
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I Figure 16 Moves closure clsemia(Q2°) for the function from Example 78, m = equiv7_minimal_
2_covered_2_uncovered(). It has two connected covered components (cyan, brown rectangles).

k=1, let v|(ap) € Max(Q°[y!) = Max(Q°|yy). Then, by Lemma 79, cach of the endpoints a, b liesin VNU C Y,
or it lies in OU. Now we proceed by induction. Take v*|(,4) € Max(Q°|y) and 72| (.,q) € Max(Q°[y*71), so
a,b,c,d € QU UY. Then, by (8), v*|(c,a) © 7| (a,p) has domain (a,b) N (v})7((c,d)). If the domain is nonempty,
let 2 be an endpoint of it. If z = a, b, nothing is to show, so assume z € (a,b) and z = (y')~*(y), where y = c or
y=d,soy€dUUY.Buty=~",p(x)€U,soyecY. Then it follows that also z € Y. <

By Assumption 75, all elements of {2 are maximal moves of the moves closure clsemi(2°). Therefore, by
Lemma 8, all elements of |y are maximal moves of clsemia (2°)|y.
After these preliminaries, we are able to state the main theorem.

» Theorem 85 (Structure and generation theorem for finitely presented moves closures). Under Assumption 75, we
have

a. clsemiy (Q°) = extend 4 (clsemis (Q°¢) U clsemia (20]¢) ).
b. Q|y = Max(extend 4 (isemi(Q°|/))).
c. a,b,y(a),v(b) € X UY for any v|(ap) € Qu-

We emphasize that the theorem does not depend on an algorithm to compute the moves closure.

Proof. Part a. Let ' denote the right hand side of the equation in part (a). Clearly, 20 C Q' C clsemia (Q°).
We now show that €’ is a closed move semigroup. By Lemma 83 (a), we have that

clsemia (Q°¢) C restrict(Qr) € moves(U x U);

clsemi 4 (2°]¢) = moves(C) C moves(C x C),



34 Equivariant Perturbation VII

where the open sets U and C' are disjoint. Thus, we have that clsemi (Q°]¢) Uclsemis (Q2°|¢) is a move semigroup,
under Assumption 75. It follows from Lemma 45 that €’ is a move semigroup that satisfies (extend 4). Note that for
any proper open intervals D and I such that moves(D x I) C clsemi (Q°), we have moves(D x I) C clsemia (Q°|¢).
Therefore, ' also satisfies (kaleido). Moreover, (lim) holds by Theorem 40. We conclude that €’ is a closed
move semigroup. Hence, part (a) holds.

Part b. By restricting the moves ensembles on both sides of the equation in part (a) to domain U, we obtain
that

restrict(Q|y) = clsemig (Q°)|y = clsemiz (Q°)¢) (22)
Next, we show that
clsemi4z (QY¢) = extend 4 (isemi(Q°|y/)). (23)

It follows from Lemma 45 that extend 4 (isemi(Q2°|7)) is a move semigroup that satisfies (extend ) (and also
(cont) and (restrict)). Since

extend 4 (isemi(Q°]¢)) € clsemiz (Q°)y) = restrict(Qy), (24)

where the equality follows from (22), and |y is a finite move ensemble by Lemma 83 (b), we obtain that
the move semigroup extend 4 (isemi(2°|7)) also satisfies (kaleido) and (lim). Therefore, extend 4 (isemi(Q°|¢/))
is a closed move semigroup which contains Q°|y;. Since clsemia (Q°|y7) is the smallest closed move semigroup
containing Q°|;7, we have

clsemi4z (Q°)¢) C extend 4 (isemi(Q°|y/)).

Together with (24), we conclude that (23) holds. Since 2 has only maximal moves, (22) and (23) imply the
equation in part (b).

Part c. Let 7|4 € Q|u. By symmetry, it suffices to show that a,b € X UY". Consider 2 = a or x = b. Part (b)
implies that
Q| = Max(extend 4 (jsemi(Q°]1))).

Together with (13), we know that z is the limit of a sequence {27} ;cn, where 27 is an endpoint of the domain
D7 of a move v|p; € Max(jsemi(Q°|y/)). By Lemma 84 and Lemma 5, for any j € N, we have that D7 is a
maximal subinterval of [J{ D | v|p € Uy Max(2°]¢%) }. Thus for every j € N, there exists a sequence {2] }ren
such that each xfﬁ is an endpoint of the domain of a move 'y|D_£ € Max(Q°|%), and xi — 29 as k — co. We
obtain that xﬁ — x as k — oo, where each a:’,z € X UY by Lemma 84. Since X UY is a finite discrete set under
Assumption 75, we obtain that z € X UY. <

10.3 Refined breakpoints B’, complex T

In addition to the finite sets X and Y, we define
7Z :={x|xeU, x=p|p(x) for some reflection move p|p € Q }, (25)

the set of uncovered character conflicts.
» Remark 86. In terms of Gry and Gr_ notations, the set Z is the set of projections of the intersection of the
translation and reflection moves graphs restricted to the uncovered intervals, Z = {z | € U, (z,z) € Gry.(Q) }.

» Example 87 (Example 78, continued). In the example shown in Figure 15, we have Z = {31}

» Theorem 88. Under Assumption 75, the sets X, Y, and Z are closed under the action of all moves from
clsemi 4 (92°).

Proof. Let v|p be a move in clsemis (Q2°), which has a finite presentation (€, C).
Let x € X such that x € D. Since C is invariant under the action of all moves from clsemi4 (2°), we have
that v|p(z) € X.
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Let y € Y such that y € D. By Lemma 81, y € U, so the move 7|p is actually in restrict(§2). It follows
from the definition of Y in equation (21) that y € V N U or there exist x € VN U and +'|p: € Q such that
~'|p(x) = y. In the former case, v|p(y) € LV NU) C Y. In the latter case, we have v|p(y) = v|p o ¥'|p (),
where v|p o y/|ps € restrict(€2). Therefore, v|p(y) € Y.

Let z € Z such that z € D. By definition, z € U and z = p|p/(z) for some reflection move p|p € §2. Let
2" = v|p(z). We have that 2’ € U and 2’ = v|p o p|pr o (v|p) 1 (2"), where v|p o p|pr o (v|p) ™! € restrict(£2).
Therefore, 2’ = v|p(z) € Z. <

Under Assumption 75, the sets X, Y, Z are finite. We then define B’, which is a finite set of points under
Assumption 75, a refined set of breakpoints,

B :=(XUYUZ)+Z. (26)

By Lemma 80, a breakpoint b € BN [0,1] liesin V NU or QU. Since VNU CY and OU C X, we have B C B'.
Hence, the polyhedral complex 7 := Pp/ is a refinement of Pg, so our function 7 is piecewise linear over 7. The
following result shows that each of the p1, ps and p3 projections of any additive vertex of the two-dimensional
polyhedral complex AT is either in B’ or covered by C.

» Theorem 89 (Breakpoint stabilization theorem). Let (z,y) be an additive vertex of AT . Let z =z +y. Then,
x,y,2 € BBU(C+7Z).

Proof. Let F be the unique face of APg such that (z,y) € relint(F). Since (z,y) is an additive vertex of AT,
and A7 is non-negative and affine linear over F', we have that F' is an additive face of APg. Consider ¢t = x,y or
z. By Z-periodicity, we can assume ¢t € [0,1]. To show that ¢ € (B’ N[0, 1]) UC, we distinguish three cases, as
follows. We recall that B'N[0,1]=X UY U Z and U = (0,1) \ cl(C).

Assume that F is a zero-dimensional additive face of APg. Then, (z,y) is an additive vertex of APg, and
thuste V. Ift=0,t=1,ort € cl(C), then t € X UC C B’ UC. Otherwise, t € VNU. Since VNU CY by
Lemma 81, we obtain that t € Y C B’.

Assume that F' is a one-dimensional additive face (say, a horizontal additive edge) of APg. Then, y € B C B’
and the move 7,|p with x € D := int(p; (F)) is in Q°. Since (x,y) is a vertex of AT, at least two of z,y, z are in
B’, and hence at least one of x and z is in B’. Without loss of generality, we assume that x € B’. By Theorem 88,
z =1, p(z) € B’ as well. We showed that x,y,z € B’ in this case. We omit the proof of the cases where F' is a
vertical or diagonal additive edge of APp, which are similar to the above proof.

Assume that F' is a two-dimensional additive face of APpg. Then, by Corollary 57, we have t € C. <

» Remark 90. Theorem 89 is key to our grid-free theory. In the grid case of [3], where B = %Z, the projections
p1: (z,y) = x, pa: (x,y) — gy, and ps3: (z,y) — x + y map all vertices of APp back to the set B. We have
stabilization of breakpoints due to unimodularity. Going to higher dimension (minimal valid functions of several
variables), the piecewise linear functions defined on a standard triangulation of R? studied in [7, 4] also stabilize.
However, the non-existence of triangulations with stabilization for RF k>3 [13] blocks the path for further
generalizations of the approach of [3, 7, 4]. Our Theorem 89 depends on more detailed data of the function than
the group G generated by B. This “dynamic” stabilization result could pave the way to generalizations to higher
dimension.

10.4 Connected uncovered components U;

Define U’ := U \ B’. The interval [0, 1] is partitioned into the set C' of covered points, the set U’ of uncovered
points and the set B’ N[0, 1] of breakpoints of 7. We consider the ensemble Q|y+ of maximal moves restricted to
U’ as defined in Subsection 3.2. Lemma 83 and Theorems 85 and 88 imply the following corollary.

» Corollary 91. Under Assumptions 74 and 75, the move ensemble Q|y+ satisfies that:
a. Q|U/ = U/|Q|U"

b. Q|y is a finite move ensemble.

c. For any v|p € Qv+, cl(D) and cl(v(D)) are faces of T.

We partition the set of uncovered points U’ into the (maximal) connected uncovered components {Uy, ..., U},
as follows.2 A connected uncovered component U; (1 <4 <) is a maximal subset of U’ that is the disjoint

2 This extends the terminology of [3] where connected components are grid-based.
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union of all the uncovered intervals Iy, I, ..., I, C U’ such that any pair of intervals I; and I, (1 < j,k <p) are
connected by a maximal move |7, € Q| with domain I}, and image I; = y(Ij).

» Remark 92. The set Q|ys only has moves v|p whose domain D and image (D) are both contained in the
same U;, for i =1,2,...,1.

Since the function 7 is piecewise linear over 7 and it respects 2|y, we have that 7 is affine linear with the same
slope on the maximal intervals I, I, ..., I, of the same connected uncovered component U;. Since an effective
perturbation 7 € II™ also respects Q|yr, it takes the same shape on the uncovered intervals Iy, Is, ..., I, C U;.
We pick D € {I, I, ..., I,} arbitrarily as the fundamental domain, and write I; = ~;(D) where v;|p € Q|y- for
j=1,2,...,p. Then, the connected uncovered component U; C U’ can be written as U; = |J7;(D).

10.5 Finite-dimensional and equivariant perturbation subspaces
Under Assumption 73, we define the following spaces.
» Definition 93. Define the space of finite-dimensional perturbations that are piecewise linear over T :
17 .= {7 e - | 7 is piecewise linear over T }. (27)
Thus, functions in I:I’TT are allowed to be discontinuous.

» Definition 94. Define the space of equivariant perturbations that vanish on the vertices of T :

zero T—t T—t

<t x>t

M ero(m) ::{ﬁem

7(t) = lim 7 (¢) = lim 7 (¢) = 0, Vt € vert(T) }

We will show in Theorem 100 that all functions in II7

mero(T) 1€ Lipschitz continuous. We will also show that

the space is equivariant under the action of clsemi4 (Q°), in the sense of Subsection 5.1. This will justify the
name.

» Remark 95. In Lemma 68 we showed that the space II™ of effective perturbations is a vector space. The space
II7 of finite-dimensional perturbations and the space H;Tero(T) of equivariant perturbations are vector subspaces
of it.

» Remark 96. The vector spaces ~} and f[;rcm(T) should not be confounded with the vector spaces IZI;E- and

l:[im(T) with prescribed additivities E = { (z,y) | Am(x,y) = 0}, used in [5, Lemma 3.14], where the function =

is assumed to be continuous piecewise linear over T with vert(7) = %Z, g€ N.

10.6 Finite-dimensional linear algebra for 1:[9

Let 71 € ﬁ? be a finite-dimensional perturbation. Note that 77 is a piecewise linear function, and it is uniquely
determined by its values 77 (z) and limits 77 (z7) 1= lmy_ sy 1cq 77 (¢), Tr(ah) = limy_yq 45, T7(t) at the
breakpoints x € B’ + Z = vert(T).

» Lemma 97. A function 77: R — R is a finite-dimensional perturbation, T € ﬁ?, if and only if T is
piecewise linear over T and satisfies the following conditions.
i. 77(0) =0 and 77 (f) =0;
ii. Tr(z) =7r(x+1t) forallz e R, t €Z;
iii. For any additive vertex (x,y) of AT and any face F € AT such that (z,y) € F, Arp(z,y) = 0 implies
A(7r)p(z,y) = 0.

Before we give the proof, we define another space II”*(™7) | following [19]. Recall from Subsection 9.2 the
family of sets Fr (), indexed by faces F' of a polyhedral complex, which capture the set of additivities and
limit-additivities of w. Here we use this family with the refined polyhedral complex AT, considering 7 as a
piecewise linear function on 7.

» Definition 98. For a family E, = {Er}reaT, define the space of perturbation functions with prescribed
additivities and limit-additivities F,,

) 7(0) = 7(f) =0
e ={m:R—=R| Anp(z,y)=0 for (z,y) € Ep, FF € AT
m(x+t)=7(z) forzeR teZ
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Proof of Lemma 97. We consider 7 as piecewise linear over 7, which is a refinement of Pp. Let 7 € l:[} Then
by definition, 77 is also piecewise linear over 7. Since 7 € II™, we have that 77 € [I®, where E, = E, (m,T)
is the family of sets Er(7), indexed by F' € AT. Namely, 777 satisfies the conditions (i), (ii) and

iii’. For any face F' € AT and any (z,y) € F, if Anp(z,y) =0 then A(77)p(z,y) = 0.

The condition (iii’) clearly implies (iii). Thus, we proved the “only if” direction. Now let 77 be a piecewise linear
function over T that satisfies (i)—(iii). Notice that function 7 is subadditive and also piecewise linear over 7.
Hence, the condition (iii) implies (iii’). We obtain that 77 € II¥ | where E, = Eq(m,T). It then follows from
[19, Theorem 3.1] that 7 € ™. Therefore, 77 € II%, we proved the “if” direction. <

Assume that B’ = {z, = 0,2%,...,2,,_,, 2, = 1} and we identify 77 (x) and 77 (z+t) for all t € Z. Lemma 97
shows that (77 (™), 77 (xp), 77 (@ ™), 7y ™), ..., Fr(@l,_, "), ®r(@),_), #7(2),_, 7)) is a solution to the
finite-dimensional linear system defined by (i) and (iii). The interpolation of such a solution gives an effective
perturbation function 7 € ﬁ? We know that (0,0, ...,0) is a trivial solution. If a nontrivial solution exists,
then its interpolation 77 # 0, implying that the function 7 is not extreme.

» Remark 99. In fact, one can reduce the number of variables in the above linear system of equations to solve, by
considering the connected components, as follows. Corollary 71 and (27) imply that 77 is affine linear with the
same slope over all the intervals from a connected covered component C; (i = 1,2,...,k) or from a connected
uncovered component U; (i =1,2,...,1). Let 5{,...,5] and 8}, ..., 3§} denote the corresponding slope variables.

In the discontinuous case, by Lemma 69, using Assumption 73, the perturbation 7 can only be discontinuous
at the points where 7 is discontinuous. Let the variables d; (i=1,2,...,m) denote the changes of the value of
77 at the m discontinuity points of 7. In other words, the variables d; denote jumps 77 () — 77 (2~) when = is
discontinuous at = on the left, or 7 (%) — #7(x) when 7 is discontinuous at = on the right.

Then, for any fixed x € R, the value 77 (x) is uniquely determined by the slope variables §¢ (i =1,2,...,k),
¥ (i =1,2,...,1) and the jump variables d; (i =1,2,...,m). These k + 1+ m < 3n’ variables satisfy the
system of linear equations given by Lemma 97, where (0,0,...,0) is a trivial solution. See [16, Example 7.2] for
a concrete example.

10.7 Equivariant perturbation space szTero(T)

Let Tpero(T) € IZI;TQTO(T) be an equivariant perturbation of . By Corollary 26 (or Corollary 30) and Corollary 71,
Tero(T) 18 affine linear on all covered intervals. By definition, @ero(7)(t) = Tero(7)(t7) = Tpero() (tT) = 0
for every t € vert(7T), and dC C vert(T). Therefore, 7,co(7 is zero on cl(C). If the set of uncovered points
U' =0, then 7,,o(7) = 0. Otherwise, recall from Subsection 10.4 that U’ is partitioned into connected uncovered
components Uy, Us, ..., U;. The following theorem gives the characterization of the projection of a perturbation
T ero(T) ONtO the space of functions with support contained in a connected uncovered component U;.

» Theorem 100 (Characterization of the equivariant perturbations supported on an uncovered component). Suppose
that Assumptions 73, 74 and 75 hold. Let U; = |Jv;(D) be a connected uncovered component, where D is the
fundamental domain for U; and ~;|p € Qv+ (j =1,...,p). Let 7;: R = R be a Z-periodic function such that
7i(x) =0 for x € U;. Then 7; € ﬂ;rero(T) if and only if

i. 7; is Lipschitz continuous on D;

i. 7;(z)=m(x")=m(xz") =0 forz € dD;

iii. 7;(z) = x(v;)7i(yj(z)) forze D, j=1,...,p.

Proof. Let 7; € ﬁ;‘em(T). Since 7 is continuous on D, by Lemma 69, 7; is Lipschitz continuous on R. Hence, the
condition (i) holds. The condition (ii) is clearly satisfied, as #;(z) = #;(z~) = 7; () = 0 for each x € vert(T).
Since 7; respects Q|yr, the condition (iii) also holds.

Conversely, let 7;: R — R be a Z-periodic function such that 7;(z) = 0 for « ¢ U; and the conditions (i)—(iii)
hold. Tt follows from (ii) that 7;(z) = 7; (™) = #;(x™) = 0 for x € dU;. Since 7;(z) = 0 for x & U;, we have

7i(x) = 7i(x7) = 7i(xT) =0 for x € [0,1]\ U; 2 B'UC. (28)

We claim that 7; satisfies all the additivities (including the limits) that 7 has. Indeed, let F' be a face of AT and
let (x,y) € F such that Anp(z,y) = 0. We show that (A7;)r(x,y) = 0 by distinguishing the following three
cases.

a. If (x,y) is an additive vertex of AT, then by Theorem 89 and (28), we have (A7;)r(z,y) = 0.
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Figure 17 (Left) Finite-dimensional perturbation 77 of m = equiv7_example_1() from Example 76.
(Middle-right) Examples of equivariant perturbations 7 ero(7) of 7.

b. If (z,y) is contained in the relative interior of an edge F’ of AT, then F/ C F and F” is an additive face
of AT. Consider the move «|ps associated with F’. We have either D’ and «(D’) C (0,1) \ U;, or D’ and
~v(D") C U;. In the former case, the claim holds because of (28); and in the latter case, the structure of AT
(Theorem 89) implies that v|p € Q|y, and thus (A%;)p(z,y) = 0 by the condition (iii).

c. If (z,y) is contained in the relative interior of a two-dimensional face F’ of AT, then F' = F is a two-
dimensional additive face of AT. We have z,y, (x +y) mod 1 € C, hence the claim follows from (28).

We showed that #; € TI®, where E, = E,(r,T) is the family from the proof of Lemma 97. Then, [19,
Theorem 3.1] implies that 7; € II". Therefore, 7; € H;Tero(T)' <

For i =1,...,1, denote the space of functions 7; as in the theorem by 1:17[} It is independent of the choice of
fundamental domain.

» Theorem 101 (Direct sum decomposition of equivariant perturbations by uncovered components). We have the
= oy, @--- @I, ie., if © € 11, ) then it has a unique decomposition

. . x
direct sum decomposition 11 T o

zero

T=T+7a+- -+ suchthatﬁ'ieﬁ?]i fori=1,...,1L.

Proof. Let 7 € II" .Fori=1,2,...,1, define 7; : R = R, 7;(z) = 7(x) if x € U; and 7;(z) = 0 otherwise.

zero(T)
Then 7 = 1 + 7o + -+ - + 7, where each 7; (1 =1,2,...,1) satisfies the conditions in Theorem 100. |
Each of the component functions 7; (¢ =1,2,...,1) is supported on the connected uncovered component Uj;

and is obtained by choosing an arbitrary Lipschitz continuous template on the fundamental domain D;, then by
extending equivariantly to the other intervals through the moves in Q.

10.8 Decomposition theorem for effective perturbations

The following perturbation decomposition theorem, a generalization of [5, Lemma 3.14] without assuming

7 is continuous and vert(7) = %Z, shows that the effective perturbation space II™ is the direct sum of the

finite-dimensional perturbation space f[} and the equivariant perturbation space f[;rer o(T)"

» Theorem 102 (Perturbation decomposition theorem). Under Assumptions 73, 74 and 75, for every effective
perturbation & € II™, there exist a unique finite-dimensional perturbation 7 € Il and a unique equivariant
perturbation T ,ero(7) € 117 ) such that * = T + Tyero(T)-

zero

Proof. Let 7 € TI™ be an effective perturbation. By [16, Corollary 6.5] , the limits 7(¢t~) and 7(t*) exist for
every t € vert(T). Let @7 be the unique piecewise linear function over T such that 77 (t) = 7 (t), 77 (t7) = 7(¢t7)
and 77 (t1) = 7(t1) for every t € vert(T). Define 7,ep0(7) = T — 7. Note that 77 is the unique piecewise linear
function over T such that Tero(7)(t) = Trero(1)(t7) = Tpero(7) (tT) = 0 for every t € vert(T). It is left to show
that 77, Tyero(T) € .

We first show that 77 € II™, by applying Lemma 97. It suffices to show that 77 satisfies condition (iii)
of Lemma 97. Let (z,y) be an additive vertex of a face FF € AT with Anp(z,y) = 0. By [16, Lemma 6.1] ,
Arp(x,y) = 0 implies that A7p(z,y) = 0. Since (z,y) is an additive vertex of AT, Theorem 89 implies that
x,y,2 € B'UC, where z = (z + y) mod 1. We have 77 (t) = 7(t), 77(t") = #(t") and 77 (tT) = 7(t") for
t =,y or z, and hence A(77)p(z,y) = A7p(z,y) = 0. Therefore, 77 € TI™.

Since the vector space II"™ contains both 7 and 77, we obtain that 7,ero(7) =7 — 77 € . <

» Example 103 (Example 76, continued). For the function in Figure 13, 7 = equiv7_example_1(), the refined

polyhedral complex 7T has vertices B’ = {0, i, %, 1}. The finite-dimensional perturbation space IZI’TT has dimension



Robert Hildebrand, Matthias Koppe & Yuan Zhou 39

| —
W b
ool =
»—Al»—t
[N
—

(2) ' ' ' ‘ \\/f§ 5 i

5 1

12 2

>

19 1
24

(h)

[SURE
=

T
12

oo —
=
==
| =
D] =

Figure 18 Decomposition of the space of effective perturbations for the function from Example 77/104,
7 = equiv7_example_xyz_2(). (a) The function ma. (b—d) basis of the space II7 of finite-dimensional
perturbations. (e—h) representatives of the equivariant perturbation spaces 1:17[}1 for the 4 connected
uncovered components U;.

1 and is spanned by the basic perturbation

0 ifz=0
fr(z)=Sz—1 if0<z<]
0 if 1 <z <1,

see Figure 17 (left). The two intervals I; = (0, 1) and I, = (1, 1) are uncovered, and they are connected through
the move py|(,1/2) in 2. Because there is only one connected uncovered component, the equivariant perturbation
space f[;’ero(T) consists of all Lipschitz continuous functions 7,eo(7 satisfying that @,epq(7)(2) = 0 for z € CUB’

and that 7epo(7)(2) = —Tpero(1)(f — ) for z € U’. See Figure 17 (middle, right) for examples of such functions.

» Example 104 (Example 77, continued). Figure 18 illustrates the decomposition of the space of effective
perturbations.

» Example 105 (Example 78, continued). Figure 19 illustrates the decomposition of the space of effective
perturbations.
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Figure 19 Decomposition of the space of effective perturbations for the function from Example 78/105,
m = equiv7_minimal_2_covered_2_uncovered(). (a) The function 7. (b) finite-dimensional perturbation
7. (¢), (d) examples of equivariant perturbations 71,72 from the direct summands.

11 Relation of the moves closure to the semigroup I"**(II") of respected moves

In this section, still under the assumptions from Subsection 10.1, we establish the relation between clsemi 4 (2°)
and two other move semigroups:

a. the semigroup FresP(fI”) of moves respected by all effective perturbation functions 7,
b. the semigroup I'"P({n} UII™) = I'"**P (7 4 II") of moves respected by 7 and its perturbations.

We already know from Corollary 71 that
clsemi 4 (Q°) C TP (7 + TI™) C TP (IT7). (29)

In the case of an extreme function 7, the space II” of effective perturbations is trivial; and thus, T**P(II7) = TS(R).
More generally, whenever a function 6 is affine on intervals D;, Do, ..., Dy with the same slope, then
moves((Dy U+--UDg) x (DyU---UDy)) CT™P(h). Thus, we have the following:

» Lemma 106. Suppose the space 1:I77‘— of finite-dimensional perturbations is trivial.

a. Let C be the set of covered points. Then moves(C x C') C TTP(II7).
b. Let Dy,...,D; C C be covered intervals on which 7 is affine with the same slope. Then moves((D1 U---U
Dy) x (D1 U---UDy)) CT*esP(r + II7).

» Example 107. Consider the function = = equiv7_example_post_3(), shown in Figure 20. It has 4 connected
covered components (colored slopes in the figure) and 2 connected uncovered components Uy = (2, Z) U (3, 1)
and U = (3,35) U (3%, 8). Its finite-dimensional perturbation space is trivial.

a. From Lemma 106 (a) we see that moves(C' x C') C T*P(I]7).

b. For the smaller semigroup I'**P(7r + II™), we observe that the function 7 is affine with slope 0 on the
intervals D = (%, %) and Dy = (%, %), which belong to separate connected covered components (cyan and
lavender). Because the finite-dimensional perturbation space is trivial, all functions in 7w + II™ take the same
slope on D; and Do, and hence from Lemma 106 (b) we have moves((D; U D3) X (D1 U Dg)) C ISP (7 4 II7).

By continuity, we also have moves((s, 1%) X (15, 15)) € [**P (7 + ).
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Figure 20 Function m = equiv7_example_post_3() from Example 107.

» Remark 108. Suppose the finite-dimensional perturbation space has a positive dimension. Recall its description
using slope variables 8§ (for the connected covered components C;) and §¥ (for the connected uncovered
components U;) from Remark 99. Whenever for some i, j, we have that §§ = §5 holds for all solutions, then
moves((C; U Cj) x (C; U Cy)) CTrP(II™). A similar statement holds for TP (7 + II7).

Consider these move ensembles restricted to the set U of uncovered points in (0,1). We have the following
theorem.

» Theorem 109. Under Assumptions 78, 74, and 75, we have that
clsemia (Q0)|p = TP (7 + IT7) |y = TP (1I7)| . (30)
where U is the set of uncovered points in (0,1).

Proof. We use the notations of the present section. By (29), it suffices to show that if the domain of a move
v|p € T**P(II™) is contained in U, then |p € clsemi4 (Q°).

Recall that we can write an arbitrary connected uncovered component U; in the form of U; = U§=1 v, (D),
where I is the fundamental domain for U;, ;|1 € clsemis(QY), and the open intervals v;(I) are disjoint. As
clsemi 4 (€2Y) is join-closed and extension-closed, by taking sub-moves, it suffices to show that if a move ~|p
satisfies that D C I and the unrestricted move v # «; for all j =1,...,p, then v|p & [resp(I17).

Consider a move y|p where D C I and y # ~; for all j =1, ..., p. There exists a proper open interval D" C D
such that v(D') N~;(D’') =0 for all j =1,...,p. We can construct a perturbation 7 such that
is non-zero and Lipschitz continuous on D’;

(x) =7(z") =7(zT) =0 for z € OD;

ii. () = x(v;)7(v;(x)) forze D', j=1,...,p;and

iv. 7(z) =0 for z ¢ U§:1 v, (D).

Since 7|ps # 0 but 7|, (pry = 0, we have that v|p/ & T"*P(7), and hence v|p ¢ I'"*P(7). By Theorem 100,
T e ﬁ;rem(T) C TI™. Therefore, v|p ¢ T™*P(I1™). We conclude that (30) holds. <

N

N
8

12 Conclusion

12.1 Forthcoming computational companion paper

In the forthcoming paper [15], Part VIII of the series, we will describe a method to compute the moves
closure clsemiq(Q°) for a large class of piecewise linear minimal valid functions, including all functions with
rational breakpoints, for which the moves closure has a finite presentation. The decomposition of the perturbation
space in Section 10 is already algorithmic. Thus we will obtain a grid-free extremality test.

12.2 Limits of the approach of this paper

We now discuss the limitations to the equivariant perturbation theory developed in our series of papers.

For two-sided discontinuous functions, the decomposition of the perturbation spaces breaks down. Theo-
rems 100 and 102 do not hold when the function 7 is discontinuous from both sides of the origin, as the following
example shows.
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Figure 21 (Left) Two-dimensional polyhedral complex AP of a two-sided discontinuous minimal valid
function 7 = minimal_no_covered_interval() (blue graph at the left and top borders) from Example 110,
where the additive faces are colored in green. (Right) The graph of the move ensemble clsemi(Q2°) of
m, where the set C' U B’ = [0,1) \ U’ of covered points and breakpoints are marked in magenta on the
left and top borders.

» Example 110. Consider the minimal valid function 7 = minimal_no_covered_interval() with f = %, defined by

0 ifz=0
() =43 if0<z<jorz<z<l
1 ifcc:%,

which is discontinuous from both sides of the origin.

Observe from Figure 21 that C = 0, B’ = {0, i, %, %, 1} and the connected uncovered components are

Up=(0,3)U(1,%) and Uz = (3,2) U (2,1), where the two intervals in either U; or Us are connected through
the move py(o,5) or prlir,1) in clsemis (2°). Any bounded Z-periodic function 7 satisfying that 7(z) = 0 for
xz € B" and 7(z) = 7(ps(x)) for z € [0,1) is an effective perturbation of 7. For example, define a Z-periodic

function 7 = equiv7_example_2_crazy_perturbation() by

1 ifz €(0,1) such that 2 € G, or
ifx e (i, %) such that x — % € G,
7(x) =4 -1 ifxe (0, %) such that x — % € G, or
if z € (4,1) such that 2 — § € G;
0 otherwise,

where the group G = (1, \/5)2 is dense in R. Then 7 is an effective perturbation of 7, since both 7 + €7 are

minimal valid functions for 0 < e < %.3 Observe that 7 is a highly discontinuous function, which does not have

1
12
Lipschitz continuous; and the limits of an effective perturbation at the breakpoints might not exist. For this
reason, the decomposition of perturbations does not make sense when the function 7 is discontinuous from both

sides of the origin.

a limit at any point in (0, ). Thus, without Assumption 73, an equivariant perturbation is not necessarily

Note that in [20], though an algorithm was presented that checks the effectiveness of a given perturbation
function 7, and a perturbation was constructed for an example function, it was left as an open question how to
construct perturbations in general. This is still open.

3 This positive ¢ is verified by calling find_epsilon_for_crazy_perturbation(r, 7)
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We conjecture that the equivariant perturbation theory also breaks down for the case of non—piecewise linear
functions, such as the fractal functions presented in [1] and [2]. In particular we note that

1. the finite system of equations describing the space of finite-dimensional perturbations would be replaced by a
system of functional equations, for which we have no lemmas available;
2. we expect that the decomposition theorem no longer holds.
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