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ABSTRACT

In this work, we study the possibility of defending against data-poisoning attacks while training a shal-
low neural network in a regression setup. We focus on doing supervised learning with realizable labels
for a class of depth-2 finite-width neural networks, which includes single-filter convolutional networks.
In this class of networks, we attempt to learn the true network weights generating the labels in the pres-
ence of a malicious oracle doing stochastic, bounded and additive adversarial distortions on the true
labels, during training. For the gradient-free stochastic algorithm that we construct, we prove worst-
case near-optimal trade-offs among the magnitude of the adversarial attack, the weight approximation
accuracy, and the confidence achieved by the proposed algorithm. As our algorithm uses mini-
batching, we analyze how the mini-batch size affects convergence. We also show how to utilize the scal-
ing of the outer layer weights to counter data-poisoning attacks on true labels depending on the proba-
bility of attack. Lastly, we give experimental evidence demonstrating how our algorithm outperforms
stochastic gradient descent under different input data distributions, including instances of heavy-tailed
distributions.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The seminal paper by Szegedy et al. [1] was among the first to
highlight a key vulnerability in state-of-the-art neural network
architectures such as GoogLeNet, that adding small imperceptible
adversarial noise to test data can dramatically impact the perfor-
mance of the network. In these cases, despite the vulnerability of
the predictive models to the distorted input, human observers
are still able to correctly classify adversarially corrupted data.

In the last few years, experiments with adversarially attacked
test data have been replicated on several state-of-the-art neural
network implementations [2-5]. This phenomenon has also
resulted in new adversarial defenses being proposed to counter
the attacks. Such empirical observations have been systematically
reviewed in Akhtar and Mian [6], Qiu et al. [7].

An optimization formulation of adversarial robustness, in terms
of adversarial risk minimization on the test data, has been exten-
sively explored in recent years; multiple attack strategies have
been systematically catalogued in Dou et al. [8], Lin et al. [9], Song
et al. [10], computational hardness of finding an adversarial risk
minimizing hypothesis has been analyzed in Bubeck et al. [11],
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Degwekar et al. [12], Schmidt et al. [13], Montasser et al. [14],
the issue of certifying adversarial robustness of a given predictor
has been analyzed in Raghunathan et al. [15,16], and bounds on
the Rademacher complexity of adversarial risk have been explored
in Yin et al. [17], Khim and Loh [18].

On the other hand, the case of data-poisoning or adversarially
attacked training data [19-22] has received much less attention
from theoreticians - and in this work, we take some steps towards
bridging that gap. Also, while these previous works on test data
attacks have often been tuned to classification tasks, we consider
the less explored case of adversarial attacks to neural networks
used for regression tasks. In particular, we address a non-trivial
challenge in this domain, namely we construct a training algorithm
with poly-time convergence guarantee, which discovers a good
approximation to the global minima of the unperturbed neural
regression problem even when an adversary conducts online mali-
cious distortions to the true labels used in training. We note that it
is possible to construct training data attacks such that it would be
information theoretically impossible to recover arbitrarily accurate
approximations of the original global minima. Thus the challenge
is to exploit as much structure as possible about the nature of
the attack so that the recovered weights are nearly optimal for
the worst attack allowed. This is exactly what we achieve in the

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.02.034&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2023.02.034
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2023.02.034
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

S. Karmakar, A. Mukherjee and T. Papamarkou

setup of neural net class, data and adversarial attack that we
consider.

Towards this end, firstly we note that the algebraic structure of
depth-2 single filter convolution neural networks allow for a
worst-case near-optimal defense against label poisoning during
regression. Further, we realize that there is an appropriate general-
ization of these neural networks such that the ‘filters’ do not have
to be 0/1 entry matrices (as are standard for convolutions), but can
be arbitrary matrices which need only satisfy certain non-
degeneracy conditions. In Definition 1 we formally specify the class
of neural networks under consideration, and in Theorem 1 we
specify the non-degeneracy condition.

For the optimization algorithm, we draw inspiration from the
different versions of iterative stochastic gradient-free algorithms
analyzed in the past [23-29]. A key insight that arises from these
studies is that for certain neural losses, the usual gradient-based
direction of update used in the training of the loss function of a
neural network can be simplified without hurting performance,
while allowing for a rigorous mathematical formalism. More
specifically, the key simplification is to replace the ‘derivative of
activation’ terms in the gradient by a linear function of the inputs.
We allow for more flexible linearizations of this term (up to certain
non-degeneracy conditions) than previous studies. Thus, we gener-
alize this class of algorithms in the form of Algorithm 1. Despite the
above simplification, the direction of update is not linear and is still
a non-trivial function of the input data and the weights.

By allowing for arbitrary weights in the outer layer, we further
expand the class of neural networks beyond the ambit of existing
results. Subsequently, we run Algorithm 1 to train a neural network
in the presence of an adversarial oracle that makes additive
bounded perturbations to the true output of the network. Our the-
ory establishes that there is a worst case near-optimal guarantee of
recovery of true weights that our algorithm can achieve.

1.1. Related work

The existing studies of data-poisoning attacks on neural training
have mostly focused on the classification setting. The major kinds
of data-poisoning attacks on classifiers and attempts at defending
against them can be grouped into three categories. Firstly, in back-
door attacks, the adversary injects strategically manipulated data
[30]. Defence mechanisms against backdoor attacks have been pro-
posed in Liu et al. [31], Tran et al. [32]. Secondly, in clean label
attacks, the adversary does not modify the labels of the corrupted
data [33,34]. Thirdly, in label flip attacks, the adversary changes
the labels of a constant fraction of the data [35-37]. In the case
of Massart noise, a robust half-space learning algorithm was ana-
lyzed in Diakonikolas et al. [38]. For more general predictors, the
idea of randomized smoothing [39] has recently been extended
and empirically shown to be capable of getting classifiers which
are pointwise certifiably robust to label flip attacks [40].

Specifically for the setup of regression, to the best of our knowl-
edge previous guarantees on achieving robustness against data-
poisoning attacks have been limited to linear functions. Further,
they have either considered corruptions that are limited to a small
subset [41,36] of the input space or have made structural assump-
tions on the corruption. Despite the substantial progress with
understanding robust linear regression [42-49], the corresponding
questions have remained open even for simple neural networks.

Theoretical progress in understanding the limitations of train-
ing of a neural network under adversarial attacks on test data or
training data has been restricted to deep kernel learning, which
is associated with asymptotically large networks [50,51]. Develop-
ments along these lines have been made by Wang et al. [52], where
the performance of stochastic gradient descent (SGD) is theoreti-
cally established when using it to train asymptotically large neural
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networks to perform classification in the presence of data-
poisoning attacks.

Thus, it has been an open challenge to demonstrate an example
of provably robust training when (a) the trained neural network is
finite, (b) the training algorithm has the common structure of
being iterative and stochastic, and (c) the training data is being
adversarially attacked.

In this work, we take a few steps towards this goal by develop-
ing a framework inspired by the causative attack model [53,54].2

1.2. Summary of results and outline

The model of data-poisoning that we consider includes an addi-
tive distortion of the true output. For every data point, the additive
distortion is a sample from a possibly different distribution. On the
other hand, a typical model with additive noise relies on the
assumption that all additive distortions are sampled from a single
distribution [29]. Thus, the assumption of varying distribution of
distortions is what makes a data-poisoning model distinct from a
typical model of noisy output based on additive noise.

Our adversarial neural network herein is a multi-gate general-
ization of the single-gate model in [55]. Furthermore, we allow
adversarial attacks to the multi-gate model that are capable of pre-
venting optimal learning, as evidenced by our lower bound on the
achievable accuracy of recovering the model parameters from the
intact data (Section 3.5).

The main result (Theorem 1) shows that our proposed Algo-
rithm1 achieves a trade-off between accuracy, confidence and
maximum allowed adversarial perturbation while learning the
neural network parameters. This trade-off provides a performance
guarantee that holds (i) in the presence of finitely many gates, (ii)
under an online adversarial attack that does not assume access to
the whole training data at the start of training, and (iii) for any
probability of attack. To the best of our knowledge, there does
not exist in the literature of neural network training any other such
performance guarantee with all these three conditions being
simultaneously true.

The parameter recovery accuracy of Algorithm1, as guaranteed
in Theorem 1, has two salient features. Firstly, our defense can
defeat an adversarial attack in some scenarios, in the sense that
the risk of the learnt predictor can be lower than the maximum
adversarial distortion (Section 3.4). Secondly, the accuracy of
parameter recovery improves by upscaling the weights of the sec-
ond layer (Section 3.6).

In Section 4, we provide empirical evidence that our Algorithm 1
attains higher parameter recovery accuracy and faster rate of con-
vergence than SGD. While a proof of this claim remains an open
research question, our simulation-based observations are consis-
tent across different input data distributions, probabilities of
adversarial attack and magnitudes of adversarial attack. We also
draw the attention of the reader to the experiment in Fig. 3 show-
ing that Neuro-Tron outperforms SGD even when the data is sam-
pled from the Student’s t distribution with v =4 degrees of
freedom, which does not have enough number of finite moments
to be covered by the assumptions of the main Theorem 1. This
experiment in particular strongly motivates exciting directions of
future research.

2 The learning task in the causative attack model is framed as a game between a
defender who seeks to learn and an attacker who aims to prevent this. In a typical
scenario, the defender draws a finite number of samples from the true distribution
(say S¢) and for some € € (0,1) the attacker mixes into the training data a set S, of
(maybe adaptively) corrupted training samples such that [Sp| = €|S; |. Now the
defender has to train on the set S, US.. We note that our model is not the same as the
causative attack model because we allow for an arbitrary fraction (including all) of the
training data to be corrupted in an online fashion by the bounded additive adversarial
attack on the true output.
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Outline of the paper In Section 2, we give the mathematical
setup of the neural networks, distributions and data-poisoning
adversary that we use, and define our learning algorithm (Algo-
rithm1). In Section 3, we state our main result, which pertains to
the parameter recovery accuracy of Algorithm1, as Theorem 1.
The proof of Theorem 1 is given in Appendix A, while appendices
B-E contain several lemmas that are needed in the proof. In Sec-
tion 3.5, we explain that the accuracy-confidence-attack trade-off
we obtain is nearly optimal in the worst-case. In Section 3.6, we
propose a way of improving the accuracy of parameter recovery
for Algorithm1 by upscaling the outer layer weights. In Section 4,
we perform a simulation study of Algorithm 1, among else compar-
ing it with SGD. We conclude in Section 5 by motivating relevant
directions of future research.

2. Mathematical setup

In a supervised learning setting, consider observed data pairs
z=(X,y) € Z:=2 x %, where X is the input in a measure space
Z and y is the output in a measure space %. Let 2 be the distribu-
tion of z over 2 and let 2 be the marginal distribution of the input
x over 2. Consider a loss function ¢ : # x 2 — R", where .# is the
hypothesis space for a learning task performed by a neural net-
work. We model an adversarial oracle as a map 04 : 2 — % that
corrupts the data z € 2 with the intention of impeding the learn-
ing task. The uncorrupted data z ~ 2 are not observed, so they
are treated as a latent variable. Only the corrupted data O4(z) are
observed. The aim is to find a hypothesis h € »# that minimizes
the true risk 2(h; 2) := E,.5[¢(h, z)).

In this work, we consider the case of input space 2 = R", output
space % = R, square loss function [ and hypothesis space .# of the
class Zyq.s o of depth-2 width-k neural networks. The class
F ko 18 specified in Definition 1.

Definition 1 (Single-filter neural networks of depth 2 and width k).
Given a set of k sensing matrices .o/ = {A; e R™"|i=1,...,k}, an a-
leaky ReLU activation mapping o(y) = y1,>0 + ay1y-0 and a filter

space % C R", we define the function class 7, ., as

k

el

Fkaon {fw R" — Rwithf,, (x
i-1

WTAX)|W e ¥ }

Note that the above class of neural networks encompasses the
following common instances; (a) single ReLU gates as 1 ,..}.x":
(b) depth-2 width-k convolutional neural networks, when each
sensing matrix A; has exactly one 1 in each row, at most one 1 in
each column, and 0 in all other entries.

Training labels and the stochastic oracle that corrupts them
We assume that 3w* € R" such that each “true” data point (X,y)
is s.t y = fu.(X). The oracle decides whether to attack a given data
point (x,y) by performing a Bernoulli trial oy ~ Bernoulli(B(x))
with probability of attack B(x) := Pr(ax = 1).If ox = 1, then the ora-
cle replaces the original output y = f,. (X) with f,,.(X) + &, where
|&x| < 6 for some fixed 6. If ax = O, then the oracle returns the orig-
inal output y without perturbing it. To ease notation, the adversar-
ial output is denoted by v :=f,.(X)+ 0x&. In summary, the
adversarial action can be written as the map,

0a(X,y) = 04X, f: (X)) = (X, f- (X) + 0txx) =
While the above attack is happening on the training labels, the risk
~fw(x))’

Lastly, we make the following Assumptions 1 and 2 for the distribu-
tion 2y of input x.

(x, v).

minimization problem is to find argmin,,_, Exs, [(fw, (x)
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Assumption 1 (Parity symmetry). We assume that the distribution
Zx of the input x is symmetric under the parity transformation, i.e
if X is a random variable such that X ~ Zx and —X ~ 9.

Assumption 2 (Finiteness of first four moments of input norm). We
assume that the following expectations are finite,
m; := |:EX |:||XH1:| 7i = ]7 27 3747

where || - || denotes the Euclidean norm thereafter. We note that for
a measurable function §: R" — [0, 1], Assumption 2 implies finite-
ness of the expectations

Bi = Ex [ﬁ(x)uxnl],i: 1,2,3,4.
B(x) induces bias in the coin that the adversarial oracle tosses to

decide whether or not to attack the true output y associated with
input X. To ease exposition, we introduce the notation

k
=1 A
k

i=1

Amin (AZMT>, Ja = 1| Amax (MTM), A

— Ejxx],

k
= %Z/Lmax A AT

i=1

P
A1

where /min and JAm.x denote the minimum and maximum eigen-
value, respectively, and M € R™" is a “sensing matrix”.

Algorithm1 summarizes the proposed neural network training
procedure in the presence of the assumed adversarial oracle. We
refer to Algorithm1 as the Neuro-Tron. Neuro-Tron is a stochastic
optimization algorithm that does not use gradients, and it is
inspired by Kakade et al. [26], Klivans and Meka [27], Goel et al.
[29].

Algorithm1: Neuro-Tron (mini-batched, multi-gate, single-
filter, stochastic algorithm)

1: Input: Sampling access to the marginal input distribution
Dx

2: Input: Access to adversarial output » € R for any input
xeR"

3: Input: Access to output f,(x) of any f, € #, ., 4 for any
w € R" and any input x

4: Input: A sensing matrix M € R™"

5: Input: A starting point w,

6: Input: Number T of batches

7: Input: Batch size b

8: Input: Learning rate

9

1

fort=1,..,Tdo
0: Sample batch s; := (X, ..., X, ), where
X, ~9x,i=1,....b
11: fori=1,...,bdo
12: The oracle samples o;, € {0,1} with probability
{1-B(xt), B(xt) }
13: The oracle replies with vy, = fy. (X;,) + 0 &,
14: end for
15: Form the so-called Tron-gradient,
b
( Z fwn Xy, )Xr,)>
i=1
16: w(t+1) — w([> + ng(f)
17: end for
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3. Probabilistic performance bounds

This section states the main theorem (Theorem 1), which pro-
vides the optimal learning rate for Algorithm1 to approximate
the neural network weights at a given accuracy level € with a given
failure probability 6. To illustrate the consequences of Theorem 1,
the special case of normally distributed input data is discussed.

3.1. The main theorem

Theorem 1 (Trade-off between accuracy and failure). Let f,, be a
neural network belonging to the function class g, ., of
Definition 1. We assume that there exists w* € R" such that for
each input x sampled from 2y there is a corresponding true label
¥ =fw (X). An adversarial oracle corrupts the true label y by
generating the label f,,.(X) + ox&x, where & is chosen to satisfy
|&x| < 0 for some fixed 6, and oy ~ Bernoulli(3(x)) for some
measurable function B:R" — [0,1]. Thus, the oracle sends the
tuple Oa(X,y) = (X,fw-(X) + 0x&x). Additionally, we assume that
Assumptions 1 and 2 are satisfied, and that 4; > 0,i=1,2,3.

1. Assume that 0 = 0, which corresponds to the case of uncor-
rupted adversarial action 04(X,y) = (X, fy-(X)). If the learning
rate # in Algorithm1 is equal to

A

P(1 + )25 23 (mg/b + m3(1 - 1/b))’

n=

where y > max {C, 1} with C := 43 (233 (ma/b + mj(1 — 1/b)))7],
then for accuracy € > 0, for failure probability 6 > 0, and for
T= (§‘<log (”""“%‘,"’”2)) it holds that |w™ — w*|| < € with proba-
bility at least 1 — 4.

2. Assume that 0 € (0, 0,) for some 0, > 0, which corresponds to
the case of adversarial perturbation via additive noise. We
assume that is such that the constant
Ctrade—_off ‘= %71 > 0. Moreover, assume that the distribu-

tion %y, matrix M in Algorithm1, noise bound 6., target accu-

racy € and target confidence § > 0 are such that
0? = €20Cuade_ofr, €20 < W —w|%. (1)

If the learning rate # in Algorithm1 is equal to

ﬁ] Ctrade—off

n= « 7
Y(1+ a0 i s (B +m3) (1 —3) + L)
where
(.Blctradefoff)2 }
Y > max Gl
{(1 + 00225 ((fymy + m3) (1 - 1) +B5ms)
with
€25 + 92((ﬁ%Jr/flmz)(lf%)Jr”zz/%)
€ e W (m ) 1)
2 €25 — 0
Ctrade—off
then for
w® —w P
T=0|log H
625 - C?ate
with
-1
Crate = R +m? -
(1+@)?23(m3+my) * Crrade—off
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it holds that |w™ — w*| < € with probability at least 1 — 6.

Remark 1. Some remarks on Theorem 1 follow.

1. Theorem 1 places weak conditions, which can be easily met in
practice. Firstly, it is easy to find a distribution 2y that satisfies
Assumptions 1 and 2 and that has a positive definite covariance
matrix X. Secondly, for any full rank M € R™", any matrix
C € R™" and any even width w (say w = 2k), the sensing matri-
ces in Definition 1 can be set to
o ={M-kCM-(k-1)C,... M—C,M+C,...,M+ kC}.
Then A = M has full rank, so Z; = imin(MEM") > 0 as required.
Thirdly, it is easy to construct a sampling scheme that generates
a matrix M € R™" with 1 < r < n which is full rank with high
probability. To  this end, generate independent
g = (g,....g) ~N(,1,) and construct G = 3°F ,gg/ . Then
G follows a Wishart distribution W(I, k) with k degrees of free-
dom. Since I is invertible, G has full rank with probability 1 as
long as k > r. G can be used as a sub-matrix to complete it as
a matrix M € R™" which also has full rank with probability 1.
Lastly, consider the case when f(X) is a constant . Then we note
that the condition of cy.4e_off being positive is equivalent to

1+%) min (AZM . -
p< % From here we can see that if we anticipate a

large probability p of attack, we can scale the vectors in the sup-
port of distribution 2, by an appropriate positive factor and
enlarge the upper bound for g by the same factor.

2. The uniqueness of the global minimum for 0 = 0 can be proven
by contradiction. Assume that there are two distinct minima

argming,., Ex-o, | (fw (X) — fw(X))?|. The application of Theo-
€

rem 1 to each minimum separately implies that Algorithm1
gets arbitrarily close to each minimum, which is a
contradiction.

3. In both cases 6 =0 and 0 € (0,0.), the learning rate x is an
increasing function of the mini-batch size b. So increasing b
increases the rate of convergence.

4. Inthe case of 0 € (0, 0,), the term €25 — % in the expression of T
is positive because of the lower bound imposed on the param-
eter .

5. In SubSection 3.5, we show that the trade-off between opti-
mization accuracy and failure probability is near-optimal in
the worst-case scenario, that is when the adversary attacks

every data point.

3.2. Sketch of the proof of the main theorem

The proof of Theorem 1 is given in Appendices A, B, C and E. An
outline of the proof follows. Initially, the proof disentangles the
dependencies between random variable g, sampled data s; and
coin flips a; == (o,,...,a,) that determine whether or not to
attack the corresponding output data. Let sy, := (S1,...,S;) be the
training data sampled by Algorithm1 till the t-th iteration. The
neural network weights w; at time ¢ are determined conditional
on sy,;_1). The random variable g, is dependent on s;, on «;, and
on (&,,...,&,). The key idea in the proof is to find a tight upper

bound on the random variables
(t+1) (|2 (0) ||
g [ = W2 = WO =W s .
To acquire such an upper bound, we invoke Assumption 1 and we

track the combinatorial effect of mini-batching. Finally, we take
total expectations over the above upper bound and reduce the prob-
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lem of finding convergence times to a problem of analyzing certain
algebraic recursions. These recursions are established in the lem-
mas of Appendix E.

3.3. Performance bounds for normally distributed input data

To understand the constraints imposed by Eq. (1) of Theorem 1,
we assume normally distributed input data and consider a single
ReLU gate neural network %, z". Lemma 1 provides the con-
stant Cyade_off UNder this setting.

Lemma 1. [Accuracy-failure trade-off for normally distributed
input| Consider a single ReLU gate neural network &, .} "
Assume that the input data x are normally distributed according to
Dy = N (0,0%Inn). If p(X)=:p € (0,1) for all x and M = I, in
Algorithm 1, then the constant Ci,ge_off in Theorem 1 is given by

0: o T()
€ VIpT(y)

The proof of Lemma 1 can be found in Appendix D. If the
input data distribution is .#°(0,5?I), where ¢2 is an increasing
function of the input data dimension n such that the right-
hand side of Eq. (2) remaines fixed, then Eq. (2) provides a suf-
ficient condition to defend against an adversary with a fixed cor-
ruption budget of 0., with a desired accuracy of € and with
failure probability of 6.

2)

Ctrade—off =

3.4. Understanding the prediction risk

The prediction risk of a neural network %, ., ., at time T is

Ex-. [(fw* (%) = fwm (X))z]
2
= Exgy [(%zk:{a(w*TAix) - a(w“”A,-x)}) ] .
i=1

As shown in Lemma 3 (Appendix C), if the conditions of Eq. (1) of
Theorem 1 are satisfied and if the upper bound

<(1+oc)2 k

AT . 2
k(sctradefoff Z}~max (AIAI )> [EXNIX |:HXH } < 1 (3)

i=1

holds at iteration T, then the risk Ex.s, [(fw,(x)— fwm(x))z] is

bounded above by 6.

It is easy to demonstrate cases for which Inequality (3) holds.
For example, the assumptions of Lemma 1 imply that Inequality
(3) is equivalent to

1 1
= 7 2 < —— <
n [EMX[HXH ] < 5(/31 1>orﬁ] STTnps

in the case of a single ReLU gate neural network %, 3 trained
on normally distributed input data. Eq. (D.1) and Inequality (4) yield
the upper bound

1| TE)
B< ﬁ |:F(n+1)

for the probability g of adversarial attack. Note that this bound on g
depends on the input data dimension n. So, if the probability p of
attack admits the upper bound of Inequality (5) while training a sin-
gle ReLU gate neural network on normally distributed input data,
then the learnt weights attain higher average prediction accuracy
than the worst distortion the oracle could have made to any partic-
ular output data point.

(4)

1
1+n/o

()
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3.5. Demonstrating near-optimality in the worst case

We recall that Case 1 of Theorem 1 (6 = 0) shows that Algo-
rithm1 recovers the true filter w* € R" when it has access to the
uncorrupted data. Consider a filter value wy # w* given the true fil-
ter wr, and suppose that 0,=¢ for some
{ = SUPyesupp(n fwy, (X) —fw- (%) |, where supp(Zy) denotes the
support of Z. Assume that 2y is compactly supported, so that
the supremum exits. In this setting, Eq. (1) yields
€2 > (% /Cuade—or- Hence proving optimality of the guarantee is
equivalent to showing the existence of an attack which satisfies
the upper bound { of SUPycsupp(y fw,y, (X) —fw- (%) | and for which
the best possible accuracy nearly saturates the lower bound
gz/ctrade—off Of 62-

If the adversarial oracle O, is queried at x under this choice of
0., then the oracle replies with & +f, (X), where
éx = fuy, (X) — fw. (X). So, the data Algorithm 1 receives are exactly
realized with filter w,q,. Thus, Case 1 of Theorem 1 implies that
Algorithm 1 converges to w,q, with high probability and with error
[Waay —W.|| < €

We now consider the above attack happening to a single ReLU
gate neural network  f, (X) =ReLU(w/x),x € R",  with
{ = 1||Wagy — W. ||, Where 1 := SUPycqpp(sy [IX[|- Assume that r is finite
and that 9y satisfies Assumptions 1 and 2. This choice of { is valid
since the following holds,

sup [ReLU(w,4,X) — ReLU(W,X)|

Xesupp(Z2x)

<1 Waay — W || =L

Such a setup for training a single ReLU gate neural network on out-
put data additively corrupted by at most { = r||w,q, — W, || demon-
strates a worst case scenario (i.e f(x) = 1) in which the accuracy
guarantee of € > {?/Cyageoif iS Optimal up to a constant
12 /Ctrade—off- The near-optimality of Eq. (1) holds for any algorithm
defending against this attack, if the algorithm has the property of
recovering the parameters correctly when the output data are
exactly realizable.

3.6. Defense against data-poisoning attacks via upscaled outer layer
weights

Definition 2 generalizes the class of neural networks of Defini-
tion 1 by introducing a weighted sum of gates computed by a neu-
ral network in the class. The weights q € %, C R of the second
layer play the role of weights in the sum of gates and augment
the network parameter space %", of Definition 1 by #7.

Definition 2 (Weighted neural networks of depth 2 and width k).
Given k sensing matrices «# = {A; € R™"|i=1,...,k}, an a-leaky
ReLU activation mapping o(y) =y1,50 + ayly-0, a filter space
# 1 CR" and a space of values for the second layer weights
', C R¥, we define the function class # Kot/ Wy, AS

k

Z

=1

- o . T
vg'—k.ot,.v/;%’]_z = {fq‘w . — R, qu AX

€ R‘W eENi,q¢€ "/Vz}.
The analysis in the proof of Theorem 1 is applicable when f,, is

replaced by f, for fixed q. Consequently, Theorem 1 continues to
hold for A and /5 set to

B 1 k ) k
A :E;in,», J3 = 2 @ 7max (AR (6)
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Table 1
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Configuration of hyperparameters (rows) across eight experimental setups (columns). Each setup arises from a combination of an input data distribution and of a varying
hyperparmater. The varying hyperparameter is either the noise bound 6, € {0,0.125,0.25,0.5,1,2,4} or the probability of adversarial attack g € {0.005,0.05,0.1,0.2,0.5,0.9}.
The rest of hyperparameters are the following: learning rate #, input data dimension n, filter size r, batch size b, and network width k.

Data A47(0,1) t(4) A47(0,9) Laplace(0, 2)
0. Varying 0.25 Varying 0.25 Varying 0.25 Varying 0.25
B 0.5 Varying 0.5 Varying 0.5 Varying 0.5 Varying
n 0.0001 0.0001 0.0001 0.0001 0.00005 0.00005 0.00005 0.00005
n 100 100 100 100 50 50 50 50
r 25 25 25 25 25 25 25 25
b 16 16 16 16 16 16 16 16
k 10 10 10 10 10 10 10 10
Normal data (o =1) Normal data (o0=1)
ekl — 0,=0125 — 8, =10 | ] —— B=0005 — B=02
—— 04 =025 — 04 =20 —— B=005 —— B=05
le-04 le-0 1 — =01 — =09
le-14 le-11
le-2 le-24
M I iy
le-3- le-3 W
le-41 le-4 A
Normal data (o =3) Normal data (o= 3)
1e%11 — 9,=0125 — 6, =10 | &*1] — B=0005 — B=02
—— 04 =025 — 04 =20 —— B =0.05 — B=05
1le-0 — 6,=05 — 0, =40 | 107 — B=01 — B=09
le-1 le-14 \
Tois AR Wy b 80 AR st «mu:.)‘m A rd».: o
e-2 L\~ 0 P A e e R AL 3 e-21
\\A '.:‘A. A P R e e e s N s 4y \
L B A R b g W ML o il
le-34 P i S 8 g 4 o A (AL 1e-34
le-4 le-44
Laplace data (scale = 2) Laplace data (scale = 2)
le+1- 04 =0.125 0. =1.0 le+1 —— B =0.005 — B=02
—— 04 =025 — 04 =20 —— B=0.05 — B=05
le-01 — 6,=05 — 0, =40 | 107 — B=o01 — B=09
le-14 le-1-
SRS b AL i P A ML S e oy Mg v P A by
le-2 \“mlﬁ' #u--wm'w\.ﬁ"ln-MAmemv le-2
W-‘mr (v e N A AL px £k Ltk W e g
LT YD Y PRTRATY P S T SR YT )
le-31 R R L Tl T N SRR WY STWVAY ¥ S le-34
le-41 le-4 -
t-distributed data (df = 4) t-distributed data (df = 4)
1e417 — 9,=0125 — 6, =10 | "]
— 64+ =025 — 64 =20
1e-0 | — 6,=05 — 6,=40| 0]
le-14 le-11
W o VAR At L AN S A ) ¢ A L A A A LAY A e ek Mt &
1e-21 D i W e o L LR S 1e-2 1
LT PR NPT L RN W I L PN Rt g, Ui i
SRkl 68 itk e A e ok bR o A L a0, L
P R NS STRRFeL T PR BT VWS SRR ) e
le-34 le-34
le-4 le-44

0 5000 10000 15000 20000 25000 30000 35000 40000

(a) Different 0, values.

0 5000 10000 15000 20000 25000 30000 35000 40000

(b) Different 8 values.

Fig. 1. Simulation-based validation of Theorem 1 regarding the performance of Algorithm1 (Neuro-Tron). (a): Neuro-Tron parameter recovery errors per input data
distribution for different adversarial noise bounds 0. (b): Neuro-Tron parameter recovery errors per input data distribution for different probabilities p of adversarial attack.
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Eq. (6) sets the constraint of positive 1; = Anin (AEMT) on M.

Here we consider a special case of a neural network with a
weighted sum of gates, satisfying Definition 2. By analyzing this
special case we shall reveal an interesting insight about how
weights in the outer layer of the network can help to defend
against the attack being considered. Consider neural networks
fiw IN Fiy .y, With sensing matrices A;,i=1,...,k, for the first
layer of the network and note that f; , = fy € #u..»- Set M such
that 41 = Amin (AEMT) > 0, where A:%ZLA,—. Further, given a
real number g # 0, consider another class of neural networks
fleiw In Fiyoyw,,. Note that Ayr:= Amm(A/ZMT) =q*/1 >0,

where A := % S°¥ | Ai. Thus, M ensures convergence of Algorithm 1
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while training over both network classes. Assume that the con-
stants $, and 0,, which characterize the adversarial attack, and
the ‘lack of confidence’ § are fixed. If € and e/ are the guaranteed
accuracies of recovering the true weights when q=1 and
q = g°1, respectively, the it follows from Eq. (1) that

1
For this special case, we note that a multiplicative increase in g,, by
say ¢; > 1, can be compensated by letting the attack happen while
training over neural networks f. ;,. Similarly, a multiplicative
increase in 0., by say c¢; > 1, can be compensated by letting the
attack happen while training over neural networks f,; ., since

1

€ =20,

le+1+ le+1

04 =0.125 —— Neuro-Tron B = 0.005 —— Neuro-Tron
1e-01 — seD le-01 —— SGD
le-1 le-14
le-2 le-24
le-34 le-34
18747 T T T T T T T T T 16747 T T T T T T T T T
le+1+ le+1

6x =05 —— Neuro-Tron B=0.1 —— Neuro-Tron
1e-0 —— SGD 1e-0 —— SGD
le-1 le-14
le-24 le-24
le-3 le-34
le-4+ . le-4 4 i i

le+1 le+14

6« =1.0 —— Neuro-Tron B=0.2 —— Neuro-Tron
le-01 — SGD le-0 —— SGD
le-14 le-14
le-2 le-24
le-31 le-3
le-44 le-4 1

le+1+ le+1-

64 =2.0 = Neuro-Tron B=05 = Neuro-Tron
1le-0 —— SGD 1e-0 —— SGD
le-14 le-1
le-2+ le-2
le-3 le-34
le-4 le-44

le+1H le+1H

64 =4.0 —— Neuro-Tron B=0.9 —— Neuro-Tron
1e-01 — SGD le-0- —— SGD
le-14 le-14
le-24 le-24
le-3 le-34
le-44 le-44

0 5000 10000 15000 20000 25000 30000 35000 40000

(a) Neuro-Tron versus SGD per 6, value.

0 5000 10000 15000 20000 25000 30000 35000 40000

(b) Neuro-Tron versus SGD per 3 value.

Fig. 2. Simulation-based comparison between Algorithm 1 (Neuro-Tron) and SGD. Input data are sampled from .4"(x = 0, ¢? = 1). (a): Parameter recovery errors for different
adversarial noise bounds 0. (b): Parameter recovery errors for different probabilities § of adversarial attack.
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C20, ! < 0. 1 .
o(c3-an—1) o(Un 1)

If Algorithm1 is used for training over neural networks f;,, and

fle1w,q > 1, with the same {Ai}f‘:] matrices, then one can choose
a common M for both the instances such that while facing the same
output-poisoning adversary, the accuracy of recovering the true
weights in class f/pq, is higher than the accuracy of recovering
the true weights in class f; . In other words, increasing the outer
layer weights via higher values of g > 1 improves the accuracy-
related defence of Algorithm 1 against the same type of adversarial
attack. To this end, we demonstrate via a simulation-based experi-
ment the accuracy advantage gained by upscaling the outer layer
weights (see Appendix H).
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4. Simulation study

In this section, we conduct a simulation study by training ReLU
neural networks on different input data distributions and for dif-
ferent hyperparameter settings of Algorithm1. The purpose of
the simulation study is twofold, to empirically validate the relative
theoretical performance bounds of Algorithm1 and to compare
Algorithm1 with SGD. The code for our simulations can be found
at https://github.com/papamarkou/neurotron_experiments.

Eight setups are included in our simulation study. For each
setup, independent and identically distributed input data samples
X;,i=1,...,b, are drawn from one of the following four distribu-
tions: standard normal N (u=0,0%=1), normal

A (u=0,02=9) with mean p=0 and variance ¢2=09,

le+1+ le+1
04 =0.125 —— Neuro-Tron B = 0.005 —— Neuro-Tron
1e-01 — seD le-01 —— SGD
le-1 le-14
le-2 le-24
le-34 le-34
18747 T T T T T T T T T 16747
le+1+ le+1

64« =0.5 —— Neuro-Tron B=0.1 —— Neuro-Tron
1e-01 —— SGD 1le-0 —— SGD
le-1 le-14
le-2+ le-2
le-34 le-3 1
le-4+ . . . le-4 4 i . i

le+1 le+14

6« =1.0 —— Neuro-Tron B=0.2 —— Neuro-Tron
1e-0 1 = SGD 1e-0 ~—— SGD
le-14 le-14
le-2 le-24
le-31 le-3
le-4 le-44

le+1+ le+1-

64 =2.0 = Neuro-Tron B=05 = Neuro-Tron
1le-04 — SGD le-0- —— SGD
le-1 le-14
le-2+ le-2
le-3 le-34
le-44 le-41

le+1H le+1H

64 =4.0 —— Neuro-Tron B=0.9 —— Neuro-Tron
1e-01 — SGD le-0- —— SGD
le-14 le-14
le-24 le-24
le-3 le-34
le-44 le-44

0 5000 10000 15000 20000 25000 30000 35000 40000

(a) Neuro-Tron vs SGD per 6, value.

0 5000 10000 15000 20000 25000 30000 35000 40000

(b) Neuro-Tron vs SGD per f value.

Fig. 3. Simulation-based comparison between Algorithm 1 (Neuro-Tron) and SGD. Input data are sampled from Student’s t(v = 4). (a): Parameter recovery errors for different
adversarial noise bounds 0. (b): Parameter recovery errors for different probabilities § of adversarial attack.
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Laplace(p = 0,b = 2) with mean u = 0 and scale b = 2, or Student’s
t-distribution t(v =4) with v =4 degrees of freedom. For each
setup associated with an input data distribution, either the noise
bound 0. or the probability g of adversarial attack vary, while the
remaining hyperparameters are fixed. To sum up, in each of the
eights setups, one out of four possible distributions is selected to
sample input data, and one of the two hyperparameters 6, or S
vary.

To run a simulation for a given setup, we initially sample a point
w, ~ 4°(0,1;) and sample the sensing matrices as explained in
Remark 1-1. We then train our ReLU network via Algorithm1 to
approximate w,, starting from the weight initialization
w; =1 R at the first iteration. At the t-th iteration of Algo-
rithm 1, we draw iid input data samples x;,,i = 1,..., b, from a dis-
tribution fixed throughout the run, selected among the four
aforementioned possible distributions. Given input data point X,
we instantiate a data-poisoning attack without explicitly checking
for consistency with the assumptions of Theorem 1; we sample o,
from Bernoulli(f(x;)). Thus the probability of attack is

B(x,) = Pr(ocxri = 1), and if o, = 1, we set the additive distortion

as, ét,v = B*ﬂ{i(mod 2)=0} — G*ﬂ(i(mod 2)#0},Where 1]{} denotes the indica-
tor function. We run SGD similarly to Algorithm 1.

Table 1 summarizes the configuration of hyperparameters
across the eight simulation setups. When the noise bound 6, varies,
it takes values in {0,0.125,0.25,0.5, 1, 2,4} and the probability  of
adversarial attack is fixed to 0.5. When p varies, it takes values in
{0.005,0.05,0.1,0.2,0.5,0.9} and 6. is fixed to 0.25. Based on
empirical tuning, the learning rate is set to # = 0.0001 when the
input data distribution is .#"(t=0,02 =1) or t(v=4), and to
17 =0.00005 when the input data distribution is
A (p=0,0% =9) or Laplace(y = 0,b = 2). The input data dimen-
sion is set to n = 100 for data sampled from 4"(1=0,0% =1) or
t(v=4), whereas it is set to n=50 for data sampled from
A (p=0,0% =9) or Laplace(yt = 0,b = 2); smaller dimension n is
used in the latter case due to higher variance in the input data,
which can affect the numerical stability of Algorithm1 and of
SGD. The filter size, batch size and network width are set to
r=25,b =16 and k = 10 across all setups.

Performance is measured in terms of the parameter recovery
error ||w; —wy| at iteration t of Algorithm1 and of SGD, where
I - || denotes the Euclidean norm. In all figures of this section and
of Appendices F, G and H, the vertical and horizontal axes display
recovery errors and iterations, respectively. Recovery error tick
mark labels are shown in log,, scale, while the corresponding tick
marks are shown in the original scale.

Fig. 1 provides a simulation-based validation of Theorem 1
regarding the performance of Algorithm1 (Neuro-Tron). In each
plot of Fig. 1, input data are sampled from a fixed distribution.
On the left-hand side of Fig. 1, increasing the magnitude of attack
(noise bound) 6. increases the parameter recovery error. On the
right-hand side of Fig. 1, increasing the probability of attack B
increases the parameter recovery error.

To further validate Neuro-Tron via simulation, Figure G.6 in
Appendix G provides parameter recovery errors in the absence of
data-poisoning attack (0, = 0). Recovery errors are in the vicinity
of 107" for 0, =0 across different input data distributions,
demonstrating the capacity of Neuro-Tron to recover network
parameters under no attack. Moreover, Fig. G.6 shows an antici-
pated degradation in parameter recovery under relatively small
magnitude of attack (0, = 0.125) when comparing to no attack
(0 =0).

Figs. 2, 3 in this section and Figures F.4, F.5 in Appendix F pro-
vide a simulation-based comparison between Neuro-Tron and SGD
for different input data distributions, noise bounds 60, and proba-
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bilities  of attack. These figures provide empirical evidence that
Neuro-Tron attains smaller parameter recovery error and faster
rate of convergence than SGD under data-poisoning attacks.

We note that even with input data distributions, such as
Laplace(u = 0,b = 2) which have tails heavier than the Gaussian,
we see in Fig. F.4 that Neuro-Tron retains its advantage over
SGD. More strikingly, Neuro-Tron outperforms SGD under Stu-
dent’s t(v =4) distribution as seen in Fig. 3. Note that t(v =4)
has infinite kurtosis (fourth moment), and therefore it is not cov-
ered by the assumptions of Theorem 1; nevertheless, our simula-
tions demonstrate that Neuro-Tron attains analogous parameter
recovery accuracy with t(v =4) as it does with the other three
input data distributions.

5. Conclusion

In this paper, we provide the first provably robust training algo-
rithm for a class of finite-width neural networks under a data-
poisoning attack. In particular, we have constructed an iterative
stochastic gradient-free algorithm which, up to a given level of
parameter approximation accuracy and level of probabilistic confi-
dence, performs supervised learning on a finite-width neural net-
work in the presence of a malicious oracle adding noise to some
true continuous output. We also establish that our performance
guarantees are nearly-optimal in the worst case of attack on every
output point.

We note that three immediate open questions arise based on
the present results. Firstly, we recognize that in practice the ques-
tion of defending against data-poisoning attacks becomes most rel-
evant for deeper neural networks and for additional data
distributions. Along these lines, it remains to extend our results
to deeper neural networks and to data distributions with lesser
number of moments being finite than assumed in Theorem 1. We
anticipate two paths to be tractable; a preliminary step in this
direction might be to build on the neural tangent kernel (NTK)
regime analysis of stochastic gradient dynamics under data-
poisoning attacks at depth-2 [52] and extend such results to the
context of multilayer neural networks in the NTK regime. Secondly,
if we move away from stochastic algorithms, then it might be pos-
sible to build on the results in Chatterjee [56] to control the gradi-
ent dynamics despite training data attacks, while not having to
make any unrealistic assumptions of having asymptotically large
widths as needed in the former path based on Wang et al. [52]. Sec-
ondly, an open question is to characterize the approximation accu-
racy and confidence trade-off of Theorem 1 as a function of the
probability of adversarial attack. Thirdly, alternative adversarial
attacks can be considered, conducting non-additive distortions to
the output data or corrupting the input data.
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