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Abstract—There is great interest in ‘“‘end-to-end” analysis that
captures how innovation at the materials, device, and/or archi-
tectural levels will impact figures of merit at the application-
level. However, there are numerous combinations of devices and
architectures to study, and we must establish systematic ways to
accurately explore and cull a vast design space. We aim to capture
how innovations at the materials/device-level may ultimately
impact figures of merit associated with both existing and emerging
technologies that may be employed for either logic and/or memory.
We will highlight how collaborations with researchers at these
levels of the design hierarchy — as well as efforts to help construct
well-calibrated device models — can in-turn support architectural
design space explorations that will help to identify the most
promising ways to use new technologies to support application-
level workloads of interest. For given compute workloads, we
can then quantitatively assess the potential benefits of technology-
driven architectures to identify the most promising paths forward.
Because of the large number of potentially interesting device-
architecture combinations, it is of the utmost importance to
develop well-calibrated analytical modeling tools to more rapidly
assess the potential value of a given (likely heterogeneous) solution.
We highlight recent efforts and needs in this space.

Index Terms—Emerging logic and memory, cross-layer design;
FeFETs; RRAM; design space explorations; device modeling;
circuit modeling; architectural modeling; application analysis.

I. INTRODUCTION

There is an ever-growing need to build more efficient, higher
performance, and/or denser logic and memory. Representative
challenges include (1) the scale of language generating arti-
ficial intelligence (AI) algorithms, where models like GPT-3
must learn/store 175B parameters [1]; (2) training costs for
foundational models, which are approaching 10%* compute
FLOPS, with training times doubling every 10 months [2];
(3) the computational complexity of homomorphic encryption
for privacy preserving computation, where one ciphertext may
require megabytes of storage, and training for a 7-layer network
may require years on conventional hardware [3].
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When looking toward technology-driven solutions to address
the above challenges, a new device may (1) replace an existing
technology in an existing architecture (e.g., a new, faster,
denser, or more energy efficient memory cell in a traditional
array), or (2) serve as an “enabler” of a new circuit architecture
and/or compute functionality (e.g., a new memory cell that can
natively support an important and/or ubiquitous application-
level compute kernels, thereby obviating the need for less
efficient conventional hardware and/or excessive data transfer).

Fig. 1 illustrates (1) what is ultimately a large and com-
plex design space, in addition to (2) infrastructure needed
to accurately explore it. Numerous research efforts aim to
develop new/enhanced logic and memory devices (Fig. 1A)
that are superior to the existing state-of-the-art (SOA) across
various figures of merit (FOM). Said devices may be used in
support of existing computer architectures (e.g., CPUs, GPUs,
or TPUs in Fig. 1B), and potentially to realize emerging
computer architectures — examples of which include but are
not limited to: in-memory computing (IMC) where memory and
logic are closely coupled to mitigate expensive data transfer;
crossbar arrays to perform efficient matrix-vector multiplication
(MVM); associative memory (AM) arrays for efficient search,
etc. (again see Fig. 1B). For a given application (Fig. 1C),
while some design points may inherently be eliminated (e.g.,
(a) while flash memory is dense, high write latencies make it
ill-suited as main memory for a CPU or GPU, (b) GPUs may
be a better baseline for MVM workloads than a CPU, etc.),
ultimately there are many combinations of devices/architectures
that should be studied to identify the mapping that best meets
the computational needs of a given application. Moreover, for
a given problem different algorithms may also be employed.
Indeed, per Fig. 1D, multi-layer perceptron (MLP) networks,
convolutional neural networks (CNNs), hyperdimensional com-
puting (HDC) models, etc. can all perform a classification task
[4], but the computations associated with said models may be
fundamentally different (e.g., CNNs are dominated by MVMs,
while HDC is search-based), and are thus better supported
by different architectural mappings (e.g., crossbars for MVM
and AMs for search), which in turn are better supported by
different technologies (e.g., two-terminal resistive memories for
crossbars, and three-terminal FeFETs for AMs).
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Fig. 1. Technology-circuit-architecture-algorithm-application design space. There are numerous combinations of devices (A), architectures (B), applications (C),
and algorithmic possibilities (D) to explore. Explorations must be supported by device models (E) and analytical modeling tools (F) among others.

To properly explore this vast design space, cross-stack mod-
eling efforts are essential. More specifically (1) well-calibrated
device models are needed to assess how a given technology may
fare when (a) used to construct logic circuits or memory cells,
and (b) how variations/non-idealities impact the correctness and
fidelity of a circuit or memory cell. Said evaluations will in-turn
inform analysis at the architecture/application-levels where (2)
existing simulation frameworks such as NVSim [5], NeuroSim
[6], etc. may be employed. Among others, questions of interest
include but are not limited to: (a) can algorithmic workloads
be accelerated by technology-enabled circuit solutions — at
iso-accuracy/correctness versus software-based CPU/GPU sys-
tems? and (b) how is memory array performance impacted by
a new (perhaps multi-level) device? Using ferroelectric field
effect transistors (FeFETs) as an example, device modeling
efforts [7] will crosscut studies at the circuit and architectural-
level per Fig. 1E. Finally, as there are numerous combina-
tions of devices, architectures, algorithms, and applications to
consider, (3) a well-validated, analytical modeling/evaluation
infrastructure (Fig. 1F) is necessary to rapidly and accurately
“triage” technology-enabled architectures, and prioritize the
most promising options for more in-depth investigations.

This paper will (1) outline strategies/best practices to effi-
ciently explore a design space like that illustrated in Fig. 1, (2)
identify research needs to accurately accelerate design space
exploration (DSE) efforts, and (3) highlight ways in which the
design automation community can best support said efforts.

After reviewing relevant technology/architecture background
in Sec. II, we will begin by discussing two representative case
studies where technology-enabled architectures are evaluated in

the context of two different machine learning (ML)/AI models
— i.e., HDC algorithms supported by FeFET-based AMs and
crossbar arrays [4] (Sec. III), and few-shot learning models
supported by RRAM-based crossbars that can universally re-
alize MVM for CNNs, hashing, and AM functions that form
the computational workload [8] (Sec. IV). Among others, said
case studies illustrate: (1) how device models may be employed;
(2) the need to assess different aspects of the design stack —
e.g., as degradations from iso-accuracy may stem not just from
device variation, but from architectural-level design constraints
as well; and (3) the need for comprehensive benchmarking
when employing a different algorithmic models (e.g., MLP
versus CNN versus HDC), as well as heterogenous architectural
solutions for said models (e.g., TPU-GPU hybrids) that may ul-
timately represent the ideal baseline/software-based solution. At
a high-level, the presented case studies illustrate what analysis
is needed to determine if industrial investment in a technology-
enabled architecture is justifiable, while simultaneously serving
as motivation for both (i) architectural modeling efforts and
(ii) analytical modeling tools to triage a large design space and
identify the most meaningful/plausible points of comparison for
a technology-driven architectural solution.

Modeling infrastructure that facilitates the evaluation of in-
tegrated, heterogeneous architectures is nascent [9]. Ultimately,
we must (1) capture the utility of technology-driven archi-
tectures (Fig. 1A, B), (2) determine value from architectural
heterogeneity (e.g., the XBar-CAM and GPU-TPU hybrids
considered in case studies presented in Secs. III and IV), and
(3) determine the best architectural solution in the context of
an application-level workload. In this regard, In Sec. V we



highlight two complementary approaches. The first is based on
open hardware modular platforms [10], which offers a path for
the integration of novel technology-enabled solution in systems-
on-chip, in order to prototype them and their derived benefits
from an the standpoint of an entire application. The use of
open hardware modules provides for the reuse of validated
hardware components (processors, memories and peripherals)
surrounding the accelerator itself. They also afford the com-
piler infrastructure to map applications expressed in high-level
languages on to the resulting platforms. A second approach
is based on system simulation [11], which elevates the level
of abstraction to the scale of complex systems and software
stacks comprised of full-fledged operating systems such as
Linux. While systems defined in this way cannot be readily
implemented as integrated circuits, the insights gathered by
system simulation will provide early and valuable insights on
the expected speedup of acceleration, in advance of detailed
hardware design.

Then, in Sec. VI, we discuss ongoing work to develop analyt-
ical modeling tools that can be employed to accelerate/triage the
technology-driven design space exploration efforts captured by
Fig. 1. We will briefly summarize/catalog existing approaches
with respect to conventional memory [12], content addressable
memories [13], crossbars [6], and in-memory computing ar-
chitectures [14]. These tools can identify the most promising
options for deep dives. As before, we present a more detailed
case study with respect to analytical modeling tools for AMs.

The paper concludes with a discussion of (1) top-
down/bottom-up strategies for evaluating the technology-
architectural design space with respect to an application’s
compute needs, and (2) other aspects of the design space that
may be included for evaluations that are of interest to industry.

II. BACKGROUND

For a self-contained discussion, we review device concepts,
IMC architectures, and design tools fundamental to this work.
A. Device Concepts

Ferroelectrics offer unique possibilities for the design of
ultra-dense, low-leakage and fast random access memories
(RAMs). The structure of an FeFET resembles a MOSFET,
except that an additional layer of ferroelectric (FE) oxide is
deposited in the gate stack. Due to the coupling between the
FE and CMOS capacitances, the threshold (turn-on) voltage of a
device can be shifted. This effect can be used to (non-volatilely)
store information in the FeFET. FeFETs can store multiple V;,
levels through partial polarization switching of the FE layer
[4]. Silicon FeFETs require relatively high write voltage pulses,
may have limited write endurance, and a large read-after-write
latency. Low voltage, high speed memory operations with high
write endurance have been demonstrated using back end of line
(BEOL) compatible FeFET devices by eliminating the defective
interlayer between the FE and channel [15]. BEOL FeFETs
are promising for logic-compatible, high-performance on-chip
memories and multi-bit cells for IMC accelerators. FeFETs
could also serve as a solid state synapses for neuromorphic
computing models [16], [17].

RRAM devices can store information non-volatilely [18]. An
RRAM device is comprised of a top and bottom electrode
(TE and BE, respectively), and typically a metal-oxide layer
in between. If a voltage is applied across a given RRAM
cell, resistive switching occurs. The electric field influences the
generation, movement, and recombination of oxygen vacancies
(in valence change RRAM) — which in turn causes conductive
filaments (CFs) to form and rupture in the oxide. Filaments
(or the lack thereof) between the TE and BE result in low (or
high) resistance states (LRS and HRS, respectively). Filament
formation/rupture is referred to as the SET/RESET process.
RRAMs are CMOS compatible, and can be fabricated in the
BEOL. They can also be realized in high-density 3D structures
[19], which can enable monolithic 3D ICs.

B. IMC Architectures

1) Content Addressable Memories (CAMs): In conventional
memory, data is retrieved from a given address. In a CAM, data
is supplied to memory and all entries that best match a provided
query can be returned. Per Fig. 2A, in a CAM, each bit of a
query is XNORed with the corresponding bit of every stored
entry. With a perfect match, the matchline (MaLi) does not dis-
charge as cell matches function as ”open switches”. Mismatches
function as “closed switches” causing the MaL.i to discharge. In
a ternary content addressable memory (TCAM), “don’t care”
states can be stored/searched and cell-level comparisons are
treated as a match regardless of values. Search operations are
performed directly within the memory itself in O(1) time,
eliminating expensive data transfer to a compute unit. CAMs
can compute a distance norm for every entry in the memory
via a single search. By measuring discharge rate, we can
determine a degree of match (or a Hamming distance) between
the query/stored data [20]. Conventional, CMOS CAMs are
volatile, require 16 transistors, occupy a large area and consume
high power [21]. More compact/functional CAMs based on
emerging technologies are desirable. We can classify AMs
according to (1) data representation in a cell (binary, ternary,
multi-bit, analog), and (2) type of match performed.

FeFETs may be advantageous for AMs as they have high
Ion/lopyp ratios, three terminals, and low read voltage. Fig.
2B shows the most compact FeFET AM cell design that was
originally proposed to accomplish exact match (EX), best match
(BE), and threshold match (TH) functions (see Fig. 2C) based
on a HM distance. (Different match types employ different
sensing circuits [22].) The same cell design can also function
as a EX/BE/TH-multi-bit CAM (MCAM) when FeFETs are
programmed to store multiple bits [22], which improves storage
density. The FeFET BE/TH-MCAM can implement sigmoidal
and squared Euclidean (SE) distance functions [22], and has
utility in ML applications as will be discussed in Sec. III. This
design can also function as an EX-analog CAM (ACAM) where
the threshold voltage (V) values in FeFETs define either
upper or lower bounds, and an analog input matches stored
cell data if it is within the bounds defined by the FeFETs [21].
ACAMs can encode more information per cell than MCAMs
but may suffer more from noise and variation effects. Other
FeFET AM cell designs have also been considered for reducing
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Fig. 2. (A) In a CAM, if query and stored data do not match, the matchline is
pulled down; (B) a CAM cell is realized with 2 FeFETs; if there is a mismatch
between the query and stored bit, one FeFET device acts as a closed switch
and discharges the matchline; (C) different types of CAM-based matches; (D)
FeFET crossbar for weight storage and in-memory analog MACs [16]

search latency, lowering search energy, simplifying peripherals,
and/or improving scalability [22].

RRAM is widely used for crossbar type IMC cores including
TCAMs, MCAMs, and ACAMs. There are a variety of RRAM
TCAM designs [23] that support EX match and BE/TH match
based on HM distance. A 6T2R EX-ACAM [24] was proposed
and can directly process analog inputs. This design has high
static power consumption and does not support BE/TH search.
PCM has similar characteristics to RRAM. A PCM EX-TCAM
design [25] can perform BE/TH searches based on HM distance
with appropriate sensing circuits. Flash AM Designs: Floating-
gate MOSFET (flash) is a mature non-volatile memory (NVM)
technology suitable for AM design. EX-TCAM/MCAM designs
based on 3D NAND Flash have been proposed [26]. The same
2-transistor design was implemented in [27] with flash memory
where it can perform EX match and BE/TH match based
on sigmoidal and SE distance functions. However, flash-based
AMs have high write voltages and low endurance.

2) Crossbar Architectures: In NNs/ML, a ubiquitous com-
putation is the multiply and accumulate (MAC) operation (e.g.,
y = >, w;x;) that multiplies weights by inputs. Projections
suggest that the energy to retrieve a weight for a MAC operation
from off-chip memory may be two orders of magnitude higher
than the integer MAC operation itself [28], and co-locating
weight data with logic for MACs is appealing. A resistive
processing unit (RPU) [17] was proposed where analog weight
values are stored locally in crosspoint devices to minimize
data movement during training. A crossbar architecture could
perform extremely efficient, analog MAC operations. With
inputs represented as voltages on horizontal rows, emerging

devices (e.g., RRAM, FeFETs, PCM, etc.) can serve as tunable
resistors with multiple analog states, and the results of MAC
operations are captured by the summation of currents from
crosspoint connections in a given column (see Fig. 2D with
FeFETs). Crossbars support a wide variety of ML models, and
training could be accelerated by >4 orders of magnitude [17].

III. FEFET-BASED HYPERDIMENSIONAL COMPUTING

We first present a case study where we aim to leverage
FeFET-based AMs to support classification tasks via HDC
models [4]. HDC is an emerging neuro-inspired framework
based on the mathematical properties of hyper-dimensional
spaces associated with human cognition and perception. Com-
putational units are hyper-dimensional vectors, called hypervec-
tors (HVs), which are (pseudo-)random, holographic vectors
with independently distributed elements. HDC can learn by
looking at a small number of training images. HDC systems
are comprised of an encoding module (typically MVM) that
maps input data to a high-dimensional space, and an associative
search module that stores encoded data and considers its
similarity with a given query for inference (Fig. 3A).

Technology-enabled hardware may help to accelerate HDC
encoding and search. We consider FeFETs, where one can
“tune” the threshold voltage of the device (Fig. 3B). MVM
operations for encoding can be performed with crossbar arrays
(Fig. 2D) and FeFETs can also be used to perform more
efficient searches/distance calculations by realizing compact,
content addressable memories (CAMs).

Most work with HDC uses GPUs for encoding and search.
Each HV element may have anywhere from 1- to 32-bit
precision (Fig. 3A). For search/inference operations, stored
HVs must be transferred from a computer’s memory to a GPU,
such that a query may be compared to all learned HVs to
identify the best match (e.g., via cosine distance). Per Fig. 3C,
if vector element precision is low (i.e., 1 or 2 bits) classification
accuracy drops. That said, software-hardware co-design efforts
suggest that 3-to-4 bit vector element precision can be sufficient
to match the accuracy of higher precision vector elements.

This analysis illustrates how technology-enabled compute
architectures may support emerging compute workloads such
as HDC. FeFETs can enable CAM cells that store multiple bits
of information, thereby addressing an algorithmic need for iso-
accuracy HDC workloads. This insight motivated experimental
efforts where multi-bit, FeFET CAM cells were demonstrated.
Fig. 3D illustrates how a CAM cell that stores 3-bits (8-states)
conducts current as input voltage deviates from programmed
cell state. If the query matches the stored state, neither transistor
turns on, and the matchline that connects the transistors in
the CAM cell will remain charged (low conductance point,
Fig. 3D). As the query deviates from the stored value, the
conductance of the CAM cell increases quadratically, and can
mimic the Euclidean squared distance function, which in-turn
can serve as a proxy for the Euclidean distance function [29]
commonly employed in many ML algorithms. That said, while
technology-enabled solutions may naturally implement key
steps of an ML model (e.g., search) they may also change an
existing algorithm (cosine vs. Euclidean distance) and designers
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Fig. 3. ”End-to-end” Hyperdimensional computing case study — see detailed descriptions of parts (A)-(H) in narrative.

will need to evaluate how new distance functions impact
algorithmic accuracy.

Of course, the ultimate utility of a device-driven solution lies
in how frequently a compute kernel can actually be used (i.e.,
Amdahl’s Law), and algorithmic workloads/runtimes must be
carefully studied. Per Fig. 3E (at least for HDC models), search
operations for different datasets can represent a substantial
portion of end-to-end compute time, and as such, technology-
driven solutions could have substantial application-level impact.

This case study has assumed that a HV (~1K-10K HV ele-

ments) can be compared against all stored HVs “in aggregate.”
When considering hardware implementations, a single CAM
array with even 1K columns is not practical, as peripheral
circuitry will not be able to accurately differentiate various
degrees of match/mismatch. Still, one can partition an N
element HV into n elements and perform a search over [%1
smaller subarrays such that peripheral circuitry can detect the
necessary degrees of match at the subarray-level. However,
when subarray voting results are tallied to determine a possible
best match, per Fig. 3F-i, this approach can induce aggregation-



based errors. (The query vector is closest to Row 1; however, if
searched “segment-by-segment,” the best-match appears to be
Row 2.) Fig. 3F-ii provides a snapshot of how, for a given/single
dataset, accuracy may be impacted assuming different combi-
nations of HV length and CAM subarray size. As expected, as
subarray size increases, accuracy increases as well. (In Fig. 3F-
ii, "max” assumes a CAM size that is equal to the HV length
listed on the x-axis). A designer may need to compensate for
aggregation-based errors by increasing HV length to maintain
iso-accuracy, thereby adversely increasing memory capacity.
Different datasets/problems may present different tradeoffs.

We must also be cognizant of cell-state distributions as we
consider memory devices that store multiple bits/levels. Per Fig.
3G-i, preliminary experimental results indicate that there can be
overlap between cell states, suggesting that while the intent is
to program a cell into a 00 state, it may instead be programmed
into a 01 state. As the number of target levels per memory cell
increases, the "window” between states (Fig. 3B) will decrease,
making overlap more likely. However, algorithmically, at least
some variation may be tolerable. For example, Fig. 3G-ii
considers classification accuracy assuming 1-, 2-, and 3-bit
CAMs as a function of the sigma of cell state programming
variation. Notably, even with sigmas of variation observed in
preliminary experiments (94 mV per Fig. 3G-ii), there is no
degradation in accuracy (i.e., owing to the relative robustness
of the HDC model, no single element has any more weight
than any other element). This too may be problem specific,
and tradeoffs must be carefully considered across workloads.

Finally, the above efforts must be assessed via comprehensive
benchmarking. Fig. 3H considers inference latencies, for the
same dataset, assuming different device/architecture platforms.
Latency is correlated with accuracy. The leftmost bars assume
GPU/HDC-based solutions with inferences that consist of 1
query (real time response needed) and 1000 queries (exploits
parallelism, amortizes latency). A TPU-GPU hybrid (third bar)
may represent a nominal improvement owing to more efficient
MVM for encoding. The next 3 columns represent CAM/HDC
solutions assuming 3-bit FeFET, 2-bit FeFET, and 1-bit SRAM
cells respectively. 3-bit FeFET-based CAMs represent a su-
perior design point owing to reduced HV dimensions; 2-bit
designs only achieve iso-accuracy with larger HVs, and 1-bit
HVs offer the lowest latencies, but cannot achieve iso-accuracy.
Finally, a GPU/MLP-based solution can achieve iso-accuracy,
but offers no latency improvement even with larger batches.

Open questions abound for just this problem. As examples,
(1) What is the best baseline architecture to compare to? (i.e.,
is an HDC model more likely to be deployed “on the edge”,
making small batches more likely and a GPU less likely to be
employed?); (2) What if an existing architecture (e.g., a TPU)
is backed by a dense or distributed non-volatile memory? Is this
a better way to leverage an emerging technology? In essence,
for this technology-driven architecture study, modeling efforts
were needed at the device, circuit, architecture, and algorithmic
levels to quantify the value proposition for FeFET-based AMs
and crossbars, and additional modeling infrastructure is needed
to further justify the viability of this approach.

IV. RRAM-BASED FEW SHOT LEARNING

We also consider a few-shot learning problem where the core
computations in memory augmented neural networks (MANNs)
(CNNs, hashing and associative search) are all realized with
RRAM-based crossbars [8]. MANNSs can rapidly learn classes
from a small number of samples. A software model consists
of a regular deep neural network (e.g., a CNN for images) to
extract feature vectors (FVs) from the input, followed by an
AM that can determine the distance between learned FVs and
the FV associated with a new sample/query [30].

While the model is promising with respect to accuracy when
“learning,” the energy/latency associated with conventional
digital hardware may be prohibitive and developing accelerators
is of great interest. Profiling suggests that the majority of
the runtime in a large MANN model arises from a MANN’s
AM, as the distance calculation requires that each learned
memory be accessed/transferred/processed. FeFET-based CAM
solutions have been considered [31], and similar problems have
also been studied in [32], [33].

Motivated by FeFET designs, an RRAM-based imple-
mentation was realized, where all essential compute tasks
for a MANN model (CNN, hashing, and AM) were real-
ized via RRAM crossbars (Fig. 4A). Furthermore, (1) soft-
ware/hardware co-optimization efforts were employed to chart
a path to iso-accuracy when compared to software-based solu-
tions, and (2) all computations for few-shot learning tasks were
performed experimentally on RRAM-based crossbar arrays (for
the Omniglot dataset). Below, we discuss the hashing/AM tasks
in more detail; we refer the reader to [8] for more information
regarding the well-studied realization of CNN computations.

Looking first at hashing, locality sensitive hashing (LSH)
should be more likely to generate the same hashing bits for
inputs that are close to each other (e.g., belong to the same
class). LSH can be implemented by determining which space a
vector belongs to after random projections are made, where
the projection of a given vector is in essence a MVM by
a random matrix with a zero mean value. Accordingly, the
random projection can be implemented by performing the
matrix multiplication directly in an RRAM crossbar that is
programmed with randomly distributed conductances, and by
exploiting intrinsic stochasticity of RRAM devices (Fig. 4B).

In [8], several technology-enabled optimizations were im-
plemented to mitigate the impact of device non-idealities on
application-level correctness. First, randomly distributed high
resistance states (HRSs) were employed in lieu of low resis-
tance states as device-to-device variation is usually larger with
devices in a HRS (better suited for reliable hashing). Addi-
tionally, IR drop (and thereby energy consumption) is more
prominent when current is higher (i.e., RRAM’s resistances are
lower). This can lead to a higher probability of generating ‘1’s
than ‘0’s and ultimately worse performance.

Additionally, when a result is close to the hashing plane,
the hashing bits can be randomly flipped between bits, arising
from non-idealities (conductance relaxation). To mitigate the
negative impact of this phenomena, a ternary LSH (TLSH)
method was proposed. A signature bit is set to the ”don’t care”
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state "X’ if the difference between adjacent crossbar columns
is below a threshold current. As such, the Hamming distance
between the ’don’t care” state and an input will always be 0.
Per Fig. 4C, this can reduce the impact of unstable bits. Indeed,
per Fig. 4D, the linear correlation coefficient between a cosine
distance calculation and hashed representation is greater with
the TLSH/TCAM, which approaches that of a true, software-
based LSH, which should ultimately lead to a positive impact
on classification accuracy with the RRAM-based approach.

Crossbars can also be reconfigured to calculate the Hamming
distance of the hashed bits, or in other words, the degree of
mismatch between a query and other entries stored in a CAM.
Several challenges in experimental demonstrations include tem-
poral and spatial variations with RRAM conductance, device
ON/OFF ratio, etc. Studies determined that RRAM conductance
variation is dependent on the state that it is programmed to,
and there exists a conductance region where variation can be
more substantial when compared to other conductance regions.
While physical mechanisms are under investigation, it was
possible to construct a statistical array model that captures
the aforementioned phenomena, as well as other array-level
non-idealities such as IR-drop from wire resistance, stochastic
analog error from peripheral circuits, etc. Such models can
facilitate co-optimizations to improve tolerance with respect
to device variation [34]. For RRAM crossbar-based TCAMs,
conductance states can be mapped away from regions where the
conductance variation is large, while simultaneously ensuring
negligible impact from IR drop. Ultimately, Hamming distance

can be reliably calculated as the output current is linearly
dependent on Hamming distance.

By leveraging the aforementioned techniques, few-shot learn-
ing with the Omniglot dataset was demonstrated “end-to-end.”
The CNN model employed >65,000 weights that were realized
via 130,000 RRAM devices, in 36, 64x64 crossbar arrays.
(This was limited by the prototype capacity of 50 nmx50 nm
Ta/TaO,/Pt RRAM structures, and devices were re-programmed
as needed.) Experimental demonstrations employed 128-bit
hashing bits (again, limited by prototype chip capacity).

While experimental demonstrations with 128-bit hashing
signatures suggest a degradation in accuracy versus a software-
based cosine distance, simulation results suggest iso-accuracy
inference is possible with a hashing-based solution if slightly
longer hash signatures are employed (Fig. 4E). Similar trends
are observed for the more complex/sophisticated minilmageNet
dataset (see [8]). Substantial improvements in FOM such as
latency (Fig. 4E) and energy (not shown) are also possible.

V. ARCHITECTURAL MODELING TOOLS

The evaluation of new technology-enabled breakthroughs
should not be considered in isolation. Benefits should be
assessed in the context of entire systems, when performing
realistic applications. The consideration of abstractions from
hardware to system-level is extremely challenging, as device-
and circuit-level approaches often struggle when attempts are
made to elevate exploration scope. The availability of open-
hardware and modular platforms is key for the prototyping of
novel technological solutions [35]. A recent example of such a



framework is provided by the X-HEEP effort [36] [10], an ultra-
low power, system-on-chip, architectural template comprised of
hardware-validated computing and storage resources, as well
as common peripherals (input-output links, timers etc.). X-
HEEP is based on the open RISC-V ISA [37], and includes
a dedicated software development environment. Instances can
be flexibly derived from the template, opening the way for the
fast integration of custom accelerators, as exemplified by the
coarse grained reconfigurable accelerator in [38] and the in-
SRAM computing hardware in [39].

An alternative approach to open hardware platforms is that
of system simulators, which waive the availability of a direct
path to synthesis, in favor of faster simulation times. Notable
examples include Sniper [40] and Simics [41]. The most
popular system simulation environment is gem5 [42], partly
due to its support for multiple Instruction Set Architectures
(ISAs): ARM, x86 and MIPS among others. It can also simulate
processors of different complexity and multi-layered memory
hierarchies. Gem5 operates in two modes: in syscall mode,
only application code is simulated, while in full system mode,
the entire hardware/software stack is analyzed, including the
contribution of the operating system. In turn, gem5-X [11]
builds on gem5 by easing the development effort for system
definition, and providing convenience features for accelerating
explorations such as advanced profiling and checkpointing,
and data migration among guest and host machines. Crucially,
gem5-X also allows the easy instantiation of standard and
custom components, thereby providing the ability to evaluate
the overall benefit of novel technology-enabled accelerators. In
[43], this capability was studied to explore the speedup induced
by analog crossbars performing MVMs, while the authors of
[44] modelled systems featuring in-package wireless commu-
nication. Furthermore, in [45] gem5-X was used to investigate
tightly-coupled systolic arrays, and in [46] for exploring in-
cache computing based on bit-line operations. In all cases,
the system level simulation approach allowed for analysis of
large machine learning workloads such a CNNs, LSTMs and
transformers algorithms. As an example, the authors of [43]
showcase that the analog crossbars can speed up the execution
of benchmark convolutional networks by up to 20X.

VI. ANALYTICAL MODELING TOOLS

Circuit and array-level evaluation efforts of emerging,
technology-driven solutions are essential to ensure that the
application-level value proposition of a given technology is
maintained as size scales up. While SPICE-based circuit sim-
ulations are accurate, they are also time-consuming and have
poor scalability in evaluating different memory sizes or tech-
nologies. As evidenced by studies in Secs. III and IV, end-to-
end evaluations are critical. In said studies, system/application-
level evaluation tools will inherently rely on circuit/architecture
data that include FOM such as area, latency, and energy to
estimate the performance of specific computational tasks.

As examples, consider existing tools that may be employed
for array-level evaluations of NVMs: NVsim [5] is a circuit-
level framework that estimates the performance, energy, and
area of a 2D single-level memory with a given organization.

Memory organization and cell information are used to obtain
array-level FOM. DESTINY [47] is based on NVsim and esti-
mates the performance, energy, and area of a 2D/3D single-level
cache memory. NVMExplorer [12] leverages a modified NVsim
(for multi-level memory), a fault model, and DNN network to
estimate the application-level accuracy, memory performance,
and memory lifetime based on memory traffic. NeuroSim [6]
is a circuit-level macro model that estimates the performance,
energy and leakage power of crossbar arrays. NeuroSim can
consider NN topologies from the device-to-algorithmic levels.

Referring back to Fig. 1, said tools may be employed to
assess different “lanes” of the architectural design space. For
example, NVSim and NVMExplorer can help to assess the
impact of memory technology, on a traditional cache/DRAM-
based hierarchy, for CPU- and GPU-like architectures. DES-
TINY may be used — and ultimately modified — to begin to
assess the architectural implications of emerging monolithic 3D
memories in a similar context. The Neurosim framework may
be used to evaluate RPU-like crossbar arrays, and has been
validated against implementations based on ferroelectric and
various resistive memory technologies.

Analytical modeling infrastructure that addresses other lanes
in Fig. 1 is beginning to emerge. For example, Eva-CiM [14]
models the performance of different IMC designs from device-
to-system, and enables researchers to assess whether a program
is IMC-favorable (i.e., can benefit from an IMC architecture),
the pros and cons of increased memory size, etc. Eva-CiM
uses a multi-level tool chain that leverages existing modeling
and simulation tools such as Gem5 [42], McPAT [48], and
DESTINY [47]. Eva-CiM can produce system-level energy and
performance estimates for a given program, processor architec-
ture, and IMC array assuming a given underlying technology.

Circuit/array-level modeling and evaluation for CAMs is
essential given (1) the rapid development of CAM designs
per Sec. II and (2) their broad applicability (e.g., per Secs. III
and IV, their ability to perform general purpose computation
[49], etc.). A dedicated tooling infrastructure is needed as
existing modeling tools can only support a subset of memory
technologies or structures. For example, NVsim [5] can model
NVM-based caches or RAM, but does not support CAMs.
NVsim-CAM [50] can help to evaluate NVM-based CAMs, but
it does not support (a) CAM designs based on three-terminal
devices, such as FeFETs, (b) emerging CAM designs such as
ACAMs and MCAMs, or (c) match types beyond EX-match.

As a representative example of an analytical modeling infras-
tructure, we discuss Eva-CAM [13] — a circuit/architectural-
level modeling and evaluation tool that supports a variety
of NV-CAMs [13]. Eva-CAM leverages the basic structure
of NVsim-CAM, but significantly extends NVsim-CAM func-
tionality. Fig. 1F provides a high-level overview of the Eva-
CAM framework. Gray, white, and blue cells represent the
major components of Eva-CAM, user-defined inputs, and tool
outputs respectively. Currently, Eva-CAM supports (1) both
exact and approximate match types, (2) TCAM, and MCAM
designs, and (3) two-terminal and three-terminal NVM devices
(e.g., FeFETs). Preliminary validations of Eva-CAM assuming
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several state-of-the-art fabricated CAM chips, as well as SPICE
simulations are summarized in Fig. 5. Eva-CAM projections are
within 20% of measured and/or SPICE simulation data.

Representative enhancements to Eva-CAM should include
the evolution of the tool to support new, 3-terminal NVM device
models. Currently, 3-terminal NVM devices (FeFETs and flash)
are modeled as variable resistors and capacitors. Though an
improvement to a simple 2-terminal resistance memory model,
this is not intuitive to use, as the states of 3-terminal NVM
devices are specified by threshold voltage instead of resistance.
However, directly using Vj;, settings presents a challenge in
estimating matchline discharge speed and energy.

Eva-CAM can also be extended to consider array size
and mismatch limits by incorporating the effects of de-
vice variations into circuit/architecture modeling. For a given
CAM design, achievable array size is a key consideration for
architecture-level design, and impacts area, delay, and energy.
However, designs must consider the sense margin (SM) of the
matchline (MaLi), especially for BE-/TH-match when deter-
mining array size. The relatively small on/off resistance ratios
of NVMs can limit the SM of the MaLi [51], and the number
of cells on a MaLi. For BE, TH matches, when the least (or
threshold) number of mismatched cells is too large, the sensing
circuit may not distinguish the BE-match (or TH-match) word
from another word due to small differences in a MaLi’s
discharge speed between the two words (i.e. the mismatch
limit.) Eva-CAM can determine the maximum number of cells
on a Mali (i.e., the number of columns) in a CAM subarray
by comparing the SM of the MaLi and the SM of the sensing
circuit, both of which are derived from the circuit model as well
as user-specified/default SM values. Device variations impact
CAM behavior due to influence on discharge path resistance
and capacitance, and potentially reduce CAM array size as
larger arrays would suffer more variations on the MaLis and
BLs. To properly consider variations, the distributions of device
variations will be integrated into circuit models along with array
size and mismatch limit prediction formulae. Advances such
as these will facilitate accelerated DSEs and triage of a design
space like that illustrated in Fig. 1.

VII. PATHS FORWARD
In closing, we briefly discuss additional strategies, visualiza-
tions, and potential enhancements for the DSE efforts described
herein via top-down and bottom-up efforts. Researchers inter-
ested in algorithms and architectures (rightmost column, Fig.
6) should identify application-level needs/problems of interest,

and subsequently profile existing algorithms to identify the
most significant aspects of computational workloads (see inset).
This can in-turn be used to determine if the composition of said
workload may map well to an alternative architecture (e.g.,
binary AM in Fig. 6, other IMC architectures or unit cells,
etc.). Said mappings may then be evaluated in a “technology
agnostic” fashion — i.e., to determine the potential impact of
data precision on algorithmic accuracy, what device metrics are
likely to have the most substantial impact on run time (fourth
column in Fig. 6), etc. Said studies can serve as a way to rapidly
identify what technology may be best suited for an application
(e.g., are data traffic patterns write heavy, thereby prioritizing
device endurance and/or write latency? are datasets large with
frequent reads, thereby prioritizing denser memory?)

The above mappings can then be used to engage with materi-
als scientists and device engineers to prioritize innovation at this
level of the design stack. To illustrate a path forward, the three,
leftmost columns in Fig. 6 capture possible materials-based
innovation for spin devices, and how said levers could enhance
device performance. This creates a natural linkage between the
third column (materials-based device enhancements) and the
fourth column (improved device metrics). Top-down efforts can
help to prioritize research at the materials/device-level (bottom-
up efforts). Put another way, top-down efforts can provide
guidance as to what materials-based innovation can have the
most substantial application-level impact. Furthermore, bottom-
up efforts can provide a floor/ceiling with respect to possible
logic/memory performance, thereby providing realistic con-
straints at upper-levels of the design stack.
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