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Abstract

Electron beams that are commonly observed in the corona were discovered to be associated with solar flares. These
“coronal” electron beams are found �300 Mm above the acceleration region and have velocities ranging from 0.1c
up to 0.6c. However, the mechanism for producing these beams remains unclear. In this paper, we use kinetic
transport theory to investigate how isotropic suprathermal energetic electrons escaping from the acceleration region
of flares are transported upwardly along the magnetic field lines of flares to develop coronal electron beams. We
find that magnetic focusing can suppress the diffusion of Coulomb collisions and background turbulence and
sharply collimate the suprathermal electron distribution into beams with the observed velocity within the observed
distance. A higher bulk velocity is produced if energetic electrons have harder energy spectra or travel along a
more rapidly expanding coronal magnetic field. By modeling the observed velocity and location distributions of
coronal electron beams, we predict that the temperature of acceleration regions ranges from 5× 106 to 2× 107 K.
Our model also indicates that the acceleration region may have a boundary where the temperature abruptly
decreases so that the electron beam velocity can become more than triple (even up to 10 times) the background
thermal velocity and produce the coronal type III radio bursts.

Unified Astronomy Thesaurus concepts: Solar corona (1483)

1. Introduction

Solar type III radio bursts, first discovered by Wild &
McCready (1950), are believed to be produced by electron
beams via an electron two-stream instability (ETSI; Ginzburg
& Zhelezniakov 1958). Since then, type III radio bursts have
been considered as a direct indicator of the existence of
electron beams. Type III radio bursts include coronal and
interplanetary bursts (Reid & Ratcliffe 2014). Coronal type III
bursts are produced by electron beams within the solar corona,
while interplanetary bursts are produced by the escape of
energetic electrons into space, most of which can reach 1 au. In
recent years, a large number of coronal type III radio bursts
have been discovered. Some were associated with regular solar
flares, but most were found to be associated with nanoflares
(Thejappa et al. 1990; Saint-Hilaire et al. 2012). Nanoflares
occur in the quiet Sun at a rate of 1 million events s–1 over the
whole Sun (Aschwanden & Parnell 2002). These observations
indicate that electron beams are commonly and frequently
produced within the solar corona. In this paper, we use the term
“coronal electron beams” to refer specifically to those electron
beams associated with nanoflares and coronal type III radio
bursts within the solar corona. These electron beams are related
to particle acceleration and heating in the solar corona and
probably contribute to the formation of the electron halo in the
solar wind (Che & Goldstein 2014; Che et al. 2019). However,
how so many coronal electron beams are generally produced in
the corona is poorly understood and has not attracted sufficient
attention.

Observations show that coronal electron beams originate
from the escape of suprathermal electrons in the acceleration

region of solar flares (Chen et al. 2013). Coronal type III radio
bursts (a consequence of the presence of coronal electron
beams) have typically been found at heights of �300 Mm (0.4
solar radii) above the photosphere (Morimoto 1961; Mercier &
Rosenberg 1974; Reid & Kontar 2018a). These observations
suggest that suprathermal electrons escape from the accelera-
tion region of flares and form coronal electron beams after
propagating upward over a certain distance. A schematic of the
possible process that we advocate is shown in Figure 1.
Theories suggest that an electron beam can trigger an ETSI that
then produces type III radio bursts if the beam velocity is larger
than the background electron thermal velocity (Che 2016).
Suprathermal energetic electrons are accelerated during solar
flares and usually do not carry a significant bulk momentum
even in those cases where electron jets are produced. The jet
velocity is commonly less than the local thermal speed due to
intense plasma heating in the acceleration region (Che et al.
2021). Therefore, the formation of coronal electron beams from
suprathermal electrons might be as illustrated in Figure 1.
Initially, suprathermal electrons accelerate during solar flare
eruptions in the low corona and collectively possess a zero or
low bulk velocity, which is insufficient to trigger ETSI. Some
energetic electrons then escape from the acceleration region
and propagate upward along the magnetic field lines of flares.
During their outward propagation, these suprathermal electrons
with an initially random velocity distribution develop electron
beams, and the bulk velocity rapidly increases enough to
trigger the ETSI.
What effects commonly govern coronal electron beam

formation is unclear. Observations of coronal type III radio
bursts impose restrictions on the candidate mechanism. First,
the mechanism producing coronal electron beams is indepen-
dent of solar flares and can occur in the general plasma
condition of the corona, since the electron beams form outside
the acceleration region. Second, the mechanism can produce
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coronal electron beams within a minimum distance of
∼300 Mm. That requires that the mechanism be very efficient
in increasing the bulk velocity of the electrons shortly after they
begin to propagate. Third, the ratio of the bulk velocity of some
coronal electron beams to the local background electron
thermal velocity can reach the threshold of ETSI but remain
stable. Observations show that the bulk velocities of some
coronal electron beams can reach up to 10 times the
background electron thermal velocity (Krucker et al. 2007;
Reid et al. 2011; Benz 2012, 2017; Chen et al. 2013, 2018),
which is much larger than the threshold of the ETSI. It is
unclear why these coronal beams achieve such high velocities
without triggering ETSI. Previous studies of electron beams
focused on the maintenance of the electron beams after
triggering type III radio bursts in the solar corona and
interplanetary space (Ergun et al. 1998; Li et al. 2006; Reid
et al. 2011). However, what mechanism governs the coronal
electron beam formation prior to triggering coronal type III
radio bursts is not addressed.

A parallel sunward electric field is desirable to develop
beams directly. However, beyond the acceleration region, i.e.,
far from the diffusion region of magnetic reconnection (MR),
the plasma becomes nearly neutral and is usually described by
magnetodynamics. Therefore, it is theoretically unexpected that
a large-scale parallel electric field is commonly produced
(Eyink et al. 2013; Beresnyak 2016; Kowal et al. 2017) and
unlikely that it can be responsible for the formation of electron
beams. Moreover, direct parallel electric field acceleration has
been ruled out by the latest PSP observations in the area away
from the acceleration region (Desai et al. 2022).

During propagation, besides a parallel electric field,
suprathermal electrons experience three other possible effects,
these being magnetic focusing (adiabatic focusing4), Coulomb
collisions, and scattering by background turbulence. While the
latter two effects diffuse the beams, magnetic focusing is the
only remaining effect that allows for the development of
electron beams. Magnetic focusing effectively transfers the
perpendicular momentum to the parallel direction and colli-
mates the suprathermal electrons propagating upward along the

magnetic field line of flares (Tang et al. 2023). However,
whether magnetic focusing can overcome diffuse effects and is
sufficient to form coronal electron beams that trigger coronal
type III radio bursts has yet to be established.
In this paper, we investigate the competition of these three

effects in mediating the transport of suprathermal electrons
and the formation of coronal electron beams within the solar
corona. We show that magnetic focusing can suppress Coulomb
collisions and turbulent scattering, leading to the formation of
coronal electron beams. As a result, coronal electron beams
develop and form efficiently from suprathermal electrons over
the requisite observational distance (i.e., �300 Mm above the
photosphere). Their bulk velocity can reach a saturated speed
larger than the ETSI threshold and produce coronal type III radio
bursts. Over this observation-constrained distance, the specific
spatial configuration of the magnetic field of flares has little
effect on the formation of coronal electron beams. Moreover,
using a group of observed velocity and location distributions of
coronal electron beams, our model predicts that the temperature
of the flare acceleration regions ranges from 5× 106 to 2× 107

K. The coronal electron beam velocities range from 0.1c to
∼0.6c for locations from 400 to 700 Mm above the acceleration
region, which is well consistent with the observations. Our
model also suggests that the acceleration region may have a
boundary where the temperature decreases. As a result, the bulk
velocity of coronal electron beams can abruptly reach more than
triple (even up to 10 times) the coronal background thermal
velocity and produce coronal type III radio bursts; this explains
the origin of electron beams with velocities up to 10 times the
thermal velocity. In this paper, we only consider the formation of
high bulk velocity coronal electron beams that can trigger a
strong ETSI and produce coronal type III radio bursts. The
generation of Langmuir waves and the maintenance of
interplanetary electron beams after producing coronal type III
radio bursts are beyond the scope of this paper.
This paper is organized as follows. In Section 2, we describe

the electron transport model. The effect of the spatial structure
of the magnetic field of flares on the form of the transport
equation is emphasized. The specific forms for Coulomb and
whistler turbulence scattering are introduced into the transport
equation thereafter. Section 3 presents numerical solutions for
the transport of suprathermal energetic electrons in the corona,
showing how coronal electron beams form. Finally, conclu-
sions and discussions are given in Section 4.

Figure 1. Schematic illustration of suprathermal electron transport and coronal electron beam formation inside the solar corona along a radial magnetic field. Initially,
suprathermal electrons are accelerated during a solar flare eruption in the low corona. After the suprathermal electrons propagate upward several hundred megameters
away from the acceleration region, coronal electron beams form due to magnetic focusing. These coronal electron beams have high bulk velocities and, therefore, can
trigger ETSI and produce coronal type III radio bursts.

4
Magnetic focusing is also called adiabatic focusing. We refer to it as

magnetic focusing to emphasize that it is an effect of the magnetic field that
changes with the spatial structure of the magnetic field. Magnetic focusing
emerges naturally in deriving transport Equation (5) in the presence of a radial
magnetic field and transport Equation (11) with a dipole field in Section 2.

2

The Astrophysical Journal, 954:43 (11pp), 2023 September 1 Tang et al.



2. Theoretical Model

2.1. Electron Transport Equation

The general form of the gyrophase averaged kinetic transport
equation for a gyrotropic electron distribution function f (x, v, μ, t)
without a parallel electric field is given in Zank (2014),
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where x is the position in the rest frame; (v, μ) is the velocity

magnitude and the cosine of the pitch angle measured in a

moving frame of U= c(E× B)/B2
+U∥b with respect to the

rest frame of the Sun; U∥=U · b, E, and B are the external

fields; b≡ B/B is the unit vector along the magnetic field; and

(δf/δt)sc is the scattering term.
In a frame moving with a constant velocity U=Ub along the

magnetic field, ∇ · U=U∇ · b, and the divergence of b can be
expressed in terms of the magnetic field B,
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using ∇ · B= 0. The velocity v of electrons is always much

larger than the plasma background velocity U, i.e., U= v,

making it safe to ignore U. Therefore, transport Equation (1)
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In practical applications, the detailed expression of transport
Equation (3) depends on the magnetic field B and the scattering
term (δf/δt)sc. The second and third terms associated with B on
the left-hand side reflect the effect of magnetic focusing. In a
global spherical coordinate system whose origin is the center
of the Sun, the magnetic field has the form of
= + +q q f fB B e B e B er r̂ ˆ ˆ , where er̂, qê , and fê are the radial,

polar, and azimuthal unit vectors, respectively. In this paper,
we consider two spatial forms for the magnetic field: a radial
magnetic field ( »B B er r̂) and a dipole magnetic field
( » + q qB B e B er r̂ ˆ ). The azimuthal component is ignored,
since we have assumed that the electron distribution function
f (x, v, μ, t) is gyrotropic. The term on the right-hand side is
associated with scattering, and we consider two possible
scattering processes that the electrons experience during
transport.

2.1.1. Transport Equation in a Radial Magnetic Field

Magnetic focusing depends only on the decrease in the
strength of the magnetic field and is independent of its

direction. Thus, a radial magnetic field decreasing in strength is
the simplest case in practical applications, particularly for open
field lines. We are interested in the outward transport of
suprathermal electrons in solar flares. For the solar flare
background, the magnetic field model proposed by Antiochos
et al. (2007) is widely used, which assumes that the radial
component is much larger than the other two components, i.e.,
B≈ Br.
In the case of a radial magnetic field »B B er r̂, transport

Equation (3) reduces to
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where r is the radial distance.
Although the magnetic field of a solar flare varies with time,

its timescale is much larger than the timescale of suprathermal
electrons traveling in the solar corona. For instance, a 10 keV
electron with a velocity of roughly 104 km s−1 needs only 10 s
to travel one solar radius, which is much shorter than the
timescale of a typical solar flare that is about 1000 s. Hence, it
is safe to assume that the magnetic field is approximately
“stationary” when suprathermal electrons propagate in the solar
corona, which is the condition for the conservation of the
magnetic moment. For a detailed radial magnetic field
configuration, we first follow the reference scenario provide
by the modeling of the solar magnetic field by Banaszkiewicz
et al. (1998) and the open magnetic field lines of solar flares by
Antiochos et al. (2007). A general form of the outward
magnetic field can be expressed as a summation of a series of
B rn0

B, where B0 is the magnetic field at a reference point, and
nB= 1, 2, 3,L . As a magnetic field decreases in strength with
radial distance r, the simplest case is B= B0/r

2, which ensures
the divergence-free condition of the magnetic field. Hence, the
radial derivative of Bln reduces to = -d B dr n rln B . The
specific value of B0 cancels out, and only the radial variation of
the magnetic field (the value of nB) remains in transport
Equation (4). The electron transport equation in a radial
magnetic field has the form of
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2.1.2. Transport Equation in a Dipole Magnetic Field

Magnetic focusing depends on the strength of the magnetic
field decreasing rather than the direction of the radial evolution
of the magnetic field. On the other hand, scattering from
Coulomb collisions and wave–particle interactions are accu-
mulative effects and depend on plasma parameters such as
density, temperature, and turbulence intensity following the
electron transport path along the magnetic field line of flares.
As a result, the effects of scattering depend on the spatial
structure of the magnetic loops. The prevalent view of the
geometry of the coronal magnetic field assumes that it is a
magnetic loop whose legs consist of oppositely directed
(antiparallel) fields (Benz 2017). A dipole magnetic field is
commonly used to model magnetic loops in the solar corona
(McClements 1992a) and can be written as

q
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where M is a constant, and q=r l sin2 , where l is a parameter

defining the height from the magnetic field (loop) to the center

of the Sun. The magnitude of the dipole field is
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Equations (6)–(8) enable us to calculate the corresponding
transport equation from Equation (3) by deriving b · ∇f and
B · ∇B/B2:
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Therefore, the electron transport equation in a dipole field
has the form
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It is easy to see that when l? r, this transport equation
approximates the form of transport Equation (5) with nB= 3.
Note that r and θ are not independent of each other
( q=r l sin2 ) in the dipole field. We have converted ∂f/∂θ to
∂f/∂r in the process of deriving Equation (11). Therefore,
although dipole field transport Equation (11) only has one
dimension in configuration space, it is complete in incorporat-
ing the effects of both r and θ.

2.1.3. Scattering Terms Associated with Coulomb Collisions and

Wave–Particle Interactions

Coulomb collisions and wave–particle interactions with
turbulence are two frequently considered scattering mechan-
isms in the solar corona and winds (McClements 1992b; Reid
& Kontar 2013; Effenberger & Petrosian 2018). We introduce
the two effects as independent scattering terms ((δf/δt)sc) to the
right-hand side of the transport equation and study the role of
scattering during the formation of electron beams.

The Coulomb collision operator, describing collisions with a
Maxwellian electron background, can be expressed in the
plasma rest frame as (Helander & Sigmar 2005)
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where vthb is the thermal velocity of the background

Maxwellian electrons, kB is the Boltzmann constant, G is the

Chandrasekhar function, erf is the error function, and
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Equation (12) is consistent with the e–e collision part of the
collision operator used in Smith et al. (2012). Though the
collision rates for e–e and e–p Coulomb collisions are
comparable (pitch angle scattering), the energy change to
electrons experiencing e–p collisions (velocity diffusion) is
very small, about me/mi times smaller than the e–e collisions
due to the conservation of momentum. Therefore, we consider
only Coulomb collisions with background electrons, which is
what Jeffrey et al. (2019) assumed as well.
Turbulent scattering is another significant effect (Reid et al.

2011), but our knowledge of solar corona turbulence is poor,
and its origin and intensity are uncertain. In this paper, we
choose the most widely accepted wave–particle interaction
scattering terms associated with whistler turbulence given in
Schlickeiser (1989):
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This is a quasi-linear model of wave–particle scattering. The
corresponding diffusion tensor for nonrelativistic electrons is
expressed as (Steinacker & Miller 1992; Tang et al. 2022)
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where β= v/c, w= Wa e
2

pe
2 , s= 2 is the spectral index of

whistler waves, and A is an artificial normalization constant

related to the magnitude of the energy spectral densities of the

turbulence. In the corona, the turbulence mean free path is

much larger than the Coulomb mean free path and becomes

comparable to or less than the Coulomb mean free path above a

few tens of solar radii (Pierrard et al. 2011). Therefore, the

effect of turbulence adversely affecting the formation of

electron beams should be less important than that of Coulomb

collisions in the corona.
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2.2. Coronal Background

Coulomb collisional and turbulence scattering depend on the

background plasma properties in the corona. We assume that

the temperature and number density profiles of the Maxwellian

background of electrons and protons are prescribed. The mass

conservation of solar wind expansion results in a strong radial

gradient in plasma density, decreasing with radial distance as

r−2 and even faster in the solar wind acceleration region. We

choose the empirical radial profile of background electron

number density reported by Baumback (1937) and Lemaire &

Stegen (2016):
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where δ is the weight of the Maxwellian component fm, Tc0 is

the temperature of the Maxwellian component, n0 is the total

electron number density at the inner boundary r0, vc is the

critical velocity separating the power-law component

(suprathermal electrons) from the Maxwellian, and α is the

spectral index of the power-law component. The first graph in

Figure 2 shows an example of the electron VDF at the inner

boundary in the (v∥, v⊥) plane in the case of δ= 0.8, α= 4,

Ud= 1vth0, nB= 2, and (δf/δt)sc = 0.
We solve transport Equation (5) numerically with the

boundary conditions (Equations (18)–(20)) to study the
transport of suprathermal electrons in the corona. Assuming
the accelerated electrons are injected in the MR acceleration
region in the lower corona (Reid et al. 2011; Chen et al. 2013;
Cairns et al. 2018), the inner boundary is chosen as r0= 0.05
Rs above the surface of the Sun, where Rs is the solar radius.
The outer boundary of ∼2.05 Rs is the typical size of the
magnetic loops (Antiochos et al. 2007). We choose a critical
velocity vc= 1.5vth0, where =v k T m2 Bth0 c0

1 2( ) is the target/
test electron thermal velocity at the inner boundary (the
acceleration region). We adjust the parameters α and Ud to
mimic the diverse power-law electron energy spectra and the
bulk motion of electron outflows produced by MR acceleration.

Figure 2. The 2D contour plots of the normalized electron VDF ( f fmax) in the moving frame at 0.05, 0.2, and 0.4 Rs in the case of δ = 0.8, α = 4, Ud = 1vth0, and
B = B0/r

2. The influence of magnetic focusing on the radial evolution of the electron VDF is obvious. The maximum pitch angle of the electron VDF decreases, while
the parallel part does not change.
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We mimic the magnetic field line of flares with a variety of
curvatures by adjusting the value of nB. The combinations of
various α, Ud, and nB used in the calculation and their labels
are listed in Table 1. The stationary numerical solution is
obtained after the code approaches the steady final state.

3. Numerical Results

3.1. Transport of Electrons in Radial Magnetic Field without
Scattering

Magnetic focusing is a direct consequence of the conserva-
tion of the magnetic moment defined as m = ^mv B2M

2 . It plays
an essential role in the formation of electron beams when
suprathermal electrons propagate upward along a decreasing
magnetic field. Magnetic focusing is independent of the
transport path of electrons and only depends on the strength
of the magnetic field, while Coulomb collisional and turbulent
scattering depends on the transport path of the electrons. Thus,
the shortest transport path for electrons is along the radial
direction, which is the simplest case, and it is important to
study the transport of suprathermal electrons in a radial
magnetic field without any scattering mechanisms, i.e.,
(δf/δt)sc = 0 in transport Equation (5). Thereafter, we
introduce Coulomb collisional and turbulence scattering and
examine the transport of suprathermal electrons in radial and
dipole magnetic fields, respectively.

First, we consider a case in which the scattering term on the
right-hand side of transport Equation (5) is ignored, i.e.,
(δf/δt)sc = 0. In such a case, we can obtain an analytic solution
with a given boundary condition by the method of character-
istics (Sone & Sugimoto 1993; Tang et al. 2020),
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where f0(r0, v, μ) is any given inner boundary condition at r0.

The radial evolution of the analytic solution (Equation (21)) is

shown in Figure 2, where the inner boundary is r0= 0.05 Rs

above the surface of the Sun. The electron VDF f0(r0, v, μ) at

the inner boundary is a combination of a drifting Maxwellian

and a power law, i.e., δ= 0.8, α= 4, and Ud= 1vth0, and the

background magnetic field is radial, i.e., nB= 2. The influence

of magnetic focusing on the radial evolution of the electron

VDF is apparent. As the distance increases, the maximum pitch

angle of the electron VDF decreases due to the focusing

induced by a decreasing magnetic field, and the electron VDFs

become increasingly anisotropic with increasing distance. The

maximum value of the electron parallel velocity increases while

that of the perpendicular velocity decreases, leading to the

formation of a group of fast outward-moving electrons—an

electron beam.
The electron beam velocity is the essential parameter

determining the triggering of ETSI (Che 2016). The electron
beam velocity is defined as

ò ò
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where m = -r r r1 n
min 0

1 2B( ) [ ( ) ] is the cosine of the

maximum pitch angle of the electron VDF at a distance r,

which is given by the analytic solution (Equation (21)). Here

m m m= + - +v r U U v, 1min d d
2 2

c
2 1 2( ) [ ( ) ] is the critical velo-

city of the power-law component. This definition is similar to

the definition of the mean electron velocity within the beam

(Reid & Kontar 2018b). In the case of Ud≠ 0, f (r, v, μ) and

vmin are highly anisotropic, and the analytical solution of ub is

hard to obtain.
The numerical radial evolution of the electron beam velocity

ub in the rest frame of the Sun is shown in Figure 3 for different
coronal backgrounds. The label numbers of the curves indicate
the simulation runs, and their parameters (α, Ud, and nB) are
listed in Table 1. It can be seen that under all conditions, ub
increases sharply from the inner boundary 0.05 to 0.4 Rs (i.e.,
over a distance of ∼0.4 Rs) and approaches a saturated value at
the outer boundary. The left panel has a Maxwellian velocity
distribution with weight δ= 1 at the inner boundary, and the
right panel is a Maxwellian with weight δ= 0.8 plus a power-
law velocity tail with index α= 4 and weight 0.2 (=1− δ). The
index α= 4 is estimated according to the lower bound of the
observable index of electron energy spectra, which is about 3
(Lin et al. 1973, 1981; Krucker et al. 2007; Benz 2017), and the
weight 0.2 is estimated by the typical acceleration efficiency
found in particle-in-cell simulations (Che & Zank 2020; Che
et al. 2021). Different velocity starting points for ub are caused
by the different drifting velocities Ud (0vth0, 0.5vth0, and 1vth0)
of the initial electron VDF at the inner boundary.
Figure 3 shows that for electrons of a Maxwellian VDF (left

panel; δ= 1) transporting upward from the acceleration region,
magnetic focusing can rapidly increase the bulk velocity of
suprathermal electrons to nearly twice that of the thermal
velocity of the local background coronal plasma over a distance
of about 0.4 Rs. As a comparison, for an electron VDF
possessing a suprathermal portion, i.e., a combination of
Maxwellian and power-law spectrum tail (right panel; δ= 0.8),
magnetic focusing can increase the bulk velocity of suprather-
mal electrons to an even higher speed over the same distance of
0.4 Rs, as much as three to five times the electron thermal
velocity in the acceleration region vth0. In the environment of
the solar corona, the decrease in electron temperature with
distance leads to a decrease in the electron thermal velocity
(vth< vth0). Therefore, in the corona, the electron beam velocity
ub can likely be increased to a much larger value than the local

Table 1

Combinations of Different Parameters

Label Magnetic Configuration α Ud(vth0) Scattering

G1 B = B0/r
2 4 0 No scattering

G2 B = B0/r
3 4 0 No scattering

G3 B = B0/r 4 1 No scattering

G4 B = B0/r
2 4 1 No scattering

G5 B = B0/r
3 4 1 No scattering

G6 B = B0/r
4 4 1 No scattering

G7 B = B0/r
3 4 0.5 No scattering

G8 B = B0/r
3 8 0.5 No scattering

G9 B = B0/r
3 6 0.5 No scattering
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electron thermal velocity vth, i.e., ub? vth. These fast electron
beams can trigger a strong ETSI and produce coronal type III
radio bursts (Che 2016; Che et al. 2017), which is consistent
with observations that find that coronal type III radio bursts are

always above a certain distance from the acceleration region
(Chen et al. 2013, 2018).
To illustrate how the rate of radial variation of the magnetic

field (nB) affects the radial evolution of the electron beam

Figure 3. Radial evolution of the velocity of suprathermal electrons ub without scattering terms, normalized by vth0 and c in the rest frame of the Sun using a electron

temperature Tc0 = 107 K and =v k T m2th0 B c0
1 2( ) of the acceleration region. In the left panel, the electron VDF at the inner boundary is a Maxwellian only (δ = 1). In

the right panel, the electron VDF at the inner boundary is a combination of a Maxwellian with weight δ = 0.8 and an isotropic power law with α = 4 and weight 0.2
(=1 − δ). The shaded areas indicate the distance range from 0.05 to 0.4 Rs. The labels of the curves (G1–G6) represent the simulation runs and their parameters (α, Ud,
and nB), which are listed in Table 1.

Figure 4. Panels (A1) and (A2): radial evolution of the percentage increase in the beam velocity of suprathermal electrons χu. Panel (A1) corresponds to a Maxwellian
velocity distribution (left panel of Figure 3), and panel (A2) corresponds to a Maxwellian with weight δ = 0.8 plus a power-law velocity tail (right panel of Figure 3).
Panel (B): radial evolution of ò⊥/ò∥ for suprathermal electrons. Line colors and styles have the same meaning as in Figure 3. Panel (C): radial revolution of ub with
different power-law indices α = 4, 6, and 8. The shaded areas indicate the distance range from 0.05 to 0.4 Rs. The labels of the curve represent the simulation runs and
their parameters (α, Ud, and nB), which are listed in Table 1.
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velocity, we define the percentage increase of the electron beam

velocity as χu= (ub− ub0)/ub0, where ub0 is the initial ub at the
inner boundary. The radial evolution of the percentage

increases χu are shown in panels (A1) and (A2) in Figure 4.

Like Figure 3, panel (A1) is a Maxwellian VDF with weight

δ= 1 at the inner boundary, and panel (A2) is a Maxwellian

with weight δ= 0.8 plus a power-law velocity tail with index

α= 4 and weight 0.2. The percentage increases χu in panel

(A2) are larger than those in panel (A1), indicating that the

effect of magnetic focusing on electrons with a power-law tail

leads to a higher bulk velocity than the case of Maxwellian

distribution only. Therefore, magnetic focusing can increase

the electron bulk velocity much more rapidly if more

suprathermal energetic electrons with a power-law tail are

present, thus triggering ETSI and producing coronal type III

radio bursts. Moreover, the nB in the magnetic field

=B B rn0
B also affects the radial evolution of ub and the

corresponding percentage increase χu. From curve G3 to G6,

nB increases from 1 to 5 (see Table 1). As nB increases, both the

electron beam velocity ub (see Figure 3) and the percentage

increase χu (see Figure 4) increase faster and reach a larger

value. Consequently, in a more rapidly decreasing magnetic

field, we expect more coronal type III radio bursts to occur at

distances closer to the acceleration region of MR.
Magnetic focusing increases the bulk velocity of electrons

along the magnetic field line of flares by transferring electron

kinetic energy from the perpendicular to the parallel direction.

We define and calculate the ratio of the perpendicular to the

parallel kinetic energy of electrons (ò⊥/ò∥) as




ò

ò
=^ ^ v

v

mv fd

mv fd
. 23
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2
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The radial evolution of the electron kinetic energy ratio

ò⊥/ò∥ is shown in panel (B) of Figure 4 in the case of δ= 0.8,

and Ud= vth0, i.e., the case of panel (A2). For an isotropic

electron VDF at the inner boundary, the kinetic energy ratio is

2, since an isotropic VDF has 1 degree of freedom in the

parallel direction and 2 degrees of freedom in the perpendicular

direction. However, in our case, the electron VDF with a bulk

motion velocity Ud≠ 0 is anisotropic; hence, the electron

kinetic energy ratio is less than 2. Furthermore, the radial

evolution of the kinetic energy ratio decreases with distance,

which contrasts with the radial evolution of the electron bulk

velocity ub and χu. It is noticeable that the kinetic energy ratio

drops sharply in the distance range from 0.05 to 0.4 Rs, while

ub and χu, on the contrary, increase sharply in the same

distance range. Moreover, the radial evolution of the kinetic

energy ratio caused by magnetic focusing is dominated by the

magnitude of nB; the larger the nB (curves G5 and G6), the

faster the decrease of the kinetic energy ratio.
Panel (C) in Figure 4 shows the radial evolution of the

velocity of suprathermal electrons ub with different energy

spectral indices α. The electron bulk speed ub with a smaller

spectral index α has a higher initial value, since the electron

VDF with a smaller spectral index α possesses more

suprathermal electrons. The smaller spectral index α leads to

a faster increase of ub with radial distance. Similarly, the

maximum increase is in the same gray shaded area.

3.2. Transport of Electrons in Radial and Dipole Magnetic
Fields with Coulomb Collisional and Turbulent Scattering

Coulomb collisions are associated with the particle number
density, and the turbulent scattering depends on the strength of
the local turbulence. As a result, suprathermal electrons
experience different scattering strengths while being trans-
ported on different forms of magnetic loops. We choose radial
and dipole magnetic fields as two examples to investigate how
the spatial shape of magnetic field loops affects the formation
of electron beams.
With the discussion of the transport equation in a dipole

magnetic field in Equation (11), the transport equation of the
dipole field reduces to the form of the radial magnetic field
transport equation with nB= 3 when the dipole height
parameter l? r. Accordingly, we choose radial transport
Equation (5) with nB= 3 as the primary case for comparison.
On the other hand, our calculations show that the saturation of
the growth of the suprathermal electron bulk velocity requires a
minimum heliocentric distance of 3 Rs, so we choose the lower
limit of l as l= 3 Rs. Our calculations show that the results for
the dipole field with l= 5 Rs are similar to that found with
radial magnetic fields. Thus, we choose l= 3, 5, and 9 Rs to
demonstrate the impact of the shape of magnetic loops. The
combinations of different magnetic configurations, plasma
parameters, and scattering effects are listed in Table 2.
In Figure 5, we show the radial evolution of the electron

beam velocity ub for the cases of scattering in both radial and
dipole fields, as listed in Table 2. The case of a radial magnetic
field with nB= 3 (i.e., curve G2 in Figure 3) used as a reference
for the study of the effect of scattering and dipole fields is
denoted as G10. In the following discussions, by comparing
G10 with the rest of the curves, we investigate the competition
between magnetic focusing, Coulomb collisional scattering,
and turbulent scattering during the transport of suprathermal
electrons and the formation of coronal electron beams.
Curve G11 (blue) is the result of Coulomb collisional

scattering in a radial magnetic field. Comparing G11 with G10,
the introduction of the Coulomb collisional scattering causes ub
to increase more slowly and saturate at a lower speed.
However, ub still rises sharply over 300 Mm (shaded area),
and its saturated speed reaches about triple the electron thermal
velocity of the acceleration region (≈3vth0).
The effect of Coulomb collisions on electrons is cumulative

and depends on the electron propagation path along the
magnetic field line of flares. The electron transport path in a
dipole magnetic field is longer than in a radial magnetic field.
Hence, electrons experience a longer Coulomb collisional
scattering time in a dipole magnetic field than in a radial

Table 2

Combinations of Different Parameters

Label Magnetic Configuration α Ud(vth0) Scattering

G10 Radial B = B0/r
3 4 0 No scattering

G11 Radial B = B0/r
3 4 0 Coulomb collision

G12 Dipole l = 9 Rs 4 0 Coulomb collision

G13 Dipole l = 5 Rs 4 0 Coulomb collision

G14 Dipole l = 3 Rs 4 0 Coulomb collision

G15 Radial B = B0/r
3 4 0 Whistler turbulence

G16 Radial B = B0/r
3 4 0 Collision and turbulence
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magnetic field. The competition between magnetic focusing
and Coulomb collisional scattering in three dipole magnetic
fields with different sizes is shown by G12 (red dashed curve;
l= 9 Rs), G13 (red dotted curve; l= 5 Rs), and G14 (red solid
curve; l= 3 Rs). We note that G12 overlaps G11, and G13 is
very close to G11, implying that transport Equation (11) in the
dipole magnetic field can be approximated by the form with a
radial magnetic field of nB= 3 when l> 5 Rs. The slowest
increase in ub and the lowest saturated speed of ub are shown in
G14, which is the result of Coulomb collisional scattering in
the dipole magnetic field with the lower limit l= 3 Rs. In this
case, electrons travel the longest path along the magnetic field
line and experience the strongest Coulomb collisional scatter-
ing. However, we still find that the saturated ub can reach about
triple the electron thermal velocity of the acceleration region
(≈3vth0), and magnetic focusing dominates Coulomb collisions
leading to the formation of coronal electron beams.

Turbulent scattering depends on the strength of the
turbulence, which is uncertain due to the paucity of observa-
tions. Thus, we instead consider an estimate for the upper limit
for turbulent scattering. We choose much stronger whistler
turbulence than the observations expect (a large value of A in
Equation (15a)) in a radial magnetic field, and curve G15
(magenta) shows the result. This choice leads to the slowest
increase and lowest saturated speed for ub. The saturated speed
of ub of G15 is still more than twice the electron thermal
velocity of the acceleration region (>2vth0). The intensity of
turbulence in the solar corona is uncertain, but it is commonly
expected to be less important than Coulomb collisions. Our
numerical result does not imply that whistler turbulence is
stronger than Coulomb collisions in the solar corona but rather
gives an upper limit estimate of the effect of turbulent
scattering on the radial evolution of ub. We then add Coulomb
collisional scattering into G15, which represents a combination
of turbulent scattering and magnetic focusing in a radial field,

and the result is shown by G16 (green dashed curve). We note
that G16 overlaps G15, indicating that both the Coulomb
collisional and turbulent scattering do not change the role and
importance of magnetic focusing in electron beam formation. It
is noteworthy that, although the specified strong turbulence
scattering produces the most significant decrease in ub, the final
saturated speeds of ub of G15 and G16 are still more than twice
the electron thermal velocity of the acceleration region
(>2vth0).
In conclusion, Coulomb collisional and turbulent scattering

slightly change the radial evolution of the electron beam
velocity ub in the solar corona, as shown in Figure 5. The beam
speed ub increases sharply over a distance of 0.4 Rs (shaded
area), and the saturated speed of ub reaches more than twice or
triple the electron thermal velocity of the acceleration region
(>2vth0 or 3vth0). If it is considered that the local coronal
temperature is much lower than that in the acceleration region,
theoretically, ub is much larger than the threshold of EKHI and
can trigger coronal type III radio bursts within the observa-
tional distances. Magnetic focusing overrides Coulomb colli-
sional and turbulent scattering and drives the formation of
electron beams in the solar corona. In next section (Section 4),
we will use the observational data to further demonstrate this
point.

4. Conclusions and Applications

Coronal type III radio bursts are signatures of electron beams
propagating in the solar corona. Observations of coronal type
III radio bursts indicate that the coronal electron beams are
commonly and frequently produced within the solar corona. In
this paper, by numerically solving the kinetic transport
equation, we investigate the transport of suprathermal energetic
electrons and the formation of coronal electron beams. Three
competing effects that impact the formation of electron beams
are considered: magnetic focusing, Coulomb collisions, and
turbulence. Compared to Coulomb collisions and turbulence
that can affect the formation of electron beams through
scattering, magnetic focusing is intrinsic and the only effect
to continuously form electron beams. Unlike previous studies
(Li et al. 2006; Reid et al. 2011), we consider the formation of
high bulk velocity coronal electron beams before producing
type III radio bursts. We do not address the generation of
Langmuir waves and the maintenance of electron beams in
interplanetary space after they trigger type III radio bursts in the
solar corona.
Our numerical results show that although Coulomb colli-

sions and turbulent scattering attempt to prevent the formation
of electron beams, their effects are much weaker than that of
magnetic focusing. Magnetic focusing significantly suppresses
the effects of scattering, which results in the formation of
coronal electron beams in the solar corona. Electron beams
develop efficiently within the observationally desired distance
of ∼300 Mm above the photosphere. The bulk velocity of
electron beams reaches a saturated speed as high as 0.1c–0.3c,
which satisfies the ETSI threshold for coronal type III radio
bursts. In the case of suprathermal energetic electrons with a
harder power-law energy spectrum, the electron beams achieve
a higher velocity, implying that the locations of coronal type III
radio bursts depend on the energetic electron spectral index.
Consequently, suprathermal energetic electrons with a harder
spectrum may be able to trigger the ETSI at a location closer to
the acceleration region. The specific spatial shape of the

Figure 5. Radial evolution of the bulk velocity of suprathermal electrons ub
with scattering, normalized by vth0 and c in the rest frame of the Sun using a
temperature Tc0 = 107 K. The shaded areas indicate the distance range from
0.05 to 0.4 Rs. The labels of the curves (G10–G16) denote the simulation runs
and their parameters (magnetic configurations, plasma parameters, and
scatterings), which are listed in Table 2.
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magnetic field (radial or dipole magnetic field) has little effect
on the formation of electron beams, since the dipole magnetic
field produces the same result as the radial field when the
height parameter of the dipole field l� 5 Rs.

The impact of Coulomb collisions and turbulence scattering
on the formation of electron beams in the solar corona is
negligible compared with magnetic focusing. The electron
Coulomb collision rate in the inner corona is νe∼
10−6neTe∼ 10−4 s−1, and the Coulomb heating timescale is
about 104 s. Our numerical model shows that it takes less than
200 s in real time for the entire system to reach a steady state.
In such a short time, neither Coulomb collisions nor turbulent
scattering can efficiently affect the formation of an elec-
tron beam.

By comparing with observed electron beam velocities, we
can estimate the coronal plasma environment of coronal type
III radio bursts. In Figure 6, red dots show the radial
distribution of observed electron beam velocities for coronal
type III bursts given by Reid & Kontar (2018a). Theoretically,
the electron beam velocities are calculated using two different
initial temperatures Tc0 (2× 107 and 5× 106 K) in the
acceleration region. The radial evolution of electron beam
velocities normalized by the electron thermal velocity in the
acceleration region (ub/vth0; left black y-axis) and the coronal
background (ub/vthe,cb; right green y-axis) is plotted. Coronal
type III radio bursts are observed at a distance beyond 0.6 Rs

(shaded area; 400–700 Mm), which is above the region where
the electron beam velocity increases sharply (from 0.05 to 0.4
Rs, indicated by the shaded areas in Figures 3 and 5). The
electron beam velocities do not increase much thereafter and
tend to plateau in this region. In considering the range of the
observed (red dots) beam speeds and noting that the theoretical
beam speeds bracket this range, Figure 6 suggests that
the temperature in the acceleration region ranges from
5× 106–2× 107 K, which is consistent with observations. A
noticeable phenomenon is that the bulk velocities of some
coronal electron beams can reach 10 times the background
electron thermal velocity (Krucker et al. 2007; Reid et al. 2011;
Benz 2012, 2017; Chen et al. 2013, 2018), which is much
larger than the threshold of the ETSI. Figure 6 suggests that the

velocity of electron beams in general is three times larger than
the background electron thermal velocity at Tthe,cb= 106 K, but
some can reach 10vthe,cb (right green y-axis). From the
observations and our model, we can infer that the acceleration
region and background plasma have a distinct boundary where
the temperature has a sharp decrease. This can explain why
some beam velocities can reach speeds up to 10vthe,cb, which is
much larger than the theoretical threshold to trigger ETSI
(3vth0). Such a high-velocity electron beam can trigger a strong
ETSI, generating long-lived coronal type III radio bursts, which
is consistent with theory (Che et al. 2017) and observations
(Reid et al. 2011).
We mention that magnetic focusing also impacts the

development of downward-moving electron beams (return
currents; Effenberger & Petrosian 2018). However, the plasma
environment for downward-moving beams is more complex
than that for upward beams (Benz 2017), requiring further
study.
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