








4 Equivariant Perturbation VII

If additivity (∆π(x, y) = 0) holds for some (x, y), then by convexity also ∆π̃(x, y) = 0 holds for every effective

perturbation π̃ ∈ Π̃π. This is also true for additivity in the limit [3, Lemma 2.7]; see also [16, Lemma 6.1].

Because π is assumed to be piecewise linear, the inĄnite system of functional equations describing additivity and

limit-additivity of π̃ can be structured (ŞcombinatorializedŤ) according to a certain polyhedral complex [3, 16].

1.5 Finite-dimensional and equivariant perturbations

In Part I of the present series, Basu et al. [3] gave the Ąrst algorithm to decide extremality of a piecewise linear

function with rational breakpoints in some ŞgridŤ (group) G = 1
q
Z.

In a Ąrst step, one tests whether there exists a nontrivial perturbation for π in the Ąnite-dimensional subspace

of Π̃π that consists of the functions interpolate_to_inĄnite_group(π̃♣G), where π̃♣G is an effective perturbation

function for the restriction π♣G to the Ąnite group problem Rf (G,Z).

Otherwise, one may assume that π̃♣G = 0. Under this assumption, the interval lemma forces π̃♣C = 0

for certain directly covered intervals C. Basu et al.Šs crucial observation was that if there are any remaining

uncovered intervals, then one-dimensional families of additivity equations impose a type of symmetry of the

perturbation function. By analyzing the required symmetry, one can construct a perturbation function and prove

nonextremality of π.

Consider the additivity equations

∆π̃(x, t) = π̃(x) + π̃(t) − π̃(x+ t) = 0, for x ∈ D, (5)

where D is a proper interval and t ∈ 1
q
Z is a grid point. Because π̃(t) = 0, this simpliĄes to

π̃(x) = π̃(x+ t) for x ∈ D. (6a)

We then say that π̃ is invariant under the action of the translation τt : x 7→ x + t (restricted to the proper

interval D). Likewise, a second type of one-dimensional families of additivity equations simpliĄes to

π̃(x) = −π̃(r − x) for x ∈ D. (6b)

Here a negative sign comes in. We call ρr : x 7→ r − x a reĆection. By assigning a character χ(τt) = +1 and

χ(ρr) = −1 to the translations and reĆections, we can unify equations (6) as π̃(x) = χ(γ) π̃(γ(x)) for x ∈ D,

where γ is either a translation or a reĆection. We say that π̃ is equivariant under the action of γ.

By analyzing the group Γ of affine transformations of R generated by all relevant translations and reĆections,

Basu et al. constructed a universal template function ψ : R → R, a continuous piecewise linear function with

breakpoints in 1
4q
Z, which is equivariant under the action of the group Γ. Taking

π̃(x) =

{

ψ(x) for x in uncovered intervals,

0 for x in covered intervals
(7)

then gives an effective perturbation function. (A revised construction in Basu et al.Šs survey [6, Section 8.2] gives

a continuous piecewise linear function π̃ with breakpoints in 1
3q
Z.)

1.6 Contributions of the present paper

It has been a long-term research project to develop a complete, grid-free algorithmic theory and software

implementation for piecewise linear minimal valid functions, extending the reach of the grid-based extremality

test introduced in Part I of the series [3], which we described in (1.5) above. While Parts IIŰIV develop a

grid-based theory for 2-row relaxations, Part V of our series [16] returned to the one-row case. It introduced our

software [21] and prepared the grid-free theory with several results. Part VI of the series [20] discussed the case

of piecewise linear functions that are discontinuous on both sides of the origin and have irrational breakpoints.

The present paper, Part VII of the series, and a computational companion paper, Part VIII of the series, are the

culmination of the project for the case of piecewise linear functions of one variable.

1.6.1 Method: Inverse semigroups as the language of partial symmetries

Group actions are the standard language to describe symmetries of mathematical objects. The use of group

actions was fruitful in Part I of our series to obtain the Ąrst algorithm for testing extremality. However, group
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1.6.3 Computational implications: Grid-free algorithms, natural proofs

We only sketch the computational implications of the present paper because we will elaborate on them in our

companion paper. The inverse semigroup theory lays the foundation for grid-free algorithms for minimal valid

functions, including automated extremality tests, which are detached from the Ąnite group problem. A grid-free

test is faster for functions whose breakpoints are rational numbers with huge denominators; and it enables

computations for functions with irrational breakpoints. More importantly, the grid-free algorithms can give

natural extremality proofs, similar to the general proof pattern of extremality proofs in the published literature.

In this way, the grid-free algorithms enable automated extremality proofs for smoothly parameterized families of

extreme functions, as described in [18].

Key to our grid-free algorithm is the breakpoint stabilization theorem (Theorem 89), which allows us to

dynamically determine the set of breakpoints needed for our tests. This result could pave the way to generalizations

in higher dimensions. See Remark 90 for more details.

1.7 Structure of the paper

In Sections 2Ű4, we introduce moves as partial bijections of R. We study ensembles (sets) of such moves, which

can be equipped with both an order-theoretic structure (restriction and continuation) and an algebraic structure

(inverse semigroups). In Section 5 we describe how move ensembles and semigroups describe partial symmetries of

a function by a system of functional equations. Move ensembles for bounded functions have additional properties,

which we explore in Section 6. Then, in Section 7, we study closure properties that capture the additional

properties of move ensembles for continuous functions. This development culminates in the notion of closed move

semigroups in Subsection 7.3.

We then apply this theory to compute the effective perturbation space of a piecewise linear minimal valid

function π. In Section 8, we introduce the initial additive move ensemble Ω0, which describes functional equations

satisĄed by every effective perturbation of π. For piecewise linear functions π, it is related to the additive faces of

a polyhedral complex (Section 9). In Section 10, working with a Ąnite presentation of the closed move semigroup

clsemiA(Ω0) generated by Ω0, we prove the main theorem of the paper, the decomposition theorem for the space

of effective perturbations of π. Finally, in Section 11, under the same assumptions, we establish the precise

relation between clsemiA(Ω0) and semigroups of all moves respected by perturbations.

We end the paper in Section 12 with a discussion of the limitations of our approach and an outlook on the

computational companion paper [15].

2 Translation and reĆection moves. Their algebraic and order-theoretic structure

2.1 Group Γ(R) of unrestricted translations τt and reĆections ρr, character χ

▶ DeĄnition 1. For a point r ∈ R, deĄne the (unrestricted) reĆection ρr : R → R, x 7→ r−x. For a vector t ∈ R,

deĄne the (unrestricted) translation τt : R → R, x 7→ x+ t.

The set Γ(R) = ¶ ρr, τt ♣ r ∈ R, t ∈ R ♢ of all translations and reĆections, with the operations of function

composition ◦ and inverse ·−1, has the structure of a group. It is a subgroup of the group Aff(R) of regular affine

transformations of R.

To denote an element that can be either a translation or a reĆection, we will usually use the letter γ. To recover

whether an element γ is a translation or a reĆection, we assign a character χ(ρr) = −1 to every reĆection and

χ(τt) = +1 to every translation. The map γ 7→ χ(γ) is a group character, i.e., a homomorphism, so compositions

of elements follow the rule χ(γ1 ◦ γ2) = χ(γ1) · χ(γ2).

2.2 Restricted moves γ♣D ∈ Γ⊆(R) as partial bijections of R

As we mentioned in the introduction, compared to [3], where Ąnitely generated subgroups of Γ(R) were used for

the grid-based extremality test algorithm, in this paper we develop a more detailed theory using restricted moves

with domains. Our terminology is based on the monograph [22] on inverse semigroups. We begin by restricting

translations and reĆections γ ∈ Γ(R) to open interval domains D ⊆ R.

▶ DeĄnition 2. Let γ ∈ Γ(R) be a translation or reĆection, and let D ⊆ R be an open interval. The move γ♣D
is the partial function with domain D and image γ(D), deĄned by γ♣D(x) = γ(x) for x ∈ D. The character of
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Table 1 Notation for move ensembles and semigroups

Γ(R) Group of unrestricted translations and reĆections of R 8

τt, ρr translation, reĆection

γ some element

Γ⊆(R) Inverse semigroup of translations, reĆections with domains 8

τt|D translation restricted to open interval D

ρr|D reĆection restricted to open interval D

γ|D unrestricted move restricted to open interval D

Ω A move ensemble: a subset of Γ⊆(R) 10

Ωinv . . . satisfying (inv) 12

Γ A move semigroup: an inverse subsemigroup of Γ⊆(R) 12

Ω⊆, Γ⊆ A move ensemble, or semigroup, satisfying (restrict) 10

Ω∨, Γ∨ . . . satisfying (restrict), (cont) 12

Ω⊠, Γ⊠ . . . satisfying (restrict), (cont), (kaleido) 17

Ω̄, Γ̄ . . . satisfying limit axiom (lim) or (arblim) 19

Ω∨, Γ∨ . . . satisying (extendA)

Ωfin A Ąnite move ensemble
}

Ąnite presentation 17
C Connected covered components

Ωred A reduced Ąnite move ensemble 18

L, M Families of move ensembles 24

Table 2 List of axioms for move ensembles

(comp)











move semigroup

Γ = isemi(Ω)







































joined

semigroup

Γ∨ = jsemi(Ω)



















































































closed move

semigroup

Γ∨ =

clsemiA(Ω)

12

(inv) 12

(restrict)











joined ensemble

Ω∨ = join(Ω)

10

(cont) 10

(kaleido) kaleidoscopic ensemble Ω⊠ 17

(lim), (arblim) limits-closed ensemble Ω̄ = arblim(Ω) 19

(extendA) extended ensemble Ω∨ = extendA(Ω) 22

γ♣D is that of γ. Two moves γ1♣D1
, γ2♣D2

with nonempty open interval domains D1, D2 are equal if γ1 = γ2 and

D1 = D2. A move with a nonempty open interval domain is not equal to a move with an empty domain. We

identify all translations with empty domain and denote this object by τ ♣∅. Likewise, we identify all reĆections

with empty domain and denote this object by ρ♣∅. The empty translation and the empty reĆection are not equal;

they are distinct objects with χ(τ ♣∅) = +1 and χ(ρ♣∅) = −1. Finally, the set of all moves is denoted by Γ⊆(R).

▶ Remark 3. Inverse semigroups of partial homeomorphisms between open subsets of a topological space are

known as pseudogroups [22, Section 1.2]. However, our theory differs in the following ways: (1) We only allow

open intervals (and the empty set) as domains of the partial functions, rather than arbitrary open subsets. The

reason for our choice will become clear in Section 5, where we will use moves to describe systems of functional

equations. (2) Less importantly, we have two empty moves, one for each possible character, rather than a unique

empty move.
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2.3 Graphs of moves

We Ąnd it convenient to describe the graphs of moves. The graph of γ♣D is the set Gr(γ♣D) = ¶ (x, y) ∈ R × R ♣

x ∈ D, γ(x) = y ♢. Figures showing the graphs have already appeared in Figure 2 and Figure 3. To emphasize

that the domains of all moves are open intervals, we decorate the endpoints of the nonempty moves by hollow

circles, indicating that the endpoints are not part of the graphs.

2.4 Restriction partial order ⊆ on moves

The set of all moves comes with a natural partial order. γ1♣D1
is a restriction of γ2♣D2

, denoted γ1♣D1
⊆ γ2♣D2

, if

D1 ⊆ D2, χ(γ1) = χ(γ2), and γ1(x) = γ2(x) for x ∈ D1. Thus, in this partial order, translations and reĆections

are incomparable. We have τ ♣∅ ⊆ τt♣D for all translations and likewise ρ♣∅ ⊆ ρr♣D.

Given γ♣D and an open interval D′ ⊆ D, the restriction of γ♣D to D′ is the move (γ♣D)
∣

∣

D′ = γ♣D′ . Given an

open interval I ′ ⊆ γ(D), the corestriction of γ♣D to I ′ is the move I′

∣

∣(γ♣D) = γ♣D∩γ−1(I′).

2.5 Inverse semigroup structure (Γ⊆(R), ◦, ·−1)

Let γ1♣D1
and γ2♣D2

be two moves. As noted in the introduction, their composition γ2♣D2
◦ γ1♣D1

is deĄned as

γ2 ◦ γ1♣D1∩γ−1

1
(D2) (Figure 2). The domain of this partial bijection is an open interval; so it is again a move. It is

clear that the composition operation ◦ is associative. Hence the moves form a semigroup (Γ⊆(R), ◦).

As we have noted already, a move γ♣D also has a (unique) inverse given by (γ♣D)−1 = γ−1♣γ(D) (Figure 3)

satisfying the laws (9) (Figure 4). Hence the moves form an inverse semigroup (Γ⊆(R), ◦, ·−1). Its idempotent

elements are exactly the partial identities, which are restrictions of the identity translation τ0 to open intervals D.

(The empty translation τ ♣∅ is idempotent. The empty reĆection is not idempotent; we have ρ♣∅ ◦ ρ♣∅ = τ ♣∅.)

The inverse semigroup structure interacts with the restriction partial order (Subsection 2.4) as follows

[22, Proposition 1.1.4]. If γ♣D′ ⊆ γ♣D, then γ♣−1
D′ ⊆ γ♣−1

D ; moreover, this restriction can be expressed as a

composition with an idempotent: γ♣D′ = (γ♣D)
∣

∣

D′ = γ♣D ◦ τ0♣D′ . Finally, if γi♣D′
i

⊆ γi♣Di
for i = 1, 2, then

γ2♣D′
2

◦ γ1♣D′
1

⊆ γ2♣D2
◦ γ1♣D1

.

3 Ensembles Ω of moves

Now we consider move ensembles Ω, i.e., arbitrary subsets of the inverse semigroup Γ⊆(R). We denote elements

by γ♣D, where γ ∈ Γ(R) is an unrestricted move and D is the domain.

3.1 Order-theoretic structure

We shall say that a move ensemble Ω⊆ is restriction-closed if it satisĄes the following axiom.

If γ♣D ∈ Ω⊆ and D′ ⊆ D is an open interval, then γ♣D′ ∈ Ω⊆. (restrict)

(Throughout the paper, a superscript like ⊆ in Ω⊆ indicates an axiom that the set Ω⊆ satisĄes. See Table 1 for an

overview of notation.) For a move ensemble Ω, the restriction closure restrict(Ω) is the smallest restriction-closed

move ensemble containing Ω. It consists of all restrictions of moves of Ω.

▶ Example 4. The inverse semigroup Γ⊆(R) of all restricted translations and reĆections is a restriction-closed

move ensemble.

A move ensemble Ω∨ is said to be (completely) join-closed if it satisĄes (restrict) and the following continuation

condition, which connects overlapping intervals.

If there is a family ΩI = ¶ γ♣I ♣ I ∈ I ♢ ⊆ Ω∨ s.t. D =
⋃

I∈I
I is an open interval, then γ♣D ∈ Ω∨. (cont)

We deĄne the joined ensemble join(Ω) of Ω as the smallest set of moves containing Ω that satisĄes (cont)

and (restrict).

▶ Lemma 5. For a move ensemble Ω, the joined ensemble join(Ω) consists of the following moves.

{

γ♣D

∣

∣

∣ D ⊆
⋃

I∈I

I s.t. γ♣I ∈ Ω for I ∈ I, D open interval
}

. (10)
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Proof. This set clearly satisĄes (cont) and (restrict), i.e., it is join-closed. On the other hand, join(Ω) needs to

contain this set. ◀

For a move ensemble Ω, let Max(Ω) denote the set of maximal elements of Ω in the restriction partial order.

▶ Lemma 6. A join-closed move ensemble Ω∨ is equal to the restriction closure and to the joined ensemble of

its maximal elements in the restriction partial order:

Ω∨ = restrict(Max(Ω∨)) = join(Max(Ω∨)) (11)

Proof. Let γ♣D ∈ Ω∨. Let D = ¶D′ ⊇ D ♣ γ♣D′ ∈ Ω∨ ♢. Let D̄ =
⋃

D, an open interval. Then γ♣D̄ ∈ Ω∨ because

Ω∨ satisĄes (cont). Moreover, γ♣D ⊆ γ♣D̄ ∈ Max(Ω∨) and thus γ♣D ∈ restrict(Max(Ω∨)). The other inclusions

are trivial. ◀

3.2 Move ensembles as set-valued maps R → 2R

Let Ω be a move ensemble and R be a disjoint union of proper open intervals, R =
⋃

R′∈I
R′. The restriction Ω♣R

is the move ensemble consisting of the restrictions γ♣D∩R′ whenever γ♣D ∈ Ω, R′ ∈ I, and D = ∅ or D ∩R′ ̸= ∅.

Similarly, we deĄne the corestriction R♣Ω and the double restriction R♣Ω♣R. In the restrictions, domains of moves

are restricted to subintervals of R. Note that by our deĄnition, the restrictions contain empty moves if and only

if Ω contains empty moves. Therefore we have the following two convenient properties:

▶ Lemma 7. For a move ensemble Ω⊆ that satisĄes (restrict), the restrictions satisfy (restrict), and we have

Ω⊆♣R =
{

γ♣D ∈ Ω⊆
∣

∣ D ⊆ R
}

,

R♣Ω⊆ =
{

γ♣D ∈ Ω⊆
∣

∣ γ(D) ⊆ R
}

,

R♣Ω⊆♣R =
{

γ♣D ∈ Ω⊆
∣

∣ D, γ(D) ⊆ R
}

.

Likewise, restrictions also preserve (cont).

▶ Lemma 8. Let Ωmax = Max(Ω∨), where Ω∨ is a joined ensemble. Then each of the restrictions Ωmax♣R,

R♣Ωmax, and R♣Ωmax♣R consists of the maximal elements of Ω∨♣R, R♣Ω∨, and R♣Ω∨♣R, respectively.

We associate with any x ∈ R a subset Ω(x) of R, deĄned as Ω(x) =
{

γ(x)
∣

∣ γ♣D ∈ Ω, x ∈ D
}

. DeĄne the

domain of a move ensemble Ω as dom(Ω) =
⋃

{

D
∣

∣ γ♣D ∈ Ω for some γ
}

and its image as im(Ω) =
⋃

{

γ(D)
∣

∣

γ♣D ∈ Ω for some γ
}

. In these notions, a move ensemble behaves like a set-valued map Ω: R → 2R. Now if

X ⊆ R is a set, we also deĄne the image of the set under the ensemble, Ω(X) =
{

γ(x)
∣

∣ γ♣D ∈ Ω, x ∈ X ∩D
}

.

3.3 Graphs Gr(Ω), Gr+(Ω), Gr−(Ω) of move ensembles Ω

We introduced graphs of moves in Subsection 2.3. For a move ensemble Ω we deĄne the translation moves graph

Gr+(Ω) =
⋃

{

Gr(γ♣D)
∣

∣ γ♣D ∈ Ω and χ(γ) = 1
}

,

consisting of line segments with slopes +1, and the reĆection moves graph

Gr−(Ω) =
⋃

{

Gr(γ♣D)
∣

∣ γ♣D ∈ Ω and χ(γ) = −1
}

,

consisting of line segments with slopes −1. The graph of Ω is Gr(Ω) = Gr+(Ω) ∪ Gr−(Ω). Further, the character

conĆict graph is Gr±(Ω) = Gr+(Ω) ∩ Gr−(Ω). The map Ω 7→ (Gr+(Ω),Gr−(Ω)) becomes an injection if restricted

to the join-closed move ensembles Ω∨. Hence these pairs of graphs faithfully represent all join-closed move

ensembles. (In Ągures showing these graphs, we superimpose the translation graph (blue) and reĆection graph

(red).)

We can go back from graphs to ensembles using the following notation. Let O ⊆ R
2. We deĄne the (join-closed)

move ensembles

moves+(O) =
{

τt♣D
∣

∣ Gr(τt♣D) ⊆ O, D an open interval
}

,

moves−(O) =
{

ρr♣D
∣

∣ Gr(ρr♣D) ⊆ O, D an open interval
}

,

moves(O) =
{

γ♣D
∣

∣ Gr(γ♣D) ⊆ O, D an open interval
}

.

Thus, moves(O) = moves+(O) ∪ moves−(O).
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4 Inverse semigroups generated by move ensembles

Now we turn to the study of inverse semigroups generated by move ensembles.

4.1 Move semigroups Γ; move semigroups isemi(Ω) generated by ensembles Ω

A move ensemble Γ is said to be a move semigroup (or, an inverse subsemigroup of Γ⊆(R)) if it satisĄes the

following axioms:

γ′♣D′ ◦ γ♣D ∈ Γ for all γ♣D, γ
′♣D′ ∈ Γ, (comp)

(γ♣D)−1 ∈ Γ for all γ♣D ∈ Γ. (inv)

For a move ensemble Ω, the move semigroup isemi(Ω) generated by Ω is the smallest move semigroup

containing Ω. A move semigroup Γ is Ąnitely generated if there exists a Ąnite set Ω such that Γ = isemi(Ω).

Let Ωinv be a move ensemble satisfying (inv). Then isemi(Ωinv) clearly is the set of all Ąnite compositions

γk♣Dk
◦ · · · ◦ γ1♣D1

of moves γi♣Di
∈ Ωinv.

▶ Remark 9. Since the domains of moves in Ω are open intervals, any move γ♣D ∈ isemi(Ω) also has a domain D

that is an open interval. If γ♣D ∈ Ω, then the idempotent (γ♣D)−1 ◦ γ♣D = τ0♣D is an element of isemi(Ω). The

inverse semigroup generated by the empty set is the empty set.

4.2 Move semigroups and joins; joined move semigroups jsemi(Ω) generated by

ensembles Ω

Move semigroups generated by joined ensembles are not automatically join-closed. On the other hand, joining

does preserve the semigroup properties.

▶ Lemma 10. Let Γ be a move semigroup. Then the joined ensemble join(Γ) is a move semigroup. In particular,

for a move ensemble Ω, we have

join(isemi(Ω)) = isemi(join(isemi(Ω))).

Proof. Let γ♣D, γ
′♣D′ ∈ join(Γ). We Ąrst show that join(Γ) satisĄes the axiom (comp). By equation (10), there

exist collections I and I
′ of open intervals, such that D ⊆

⋃

I∈I
I, D′ ⊆

⋃

I′∈I′ I ′, and γ♣I , γ
′♣I′ ∈ Γ for all

I ∈ I, I ′ ∈ I
′. We know that

γ′♣I′ ◦ γ♣I = (γ′ ◦ γ)♣γ−1(I′)∩I ∈ Γ, for all I ∈ I and I ′ ∈ I
′,

since Γ satisĄes (comp), and that

γ−1(D′) ∩D ⊆ γ−1
(

⋃

I′∈I′

I ′
)

∩
(

⋃

I∈I

I
)

=
⋃

I∈I, I′∈I′

(

γ−1(I ′) ∩ I
)

.

Therefore, by equation (10), γ′♣D′ ◦ γ♣D = (γ′ ◦ γ)♣γ−1(D′)∩D ∈ join(Γ).

We will now show that join(Γ) satisĄes axiom (inv). We know that (γ♣I)−1 = γ−1♣γ(I) ∈ Γ for all I ∈ I,

since Γ satisĄes (inv), and that γ(D) ⊆ γ(
⋃

I∈I
I) =

⋃

I∈I
γ(I). Therefore, (γ♣D)−1 = γ−1♣γ(D) ∈ join(Γ). We

conclude that join(Γ) is a move semigroup, so join(Γ) = isemi(join(Γ)). ◀

Let Ω be a move ensemble. Then the joined move semigroup of Ω is deĄned as jsemi(Ω) = join(isemi(Ω)).

4.3 Move semigroups moves(O), moves+(O), moves−(O) generated by connected open

ensembles

Finitely generated inverse semigroups, as deĄned in Subsection 4.1, are not general enough for our purposes. As

we will see later, we need to consider move ensembles Ω whose graphs are open connected sets. They generate

inverse semigroups isemi(Ω) that are not Ąnitely generated. However, they have the following simple structure

(see Figure 5).
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▶ Theorem 11. Let Ω be an ensemble of moves. Let O ⊆ R
2 be a non-empty connected open set. Let D =

dom(O) := dom(moves(O)) and I = im(O) := im(moves(O)).

1. If Gr+(Ω) contains O, then Gr+(isemi(Ω)) contains (D ∪ I) × (D ∪ I).

2. If Gr−(Ω) contains O, then Gr−(isemi(Ω)) contains (D×I)∪ (I×D) and Gr+(Ω) contains (D×D)∪ (I×I).

3. If Gr±(Ω) contains O, then Gr±(isemi(Ω)) contains (D ∪ I) × (D ∪ I).

Proof. Part 2. We show that (2a) Gr−(isemi(Ω)) contains D × I and (2b) Gr+(isemi(Ω)) contains D ×D; the

other two containments of I ×D and I × I follow from the fact that isemi(Ω) is closed under inverse.

Let (x, y), (x′, y′) ∈ O be two arbitrary points in the connected open set O. Since there is a path between (x, y)

and (x′, y′) contained in O, and the path is compact, it is covered by Ąnitely many open ℓ∞-balls O1, . . . , On ⊆ O

with (x1, y1) := (x, y) ∈ O1, (x2, y2) ∈ O1 ∩ O2, . . . , (xn, yn) ∈ On−1 ∩ On and (xn+1, yn+1) := (x′, y′) ∈ On.

Since (x1, y1), (x2, y1), (x2, y2), . . . , (xn, yn), (xn+1, yn), (xn+1, yn+1) ∈ O, there exist ρr1
♣D1

, ρr′
1
♣D′

1
, ρr2

♣D2
, . . . ,

ρrn
♣Dn

, ρr′
n
♣D′

n
and ρrn+1

♣Dn+1
∈ Ω such that ρri

♣Di
(xi) = yi for i = 1, . . . , n + 1 and ρr′

i
♣D′

i
(xi+1) = yi for

i = 1, . . . , n. Notice that the inverse restricted reĆections (ρr′
i
♣D′

i
)
−1 ∈ isemi(Ω) with (ρr′

i
♣D′

i
)
−1

(yi) = xi+1 for

i = 1, . . . , n. We have

x1
ρr1

♣D17−−−−→ y1

(ρr′
1

♣D′
1

)−1

7−−−−−−−→ x2 7→ · · · 7→ yn

(ρr′
n

♣D′
n

)−1

7−−−−−−−→ xn+1

ρrn+1
♣Dn+1

7−−−−−−−−→ yn+1.

The composition of the 2n+ 1 reĆections

ρr♣Dr
:= ρrn+1

♣Dn+1
◦ (ρr′

n
♣D′

n
)
−1 ◦ ρrn

♣Dn
◦ · · · ◦ (ρr′

1
♣D′

1
)−1 ◦ ρr1

♣D1

is a restricted reĆection, satisfying that ρr♣Dr
∈ isemi(Ω) and ρr♣Dr

(x) = y′. Therefore, (2a) holds. The

composition of the 2n reĆections

τt♣Dt
:= (ρr′

n
♣D′

n
)
−1 ◦ ρrn

♣Dn
◦ · · · ◦ (ρr′

1
♣D′

1
)−1 ◦ ρr1

♣D1

is a restricted translation, satisfying that τt♣Dt
∈ isemi(Ω) and τt♣Dt

(x) = x′. Therefore, (2b) holds.

Part 1. It follows exactly the same proof as part 2 using instead restricted translations τt1
♣D1

, τt′
1
♣D′

1
, τt2

♣D2
,

. . . , τtn
♣Dn

, τt′
n
♣D′

n
, τtn+1

♣Dn+1
∈ Ω.

Part 3. Let (x, y), (x′, y′) ∈ O. By part 1 and 2, there exist restricted translation and reĆection τt♣Dt
, ρr♣Dr

∈

isemi(Ω) such that x
τt♣Dt7−−−→ y

ρr♣Dr7−−−−→ x′. The composition ρr♣Dr
◦ τt♣Dt

is a restricted reĆection in isemi(Ω).

Therefore, Gr−(isemi(Ω)) contains D ×D. By part 1, part 2 and the fact that isemi(Ω) is closed under inverse,

we obtain that part 3 holds. ◀

The following corollary sharpens the result.

▶ Corollary 12. Let O ⊆ R
2 be a non-empty connected open set, with D = dom(O) = dom(moves(O)) and

I = im(O) = im(moves(O)).

1. jsemi(moves+(O)) = moves+ ((D ∪ I) × (D ∪ I)) .

2a. jsemi(moves−(O)) = moves−((D × I) ∪ (I ×D)) ∪ moves+((D ×D) ∪ (I × I)), if D ∩ I = ∅.

2b. jsemi(moves−(O)) = moves ((D ∪ I) × (D ∪ I)) , if D ∩ I ̸= ∅.

3. jsemi(moves(O)) = moves ((D ∪ I) × (D ∪ I))

Proof. By applying Theorem 11 (1), (2) and (3) to Ω = moves+(O), Ω = moves−(O) and Ω = moves(O), we

obtain that jsemi(Ω) on the left-hand side of the equation in (1), (2a) and (3) contains the move ensemble on

the right-hand side, respectively. In case (2b) where D ∩ I ̸= ∅, by applying Theorem 11 (2) to Ω = moves−(O),

we have that jsemi(Ω) contains moves ((D ∪ I) × (D ∩ I)). It then follows from Theorem 11 (3) that jsemi(Ω)

contains the right-hand side of (2b), moves ((D ∪ I) × (D ∪ I)). Conversely, the right-hand side of the equation

in each case is a joined move semigroup that contains Ω. Hence, the equality holds. ◀

▶ Remark 13. Theorem 11 suggests to consider the following class of generating ensembles for inverse semigroups.

Take a Ąnite ensemble ΩĄn = ¶γ1♣D1
, . . . , γn♣Dn

♢ together with a Ąnite list of inĄnite ensembles of the form

moves+(Di × Ii), i = n+ 1, . . . , n+m and moves−(Di × Ii), i = n+m+ 1, . . . , n+m+ ℓ, where Di and Ii are

proper open intervals. However, we suppress the details of this. In Section 6, an additional assumption will allow

us to use a more convenient class of generating ensembles.
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5 Ω-equivariant functions

5.1 Spaces of Ω-equivariant functions

Move ensembles encode a system of functional equations as follows.

▶ DeĄnition 14. Let Ω be a move ensemble and let θ : R → R be a function.

a. We say that θ is affinely Ω-equivariant (in short, θ respects Ω) provided that for every γ♣D ∈ Ω there exists a

constant cθ
γ♣D

such that

θ(γ♣D(x)) = χ(γ)θ(x) + cθ
γ♣D

for x ∈ D, (12)

where χ(γ) = ±1 is the character of γ.

b. If all constants cθ
γ♣D

can be chosen to be zero, then we say that θ is Ω-equivariant (or, equivariant under the

action of Ω).

Throughout the paper, we will be working with affinely Ω-equivariant functions. At the very end, in Section 10,

an important space of Ω-equivariant functions will appear.

▶ Remark 15. It now becomes clear why singletons ¶x♢ are not allowed as the domain D of a move. The functional

equation (12) would degenerate to a single equation with an independent constant cθ
γ♣¶x♢

. The equation and the

constant can be eliminated from the system.

Some trivial relations between the constants cθ
γ♣D

are induced by the restriction partial order on moves

(Subsection 2.4). If ∅ ̸= D ⊂ D′, thus γ♣D ⊆ γ♣D′ and D ≠ ∅, then necessarily cθ
γ♣D

= cθ
γ♣D′

. Thus it is natural to

work with restriction-closed ensembles, as deĄned in Section 3.

▶ Lemma 16. For a set Θ of functions, we denote by ΘΩ the set of affinely Ω-equivariant functions in Θ. If Θ

is a vector space, then so is ΘΩ.

Proof. Let θ1, θ2 ∈ Θ and a1, a2 ∈ R. Let θ = a1θ1 + a2θ2. Then θ ∈ Θ. Moreover, let cθ1

γ♣D
for γ♣D ∈ Ω and cθ2

γ♣D

for γ♣D ∈ Ω be the families of constants that satisfy (12) for θ1 and θ2, respectively. Then cθ
γ♣D

= a1c
θ1

γ♣D
+ a2c

θ2

γ♣D

for γ♣D ∈ Ω is a family of constants that satisfy (12) for θ. ◀

5.2 Join-closed semigroup Γresp of moves respected by given functions

▶ DeĄnition 17. For a function θ : dom(θ) → R, we denote the ensemble of moves respected by θ as

Γresp(θ) =
{

γ♣D ∈ Γ⊆(R)
∣

∣ D, γ(D) ⊆ dom(θ), ∃cθ
γ♣D

∈ R s.t. (12) holds
}

.

(Clearly Γresp(θ) is the largest move ensemble that θ respects.) For a set Θ′ of functions, we denote Γresp(Θ′) =
⋂

θ∈Θ′ Γresp(θ).

▶ Theorem 18. Let Ω be a move ensemble. If a function θ respects Ω, then θ respects the joined semigroup

jsemi(Ω).

To prove this, we use the following lemma.

▶ Lemma 19. Let I be a collection of proper open intervals that cover the open interval (l, u). If a function g is

constant over each interval I from the collection I, then g is constant over (l, u).

Proof. Let m = l+u
2 and a = g(m). Consider the interval J = ¶ y ∈ (l,m) ♣ g(x) = a for all x ∈ [y,m] ♢. Since

m is contained in some open interval I ∈ I and g(x) = a for x ∈ I, we know that J is non-empty. Let l′ = inf J .

We now show that l = l′. Suppose that l ≠ l′. Then there exists an open interval I ∈ I such that l′ ∈ I, and g is

constant over I. Since I ∩ J ≠ ∅ and g(x) = a for x ∈ J , we have that g(x) = a for x ∈ I, a contradiction to

l′ = inf J . Hence g(x) = a for all l < x ≤ m. Similarly, one shows that g(x) = a for all m ≤ x < u. Therefore, g

is constant over (l, u). ◀

Proof of Theorem 18. Let γ♣D ∈ jsemi(Ω). Thus, there exists a collection I of proper open intervals, such that

D ⊆
⋃

I∈I
I and γ♣I ∈ isemi(Ω) for each I ∈ I.

DeĄne g(x) = θ(γ(x)) − χ(γ)θ(x) for x ∈ D. We Ąrst show that g is constant over each interval I ∈ I. Let

I ∈ I. Since γ♣I ∈ isemi(Ω), we can write it in the form γ♣I = γk♣Dk
◦ γk−1♣Dk−1

◦ · · · ◦ γ1♣D1
, where γi♣Di

∈ Ω or

(γi♣Di
)−1 ∈ Ω for i = 1, 2, . . . , k. Since θ respects Ω, according to (12), we have that
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a. θ(γi♣Di
(x)) = χ(γi)θ(x) + constant for all x ∈ Di, when γi♣Di

∈ Ω; and

b. θ((γi♣Di
)−1(y)) = χ(γ−1

i )θ(y) + constant for all y ∈ γi(Di), when (γi♣Di
)−1 ∈ Ω.

By using y = γi♣Di
(x) and χ(γi) = χ(γ−1

i ) = ±1, the equation in (b) can be rewritten as that in (a). As a result,

if θ respects a move, then θ also respects its inverse. Let x0 ∈ I and denote xi = γi(xi−1) for i = 1, 2, . . . , k.

Then, xi ∈ Di+1 for i = 0, 1, . . . , k − 1, and xk = γ♣I(x0) = γ(x0). Since θ respects all the moves γi♣Di
, the

equation θ(xi) = χ(γi)θ(xi−1) + cθ
i holds for every i = 1, 2, . . . , k, where the constants cθ

i are independent of the

choice of x0 ∈ I. We also know that χ(γ) = χ(γ1)χ(γ2) . . . χ(γk). Therefore,

g(x0) = θ(γ(x0)) − χ(γ)θ(x0) = θ(xk) − χ(γk)χ(γk−1) . . . χ(γ1)θ(x0) =

k
∑

j=1





k
∏

i=j+1

χ(γi)



 cθ
j

is constant for x0 ∈ I. Then, it follows from Lemma 19 that g is constant over D. ◀

▶ Corollary 20. For a function θ, the ensemble Γresp(θ) deĄned in DeĄnition 17 is a join-closed move semigroup.

The same holds for the ensemble Γresp(Θ′), where Θ′ is a space of functions.

6 Kaleidoscopic joined ensembles and bounded functions. Finite presentations by

moves and components

6.1 CauchyŰPexider functional equation f(x) + g(y) = h(x + y)

Recall from Subsection 5.1 that move ensembles encode systems of functional equations. We now bring a Ąrst

result on functional equations to use. The following result on the CauchyŰPexider functional equation on bounded

domains appeared in [5, Theorem 4.3]. Here we state it for functions of a single real variable. It is a variant of

the GomoryŰJohnson interval lemma, which has been used throughout the extreme functions literature. Note

that it requires a weak assumption regarding the function space. Boundedness is sufficient; see [5] for a more

detailed discussion.

▶ Lemma 21 (Convex additivity domain lemma). Let f, g, h : R → R be bounded functions and let E ⊆ R
2 be open,

convex, and bounded. Suppose that f(x) + g(y) = h(x+ y) for all (x, y) ∈ E. DeĄne the projections p1(x, y) = x,

p2(x, y) = y, p3(x, y) = x + y as functions from R
2 to R. Then f, g, h are affine with the same slopes on the

domains p1(E), p2(E), p3(E), respectively.

6.2 Kaleidoscopic move ensembles

When we are only interested in bounded functions that respect a move ensemble Ω, then it follows from Lemma 21

that we can replace Ω by a move ensemble Ω⊠ with more convenient properties.

▶ Lemma 22. Let θ : R → R be a bounded function. Let D, I ⊆ R be proper open intervals. The following are

equivalent:

1. θ respects moves+(D × I),

2. θ respects moves−(D × I),

3. θ respects moves(D × I),

4. θ is affine on D and I with the same slope.

Proof. We Ąrst show that (1) implies (4). By assumption, the function θ satisĄes equation (12) for all τt♣Dt
,

where t ∈ ¶ y− x ♣ x ∈ D, y ∈ I ♢ and Dt = ¶x ∈ D ♣ x+ t ∈ I ♢. Thus, there exists a function c : I + (−D) → R

such that

θ(x+ t) = θ(x) + c(t) for all (x, x+ t) ∈ D × I.

The function c is bounded because θ is bounded. Then, by Lemma 21 with f = h = θ and g = c, we have that θ

is affine on D and I with the same slope. The proofs that each of (2) and (3) implies (4) are similar; we omit

them.

Now we show that (4) implies (1). Fix t = y − x for some x ∈ D, y ∈ I. Since θ is affine on D and I with

the same slope, there exist scalars a, b, b′ such that θ(x) = a · x + b for all x ∈ D and θ(x) = a · x + b′ for all

x ∈ I. But then for all x ∈ D such that x+ t ∈ I, we have that θ(x+ t) − θ(x) = a · t+ b′ − b, which is constant.

Therefore, θ respects τt♣Dt
. Again the proofs that (4) also implies (2) and (3) are similar and we omit them. ◀
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Motivated by these results, we make the following deĄnitions.

▶ DeĄnition 23. A move ensemble Ω⊠ is a kaleidoscopic joined ensemble if it satisĄes (restrict), (cont), and

the following axiom:

for proper open intervals D, I ⊆ R

moves+(D × I) ⊆ Ω⊠ if and only if moves−(D × I) ⊆ Ω⊠.

(kaleido)

6.3 Covered intervals, connected covered components

▶ DeĄnition 24. For a kaleidoscopic joined ensemble Ω⊠ and a proper open interval D such that moves(D×D) ⊆

Ω⊠, we say that D is a covered interval in Ω⊠.

Let Γ⊠ be a kaleidoscopic joined move semigroup. For two proper open intervals D1, D2, if moves
(

(D1 ∪

D2) × (D1 ∪D2)
)

⊆ Γ⊠, then we say that both D1 and D2 are covered intervals in the same connected covered

component of Γ⊠. (Here the word ŞconnectedŤ does not refer to the topology of R, in contrast to Subsection 4.3.)

It follows from Corollary 12 that this is an equivalence relation. However, we want to deĄne the notion of a

connected covered component also for kaleidoscopic joined ensembles Ω⊠ that are not semigroups. In this case

there is no equivalence relation (transitivity fails), but we still use the word ŞcomponentsŤ in the following

deĄnition.

▶ DeĄnition 25. Let Ω⊠ be a kaleidoscopic joined ensemble. Let C be a non-empty open set such that moves(C×

C) ⊆ Ω⊠. Then C is called a connected covered component of Ω⊠. Any two covered intervals D1, D2 ⊆ C are

said to be connected by the component C.

The connected covered components of Ω⊠ are partially ordered by set inclusion. The maximal elements in

this partial order suffice to describe all covered intervals.

▶ Corollary 26. Let θ be a bounded function. Suppose θ respects a kaleidoscopic joined ensemble Ω⊠. Let C be a

connected covered component of Ω⊠. Then θ is affine on all open intervals in C with a common slope.

Proof. Let D, I ⊆ C be proper open intervals. Then D × I ⊆ C × C, and hence θ respects moves(D × I). By

the equivalence of conditions (3) and (4) of Lemma 22, θ is affine on D and I with the same slope. ◀

(In Section 10, we will also consider connected uncovered components.)

6.4 Presentations by moves ΩĄn and components C = ¶C1, . . . , Ck♢

Now we are prepared to deĄne a convenient Ąnite presentation for a large class of kaleidoscopic joined ensembles,

which we announced in Remark 13.

▶ DeĄnition 27. Take a Ąnite list of connected covered components C = ¶C1, . . . , Ck♢, where each Ci is a Ąnite

union of disjoint proper open intervals. DeĄne

moves(C) =
k

⋃

i=1

moves(Ci × Ci) =
{

γ♣D ∈ Γ⊆(R)
∣

∣ D, γ(D) ⊆ Ci for some i = 1, . . . , k
}

.

The graph Gr(moves(C)) is a union of open rectangles. See Figure 6 for a visualization. We plot the components

with different colors.

Note that any ensemble of the form moves(C) or restrict(ΩĄn)∪moves(C), where ΩĄn is a Ąnite move ensemble,

satisĄes (restrict) and (kaleido), but is not necessarily join-closed. To make a kaleidoscopic joined ensemble, we

use the following.

▶ DeĄnition 28. For any Ąnite move ensemble ΩĄn and a Ąnite list C of connected covered components, deĄne

jmoves(ΩĄn, C) = join(ΩĄn ∪ moves(C)). If ΩĄn = ∅, we simply write jmoves(C).

▶ DeĄnition 29. The ordered pair (ΩĄn, C) is said to be a Ąnite presentation (by moves ΩĄn and components C)

of the kaleidoscopic joined ensemble jmoves(ΩĄn, C).

▶ Corollary 30. Let θ be a bounded function. Suppose θ respects a move ensemble Ω⊠ that has the Ąnite

presentation (ΩĄn, C). Then θ is affine on all intervals in C and shares a common slope on all intervals of each

component Ci of C.
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▶ Theorem 36. Let Ω∨ be a join-closed move ensemble. The following are equivalent:

i. Ω∨ satisĄes (lim).

ii. Ω∨ satisĄes (arblim).

The proof is essentially the same and we omit it.

7.1.1 Respecting limits

▶ Lemma 37 (Limits). Let D be an open interval and let θ be continuous on D. If there exists a sequence γi → γ

such that θ respects γi♣D for all i, then θ also respects γ♣D.

Proof. We prove the lemma for a sequence ti → t such that θ respects the translations τti
♣D for all i. We will

show that θ also respects τt♣D. Since θ is continuous on D, θ is also continuous on τti
(D) for all i. Fix x̄ ∈ D.

Since ti → t, and x̄ ∈ int(D) since D is open, there exists an î such that for all i ≥ î, we have x̄+ t ∈ D + ti.

Hence, for a neighborhood Nx̄ of x̄, θ is continuous in Nx̄ + t. Now, for all x ∈ Nx̄,

θ(x+ t) − θ(x) = lim
ti→t

θ(x+ ti) − θ(x) = lim
i→∞

cθ
τti

♣D
.

Since the limit on the right-hand side is independent of x, we deĄne cθ
τt♣Nx̄

to be this limit. Thus, θ respects

τt♣Nx̄
. Now the connected open set D is covered by the open neighborhoods Nx̄ of each x̄ ∈ D. It follows that

cθ
τt♣Nx̄

= cθ
τt♣N

x̄′
for all x̄, x̄′ ∈ D. Therefore, θ respects τt♣D. Moreover, θ is continuous on τt♣D. The proof for a

sequence of reĆections is the same. ◀

7.1.2 Limit-closed move semigroups

▶ Lemma 38. Let Γ be a move semigroup. Then arblim(Γ) is also a move semigroup.

Proof. It is clear that arblim(Γ) satisĄes (inv), as Γ satisĄes (inv). We now show that arblim(Γ) satisĄes (comp).

Let γ1♣D1
, γ2♣D2

∈ arblim(Γ) such that γ1♣D1
◦ γ2♣D2

is not an empty move. γ1♣D1
and γ2♣D2

are the arblim of

sequences of moves ¶γi
1♣Di

1
♢i∈N and ¶γi

2♣Di
2
♢i∈N in Γ. Since Γ satisĄes (comp), γi♣Di := (γi

1♣Di
1
) ◦ (γi

2♣Di
2
) ∈ Γ for

every i. The arblim of the sequence ¶γi♣Di♢i∈N is γ1♣D1
◦ γ2♣D2

. Thus, we obtain that γ1♣D1
◦ γ2♣D2

∈ arblim(Γ).

This show that arblim(Γ) is a semigroup. ◀

▶ Lemma 39. Let Γ∨ be a join-closed move semigroup. Then join(lim(Γ∨)) = join(arblim(Γ∨)) is a semigroup.

Proof. It follows from Lemma 38, Lemma 10 and Theorem 35. ◀

▶ Theorem 40 (Limits imply components). Let Γ∨ be a join-closed move semigroup. Assume that γ♣D is the

limit move (in the sense of lim or arblim) of a sequence ¶γi♣Di♢i∈N of moves in Γ∨ with γi ≠ γ for every i. Let

I = γ(D). Then the following holds.

1. If γ is a translation, then moves+((D ∪ I) × (D ∪ I)) ⊆ join(lim(Γ∨)).

2. If γ is a reĆection, then moves−((D × I) ∪ (I ×D)),moves+((D ×D) ∪ (I × I)) ⊆ join(lim(Γ∨)).

Proof. Let D = (l, u). If a sequence ¶γi♣Di♢i∈N of moves in Γ∨ with γi ̸= γ converges to γ♣D in the sense of

arblim, then γi♣Di∩(l+ϵ,u−ϵ) → γ♣(l+ϵ,u−ϵ) in the sense of lim for any small ϵ > 0. Thus, it suffices to prove

the statement for a limit move γ♣D in the sense of lim; the statement for arblim follows from Lemma 39 and

continuation.

We Ąrst show that moves+(D × D) ⊆ join(lim(Γ∨)). Let ϵ > 0 be an arbitrary small number. Since

γ♣D is a limit move, there exist γi♣D, γ
j ♣D ∈ Γ∨ in the convergent sequence such that the constant-valued

functions γ − γi and γ − γj have the same sign, and 0 < δ < ϵ, where δ denotes the constant value of

γj − γi. Let D1 = (l, u) ∩ (l − δ, u − δ). We notice that (γi♣D)−1 ◦ γj ♣D = τδ♣D1 when γ is a translation, and

(γj ♣D)−1 ◦ γi♣D = τδ♣D1 when γ is a reĆection. Therefore, τδ♣D1 ∈ Γ∨. Let Dk := (l, u) ∩ (l− kδ, u− kδ) for k ∈ Z.

For k ≥ 1, τkδ♣Dk is the k times composition of τδ♣D1 , hence it is in Γ∨. For k = −1, τ−δ♣D−1 = (τδ♣D1)−1 ∈ Γ∨.

For k ≤ −2, τkδ♣Dk is the −k times composition of τ−δ♣D−1 , and hence is in Γ∨. Finally, for k = 0, we have

(τδ♣D1) ◦ (τ−δ♣D−1), (τ−δ♣D−1) ◦ (τδ♣D1) ∈ Γ∨, so their join τ0♣D0 is also in Γ∨. Therefore, for every k ∈ Z such

that Dk is not empty, we have τkδ♣Dk ∈ Γ∨. By letting ϵ → 0, we obtain that moves+(D ×D) ⊆ join(lim(Γ∨)).

Since γ♣D ∈ lim(Γ∨) ⊆ join(lim(Γ∨)) and join(lim(Γ∨)) is a semigroup by Lemma 39, we have that moves+(D×

I) ⊆ join(lim(Γ∨)) when γ is a translation, and moves−(D × I) ⊆ join(lim(Γ∨)) when γ is a reĆection.

The other two subsets follow from applying the above argument to (γ♣D)−1 instead of γ♣D. ◀
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intervals are disjoint.) Domains of moves of extendA(Ω∨) are all subintervals of (−1, 1). The domains of moves

of 2-extendA(Ω∨) are (−1, 0) and its subintervals and the inĄnite chain ( 1
m
, 1) for m ∈ N and some of its

subintervals; the supremum of the chain, (0, 1) is not an element. Then the domains of maximal moves of

join(2-extendA(Ω∨)) are (−1, 0) and (0, 1). It takes another round of 2-extendA to arrive at extendA(Ω∨).

We have an explicit description of the moves in the extended move ensemble extendA(Ω), similar to Lemma 5

for join(Ω).

▶ Remark 44. For a move ensemble Ω with dom(Ω), im(Ω) ⊆ A, where A ⊆ R is an open set, we have

extendA(Ω) =
{

γ♣D
∣

∣ γ ∈ Γ(R), D open interval, D ⊆ cl(Cγ) ∩A ∩ γ−1(A)
}

, (13)

where Cγ :=
⋃

¶ I ♣ γ♣I ∈ Ω ♢, which is a subset of A ∩ γ−1(A).

7.2.1 Domain extension and semigroups

▶ Lemma 45. Let Γ be a move semigroup with dom(Γ), im(Γ) ⊆ A, where A ⊆ R is an open set. Then extendA(Γ)

is a move semigroup that satisĄes (extendA).

Proof. Since Γ satisĄes (inv), it is clear that extendA(Γ) satisĄes (inv). We now show that extendA(Γ) satisĄes

(comp), too. Let γ1♣D1
, γ2♣D2

∈ extendA(Γ). Let

C1 = Cγ1
=

⋃

¶ I ♣ γ1♣I ∈ Γ ♢ and C2 = Cγ2
=

⋃

¶ I ♣ γ2♣I ∈ Γ ♢.

By equation (13), the open sets D1 and D2 satisfy that

D1 ⊆ cl(C1) ∩A ∩ γ−1
1 (A) and D2 ⊆ cl(C2) ∩A ∩ γ−1

2 (A).

Let γ = γ2 ◦ γ1, C = Cγ =
⋃

¶ I ♣ γ♣I ∈ Γ ♢ and let D = γ−1
1 (D2) ∩D1 be a non-empty open set. We will show

that

D ⊆ cl(C) ∩A ∩ γ−1(A). (14)

It then follows again from (13) that γ2♣D2
◦γ1♣D1

= γ♣D ∈ extendA(Γ), and hence extendA(Γ) is a move semigroup.

It suffices to show (14) for

D1 = int
(

cl(C1) ∩A ∩ γ−1
1 (A)

)

and D2 = int
(

cl(C2) ∩A ∩ γ−1
2 (A)

)

.

We have on the left hand side of (14)

D = γ−1
1 (D2) ∩D1

= int
(

γ−1
1

(

cl(C2)
)

∩ γ−1
1 (A) ∩ γ−1(A)

)

∩ int
(

cl(C1) ∩A ∩ γ−1
1 (A)

)

= int
(

cl(C1)
)

∩ γ−1
1

(

int
(

cl(C2)
))

∩A ∩ γ−1
1 (A) ∩ γ−1(A),

and on the right hand side of (14) cl(C) ∩ A ∩ γ−1(A). Thus, it suffices to prove that if x ∈ int
(

cl(C1)
)

such

that γ1(x) ∈ int
(

cl(C2)
)

, then x ∈ int
(

cl(C)
)

. This holds since Γ satisĄes (comp). ◀

7.2.2 Respecting extensions

▶ Lemma 46 (Extend moves by continuity). Let θ be a function that respects a move ensemble Ω with

dom(Ω), im(Ω) ⊆ A. Then it respects the extended move ensemble extendA(Ω).

Proof. We use the characterization of extendA(Ω) from Remark 44. Let γ ∈ Γ(R) and let Cγ ⊆ A ∩ γ−1(A) be

as in Remark 44. The function x 7→ θ(γ(x)) − χ(γ)θ(x) is constant on the connected components of Cγ and it is

continuous on A ∩ γ−1(A). Then it is constant on the connected components of cl(Cγ) ∩A ∩ γ−1(A). ◀

Applied to the simple case of Lemma 41, we have the following.

▶ Corollary 47. Suppose θ respects the moves γ♣(l,m), γ♣(m,u) with l < m < u and suppose θ is continuous at m,

γ(m). Then θ respects γ♣(l,u).

▶ Remark 48. The assumption regarding continuity at both m and γ(m) cannot be removed, which explains

why we use A ∩ γ−1(A) in (extendA). We illustrate this by the following example. Let A = (0, 2) ∪ (2, 3). Let

γ = τ1 and Ω = ¶γ♣(0,1), γ♣(1,2)♢, so dom(Ω) = (0, 1) ∪ (1, 2) ⊆ A and im(Ω) = (1, 2) ∪ (2, 3) ⊆ A. Then 1 ∈ A,

but γ(1) = 2 /∈ A. DeĄne θ = 0 on A and θ(2) = 1, so it is continuous at 1 but not at γ(1) = 2. Then θ respects

Ω, but it does not respect the move γ♣(0,2).
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7.3 Closed move semigroups, the moves closure clsemiA(Ω)

Now all axioms that we have introduced above come together.

▶ DeĄnition 49. A closed move semigroup is a limits-closed extension-closed kaleidoscopic joined move semigroup,

i.e., a move ensemble that satisĄes the axioms: (comp), (inv), (cont), (restrict), (extendA), (lim), and (kaleido).

▶ DeĄnition 50. Let Ω be a move ensemble with dom(Ω), im(Ω) ⊆ A. We deĄne the closed move semigroup

clsemiA(Ω) generated by Ω (or just moves closure of Ω) to be the smallest (by set inclusion) closed move

semigroup containing Ω.

▶ Lemma 51. Let L be the family of closed move semigroups containing Ω. Then clsemiA(Ω) =
⋂

L =
⋂

Ω′∈L
Ω′.

Proof. First of all,
⋂

L contains Ω. We show that
⋂

L is a closed move semigroup. Note that each axiom is a

closure property of a set Ω′ of the form: For all pairs of moves ensembles (Ω1,Ω2) obtained from the operation

in the axiom (see an example below), if Ω1 ⊆ Ω′, then Ω2 ⊆ Ω′. Now if Ω1 ⊆
⋂

L, then Ω1 ⊆ Ω′ for all Ω′ ∈ L,

and thus Ω2 ⊆ Ω′ for all Ω′ ∈ L. This implies Ω2 ⊆
⋂

L.

For example, we show that
⋂

L satisĄes the axiom (lim) as follows. Let D be an open interval, and let

Ω1 ⊆
⋂

L be an ensemble of moves ¶γi♣D♢i=1,2,... in
⋂

L such that γi → γ as i → ∞. We want to show that

γ♣D ∈
⋂

L. Let Ω2 = ¶γ♣D♢. Since Ω1 ⊆
⋂

L, Ω1 ⊆ Ω′ for all Ω′ ∈ L. Each Ω′ ∈ L is a closed move semigroup,

which satisĄes the axiom (lim) in particular, so Ω2 ⊆ Ω′. This implies Ω2 ⊆
⋂

L.

On the other hand,
⋂

L is contained in each of the ensembles Ω′ ∈ L and is therefore the smallest closed

move semigroup containing Ω. ◀

▶ Remark 52. In contrast to Lemma 10 (regarding (cont) and (restrict) and the axioms of an inverse semigroup),

we do not know whether clsemiA(Ω) can be obtained by applying a Ąnite sequence of closures with respect to

the individual axioms.

▶ Theorem 53 (Main theorem on the moves closure). Suppose θ is bounded and continuous on A. If θ respects a

move ensemble Ω with dom(Ω), im(Ω) ⊆ A, then θ respects the moves closure clsemiA(Ω).

Proof. Let θ♣A denote the restriction of θ to A. We consider the ensemble Γ = Γresp(θ♣A) of moves that θ♣A
respects, introduced in Subsection 5.2. By deĄnition, dom(Γ), im(Γ) ⊆ A. Since, by assumption, θ respects Ω,

we have Γ ⊇ Ω. By Theorem 18, Γ is a join-closed move semigroup. By Lemma 22, because θ♣A is bounded, Γ

satisĄes the axiom (kaleido). Because θ♣A is continuous, we can apply Lemma 37 to all convergent sequences

¶γi♣D♢i∈N ⊆ Γ, and thus Γ satisĄes the axiom (lim). Finally, by Lemma 46, it satisĄes the axiom (extendA).

Hence, Γresp(θ) is a closed move semigroup. By Lemma 51, we conclude that θ respects clsemiA(Ω). ◀

8 The initial additive move ensemble Ω0 of a subadditive function

We will now apply the theory of the previous sections to compute the effective perturbation spaces of minimal

valid functions. Let π : R → R be a minimal valid function. Recall from the introduction that π is nonnegative,

Z-periodic, and satisĄes π(0) = 0, π(f) = 1. Its key property is subadditivity, which we express using the

subadditivity slack function ∆π(x, y) = π(x)+π(y)−π(x+y) as ∆π(x, y) ≥ 0. Moreover, the symmetry condition

∆π(x, f − x) = 0 holds for all x. This is the characterization that appeared in the introduction as (3).

Since π is Z-periodic, we will work with its fundamental domain [0, 1]. For the rest of the paper, we will let

A = A(π) be the maximal open subset of (0, 1) on which π is continuous.

8.1 The initial move ensemble Ω0

We begin by deĄning an ensemble of initial moves Ω0 = Ω0(π) that consists of additive moves and limit additive

moves, together with their inverses and the empty moves. We deĄne these moves γ♣D on domains D that are

open intervals such that the domain D and the image γ(D) are subsets of A .

▶ DeĄnition 54.

i. An additive move is any translation τt♣D, where t ∈ (−1, 1) and D ⊆ A is a proper open interval such that

τt(D) ⊆ A and

∆π(x, t) = π(x) + π(t) − π(x+ t) = 0 ∀x ∈ D



Robert Hildebrand, Matthias Köppe & Yuan Zhou 25

or any reĆection ρr♣D, where r ∈ (0, 2), and D ⊆ A is a proper open interval such that ρr(D) ⊆ A such that

∆π(x, r − x) = π(x) + π(r − x) − π(r) = 0 ∀x ∈ D.

ii. A limit-additive move is any translation τt̄♣D, where t̄ ∈ (−1, 1) and D ⊆ A is a proper open interval such

that τt̄(D) ⊆ A and

lim
t→t̄+

∆π(x, t) = 0 or lim
t→t̄−

∆π(x, t) = 0 ∀x ∈ D

or any reĆection ρr̄♣D, where r̄ ∈ (0, 2), and ρr̄(D) ⊆ A such that

lim
r→r̄+

∆π(x, r − x) = 0 or lim
r→r̄−

∆π(x, r − x) = 0 ∀x ∈ D.

iii. An initial move in Ω0(π) is a move that is either additive or limit-additive, or an inverse of such a move, or

an empty move.

▶ Remark 55. The property of the moves γ♣D ∈ Ω0 that the function π is continuous on the domain D and

image γ(D) will be preserved throughout.

▶ Remark 56. The initial move ensemble Ω0 is join-closed. Therefore, by Lemma 6, it is equal to the restriction

closure of its maximal elements. Moreover, by deĄnition, Ω0 satisĄes (inv). However, Ω0 in general is not a

semigroup.

The function π is affinely Ω0-equivariant (Subsection 5.1), i.e., it respects all moves in Ω0.

8.2 Moves from connected open sets of additivities

We now specialize our results from Subsection 4.3 regarding connected open ensembles to the initial moves.

We have the following corollary. Recall from Subsection 6.1 the projections p1(x, y) = x, p2(x, y) = y, and

p3(x, y) = x+ y as functions from R
2 to R.

▶ Corollary 57. Let E ⊆ R
2 be a connected open set on which π is additive, i.e., ∆π(x, y) = 0 for (x, y) ∈ E.

Let C = p1(E) ∪ p2(E) ∪ p3(E) and assume that C ⊆ A. Then moves(C × C) ⊆ jsemi(Ω0).

See Figure 12 for an illustration. We remark that in [16], the intervals p1(E), p2(E), p3(E) are referred to as

directly covered intervals.

Proof of Corollary 57. Denote Γ∨ = jsemi(Ω0). By Lemma 10, Γ∨ = isemi(Γ∨). We Ąrst show that Gr±(Γ∨)

contains E. Let (x, y) ∈ E. Since E is open, there exists an open interval D ∋ x such that the diagonal segment

¶ (x′, r − x′) ♣ x′ ∈ D ♢ ⊆ E, where r = x + y. By DeĄnition 54, we have ρr♣D ∈ Ω0, with ρr♣D(x) = y. Thus,

(x, y) ∈ Gr−(Γ∨). There exist open intervals Dy ∋ y and Dx ∋ x such that the vertical segment ¶x♢ ×Dy and the

horizontal segment Dx × ¶y♢ are contained in E. Again by DeĄnition 54, we have τy♣Dx
, τx♣Dy

∈ Ω0. Notice that

x
τy♣Dx7−−−−→ (x+ y)

(τx♣Dy )−1

7−−−−−−→ y.

Thus, (x, y) ∈ Gr+(Γ∨). We showed that Gr±(Γ∨) contains E. By Theorem 11 (3), moves((p1(E) ∪ p2(E)) ×

(p1(E) ∪ p2(E))) ⊆ Γ∨.

For any point x+ y ∈ p3(E), where x ∈ p1(E) and y ∈ p2(E), the above translation move τy♣Dx
satisĄes that

τy♣Dx
∈ Ω0 and τy♣Dx

(x) = x+ y. By applying Lemma 33 to C = ¶p1(E) ∪ p2(E)♢ and all such moves τy♣Dx
, we

obtain that moves((p1(E) ∪ p2(E) ∪ p3(E)) × (p1(E) ∪ p2(E) ∪ p3(E))) ⊆ Γ∨. ◀

9 Piecewise linear functions, polyhedral complexes, effective perturbations

We now specialize our theory to the important case of piecewise linear functions. We begin with the basic

deĄnitions and review some tools that were developed in the previous papers of the present series.

9.1 Continuous and discontinuous piecewise linear functions π, complex PB

We begin by giving a deĄnition of Z-periodic piecewise linear functions π : R → R that are allowed to be

discontinuous, following [20]. [16] discusses how these functions are represented in the software [21].
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Now the following lemma is clear from the deĄnition. [16] only states this fact for the case of continuous π.

▶ Lemma 65. Let π be a subadditive function that is piecewise linear over P. Then the set of additive faces of π

is a polyhedral subcomplex of ∆P, i.e., it is closed under taking subfaces. In particular, each additive face is the

convex hull of some additive vertices (zero-dimensional additive faces).

For a piecewise linear function π, a Ąnite presentation of the initial moves is easy to compute using the additive

faces of the complex ∆P . For a detailed explanation of diagrams visualizing the additivities and limit-additivities,

we refer to [16, Sections 4.2Ű4.3]. See Figure 10 for the moves from one-dimensional additive faces (edges) and

Figure 11 and Figure 12 for the moves from two-dimensional additive faces. In the forthcoming paper [15], we

will give a more detailed description how to compute the Ąnite presentation of the initial moves.

▶ Remark 66. The zero-dimensional additive faces (i.e., additive vertices) of ∆PB do not give rise to moves

(cf. Remark 15). Instead they will be considered in Section 10 to determine a reĄnement of PB for the

decomposition of perturbations.

9.3 Effective perturbations π̃

We recall the notion of effective perturbations from Subsection 1.4. An effective perturbation is a function

π̃ : R → R for which there exists an ϵ > 0 such that π± = π ± ϵπ̃ are minimal valid functions.

▶ Remark 67. Let π be a minimal valid function for Rf (R,Z). From (3a), (3c), and (3e) it follows that 0 ≤ π ≤ 1,

so π is a bounded function. Now if π̃ is an effective perturbation, then π± = π ± ϵπ̃ for some ϵ > 0, where also

0 ≤ π± ≤ 1, and so π̃ is a bounded function as well.

We note that the space Π̃π of effective perturbations, introduced in Subsection 1.4, is a vector space.

▶ Lemma 68. Let π be a minimal valid function. The space Π̃π of effective perturbation functions is a vector

space, a subspace of the space B(R) of bounded functions.

For the case of piecewise linear functions π that are continuous from at least one side of the origin, we have

the following regularity theorem for effective perturbations.

▶ Lemma 69 ([16, Lemma 6.4]). Let π be a piecewise linear minimal valid function that is continuous from the

right at 0 or continuous from the left at 1. If π is continuous on a proper interval I ⊆ [0, 1], then for any π̃ ∈ Π̃π

we have that π̃ is Lipschitz continuous on the interval I.

(This is a strengthening of [8, Theorem 2].)

The purpose of the additive move ensemble is to infer properties of the effective perturbation functions. For

additive moves γ♣D, it follows from convexity that every effective perturbation π̃ respects γ♣D. In the case of

piecewise linear functions, this extends to limit-additive moves. The following lemma is shown by the proof of

[16, Theorem 6.3], along with [16, Footnote 13] and also by [20, Theorem 3.3] in the case where π is two-sided

discontinuous at the origin.

▶ Lemma 70. Let π be a piecewise linear minimal valid function for Rf (R,Z). Let γ♣D ∈ Ω0 be an initial move,

where D ⊆ (0, 1) is an open interval. Then π respects γ♣D, and every effective perturbation function π̃ ∈ Π̃π

respects γ♣D.

▶ Corollary 71. Let π be a piecewise linear minimal valid function for Rf (R,Z). Then π respects the moves

closure clsemiA(Ω0). If π is continuous from at least one side of the origin, then every effective perturbation

function π̃ ∈ Π̃π also respects the moves closure clsemiA(Ω0).

Proof. Let π be a function that satisĄes the assumptions in the corollary. Let π̃ ∈ Π̃π be an effective perturbation.

By Lemma 70, π and π̃ both respect the initial move ensemble Ω0. Recall that dom(Ω0), im(Ω0) ⊆ A, and π

is continuous on A. By Lemma 69, π̃ is also continuous on A. By Remark 67, π and π̃ are bounded functions.

Therefore, π and π̃ both respect the moves closure clsemiA(Ω0) by Theorem 53. ◀

9.4 Closed move semigroup generated by Ω0, rational case

We have the following theorem.

▶ Theorem 72 (Finite presentation of the moves closure, rational case). Let π be a piecewise linear function whose

breakpoints are rational, i.e., B ⊆ G = 1
q
Z for some q ∈ N. Then the moves closure clsemiA(Ω0) has a Ąnite

presentation (Ωred, C) in reduced form, where (i) the endpoints of all domains and the values t and r of moves

τt, ρr♣D ∈ Ωred lie in G ∩ [0, 1], (ii) the endpoints of all maximal intervals of all Ci ∈ C lie in G ∩ [0, 1].
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Proof sketch. We can compute clsemiA(Ω0) in Ąnitely many steps using a completion-type algorithm that

manipulates Ąnite presentations, maintaining properties (i) and (ii), using only the algebraic and order-theoretic

axioms and (extendA). The initialization is provided by Corollary 12, noting that vertices of additive faces of ∆P

lie in G×G. There are only Ąnitely many Ąnite presentations satisfying (i) and (ii); this implies the Ąniteness of

the algorithm. ◀

We defer all details about such an algorithm, as well as its generalization to non-rational input, to the forthcoming

paper [15].

Instead, in the next section, we assume that a Ąnite presentation (ΩĄn, C) of the moves closure clsemiA(Ω0)

is given. Using the Ąnite presentation, we can give a description of the space of effective perturbations.

10 Perturbation space

Let π : R → R be a minimal valid function. In this section, we work with the following assumptions. (We will

mention them explicitly only in statements of main theorems.)

10.1 Assumptions: Piecewise linear π, one-sided continuous at 0, Ąnitely presented

moves closure clsemiA(Ω0)

▶ Assumption 73. The minimal valid function π is piecewise linear (Subsection 9.1) and continuous from at least

one side of the origin.

▶ Assumption 74. The set B is minimal, i.e., PB is the coarsest polyhedral complex over which π is piecewise

linear.

Let Ω0 = Ω0(π) be the initial additive move ensemble (Section 8) of π. Recall that A = A(π) is the maximal

open subset of (0, 1) on which π is continuous.

▶ Assumption 75. The moves closure clsemiA(Ω0) has a Ąnite presentation (Ω, C) in reduced form (Subsection 6.5).

Thus Ω has Ąnitely many moves and C has Ąnitely many connected covered components C1, C2, . . . , Ck, each

of which is a Ąnite union of proper open intervals. Each γ♣D ∈ Ω is maximal in the restriction partial order

of clsemiA(Ω0) and is not contained in jmoves(C). Figures 13 (right), 15, and 16 show examples of clsemiA(Ω0)

satisfying Assumption 75.

10.2 Properties of the Ąnitely presented moves closure

Let C := C1 ∪C2 ∪ · · · ∪Ck denote the open set of points in (0, 1) that are covered. We will refer to the open set

U := (0, 1) \ cl(C) as the set of points in (0, 1) that are uncovered. Let

X := ¶0♢ ∪ ∂C ∪ ¶1♢ = ¶0♢ ∪ ∂U ∪ ¶1♢ (18)

be the set of endpoints of all covered and uncovered intervals. Thus we have the partition [0, 1] = C ∪X ∪ U .

▶ Example 76. Consider the discontinuous minimal valid function for f = 1
2 , deĄned by

π(x) =















0 if x = 0
1
2 if 0 < x < 1

2

2(1 − x) if 1
2 ≤ x < 1.

It is provided by the software [21] as π = equiv7_example_1(). Figure 13 shows the two-dimensional polyhedral

complex ∆P and the moves closure clsemiA(Ω0). The interval C = ( 1
2 , 1) is covered, U = (0, 1

2 ) is uncovered. We

have X = ¶0, 1
2 , 1♢.

▶ Example 77. Consider the continuous minimal valid function π that is provided as equiv7_example_xyz_2() by

the software [21], shown in Figure 14. Figures 14 and 15 show the additive faces and the moves closure. See the

caption of Figure 15 for a description of C. We have, according to (18), that X = ¶0, 1
24 ,

1
8 ,

1
6 ,

1
4 ,

2
3 ,

3
4 ,

19
24 ,

7
8 ,

11
12 , 1♢.

▶ Example 78. Consider the minimal valid function π that is provided as equiv7_minimal_2_covered_2_uncovered()

by the software [21]; see Figure 16. It has two connected covered components. The set of uncovered points is

U = ( 12
49 ,

13
49 ) ∪ ( 14

49 ,
15
49 ) ∪ · · · ∪ ( 20

49 ,
21
49 ). Thus we have X = ¶0, 12

49 ,
13
49 , . . . ,

20
49 ,

21
49 , 1♢.
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where the open sets U and C are disjoint. Thus, we have that clsemiA(Ω0♣U )∪clsemiA(Ω0♣C) is a move semigroup,

under Assumption 75. It follows from Lemma 45 that Ω′ is a move semigroup that satisĄes (extendA). Note that for

any proper open intervals D and I such that moves(D×I) ⊆ clsemiA(Ω0), we have moves(D×I) ⊆ clsemiA(Ω0♣C).

Therefore, Ω′ also satisĄes (kaleido). Moreover, (lim) holds by Theorem 40. We conclude that Ω′ is a closed

move semigroup. Hence, part (a) holds.

Part b. By restricting the moves ensembles on both sides of the equation in part (a) to domain U , we obtain

that

restrict(Ω♣U ) = clsemiA(Ω0)♣U = clsemiA(Ω0♣U ) (22)

Next, we show that

clsemiA(Ω0♣U ) = extendA(isemi(Ω0♣U )). (23)

It follows from Lemma 45 that extendA(isemi(Ω0♣U )) is a move semigroup that satisĄes (extendA) (and also

(cont) and (restrict)). Since

extendA(isemi(Ω0♣U )) ⊆ clsemiA(Ω0♣U ) = restrict(Ω♣U ), (24)

where the equality follows from (22), and Ω♣U is a Ąnite move ensemble by Lemma 83 (b), we obtain that

the move semigroup extendA(isemi(Ω0♣U )) also satisĄes (kaleido) and (lim). Therefore, extendA(isemi(Ω0♣U ))

is a closed move semigroup which contains Ω0♣U . Since clsemiA(Ω0♣U ) is the smallest closed move semigroup

containing Ω0♣U , we have

clsemiA(Ω0♣U ) ⊆ extendA(isemi(Ω0♣U )).

Together with (24), we conclude that (23) holds. Since Ω has only maximal moves, (22) and (23) imply the

equation in part (b).

Part c. Let γ♣(a,b) ∈ Ω♣U . By symmetry, it suffices to show that a, b ∈ X ∪ Y . Consider x = a or x = b. Part (b)

implies that

Ω♣U = Max(extendA(jsemi(Ω0♣U ))).

Together with (13), we know that x is the limit of a sequence ¶xj♢j∈N, where xj is an endpoint of the domain

Dj of a move γ♣Dj ∈ Max(jsemi(Ω0♣U )). By Lemma 84 and Lemma 5, for any j ∈ N, we have that Dj is a

maximal subinterval of
⋃

¶D ♣ γ♣D ∈
⋃

k∈N
Max(Ω0♣U

k) ♢. Thus for every j ∈ N, there exists a sequence ¶xj
k♢k∈N

such that each xj
k is an endpoint of the domain of a move γ♣

D
j

k

∈ Max(Ω0♣U
k), and xj

k → xj as k → ∞. We

obtain that xk
k → x as k → ∞, where each xk

k ∈ X ∪ Y by Lemma 84. Since X ∪ Y is a Ąnite discrete set under

Assumption 75, we obtain that x ∈ X ∪ Y . ◀

10.3 ReĄned breakpoints B′, complex T

In addition to the Ąnite sets X and Y , we deĄne

Z := ¶x ♣ x ∈ U, x = ρ♣D(x) for some reĆection move ρ♣D ∈ Ω ♢, (25)

the set of uncovered character conĆicts.

▶ Remark 86. In terms of Gr+ and Gr− notations, the set Z is the set of projections of the intersection of the

translation and reĆection moves graphs restricted to the uncovered intervals, Z = ¶x ♣ x ∈ U, (x, x) ∈ Gr±(Ω) ♢.

▶ Example 87 (Example 78, continued). In the example shown in Figure 15, we have Z = ¶ 11
24 ♢.

▶ Theorem 88. Under Assumption 75, the sets X, Y , and Z are closed under the action of all moves from

clsemiA(Ω0).

Proof. Let γ♣D be a move in clsemiA(Ω0), which has a Ąnite presentation (Ω, C).

Let x ∈ X such that x ∈ D. Since C is invariant under the action of all moves from clsemiA(Ω0), we have

that γ♣D(x) ∈ X.
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Let y ∈ Y such that y ∈ D. By Lemma 81, y ∈ U , so the move γ♣D is actually in restrict(Ω). It follows

from the deĄnition of Y in equation (21) that y ∈ V ∩ U or there exist x ∈ V ∩ U and γ′♣D′ ∈ Ω such that

γ′♣D′(x) = y. In the former case, γ♣D(y) ∈ Ω(V ∩ U) ⊆ Y . In the latter case, we have γ♣D(y) = γ♣D ◦ γ′♣D′(x),

where γ♣D ◦ γ′♣D′ ∈ restrict(Ω). Therefore, γ♣D(y) ∈ Y .

Let z ∈ Z such that z ∈ D. By deĄnition, z ∈ U and z = ρ♣D′(z) for some reĆection move ρ♣D′ ∈ Ω. Let

z′ = γ♣D(z). We have that z′ ∈ U and z′ = γ♣D ◦ ρ♣D′ ◦ (γ♣D)−1(z′), where γ♣D ◦ ρ♣D′ ◦ (γ♣D)−1 ∈ restrict(Ω).

Therefore, z′ = γ♣D(z) ∈ Z. ◀

Under Assumption 75, the sets X, Y , Z are Ąnite. We then deĄne B′, which is a Ąnite set of points under

Assumption 75, a reĄned set of breakpoints,

B′ := (X ∪ Y ∪ Z) + Z. (26)

By Lemma 80, a breakpoint b ∈ B ∩ [0, 1] lies in V ∩ U or ∂U . Since V ∩ U ⊆ Y and ∂U ⊆ X, we have B ⊆ B′.

Hence, the polyhedral complex T := PB′ is a reĄnement of PB , so our function π is piecewise linear over T . The

following result shows that each of the p1, p2 and p3 projections of any additive vertex of the two-dimensional

polyhedral complex ∆T is either in B′ or covered by C.

▶ Theorem 89 (Breakpoint stabilization theorem). Let (x, y) be an additive vertex of ∆T . Let z = x+ y. Then,

x, y, z ∈ B′ ∪ (C + Z).

Proof. Let F be the unique face of ∆PB such that (x, y) ∈ rel int(F ). Since (x, y) is an additive vertex of ∆T ,

and ∆π is non-negative and affine linear over F , we have that F is an additive face of ∆PB . Consider t = x, y or

z. By Z-periodicity, we can assume t ∈ [0, 1]. To show that t ∈ (B′ ∩ [0, 1]) ∪ C, we distinguish three cases, as

follows. We recall that B′ ∩ [0, 1] = X ∪ Y ∪ Z and U = (0, 1) \ cl(C).

Assume that F is a zero-dimensional additive face of ∆PB . Then, (x, y) is an additive vertex of ∆PB , and

thus t ∈ V . If t = 0, t = 1, or t ∈ cl(C), then t ∈ X ∪ C ⊆ B′ ∪ C. Otherwise, t ∈ V ∩ U . Since V ∩ U ⊆ Y by

Lemma 81, we obtain that t ∈ Y ⊆ B′.

Assume that F is a one-dimensional additive face (say, a horizontal additive edge) of ∆PB . Then, y ∈ B ⊆ B′

and the move τy♣D with x ∈ D := int(p1(F )) is in Ω0. Since (x, y) is a vertex of ∆T , at least two of x, y, z are in

B′, and hence at least one of x and z is in B′. Without loss of generality, we assume that x ∈ B′. By Theorem 88,

z = τy♣D(x) ∈ B′ as well. We showed that x, y, z ∈ B′ in this case. We omit the proof of the cases where F is a

vertical or diagonal additive edge of ∆PB , which are similar to the above proof.

Assume that F is a two-dimensional additive face of ∆PB . Then, by Corollary 57, we have t ∈ C. ◀

▶ Remark 90. Theorem 89 is key to our grid-free theory. In the grid case of [3], where B = 1
q
Z, the projections

p1 : (x, y) 7→ x, p2 : (x, y) 7→ y, and p3 : (x, y) 7→ x + y map all vertices of ∆PB back to the set B. We have

stabilization of breakpoints due to unimodularity. Going to higher dimension (minimal valid functions of several

variables), the piecewise linear functions deĄned on a standard triangulation of R2 studied in [7, 4] also stabilize.

However, the non-existence of triangulations with stabilization for R
k, k ≥ 3 [13] blocks the path for further

generalizations of the approach of [3, 7, 4]. Our Theorem 89 depends on more detailed data of the function than

the group G generated by B. This ŞdynamicŤ stabilization result could pave the way to generalizations to higher

dimension.

10.4 Connected uncovered components Ui

DeĄne U ′ := U \B′. The interval [0, 1] is partitioned into the set C of covered points, the set U ′ of uncovered

points and the set B′ ∩ [0, 1] of breakpoints of T . We consider the ensemble Ω♣U ′ of maximal moves restricted to

U ′ as deĄned in Subsection 3.2. Lemma 83 and Theorems 85 and 88 imply the following corollary.

▶ Corollary 91. Under Assumptions 74 and 75, the move ensemble Ω♣U ′ satisĄes that:

a. Ω♣U ′ = U ′ ♣Ω♣U ′ .

b. Ω♣U ′ is a Ąnite move ensemble.

c. For any γ♣D ∈ Ω♣U ′ , cl(D) and cl(γ(D)) are faces of T .

We partition the set of uncovered points U ′ into the (maximal) connected uncovered components ¶U1, . . . , Ul♢,

as follows.2 A connected uncovered component Ui (1 ≤ i ≤ l) is a maximal subset of U ′ that is the disjoint

2 This extends the terminology of [3] where connected components are grid-based.
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union of all the uncovered intervals I1, I2, . . . , Ip ⊆ U ′ such that any pair of intervals Ij and Ik (1 ≤ j, k ≤ p) are

connected by a maximal move γ♣Ik
∈ Ω♣U ′ with domain Ik and image Ij = γ(Ik).

▶ Remark 92. The set Ω♣U ′ only has moves γ♣D whose domain D and image γ(D) are both contained in the

same Ui, for i = 1, 2, . . . , l.

Since the function π is piecewise linear over T and it respects Ω♣U ′ , we have that π is affine linear with the same

slope on the maximal intervals I1, I2, . . . , Ip of the same connected uncovered component Ui. Since an effective

perturbation π̃ ∈ Π̃π also respects Ω♣U ′ , it takes the same shape on the uncovered intervals I1, I2, . . . , Ip ⊆ Ui.

We pick D ∈ ¶I1, I2, . . . , Ip♢ arbitrarily as the fundamental domain, and write Ij = γj(D) where γj ♣D ∈ Ω♣U ′ for

j = 1, 2, . . . , p. Then, the connected uncovered component Ui ⊆ U ′ can be written as Ui =
⋃

γj(D).

10.5 Finite-dimensional and equivariant perturbation subspaces

Under Assumption 73, we deĄne the following spaces.

▶ DeĄnition 93. DeĄne the space of Ąnite-dimensional perturbations that are piecewise linear over T :

Π̃π
T :=

{

π̃ ∈ Π̃π
∣

∣ π̃ is piecewise linear over T
}

. (27)

Thus, functions in Π̃π
T are allowed to be discontinuous.

▶ DeĄnition 94. DeĄne the space of equivariant perturbations that vanish on the vertices of T :

Π̃π
zero(T ) :=

{

π̃ ∈ Π̃π

∣

∣

∣

∣

π̃(t) = lim
x→t
x<t

π̃(t) = lim
x→t
x>t

π̃(t) = 0, ∀t ∈ vert(T )

}

.

We will show in Theorem 100 that all functions in Π̃π
zero(T ) are Lipschitz continuous. We will also show that

the space is equivariant under the action of clsemiA(Ω0), in the sense of Subsection 5.1. This will justify the

name.

▶ Remark 95. In Lemma 68 we showed that the space Π̃π of effective perturbations is a vector space. The space

Π̃π
T of Ąnite-dimensional perturbations and the space Π̃π

zero(T ) of equivariant perturbations are vector subspaces

of it.

▶ Remark 96. The vector spaces Π̃π
T and Π̃π

zero(T ) should not be confounded with the vector spaces Π̄E
T and

Π̄E
zero(T ) with prescribed additivities E = ¶ (x, y) ♣ ∆π(x, y) = 0 ♢, used in [5, Lemma 3.14], where the function π

is assumed to be continuous piecewise linear over T with vert(T ) = 1
q
Z, q ∈ N.

10.6 Finite-dimensional linear algebra for Π̃π

T

Let π̃T ∈ Π̃π
T be a Ąnite-dimensional perturbation. Note that π̃T is a piecewise linear function, and it is uniquely

determined by its values π̃T (x) and limits π̃T (x−) := limt→x,t<x π̃T (t), π̃T (x+) := limt→x,t>x π̃T (t) at the

breakpoints x ∈ B′ + Z = vert(T ).

▶ Lemma 97. A function π̃T : R → R is a Ąnite-dimensional perturbation, π̃T ∈ Π̃π
T , if and only if π̃T is

piecewise linear over T and satisĄes the following conditions.

i. π̃T (0) = 0 and π̃T (f) = 0;

ii. π̃T (x) = π̃T (x+ t) for all x ∈ R, t ∈ Z;

iii. For any additive vertex (x, y) of ∆T and any face F ∈ ∆T such that (x, y) ∈ F , ∆πF (x, y) = 0 implies

∆(π̃T )F (x, y) = 0.

Before we give the proof, we deĄne another space Π̄E•(π,T ), following [19]. Recall from Subsection 9.2 the

family of sets EF (π), indexed by faces F of a polyhedral complex, which capture the set of additivities and

limit-additivities of π. Here we use this family with the reĄned polyhedral complex ∆T , considering π as a

piecewise linear function on T .

▶ DeĄnition 98. For a family E• = ¶EF ♢F ∈∆T , deĄne the space of perturbation functions with prescribed

additivities and limit-additivities E•,

Π̄E• =







π̄ : R → R

∣

∣

∣

∣

∣

∣

π̄(0) = π̄(f) = 0

∆π̄F (x, y) = 0 for (x, y) ∈ EF , F ∈ ∆T

π̄(x+ t) = π̄(x) for x ∈ R, t ∈ Z







.



Robert Hildebrand, Matthias Köppe & Yuan Zhou 37

Proof of Lemma 97. We consider π as piecewise linear over T , which is a reĄnement of PB . Let π̃T ∈ Π̃π
T . Then

by deĄnition, π̃T is also piecewise linear over T . Since π̃T ∈ Π̃π, we have that π̃T ∈ Π̄E• , where E• = E•(π, T )

is the family of sets EF (π), indexed by F ∈ ∆T . Namely, π̃T satisĄes the conditions (i), (ii) and

iii′. For any face F ∈ ∆T and any (x, y) ∈ F , if ∆πF (x, y) = 0 then ∆(π̃T )F (x, y) = 0.

The condition (iii′) clearly implies (iii). Thus, we proved the Şonly ifŤ direction. Now let π̃T be a piecewise linear

function over T that satisĄes (i)Ű(iii). Notice that function π is subadditive and also piecewise linear over T .

Hence, the condition (iii) implies (iii′). We obtain that π̃T ∈ Π̄E• , where E• = E•(π, T ). It then follows from

[19, Theorem 3.1] that π̃T ∈ Π̃π. Therefore, π̃T ∈ Π̃π
T , we proved the ŞifŤ direction. ◀

Assume that B′ = ¶x′
0 = 0, x′

1, . . . , x
′
n′−1, x

′
n = 1♢ and we identify π̃T (x) and π̃T (x+t) for all t ∈ Z. Lemma 97

shows that
(

π̃T (x′
0

−), π̃T (x′
0), π̃T (x′

0
+), π̃T (x′

1
−), . . . , π̃T (x′

n′−1
−), π̃T (x′

n′−1), π̃T (x′
n′−1

+)
)

is a solution to the

Ąnite-dimensional linear system deĄned by (i) and (iii). The interpolation of such a solution gives an effective

perturbation function π̃T ∈ Π̃π
T . We know that (0, 0, . . . , 0) is a trivial solution. If a nontrivial solution exists,

then its interpolation π̃T ̸≡ 0, implying that the function π is not extreme.

▶ Remark 99. In fact, one can reduce the number of variables in the above linear system of equations to solve, by

considering the connected components, as follows. Corollary 71 and (27) imply that π̃T is affine linear with the

same slope over all the intervals from a connected covered component Ci (i = 1, 2, . . . , k) or from a connected

uncovered component Ui (i = 1, 2, . . . , l). Let s̃c
1, . . . , s̃

c
k and s̃u

1 , . . . , s̃
u
l denote the corresponding slope variables.

In the discontinuous case, by Lemma 69, using Assumption 73, the perturbation π̃T can only be discontinuous

at the points where π is discontinuous. Let the variables d̃i (i = 1, 2, . . . ,m) denote the changes of the value of

π̃T at the m discontinuity points of π. In other words, the variables d̃i denote jumps π̃T (x) − π̃T (x−) when π is

discontinuous at x on the left, or π̃T (x+) − π̃T (x) when π is discontinuous at x on the right.

Then, for any Ąxed x ∈ R, the value π̃T (x) is uniquely determined by the slope variables s̃c
i (i = 1, 2, . . . , k),

s̃u
i (i = 1, 2, . . . , l) and the jump variables d̃i (i = 1, 2, . . . ,m). These k + l + m ≤ 3n′ variables satisfy the

system of linear equations given by Lemma 97, where (0, 0, . . . , 0) is a trivial solution. See [16, Example 7.2] for

a concrete example.

10.7 Equivariant perturbation space Π̃π

zero(T )

Let π̃zero(T ) ∈ Π̃π
zero(T ) be an equivariant perturbation of π. By Corollary 26 (or Corollary 30) and Corollary 71,

π̃zero(T ) is affine linear on all covered intervals. By deĄnition, π̃zero(T )(t) = π̃zero(T )(t
−) = π̃zero(T )(t

+) = 0

for every t ∈ vert(T ), and ∂C ⊆ vert(T ). Therefore, π̃zero(T ) is zero on cl(C). If the set of uncovered points

U ′ = ∅, then π̃zero(T ) ≡ 0. Otherwise, recall from Subsection 10.4 that U ′ is partitioned into connected uncovered

components U1, U2, . . . , Ul. The following theorem gives the characterization of the projection of a perturbation

π̃zero(T ) onto the space of functions with support contained in a connected uncovered component Ui.

▶ Theorem 100 (Characterization of the equivariant perturbations supported on an uncovered component). Suppose

that Assumptions 73, 74 and 75 hold. Let Ui =
⋃

γj(D) be a connected uncovered component, where D is the

fundamental domain for Ui and γj ♣D ∈ Ω♣U ′ (j = 1, . . . , p). Let π̃i : R → R be a Z-periodic function such that

π̃i(x) = 0 for x ̸∈ Ui. Then π̃i ∈ Π̃π
zero(T ) if and only if

i. π̃i is Lipschitz continuous on D;

ii. π̃i(x) = π̃i(x
−) = π̃i(x

+) = 0 for x ∈ ∂D;

iii. π̃i(x) = χ(γj)π̃i(γj(x)) for x ∈ D, j = 1, . . . , p.

Proof. Let π̃i ∈ Π̃π
zero(T ). Since π is continuous on D, by Lemma 69, π̃i is Lipschitz continuous on R. Hence, the

condition (i) holds. The condition (ii) is clearly satisĄed, as π̃i(x) = π̃i(x
−) = π̃i(x

+) = 0 for each x ∈ vert(T ).

Since π̃i respects Ω♣U ′ , the condition (iii) also holds.

Conversely, let π̃i : R → R be a Z-periodic function such that π̃i(x) = 0 for x ̸∈ Ui and the conditions (i)Ű(iii)

hold. It follows from (ii) that π̃i(x) = π̃i(x
−) = π̃i(x

+) = 0 for x ∈ ∂Ui. Since π̃i(x) = 0 for x ̸∈ Ui, we have

π̃i(x) = π̃i(x
−) = π̃i(x

+) = 0 for x ∈ [0, 1] \ Ui ⊇ B′ ∪ C. (28)

We claim that π̃i satisĄes all the additivities (including the limits) that π has. Indeed, let F be a face of ∆T and

let (x, y) ∈ F such that ∆πF (x, y) = 0. We show that (∆π̃i)F (x, y) = 0 by distinguishing the following three

cases.

a. If (x, y) is an additive vertex of ∆T , then by Theorem 89 and (28), we have (∆π̃i)F (x, y) = 0.
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We conjecture that the equivariant perturbation theory also breaks down for the case of nonŰpiecewise linear

functions, such as the fractal functions presented in [1] and [2]. In particular we note that

1. the Ąnite system of equations describing the space of Ąnite-dimensional perturbations would be replaced by a

system of functional equations, for which we have no lemmas available;

2. we expect that the decomposition theorem no longer holds.
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