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In this work, we demonstrate provable guarantees on the training of a single ReLU gate in hitherto
unexplored regimes. We give a simple iterative stochastic algorithm that can train a ReLU gate in the
realizable setting in linear time while using significantly milder conditions on the data distribution
than previous such results.

Leveraging certain additional moment assumptions, we also show a first-of-its-kind approximate
recovery of the true label generating parameters under an (online) data-poisoning attack on the true
labels, while training a ReLU gate by the same algorithm. Our guarantee is shown to be nearly optimal
in the worst case and its accuracy of recovering the true weight degrades gracefully with increasing
probability of attack and its magnitude.

For both the realizable and the non-realizable cases as outlined above, our analysis allows for mini-
batching and computes how the convergence time scales with the mini-batch size. We corroborate
our theorems with simulation results which also bring to light a striking similarity in trajectories
between our algorithm and the popular S.G.D. algorithm — for which similar guarantees as here are
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still unknown.
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1. Introduction

Over the last few years, there has been a surge of activ-
ity in using neural networks for complex artificial intelligence
tasks. Human world champions of classic hard board games have
famously been defeated by neural net-based approaches, Schrit-
twieser et al. (2020), Silver et al. (2016, 2018, 2017). At the
core of many of these successes lie the ability of various heuris-
tics to be able to solve the learning theory question of function
optimization/risk minimization,

]@%EZED[Z(N’ Z)] (1)

where ¢ is some lower-bounded non-negative function, mem-
bers of A are continuous piecewise linear functions representable
by some chosen neural net architecture and we only have sample
access to the distribution D. This reduces to the empirical risk
minimization question when this D is a uniform distribution on
a finite set of points. But as of today, we have little or no mathe-
matical guarantees about these heuristics which seemingly very
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efficiently solve the many useful instances of these optimization
problems.

To the best of our knowledge about the state-of-the-art in
deep-learning theory, any of these two optimization problems
is typically provably solvable in poly-time for nets with more
than 1 neuron in either of the following two mutually exclusive
scenarios : (a) the nets in the class A/ are of constant size and the
data comes as tuples z = (X, y) with y being the noise corrupted
output at input x for a net (of a known architecture that which
would be common to the class A). And (b) the nets in / would be
asymptotically large and the data comes as tuples z = (x, y) with
no explicit functional relationship between x and y (but there
could be geometric or statistical assumptions about the x and y).

The simplifications that happen for infinitely large networks
have been discussed since Neal (1996) and this theme has had a
recent resurgence in works like Chizat and Bach (2018) and Jacot,
Gabriel, and Hongler (2018). Eventually this led to an explosion of
literature in getting linear time training of various kinds of neural
nets when their width is a high degree polynomial in training set
size and inverse accuracy (a somewhat unrealistic regime), Allen-
Zhu, Li and Liang (2019), Allen-Zhu, Li, and Song (2019a, 2019b),
Arora et al. (2019), Arora, Du, Hy, Li and Wang (2019), Arora et al.
(2019), Du and Lee (2018), Du, Lee, Li, Wang, and Zhai (2018),
Huang and Yau (2019), Kawaguchi and Huang (2019), Lee et al.
(2017), Li et al. (2019), Su and Yang (2019), Wu, Du, and Ward
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(2019), Zou, Cao, Zhou, and Gu (2018) and Zou and Gu (2019). The
essential proximity of this regime to kernel methods have been
thought of separately in works like Allen-Zhu and Li (2019) and
Wei, Lee, Liu, and Ma (2019). On the other hand we note that in
the fully agnostic setting training even a single ReLU gate can be
SPN-hard as shown in Goel, Kanade, Klivans, and Thaler (2016).
Hence its an interesting mathematical question to isolate general
conditions when the convergence speed can be fast for a single
RelU gate.

To the best of our knowledge, for training a single neuron to
e€—accuracy by (Stochastic) Gradient Descent ((S.)G.D.) existing
results are restricted to a sample complexity of O(poly(1/¢)) even
with realizable data. And any improvements to this have been
known to happen only for the case of the marginal distribution
on the input being Gaussian or for modifications of S.G.D. running
on symmetric input distributions. We refer the interested readers
to Frei, Cao, and Gu (2020) for a comprehensive summary of
these results — against many of which we will compare our
results too. In this paper, we break this barrier and improve the
sample-complexity of training a single ReLU gate to O(log(1/¢))
for realizable data and without tying ourselves to any specific
symmetry in the distribution. We emphasize that not only are
we able to achieve this only by slightly tweaking the popular
S.G.D. algorithm itself but also that our algorithm has guarantees
in cases where we make the data non-realizable by allowing for
a data-poisoning attack. Our distributional assumptions are mild
and reminiscent of the subspace eigenvalue conditions from Du,
Lee, and Tian (2017). Moreover, through thorough experiments,
we will show that our modified S.G.D. has strikingly similar
convergence features as the traditional S.G.D. We summarize the
technical details of our results in the following subsection.

1.1. A summary of our results

To make progress with provable training of a single gate we
draw inspiration from the different avatars of iterative stochas-
tic non-gradient algorithms analyzed in the past, Freund and
Schapire (1999), Goel and Klivans (2017), Goel, Klivans, and Meka
(2018), Kakade, Kanade, Shamir, and Kalai (2011), Klivans and
Meka (2017), Pal and Mitra (1992) and Rosenblatt (1958). We
shall organize our contributions in this paper under four groups
as follows.

Firstly, in the short Section 2 we start with a quick re-analysis
of a known algorithm called the GLM-Tron (Kakade et al., 2011)
but under more general conditions than the previous proofs about
it. We show how well it can do (empirical) risk minimization
on any Lipschitz gate with Lipschitz constant < 2 in the noisily
realizable setting while no assumptions are being made on the
distribution of the noise beyond their boundedness — hence the
noise can be adversarial. We also point out how the result can be
improved under certain benign assumptions on the noise.

Secondly, in Section 3, we exclusively focus on training the
ReLU gate, R" 5 X > max{0,w'x} € R for w € R" being its
weight. We note that for this gate, the corresponding empirical
or the population risk is neither convex nor smooth w.r.t. how it
depends on the weights. And yet we show a very simple iterative
stochastic algorithm which can provably recover in linear time
the underlying parameter w, of the ReLU gate when the data
being sampled is exactly realizable of the form (x, max{0, w/ x}).
That is, with high probability, in log (1) iterations we get € close
to w, while starting from any arbitrary initial point. (We recall
that for stochastic algorithms, linear time convergence i.e. getting
€ close to the global minima in O(log( g)) time is a hallmark of
specialized optimization methods adapted for smooth strongly
convex objectives like Johnson and Zhang (2013)). To achieve this
we use a mild distributional condition which essentially captures
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the intuition that enough of our samples are such that w]x > 0.
To the best of our knowledge, this is the first example of nearly
distribution-free training of a ReLU gate in linear time.

Note that, in Section 3 we are using a stochastic algorithm
while solving a regression problem specific to a ReLU gate and are
exploiting the structure of the ReLU gate (and mild distributional
assumptions) to directly achieve parameter recovery. The results
in Section 2 also apply to a ReLU gate as a special case but
in contrast, therein we used full-batch iterative updates to gain
other advantages, namely of being able to handle more general
gates while having essentially no distributional assumptions on
the training data.

Thirdly, by making a slightly stronger distributional assump-
tion, in Case (II) of Theorem 3.1 in Section 3 we also encompass
the case when during training the oracle behaves adversarially i.e.
it tosses a biased coin and decides whether or not to additively
distort the true labels by a bounded perturbation. Additionally,
we also allow for the bias of the adversary’s coin to be data-
dependent. This is a “data-poisoning” attack since the adversary
corrupts the training data in an online fashion. In this case, we
show that the accuracy of the algorithm in recovering w, is
not only worst-case near optimal but is such that the accuracy
degrades gracefully as the probability of the adversary’s attack or
the magnitude of the distortion increases.

To the best of our knowledge, this is the first guarantee on
training a ReLU gate while under any kind of an adversarial attack.
Also in both these cases above we allow for mini-batching in the
algorithm and keep track of how the mini-batch size affects the
convergence time.

Lastly, in Section 3.1 we give an experimental demonstration
of the performance of our algorithm. We do a side-by-side com-
parison on a ReLU gate between S.G.D. and our modified-S.G.D.,
under various setting which fall under the ambit of Theorem 3.1.
In particular we track how the distance to the original optima
(w,) changes with time for the various settings that we consider.
Seen from this perspective we emphasize that while guarantees
like Case (II) of Theorem 3.1 still remain unknown for S.G.D.,
our algorithm’s behavior in experiments closely resembles that
of S.G.D. under similar settings. Thus our experiments encourage
the conjecture that maybe our modification only very slightly
changes the stochastic process induced by S.G.D. on a ReLU gate.
We leave it for future work to investigate this possibility and to
try generalizing this for larger nets.

1.2. Comparison to concurrent literature

Firstly, we note that the result in Goel et al. (2018) includes
learning a ReLU gate under realizable settings as a special case
of their result but only under the assumption of the distribu-
tion being symmetric. Specific to the marginal distribution on
the data being Gaussian, works like Soltanolkotabi (2017) and
Kalan, Soltanolkotabi, and Avestimehr (2019) had solved the same
problem using gradient-based methods.

A notable recent progress with understanding the behavior of
(stochastic) gradient descent on a ReLU gate was achieved in Frei
et al. (2020). Their Theorem D.1 (b) is solving the same question
as our Theorem 3.1 Case (I). But our algorithm, in this special
case, not only accounts for the effect of mini-batching on the
convergence time but also converges exponentially faster than
what is guaranteed in Frei et al. (2020).

Also significantly in contrast to these previous results cited
above, our Theorem 3.1 Case (II) encompasses the situation of a
probabilistic adversary causing distortions to the true labels. To
the best of our knowledge this is the first work to analyze training
of a ReLU gate in any kind of adversarial setup — in particular a
data-poisoning attack on the training data (labels). We also allow
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for the adversary to decide to attack or not using a biased coin
toss whose bias is allowed to be data-dependent.

Lastly, unlike any of these previous results, we keep track of
the subtleties of using mini-batches and how the mini-batch size
affects the convergence time.

In Diakonikolas, Goel, Karmalkar, Klivans and Soltanolkotab
(2020), the authors had given algorithms for learning of a ReLU
gate in the non-realizable setting for certain nice marginal dis-
tributions on the data. We note that such results about risk
minimization are incomparable to our goal in Theorem 3.1 Case
(I) of recovering the generating weights (the w, therein) as
closely as possible under adversarial corruption of the training
labels. But this result of ours can be seen as a natural regression
analogue of the recent result in Diakonikolas, Kontonis, Tzamos
and Zarifi (2020) about learning half-space indicators under a
Massart noise.

2. Re-analyzing the GLM-Tron

In this section we shall take a relook at the GLM-Tron algo-
rithm (given below) from Kakade et al. (2011) and show that
it converges on certain Lipschitz gates with no distributional
assumption on the data.

Algorithm 1 GLM-Tron

1: Input: {(X;, yi)}i=1,..m and an activation function o : R — R
22 w; =0

3: fort=1,...do

4@ W i=we Y <Yi — o ({w, xf>)>xf

5: end for

First, we state the following crucial lemma,

Lemma 2.1. Assume that for all i 1,...,S |Ixill < 1and in
Algorithm 1, o is a L—Lipschitz non-decreasing function. Suppose the
vector w and the scalar W are s.t at iteration t, we have ||w; —w|| <
W and we define n > 0 s.t ||% Zf:1<y,- —o({w, x,-)))x,-|| <. Then
it follows that,

2 1)Zs(ht)+ (n2 L 2qW(L+ 1))

2 2
Iwees = w2 < lwe —w| =

where we have defined, ,
is(h[) = % Zis:] (h[(Xi)—O'((W, Xi))) = %Z?:l
2
o((w. )

We give the proof of the above lemma in Appendix A.1. The
above Algorithm 1 was introduced in Kakade et al. (2011) for
bounded activations. Here we show the applicability of that idea
for more general activations and also while having adversarial
attacks on the labels. We will see in the following theorem as to
how the above lemma leads to convergence of the effective-E.R.M.,
Ls by GLM-Tron on a single gate.

Theorem 2.2 (GLM-Tron (Algorithm 1) Solves the Effective-E.R.M.
on a ReLU Gate Up to Noise Bound with Minimal Distributional
Assumptions). Assume that for alli = 1,...,S ||xj]] < 1 and the
label of the ith data point y; is generated as, y; = o ((Wy, X;))+&; s.t
Vi, |&] < 6 for some 6 > 0 and w, € R". If o is a L—Lipschitz non-
decreasing function for L < 2 then in at most T = ”":—*” GLM-Tron
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steps we would attain parameter value wr S.t,
s

Lythr) = ¢ 32 (o (wr, ) — o((wa, )

i=1

2
<5 (e+ @ +20 w4 1)

The proof of the above theorem is deferred to Appendix A.2.

Remark. Firstly, note that in the realizable setting i.e. when
6 = 0, the above theorem is giving an upperbound on the number
of steps needed to solve the ERM on say a ReLU gate to O(¢)
accuracy. Secondly, observe that the above theorem does not force
any distributional assumption on the &; beyond the assumption of
its boundedness. Thus the noise could as well have been chosen
adversarially up to the constraint on its norm.

If we make some assumptions on the noise being benign then
we can get the following.

Theorem 2.3 (Performance Guarantees on the GLM-Tron (Algorithm
1) When Solving E.R.M.). Assume that the noise random variables
&,i = 1,...,S are identically distributed as a centered random
variable say &. Then for T = ”":—*” we have the following guarantee
for GLM-Tron on the empirical risk after T iterations (say Ls(hr)),

L
— L(e + (6% +20 - w, | - (L+ 1))
The proof for the above has been given in Appendix A.3. Here
we note a slight generalization of the above that can be easily
read off from the above.

< Ee[E%]+

Corollary 2.4. Suppose that the joint distribution of {&;}i—1,..
stP||&| <0Vie{l,...,S}| = 1— & Then the guarantee of the

above Theorem 2.3 still holds but now with probability at least 1—§
over the noise distribution.

In the next section we shall continue with the current theme
of training a single neuron and see how a stochastic algorithm
can be designed to get stronger training guarantees specific to a
ReLU gate.

3. Learning a ReLU gate in the realizable setting and under a
data-poisoning attack

In this section we consider an adversary executing a data-
poisoning attack on an iterative stochastic learning algorithm
(Algorithm 2). Given a marginal distribution D on the inputs
X, suppose the corresponding true labels are generated as y =
ReLU(w*Tx) for some unknown w, € R". We assume sampling
access to D and an adversarial label oracle that on the t" —iterate
gets queried with b inputs {X;,...,X;} drawn uncorrelatedly
from D. The oracle then flips a coin for each minibatch data point
with probability of the coin returning 0 being 1 — B(X;;) for some
fixed function 8 : R" — [0, 1]. We assume that these coin
flips are uncorrelated to each other and the mini-batch sample
and if the coin flip gives 1 only then does the adversary do a
bounded (by a constant 6,) additive distortion to the true label
of the corresponding data.

To learn the true labeling function R" > y — ReLU(w]y) € R
in this adversarially corrupted realizable setting we try to solve
the following optimization problem,

2
MiNyern ]EXND[(y - ReLU(wa)) ]
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In contrast to previous work, we show that the simple algo-
rithm given below solves this learning problem by leveraging the
intuition that if we see enough labels y = ReLU(w*Tx) + & where
y > 0, then solving the linear regression problem on this subset
of samples, gives a w, which is close to w,. In the situation, with
adversarial corruption (6, > 0) we show in Section 3.2 that our
recovery guarantee is optimal in a certain sense. Additionally in
the realizable case (6, = 0 or 8 = 0 identically), our setup learns
to arbitrary accuracy the true weight w, using much milder
distributional constraints than previous such results that we are
aware of.

Algorithm 2
Modified mini-batch SGD for training a ReLU gate with adversar-
ially perturbed realizable labels.

1: Input: Sampling access to a distribution D on R", a function
B :R" — [0, 1] and a step-length n > 0.
: Input: Oracle access to labels y € R when queried with some
X e R"
: Input: An arbitrarily chosen starting point of w; € R"
4: fort=1,...do
Sample independently s; = {X;,, ...,
the oracle with this set.
The Oracle samples Vi
probability {1— A(x,). (x,)}
The Oracle repliesVi=11, ...,
s.t |$ti| =< g*

X;,} ~ D and query

by, ~ {0,1} with

b5 Yt,- = ati .S[i +ReLU(W*TXt,)

8: Form the gradient (proxy),
12
-
b Z (>0} Vi — Wi X )Xy
9: Wiy i = Wr — 18
10: end for

We note that the choice of g; in Algorithm 2 resembles the
stochastic gradient that is commonly used and is known to have
great empirical success. In a true S.G.D., the indicator occurring

in g would have been 1 for each i
w, X¢; >0

t
Towards stating our tLeorems we define the following nota-
tion.

Definition 1. Given w, € R", 6, € R*, a distribution D on R"
and a function 8 : R" — [0, 1], we define the following constants
associated to them (assuming they are finite),

a = EXND[1WIX>O||x||"], fori =2, 4
By = Bxn | BOOL o X . forj=1,2.3
)»1(6 ) = )\mm <IEX’V'D|:1 Tx>29*XXT:|>

Theorem 3.1 (Training a ReLU Gate with Realizable Data and a
Probabilistic Data-Poisoning Adversary. (Proof in Appendix B)). In
Algorithm 2 we will assume that (a) for i # j and for all t, the
random variables/data samples x,, and X, are uncorrelated and (b)
that the random variables oy, and oy are mutually uncorrelated and
also uncorrelated with the mini-batch choice s;.

Case I : Realizable setting, 0, = 0.
Suppose (a) E|||x||*| and the covariance matrix EI:XXT] exist

and (b) w, is s.t a4 exists and ]E[lw*rboxxT is positive definite

— and hence L1 = A{(0) is well defined. Then if Ay < oo, one
can find a suitable step-size n > 0 and run Algorithm 2 starting

267

Neural Networks 151 (2022) 264-275

from arbltrary w; € R" so that Ve > 0, § € (O,
O(log lws W* I ) iterations we have

62]21—8

Case II : With bounded adversarial corruption of the true labels,
6, >0

Suppose w, and 6, are such that (a) a;, a4, B1(> 0), B2, B3
exist and (b) A1(6,) > 0. Then there exist constants b, c{, ¢, ¢}
_ H

- 7

1), after T =

Pl Iwr — w2

(to be defined below) s.t. one can choose n and run Al-
1
gorithm 2 starting from arbitrary w; € R" so that, after T

l[wg —wy 2

J
C. C.
Ztr 7
252, 11

52]31—5

0| log iterations we have

[ Iwr — w2
where € > 0 and § € (0, 1) are s.t.
K -6?

2 2 *
€d=py ————= (2)
beme) - )

and K > 0 large enough s.t 211(6,) > ¢, and
1 1 1 2Yb =1

B, = 201(0.) = ~, ¢, = +as+ (1+a3)( )
K b

! 1 /

G =z (B+Ba? 004+ b= D). =K f]
b2 254_93.&

and y > max —,,753 (3)
€l 25—-92.5

Remark 1. We collate the
structure of Theorem 3.1 :

following salient points about the

(a) Note that for any fixed §, the ¢ error guaranteed by the the-
orem approaches 0 as supy f(x) — 0. Thus we have continuous
improvement of the minimum achievable error as the likelihood
of the data-poisoning attack decreases.

2
(b) lwr —w,|? < 2 = EX[(ReLU(wTTx) — ReLU(wa)) ] <

GZE[||X||2‘] and hence Algorithm 2 solves the risk minimization
problem for & = 0 to any desired accuracy and in linear time.

(c) Note that the above convergence holds starting from an arbi-
trary initialization wy.

(d) In Section 3.2 we shall see how the above theorem gives a
worst-case near-optimal trade-off between ¢ (the accuracy) and
8 (the confidence) that can be achieved when training against a
6* (a constant) additive norm bounded adversary corrupting the
true output.

(e) Convergence speed increases with the minibatch size b :

In the Case (I) above i.e. when 6, = 0, one can read off from

2t

the proof that upon defining by = 2A1 & ¢c; = , one can

find 8y so that ¢; > (1115 > and upon choosing n = b1/(c1(1 +89))
we obtain

lIw —ws |12
€25
1
log

log
T=1+

4)28
where o = 1 —

(ag—a

9
(a§+%)-(1+50)z
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Note that this T is a decreasing function of the batchsize b and
hence quantifies the intuition that to achieve a pre-specified level
of precision, it takes lesser time when using larger batch-sizes. A
similar conclusion prevails in the 6, > 0 case as well.

(f) The distributional condition is mild :

Corresponding to both the situations, 6, = 0 and 6, > 0,
here we provide simple examples that satisfy the condition of
2(64) > 0

Example 1: Compact multivariate distribution

Suppose n = 2 and x ~ Unif[—1, 1] x [—1, 1] and suppose
w, = (—1, 1). Hence we can define,

di(6,) = E(17x1+x2 >29*X%)

= E(1yy4xy>20,%5) = %(7 — 80, + (26, — 1)%)
da(0x) = E(1_x; 4x,>260,X1X2)
1 46% 402 -1 (20, —1)*
32 24 16 32
40,(20, — 1) (402 — 1)(26, — 1)
+ 24 B 16

Then we have A1(6y) = Amin (IEXND [1_x1+,<2>29*xxT])

dl(e*) - |d2(9*)|

Hence ensuring convergence needs, d{(0,) > |d2(6,)| and this
is satisfied for examples suchas:(a)6, =0,1(0)=%—-0=1
(b) 6, =1,1(1) = 55 — 3 = 55

Example 2: Non- compact umvarlate distribution
Suppose n = 1, x ~ N(0, 1). Then for any w, we have,
o]
0 < }LI(Q*) = E(1u1*x>29*x2) =< / X2¢(X)dx =1
—00

where ¢(x) is the standard normal p.d.f. This implies A1(6,) is
finite and positive and thus convergence is ensured.

It is easy to demonstrate further examples in other univari-
ate/multivariate and compact/non-compact distributions as well
and see that the convergence conditions are not very strong.

3.1. Experimental demonstration of Algorithm 2

For experiments we sample the data x;, (Algorithm 2) in i.i.d
fashion from a standard normal distribution in n = 500 dimen-
sions. We instantiate a data-poisoning attack consistent with the
assumptions in Theorem 3.1 in the following way : at the tth
iterate we choose &; = 6,1(; mod 2=0) — Gx1{i mod 2220) and a is
0/TwppBel0,1]fori=1,...,b

Then for a chosen value of w, and n = 0.01, we plot how the
parameter recovery error |w; —w,|| (averaged over multiple runs
of the algorithm) varies with ¢,

o for different values of b, at fixed 6, = 2 and 8 = 0.5 in
Fig. 1. Here we can see that larger values of mini-batch help
attain lower errors faster.

o for different values of 8, at fixed 6, = 2 and b = 16 in Fig. 2.
Here we can see that there is a graceful degradation of the
best achieved error with increasing probability of attack.

o for different values of 6,, at fixed 8 = 0.5 and b = 16 in
Fig. 3. Here we can see that there is a graceful degradation
of the best achieved error with increasing magnitude of the
attack.

We note that all the three observations above are consistent
with what we would have expected from Theorem 3.1.

We recall that in Algorithm 2 if we redefined g; to,

—% Z; 1 {W x >o}(yt,. - thxt,.)xt,. then it would be standard
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*  ('miri-batch size = 4)
(‘mini-batch size =', 16)

*  {‘'mini-batch size =', 64)

*  ('mini-batch size =', 256}

('mini-batch size =', 1024)

10°

sample averaged parameter error in log scale
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Fig. 1. Performance of Algorithm 2 with changing mini-batch size for n
500, 8 = 0.5 and 6, = 2.

n
=
&
g 100
E
5
E.‘
2 10° - —
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EL {'probability of attack =", 0.005)
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Fig. 2. Performance of Algorithm 2 with changing probability of attack for

=500,60, =2 and b = 16.

sample averaged parameter error in log scale

1 (]
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« (theta_*="1
- = (theta_*=' 2)
B « (theta_*=' 4)
[} « (theta_*=' 8)
0 A0 500 20 1000 1250 1500 1750 2000
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Fig. 3. Performance of Algorithm 2 with changing 6, for n = 500, 8 = 0.5 and
b =16.

S.G.D. For comparison, we repeat the last two experiments with
this S.G.D. and give the corresponding plots in Figs. 4 and 5.

We notice the striking similarity between the plots in Figs. 2
& 4 and Figs. 3 & 5 respectively. This motivates that our algo-
rithm very closely mimics the behavior of S.G.D. while similar

guarantees as in Theorem 3.1 yet remain elusive for S.G.D.
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Fig. 5. Performance of S.G.D. with changing 6, for n = 500, 8 = 0.5 and b = 16.

3.2. Near-optimality of Theorem 3.1

We consider the “worst case” situation of Theorem 3.1 i.e.
when 8 = 1 identically and hence the adversary always acts. Now
consider another value for the filter R” > w,qy # W* being chosen
by this adversary and suppose that 6* = 6,4, s.t
[ReLU(W.

Oady > wX) — ReLU(w, x)| (4)

sup
xesupp(D)
It is easy to imagine cases where the supremum on the RHS

above exists like when D is compactly supported. Now in this

. . 201(65)— L
situation we define Cpound = % and hence Theorem 3.1

1 . .
says that the lowest value of the parameter error achievable is,

9*2 92
e = = 2> 2 (5)
5Cb0und Chound

Hence proving the optimality of this guarantee is equivalent
to showing the existence of an attack within this 6,4, bound for
which the best accuracy possible nearly saturates the lowerbound
in Eq. (5).

We note that for the choice of corruption bound 6,4,, the
adversarial oracle when queried with x can respond with & +
ReLU(w, x) where & = ReLU(w,; X) — ReLU(w/x). Hence the
data received by the algorithm can be exactly realized with the
filter choice w,qy. In that case, the analysis of Theorem 3.1, Case
(I) shows that Algorithm 2 will converge in high probability to
W,dy. Thus the error incurred is € > [|Wagy — W, ||.
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An instantiation of the above attack happening is when 6,4, =
rllWagy — Wi || for r = supycqppp) [IXIl- Its easy to imagine cases
where D is s.t r defined above is finite. Further, this choice of 6,4y
is valid since the following holds, as required by Eq. (4),
|ReLU(w/,

sup advx) - ReLU(W:X” < 1|[Wagy — Wy || = Oaay

xesupp(D)

Thus the above setup invoked on training a ReLU gate with
inputs being sampled from D as above while the labels are being
additively corrupted by at most 6,(= 0.qy) = 7||[Wagy — W,||
demonstrates a case where the worst case accuracy guarantee

of €2 > 69 is optimal up to a constant ”_ We note that
this argum%’ﬁt also implies the worst-case near optimality of
guarantees like Eq. (5) for any algorithm defending against this
attack which also has the property of recovering the parameters
correctly when the labels are exactly realizable.

adv

4. Conclusion

In this work we have shown provable training of a ReLU
gate under mild distributional conditions and pointed out cases
where this happens in linear time while assuming only certain
mild non-degeneracy conditions on the distribution. Also our
results have probed how closely we can recover the original
generating weights when the true training labels are subject to
an (online) data-poisoning attack. And in this particular regime,
in Section 3.1, we have given careful experimental evidence as
to how our provably convergent modification of S.G.D. on a ReLU
gate (Algorithm 2) seems to have very similar time dynamics as
S.G.D. - while for the later such guarantees remain unknown.

We believe this raises the interesting question as to whether
indeed one can rigorously show that the stochastic process in-
duced by Algorithm 2, is a close approximant of true S.G.D. on
a ReLU gate. We posit that this is a fruitful direction for future
investigations and might lead to insights about the dynamics of
S.G.D. for nets with a constant number of gates, which has so far
mostly remained out of current mathematical reach.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We are thankful to the Co-Editor in Chief, Action Editor, and
referees for their constructive comments which have significantly
helped towards this final form of the paper. Sayar Karmakar's
research is partially supported by NSF DMS, USA 2124222, Anirbit
Mukherjee would like to thank the inaugural MINDS Data Sci-
ence Fellowship at J.H.U., Wharton Dean’s Fund for Postdoctoral
Research and Weijie Su’s NSF CAREER DMS-1847415 for funding
this research at various stages.

We would like to thank Daniel Dadush for his critical insights
which led to the initial version of the Algorithm 2 (which first
appeared in Mukherjee et al. (2021)). Multiple discussions with
Amitabh Basu and Anup Rao (during Anirbit’s internship at Adobe,
San Jose) helped shape the core questions that were pursued in
this paper. We would also like to acknowledge the collaboration
with Ramchandran Muthukumar during the initial stages of the
project.

Appendix A. Proofs of Section 2
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A.1. Proof of Lemma 2.1

Proof of Lemma 2.1. We observe that,

2 2
Wy —w|[” — [|We 1 — wi|
s

= we — w2 = [|(w; + % > (wi-
, S i=1
§Z<(
1 S
g (-
= 232 (v ot ) (1w x) — (we, %9

i=1
i=1

N
~ g Y (35— ot x) xl?

i=

(Wi, X)) — Wi
Wt’xz>)>xi’wt - W>

((we, %)) )]

(A1)

Analyzing the first term on the RHS above we get,

: i(yi — o, x)) ) ((w. x) = (we, %))
i=1
(J/i -

W, xi) — (We,X;))

2l S

o

oW, %)) + o (W, X)) = o(We, X;)))

i=1

(

1

X

—

-

N

(y,- —o({w, xf>))xf, w— w[>

1

+

yninN
-

(ottw, %) = o twe, x) (i W) = (xi, we))

1

W+ = Z( (W, X;))

In the first term above we have invoked the definition of 7
and W given in the lemma. Further since we are given that o is
non-decreasing and L—Lipschitz, we have for the second term on
the RHS above,

Z Z( (W, X;)) — 0((Wr,Xz))) ((Xi, w) — (x;, Wt))

2 & 25
?;( (W, X;) —0((wt,x,))) = st(ht)

Thus together we have,

— ol twe, x)) (%, w) = (., W) )

: i(y — o, %)) (W) — (W, X)) = ~20W + 2Lk

(A2)

Now we look at the second term on the RHS of Eq. (A.1) and
that gives us,

S

I 2 (5 = o, )l
i=1
()’i -

S

=||§Z

i=1

(W, %)) + o (W, %)) — o (W, X)) )i
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— o ((we, %) )xi]

oW, %)) = o((we, X))

S

<o+ 2l 3 (o, x0) -

i=1

o(we, %)) x|

S
+ g Y (ot %) = ot iwe, x) w2 (A3)

i=1

Now by Jensen’s inequality we have,
1 S
s Z( (W, X)) ((wt,xi)))xill2

2.
( ((w. %)) = o((we %)) = Ls(ho)

T M—;

§
And we have from the definition of L and W,
S

1 L
Is ;(ouw, x)) = ol(we, X))l < < ; lw = wel| < Lxw
Substituting the above two into the RHS of Eq. (A.3) we have,

S

1 -
5 2 (3 = oCtwe x) )il < o + 20LW + Ls(h)
i=1

(A4)

Now we substitute Eqs. (A.2) and (A.4) into Eq. (A.1) to get,

2 2
we —w||® — [lwe —w]|

2- -
> (—20W + TLs(h)) = (n + 20LW +L(ho))
The above simplifies to the inequality we claimed in the
lemma i.e.,
2 -
[ weir—wi? < we—wi?—(Z=1)EsCho)+ (n? +20W(L+ 1) ©
A.2. Proof of Theorem 2.2

Proof of Theorem 2.2. The equation defining the labels in
the data-set ie. y; = o((w,,X;)) + &, with |&§| < 6 along
with our assumption that, ||x;|| < 1 implies that, ||§ Z?:l <y,- —
o((wy, x,~)))x,~|| < 6. Thus we can invoke the above Lemma 2.1
between the tth and the (t 4+ 1) iterate with w = w,, = 6 and
W=W,stW; > |lw; —w| = |lw; —w,]| to get,

2
lWey1 — Wil

< lwe —w, | - [(% —1)Ls(h) — (62 +20 - W, - (L + 1))]

Thus, if Ls(h) > L(e L2 4+20-W, - (L+ ))) then,

[Wes1 — We|l> < lw; — w,|* — €. Thus if the above lowerbound
on Ly(h;) holds in the tth step then at the start of the (t + 1)%
step we still satisfy, ||w;;; —w| < ||w; —w]||. Since the iterations
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start with w; = 0, in the first step we can choose W; = |w.]|.
Now we proceed via induction : from what was argued earlier it
follows that if till step t we can keep choosing W; = |w,||, then
till step t we have reduced the distance to w, by O(t - €) and

either Ls(h;) < (e +(0% 420 |w,| - (L+ 1))) or in the next

step we would have lwep —w,||? < |lw; —w,]||? — € and hence
the distance to w, would decrease further by e.
But the distance to w, is lowerbounded by 0 and hence in
IIW*H
at most steps of the above kind we would have to have
attained,

%)

~ 2
Ls(hr) = = 3 (o(wr, %)) — o (... x))

o

i=1

L L(e (0% +20]w, |I(L+ 1)))

<
And that proves the theorem we wanted. O

A.3. Proof of Theorem 2.3

Proof of Theorem 2.3.
Tth_iterate be defined as,

S

& 2 (otwr x0) — o((we, )~ &)
i=1

Then it follows that,

Let the true empirical risk at the

Ls(hr) =

Ls(hr) —
S
53
S i=1
S
1
=3 Z &
i=1

Ls(hr) = ¢
2
(owr.x) = o(w.. x) - )

(=& +20((wr, x)) = 20((w,. x))

S
Z_;ZSIZ ZS:( (wr, X))
i=1

By the assumption of & being an unbiased noise the second
term vanishes when we compute,

][is(hT) — Ls(hT)] Thus we are led to,

o ((W,, x,-)))

E{x; &)li=1,...,

—E¢[£°]

T Z Eg) [Efz]

For T = , we invoke the upperbound on Lg(hy) from
Theorem 2 2 and we can combine it with the above to say,

[ ||

L
T (e+0>+ 201w l1+1)
And this proves the theorem we wanted. O

Appendix B. Proofs of Section 3

B.1. Proof of Theorem 3.1

Proof of Theorem 3.1. Here we analyze the dynamics of the

Algorithm 2.
—Wl|? = [lwe — nge —
w,[* + n*llg1?

2
[\ W, ||

= [lw; — — 2n(W; — Wi, &)
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Let the training data sampled till the iterate t be S; = Ule Si.
We overload the notation to also denote by S;, the sigma-algebra
generated by the samples seen and the «s till the tth iteration.
Conditioned on S;_;, w; is determined and g; is random and
dependent on the choice of s; and {«,, &, | i =1, ..., b}. We shall
denote the collection of random variables {ay, | i = 1,...,b} as
«;. Then taking conditional expectations w.r.t. S;_; of both sides

of the above equation we have,

2 St—1i|
St—l]

b
n
+ 25 . ZExq’ati |:<Wt — W,, lyri>9* (yt,. - Wthti)xti>
i=1

Term 1
> St—l]

Now we simplify the last two terms on the RHS above, starting
from the rightmost,

Es; o [||Wt+l — W,

2
= ES[,OQ [”wt - w*”

St—l]

(B.1)

+ 1B | I8

Term 2

Term 2 = n? ~E[|Igt||2 | 5t1]

2 b
n
= b7 ZE [ lyti>9*1ytj>8* : (J’ti _w;rxfi) : (ytj _W;rxtj)

ij=1
St—1 ]

2 b
n
= Z E [ Ty >0, 1y >0, (X Xg)- [aqarﬁtiérj

=1
+ (ReLU(W, x;;) — W/ x;,) (ReLU(W, X;,) —
+ o, & (ReLU(W, X;) — W, X;;)

St—1 ]

b
> ( E [ 1y, -0, Ty .| (X, Xe) |
i,j=1

2
b2 £

- (Xg, Xe;)
i M

""rT"tj)

+ gy (ReLU(W, x;,) — W/ X,) }

n

=
X |: 007 + [ReLU(W, X;) — W/ X, | - [ReLU(W, X;,) — W/ X,

<)

As events we have for, k = i,j, 1y, >0, C Tgey]

+ 0, (o, |ReLU(w*Tx[j) — thxtj|

+ o |ReLU(W*TX[,-) - WthtiD ]

x[k)>0 =

lexr .- Hence we can simplify as follows,
Term 2

" <
= biZZ { |:1me >01w Xi; >0|(xtivxtj)|

ij=1

g 07 + [ReLU(W, X;) — W/ X, | - [ReLU(W, X;,)

]

T
|: — W, Xy

+ 0, (g |ReLU(WIxtj) - thxtj|

)]

T

+a |ReLU(WIXr,-) — W, Xy
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b

2
S%Z

ij=1

: [(ﬂ(xt,-)li_j + Bx; )ﬂ(xtj)li#j)]

{ 6?-E [ LT, =0 Tw] x, -0l (X Xy |

St—1 ]

T
+ 1‘7&] ! ]E|:1w* Xt >0||xf, ” |W xf, Wt xtil

5r1:|

2 T T
+ li:j . ]E|:1WIX[I.>OHXQ ” : |W* xti - W, xtil

5[1]
2 Srflil

+ 9* . 117&1 (E[lwzx[i>0 . ﬁ(xti) . ”xt,' ” |W*TXt,' - W[Txti|
Se— 1:| + (i <—>j)>

210 T T
: (]E|:1w;rx[i>0 : .B(xti) : ”Xti ” |W* Xt,‘ - Wt Xt,*|

T
x IE‘|:‘lw Xy >0||Xt] Il - |W th W, th|

5r—1:|

|:1wat >0 ”xfj ”
+ 26, - 1;

(B.2)

<))

In the last inequality above we have used the facts that (a)
for i # j, functions of X, are uncorrelated with functions of x;,
and (b) that the random variables «;, and oy are independent of
each other and of the mini-batch choice s; and hence they can be
replaced by their respective expectations B(X;,) and ,B(Xt ). And for

the first term we need to note the i = j case that, ]E[oz[] = B(x;).
Now we can simplify the first term on the RHS of E’q B.2) as,

‘ I:(ﬂ(xti)1i=j + ﬁ(Xri)ﬂ(th)h;éj)] Se—1 }

St—l] 1
St]]

5r1:| 1iyj

St—li| 1
5r—1j|

- Ex,, [ﬁ(xr})llxrjlllw x>0 St—1:|1i;£j

Since X; & X;; are identically distributed, we can invoke the
constants, 81 & B, and under taking total expectations the above
is bounded by 62(; 1,-:,'—1—;3121,'#). Using this we have from taking
total expectations on both sides of Eq. (B.2),

—b)- B2

2
9* -E |: ly[i>9* lytj >0y | (xt,-7 th)|

593 : IEX[i |:,B(xti)||xt,' ||21_Vti>9>k

+ Gf : ]EXri |:.B(xt,‘)”xti ” ly[i>9*

: Ex[j I:,B(ij)”)(tj ||1yrj>9*

593- |:,3(xt,)”xtl” 1 w] x>0

+ 62y, [ﬁ(xt,)nxf, M7, -0

0Xb - B + (b?

b
T T
Z{E[ [Wonxnn W] Xy — W x|

i=1

+29*-(E[ [ w0~ BXe) - X6 17 1W X, — W/ X

b
> { E [E[lw;xtiwnan WX, — WX |

Lj=1,i#

2
E[Term 2] < n—z .

2

]
<))
S

2

U“\‘.
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5r—1j|j|
+ 6, ( E [E[lwl—xq>0 : ﬂ(xtf) : ”xti ” |wati - w;rx[i| St—l]]
E[1w;xq>0||x[j||} +(i < J) )}
In the last term on the RHS above we have used the fact that
conditioned on S;_; a function of (w¢, X;) is uncorrelated with a
function of Xy for i # j. Now we further invoke that for k = i, j,

conditioned on S;_;, w; is uncorrelated with any function of x;,
to simplify the above as,

T T
><]1<2|:1wa5>0||&].|| - W Xy — W Xy

—b)- A7)
77 b
ZZ{ [Iw, — we|?] - [1w;xq>o||xf,.||4}

+26, - <E[||w* —wi] ~1E[1w;xq>0 B ||xt,.||3D }

2
E[Term 2] < ’L -02(b - By + (b2

2 b
77
—2 Z { [l — we|1*] - [1w;rxq>0||xf,.||2}
XE[ 1,7, ol 2
W*X[j>0 Lj

+6 (IE[nw* —wll]- [ w0 - B - 1%, ||2]

;x[jwnxf,.n} +(i <)) )}

< {04 Xt+29 ]E[,B3 “W*_wt”]}

i
b
’L

+ -(b*> —b)- {a%~Xt+29*~IE[ﬂ2a1-||W*—Wt||]}

NB‘

er—2 02(b- By + (b* — b) - B}) (B.3)

In the last line above we have recalled that x;, and X;; are
identically distributed and the definitions of ay, a,, a4, 8> &B3 and
have defined X, := E [[|w, — w¢|[]. In the second and the fourth
terms on the RHS above we invoke the inequalities,

20, -E[Bs - [IWe — W[ < (6s - B3 + X

20, -E[Boar - Wy — W] < (0s- B2 - ar)* + X;
)(b* — b)

Thus we have,
b? ) R

<a4;- 1 N (a2 +1
(6s - B3)? n (6s - B2 - a1 )*(b* — b)

+( b b

n 02(b- B> + (b? —b)-ﬂf)) o

b2
St—l]

E [ | (o, + ReLU(W, x;,) — W, Xy,)

E[Term 2] <

(B.4)

Term 1 = 27 Z By,

X

[<wt - W, 1y, (yt,- - erxt,-)xf,)

S

M-

i=1

272



S. Karmakar and A. Mukherjee

St—1 ]

Since |&;| < 0, it follows that y;, > 0,
T

T
X (wt - W*) xt,'

= Ww,_X; > 0. Hence,

—2* ZE[ Yt >6x Oltlgt,‘i‘(w*—wt) X[i)

St—1 ]

g ZE[ t>5*

i=1

b
Z E[l}/ti>9* : O([igti : (wt - W*)Txt,.

i=1

2 T
= B Z m1n<E|:1y[i>9*xt,-xfi

n
+24 6. ;E[ﬁ(xq) Ay, o, - %l
= E([Term 1] < —2nA1(6,) - X, + 2n0.E[B; -

1
= —200(6.)- X+ (KO, - 1) + X, ) Tanzo

x (W — W) Xy

wt) ° (W*

5r—1:|

5r—1]> w; — w, |2

— W)

St—1i|

Xfx xt

c-\\\:

Srl] - lwe — w ||

we —w.l]

(B.5)

In the last line above we used the following argument to write
the upperbound in terms of A;(6,) as given in Definition 1. We

= E |:1W*Txti >0 °

observe that for any i, E 1y >0, - Xgll|Se-1

IX;;11|Se—1 |- Also note that y, < 6, — W*Txtl. < 26,. Hence

for any test vector v we have,

T T
v (EI:<1)&,->9* IWTX[ >26*) X Xy,
turn implies,

St,1]>v > 0 and that in

)

Amin (IEI:‘lyt].>9*Xt,-xgir St—l]) > Amin (E[IW*TX[PM*XQXJ
= )\min( I:lex[ >29*Xfix;-r:|>

Case 1: 6, = 0. Taking total expectations on both sides of Eq. (B.1)
and setting 6, = 0 in the RHS of Egs. (B.3) and (B.5) we have,

2

Xen = (1= 200+ - (0 + a0 — 1)), (BS6)

The above recursion is of the same form as analyzed in

2
. ag+as(b—1
Lemma C.1 with by = 2Aq,¢; = 4+H one can see that
. b25
¢1 > 0 and hence convergence can be ensured if ¢; > (Hlao)z
0

(With n = W) for any positive §y
Thus from Lemma C.1 we have that givenanye > 0,46 € (0, 1),

Xr < €. 8 for,

X1 2
T=1+—< witha = (1—2nx1+n—-(a4+a§(b— 1))),
log - b
2bx
7]:

(ag +ai(b— 1))(1 + &)
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for a suitable 8o > 0 as mentioned above.

Case 2 : 0, > 0. Taking total expectations on both sides of Eq. (B.1)
and invoking the RHS of Egs. (B.4) and (B.5) we have,

2

Xisy < (1 — 29 (6,) + % + T (+a)+01

- + )b — 1))

2

+ K02 Bl +62-

(BB @l b= D+ (Bt b 1))

Now we can invoke Lemma C.2 on the above recursion with
the following identifications for the constants therein,

(B.7)

1 1+as+(1+a3)b—1)
b1 =211(04) — —, 1 =
1 1(64) % € b
92
& = K024 o = (B (B @) (b= 1+ (B + (b= 1)- 1)
1
Note that since K is so chosen that 2(6,) > 5, we have

b; > 0 and hence the conditions of Lemma C.2
Hence the smallest value of X; (say €2 - § for some € > 0 and

8 €(0,1)) thzat Lemma C.2 guarantees to be attained, say at Xt is
KoZp7

8
b = @@- 170 O
X
T= O(log[ —é+ = })
628 - (Clyi/1b1 )

b2 526+%2

when we choose 1 = 7 for some y > max | -+, 5= = ). Now

€o—py

we can invoke Markov 1nequallty to get what we set out to prove,

P[an —w,|? 62] >1-5. O

Appendix C. Proofs of two recursion estimates

Lemma C.1. Given constants n’, b, c1, c; > 0 suppose one has a
sequence of real numbers A1 = C, A,, .. s.t,

Ar1 < (1=1'b1 4+ 1n%c)Ac + 1”c
Given any €' > 0 in the following two cases we have, At < €'?

e Ifc; = 0,C > 0 and for some 5y > 0 we have, c; > b
n = (1+50)c1 and T = O(log ,2>
0U0<C2§C1,€/2§C,%§<\/?+

1+5 (1+580)%’

1
)
e’z(cl —)

lo,
s Ccp—cpe’?

r_ b,
n'= (1+ ,2) and T = O(
log b2 €2

q (1+€/2)2>

Proof of Lemma C.1. Suppose we define @ = 1—n'b+1n'?c; and
B = n?c,. Then we have by unrolling the recursion,

at -1

1_
Ay @A+ = a(ad BB < - a7 lAy +.37

We recall that A; = C to realize that our lemma gets proven

if we can find T s.t,

1—aT!
T1C+ﬂ7 6/2

1 _ €2(1-a0)-p

Thus we need to solve the following for Ts.t, o™~ ! = o) p
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Case 1: 8 = 0 In this case we see thatif n > 0iss.ta € (0, 1)
then,

2 log C
T—1 € 2
=— = T=1
C T Jog L
o
— n2 _ ’ b
Buta_n/ﬁ—n/b—i—l_(n\/a—zﬁ)+ 1— )Thus
a € (0, 1) is easily ensured by choosing ' = m for some
(SQ > OandC] > blTS)z
This gives us the first part of the theorem.
Case2:8>0
This time we are solving,
€?(1 —a)—
P Gl 1)

T (1-a)-p

Towards showing convergence, we want to set »’ such that

a1 € (0, 1) for all t. Since €? < C, it is sufficient to require,
B<e?(1—a) = a<1—%
€
b? b \2 B
@»1——+(’c— )51——
a, T NG NG -
2 2
ne _ b 2
5 =< (n Ve — 7)
€ 4 f
cz b? ( )2
= 4cin? Zfr)
Set ' = for some constant y > 0 to be chosen such that,
C bz b 2
2= b _< a3 b )
4C1 ych \/a P
(%] V2 Y 2 2
- — <c——Cc-|(=-1 = <€y —1)
€2 4 2
Since ¢c; < c¢; we can choose, y = 1+ e% and we have
a1 < 1. Also note that,
) , b? b? P o1 1
a=14+ncc—nb=1+ s T T = ——~(———2).
yocr va G Y v
b? €e? b? 1
- 1. 1.
1 (1+€?)

And here we recall that the condition that the lemma specifies
on the ratio % which ensures that the above equation leads to
a >0

Now in this case we get the given bound on T in the lemma
by solving Eq. (C.1). To see this, note that,

b2 6/2
¢a=1——-————and
C1 (1 + 6/2)2
b2 bz(,' (6/2)2
” 2
= COh=— ()= — —
p=ne via 0 o (1+e?p
Plugging the above into Eq. (C.1) we get,
o e/z(cl—cz)
s Ccq—cpe?

T-1 _ €?A(c1—)

o= gt T T=1+ﬁ- U

log | 1-¢ (1422
Lemma C.2. Suppose we have a sequence of real numbers
Aq, Ay, ... St

Ari1 < (1= n'by +n2c)Ar + 1% +1/cs
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for some fixed parameters by, c1,C3,c3 > 0 s.t Ay >
parameter n’ > 0. Then for,

b b P+ 2

? e JAY), = —, y>max o >1
b 2 [}
1 va o \e?— By

Z—? and free

it follows that At < €” for,

Aq
2 _ <H+V'H)

€ o

Proof of Lemma C.2. Let us define « = 1 — 'b; + n’’c; and

B = n%c, + n/cs. Then by unrolling the recursion we get,

Ar=adiq+B=aladi2+pB)+B ="
+ Bl +a+--+a?)

Now suppose that the following are true for ¢’ as given and for
o & B (evaluated for the range of n’s as specified in the theorem),

<a'lA,

Claim1: « €(0,1)
Claim2: 0 < e?(1—a)—p

We will soon show that the above claims are true. Now if T is
s.t we have,

1—a™!
oA+ B Fat o ) =a"TTA + B 1_a ="
then o™ ! = M Note that Claim 2 along with the as-

A1(1 —a)
sumption that €? < A1 ensures that the numerator and the
denominator of the fraction in the RHS are both positive. Thus
we can solve for T as follows,

1 Aq(1 —
~ o (2) {2

Aq
€? — (Cl b )
y—1
In the second equality above we have estimated the expression
for T after substituting n’ = }f’T‘ in the expressions for o and
B. O
by
ver®
712) Hence o > 0 is ensured

Proof of Claim 1. « € (0, 1). We recall that we have set ' =

2
This implies that,« = 1— l;—; . (% -
2
by the assumption that y > L;—: And o < 1 is ensured by the
assumption that y > 1 O

Proof of Claim 2. 0 < €’>(1 — «) — B. We note the following,

—El/z~(e/2(1—a)—[3)
-2
=1 v (1 f)z (1-5)

nCz+n63 ( )_bi
- €? 2/c 4c

2

1Vat o) ;
:( : :{) : (’7 f)z jcl
=" (& (va+s f) (va-ss)
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e =)

Now we substitute n” = —L for the quantities in the expres-
sions inside the parentheses to get,

—a) = B)

2
)

€? 4C2

2
yC1C3 (y )2
n' (6, (@+2b1f> +a- (3
oL )
4 €”? 4b%C2
1 Y CiC3 2 1 )/2C12C32
= — c c(1—y)— —
( 2 (*/_2+2bf) tall=r)=5 “ab?c,
n” yacs
=e_’2(C2+ b, —€“c(y — 1)
_ ’7/2‘71 (6/2 + C_2) P E/2 _ C_3
- €? C1 4 b1

1

2

2 g 2 (>} 2 _
€ >, and y><e +C1)/(e

Therefore, (€*(1—a)—B) < 0 since by assumption

C3 0O

bq
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