
Neural Networks 151 (2022) 264–275

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Provable training of a ReLU gatewith an iterative non-gradient
algorithm✩

Sayar Karmakar a,∗, Anirbit Mukherjee b

a Department of Statistics, University of Florida, 230 Newell Drive, Gainesville, 32611, FL, U.S.A.
b Department of Computer Science, The University of Manchester, Kilburn Building, Manchester, M13 9PL, U.K.

a r t i c l e i n f o

Article history:

Received 22 July 2021

Received in revised form 27 December 2021

Accepted 29 March 2022

Available online 4 April 2022

Keywords:

Neural nets

Non-gradient iterative algorithms

Stochastic algorithms

Non-smooth non-convex optimization

a b s t r a c t

In this work, we demonstrate provable guarantees on the training of a single ReLU gate in hitherto

unexplored regimes. We give a simple iterative stochastic algorithm that can train a ReLU gate in the

realizable setting in linear time while using significantly milder conditions on the data distribution

than previous such results.

Leveraging certain additional moment assumptions, we also show a first-of-its-kind approximate

recovery of the true label generating parameters under an (online) data-poisoning attack on the true

labels, while training a ReLU gate by the same algorithm. Our guarantee is shown to be nearly optimal

in the worst case and its accuracy of recovering the true weight degrades gracefully with increasing

probability of attack and its magnitude.

For both the realizable and the non-realizable cases as outlined above, our analysis allows for mini-

batching and computes how the convergence time scales with the mini-batch size. We corroborate

our theorems with simulation results which also bring to light a striking similarity in trajectories

between our algorithm and the popular S.G.D. algorithm — for which similar guarantees as here are

still unknown.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few years, there has been a surge of activ-
ity in using neural networks for complex artificial intelligence
tasks. Human world champions of classic hard board games have
famously been defeated by neural net-based approaches, Schrit-
twieser et al. (2020), Silver et al. (2016, 2018, 2017). At the
core of many of these successes lie the ability of various heuris-
tics to be able to solve the learning theory question of function
optimization/risk minimization,

min
N∈N

Ez∈D[ℓ(N, z)] (1)

where ℓ is some lower-bounded non-negative function, mem-
bers of N are continuous piecewise linear functions representable
by some chosen neural net architecture and we only have sample
access to the distribution D. This reduces to the empirical risk
minimization question when this D is a uniform distribution on
a finite set of points. But as of today, we have little or no mathe-
matical guarantees about these heuristics which seemingly very

✩ Most of this work was done when Anirbit was at Wharton, the Department

of Statistics at UPenn and at the Department of Applied Mathematics and

Statistics, J.H.U.
∗ Corresponding author.

E-mail address: sayarkarmakar@ufl.edu (S. Karmakar).

efficiently solve the many useful instances of these optimization
problems.

To the best of our knowledge about the state-of-the-art in
deep-learning theory, any of these two optimization problems
is typically provably solvable in poly-time for nets with more
than 1 neuron in either of the following two mutually exclusive
scenarios : (a) the nets in the class N are of constant size and the
data comes as tuples z = (x, y) with y being the noise corrupted
output at input x for a net (of a known architecture that which
would be common to the classN). And (b) the nets inN would be
asymptotically large and the data comes as tuples z = (x, y) with
no explicit functional relationship between x and y (but there
could be geometric or statistical assumptions about the x and y).

The simplifications that happen for infinitely large networks
have been discussed since Neal (1996) and this theme has had a
recent resurgence in works like Chizat and Bach (2018) and Jacot,
Gabriel, and Hongler (2018). Eventually this led to an explosion of
literature in getting linear time training of various kinds of neural
nets when their width is a high degree polynomial in training set
size and inverse accuracy (a somewhat unrealistic regime), Allen-
Zhu, Li and Liang (2019), Allen-Zhu, Li, and Song (2019a, 2019b),
Arora et al. (2019), Arora, Du, Hu, Li and Wang (2019), Arora et al.
(2019), Du and Lee (2018), Du, Lee, Li, Wang, and Zhai (2018),
Huang and Yau (2019), Kawaguchi and Huang (2019), Lee et al.
(2017), Li et al. (2019), Su and Yang (2019), Wu, Du, and Ward

https://doi.org/10.1016/j.neunet.2022.03.040

0893-6080/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2022.03.040
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.03.040&domain=pdf
mailto:sayarkarmakar@ufl.edu
https://doi.org/10.1016/j.neunet.2022.03.040

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

(2019), Zou, Cao, Zhou, and Gu (2018) and Zou and Gu (2019). The

essential proximity of this regime to kernel methods have been

thought of separately in works like Allen-Zhu and Li (2019) and

Wei, Lee, Liu, and Ma (2019). On the other hand we note that in

the fully agnostic setting training even a single ReLU gate can be

SPN-hard as shown in Goel, Kanade, Klivans, and Thaler (2016).

Hence its an interesting mathematical question to isolate general

conditions when the convergence speed can be fast for a single

ReLU gate.

To the best of our knowledge, for training a single neuron to

ϵ−accuracy by (Stochastic) Gradient Descent ((S.)G.D.) existing

results are restricted to a sample complexity of O(poly(1/ϵ)) even

with realizable data. And any improvements to this have been

known to happen only for the case of the marginal distribution

on the input being Gaussian or for modifications of S.G.D. running

on symmetric input distributions. We refer the interested readers

to Frei, Cao, and Gu (2020) for a comprehensive summary of

these results — against many of which we will compare our

results too. In this paper, we break this barrier and improve the

sample-complexity of training a single ReLU gate to O(log(1/ϵ))

for realizable data and without tying ourselves to any specific

symmetry in the distribution. We emphasize that not only are

we able to achieve this only by slightly tweaking the popular

S.G.D. algorithm itself but also that our algorithm has guarantees

in cases where we make the data non-realizable by allowing for

a data-poisoning attack. Our distributional assumptions are mild

and reminiscent of the subspace eigenvalue conditions from Du,

Lee, and Tian (2017). Moreover, through thorough experiments,

we will show that our modified S.G.D. has strikingly similar

convergence features as the traditional S.G.D. We summarize the

technical details of our results in the following subsection.

1.1. A summary of our results

To make progress with provable training of a single gate we

draw inspiration from the different avatars of iterative stochas-

tic non-gradient algorithms analyzed in the past, Freund and

Schapire (1999), Goel and Klivans (2017), Goel, Klivans, and Meka

(2018), Kakade, Kanade, Shamir, and Kalai (2011), Klivans and

Meka (2017), Pal and Mitra (1992) and Rosenblatt (1958). We

shall organize our contributions in this paper under four groups

as follows.

Firstly, in the short Section 2 we start with a quick re-analysis

of a known algorithm called the GLM-Tron (Kakade et al., 2011)

but under more general conditions than the previous proofs about

it. We show how well it can do (empirical) risk minimization

on any Lipschitz gate with Lipschitz constant < 2 in the noisily

realizable setting while no assumptions are being made on the

distribution of the noise beyond their boundedness — hence the

noise can be adversarial. We also point out how the result can be

improved under certain benign assumptions on the noise.

Secondly, in Section 3, we exclusively focus on training the

ReLU gate, Rn ∋ x ↦→ max{0,w⊤x} ∈ R for w ∈ R
n being its

weight. We note that for this gate, the corresponding empirical

or the population risk is neither convex nor smooth w.r.t. how it

depends on the weights. And yet we show a very simple iterative

stochastic algorithm which can provably recover in linear time

the underlying parameter w∗ of the ReLU gate when the data

being sampled is exactly realizable of the form (x,max{0,w⊤
∗ x}).

That is, with high probability, in log
(
1
ϵ

)

iterations we get ϵ close

to w∗ while starting from any arbitrary initial point. (We recall

that for stochastic algorithms, linear time convergence i.e. getting

ϵ close to the global minima in O(log(1
ϵ
)) time is a hallmark of

specialized optimization methods adapted for smooth strongly

convex objectives like Johnson and Zhang (2013)). To achieve this

we use a mild distributional condition which essentially captures

the intuition that enough of our samples are such that w⊤
∗ x > 0.

To the best of our knowledge, this is the first example of nearly

distribution-free training of a ReLU gate in linear time.

Note that, in Section 3 we are using a stochastic algorithm

while solving a regression problem specific to a ReLU gate and are

exploiting the structure of the ReLU gate (and mild distributional

assumptions) to directly achieve parameter recovery. The results

in Section 2 also apply to a ReLU gate as a special case but

in contrast, therein we used full-batch iterative updates to gain

other advantages, namely of being able to handle more general

gates while having essentially no distributional assumptions on

the training data.

Thirdly, by making a slightly stronger distributional assump-

tion, in Case (II) of Theorem 3.1 in Section 3 we also encompass

the case when during training the oracle behaves adversarially i.e.

it tosses a biased coin and decides whether or not to additively

distort the true labels by a bounded perturbation. Additionally,

we also allow for the bias of the adversary’s coin to be data-

dependent. This is a ‘‘data-poisoning’’ attack since the adversary

corrupts the training data in an online fashion. In this case, we

show that the accuracy of the algorithm in recovering w∗ is

not only worst-case near optimal but is such that the accuracy

degrades gracefully as the probability of the adversary’s attack or

the magnitude of the distortion increases.

To the best of our knowledge, this is the first guarantee on

training a ReLU gate while under any kind of an adversarial attack.

Also in both these cases above we allow for mini-batching in the

algorithm and keep track of how the mini-batch size affects the

convergence time.

Lastly, in Section 3.1 we give an experimental demonstration

of the performance of our algorithm. We do a side-by-side com-

parison on a ReLU gate between S.G.D. and our modified-S.G.D.,

under various setting which fall under the ambit of Theorem 3.1.

In particular we track how the distance to the original optima

(w∗) changes with time for the various settings that we consider.

Seen from this perspective we emphasize that while guarantees

like Case (II) of Theorem 3.1 still remain unknown for S.G.D.,

our algorithm’s behavior in experiments closely resembles that

of S.G.D. under similar settings. Thus our experiments encourage

the conjecture that maybe our modification only very slightly

changes the stochastic process induced by S.G.D. on a ReLU gate.

We leave it for future work to investigate this possibility and to

try generalizing this for larger nets.

1.2. Comparison to concurrent literature

Firstly, we note that the result in Goel et al. (2018) includes

learning a ReLU gate under realizable settings as a special case

of their result but only under the assumption of the distribu-

tion being symmetric. Specific to the marginal distribution on

the data being Gaussian, works like Soltanolkotabi (2017) and

Kalan, Soltanolkotabi, and Avestimehr (2019) had solved the same

problem using gradient-based methods.

A notable recent progress with understanding the behavior of

(stochastic) gradient descent on a ReLU gate was achieved in Frei

et al. (2020). Their Theorem D.1 (b) is solving the same question

as our Theorem 3.1 Case (I). But our algorithm, in this special

case, not only accounts for the effect of mini-batching on the

convergence time but also converges exponentially faster than

what is guaranteed in Frei et al. (2020).

Also significantly in contrast to these previous results cited

above, our Theorem 3.1 Case (II) encompasses the situation of a

probabilistic adversary causing distortions to the true labels. To

the best of our knowledge this is the first work to analyze training

of a ReLU gate in any kind of adversarial setup — in particular a

data-poisoning attack on the training data (labels). We also allow

265

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

for the adversary to decide to attack or not using a biased coin

toss whose bias is allowed to be data-dependent.

Lastly, unlike any of these previous results, we keep track of

the subtleties of using mini-batches and how the mini-batch size

affects the convergence time.

In Diakonikolas, Goel, Karmalkar, Klivans and Soltanolkotab

(2020), the authors had given algorithms for learning of a ReLU

gate in the non-realizable setting for certain nice marginal dis-

tributions on the data. We note that such results about risk

minimization are incomparable to our goal in Theorem 3.1 Case

(II) of recovering the generating weights (the w∗ therein) as

closely as possible under adversarial corruption of the training

labels. But this result of ours can be seen as a natural regression

analogue of the recent result in Diakonikolas, Kontonis, Tzamos

and Zarifi (2020) about learning half-space indicators under a

Massart noise.

2. Re-analyzing the GLM-Tron

In this section we shall take a relook at the GLM-Tron algo-

rithm (given below) from Kakade et al. (2011) and show that

it converges on certain Lipschitz gates with no distributional

assumption on the data.

Algorithm 1 GLM-Tron

1: Input: {(xi, yi)}i=1,...,m and an activation function σ : R → R

2: w1 = 0

3: for t = 1, . . . do

4: wt+1 := wt + 1
m

∑m

i=1

(

yi − σ (⟨wt , xi⟩)
)

xi

5: end for

First, we state the following crucial lemma,

Lemma 2.1. Assume that for all i = 1, . . . , S ∥xi∥ ≤ 1 and in

Algorithm 1, σ is a L−Lipschitz non-decreasing function. Suppose the

vector w and the scalar W are s.t at iteration t, we have ∥wt −w∥ ≤
W and we define η > 0 s.t ∥ 1

S

∑S

i=1

(

yi − σ (⟨w, xi⟩)
)

xi∥ ≤ η. Then

it follows that,

∥wt+1 −w∥2 ≤ ∥wt −w∥2 −
(2

L
− 1

)

L̃S(ht)+
(

η2 + 2ηW (L+ 1)

)

where we have defined,

L̃S(ht) := 1
S

∑S

i=1

(

ht (xi)−σ (⟨w, xi⟩)
)2

= 1
S

∑S

i=1

(

σ (⟨wt , xi⟩)−

σ (⟨w, xi⟩)
)2

We give the proof of the above lemma in Appendix A.1. The

above Algorithm 1 was introduced in Kakade et al. (2011) for

bounded activations. Here we show the applicability of that idea

for more general activations and also while having adversarial

attacks on the labels. We will see in the following theorem as to

how the above lemma leads to convergence of the effective-E.R.M.,

L̃S by GLM-Tron on a single gate.

Theorem 2.2 (GLM-Tron (Algorithm 1) Solves the Effective-E.R.M.

on a ReLU Gate Up to Noise Bound with Minimal Distributional

Assumptions). Assume that for all i = 1, . . . , S ∥xi∥ ≤ 1 and the

label of the ith data point yi is generated as, yi = σ (⟨w∗, xi⟩)+ ξi s.t

∀i, |ξi| ≤ θ for some θ ≥ 0 and w∗ ∈ R
n. If σ is a L−Lipschitz non-

decreasing function for L < 2 then in at most T = ∥w∗∥
ϵ

GLM-Tron

steps we would attain parameter value wT s.t,

L̃S(hT) =
1

S

S
∑

i=1

(

σ (⟨wT , xi⟩) − σ (⟨w∗, xi⟩)
)2

<
L

2 − L

(

ϵ + (θ2 + 2θ · ∥w∗∥ · (L + 1))

)

The proof of the above theorem is deferred to Appendix A.2.

Remark. Firstly, note that in the realizable setting i.e. when

θ = 0, the above theorem is giving an upperbound on the number

of steps needed to solve the ERM on say a ReLU gate to O(ϵ)

accuracy. Secondly, observe that the above theorem does not force

any distributional assumption on the ξi beyond the assumption of

its boundedness. Thus the noise could as well have been chosen

adversarially up to the constraint on its norm.

If we make some assumptions on the noise being benign then

we can get the following.

Theorem 2.3 (Performance Guarantees on the GLM-Tron (Algorithm

1) When Solving E.R.M.). Assume that the noise random variables

ξi, i = 1, . . . , S are identically distributed as a centered random

variable say ξ . Then for T = ∥w∗∥
ϵ

, we have the following guarantee

for GLM-Tron on the empirical risk after T iterations (say LS(hT)),

E{(xi,ξi)|i=1,...,S}

[

LS(hT)

]

≤ Eξ [ξ 2] +
L

2 − L

(

ϵ + (θ2 + 2θ · ∥w∗∥ · (L + 1))

)

The proof for the above has been given in Appendix A.3. Here

we note a slight generalization of the above that can be easily

read off from the above.

Corollary 2.4. Suppose that the joint distribution of {ξi}i=1,...,S is

s.t P

[

|ξi| ≤ θ ∀i ∈ {1, . . . , S}
]

≥ 1 − δ Then the guarantee of the

above Theorem 2.3 still holds but now with probability at least 1−δ

over the noise distribution.

In the next section we shall continue with the current theme

of training a single neuron and see how a stochastic algorithm

can be designed to get stronger training guarantees specific to a

ReLU gate.

3. Learning a ReLU gate in the realizable setting and under a

data-poisoning attack

In this section we consider an adversary executing a data-

poisoning attack on an iterative stochastic learning algorithm

(Algorithm 2). Given a marginal distribution D on the inputs

x, suppose the corresponding true labels are generated as y =
ReLU(w⊤

∗ x) for some unknown w∗ ∈ R
n. We assume sampling

access to D and an adversarial label oracle that on the t th−iterate

gets queried with b inputs {xt1 , . . . , xtb} drawn uncorrelatedly

from D. The oracle then flips a coin for each minibatch data point

with probability of the coin returning 0 being 1−β(xti) for some

fixed function β : R
n → [0, 1]. We assume that these coin

flips are uncorrelated to each other and the mini-batch sample

and if the coin flip gives 1 only then does the adversary do a

bounded (by a constant θ∗) additive distortion to the true label

of the corresponding data.

To learn the true labeling function R
n ∋ y ↦→ ReLU(w⊤

∗ y) ∈ R

in this adversarially corrupted realizable setting we try to solve

the following optimization problem,

minw∈Rn Ex∼D

[(

y − ReLU(w⊤x)
)2]

266

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

In contrast to previous work, we show that the simple algo-

rithm given below solves this learning problem by leveraging the

intuition that if we see enough labels y = ReLU(w⊤
∗ x) + ξ where

y > θ∗, then solving the linear regression problem on this subset

of samples, gives a w̃∗ which is close to w∗. In the situation, with

adversarial corruption (θ∗ > 0) we show in Section 3.2 that our

recovery guarantee is optimal in a certain sense. Additionally in

the realizable case (θ∗ = 0 or β = 0 identically), our setup learns

to arbitrary accuracy the true weight w∗ using much milder

distributional constraints than previous such results that we are

aware of.

Algorithm 2

Modified mini-batch SGD for training a ReLU gate with adversar-

ially perturbed realizable labels.

1: Input: Sampling access to a distribution D on R
n, a function

β : Rn → [0, 1] and a step-length η > 0.

2: Input: Oracle access to labels y ∈ R when queried with some

x ∈ R
n

3: Input: An arbitrarily chosen starting point of w1 ∈ R
n

4: for t = 1, . . . do

5: Sample independently st := {xt1 , . . . , xtb} ∼ D and query

the oracle with this set.

6: The Oracle samples ∀i = 1, . . . , b, αti ∼ {0, 1} with

probability {1 − β(xti), β(xti)}
7: The Oracle replies ∀i = 1, . . . , b, yti = αti ·ξti+ReLU(w⊤

∗ xti)
s.t |ξti | ≤ θ∗

8: Form the gradient (proxy),

gt := −
1

b

b
∑

i=1

1{yti>θ∗}(yti − w⊤
t xti)xti

9: wt+1 := wt − ηgt

10: end for

We note that the choice of gt in Algorithm 2 resembles the

stochastic gradient that is commonly used and is known to have

great empirical success. In a true S.G.D., the indicator occurring

in gt would have been 1
{

w⊤
t xti>0

} for each i

Towards stating our theorems we define the following nota-

tion.

Definition 1. Given w∗ ∈ R
n, θ∗ ∈ R

+, a distribution D on R
n

and a function β : Rn → [0, 1], we define the following constants

associated to them (assuming they are finite),

ai := Ex∼D

[

1w⊤∗ x>0∥x∥
i
]

, for i = 2, 4

βj := Ex∼D

[

β(x)1w⊤∗ x>0∥x∥
j
]

, for j = 1, 2, 3

λ1(θ∗) := λmin

(

Ex∼D

[

1w⊤∗ x>2θ∗xx
⊤
]
)

Theorem 3.1 (Training a ReLU Gate with Realizable Data and a

Probabilistic Data-Poisoning Adversary. (Proof in Appendix B)). In

Algorithm 2 we will assume that (a) for i ̸= j and for all t , the

random variables/data samples xti and xtj are uncorrelated and (b)

that the random variables αti and αtj are mutually uncorrelated and

also uncorrelated with the mini-batch choice st .

Case I : Realizable setting, θ∗ = 0.

Suppose (a) E

[

∥x∥4
]

and the covariance matrix E

[

xx⊤
]

exist

and (b) w∗ is s.t a4 exists and E

[

1w⊤∗ x>0xx
⊤
]

is positive definite

— and hence λ1 := λ1(0) is well defined. Then if λ1 < ∞, one

can find a suitable step-size η > 0 and run Algorithm 2 starting

from arbitrary w1 ∈ R
n so that ∀ϵ > 0, δ ∈ (0, 1), after T =

O

(

log
∥w1−w∗∥2

ϵ2δ

)

iterations we have

P

[

∥wT − w∗∥2 ≤ ϵ2
]

≥ 1 − δ

Case II : With bounded adversarial corruption of the true labels,
θ∗ > 0

Suppose w∗ and θ∗ are such that (a) a2, a4, β1(> 0), β2, β3

exist and (b) λ1(θ∗) > 0. Then there exist constants b′
1, c

′
1, c

′
2, c

′
3

(to be defined below) s.t. one can choose η = b′
1

γ c′
1

and run Al-

gorithm 2 starting from arbitrary w1 ∈ R
n so that, after T =

O

⎛

⎜
⎜
⎜
⎝
log

∥w1−w∗∥2

ϵ2δ−θ2∗ ·
(

c′
2
c′
1

+γ ·
c′
3
b′
1

γ−1

)

⎞

⎟
⎟
⎟
⎠

iterations we have

P

[

∥wT − w∗∥2 ≤ ϵ2
]

≥ 1 − δ

where ϵ > 0 and δ ∈ (0, 1) are s.t.

ϵ2δ = β2
1 ·

K · θ2
∗

(2λ1(θ∗) − 1
K
)

(2)

and K > 0 large enough s.t 2λ1(θ∗) > 1
K
, and

b′
1 = 2λ1(θ∗) −

1

K
, c ′

1 =
1 + a4 + (1 + a22)(b − 1)

b

c ′
2 =

1

β1

(

β2
3 + (β2 · a1)2 · (b − 1) + (β2 + (b − 1) · β2

1)

)

, c ′
3 = K · β2

1

and γ > max

⎛

⎝
b′2
1

c ′
1

,
ϵ2δ + θ2

∗ · c′
2

c1

ϵ2δ − θ2
∗ · c′

3

b1

⎞

⎠ . (3)

Remark 1. We collate the following salient points about the
structure of Theorem 3.1 :

(a) Note that for any fixed δ, the ϵ error guaranteed by the the-
orem approaches 0 as supx β(x) → 0. Thus we have continuous
improvement of the minimum achievable error as the likelihood
of the data-poisoning attack decreases.

(b) ∥wT − w∗∥2 ≤ ϵ2 H⇒ Ex

[(

ReLU(w⊤
T x) − ReLU(w⊤

∗ x)
)2]

≤

ϵ2
E

[

∥x∥2
]

and hence Algorithm 2 solves the risk minimization

problem for θ = 0 to any desired accuracy and in linear time.

(c) Note that the above convergence holds starting from an arbi-
trary initialization w1.

(d) In Section 3.2 we shall see how the above theorem gives a
worst-case near-optimal trade-off between ϵ (the accuracy) and
δ (the confidence) that can be achieved when training against a
θ∗ (a constant) additive norm bounded adversary corrupting the
true output.

(e) Convergence speed increases with the minibatch size b :
In the Case (I) above i.e. when θ∗ = 0, one can read off from

the proof that upon defining b1 = 2λ1 & c1 = a4+a2
2
(b−1)

b
, one can

find δ0 so that c1 >
b2
1
δ0

(1+δ0)
2 and upon choosing η = b1/(c1(1+δ0))

we obtain

T = 1 +

⎛

⎝
log

∥w1−w∗∥2
ϵ2δ

log 1
α

⎞

⎠

where α = 1 −
4λ2

1δ0
(

a22 + (a4−a2
2
)

b

)

· (1 + δ0)2

267

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

Note that this T is a decreasing function of the batchsize b and

hence quantifies the intuition that to achieve a pre-specified level

of precision, it takes lesser time when using larger batch-sizes. A

similar conclusion prevails in the θ∗ > 0 case as well.

(f) The distributional condition is mild :

Corresponding to both the situations, θ∗ = 0 and θ∗ > 0,

here we provide simple examples that satisfy the condition of

λ1(θ∗) > 0.

Example 1: Compact multivariate distribution

Suppose n = 2 and x ∼ Unif[−1, 1] × [−1, 1] and suppose

w∗ = (−1, 1). Hence we can define,

d1(θ∗) := E(1−x1+x2>2θ∗x
2
1)

= E(1x1+x2>2θ∗x
2
2) =

1

48
(7 − 8θ∗ + (2θ∗ − 1)4)

d2(θ∗) := E(1−x1+x2>2θ∗x1x2)

=
1

32
−

4θ∗
24

+
4θ2

∗ − 1

16
−

(2θ∗ − 1)4

32

+
4θ∗(2θ∗ − 1)

24
−

(4θ2
∗ − 1)(2θ∗ − 1)2

16

Then we have λ1(θ∗) := λmin

(

Ex∼D

[

1−x1+x2>2θ∗xx
⊤
]
)

=
d1(θ∗) − |d2(θ∗)|

Hence ensuring convergence needs, d1(θ∗) > |d2(θ∗)| and this

is satisfied for examples such as : (a) θ∗ = 0, λ1(0) = 1
6

− 0 = 1
6

(b) θ∗ = 1, λ1(1) = 1
16

− 5
96

= 1
96
.

Example 2: Non-compact univariate distribution

Suppose n = 1, x ∼ N (0, 1). Then for any w∗ we have,

0 < λ1(θ∗) = E(1w∗x>2θ∗x
2) ≤

∫ ∞

−∞
x2φ(x)dx = 1

where φ(x) is the standard normal p.d.f. This implies λ1(θ∗) is
finite and positive and thus convergence is ensured.

It is easy to demonstrate further examples in other univari-

ate/multivariate and compact/non-compact distributions as well

and see that the convergence conditions are not very strong.

3.1. Experimental demonstration of Algorithm 2

For experiments we sample the data xti (Algorithm 2) in i.i.d

fashion from a standard normal distribution in n = 500 dimen-

sions. We instantiate a data-poisoning attack consistent with the

assumptions in Theorem 3.1 in the following way : at the tth

iterate we choose ξti = θ∗1{i mod 2=0} − θ∗1{i mod 2̸=0} and αti is

0/1 w.p β ∈ [0, 1] for i = 1, . . . , b.

Then for a chosen value of w∗ and η = 0.01, we plot how the

parameter recovery error ∥wt −w∗∥ (averaged over multiple runs

of the algorithm) varies with t ,

• for different values of b, at fixed θ∗ = 2 and β = 0.5 in

Fig. 1. Here we can see that larger values of mini-batch help

attain lower errors faster.

• for different values of β , at fixed θ∗ = 2 and b = 16 in Fig. 2.

Here we can see that there is a graceful degradation of the

best achieved error with increasing probability of attack.

• for different values of θ∗, at fixed β = 0.5 and b = 16 in

Fig. 3. Here we can see that there is a graceful degradation

of the best achieved error with increasing magnitude of the

attack.

We note that all the three observations above are consistent

with what we would have expected from Theorem 3.1.

We recall that in Algorithm 2 if we redefined gt to,

− 1
b

∑b

i=1 1
{

w⊤
t xti>0

}(yti − w⊤
t xti)xti then it would be standard

Fig. 1. Performance of Algorithm 2 with changing mini-batch size for n =
500, β = 0.5 and θ∗ = 2.

Fig. 2. Performance of Algorithm 2 with changing probability of attack for

n = 500, θ∗ = 2 and b = 16.

Fig. 3. Performance of Algorithm 2 with changing θ∗ for n = 500, β = 0.5 and

b = 16.

S.G.D. For comparison, we repeat the last two experiments with

this S.G.D. and give the corresponding plots in Figs. 4 and 5.

We notice the striking similarity between the plots in Figs. 2

& 4 and Figs. 3 & 5 respectively. This motivates that our algo-

rithm very closely mimics the behavior of S.G.D. while similar

guarantees as in Theorem 3.1 yet remain elusive for S.G.D.

268

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

Fig. 4. Performance of S.G.D. with changing probability of attack for n =
500, θ∗ = 2 and b = 16.

Fig. 5. Performance of S.G.D. with changing θ∗ for n = 500, β = 0.5 and b = 16.

3.2. Near-optimality of Theorem 3.1

We consider the ‘‘worst case’’ situation of Theorem 3.1 i.e.

when β = 1 identically and hence the adversary always acts. Now

consider another value for the filter Rr ∋ wadv ̸= w∗ being chosen

by this adversary and suppose that θ∗ = θadv s.t

θadv ≥ sup
x∈supp(D)

|ReLU(w⊤
advx) − ReLU(w⊤

∗ x)| (4)

It is easy to imagine cases where the supremum on the RHS

above exists like when D is compactly supported. Now in this

situation we define cbound := (2λ1(θ∗)− 1
K
)

β2
1
·K and hence Theorem 3.1

says that the lowest value of the parameter error achievable is,

ϵ2 =
θ ⋆2

δcbound
H⇒ ϵ2 ≥

θ2
adv

cbound
(5)

Hence proving the optimality of this guarantee is equivalent

to showing the existence of an attack within this θadv bound for

which the best accuracy possible nearly saturates the lowerbound

in Eq. (5).

We note that for the choice of corruption bound θadv, the

adversarial oracle when queried with x can respond with ξx +
ReLU(w⊤

∗ x) where ξx = ReLU(w⊤
advx) − ReLU(w⊤

∗ x). Hence the

data received by the algorithm can be exactly realized with the

filter choice wadv. In that case, the analysis of Theorem 3.1, Case

(I) shows that Algorithm 2 will converge in high probability to

wadv. Thus the error incurred is ϵ ≥ ∥wadv − w∗∥.

An instantiation of the above attack happening is when θadv =
r∥wadv − w∗∥ for r = supx∈supp(D) ∥x∥. Its easy to imagine cases

where D is s.t r defined above is finite. Further, this choice of θadv
is valid since the following holds, as required by Eq. (4),

sup
x∈supp(D)

|ReLU(w⊤
advx) − ReLU(w⊤

∗ x)| ≤ r∥wadv − w∗∥ = θadv

Thus the above setup invoked on training a ReLU gate with

inputs being sampled from D as above while the labels are being

additively corrupted by at most θ∗(= θadv) = r∥wadv − w∗∥
demonstrates a case where the worst case accuracy guarantee

of ϵ2 ≥ θ2
adv

cbound
is optimal up to a constant r2

cbound
. We note that

this argument also implies the worst-case near optimality of

guarantees like Eq. (5) for any algorithm defending against this

attack which also has the property of recovering the parameters

correctly when the labels are exactly realizable.

4. Conclusion

In this work we have shown provable training of a ReLU

gate under mild distributional conditions and pointed out cases

where this happens in linear time while assuming only certain

mild non-degeneracy conditions on the distribution. Also our

results have probed how closely we can recover the original

generating weights when the true training labels are subject to

an (online) data-poisoning attack. And in this particular regime,

in Section 3.1, we have given careful experimental evidence as

to how our provably convergent modification of S.G.D. on a ReLU

gate (Algorithm 2) seems to have very similar time dynamics as

S.G.D. - while for the later such guarantees remain unknown.

We believe this raises the interesting question as to whether

indeed one can rigorously show that the stochastic process in-

duced by Algorithm 2, is a close approximant of true S.G.D. on

a ReLU gate. We posit that this is a fruitful direction for future

investigations and might lead to insights about the dynamics of

S.G.D. for nets with a constant number of gates, which has so far

mostly remained out of current mathematical reach.

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

Acknowledgments

We are thankful to the Co-Editor in Chief, Action Editor, and

referees for their constructive comments which have significantly

helped towards this final form of the paper. Sayar Karmakar’s

research is partially supported by NSF DMS, USA 2124222. Anirbit

Mukherjee would like to thank the inaugural MINDS Data Sci-

ence Fellowship at J.H.U., Wharton Dean’s Fund for Postdoctoral

Research and Weijie Su’s NSF CAREER DMS-1847415 for funding

this research at various stages.

We would like to thank Daniel Dadush for his critical insights

which led to the initial version of the Algorithm 2 (which first

appeared in Mukherjee et al. (2021)). Multiple discussions with

Amitabh Basu and Anup Rao (during Anirbit’s internship at Adobe,

San Jose) helped shape the core questions that were pursued in

this paper. We would also like to acknowledge the collaboration

with Ramchandran Muthukumar during the initial stages of the

project.

Appendix A. Proofs of Section 2

269

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

A.1. Proof of Lemma 2.1

Proof of Lemma 2.1. We observe that,

∥wt − w∥2 − ∥wt+1 − w∥2

= ∥wt − w∥2 − ∥
(

wt +
1

S

S
∑

i=1

(

yi − σ (⟨wt , xi⟩)
)

xi

)

− w∥2

= −
2

S

S
∑

i=1

⟨(

yi − σ (⟨wt , xi⟩)
)

xi,wt − w

⟩

− ∥
1

S

S
∑

i=1

(

yi − σ (⟨wt , xi⟩)
)

xi∥2

=
2

S

S
∑

i=1

(

yi − σ (⟨wt , xi⟩)
)(

⟨w, xi⟩ − ⟨wt , xi⟩
)

− ∥
1

S

S
∑

i=1

(

yi − σ (⟨wt , xi⟩)
)

xi∥2 (A.1)

Analyzing the first term on the RHS above we get,

2

S

S
∑

i=1

(

yi − σ (⟨wt , xi⟩)
)(

⟨w, xi⟩ − ⟨wt , xi⟩
)

=
2

S

S
∑

i=1

(

yi − σ (⟨w, xi⟩) + σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)

×
(

⟨w, xi⟩ − ⟨wt , xi⟩
)

=
2

S

S
∑

i=1

⟨(

yi − σ (⟨w, xi⟩)
)

xi,w − wt

⟩

+
2

S

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)(

⟨xi,w⟩ − ⟨xi,wt⟩
)

≥ −2ηW +
2

S

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)(

⟨xi,w⟩ − ⟨xi,wt⟩
)

In the first term above we have invoked the definition of η

and W given in the lemma. Further since we are given that σ is

non-decreasing and L−Lipschitz, we have for the second term on

the RHS above,

2

S

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)(

⟨xi,w⟩ − ⟨xi,wt⟩
)

≥
2

SL

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)2

=:
2

L
L̃S(ht)

Thus together we have,

2

S

S
∑

i=1

(

yi − σ (⟨wt , xi⟩)
)(

⟨w, xi⟩ − ⟨wt , xi⟩
)

≥ −2ηW +
2

L
L̃S(ht)

(A.2)

Now we look at the second term on the RHS of Eq. (A.1) and

that gives us,

∥
1

S

S
∑

i=1

(

yi − σ (⟨wt , xi⟩)
)

xi∥2

= ∥
1

S

S
∑

i=1

(

yi − σ (⟨w, xi⟩) + σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)

xi∥2

≤ ∥
1

S

S
∑

i=1

(

yi − σ (⟨w, xi⟩)
)

xi∥2

+ 2∥
1

S

S
∑

i=1

(

yi − σ (⟨w, xi⟩)
)

xi∥

× ∥
1

S

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)

xi∥

+ ∥
1

S

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)

xi∥2

≤ η2 + 2η∥
1

S

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)

xi∥

+ ∥
1

S

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)

xi∥2 (A.3)

Now by Jensen’s inequality we have,

∥
1

S

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)

xi∥2

≤
1

S

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)2

= L̃S(ht)

And we have from the definition of L and W ,

∥
1

S

S
∑

i=1

(

σ (⟨w, xi⟩) − σ (⟨wt , xi⟩)
)

xi∥ ≤
L

S

S
∑

i=1

∥w − wt∥ ≤ L × W

.

Substituting the above two into the RHS of Eq. (A.3) we have,

∥
1

S

S
∑

i=1

(

yi − σ (⟨wt , xi⟩)
)

xi∥2 ≤ η2 + 2ηLW + L̃S(ht) (A.4)

Now we substitute Eqs. (A.2) and (A.4) into Eq. (A.1) to get,

∥wt − w∥2 − ∥wt+1 − w∥2

≥
(

−2ηW +
2

L
L̃S(ht)

)

− (η2 + 2ηLW + L̃S(ht))

The above simplifies to the inequality we claimed in the

lemma i.e.,

∥wt+1−w∥2 ≤ ∥wt−w∥2−
(2

L
−1

)

L̃S(ht)+
(

η2+2ηW (L+1)

)

□

A.2. Proof of Theorem 2.2

Proof of Theorem 2.2. The equation defining the labels in

the data-set i.e. yi = σ (⟨w∗, xi⟩) + ξi, with |ξi| ≤ θ along

with our assumption that, ∥xi∥ ≤ 1 implies that, ∥ 1
S

∑S

i=1

(

yi −

σ (⟨w∗, xi⟩)
)

xi∥ ≤ θ . Thus we can invoke the above Lemma 2.1

between the tth and the (t +1)th iterate with w = w∗, η = θ and

W = Wt s.t Wt ≥ ∥wt − w∥ = ∥wt − w∗∥ to get,

∥wt+1 − w∗∥2

≤ ∥wt − w∗∥2 −
[
(2

L
− 1

)

L̃S(ht) − (θ2 + 2θ · Wt · (L + 1))

]

Thus, if L̃S(ht) ≥ L
2−L

(

ϵ + (θ2 + 2θ · Wt · (L + 1))

)

then,

∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 − ϵ. Thus if the above lowerbound

on L̃s(ht) holds in the tth step then at the start of the (t + 1)th

step we still satisfy, ∥wt+1 −w∥ < ∥wt −w∥. Since the iterations

270

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

start with w1 = 0, in the first step we can choose W1 = ∥w∗∥.
Now we proceed via induction : from what was argued earlier it
follows that if till step t we can keep choosing Wt = ∥w∗∥, then
till step t we have reduced the distance to w∗ by O(t · ϵ) and

either L̃S(ht) < L
2−L

(

ϵ + (θ2 + 2θ · ∥w∗∥ · (L + 1))

)

or in the next

step we would have ∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 − ϵ and hence
the distance to w∗ would decrease further by ϵ.

But the distance to w∗ is lowerbounded by 0 and hence in
at most

∥w∗∥
ϵ

steps of the above kind we would have to have
attained,

L̃S(hT) =
1

S

S
∑

i=1

(

σ (⟨wT , xi⟩) − σ (⟨w∗, xi⟩)
)2

<
L

2 − L

(

ϵ + (θ2 + 2θ∥w∗∥(L + 1))

)

And that proves the theorem we wanted. □

A.3. Proof of Theorem 2.3

Proof of Theorem 2.3. Let the true empirical risk at the
T th−iterate be defined as,

LS(hT) =
1

S

S
∑

i=1

(

σ (⟨wT , xi⟩) − σ (⟨w∗, xi⟩) − ξi

)2

Then it follows that,

L̃S(hT) − LS(hT) =
1

S

S
∑

i=1

(

σ (⟨wT , xi⟩) − σ (⟨w∗, xi⟩)
)2

−
1

S

S
∑

i=1

(

σ (⟨wT , xi⟩) − σ (⟨w∗, xi⟩) − ξi

)2

=
1

S

S
∑

i=1

ξi

(

−ξi + 2σ (⟨wT , xi⟩) − 2σ (⟨w∗, xi⟩)
)

= −
1

S

S
∑

i=1

ξ 2
i +

2

S

S
∑

i=1

ξi

(

σ (⟨wT , xi⟩) − σ (⟨w∗, xi⟩)
)

By the assumption of ξi being an unbiased noise the second
term vanishes when we compute,

E{(xi,ξi)|i=1,...,S}

[

L̃S(hT) − LS(hT)

]

Thus we are led to,

E{(xi,ξi)|i=1,...,S}

[

L̃S(hT) − LS(hT)

]

= −
1

m
E{ξi}i=1,...,S

[m
∑

i=1

ξ 2
i

]

= −
1

m

m
∑

i=1

E{ξi}

[

ξ 2
i

]

= −Eξ [ξ 2]

For T = ∥w∗∥
ϵ

, we invoke the upperbound on L̃S(hT) from
Theorem 2.2 and we can combine it with the above to say,

E{(xi,ξi)|i=1,...,S}

[

LS(hT)

]

≤ Eξ [ξ 2]+
L

2 − L

(

ϵ+(θ2+2θ∥w∗∥(L+1))

)

And this proves the theorem we wanted. □

Appendix B. Proofs of Section 3

B.1. Proof of Theorem 3.1

Proof of Theorem 3.1. Here we analyze the dynamics of the
Algorithm 2.

∥wt+1 − w∗∥2 = ∥wt − ηgt − w∗∥2

= ∥wt − w∗∥2 + η2∥gt∥2 − 2η⟨wt − w∗, gt⟩

Let the training data sampled till the iterate t be St :=
⋃t

i=1 si.

We overload the notation to also denote by St , the sigma-algebra

generated by the samples seen and the αs till the tth iteration.

Conditioned on St−1, wt is determined and gt is random and

dependent on the choice of st and {αti , ξti | i = 1, . . . , b}. We shall

denote the collection of random variables {αti | i = 1, . . . , b} as

αt . Then taking conditional expectations w.r.t. St−1 of both sides

of the above equation we have,

Est ,αt

[

∥wt+1 − w∗∥2

⏐
⏐
⏐
⏐
St−1

]

= Est ,αt

[

∥wt − w∗∥2

⏐
⏐
⏐
⏐
St−1

]

+ 2
η

b
·

b
∑

i=1

Exti ,αti

[
⟨

wt − w∗, 1yti>θ∗

(

yti − w⊤
t xti

)

xti

⟩
⏐
⏐
⏐
⏐
St−1

]

  

Term 1

+ η2
Exti ,αti

[

∥gt∥2

⏐
⏐
⏐
⏐
St−1

]

  

Term 2

(B.1)

Now we simplify the last two terms on the RHS above, starting

from the rightmost,

Term 2 = η2 · E
[

∥gt∥2 | St−1

]

=
η2

b2

b
∑

i,j=1

E

[

1yti>θ∗1ytj>θ∗ · (yti − w⊤
t xti) · (ytj − w⊤

t xtj)

· ⟨xti , xtj⟩
⏐
⏐
⏐
⏐
St−1

]

=
η2

b2

b
∑

i,j=1

E

[

1yti>θ∗1ytj>θ∗⟨xti , xtj⟩·
[

αtiαtjξtiξtj

+
(

ReLU(w⊤
∗ xti) − w⊤

t xti

)(

ReLU(w⊤
∗ xtj) − w⊤

t xtj

)

+ αtiξti

(

ReLU(w⊤
∗ xtj) − w⊤

t xtj

)

+ αtjξtj

(

ReLU(w⊤
∗ xti) − w⊤

t xti

)
] ⏐

⏐
⏐
⏐
St−1

]

≤
η2

b2

b
∑

i,j=1

(

E

[

1yti>θ∗1ytj>θ∗ |⟨xti , xtj⟩|

×
[

αtiαtjθ
2
∗ + |ReLU(w⊤

∗ xti) − w⊤
t xti | · |ReLU(w⊤

∗ xtj) − w⊤
t xtj |

+ θ∗
(

αti

⏐
⏐ReLU(w⊤

∗ xtj) − w⊤
t xtj

⏐
⏐

+ αtj

⏐
⏐ReLU(w⊤

∗ xti) − w⊤
t xti

⏐
⏐
)

] ⏐
⏐
⏐
⏐
St−1

])

As events we have for, k = i, j, 1ytk>θ∗ ⊂ 1ReLU(w⊤∗ xtk)>0 =
1w⊤∗ xtk>0. Hence we can simplify as follows,

Term 2

≤
η2

b2

b
∑

i,j=1

{

E

[

1w⊤∗ xti>01w⊤∗ xtj>0|⟨xti , xtj⟩|

·
[

αtiαtjθ
2
∗ + |ReLU(w⊤

∗ xti) − w⊤
t xti | · |ReLU(w⊤

∗ xtj) − w⊤
t xtj |

+ θ∗
(

αti

⏐
⏐ReLU(w⊤

∗ xtj) − w⊤
t xtj

⏐
⏐

+αtj

⏐
⏐ReLU(w⊤

∗ xti) − w⊤
t xti

⏐
⏐
)

] ⏐
⏐
⏐
⏐
St−1

]}

271

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

≤
η2

b2

b
∑

i,j=1

{

θ2
∗ · E

[

1w⊤∗ xti>01w⊤∗ xtj>0|⟨xti , xtj⟩|

·
[

(β(xti)1i=j + β(xti)β(xtj)1i̸=j)

]⏐
⏐
⏐
⏐
St−1

]

+ 1i̸=j · E
[

1w⊤∗ xti>0∥xti∥ · |w⊤
∗ xti − w⊤

t xti |
⏐
⏐
⏐
⏐
St−1

]

× E

[

1w⊤∗ xtj>0∥xtj∥ · |w⊤
∗ xtj − w⊤

t xtj |
⏐
⏐
⏐
⏐
St−1

]

+ 1i=j · E
[

1w⊤∗ xti>0∥xti∥
2 · |w⊤

∗ xti − w⊤
t xti |

2

⏐
⏐
⏐
⏐
St−1

]

+ θ∗ · 1i̸=j·
(

E

[

1w⊤∗ xti>0 · β(xti) · ∥xti∥|w
⊤
∗ xti − w⊤

t xti |
⏐
⏐
⏐
⏐
St−1

]

· E
[

1w⊤∗ xtj>0∥xtj∥
⏐
⏐
⏐
⏐
St−1

]

+ (i ↔ j)

)

+ 2θ∗ · 1i=j

·
(

E

[

1w⊤∗ xti>0 · β(xti) · ∥xti∥
2|w⊤

∗ xti − w⊤
t xti |

⏐
⏐
⏐
⏐
St−1

]) }

(B.2)

In the last inequality above we have used the facts that (a)
for i ̸= j, functions of xti are uncorrelated with functions of xtj
and (b) that the random variables αti and αtj are independent of
each other and of the mini-batch choice st and hence they can be
replaced by their respective expectations β(xti) and β(xtj). And for

the first term we need to note the i = j case that, E[α2
ti
] = β(xti).

Now we can simplify the first term on the RHS of Eq. (B.2) as,

θ2
∗ · E

[

1yti>θ∗1ytj>θ∗ |⟨xti , xtj⟩|

·
[

(β(xti)1i=j + β(xti)β(xtj)1i̸=j)

]⏐
⏐
⏐
⏐
St−1

]

≤θ2
∗ · Exti

[

β(xti)∥xti∥
21yti>θ∗

⏐
⏐
⏐
⏐
St−1

]

1i=j

+ θ2
∗ · Exti

[

β(xti)∥xti∥1yti>θ∗

⏐
⏐
⏐
⏐
St−1

]

· Extj

[

β(xtj)∥xtj∥1ytj>θ∗

⏐
⏐
⏐
⏐
St−1

]

1i̸=j

≤θ2
∗ · Exti

[

β(xti)∥xti∥
21w⊤∗ xti>0

⏐
⏐
⏐
⏐
St−1

]

1i=j

+ θ2
∗ · Exti

[

β(xti)∥xti∥1w⊤∗ xti>0

⏐
⏐
⏐
⏐
St−1

]

· Extj

[

β(xtj)∥xtj∥1w⊤∗ xtj>0

⏐
⏐
⏐
⏐
St−1

]

1i̸=j

Since xti & xtj are identically distributed, we can invoke the
constants, β1 & β2 and under taking total expectations the above
is bounded by θ2

∗ (β21i=j+β2
11i̸=j). Using this we have from taking

total expectations on both sides of Eq. (B.2),

E [Term 2] ≤
η2

b2
· θ2

∗ (b · β2 + (b2 − b) · β2
1)

+
η2

b2

b
∑

i=1

{

E

[

E

[

1w⊤∗ xti>0∥xti∥
2 · |w⊤

∗ xti − w⊤
t xti |

2

⏐
⏐
⏐
⏐
St−1

]]

+ 2θ∗ ·
(

E

[

E

[

1w⊤∗ xti>0 · β(xti) · ∥xti∥
2|w⊤

∗ xti − w⊤
t xti |

⏐
⏐
⏐
⏐
St−1

]]) }

+
η2

b2

b
∑

i,j=1,i̸=j

{

E

[

E

[

1w⊤∗ xti>0∥xti∥ · |w⊤
∗ xti − w⊤

t xti |
⏐
⏐
⏐
⏐
St−1

]

×E

[

1w⊤∗ xtj>0∥xtj∥ · |w⊤
∗ xtj − w⊤

t xtj |
⏐
⏐
⏐
⏐
St−1

]]

+ θ∗·
(

E

[

E

[

1w⊤∗ xti>0 · β(xti) · ∥xti∥|w
⊤
∗ xti − w⊤

t xti |
⏐
⏐
⏐
⏐
St−1

]]

· E
[

1w⊤∗ xtj>0∥xtj∥
]

+ (i ↔ j)

)}

In the last term on the RHS above we have used the fact that

conditioned on St−1 a function of (wt , xti) is uncorrelated with a

function of xtj for i ̸= j. Now we further invoke that for k = i, j,

conditioned on St−1, wt is uncorrelated with any function of xtk
to simplify the above as,

E [Term 2] ≤
η2

b2
· θ2

∗ (b · β2 + (b2 − b) · β2
1)

+
η2

b2

b
∑

i=1

{

E

[

∥w∗ − wt∥2
]

· E
[

1w⊤∗ xti>0∥xti∥
4

]

+ 2θ∗ ·
(

E [∥w∗ − wt∥] · E
[

1w⊤∗ xti>0 · β(xti) · ∥xti∥
3

]) }

+
η2

b2

b
∑

i,j=1,i̸=j

{

E

[

∥w∗ − wt∥2
]

· E
[

1w⊤∗ xti>0∥xti∥
2

]

× E

[

1w⊤∗ xtj>0∥xtj∥
2

]

+ θ∗·
(

E [∥w∗ − wt∥] · E
[

1w⊤∗ xti>0 · β(xti) · ∥xti∥
2

]

· E
[

1w⊤∗ xtj>0∥xtj∥
]

+ (i ↔ j)

)}

≤
η2

b
·
{

a4 · Xt + 2θ∗ · E [β3 · ∥w∗ − wt∥]
}

+
η2

b2
· (b2 − b) ·

{

a22 · Xt + 2θ∗ · E [β2a1 · ∥w∗ − wt∥]
}

+
η2

b2
· θ2

∗ (b · β2 + (b2 − b) · β2
1) (B.3)

In the last line above we have recalled that xti and xtj are

identically distributed and the definitions of a1, a2, a4, β2 &β3 and

have defined Xt := E

[

∥w∗ − wt∥2
]

. In the second and the fourth

terms on the RHS above we invoke the inequalities,

2θ∗ · E [β3 · ∥w∗ − wt∥] ≤ (θ∗ · β3)
2 + Xt

2θ∗ · E [β2a1 · ∥w∗ − wt∥] ≤ (θ∗ · β2 · a1)2 + Xt

Thus we have,

E [Term 2] ≤
(
a4 + 1

b
+

(a22 + 1)(b2 − b)

b2

)

· η2 · Xt

+
(
(θ∗ · β3)

2

b
+

(θ∗ · β2 · a1)2(b2 − b)

b2

+
θ2
∗ (b · β2 + (b2 − b) · β2

1)

b2

)

· η2 (B.4)

Term 1 = 2
η

b
·

b
∑

i=1

Exti ,αti

×
[
⟨

wt − w∗, 1yti>θ∗

(

yti − w⊤
t xti

)

xti

⟩
⏐
⏐
⏐
⏐
St−1

]

= 2
η

b
·

b
∑

i=1

E

[

1yti>θ∗

(

αtiξti + ReLU(w⊤
∗ xti) − w⊤

t xti

)

272

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

× (wt − w∗)
⊤xti

⏐
⏐
⏐
⏐
St−1

]

Since |ξti | ≤ θ∗ it follows that yti > θ∗

H⇒ w⊤
∗ xti > 0. Hence,

= 2
η

b
·

b
∑

i=1

E

[

1yti>θ∗

(

αtiξti + (w∗ − wt)
⊤xti

)

× (wt − w∗)
⊤xti

⏐
⏐
⏐
⏐
St−1

]

= −2
η

b
·

b
∑

i=1

E

[

1yti>θ∗ (w∗ − wt)
⊤ · xtix

⊤
ti

· (w∗ − wt)

⏐
⏐
⏐
⏐
St−1

]

+ 2
η

b
·

b
∑

i=1

E

[

1yti>θ∗ · αtiξti · (wt − w∗)
⊤xti

⏐
⏐
⏐
⏐
St−1

]

≤ −2
η

b
·

b
∑

i=1

λmin

(

E

[

1yti>θ∗xtix
⊤
ti

⏐
⏐
⏐
⏐
St−1

])

∥wt − w∗∥2

+ 2
η

b
· θ∗ ·

b
∑

i=1

E

[

β(xti) · 1yti>θ∗ · ∥xti∥
⏐
⏐
⏐
⏐
St−1

]

· ∥wt − w∗∥

H⇒ E [Term 1] ≤ −2ηλ1(θ∗) · Xt + 2ηθ∗E [β1 · ∥wt − w∗∥]

≤ −2ηλ1(θ∗) · Xt + η

(

K (θ∗ · β1)
2 +

1

K
Xt

)

1θ∗>0 (B.5)

In the last line above we used the following argument to write

the upperbound in terms of λ1(θ∗) as given in Definition 1. We

observe that for any i, E

[

1yti>θ∗ · ∥xti∥
⏐
⏐
⏐
⏐
St−1

]

≤ E

[

1w⊤∗ xti>0 ·

∥xti∥
⏐
⏐
⏐
⏐
St−1

]

. Also note that yti < θ∗ H⇒ w⊤
∗ xti < 2θ∗. Hence

for any test vector v we have,

v⊤
(

E

[(

1yti>θ∗ − 1w⊤∗ xti>2θ∗

)

xtix
⊤
ti

⏐
⏐
⏐
⏐
St−1

]
)

v ≥ 0 and that in

turn implies,

λmin

(

E

[

1yti>θ∗xtix
⊤
ti

⏐
⏐
⏐
⏐
St−1

])

≥ λmin

(

E

[

1w⊤∗ xti>2θ∗xtix
⊤
ti

⏐
⏐
⏐
⏐
St−1

])

= λmin

(

E

[

1w⊤∗ xti>2θ∗xtix
⊤
ti

])

Case 1 : θ∗ = 0. Taking total expectations on both sides of Eq. (B.1)

and setting θ∗ = 0 in the RHS of Eqs. (B.3) and (B.5) we have,

Xt+1 ≤
(

1 − 2ηλ1 +
η2

b
· (a4 + a22(b − 1))

)

Xt (B.6)

The above recursion is of the same form as analyzed in

Lemma C.1 with b1 = 2λ1, c1 = a4+a2
2
(b−1)

b
one can see that

c1 > 0 and hence convergence can be ensured if c1 >
b2
1
δ0

(1+δ0)
2

(With η = b1
c1(1+δ0)

) for any positive δ0
Thus from Lemma C.1 we have that given any ϵ > 0, δ ∈ (0, 1),

XT ≤ ϵ2 · δ for,

T = 1 +
log

X1
ϵ2δ

log 1
α

with α =
(

1 − 2ηλ1 +
η2

b
· (a4 + a22(b − 1))

)

,

η =
2bλ1

(a4 + a22(b − 1))(1 + δ0)

for a suitable δ0 > 0 as mentioned above.

Case 2 : θ∗ > 0. Taking total expectations on both sides of Eq. (B.1)
and invoking the RHS of Eqs. (B.4) and (B.5) we have,

Xt+1 ≤
(

1 − 2ηλ1(θ∗) +
η

K
+

η2

b
· ((1 + a4) + (1 + a22)(b − 1))

)

Xt

+ Kθ2
∗ · η · β2

1 + θ2
∗ ·

η2

b

·
(

β2
3 + (β2 · a1)2 · (b − 1) + (β2 + (b − 1) · β2

1)

)

(B.7)

Now we can invoke Lemma C.2 on the above recursion with
the following identifications for the constants therein,

b1 = 2λ1(θ∗) −
1

K
, c1 =

1 + a4 + (1 + a22)(b − 1)

b

c3 = K1θ
2
∗ β2

1 , c2 =
θ2
∗

β1

(

β2
3 + (β2 ·a1)2 · (b−1)+ (β2 + (b−1) ·β2

1)

)

Note that since K is so chosen that 2λ1(θ∗) > 1
K
, we have

b1 > 0 and hence the conditions of Lemma C.2
Hence the smallest value of Xt (say ϵ2 · δ for some ϵ > 0 and

δ ∈ (0, 1)) that Lemma C.2 guarantees to be attained, say at XT is
c3
b1

= Kθ2∗ β2
1

(2λ1(θ)−1/K)
for

T = O

(

log

[
X1

ϵ2δ −
(c2

c1
+γ · c3

b1

γ−1

)

])

when we choose η = b1
γ c1

for some γ > max

(

b2
1

c1
,

ϵ2δ+ c2
c1

ϵ2δ− c3
b1

)

. Now

we can invoke Markov inequality to get what we set out to prove,

P

[

∥wT − w∗∥2 ≤ ϵ2
]

≥ 1 − δ. □

Appendix C. Proofs of two recursion estimates

Lemma C.1. Given constants η′, b, c1, c2 > 0 suppose one has a
sequence of real numbers ∆1 = C, ∆2, .. s.t,

∆t+1 ≤ (1 − η′b1 + η′2c1)∆t + η′2c2

Given any ϵ′ > 0 in the following two cases we have, ∆T ≤ ϵ′2

• If c2 = 0, C > 0 and for some δ0 > 0 we have, c1 > b21
δ0

(1+δ0)
2 ,

η′ = b
(1+δ0)c1

and T = O

(

log C

ϵ′2

)

• If 0 < c2 ≤ c1, ϵ
′2 ≤ C, b2

c1
≤

(√
ϵ′ + 1√

ϵ′

)2

,

η′ = b
c1

· ϵ′2

(1+ϵ′2)
and T = O

(log

(

ϵ′2(c1−c2)

C ·c1−c2ϵ′2

)

log

(

1− b2

c1
· ϵ′2
(1+ϵ′2)2

)

)

.

Proof of Lemma C.1. Suppose we define α = 1−η′b+η′2c1 and
β = η′2c2. Then we have by unrolling the recursion,

∆t ≤ α∆t−1+β ≤ α(α∆t−1+β)+β ≤ · · · ≤ αt−1∆1+β
1 − αt−1

1 − α
.

We recall that ∆1 = C to realize that our lemma gets proven
if we can find T s.t,

αT−1C + β
1 − αT−1

1 − α
= ϵ′2

Thus we need to solve the following for T s.t, αT−1 = ϵ′2(1−α)−β

C(1−α)−β

273

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

Case 1 : β = 0 In this case we see that if η > 0 is s.t α ∈ (0, 1)

then,

αT−1 =
ϵ′2

C
H⇒ T = 1 +

log C

ϵ′2

log 1
α

But α = η′2c1 − η′b + 1 =
(

η′√c1 − b
2
√
c1

)2

+
(

1 − b2

4c1

)

Thus

α ∈ (0, 1) is easily ensured by choosing η′ = b1
(1+δ0)c1

for some

δ0 > 0 and c1 > b21
δ0

(1+δ0)
2

This gives us the first part of the theorem.

Case 2 : β > 0

This time we are solving,

αT−1 =
ϵ′2(1 − α) − β

C(1 − α) − β
(C.1)

Towards showing convergence, we want to set η′ such that

αt−1 ∈ (0, 1) for all t . Since ϵ′2 < C , it is sufficient to require,

β < ϵ′2(1 − α) H⇒ α < 1 −
β

ϵ′2

⇔ 1 −
b2

4c1
+

(

η′√c1 −
b

2
√
c1

)2

≤ 1 −
β

ϵ′2

⇔
η′2c2

ϵ′2 ≤
b2

4c1
−

(

η′√c1 −
b

2
√
c1

)2

⇔
c2

ϵ′2 ≤
b2

4c1η′2 −
(√

c1 −
b

2
√
c1η′

)2

Set η′ = b
γ c1

for some constant γ > 0 to be chosen such that,

c2

ϵ′2 ≤
b2

4c1 · b2

γ 2c2
1

−
(√

c1 −
b

2
√
c1 · b

γ c1

)2

H⇒
c2

ϵ′2 ≤ c1
γ 2

4
− c1 ·

(γ

2
− 1

)2

H⇒ c2 ≤ ϵ′2 · c1(γ − 1)

Since c2 ≤ c1 we can choose, γ = 1 + 1

ϵ′2 and we have

αt−1 < 1. Also note that,

α = 1 + η′2c1 − η′b = 1 +
b2

γ 2c21
−

b2

γ c1
= 1 −

b2

c1
·
(1

γ
−

1

γ 2

)

.

= 1 −
b2

c1
·

ϵ′2

(1 + ϵ′2)2
= 1 −

b2

c1
·

1
(

ϵ′ + 1
ϵ′

)2

And here we recall that the condition that the lemma specifies

on the ratio b2

c1
which ensures that the above equation leads to

α > 0

Now in this case we get the given bound on T in the lemma

by solving Eq. (C.1). To see this, note that,

α = 1 −
b2

c1
·

ϵ′2

(1 + ϵ′2)2
and

β = η′2c2 =
b2

γ 2c1
· c2 =

b2c2

c1
·

(ϵ′2)2

(1 + ϵ′2)2
.

Plugging the above into Eq. (C.1) we get,

αT−1 = ϵ′2∆(c1−c2)

Cc1−c2ϵ′2 H⇒ T = 1 +
log

(

ϵ′2(c1−c2)

Cc1−c2ϵ′2

)

log

(

1− b2

c1
· ϵ′2
(1+ϵ′2)2

) . □

Lemma C.2. Suppose we have a sequence of real numbers

∆1, ∆2, . . . s.t

∆t+1 ≤ (1 − η′b1 + η′2c1)∆t + η′2c2 + η′c3

for some fixed parameters b1, c1, c2, c3 > 0 s.t ∆1 >
c3
b1

and free

parameter η′ > 0. Then for,

ϵ′2 ∈
(c3

b1
, ∆1

)

, η′ =
b1

γ c1
, γ > max

{
b21

c1
,

(
ϵ′2 + c2

c1

ϵ′2 − c3
b1

)}

> 1

it follows that ∆T ≤ ϵ′2 for,

T = O

(

log

[
∆1

ϵ′2 −
(c2

c1
+γ · c3

b1

γ−1

)

])

Proof of Lemma C.2. Let us define α = 1 − η′b1 + η′2c1 and

β = η′2c2 + η′c3. Then by unrolling the recursion we get,

∆t ≤ α∆t−1 + β ≤ α(α∆t−2 + β) + β ≤ · · · ≤ αt−1∆1

+ β(1 + α + · · · + αt−2).

Now suppose that the following are true for ϵ′ as given and for

α & β (evaluated for the range of η′s as specified in the theorem),

Claim 1 : α ∈ (0, 1)

Claim 2 : 0 < ϵ′2(1 − α) − β

We will soon show that the above claims are true. Now if T is

s.t we have,

αT−1∆1 + β(1 + α + · · · + αT−2) = αT−1∆1 + β ·
1 − αT−1

1 − α
= ϵ′2

then αT−1 = ϵ′2(1−α)−β

∆1(1−α)−β
. Note that Claim 2 along with the as-

sumption that ϵ′2 < ∆1 ensures that the numerator and the

denominator of the fraction in the RHS are both positive. Thus

we can solve for T as follows,

H⇒ (T − 1) log

(
1

α

)

= log

[
∆1(1 − α) − β

ϵ′2(1 − α) − β

]

H⇒ T = O

(

log

[
∆1

ϵ′2 −
(c2

c1
+γ · c3

b

γ−1

)

])

In the second equality above we have estimated the expression

for T after substituting η′ = b1
γ c1

in the expressions for α and

β . □

Proof of Claim 1. α ∈ (0, 1). We recall that we have set η′ = b1
γ c1

.

This implies that, α = 1− b2
1

c1
·
(

1
γ

− 1

γ 2

)

. Hence α > 0 is ensured

by the assumption that γ >
b2
1

c1
. And α < 1 is ensured by the

assumption that γ > 1 □

Proof of Claim 2. 0 < ϵ′2(1 − α) − β . We note the following,

−
1

ϵ′2 ·
(

ϵ′2(1 − α) − β
)

= α −
(

1 −
β

ϵ′2

)

= 1 −
b21

4c1
+

(

η′√c1 −
b1

2
√
c1

)2

−
(

1 −
β

ϵ′2

)

=
η′2c2 + η′c3

ϵ′2 +
(

η′√c1 −
b1

2
√
c1

)2

−
b21

4c1

=

(

η′√c2 + c3
2
√
c2

)2

− c2
3

4c2

ϵ′2 +
(

η′√c1 −
b1

2
√
c1

)2

−
b21

4c1

= η′2
(

1

ϵ′2 ·
(

√
c2 +

c3

2η′√c2

)2

+
(√

c1 −
b1

2η′√c1

)2

274

S. Karmakar and A. Mukherjee Neural Networks 151 (2022) 264–275

−
1

η′2

[
b21

4c1
+

1

ϵ′2

(
c23

4c2

)])

Now we substitute η′ = b1
γ c1

for the quantities in the expres-

sions inside the parentheses to get,

−
1

ϵ′2 ·
(

ϵ′2(1 − α) − β
)

= α −
(

1 −
β

ϵ′2

)

= η′2
(

1

ϵ′2 ·
(

√
c2 +

γ c1c3

2b1
√
c2

)2

+ c1 ·
(γ

2
− 1

)2

− c1
γ 2

4
−

1

ϵ′2 ·
γ 2c21c

2
3

4b21c2

)

= η′2
(

1

ϵ′2 ·
(

√
c2 +

γ c1c3

2b1
√
c2

)2

+ c1(1 − γ) −
1

ϵ′2 ·
γ 2c21c

2
3

4b21c2

)

=
η′2

ϵ′2

(

c2 +
γ c1c3

b1
− ϵ′2c1(γ − 1)

)

=
η′2c1

ϵ′2

(

(ϵ′2 +
c2

c1
) − γ ·

(

ϵ′2 −
c3

b1

))

Therefore, − 1

ϵ′2
(

ϵ′2(1 − α) − β
)

< 0 since by assumption

ϵ′2 >
c3
b1

, and γ >

(

ϵ′2 + c2
c1

)

/

(

ϵ′2 − c3
b1

)

. □

References

Allen-Zhu, Z., & Li, Y. (2019). What can ResNet learn efficiently, going be-

yond kernels? In Advances in neural information processing systems (pp.

9015–9025).

Allen-Zhu, Z., Li, Y., & Liang, Y. (2019). Learning and generalization in overpa-

rameterized neural networks, going beyond two layers. In Advances in neural

information processing systems (pp. 6155–6166).

Allen-Zhu, Z., Li, Y., & Song, Z. (2019a). A convergence theory for deep learning

via over-parameterization. In International conference on machine learning

(pp. 242–252).

Allen-Zhu, Z., Li, Y., & Song, Z. (2019b). On the convergence rate of training

recurrent neural networks. In Advances in neural information processing

systems (pp. 6673–6685).

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R., & Wang, R. (2019). On

exact computation with an infinitely wide neural net. In Advances in neural

information processing systems (pp. 8139–8148).

Arora, S., Du, S., Hu, W., Li, Z., & Wang, R. (2019). Fine-grained analysis

of optimization and generalization for overparameterized two-layer neural

networks. In International conference on machine learning (pp. 322–332).

Arora, S., Du, S. S., Li, Z., Salakhutdinov, R., Wang, R., & Yu, D. (2019). Harnessing

the power of infinitely wide deep nets on small-data tasks. arXiv preprint

arXiv:1910.01663.

Chizat, L., & Bach, F. (2018). On the global convergence of gradient descent for

over-parameterized models using optimal transport. In Advances in neural

information processing systems (pp. 3036–3046).

Diakonikolas, I., Goel, S., Karmalkar, S., Klivans, A. R., & Soltanolkotabi, M. (2020).

Approximation schemes for ReLU regression. In Conference on learning theory.

Diakonikolas, I., Kontonis, V., Tzamos, C., & Zarifis, N. (2020). Learning halfspaces

with massart noise under structured distributions. arXiv preprint arXiv:

2002.05632.

Du, S., & Lee, J. (2018). On the power of over-parametrization in neural networks

with quadratic activation. In International conference on machine learning (pp.

1329–1338).

Du, S. S., Lee, J. D., Li, H., Wang, L., & Zhai, X. (2018). Gradient descent finds

global minima of deep neural networks. arXiv:1811.03804.

Du, S. S., Lee, J. D., & Tian, Y. (2017). When is a convolutional filter easy to

learn? arXiv preprint arXiv:1709.06129.

Frei, S., Cao, Y., & Gu, Q. (2020). Agnostic learning of a single neuron with

gradient descent. arXiv preprint arXiv:2005.14426.

Freund, Y., & Schapire, R. E. (1999). Large margin classification using the

perceptron algorithm. Machine Learning, 37(3), 277–296.

Goel, S., Kanade, V., Klivans, A., & Thaler, J. (2016). Reliably learning the relu in

polynomial time. arXiv preprint arXiv:1611.10258.

Goel, S., & Klivans, A. (2017). Learning depth-three neural networks in

polynomial time. arXiv preprint arXiv:1709.06010.

Goel, S., Klivans, A., & Meka, R. (2018). Learning one convolutional layer with

overlapping patches. arXiv preprint arXiv:1802.02547.

Huang, J., & Yau, H.-T. (2019). Dynamics of deep neural networks and neural

tangent hierarchy. arXiv preprint arXiv:1909.08156.

Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Convergence

and generalization in neural networks. In Advances in neural information

processing systems (pp. 8571–8580).

Johnson, R., & Zhang, T. (2013). Accelerating stochastic gradient descent using

predictive variance reduction. Advances in Neural Information Processing

Systems, 26, 315–323.

Kakade, S. M., Kanade, V., Shamir, O., & Kalai, A. (2011). Efficient learning

of generalized linear and single index models with isotonic regression. In

Advances in neural information processing systems (pp. 927–935).

Kalan, S. M. M., Soltanolkotabi, M., & Avestimehr, A. S. (2019). Fitting relus via

sgd and quantized sgd. In 2019 IEEE international symposium on information

theory (ISIT) (pp. 2469–2473). IEEE.

Kawaguchi, K., & Huang, J. (2019). Gradient descent finds global minima for

generalizable deep neural networks of practical sizes. In 2019 57th annual

allerton conference on communication, control, and computing (Allerton) (pp.

92–99). IEEE.

Klivans, A., & Meka, R. (2017). Learning graphical models using multiplicative

weights. In 2017 IEEE 58th annual symposium on foundations of computer

science (FOCS) (pp. 343–354). IEEE.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., & Sohl-Dickstein, J.

(2017). Deep neural networks as Gaussian processes. arXiv:1711.00165.

Li, Z., Wang, R., Yu, D., Du, S. S., Hu, W., Salakhutdinov, R., et al. (2019). Enhanced

convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809.

Mukherjee, A. (2021). A study of the mathematics of deep learning. arXiv:

2104.14033.

Neal, R. M. (1996). Priors for infinite networks. In Bayesian learning for neural

networks (pp. 29–53). Springer.

Pal, S. K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, and classification.

IEEE Transactions on Neural Networks, 3 5, 683–697.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information

storage and organization in the brain.. Psychological Review, 65(6), 386.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., et

al. (2020). Mastering atari, go, chess and shogi by planning with a learned

model. Nature, 588(7839), 604–609.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et

al. (2016). Mastering the game of Go with deep neural networks and tree

search. Nature, 529(7587), 484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al.

(2018). A general reinforcement learning algorithm that masters chess, shogi,

and Go through self-play. Science, 362(6419), 1140–1144.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et

al. (2017). Mastering the game of Go without human knowledge. Nature,

550(7676), 354–359.

Soltanolkotabi, M. (2017). Learning relus via gradient descent. In Advances in

neural information processing systems (pp. 2007–2017).

Su, L., & Yang, P. (2019). On learning over-parameterized neural networks:

A functional approximation perspective. In Advances in neural information

processing systems (pp. 2637–2646).

Wei, C., Lee, J. D., Liu, Q., & Ma, T. (2019). Regularization matters: Generalization

and optimization of neural nets vs their induced kernel. In Advances in neural

information processing systems (pp. 9709–9721).

Wu, X., Du, S. S., & Ward, R. (2019). Global convergence of adaptive gradient

methods for an over-parameterized neural network. arXiv preprint arXiv:

1902.07111.

Zou, D., Cao, Y., Zhou, D., & Gu, Q. (2018). Stochastic gradient descent optimizes

over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888.

Zou, D., & Gu, Q. (2019). An improved analysis of training over-parameterized

deep neural networks. In Advances in neural information processing systems

(pp. 2053–2062).

275

http://refhub.elsevier.com/S0893-6080(22)00118-6/sb1
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb1
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb1
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb1
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb1
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb2
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb2
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb2
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb2
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb2
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb3
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb3
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb3
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb3
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb3
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb4
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb4
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb4
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb4
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb4
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb5
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb5
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb5
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb5
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb5
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb6
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb6
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb6
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb6
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb6
http://arxiv.org/abs/1910.01663
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb8
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb8
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb8
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb8
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb8
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb9
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb9
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb9
http://arxiv.org/abs/2002.05632
http://arxiv.org/abs/2002.05632
http://arxiv.org/abs/2002.05632
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb11
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb11
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb11
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb11
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb11
http://arxiv.org/abs/1811.03804
http://arxiv.org/abs/1709.06129
http://arxiv.org/abs/2005.14426
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb15
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb15
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb15
http://arxiv.org/abs/1611.10258
http://arxiv.org/abs/1709.06010
http://arxiv.org/abs/1802.02547
http://arxiv.org/abs/1909.08156
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb20
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb20
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb20
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb20
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb20
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb21
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb21
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb21
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb21
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb21
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb22
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb22
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb22
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb22
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb22
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb23
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb23
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb23
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb23
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb23
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb24
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb24
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb24
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb24
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb24
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb24
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb24
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb25
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb25
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb25
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb25
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb25
http://arxiv.org/abs/1711.00165
http://arxiv.org/abs/1911.00809
https://arxiv.org/abs/2104.14033
https://arxiv.org/abs/2104.14033
https://arxiv.org/abs/2104.14033
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb29
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb29
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb29
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb30
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb30
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb30
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb31
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb31
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb31
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb32
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb32
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb32
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb32
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb32
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb33
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb33
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb33
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb33
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb33
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb34
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb34
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb34
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb34
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb34
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb35
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb35
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb35
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb35
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb35
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb36
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb36
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb36
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb37
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb37
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb37
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb37
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb37
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb38
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb38
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb38
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb38
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb38
http://arxiv.org/abs/1902.07111
http://arxiv.org/abs/1902.07111
http://arxiv.org/abs/1902.07111
http://arxiv.org/abs/1811.08888
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb41
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb41
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb41
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb41
http://refhub.elsevier.com/S0893-6080(22)00118-6/sb41

	Provable training of a ReLU gate with an iterative non-gradient algorithm
	Introduction
	A summary of our results
	Comparison to concurrent literature

	Re-analyzing the GLM-Tron
	Learning a ReLU gate in the realizable setting and under a data-poisoning attack
	Experimental demonstration of Algorithm 2
	Near-optimality of thm:dadushrelu:noise

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Proofs of Section 2
	Proof of stepdecrease
	Proof of GLMTronReLU
	Proof of GLMTronReLUNoise

	Appendix B. Proofs of Section 3
	Proof of thm:dadushrelu:noise

	Appendix C. Proofs of two recursion estimates
	References

