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Abstract

Small-amplitude fluctuations in the magnetized solar wind are measured typically by a single spacecraft. In the
magnetohydrodynamics (MHD) description, fluctuations are typically expressed in terms of the fundamental
modes admitted by the system. An important question is how to resolve an observed set of fluctuations, typically
plasma moments such as the density, velocity, pressure, and magnetic field fluctuations, into their constituent
fundamental MHD modal components. Despite its importance in understanding the basic elements of waves and
turbulence in the solar wind, this problem has not yet been fully resolved. Here, we introduce a new method that
identifies between wave modes and advected structures such as magnetic islands or entropy modes and computes
the phase information associated with the eligible MHD modes. The mode-decomposition method developed here
identifies the admissible modes in an MHD plasma from a set of plasma and magnetic field fluctuations measured
by a single spacecraft at a specific frequency and an inferred wavenumber k,,,. We present data from three typical
intervals measured by the Wind and Solar Orbiter spacecraft at ~1 au and show how the new method identifies
both propagating (wave) and nonpropagating (structures) modes, including entropy and magnetic island modes.
This allows us to identify and characterize the separate MHD modes in an observed plasma parcel and to derive
wavenumber spectra of entropic density, fast and slow magnetosonic, Alfvénic, and magnetic island fluctuations
for the first time. These results help identify the fundamental building blocks of turbulence in the magnetized
solar wind.

Unified Astronomy Thesaurus concepts: Solar wind (1534)
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1. Introduction

The decomposition of small-amplitude fluctuations mea-
sured by spacecraft observations made in the solar wind, or
even those found in simulations, into their constituent modes
has an extensive history, beginning with the work of
Glassmeier et al. (1995) and Motschmann et al. (1998) and
continuing through until today (e.g., Zhao et al. 2021b, 2022a).
A related approach was developed by Cho & Lazarian (2003)
for numerical magnetohydrodynamic (MHD) simulations in the
context of compressible turbulence. In all these approaches, an
observed interval of fluctuations is decomposed into three sets
of forward and backward eigenmodes, namely the Alfvénic,
fast, and slow modes. Recently, Gan et al. (2022) and Fu et al.
(2022) presented interesting numerical simulations exploring
the existence and properties of fast-mode MHD waves and
density fluctuations, respectively, in a turbulent magnetofluid.
The identification of the various modes was based on the use of
spatiotemporal 4D fast Fourier transform (FFT) routines to
analyze the fluctuations. While appropriate to a numerical
simulation, such an approach cannot be applied to single-point
measurements made by a spacecraft in the solar wind. Despite
the popularity of the mode-decomposition technique developed
by Glassmeier et al. (1995) and Motschmann et al. (1998) and
its numerous applications to the solar wind (see, e.g., Zhao
et al. 2021b, 2022a and references therein), the Alfvénic, fast,
and slow modes are not the only linear modes supported by

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

MHD. Linear Alfvénic modes as well as fast and slow
magnetosonic modes are examples of propagating waves, each
possessing a characteristic velocity (the Alfvén (V) and fast
and slow magnetosonic (V) velocities, respectively) that, in a
flowing magnetofluid with a background or mean velocity Uy,
are both advected with and propagate relative to the fluid at the
characteristic velocity Up= Vg, Nonpropagating linear
modes are also characteristic modes of a magnetofluid, and
such modes are simply advected by the background flow and
have a characteristic velocity Uy. Two exclusively advected
modes are admitted by a magnetofluid, one of which is the
entropy mode s x p/p” (where s, p, p, and v are the entropy,
pressure, density, and adiabatic index, respectively), being a
fluctuation in the entropy and density with no accompanying
change in the pressure (or the fluid velocity or magnetic field)
The entropy mode reflects essentially the “lumpiness” of a fluid
(as an analogy, one might think of a sauce in which the
thickening agent has not been fully whisked smooth). The
second advected linear mode, a magnetic flux rope or magnetic
island, is a structure that is of a purely magnetic character,
which, when projected into a 2D plane orthogonal to the mean
magnetic field, forms a structure of closed, nested magnetic
field lines. Only the fluctuating transverse components of the
magnetic field form a magnetic island. In 3D, the superposition
of the transverse magnetic island fluctuations and the mean
magnetic field (orthogonal to the transverse magnetic field
fluctuations) creates a flux rope in which the transverse
fluctuating magnetic field components wind around the mean
magnetic field in a helical sense. The analog of the advected
linear vorticity mode of hydrodynamics is absent in a
magnetofluid because vorticity is coupled to the magnetic field


https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4642-6192
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0002-4299-0490
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0003-1549-5256
https://orcid.org/0000-0002-7203-0730
https://orcid.org/0000-0002-7203-0730
https://orcid.org/0000-0002-7203-0730
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-6710-8142
https://orcid.org/0000-0002-2240-6728
https://orcid.org/0000-0002-2240-6728
https://orcid.org/0000-0002-2240-6728
mailto:garyp.zank@gmail.com
http://astrothesaurus.org/uat/1534
https://doi.org/10.3847/1538-4365/acdf5d
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4365/acdf5d&domain=pdf&date_stamp=2023-08-28
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4365/acdf5d&domain=pdf&date_stamp=2023-08-28
http://creativecommons.org/licenses/by/4.0/

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 268:18 (38pp), 2023 September

through the Alfvén mode. This is discussed further in
Section 2.

Indeed, numerous studies of solar wind fluctuations using
entirely different techniques have identified nonpropagating
flux rope modes (Veltri 1999; Moldwin et al. 2000; Feng et al.
2008; Greco et al. 2008; Telloni et al. 2013, 2020; Trenchi
et al. 2013; Khabarova et al. 2015, 2016; Khabarova &
Zank 2017; Zheng & Hu 2018; Adhikari et al. 2019; Chen et al.
2019; Malandraki et al. 2019; Zhao et al. 2019, 2021a), and
they form an integral and substantial part of the solar wind
fluctuation zoo. The presence of flux ropes or magnetic islands
in the solar wind is reflected in the competing views or
paradigms of solar wind turbulence, with one camp regarding
low-frequency MHD turbulence as primarily Alfvénic in
character (sometimes described as Alfvénic turbulence or slab
turbulence), comprised of counterpropagating Alfvén waves
that can interact nonlinearly through a resonance between two
oppositely propagating Alfvén waves and a zero-frequency
mode. Anisotropy within this perspective is addressed within
the critical balance description of Goldreich & Sridhar (1995).
An alternative perspective is that MHD turbulence is comprised
primarily of structures, i.e., nonpropagating modes, which are
thought to be 2D flux ropes or magnetic islands that interact
nonlinearly, dominated by the 2D component with a minority
Alfvénic or slab component (Zank & Matthaeus 1992, 1993;
Bieber et al. 1996; Saur & Bieber 1999; Hunana & Zank 2010;
Forman et al. 2011; Zank et al. 2017, 2020; Zhao et al. 2023),
giving a quasi-2D character for nearly incompressible (NI
MHD) turbulence. It is possible, however, as discussed by
Bandyopadhyay & McComas (2021), Zhao et al. (2022b), that
the slab component may become more dominant as distance
from the Sun decreases, and the manner in which turbulence
anisotropy evolves with heliocentric distance remains an
important and open question. Finally, density fluctuations
(Telloni et al. 2009; Bruno et al. 2014; Zank et al. 2021a) are of
course present in the solar wind, and it has been argued that
some of them are advected entropy-related density fluctuations
(Hunana & Zank 2010; Adhikari et al. 2017, 2020b, 2020a;
Zank et al. 2017; Asgari-Targhi et al. 2021; Tasnim et al.
2022).

Our purpose here is not to resolve the debate about the nature
of MHD turbulence in the solar wind but to develop tools to
analyze small-amplitude linear fluctuations in the solar wind
from which their modal composition can be determined. In
principle, any mode-decomposition analysis of a set of MHD
scale/frequency fluctuations observed in the solar wind should
include the nonpropagating as well as the propagating modes.
Curiously, the possibility of nonpropagating or structure modes
appears not to have been addressed in any previous analyses.
The important question of how MHD structures, including
entropy modes, should be incorporated into a mode decom-
position is addressed here.

A second important question is whether previous approaches
to mode decomposition have incorporated correctly the
corresponding phase information for the constituent modes.
This is critical in (1) rendering a proper mode decomposition of
a measured fluctuation and (2) properly relating the observed
frequency to wavenumber space. It is possible, as we show, to
evaluate the individual phase relations for each mode, which
then yields the relation between the frequency and wavenum-
bers for individual decomposed modes.
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The paper is structured as follows. We first revisit the linear
modes that are admitted by the equations of ideal MHD, with
Section 2 addressing in particular the nonpropagating modes.
Based on this analysis, we derive the requisite eigenrelations
for each mode. In Section 3, we present the mode-decomposi-
tion analysis, deriving an 8 x 8 linear system of equations that
governs the decomposition of an observed set of measured
fluctuations, together with a set of constraints that specify the
various wavenumber relations. This allows us to determine
from a measured Doppler-shifted frequency w’,, inferred
wavenumber vector k,,,, and set of measured MHD fluctuations
(density 6p,,, velocity éu,,, pressure p,,, and magnetic field
0B,,) the underlying MHD modes that comprise the observed
fluctuations. By way of illustration, the simpler and less
laborious analysis for hydrodynamics is given in an Appendix.
Section 4 concludes with some representative analyses using
solar wind data at 1 and 0.81 au from the Wind and Solar
Orbiter spacecraft, respectively. Besides presenting a simplified
analysis for 2D hydrodynamics in an appendix, we provide
appendices listing the detailed entries of the 8 x 8 mode-
decomposition matrix and a summary of the algorithm. Further
discussion and comments can be found in the conclusions.

2. Linear MHD Modes

For the subsequent analysis, it is useful to review the linear
modes admitted by the ideal MHD equations, because it is quite
widely—if erroneously—thought that MHD admits only six
basic modes (the forward and backward fast and slow
magnetosonic modes and the forward and backward Alfvén
modes). The ideal MHD equations in a Cartesian coordinate
system are expressed in nonconservative form as usual by

9% Ly vy =0 (1)
ot
p(a—U—l—U-VU):—VP—FL(V X B) x B; 2
ot Ho
Z—T+U~VP+7PV-U:O; 3)
%—I:+U-VB:B~VU—B(V-U); )

V-B=0, )

where p, U= (U,, U,, U,), P, B=(B,, By, B, 7, and py
respectively denote the mass density, flow velocity, scalar
pressure, magnetic field, the adiabatic index, and the perme-
ability of free space. On introducing the entropy
S = CyIn(P/p"), with Cy being the specific heat at constant
volume, Equations (1) and (3) yield the entropy transport
equation:

6—S+U-VS=0. (6)
ot

Let us introduce a set of small-amplitude fluctuations
oW = (6p, bu, dp, 6B) about the mean solar wind background
flow parameters po, Uy, Py, and By, and linearize (1)—(5),
obtaining as usual:

d6p

§+Uo-V5p+p0V~5u=0; @)
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% + Uy Véu = —LV(Sp + ! (V x 6B) x By; (8)
or Po HoPo
obp
E + U - V&p + ’)/P()V - ou = 0; )
%Lf + Uy - VOB = By - Véu — By(V - bu); (10)
V- 6B = 0. (11)

Without any loss of generality, assume By = Byz. We further
assume no local gradients in the background plasma variables
and that they are stationary, i.e., po, Ug, Py, and B, are constant.

To identify the linear modes admitted by Equations (7)—(11),
we begin by following the classical analysis of Lighthill
(1960). On setting A =V - éu and I = 9éu./ 0z, we obtain the
wave equation

2
%ﬁ = alV2A + V3, V3(A - 1), (12)

where the square of the background sound and Alfvén speeds
are ag = P, / po and Vio = B? / loPy, Tespectively, and
D/Dt=0/0t+ U,-V is the Lagrangian time derivative with
respect to the mean flow velocity U. If £ =V x U denotes the
fluid vorticity, the linearized vorticity is simply 6 £ =V x éu. It
then follows that the z-component of the perturbed vorticity,
06, = — Obu, /Oy + 0du,/Ox, satisfies the Alfvén wave
equation

D¢, 0%,
D Mg
Dt 0z

Hence, the z-component of the vorticity propagates along the
mean magnetic field at the Alfvén speed Vao. As we discuss
further below, the z-component of the vorticity introduces a
perpendicular wavenumber into the Alfvén dispersion relation,
and when the angle of propagation is orthogonal to the mean
magnetic field, Equation (13) describes a nonpropagating
vortical structure. The gradient in du, along the mean magnetic
field is coupled to the compressive component of the
fluctuating velocity éu and propagates at the sound speed
according to

13)

DT 22 92A
Dr? 092"

Equations (12)—(14) govern the propagating modes supported
by the MHD equations and correspond to the fast and slow
magnetosonic modes and the Alfvén modes, as we discuss
further below. From Equation (12) or (14), the assumption that
A =0 (i.e., solenoidal or incompressible fluctuations) implies
that I' = 0, the simplest choice of which is éu, = 0.

Consider now equations for the nonpropagating modes.
Evidently, from Equation (6), the perturbed entropy
0s = Cy(6p/Py — vOp/p,) 1is governed by the advection
equation

(14)

Dés  06s

—=—+Uy-Vés=0. 15

Dt ot ° (1>
Besides the propagating z-component of the vorticity O£,
mentioned above, there is a separate nonpropagating purely
magnetic mode component. From Equation (10),
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incompressibility (A =0, 6B, =0, éu,=0) yields the advec-
tion equation for fluctuations 6B,
DoB, _ 0B | . veB, = o0 (16)
Dt ot

where 0B, = (0B\(x, y), 6By(x, y)). Unlike the Alfvénic
fluctuations, the advected magnetic mode is a purely magnetic
mode and not coupled to the fluid. Because V - 6B | =0, this
2D mode can be considered an advected structure with
OB, = OB (—sin ¢, cos ¢) in spherical coordinates (below) and
is a linearized form of magnetic flux rope or magnetic island
when projected onto a 2D plane orthogonal to the mean
magnetic field By, Such advected structures have been
observed recently by Zhao et al. (2023), who used data from
the four Magnetospheric Multiscale spacecraft to identify
features of nonpropagating structures with frequencies close to
zero in the plasma rest frame.

Unlike the magnetic island modes, the incompressible
hydrodynamical vortical modes are coupled to the magnetic
field, because A =0 implies that (Zank et al. 2017)

DYE _ , 0%
Dt? A" 52

As discussed above, for fluctuations propagating orthogonally
to the mean magnetic field, the 2D z-component of the vorticity
is advected only and the 2D transverse fluctuations
o = (buy(x, y), ouy(x, y)) satisfy

pie, _ s,

Z

Dt ot

. a7

+ Uy - V&€, = 0. (18)

Unless a specific 2D configuration is considered, as may be the
case for the solar wind when the mean flow and magnetic field
are orthogonal, Equation (18) is unnecessary and the Alfvén
wave Equation (13) is sufficient.

Magnetic flux ropes or their equivalent 2D projection,
magnetic islands, are observed throughout the solar wind on all
scales (e.g., Veltri 1999; Moldwin et al. 2000; Telloni et al.
2013; Trenchi et al. 2013; Zank et al. 2014, 2015; Khabarova
et al. 2015, 2016; Khabarova & Zank 2017; Adhikari et al.
2019; Chen et al. 2019; Malandraki et al. 2019; Zhao et al.
2019, 2021a).

The advection Equations (15) and (16) add two further
modes that need to be considered in any mode decomposition
procedure, i.e., the advected entropy mode and the advected
purely magnetic mode that describes magnetic islands.

A spectral analysis of the mode Equations (12)—(16) yields
the dispersion equation and eigenrelations for each mode. As
usual, we adopt normal modes éWexp [i(wt — k - x)], where
50 is the Fourier transform of OV, w the frequency, k the
wavenumber, and v’ = w — U - k the Doppler-shifted fre-
quency. The Fourier transforms of Equations (12)—(16) or (7)-
(11) yield the dispersion equations and eigenrelations listed
below. The wavenumber vector is expressed in spherical
coordinates k = k(cos ¢ sin, sin ¢ sin, cos§) with respect
to the mean magnetic field By = ByZ.

Fast (f//slow (s) magnetosonic modes. Equations (12) and
(14) yield the fast and slow magnetosonic modes that are
governed by the dispersion relation,

w' = £V k; (19)
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1
w'? = E[(ao2 + V2gk?

+ \J(ad + V2olk* — 4adVigk* cos?0] = V2 k2,
(20)

where fast (f) corresponds to the “+” root and slow (s) to the
“—" root in Equation (20). In the eigenrelations that follow, we
use the superscript notation “fs +” to indicate the fast (f) or
slow (s) mode and = to indicate the positive or negative choice
of root in Equation (19). We will sometimes refer to the
positive or negative root in (19) as corresponding to “forward”
or “backward” propagating fast/slow magnetosonic modes.
The fast/slow-mode eigenrelations are all expressed conveni-
ently in terms of the fluctuating pressure 8p*+,

(Si)f[si 6ﬁf§i

55 21
Po Polo
A fst 2 s+ 5 A~ fy
Safs Vi Vi kL ke opi= .
- 2 2 T 2’ 22)
Uo Uo Vi, — Vaok? )2/(kﬁi)2 Podo
O My /K sphs 23)
Uo Mg ﬂoao2 ’
A fst S ) ) £
6Bx,y _ _V.%,Sk)fyisz i/(kf o) ‘5pﬁi . 24
T2 2 o SN2 /o fiE)2 2° 24)
By Vis = Vaok™) /(k )" P
0B _ VA= ad /) gpit 5)
By Vf,s poao2 ’

where Uy = |Uy|, Mg = Up/ay is the acoustic Mach number and
My = Uy/Vy,. the fast/slow forward /backward magnetoso-
nic Mach number. Equations (21)—(25) are the eigenrelations
for four of the waves.

Alfvén modes. The dispersion equation and the eigenrelations
for the forward (+) and backward (—) Alfvén waves are derived
from Equations (17), (10), and V - éu = 0 and listed below. It is
convenient to introduce the wavenumber vector in spherical
coordinates k = k(cos ¢ sinf, sin¢ sin6, cos) = (k., k) =
k. + kj, where ¢ is the phase and ¢ the angle between k and
the z-axis (parallel to By). To distinguish the angles made by an
Alfvén wave, we use the notation ¢A, 04 here, and similarly for
the other modes. In this case, we express the eigenrelations in
terms of the Alfvénic fluctuation speed &4 = |6a4| as follows:

w’ = ﬂ:VAokZ; (26)
6/AJA =0; 6]3'4 _ 61224 =0; 65@;‘ =0; 27

salt = oa(—sing4, cos p4) = da(— 44, at); (28)
A

6B/ sal oalt .
—= = T—= = TMpo—(—sin¢4, cos p?); (29)
By Vao Uo
. ipo Vaok?
6 = £ i, (30)
0

where k| = |k, |. We note that, for 0" = 0°, k* = k* cos 64 =
k=0 and k! =0 (i.e., propagating and nonpolarized),
whereas for 9A=7r/2, kf = 0 and kZA = 0. The latter case
does not propagate.
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Entropy modes. The linearized form Equation (6) allows the
eigenrelations to be expressed as follows:

w' = 0; 3D
065¢ = 0; op¢ arbitrary; op¢ = 0;
§a¢ = 0; 5B = 0. (32)

Magnetic island modes. Similarly, using Equation (16) allows
us to express the eigenrelations in terms of the magnetic field

fluctuation 6B = |61§i| as follows:

w' =0; (33)
§pi=0; =0, =0, B =0, (34)
6B’i = 6B'(—sin ¢!, cos ¢') = 6B'(— 3, o). (35)

Hence, the modes that need to be considered in an MHD
mode-decomposition analysis are (1) two counterpropagating
fast magnetosonic modes, (2) two counterpropagating slow
magnetosonic modes, (3) two counterpropagating Alfvén
modes, (4) an advected entropy mode, and (5) an advected
magnetic island mode. This totals eight modes that need to be
determined from the set of nine MHD Equations (1)-(5). As we
discuss below, only seven of the equations are linearly
independent and can thus be used to provide boundary
conditions for the mode-decomposition analysis. An additional
boundary condition can be introduced that corresponds to the
magnetic island mode. The boundary conditions relate to both
the amplitudes that comprise the mode-decomposition and the
phases of the corresponding constituent modes. Both the
methodology and interpretation of prior mode-decomposition
approaches that consider only the six propagating wave modes
(e.g., Glassmeier et al. 1995; Motschmann et al. 1998; Cho &
Lazarian 2003; Zhao et al. 2021b, 2021c, 2022a) need to be
reconsidered because they include neither the advected modes
nor the phase information.

3. Mode Decomposition

3.1. The Conservation Laws

The conservation laws of MHD can be expressed as (e.g.,
Zank 2014)

pU - it = M,; (36)

pUU-ﬁ—l—(P—FLBZ)I-ﬁ—LBB%:MO; 37
21 Ho

(%pU2+L1P+iBZ)U-ﬁ—iU.BB-ﬁzgr;

Y= Ho Ho
(38)
UB -n — BU - i = Bp; (39)
B - i = Bp, (40)

where M,, M,, Er, Br, and Bp are constants, and 7 is the
normal to the surface across which the respective fluxes are
transported. We consider a measurement made ‘“instanta-
neously” by a single spacecraft in the solar wind (or generally
a moving plasma) that yields the plasma and magnetic field
amplitudes 6V, = (6pm> OPm»> O, OB,,) at a Doppler-shifted
frequency w!,. A wavenumber k,, is needed as well, but this
cannot be measured directly by a single spacecraft, and in
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practice, we will need to use various approximate methods
(e.g., Sonnerup & Scheible 1998; Santolik et al. 2003; Knetter
et al. 2004; Zhao et al. 2021c) to infer k,,. Because the 6V,
variables are measured at a particular frequency as they are
swept past the spacecraft, we define 7 to be in the direction of
the mean flow vector U, i.e., the surface across which the
fluctuations are transported in a plane perpendicular to U,.
Having specified the mean magnetic field By = ByZ, we may
without loss of generality rotate the mean flow vector U, into
the (x, z)-plane (Figure 1) so that Uy = Uy(sinv), 0, cosv)),
where ¢ is the angle between U, and Z. Hence,
n = (sinvy, 0, cosv) and v € [0, 7].

On linearizing Equations (36)—(40), we obtain at the leading
order

O(1): pyUy = const.; “41)
poUg sinty + (Po + B3 /(24,))sine) = const.; (42)
poUg costp + (Po + Bg/(2pg))costp — B3/ iy cos ) = const
(43)

1. ag 2
Uy + + V3, sin?¢ = const.; (44)

2 v—1

UpBy sin® 1) = const.; (45)
By cos i = const., (46)

and at the next order,
O(6W): Updp + py(6uy sint) + du, cosp) = const.;  (47)
Ug sinpdp + poUo(1 + sin® ) u, + pyUp siny cos ¥du,

+ Op sinyp+ ﬂ((SBZ siny) — 6B, cos 1)) = const.;
Ho
(48)

poUobuy, — ﬁcos 6B, = const.; (49)
Ho
Ug cos Yép + poUo cos ¥ sinéuy, + poUp(1 + cos? 1)) éu,
+ ép cosp— ﬂ(sin 6B, — cos¥éB,) = const.;

Ho
(50)

1 026—” + (Er + UD simﬁ”* + (& + UD) cosqp%
2 Po U() U()

2
%0 6—p—2V§0(sin¢cos w(SBX — sin? wéﬂ) = const.;
y—1P By By

(51

By cos éu, — Uycos® 6B, + Uysin) cos OB, = const.;
(52)
By cos pou, — UyéB, = const.; (53)

Uy sin 1) cos 6B, — Uy sin® 6B, — By sin1éu, = const.;
(54)
6B, siny + OB, cos) = const., (55)

where & = (1/2)U} + al/(y — 1) and & = & + V3,. We
note that Equation (54) is a simple linear combination of the x-
component of the induction Equation (52) (due in part to the
choice of surface corresponding to the normal 72) and the
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r'e
X

Figure 1. The assumed coordinate system with the mean magnetic field B
aligned along the z-axis and the mean flow vector U, rotated into the (x, y)-
plane without loss of generality, making an angle v with the mean magnetic
field aligned z-axis.

divergence condition (55) is used implicitly in the preceding
equations. Accordingly, (54) and (55) are not independent, and
therefore the O(OW) set of independent perturbed conservation
laws numbers seven, corresponding to Equations (47)—(53).

Besides the above boundary conditions, we need to include
boundary conditions for the advected 2D magnetic island
fluctuations. One can consider this from two perspectives,
either beginning with a fully compressible 2D MHD descrip-
tion in which the mean magnetic field is normal to the 2D
plane, or specializing to a 2D incompressible description from
the compressible 3D MHD equations. Because the former
approach is interesting, is related to the 2D hydrodynamic
description of Appendix A, and was used by Zank et al.
(2021a) in discussing the transmission of turbulence across a
perpendicular shock wave, we utilize this approach.

On considering the 2D compressible MHD equations in a
plane orthogonal to the mean magnetic field By = ByZ, i.e.,
assuming all plasma and magnetic field variables satisty ¥ =W
(%, y) and linearizing as before with the exception that B — 6B,
we find that the perturbed nonconservation form of the
equations separates into exclusively hydrodynamic

%+U0-V6p+pov-5"=0?

% + Uy Vou = —pLOWp;

% + Uy~ Vép +poV - éu =0, (56)
and magnetic field components (Zank et al. 2021a),

%LIBJFUO.vaB:o; V- 6B = 0. (57)

The corresponding perturbed conservation laws for the
hydrodynamic component are presented in Appendix A and
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are not repeated here. The perturbed 2D conservation of
magnetic flux equation, uB - 7 — Bu - i = 0, yields

6B, = const. or OBy = 6B,,; (58)
0By = const. or 6By = 0B,,. (59)

Equations (58) and (59) provide the needed further conserva-
tion laws.

3.2. Mode Decomposition

The linearized fluctuation Equations (47)—-(53) and (58) and
(59) contain information about both the amplitudes and the
phases of the constituent MHD modes. The measurement of a
particular solar wind fluctuation is made at a particular
frequency w’, in the spacecraft frame, i.e., a Doppler-shifted
frequency w/, = 0 with a corresponding wavenumber k,,,. From
the dispersion relations presented in Section 2, we can express
the normal-mode representation exp i(wt — k - x) in terms of
the Doppler frequency, i.e.,

wt—k-x=wt+Uy -kt —k-x=u't—k-x', (60)

where x’ = x — Uyt is a comoving spatial coordinate in the
fluid frame. Consider, e.g., the measured density fluctuationép,,
that can be expressed as a superposition of an entropy
fluctuation and forward and backward fast and slow magne-
tosonic modes, or 8p,,=6p°+ 6p’T +8p" 4+ 6p T+ 6p*
where 6p¢ and 6pfSi denote the density fluctuations associated
with an entropy, forward and backward fast (f4) and slow
(s &) magnetosonic modes, respectively. Expressed equiva-
lently in terms of normal modes, we have

6ﬁmei(w£,,szm-x’) _ (meei(wdsz@-x) + (sf)f+ei(wf+z—kf+-x)
+ 5,5f—ei(wf—l—k"’~x) + §psteits =k )
+ 5i)s—ei(%,t—k“’~x)
_ 6’beei(wﬁ,t—k“-x’) + 6’bf+ei(w’,+t—kf+-x’)
+ 6pf—ei(w/f t—k/~x") + 5Z)S+ei(w;‘t7k”-x’)
+ 6f)sfei(wﬁ,t7k“~x’)’
(61)

where w/, s+ and k"% denote the Doppler frequency and

wavenumber of the entropy (e) and forward and backward fast
(f£) and slow (s=*) magnetosonic modes, respectively.
Because measurements are made by a “stationary” spacecraft,
the measurement is made at x =0, implying that x’ = —Uyt.
Here, ¢ is the time elapsed after measurement, which for
notational convenience we denote by At. The decomposition
(61) is valid only for a time short enough that the measured
fluctuations can be regarded as a coherent superposition of the
individual or constituent modes. Thus, if the spatial scale of the
measured fluctuation is ¢, then £/At >V, = w/k, determines
the “decoherence time” of the measured fluctuation, i.e.,
At <lk/w, where V, is the largest phase velocity of the
constituent modes. Hence, for sufficiently small A, the density
fluctuation 8p,,, measured at x =0 can be expressed as

§p, D@t Uokn) — §peqitlioke
m
+ 6/A)f+eiAt(w,'n+Uo-k”) + 6ﬁffeiAt(7u;7+UU~kf’)

+ 6Ibs+eiAr(u£n+Uo-k”) + 5ﬁsfeiAt(fw;,+Uo-k5’)’ (62)
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after using the dispersion relations W, =0,
w}+ = w;n = +kaf+’ w}7 = _kaf7 = _w:n’

!/ !/ !/ — /
Wiy = w,, = +Vik’T, and w,_ = —Vik*” = —w,,. Because

the decoherence time is small, we can Taylor expand about
wh, At < 1 generally as

89 cos At(w' + Uy - k)

= 5@% (_1)n(A;)2nM
=0 2n)!

— 5 — %&th)zw LUy k) e (63)

Thus, Equation (62) becomes, to leading and first order,

n=0: 6p,=06p°+ /T + 6pI + 6t + 6T (64)

n=1: 6p,(wh, + Uy ky)?
= (U - k) + 6p* (wyy + Uy - KT
+ 6p/(—w), + Uy - kF)?
+ 80 Wy + Uo - K + 6 (—w)y + Uy - k7Y,
(65)

illustrating that (64) relates the measured amplitude of the
density to the amplitudes of the constituent modes (which
nonetheless require phase information through the respective
eigenrelations) and (65) couples the observed phase (wave-
number k,, and frequency w/,) information to the phases of the
individual constituent MHD modes. The remaining fluctuating
plasma and magnetic variables can be expressed similarly as
follows:

6p, = 0p7T + opI= + opt + 6p°s
n=0: 8, = 6p/t + &pI~ + HT + H°;
n=1: 8p, (W, + Uy - kp)?
= I (W, + Uy - K2 + 6p (—why + Uy - k/)?
+ P (Wl + Uy - k5T + 8 (—why + Uy - k)2
(66)

For the velocity and magnetic field fluctuation vectors, we
incorporate both magnetic flux ropes/islands and counter-
propagating Alfvén modes. For the reasons discussed above,
we do not include the vortical mode unless considering the
special case of orthogonal mean flow and magnetic field
vectors. The expansions for the velocity and magnetic field
fluctuations are given by the following system of equations:

Su,, = ou/t + Sul— + Sutt + Sut + Surt + Sut—;
n=0: i, =o6a't + oa/~ + dast + saF— + satrt + st
n=1: ét,(W, + Uy ky)* = 60/ (W, + Uy k't)?
+ 6= (—wh, + Uy - K + S0+ (W), + Uy - k)2
+ 60 (—wy, + Uy - k) + datt (W + Up - kAF)?
+ 64~ (Wy_ + Uy - k47)?,

(67)
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and
OB, = OB + 6B/* + 6B/~ + 6Bt + 6B*~ + 6BAT + 6BA—;
n=0:6B,=cB + 6B + 6B + 6B + B + B
+ 6B s n=1: 6B, + Uy ky)? = B (U - k')?
+ BTN, + Uy - KD+ BT (—wl, + Uy - K )?
+ 8B (W, + Up - k2 + 6B° (—wl, + Uy - k)2
+ B (W, + Uy - kAT
+ 6B (W) + Uy- kA2
(68)

From the discussion above, we have the nine unknown
amplitudes, 61?1, 6p¢, 6p/*, 6p°F, and 64+ for the eight modes
(counting 6B! .y separately), and we have the nine boundary
conditions (47)—(53) and (58) and (59). However, as shown in
Section 2, the linear mode eigenrelations are all functions of the
unknown phase information k°, K~ k%, K*%, and k', which
gives a further 8 x 3 =24 unknowns. In the next two
subsections, we show how to reduce this set of unknowns to
a well-posed linear problem that admits an unique solution to
the mode-decomposition problem.

3.3. The Amplitude Matrix

A single spacecraft measures the plasma fluctuation
amplitudes 6p,,, ou,,, Op., and 6B,, at a Doppler-shifted
frequency w/, and (inferred) wavenumber k,,. For times shorter
than the decoherence time of the measured fluctuation, we can
reconstruct the fluctuation through the linear superposition of
the constituent modes admitted by the linearized MHD
equations. As described in Section 2, eight distinct modes are
supported by the linearized MHD equations. The linearized
conservation laws (47)—(55) and (58) (or (59)) provide eight
fully independent conservation equations.

In view of Equations (47)—(55) and (58), the assumption of
(simple) linearity yields a decomposition of an observed
fluctuation for which the basis set is comprised of eight modes:
the entropy, forward, and backward fast and slow magneto-
sonic; the forward and backward Alfvén modes; and a
magnetic island mode.

Consider now the specifics of the decomposition, beginning
with, for example, the perturbed conservation Equation (47),
which can be expressed as

6
ﬁ—i—(sumx'gzﬁ—i— co¢—5—p+6u"sin¢>
Po Uo Po Uo
bu,
+ —=cos ¢. (69)
Uy

As discussed in Section 3.2, it is possible for 6p/po to contain
contributions from an entropy fluctuation 6p¢, as well as
forward and backward fast and slow magnetosonic modes
((5pfi, 8p*F). From (64) (i.e., the n=0 expansion), the
corresponding amplitudes may be expressed as

5y, by, 5pf+ K, Vi SH°t FY i
OPw _ 8p°  8pTT L 6pTT  6pt 8D

Po Po Po Po Po Po
speepit plm spot op*~
SR AR . . A
Po Po%o Podo Podo Podo

(70)
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after using the eigenrelation (21). By contrast, the fluctuation
éu, on the right-hand side (rhs) of (69) can be composed of
compressible forward and backward fast du/* and slow éu’*
magnetosonic modes and the forward and backward Alfvén
modes éu’*. Hence, we have the mode decomposition for the
amplitudes of du,, after using Equations (67) (n = 0), (22), and
(28):

S _ S01" N ol N 7ha N 7k N oart N oat
Uy Uy Uy Uy Uy Uy Uo
7]:'f+5p ff 617 +fs+6 -
Poao Poao Polo
op* At §aA-
‘7:?7 P /6A+ - /GA_ - )
Poao Uo Uo
(71)
where
FhE = 1 Vit vj%s cos ¢/ Esin 655+ 72)
IE =

My ao szk — V3, cos? ofst’

In Equation (72), V. refers to the forward (+) /backward (—)
fast (f)/slow (s) magnetosonic speed (Equation (20)), which is
a function of wavenumber pitch angle % and ¢**, the
corresponding wavenumber gyrophase. My = Uy/ag is the
sonic Mach number of the flow. Finally, éu, on the rhs of
(69) can be constructed from the compressible fast and slow
magnetosonic modes; hence, from Equations (67), (23), and
(27), we have

i, _ sl " N mzf— sast 5”—
Uy Uy Uy Uy Uy
_ cos 9f+&6ﬁf+
M Vit poag Mo

cos 0~ ag &pF-
Vi- Poag
cosB* ag 6p°T  cosB T ag Op°T

Mo Vit poag My Vs- Poaoz.

(73)

On combining Equations (70)-(73) in (69), we obtain the first
equation in the (8 x 8) system of linear equations expressed as
Ax = b, where A = (a;),x = (x)), b= (b)), i,j=1--38;
B (6p“ spIt spl- et sp sutt sut~ 6B )’

po poad poad poad poad Us ~ Uy ~ By
(714)

Although somewhat laborious, the remaining perturbed con-
servation laws (48)—(53) and (58) can be expressed in terms of
the eight modes admitted by the MHD system of equations.
The detailed expressions for A and b are listed in Appendix B.

3.4. Phase Relations

Evidently, the linearized system Ax=2»b requires the
wavenumber angles 6 and ¢ of the eight specific modes and
these need to be evaluated from the observed Doppler-shifted
frequency w) (#0) (i.e., in the spacecraft frame) of the
observed set of fluctuations, the inferred wavenumber k,,,
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and the respective dispersion relations. Although the MHD
case is rather more involved, the 2D hydrodynamic case
discussed in Appendix A provides a useful guide to the analysis
below.

We show systematically and rigorously how all the phase
information can be computed by knowing just one specific set
of wave mode angles, i.e., corresponding to one mode—in our
case, the forward fast magnetosonic mode 0™ and ¢f+. In
principle, any other mode could be used, but the fast
magnetosonic mode is the least comphcated to work with.
We then use the measured specific frequency w!, and (inferred)
wavenumber k,, to estimate the values of 6" and Ay

Let us consider first the simplest case of the entropic
wavenumber k°. The entropy mode is a strictly advected

density fluctuation, hence k;:’ = 0. Because ki =0,
ky = k¢sin ¢¢sin 0 = 0 implies that ¢ =0 and hence

k{ = k¢sin0°;

ki =ke¢cosb°. (75)

Second, the dispersion relations for the fast and slow
magnetosonic modes w’, = £Vj (0F%)kF* = +w], imply
that the magnitude of the fast/slow wavenumber &/~ can be
expressed as k'* = W, /V; (05F), provided we know 67,
These relations allow us to rewrite the n=1 pressure
Equation (66) as

Uy -k, )
5 (1+ Ch ) — 5P/ (1 + Mp(87)(sin v cos ¢/

wl’ﬂ

sinf/* + cosvpcos /) + 5p/(1 — Mp(6/7)
X (sin) cos ¢/ ~sin 0/~ 4 cos 1) cos 7 7)?
+ 6T (1 4 My(0°1)(sin1) cos ¢*Fsin 05T + cos ) cos 051))?
+ 6p°~ (1 — My(0°")(sin4) cos ¢*~sin 05~ + cosp cos 057))2,
(76)

after introducing the fast and slow magnetosonic Mach
numbers MﬁS(GfSi) =Uy/ vﬁs(eﬁ‘i) and using, e.g.,

kST

Bo k77 _ Yo (sinyit* + cosyk!™)
L(smw cos ¢/ T sin 0/ + costp cos O/ 1),
Vi (CLE3)

and similarly for the other terms. A related analysis allows the
n =1 density Equation (65) to be expressed as

2 e \2
& (1+ o K ) :6;)@(']0',") + 6p/t
wm wm

X (1 4+ My(0/7)(siny) cos ¢/ Fsin 07+ 4 cos 1) cos §7/1))2
+ 6p7=(1 — My(6/)(sinep cos ¢/ ~sin 6/~
+ costpcos 0/7) + 8psT(1 + My(6°)
X (sint) cos ¢**sin 05T + cos 1y cos 69T)?
+ 60~ (1 — My(0°")(sin4p cos ¢*~sin 0*~ + cosp cos 057))2,
(77

the primary difference from (76) being the presence of the
density term associated with the entropy.
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We begin with the pressure Equation (76), because we need
to ensure that the n=0 total pressure amplitude relation
8p, = 6p’+ + 8p/~ + 8p*T + 6p*~ holds. For the fast mag-
netosonic modes, this requires that we show that the first and
second bracketed terms on the rhs of (76) are equal, i.e., that

My (67%)(sin) cos ¢/ sin 0/F + cos ) cos 0/+)
= —M;(6/7)(sin) cos ¢/~ sin 0/~ + cosp cos 0/7).  (78)

The fast-mode wave speed V(0) = 0 for all 6 € [0, 7]. Because
the fast magnetosonic Mach number M_,«(Hf H =0, / Vf(ﬂf *) and
VA0 = [VA0")| = = V/(0"). we have MA0"") = — My®'")
Hence, the bracketed terms on the left and right sides of
Equation (78) are satisfied trivially by the relations

cos O/ cos 6/~
sinf/t = sin6/-

f- = @pf+
= {9. =0 (79)
COS¢f+ = COS¢-f7

¢f’ — ¢f+’

and we restrict ¢+ € [0, 7). Despite the equal angular relations,
the waves are oppositely propagating by virtue of the opposite
signs in the dispersion relation that ensured that Mf(6’f+):
-M f(‘gf*)

The analysis for the slow magnetosonic mode is similar to
that for the fast mode, except that the phase speed of the slow
mode satisfies V2(0 =7/2) = 0 (and V(0 =0) == Vag). Let
us con51der first #=7/2. On introducing M6 Sy =
Uo/V(0°F), we need to ensure that

M;(0°T)(sin 1) cos ¢*Tsin 05T + cos 1) cos 65T)
=—M;(0°")(sinv cos ¢*sinf*~ + cos cosH*7), (80)

as before. To ensure that M,(0°") = — M,(6”) and that (80) is
satisfied, we require that

1937 — 9s+
¢s — ¢x+’
hold, and we restrict 6°% € [0, 7].

Consider instead #** close to 7/2 and the limit 6°* — 7/2,

which implies that cos?#** < 1. On using the expansion
cosf ~ —(O — 7/2) + OO — 7/2)*> + --- for =~ 7/2, then

VEO ~ 71'/2) ~ 4

81)

aoVao ( B z)
\/— \lao + VAO 2

from  which ~we  obtain the  limiting  result
M(0° )/ M(0° )= — (0° —7/2)/(0°" — 7/2). If 0°~ =6°",
then —(0°~ —7/2)/(0°" — w/2) = — 1 or M(0*")/M0* ") —
— 1 for 6~ x/2. Hence, it follows that the result (81) holds
generally for all values of 0°* € [0, 7).

As a consequence, the n = 1 pressure Equation (76) becomes

Us -k, \
6ﬁm(1 + 2 m) = ((Sp/\f+ + 6ﬁf7)><(1 + Adf(of+)
W'

(sin 1) cos ¢/ Tsin 7+ + costp cos 7)) + (6p°t + 6p7)
x (1 + My(0°1)(sinv) cos ¢*Tsin 05+ + cos 1) cos 051))2.
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Figure 2. Overview of a fast solar wind 30 minute interval observed by the Wind spacecraft on 2020 September 28. From top to bottom, we plot the magnitude of the
magnetic field |B|, the x, y, z components of the magnetic field (left axis and black curves) and velocity field (right axis and blue curves) in the GSE coordinate system,
the angle 0y between the magnetic and flow velocity vectors, the proton number density, the plasma beta (3, and the total pressure Py that is the sum of the thermal
and magnetic pressure. The red vertical dashed lines identify a possible large-amplitude nonlinear structure with an enhanced |B| and low density.
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Figure 3. Mode decomposition over the 30 minute interval showing separately the contributions to the fluctuating density from (top to bottom) the entropy mode and

the forward and backward fast and slow magnetosonic modes, 6p°, 8p’*
labeled.

, and &p°%,

respectively. All fluctuating quantities are normalized to the mean density as
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Figure 4. Mode decomposition in the mean-field coordinates showing separately the contributions to the fluctuating velocity from, arranged top to bottom in the left

column, the forward and backward fast u./>

0, X
right column, the forward and backward slow 6uZS;X
fluctuating quantities are normalized to the mean speed as labeled.

This requires that the following condition relating ¢/ and 6*"
hold in order to ensure that we can express the rhs in terms of
6pIT + 6pT + 6pT + op

(1 4+ My (87)(siny cos ¢/ +sin 07+ 4 cos 1) cos 0/1))2

= (1 + M,(6°")(sin cos ¢5tsin @5t + cos 1) cos §51))2.
(82)

From the fast and slow magnetosonic dispersion relations, we
have W'y, = ), = Vy(0/)k/T and wi, = w,, = V,(0°HK*T,
which yields kf+/kA+ V(0" Vf(9f+) For the relation
Uy- k" =Uy- K" to hold, we require k™ = k" and
kT = k. The same is true for the f- and s-modes. Hence,
the forward and backward slow and fast magnetosonic modes
are related according to

st/ fx
kx =k s+ SN 7 ‘/f(0 ) f:l:’ (83)
kSF = kI V(6
op 08 6+ cos@/*  cosp*Fsinft  cos ¢/ Fsin§/E
V(0 v 07T Vo Vi (07)

(84)

On substituting (84) into the expression on the rhs of (82), it is
easily shown that it reduces exactly to the left-hand side (lhs) of
(82), thereby establishing the equality. Hence, the n=1

magnetosonic modes, respectively, and the forward and backward x-component of the Alfvén mode 6u!

10

+, and in the

magnetosonic modes, respectively, and the forward and backward y-component of the Alfvén mode 5u}f‘i. All

pressure Equation (76) becomes

o1+

X (1 4+ My (8/)(sin) cos ¢/ +sin 07+ + cos 1) cos 6/1))2.
(85)

Uok

2
) = (6pf + pT— + p5t + GpF)

m

Because &p, = p/ + &p/ + &p*T + p°~ must  hold
always, expression (85) relates ¢/ and ¢/* to the observed
Doppler-shifted frequency and phase values !, and k,, via

(

sin + cosw) (1 4+ Mp(9'™)

m

X sin1) cos ¢/ Fsin 07+ + My (67 ) cos 1 cos 0712

m

(86)
Because (86) holds for all values of v, we have
UO—k’"X = My(6/)cos ¢/ sin 6/, (87)
m
UO—]fmZ = Mp(67")cos 6/ (88)
Because V;(6/") = w), [k, cos 0/, using (20) yields
cos? /+ = | (M5 + Mxo) (n/ Uokne)” — 1 ;0 (89)

Mg My, (Wh/ Uokme)*
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Figure 5. Mode decomposition in the mean-field coordinates showing separately the contributions to the fluctuating magnetic field from, arranged top to bottom in the left
B/*. magnetosonic modes, respectively, and the forward and backward x-component of the Alfvén mode 8B+ and the advected

column, the forward and backward fast & o
magnetic island 6B! (blue curve), and in the right column, the forward and backward slow 5st,)j>:,x magnetosonic modes, respectively, and the forward and backward y-

component of the Alfvén mode zSB;‘i and the advected magnetic island 5B; (blue). All fluctuating quantities are normalized to the mean magnetic field strength as labeled.
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Figure 6. The black curves denote the reconstruction of the normalized (left column, top to bottom) total density dp, and fluctuating velocity components éu_,,
respectively, from the summed mode decomposition, over which are plotted (orange curves) the corresponding measured values 6p™ and éu.”, ,; (right column, top to
bottom), total pressure dp, and fluctuating magnetic field components 6B, ,, respectively, over which are plotted (black curves) the corresponding normalized
measured values 6p™ and 6B, .. All fluctuating quantities are normalized to the appropriate mean value as labeled.

and we can therefore express the forward fast-mode magne-
(90) tosonic angles 6", ¢/* in terms of the observed Doppler-
shifted frequency w/, and wavenumber k,, together with the

1
(w:n/UOkmx)M(ef+) sin (9f+ ’

cos pf T =

11
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Figure 7. PSD plots of the fluctuating magnetic field. Top row: the frequency spectra of the magnetic island and forward Alfvén, fast, and slow magnetosonic modes (left);
and the spectra of the magnetic island and backward Alfvén, fast, and slow magnetosonic modes (right). The dashed line in each plot is a reference f > /3 spectrum. Middle
row: the parallel wavenumber spectra of the magnetic island and forward and backward Alfvén mode magnetic field fluctuations (left); the parallel wavenumber spectra of
the parallel and perpendicular components, as well as the total magnetic field fluctuations of the fast magnetosonic modes (middle); and the parallel wavenumber spectra of
the parallel and perpendicular components, as well as the total magnetic field fluctuations of the slow magnetosonic modes (right). Bottom row: the perpendicular
wavenumber spectra of the magnetic island and forward and backward Alfvén mode magnetic field fluctuations (left); the perpendicular wavenumber spectra of the parallel
and perpendicular components, as well as the total magnetic field fluctuations of the fast magnetosonic modes (middle); and the perpendicular wavenumber spectra of the
parallel and perpendicular components, as well as the total magnetic field fluctuations of the slow magnetosonic modes (right).

measured mean plasma and magnetic field values My, M5, and and from (84),
Uy. By virtue of (79), this yields 6/, ¢/~ as well. e .
On using the first relation in Equation (84) and (20), we can s+ _ My (077) cos ¢/ sin 67+
i Y cos p’t = - . (92)

express 0°" in terms of 6’7, with M(6°F) sin 65+

Mo/ + Relations (81) then provide the corresponding values of 6°,

cos? f5+ = %cos2 0/ (Mg + Myy — M7 (0/F)cos? 6/ .
Mo Mo From the results above, the density Equation (77) can be

on expressed as

12
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w

2 2
Us - kn o Uo - k¢ . Al en .
6ﬁm(1 + 07,) = 6pe( i ) + (8pTF + 6pT + Sptt 4+ 6p°)

m m

X (1 + My(6/F)(sinvp cos ¢/ Fsin@/F + cosep cos 671))2. (93)

Because  8p, = 6p¢ + 8p/T + &p/— + 6p*T + 6p*~  must require that
hold, we require that the equality

ke . . . / kAT = f+
& /k* = (1 + My(67")(sinep cos ¢/ Tsin 0/ + cos 1) cos §/7)) Wiy + Vo k7 = w1+ M (077
Win x (sin1) cos ¢/ sin @/t 4 cos ) cos 71)) (101)
%94)
or
W : : : .
k¢ sinty + kS cosyp = 7’”(1 + My (07 )(sinep cos ¢/ Fsin 0/ + cos ) cos 6/1))
0
hold for all . On solving for ki and kZ, we obtain hold. It can then be shown that expression (101) is true
. provided
ke = %(Siw + My(07+)cos ¢ +sin 07); (95)
0
/
/ kAT = %(sinw + Mp(0+)cos o/ Hsin /) (102)
kS = %(cosw + My (67 )cos 671). (96) 0
0
Hence, because the entropy mode is simply advected with only A+ W:n cos ) (cos ) + Mf(9f+)cos 0/+) (103)
ipe nonzero, and ky = 0, from Equations (95) and (96), we © T Vo Maocos ) + 1 :
ave
tan ¢ — ki _ sing + My (0/%)cos ¢/ *sin o/ +; o) Expressions (99) and (100) give the corresponding results for
k¢ costp + Mp(67+)cos 67+ W'y + Uy - k*~. Hence, use of the eigenrelations (28) and the
, angle relations (102), (103), (99), and (100) allows us to
ke = (cos 0¢)~! %(cosw + Mp(07+)cos 0. (98)  express
0

To determine k% in terms of 6/, gbf*, we use the n=1 s
expansion (67) for the velocity fluctuations. Let us consider ol W+ Uy kA2 = — A+
first the éu, fluctuations. The dispersion relation is given by U = 0 Us
Why = £Vaok . As above, in the 6 n =1 expansion (67), (1 + M;(6/")sin vy cos ¢/ *sin 0/ + My (8 ) cos 1 cos 6/)2.
we require that (104)

sin ¢4% x (Ww),)?

Up - kA 4 Viagk2T = Uy - kA~ — Vaok™
& Mpo(k2 Tsiney + k2 Tcos ) + kAT Similarly,
= Mpo(k2 "sin ey + sz*cos ) — sz*_

5ﬁxfi :l: / U kfi 2 6pAfi /N2 1
This relation holds if kAT = kA and Uo (Fwy, + U - K5)° = poal (@) M (07
kAT (Magcostp + 1) = k2 (Magcosyp — 1), ie., if the rela- 5 . 0 '
tions ‘ My cos ¢/ sin 7 (1 + Mp(0/")
2 2 2
pA— — A+ Mao costp + 1. ©9) Mzo — M7 (/%) cos? 07+
© Mygcosty — 1 X sin1p cos ¢/ Tsin /T + My(6/F)cosep cos 87) . (105)
kAt = kA 100 o ,
* * (100) A very similar result can be derived for the forward and

hold. Obviously, Alfvén waves can have a net propagation backward slow-mode fluctuations. The n = 1 expansion of (67)
direction with the flow when M, > 1, depending on the provides the following equation for ¢+, the solution of which
obliquity of the flow. To simplify the n = 1 expansion (67), we is coupled to the amplitude matrix (74):

13



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 268:18 (38pp), 2023 September

AA+ AA— ~
bi sin ¢4+ + sing4— = — LTS S
o o Uy My (07F)

sprt splm MO spst sps-
prr 8P ] P o

Poao2 Poao2 M.;-Z(HH) Poao2 Poao2
M3, cos ¢/ Tsin 7+
M3y — MF(0/+)cos? 07+

(106)

The same approach applied to the éu, fluctuations gives the
second coupled wavenumber boundary condition equation
as

FA+ A Sty
bi cos ¢4t + bi cospA— = Obbmy
O UO U()

oplt N op’ 1 M3 sin ¢/ Fsin 0+

Poao2 poaq ) My (07%) Miy — M7 (67 )cos? 67+

5p3+ 5,3&'- 1 M3 sin ¢S tsin 65+

poai  poag ) My(0°) Mxy — MZ(05F)cos? 05+

(107)

Finally, for 04%, we can use kAi/kAi
Hence, use of (102) and (103) yields

cos AT tan 04+,

Mpgcosty + 1
Mg cos
sint + My(67")cos ¢/ +sin 07+

x cos ) + Mp(6/H)cos 0+

tan 04+ = (cos ¢pA+) !

(108)

Finally, consider the magnetic island phase. Because 2D
magnetic islands lie in the plane orthogonal to By, 0'=7/2,
wj=0=w— Upsingk cos ¢, and w,, = £V,(0/Hk/*, it
follows from Equations (68) that k% must satisfy

/

Zank et al.

It should be noted that, because we used the boundary
condition (58) in the amplitude matrix, we had to use (59) in
deriving (110).

The measured fluctuation that is observed at a particular
Doppler-shifted frequency w/, must be supplemented by the
corresponding wavenumber k,,. Unfortunately, k,, cannot be
measured by a single spacecraft, and we need to utilize one of
several methods available to estimate a value. These methods
can include the minimum variance analysis technique (Son-
nerup & Scheible 1998; Zhao et al. 2021c) and singular value
decomposition (Santolik et al. 2003; Zhao et al. 2021b), both
based on utilizing the divergence-free condition k- 6B =0.
Another method used for discontinuities is a cross-product
method based on the upstream B, and downstream magnetic
field B, vectors across a transition (Burlaga 1969; Burlaga &
Ness 1969; Knetter et al. 2004). For our present purposes, we
will assume that an inferred k,, exists. We discuss this point
further below.

To solve the linear system (74) for the eight mode
amplitudes, we need the corresponding phase 1nf0rmat10n
k =k(k, 0, ¢) for each mode based on the measured w/, and
(mferred) k,.. We showed above that 6/*, ¢/* can be derived
from w!, and k,,, from which ¢, '~ and the remaining 6°,
®°, 6", ng 6°*, and ¢** can be determined. The supplementary
Equations (106), (107), and (110) must be solved for »** and
¢' together with the simultaneous inversion of the amplitude
matrix. We have found that using mean values for the ¢**
yields a mode stable inversion. In practice, we developed two
independent codes to solve the coupled system of equations,
the one using an iterative method for (106), (107), and (110),
and the other using a Newton—Raphson method that solves the
linear system (74) simultaneously with (106), (107), and (110).
Both methods give essentially identical results.

An attractive and useful consequence of evaluating the
wavenumbers of each of the eight modes is that one can
express the modal spectra interchangeably in terms of either
Doppler-shifted frequency or wavenumber, i.e., we do not have
to invoke Taylor’s hypothesis when converting frequency to
wavenumber. This is of course a consequence of expressing an
observed fluctuation in terms of a superposition of small-
amplitude linear modes, which may not be a good approx-
imation for all situations. Nonetheless, this approach provides

ki = wiw(l + Mp(67)sinep cos ¢/ Fsin 0/ + My(67+)cos i) cos 077). (109)

Uy sin

By using (109), as well as the y-component of (68) in the n =1
expansion, it can be shown that the equation that determines ¢’
is given by

valuable insight into the nature of fluctuations in the solar wind.
For convenience, we list the conversions that map frequency to
wavenumber.

5B ;. N opi N 6ﬁf* M3, sin ¢/ *sin 0/ +cos 6/+
M3, — MJ%(@fﬂcos2 o/+

2
Poaq  Podo

AA+ AA—
+ Mao bi cos pAT + i cos A~ |.
Uy Uy

opst n 6;33* M3, sin ¢*tsin 65T cos 5+
poa;  poag ) Mig — M7 (0°)cos? 0+

(110)
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Figure 8. The orange curve shows the fully nonlinear FFT-derived PSD for the transverse magnetic field fluctuations drawn from the original data in the 30 minute
interval shown in Figure 2. The black curve is a reconstructed spectrum for the transverse fluctuations derived by summing the transverse contributions from each
mode that admits transverse fluctuations, i.e., the separate transverse contributions from each of the Alfvén, magnetic island, forward fast, backward fast, forward

slow, and backward slow modes. The dashed line represents f =3/,

Entropy modes: for each w/,, we map to the entropy
wavenumber k° using Equations (95), (96), kye =0, and
97), (98). ' '

Magnetic islands: for each w/,, k. is given by (109), ¢’ by
(110), and k' is determined from k; = kicos ¢’ (because
0'=m/2).

Fast/slow magnetosonic modes: for each of these four cases,
we have i+ = W/, /V;(05%) and hence k{** = k% sin 05+

and kaSi = kf* cos §5+,

Alfvén modes: For each w!,, Equations (106) and (107)
provide ¢** and (108) gives 6*. Because k" = k™, we
have

!

k4% = (cos pA*sin A1)~ %(sinw + My (0 F)cos ¢/ Tsin 671,
o

(111)

giving k'* = kA% sin 04+ and k'™ = kA% cos 04,
The detailed algorithm to solve the linear mode-decomposi-
tion problem is presented in Appendix C.

4. Analysis of Solar Wind Data

To illustrate the practical application of the mode-decom-
position method presented above, we consider several
examples. Besides illustrating the method, several new
interesting and important results about the composition of
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fluctuations in the solar wind and their modal spectra emerge in
this first study. Specifically, the identification of entropy
fluctuations is new, as is the separation of Alfvénic and small-
scale magnetic island/flux rope modes and their respective
spectra. Similarly, the various modal spectra are new results.

Several examples are considered, allowing us to explore
briefly the application of the mode-decomposition method to
flows with (i) an oblique orientation of the mean flow velocity
and magnetic field vectors, (ii) a highly aligned flow
configuration, and (iii) a highly oblique flow configuration.

In applying the mode-decomposition analysis, we consider a
plasma parcel of limited duration (as long as 30 minutes and as
short as 5 minutes) that can be considered as quiet (i.e., no
shock waves, large-scale magnetic flux ropes, or crossings of
the heliospheric current sheet). A set of mean plasma and
magnetic field variables is constructed from the plasma parcel
from which we obtain the fluctuating plasma and magnetic field
components. The fluctuating variables are rotated into a
coordinate system such that the mean flow velocity lies in
the (x, z)-plane and the mean magnetic field B, is aligned with
the z-axis, as illustrated in Figure 1. The plasma parcel is
considered to be a superposition of all the possible MHD
modes listed in Section 2, provided that these can be measured
by the spacecraft, propagating or advecting at various angles to
the mean magnetic field vector. The plasma parcel is of suitably
long duration that it is reasonable to assume that it is advected
in the background supersonic and super-Alfvénic solar wind
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Figure 9. PSD plots of the fluctuating velocity field showing (left) frequency spectra of the forward Alfvén, fast, and slow magnetosonic modes (left); and spectra of
the backward Alfvén, fast, and slow magnetosonic modes (right). The dashed line in each plot is a reference f —3/3 spectrum. Middle row: the parallel wavenumber
spectra of the forward and backward Alfvén mode magnetic field fluctuations (left); the parallel wavenumber spectra of the parallel and perpendicular components, as
well as the total velocity field fluctuations of the fast magnetosonic modes (middle); and the parallel wavenumber spectra of the parallel and perpendicular
components, as well as the total velocity field fluctuations of the slow magnetosonic modes (right). Bottom row: the perpendicular wavenumber spectra of the forward
and backward Alfvén mode magnetic field fluctuations (left); the perpendicular wavenumber spectra of the parallel and perpendicular components, as well as the total
velocity field fluctuations of the fast magnetosonic modes (middle); and the perpendicular wavenumber spectra of the parallel and perpendicular components, as well

as the total velocity field fluctuations of the slow magnetosonic modes (right).

flow. This assumption makes the Minimum Variance Analysis
(MVA) method particularly attractive in determining the
direction of k,,. The MVA approach (Sonnerup & Sche-
ible 1998; Zhao et al. 2021c¢) yields the angles 6,, and ¢,, of k,,,
for the plasma parcel. By invoking Taylor’s hypothesis for the
plasma parcel in which the fluctuations are embedded, we
obtain the magnitude of k,,,, i.e., k,, = w!,/Up. This is valid for
a supersonic, super-Alfvénic solar wind flow; if the flow is sub-
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Alfvénic, for example, a modified form of Taylor’s hypothesis
is necessary (e.g., Zank et al. 2022). As shown in Appendix C,
the measured frequency w/, and the components of k,, always
appear as a ratio, meaning that the amplitude of k,, and W,
cancel. This makes the MVA approach especially tractable.
Investigation of other approaches to the determination of k,,
should be explored, but the results presented here all utilize an
MVA for each plasma parcel of interest.
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Figure 11. PSD plots for the fluctuating pressure showing wavenumber spectra
of the forward fast and slow magnetosonic modes.

4.1. Oblique Flow Interval

Shown in Figure 2 is a 30 minute interval from a fast solar
wind stream observed by the Wind spacecraft on 2020
September 28. The k,,, vector was calculated at 0.01 Hz (within
the inertial range at 1 au) and the fluctuations were calculated
by subtracting the average value from the observed value. From
top to bottom, Figure 2 shows the magnetic field magnitude,
the three components of the magnetic and velocity fields in
GSE coordinates, the angle 6z, between the magnetic and
velocity vectors, the proton number density, and finally the
proton plasma beta 3,. The background flow Uj in the mean-
field coordinates (i.e., the frame shown in Figure 1) is [497, 0,
446]kms ', and B, in the mean-field coordinates is [0, 0, 4.34]
nT. Several points are of interest: this is a very typical fast solar
wind interval that would be described as Alfvénic, as illustrated
by the magnetic and velocity field component correlations,
possessing no particular features such as shocks or strong
current sheet crossings; and the mean velocity and magnetic
field vectors are largely intermediate to both 6z, = 0° and 90°,

17

making this a good example of an oblique flow with 0y ~ 60°
for most of the 30 minute interval. However, there is a short
period around 00:05 when the flow and magnetic field are
perpendicular to one another, and shortly thereafter is a small
interval of about a minute and a half duration (bounded by two
vertical dashed lines) that is characterized by increased
magnetic field strength and decreased proton density and
plasma beta. The plasma beta 3, is derived from the plasma
pressure that is taken as twice the proton pressure. It is unclear
what this structure is, as the increased magnetic field strength,
reduced proton density, and plasma beta might suggest a
coronal mass ejection flux rope-like structure, but a helicity
method analysis (Zhao et al. 2020) failed to identify it as such,
as there is little apparent rotation of the magnetic field
components in the interval. The total pressure plot (the sum
of the thermal and magnetic pressures) in the last panel of
Figure 2 shows that the interval has a relatively constant but
depressed total pressure relative to its surroundings. Based on
its curious structure, we regard this interval as corresponding to
a large-amplitude nonlinear structure with enhanced |B| and
low density. In view of this characterization, the assumptions of
small-amplitude fluctuations and linearity in this interval are
unlikely to be met. Indeed, as we point out below, this short
interval corresponds to a region for which a reconstruction of
the data based on the 8 x 8 mode decomposition is not exact.
There is a brief interval around 00:27 where 0y ~ 20°. Finally,
outside the vertical red lines, the plasma beta ranges from ~2 to
3, or equivalently the proton plasma beta is ~1-1.5 over most
of the interval. If interpreted in terms of NI MHD, this places
the interval in the 3, ~ O(1) regime for which the turbulence
might be expected to correspond to a superposition of 2D +
slab fluctuations (Zank & Matthaeus 1992, 1993; Zank et al.
2017, 2020). Within the scope of NI MHD, larger values of (3,
would correspond at leading order to fully 3D incompressible
MHD and a higher-order compressible correction (Zank &
Matthaeus 1992, 1993).

On applying the 8 x 8 mode-decomposition algorithm
outlined in Appendix C, we plot in Figure 3 the contributions
to the density due to (from top to bottom) the advected entropy
modes &p€ as well as the forward and backward fast §p'* and
slow 8p** magnetosonic modes. This is the first identification
of density fluctuations associated with entropy modes made in
solar wind data. It is apparent that the amplitudes of the ép¢,
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Figure 12. The orange curves denote the normalized measured data for the full 30 minute interval showing (left column, top to bottom) the normalized fluctuating
total pressure ¢p and the fluctuating magnetic field components 0B, ,, as well as (right column, top to bottom) the density 6p and the fluctuating velocity components
du, v, respectively, over which are plotted (black curves) the reconstructed values derived from the connected six 5 minute intervals. All fluctuating quantities are

normalized to the appropriate mean value as labeled.

6p’", and 8p** are all comparable and that §p’ is a minor
contributor. The density spectra are discussed below.

The contributions of the magnetosonic and Afvénic modes to
the fluctuating velocity field are illustrated in Figure 4. Here
and hereafter, we use the mean-field coordinates as defined in
Figure 1. The top left and right panels show the compressible
velocity fluctuations éu**/U, for the forward and backward
fast (left column) and slow (right) magnetosonic modes. The
forward and backward slow compressible fluctuations are
roughly anticorrelated and have comparable amplitudes. The
slow-mode fluctuations are approximately 10-20 times larger
in amplitude than the compressible forward fast magnetosonic
modes, and the compressible backward fast mode makes little
contribution. The left and right second and third panels from
the top show the compressible contribution to the transverse
velocity fluctuations &u %, Although the 6uy“i and ul*
transverse velocity ﬂuctuatlons are anticorrelated, the ampli-
tudes of the 6u’* fluctuations are about two orders of
magnitude smaller than those of 6uji. Similarly, the 6uyfi
and 6u™ transverse velocity fluctuations are anticorrelated and
the amplitudes of the du/* fluctuations are about an order of
magnitude smaller than 5uyf+. The backward fast modes have
very small amplitudes. Finally, the bottom panels show the
incompressible transverse velocity fluctuations contributed by
the forward and backward Alfvén modes, 514)?i (left) and 6uyAi
(right). The contribution from the backward Alfvén mode is
almost negligible compared to the forward Alfvén mode (5ux) ,
and these amplitudes are considerably larger than the
corresponding compressible transverse velocity fluctuations.

The decomposition of the fluctuating magnetic field is
illustrated in Figure 5, in the same format as Figure 4. The
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formatting and normalization expresses clearly the correlations
and anticorrelations between the compressible and incompres-
sible velocity and magnetic field fluctuations of the fast, slow,
and Alfvénic modes. Also plotted in the bottom two panels are
the incompressible transverse magnetic field fluctuations
contributed by the magnetic islands (blue curves). The
transverse magnetic field components are dominated by the
incompressible forward Alfvén (SB)fy+ and magnetic island 0B, ,
components, although the contribution by the compressible y-
component of the forward and backward slow mode is not
insignificant.

Having performed the mode decomposition of the Wind
interval, we can sum the modal contributions to the plasma
density, velocity, pressure, and magnetic field to construct the
total plasma density, velocity, pressure, and magnetic field.
This can then be compared to the original data observed by
Wind. As shown in Figure 6, the reconstructed data (6, black
curves) replicate the measured data 60" (orange curves) very
well in general. The density, velocity components, and 6B,
reconstruction are essentially identical to the measured values.
With the exception of one interval, identified by the vertical red
dashed lines in Figure 2, the reconstructed pressure and x- and
z-components of the magnetic field fluctuations closely track
the measured data. The poor reconstruction of the 90 s of data
between the vertical red lines would appear to be due to a
larger-scale magnetic island embedded in the interval and
therefore not appropriate to a small-amplitude mode represen-
tation. Excluding the large-scale structure, we conclude the
modal decomposition accurately reproduces the measured data.

Thanks to the mode decomposition, we can examine the
spectral properties of each of the modal components, both as
functions of Doppler-shifted frequency and wavenumber using
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Figure 13. Overview of a 30 minute slow solar wind interval observed by the Solar Orbiter spacecraft on 2020 August 12. From top to bottom, we plot the magnitude
of the magnetic field |B|, the components of the magnetic field (left axis and black curves) and velocity field (right axis and blue curves) in the RTN coordinate system,
the angle 0y between the magnetic and flow velocity vectors, the proton number density, and the proton plasma beta (3,,.

the results at the end of Section 3.4. The top two panels of
Figure 7 plot the fluctuating magnetic field power spectral
densities (PSDs) as a function of frequency for (left) the
forward Alfvén, forward fast and slow magnetosonic, and the
magnetic island modes, as well as (right) the corresponding
backward and magnetic island modes. For the fast and slow

magnetosonic modes, 6B+ = 1/(SBHZ + 6B} includes both the
longitudinal and transverse compressible components, whereas
SBART = (8BM)1/2 for the Alfvénic and magnetic island
modes is exclusively transverse and incompressible. Based on
the top two panels, we would conclude that the forward Alfvén,
magnetic island, and the forward and backward slow modes
dominate the spectral energy density. All four spectra follow an
f /3 spectrum approximately for about 1.5 decades, after
which the magnetic island and slow magnetosonic spectra
appear to exhibit some flattening at the higher frequencies.

A notable feature of the mode decomposition is that we can
transform the spectra from a frequency domain to a
wavenumber domain via the transformations listed in
Section 3.4. The middle panel plots the various modal PSDs
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as functions of parallel wavenumber k;;, showing from left to
right plots of the forward and backward Alfvén spectra; the
PSDs for the fast magnetosonic mode total §B”, longitudinal
6BHf , and transverse 6Bf ; and the PSDs for the slow

magnetosonic mode total 6B*, longitudinal 6BHS , and transverse
6B;. The range of k is from about 10> (km™') to about
2.5 %107 (km™") for the Alfvén modes. The range is similar
for the fast magnetosonic modes, but moves to higher
wavenumbers for the slow mode (from 1074 (kmfl) to about
2% 1072 (km™Y). Clearly, the forward Alfvén mode is the
dominant component of the parallel wavenumber spectrum,
and for both magnetosonic modes, the longitudinal PSD is
dominant. The bottom row of panels plots the various modal
PSDs as functions of perpendicular wavenumber k,. The
format follows that of the middle panel. The left bottom panel
now includes the magnetic island PSD, showing that it in fact is
the dominant contribution to the spectrum of incompressible
transverse magnetic fluctuations, being larger than the forward
Alfvénic fluctuations. As with the k; PSDs of the middle panel,
the incompressible transverse modes due to the magnetic island
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Figure 14. Mode decomposition over the highly aligned 30 minute interval showing the denslty ﬂuctuanom Top row, left to right: the frequency spectra of the

entropy, forward fast and slow, and backward fast and slow magnetosonic modes, &p°, 8p'™,

and &p°**; Bottom left: from top to bottom the entropy mode and the

forward and backward fast and slow magnetosonic modes. Bottom right: PSDs in isotropic deenumber k of the entropy the and forward- (top) and backward-
propagating magnetosonic modes (bottom). All fluctuating quantities are normalized to the mean density as labeled.

and forward Alfvén waves are nearly three orders of magnitude
larger than their compressible fast- and slow-mode counter-
parts. It is interesting to note that the decomposition reveals the
presence of Alfvénic structures with At = 90°, i.e., non-
propagating, highly oblique Alfvén vortices.

Before turning to the velocity spectra, we consider one more
comparative test of the mode decomposition. This is illustrated
in Figure 8. The orange curve represents an FFT-derived PSD
of the transverse components of the original magnetic field
data, and the black curve shows a PSD derived from a
reconstruction of the transverse components obtained from the
mode decomposition, i.e., the sum of the transverse magnetic
field components extracted from the mode decomposition that
separately yielded the transverse fluctuations corresponding to
the Alfvén, magnetic island, forward fast, backward fast,

20

forward slow, and backward slow modes. The PSD is plotted in
frequency to avoid any complications associated with plotting
in wavenumber. The accuracy of the comparison is notable,
given that the FFT-derived spectrum makes no assumptions
about linearity or small-amplitude fluctuations, unlike the
mode-decomposition composite spectrum. This indicates that
the mode-decomposition-based spectra, while limited, provide
surprisingly good insight into the fully nonlinear spectrum, and
this suggests that the modal spectra presented here and below
should be quite an accurate representation of the various
modes.

We follow the format of Figure 7 in plotting the fluctuating
velocity /kinetic energy PSDs in Figure 9, except there is of
course no magnetic island contribution. The top two panels
show frequency velocity PSDs for forward (left) and backward
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Figure 15. Mode decomposition in the mean-field coordinates for the aligned case showing separately the contributions to the normalized fluctuating magnetic field

from top to bottom. Left column: the forward and backward fast 5B{fx

magnetosonic modes, respectively, and the forward and backward x-components of the Alfvén

mode 6B+ and the magnetic island mode 6B!. Right column: the forward and backward slow §B§§X magnetosonic modes, respectively, and the forward and backward
y-component of the Alfvén mode (SByAi and the magnetic island mode 5B}i,. All fluctuating quantities are normalized to the mean magnetic field strength as labeled.

(right) propagating Alfvén, slow, and fast modes. The
frequency spectra transformed to parallel wavenumber (middle
panels) and perpendicular wavenumber (bottom panels) are
shown below. The comments made about the Alfvén and fast
and slow magnetosonic modal spectra in discussing the
magnetic field fluctuations carry over to the kinetic energy
spectra.

Figures 10 and 11 are essentially the same because of the
eigenrelationship between §p”** and §p”**. The left and middle
panels of Figure 10 show the density PSDs for the entropy as
well as the forward (left) and backward (middle) fast and slow
magnetosonic modes as a function of frequency. In the
frequency density spectra for the entropy and forward modes,
the amplitudes are all similar but the backward fast-mode
spectrum lies well below the entropy and backward slow-mode
spectra. However, replotting the entropy and forward fast and
slow modes in wavenumber space k yields overlapping spectra
that form effectively a single power-law spectrum in k. A k~ 5/3
curve is plotted to guide the eye. Although overlapping, the
modal contributions to the density spectra are ordered from
smallest to largest k according to entropy, fast, and slow mode.
As shown and expected, the same spectral form in wavenumber
k is true for the fluctuating pressure, as illustrated in Figure 11,
except that only the fast and slow modes contribute.

In concluding this subsection, we describe briefly the effect
of using smaller intervals. We subdivide the 30 minute interval
into six subintervals of 5 minutes each and apply the 8 x 8
mode decomposition to each of the subintervals. In each
subinterval, a distinct set of mean values py, Py, Uy, and By is
determined, different from the mean values used in the
30 minute decomposition. In Figure 12, we compare the
30 minute mode decomposition with a combined set of six
5 minute mode decompositions, using the same format as in
Figure 6. The figures in the left column, from top to bottom,
show the total fluctuating pressure ép, fluctuating magnetic
field components 6B_, ,, fluctuating density 6p, and fluctuating
velocity components u_,, respectively, from the summed
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30 minute mode decomposition, i.e., the application of the
MVA and mode decomposition to the entire 30 minute interval,
and the results are overplotted with the measured values for the
fluctuations 6¥,,. The right column shows the corresponding
six “stitched together” subintervals with the same ordering
from top to bottom, using again an application of the MVA and
8 X 8 mode decomposition to each 5 minute interval. The total
interval of course corresponds to the complete 30 minute
interval.

Evidently, the left and right plots for ¥ and 6¥,, are similar,
although different in detail. The differences in the representa-
tions of the fluctuations stem from the distinct values taken by
the mean values ¥, (30 minutes) versus ¥y (5 minutes),
i=1--- 6, and indeed this can be anticipated from inspection of
Figure 2 where it is clear that mean plasma and magnetic values
for shorter intervals will be different from mean values derived
from the full 30 minute interval. The particular choice of
interval on which to examine the characterization of solar wind
fluctuations will depend on the questions and scales being
addressed. Regardless of this separate question, two conclu-
sions can be drawn from Figure 12, these being that the mode
decomposition works equally well for the multiple 5 minute
intervals as well as the single 30 minute interval, and the
discrepancy between the reconstructed and measured data in
the 90 s located between the 5—8 minute intervals remains.

The spectral characteristics of the 5 minute subintervals have
been examined, and modest differences between the spectra
extracted from the full 30 minute interval exist, largely due to
the reduced sampling. For conciseness, the 5 minute spectral
figures are not reproduced here.

4.2. Highly Aligned Flow Interval

We need to recognize that a single spacecraft is constrained
in the nature of the fluctuations that it can physically measure.
In a highly aligned flow, i.e., one in which the mean flow
velocity vector is highly aligned with the mean magnetic field
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vector, the plasma and magnetic field instruments cannot easily
measure fluctuations in a plane orthogonal to the mean
magnetic field or that are functions of k, only. This therefore
means that 2D magnetic and velocity fluctuations that are
functions of k| only may be undersampled, unlike fluctuations
that have a k; dependence. Of course, no flow is perfectly
aligned with the mean magnetic field, but the ability to measure
certain fluctuations may be inhibited. Alternatively, a single
spacecraft measuring fluctuations in a mean flow that is
highly oblique to the mean magnetic field cannot easily
measure disturbances that are propagating along the mean
magnetic field. In this case, Alfvénic modes may be under-
sampled, unlike the magnetic island modes. This geometric
flow—magnetic field alignment effect on the measurement
of magnetic field fluctuations by a single spacecraft has
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been exploited to good effect by Bieber et al. (1996), Saur &
Bieber (1999), Forman et al. (2011), Zank et al. (2020),
Bandyopadhyay & McComas (2021), Adhikari et al. (2021,
2022a, 2022b), and Zhao et al. (2022b) in evaluating spectral
anisotropy of MHD turbulence in the solar wind. Here, we
apply the mode decomposition to a highly aligned flow
interval, and below to an interval that has a highly oblique
mean flow-magnetic field orientation, in order to assess
differences in the resulting decompositions. This should not
be interpreted as a statistical study analogous to those just cited.

Plotted in Figure 13 is an overview of a slow solar wind flow
that is approximately aligned with the mean magnetic field, as
illustrated in the fpy panel. The panel from top to bottom
shows the magnitude of magnetic field, the R, 7, and N
components of the magnetic field and solar wind speed, angle
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Opy, solar wind proton number density, and plasma beta §,
measured by Solar Orbiter (Owen et al. 2020; Horbury et al.
2020) from (hh:mm) 05:53 to 06:23 on 2020 August 12.
During this period, Solar Orbiter is at about 0.81 au. In the
30 minute interval, the magnetic field |B| and By increase
gradually; Vg, N, and 3, are approximately constant for about
23 minutes. These parameters then rotate for about 6 minutes,
after which they remain constant.The angle between the flow
and the magnetic field 6py varies between 5%44 and 20°, with
an average value of about 12923. Similarly, the plasma beta
varies between 0.8 and 2.05. This range is in the 3, ~ O(1)
regime, i.e., the nearly incompressible MHD regime in which
the turbulence corresponds to a superposition of a leading-order
2D turbulence description and a higher-order slab model (with
compressible fluctuations entering at the same order) (Zank &
Matthaeus 1992, 1993; Zank et al. 2017).

As discussed above, we transform the R, T, and N
components of the magnetic field and the solar wind speed
into the mean-field coordinate system. The mean solar wind
speed in the mean-field coordinates is about [75.24 0 358.36]
kms~!, and the mean magnetic field is [0 0 7.04] nT.

Figure 14 is a composite (top) of the frequency spectra of the
entropy and fast and slow magnetosonic modes. The bottom
left panel shows, from top to bottom, the normalized
fluctuating density associated with the entropy mode, the
forward and backward fast magnetosonic modes, and the
corresponding slow modes. As seen in the frequency spectra,
the entropy, forward fast, and backward slow magnetosonic
modes are dominant, which differs from the oblique case
discussed in Section 4.1. The backward fast mode is almost
vanishingly small compared to the other modes. There is a
distinct flattening in frequency spectra compared to the oblique
flow density frequency spectra of Section 4.1, especially with
the forward modes. For the Solar Orbiter SWA-PAS (proton
and alphas) instrument (Owen et al. 2020), the moment
sampling rate is 4 s, giving a Nyquist frequency of 0.019 Hz.
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magnetosonic modes, respectively, and the forward and backward x-components of the Alfvén mode
magnetosonic modes, respectively, and the forward and backward y-components of the Alfvén mode

While the flattening may be of interest (see, e.g., Safrankova
et al. 2015, in which they identify flattening of the density
spectrum near kinetic scales), this is not important in the
context of this work. One should not overinterpret the flattening
exhibited in the density/pressure spectra, because it occurs at
frequencies higher than the Nyquist frequency (~0.02 Hz) and
needs to be studied separately and more carefully. The
translation of the frequency spectra for the various modes into
wavenumber spectra is illustrated in the two right bottom
panels of Figure 14. The flattening of the spectra for the
entropy and forward modes is very apparent in the k plots and
less so in the backward magnetosonic modes.

The mode decomposition of the fluctuating magnetic field is
illustrated in Figure 15 using the same format as Figure 5. As
for the oblique case of Section 4.1, the longitudinal amplitude
8B, of the magnetosonic modes dominates the amplitudes of the
transverse components. As above, the backward fast mode is
vanishingly small compared to the other magnetosonic modes.
The bottom panels show the magnetic island and Alfvén wave
magnetic field fluctuations. In this example, the amplitudes of

the magnetic island and forward Alfvén mode, B, 30 +, far
exceed that of the backward Alfvén mode. The mode
decomposition allows one to calculate the exact normalized
cross helicity for the Alfvén modes and not simply a cross
helicity determined from measuring the transverse fluctuations,
which could be contaminated by transverse contributions from
other modes. Accordingly, we used the mode-decomposed
Alfvén fluctuations to calculate the energy density in the
forward and backward modes, subtracted the difference, and
normalized to the total energy in the Alfvénic fluctuations. This
yielded a normalized cross helicity o2 ~ 1 for the Alfvén
waves in the aligned interval, very reminiscent of the cross
helicity in other highly aligned solar wind intervals investigated
by Telloni et al. (2019), Zank et al. (2022), and Zhao et al.
(2022c, 2022d) both in the super-Alfvénic and sub-Alfvénic
solar winds.
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Figure 18. PSD plots of the fluctuating velocity field. Top row: the frequency spectra of the forward Alfvén, fast, and slow magnetosonic modes (left); and the spectra
of the backward Alfvén, fast, and slow magnetosonic modes (right). The dashed line in each plot is a reference f > /3 spectrum. Middle row: the parallel wavenumber
spectra of the forward and backward Alfvén mode velocity field fluctuations (left); the parallel wavenumber spectra of the parallel and perpendicular components, as
well as the total velocity field fluctuations of the fast magnetosonic modes (middle); and the parallel wavenumber spectra of the parallel and perpendicular
components, as well as the total velocity field fluctuations of the slow magnetosonic modes (right). Bottom row: the perpendicular wavenumber spectra of the forward
and backward Alfvén mode velocity field fluctuations (left); the perpendicular wavenumber spectra of the parallel and perpendicular components, as well as the total
velocity field fluctuations of the fast magnetosonic modes (middle); and the perpendicular wavenumber spectra of the parallel and perpendicular components, as well

as the total velocity field fluctuations of the slow magnetosonic modes (right).

Despite being a highly aligned interval, the energy density in
the magnetic island and forward Alfvén mode fluctuations is
comparable, as is also illustrated in the frequency spectra plots
of Figure 16. We note that the magnetosonic modes in the
frequency spectra contain the fluctuating parallel component
that is the dominant component. The translation of the
frequency spectra to wavenumber spectra for all modes is
illustrated in the middle and bottom panels of Figure 16. The
middle panels show the spectra in terms of the parallel
wavenumber kj, and the bottom panels show them in terms of
k. The middle left panel shows that the Alfvénic fluctuations
are primarily forward with a spectrum that flattens, while the
minority Alfvénic component 8B~ appears to have a more
extended kH’ 373 Jike spectrum. The Alfvénic spectra in k, in the
panel below are similar. The magnetic island spectrum in k&
extends to higher k£, and also appears to flatten at high k. The
energy density in the magnetic island and Alfvén modes is
comparable. Although not examined in detail here, it would
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appear that the spectra for the incompressible fluctuations do
not resemble well either critical balance, for which we might
expect scaling relations of the form kIS/ 3 and kH_Z or
Iroshnikov—Kraichnan k~>/? scalings. The center and right
middle and bottom panels illustrate the fast and slow
magnetosonic mode spectra, respectively, with each panel
plotting the forward and backward total, transverse, and
parallel fluctuating components. As noted already, the parallel
component is larger than the transverse contribution in each
case. Both the forward and backward magnetosonic modes and
the parallel and transverse wave components exhibit flattening
of the k; and &, spectra.

The mode-decomposed velocity fluctuations are illustrated
for the four magnetosonic and two Alfvén modes in Figure 17
for the highly aligned flow, and the corresponding spectra are
shown in Figure 18. The backward Alfvén and fast
magnetosonic modes are minority components in the velocity
fluctuations as well. The velocity amplitudes of the x-
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Figure 19. Overview of a 30 minute highly oblique slow solar wind interval observed by the Solar Orbiter spacecraft on 2020 August 12. From top to bottom, we plot
the magnitude of the magnetic field |B|, the components of the magnetic field (left axis and black curves) and velocity field (right axis and blue curves) in the RTN
coordinate system, the angle 0py between the magnetic and flow velocity vectors, the proton number density, and the proton plasma beta 3,.

component of the forward and backward slow modes
contribute even less than the corresponding magnetic field
fluctuations. The incompressible velocity spectra closely
resemble the fluctuating magnetic field spectra, other than of
course the absence of the magnetic island modes. The same
flattening of the forward Alfvénic spectrum is exhibited, and
the minority spectrum has a reasonable k‘j/ 3 form. However,
this is not true of the fast modes, where the amplitude of the
transverse velocity fluctuation spectrum (forward and backward
modes) well exceeds that of the parallel spectrum, quite unlike
the corresponding magnetic field fluctuations. For the slow-
mode forward and backward fluctuating spectrum, the parallel
and transverse spectra resemble close those of the corresp-
onding magnetic field fluctuations. In both cases, clear
flattening of the magnetosonic mode spectra is seen.

4.3. Highly Oblique Flow Interval

Figure 19 shows an overview of a highly oblique slow solar
wind flow measured by Solar Orbiter at (hh:mm) 09:00-09:30
in 2020 August 12. The panel from top to bottom displays the
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magnitude of the magnetic field, the R, T, and N components of
the magnetic field and solar wind speed, the angle 65y, the solar
wind proton number density, and the plasma beta §,. The
highly oblique 30 minute interval was measured about 2 hours
and 30 minutes earlier than the highly field-aligned flow
(Figure 13), and hence the two flows are at a similar distance of
about 0.81 au. In the figure, 0y varies between 65° and 103°,
and the average 6py is about 85°. Similarly, 3, varies between
0.93 and 3.4, and for more than half the interval it is about 2
and above. Unlike the two prior examples, we might anticipate
that this particular plasma beta regime places the interval in a
nearly incompressible MHD regime in which the leading-order
description is that of fully 3D incompressible MHD rather than
the superposition description (2D plus slab) (Zank &
Matthaeus 1992, 1993). Solar wind parameters, such as the
proton density and the R, 7, and N components of the magnetic
field and solar wind speed show large changes within the first
15 minutes, after which the SW parameters are reasonably
smooth. The mean solar wind speed in mean-field coordinates
is about [387 0 38.6] kms ™! and the mean magnetic field is [0
0 7.03] nT.
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Figure 20. Mode decomposition over the highly oblique 30 minute interval showing the demlty ﬂuctuatlon% Top row, left to right: the frequency spectra of the

entropy, forward fast and slow, and backward fast and slow magnetosonic modes, &p°, 8p'™,

and &p**. Bottom left: from top to bottom, the entropy mode and the

forward and backward fast and slow magnetosonic modes. Bottom right: PSDs in isotropic Wavenumber k of the entropy and forward-propagating (top) and backward-
propagating magnetosonic modes (bottom). All fluctuating quantities are normalized to the mean density as labeled.

Corresponding to the format of Figure 14, we present the
fluctuating density mode decomposition and spectra for the
highly oblique case in Figure 20. The forward and backward
slow modes have the largest amplitudes of the frequency PSD,
with the entropy mode providing the next-most important
contribution. The wavenumber plots confirm the important
contribution of the slow-mode fluctuations, but the entropy and
forward fast modes are equally important at longer wave-
lengths. The wavenumber plots of the composite density
spectra now quite closely resemble those of the oblique case,
Figure 10, both in the distribution of the three forward modes
with respect to k and in the overall spectral form k> /3. In this
case, because the decomposition provides information for all
wave modes, we plot separately the contribution from the two
backward magnetosonic modes in the bottom right panel. The
composite spectrum in this case exhibits a small step.
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For this example, both fast magnetosonic modes are minority
constituents of the various fluctuating components, as illu-
strated in Figures 21 and 22. The mode decomposition
indicates that the forward and backward Alfvén modes,
magnetic islands, and slow modes all contribute approximately
equally to the energy in the fluctuations. This would be
consistent with expectations of NI MHD in the high plasma
beta regime. In this case, the normalized Alfvénic cross helicity
o ~ 0. The incompressible wavenumber spectra are quite
different from those of the highly aligned and oblique cases
discussed above, both of which were essentially in a 3, ~ O(1)
regime. The & and &, spectra for the Alfvénic fluctuations are
Kolmogorov-like, as is the magnetic island spectrum. Further-
more, the k; Alfvénic and magnetic island spectra virtually
overlay one another. As above, we have not examined the
scalings in detail, but the spectra do not appear to be consistent
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Figure 21. Mode decomposition in the mean-field coordinates for the highly oblique case, showing separately the contributions to the normalized fluctuating magnetic

field from top to bottom. Left column: the forward and backward fast §Bzfjvﬂ

forward and backward Alfvén mode §B4*. Right column: the forward and backward slow

magnetosonic modes, respectively, and the x-component of the magnetic island and

5Bvi

- v.x Mmagnetosonic modes, respectively, and the y-component of the

magnetic island and forward and backward Alfvén modes §B)’;’Ai. All fluctuating quantities are normalized to the mean magnetic field strength as labeled.

with either the critical balance hypothesis nor the Iroshnikov—
Kraichnan spectral scalings, despite the apparently ideal
conditions for the theories. The flattening of the minority
fast-mode spectra that was apparent in the flow-aligned case is
less obvious although present in this case. The dominant slow-
mode spectra are clearly Kolmogorov-like.

The final set of plots correspond to the mode decomposition
for the velocity fluctuations and the derived velocity mode
spectra for the Alfvén and magnetosonic modes (Figures 23
and 24). The velocity PSD for the Alfvén modes is quite unlike
the corresponding flow-aligned spectra, with the distinction
between the forward and backward Alfvén modes being
minimal in k; and essentially shifted in the k; case. Some
possible flattening at high £ may be present, but the spectra are
essentially Kolmogorov-like. Similarly, some related flattening
of the fast-mode spectra is present although less pronounced
than in the flow-aligned case. The slow-mode spectra exhibit
no flattening and are clearly Kolmogorov-like, quite unlike the
B, ~ 1 flow-aligned spectra.

5. Discussion and Conclusions

Linear MHD admits fundamental modes, six of which
correspond to waves and two to advected modes. The problem
of identifying these low-frequency modes in a quiet solar wind
plasma parcel (or indeed in a computer-simulated plasma
parcel) and determining their individual properties has not been
satisfactorily resolved theoretically. In this paper, we develop a
novel method to decompose a solar wind parcel into its
fundamental or constituent MHD modes, provided the plasma
parcel contains no large-amplitude (nonlinear) structures, such
as shock waves, pressure-balanced structures, flux ropes
associated with, e.g., coronal mass ejections, or current sheet
crossings, for example. Prior attempts to develop an MHD
mode decomposition method neglected to include advected
modes, nor do they evaluate the phase information of the
individual MHD fluctuations.

27

After reviewing briefly the derivation of the eight modes
admitted by the linearized nonconservation form of the MHD
equations, including deriving the eigenvector relations, we
exploited the linearized conservation form of the MHD
equations to derive a set of seven boundary conditions that
the amplitudes and phases of the individual modes have to
satisfy. The MHD conservation laws had to be augmented by
an additional boundary condition appropriate to small-scale
flux ropes, giving a total of eight conservation laws. The
problem is not yet closed, because the eight boundary
conditions contain eight unknown mode amplitudes and 24
unknown phases or wavenumber components associated with
the normal linear modes. We show how to expand the plasma
and magnetic field variables to derive a constrained set of phase
relations that can be evaluated from the Doppler-shifted
frequency measured by a spacecraft and an inferred “mea-
sured” wavenumber vector k,,, for the plasma parcel of interest.
The form of the phase relations or angles relative to the mean
magnetic field makes an MVA approach to deriving k,,
particularly attractive. Based on the derived phase information
for each of the eight fundamental wave modes, the 8 x 8 matrix
for the amplitudes of the fluctuating mode variables can be
inverted uniquely to provide a linearly independent set that
represents the MHD mode decomposition of an observed
plasma parcel of suitably short duration. A decoherence
timescale is derived that places bounds on the observation
time of a plasma parcel to ensure the validity of the mode
decomposition.

Because we utilize a linearized small-amplitude analysis,
each mode, propagating or advected, admits a particular
dispersion relation between the frequency and wavenumber.
This implies that Taylor’s hypothesis is not needed to convert
frequency spectra to wavenumber spectra for any of the eight
MHD modes, but of course the caveat above applies. None-
theless, because the mode decomposition provides a descrip-
tion for the fluctuations observed in a plasma parcel, this
correspondence of frequency and wavenumber provides
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considerable insight into the nature of solar wind fluctuations
that cannot be otherwise gained.

We provide a detailed algorithm for the mode decomposition
of a plasma parcel observed in the solar wind, and we illustrate
the method by implementing it for three 30 minute intervals
using Wind and Solar Orbiter data at ~1au and ~0.8 au,
respectively. The three cases differ in the angle 05 between
the mean velocity and the mean magnetic field vectors, one
being an oblique configuration, another being highly aligned,
and the last highly oblique. Furthermore, the three cases
correspond to roughly two plasma beta 3, regimes, 3, ~ O(1),
and (3,>1. This algorithm can equally be applied to
fluctuations measured in MHD simulations.

By way of validating the mode-decomposition method, we
used two tests. In the first, we performed the mode

28

decomposition and then reconstructed the total plasma density,
pressure, and velocity and magnetic field vectors by summing
the relevant contributions from each of the derived modes. The
reconstructed data were then compared to the original data set,
yielding excellent agreement—with the exception of one
possible large-amplitude structure in the oblique case. A second
test was to use the mode decomposition to construct the total
fluctuating transverse magnetic field PSD from the relevant
contributing modes, which was then compared to an FFT-
generated PSD of the transverse fluctuations for the interval. As
illustrated, the “linear”” and the “nonlinear” PSDs are identical in
their basic characteristics (spectral form, power) and virtually
overlay one another. In short, despite being an essentially linear
description, the mode decomposition provides a surprisingly
accurate description of the original underlying data.
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Although the focus of the paper was to develop a new mode-
decomposition method that incorporated both nonpropagating
MHD modes and phase information, the examples to which we
applied the new approach yielded novel and very interesting
results about fluctuations in the solar wind at 1 and 0.81 au.
These results are listed briefly below.

1.

The mode-decomposition method allowed us to make the
first identification of density fluctuations associated with
entropy modes. Unlike density fluctuations associated
with magnetosonic modes, these are nonpropagating or
advected density fluctuations, and in all the cases
considered here they comprise an important and domi-
nant low-frequency, small k component. A Kolmogorov-
like power law k /2 is typical of the entropic density
fluctuations with the possibility of a slight flattening at
higher k-values.

. The mode decomposition distinguishes between entropy

as well as forward and backward fast and slow
magnetosonic density fluctuations, and each mode forms
an independent power-law PSD in wavenumber, ordered
in k-space from small to large wavenumber according to
entropy, fast, and slow modes. Sometimes, the combined
density spectrum from all the modes appears to resemble
a single-density PSD with a ~k > /3 power law. At other
times, the total combined density PSD does not appear to
be continuous but has instead jumps between the spectra
of different modes, giving the appearance of broken
spectra. This is true when one or more modes appear to
be especially dominant.

. The pressure fluctuations associated with the fast and

slow magnetosonic modes are directly correlated with
their density fluctuations, and therefore the normalized
spectra are identical. We note in passing that this
corresponds directly to the pseudosound approximation
introduced into nearly incompressible hydrodynamics
and MHD (Montgomery et al. 1987; Matthaeus &
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magnetosonic modes, respectively, and the forward and backward y-components of the Alfvén mode

Brown 1988; Zank & Matthaeus 1990, 1992, 1993; Zank
et al. 1990).
. The mode decomposition of the observed magnetic
fluctuations identifies the longitudinal and transverse
components of the fast and slow magnetosonic modes,
e., the compressible fluctuating magnetic field compo-
nents. We found intervals in which the longitudinal
component was much larger than the corresponding
transverse component of the compressible fluctuations.
For example, in the oblique example for which
B, ~ 0(1), 6BHf ** dominated (5Bf’s. Both components of
the fast and slow modes exhibited Kolmogorov-like
spectra with kH’5 /3 and k. /3. For the highly flow-aligned
and highly oblique cases, we considered the forward and
backward fast and slow modes separately, finding that the
longitudinal component was still dominant in each case
with spectra close to k‘ 3/3 put having high k flattening.
Not surprisingly, the results are related closely to the
corresponding velocity fluctuations, including the spectra.
. The mode decomposition of the incompressible magnetic
field fluctuations identifies the magnetic island comp-
onent and the forward and backward Alfvén modes. In
the case of oblique flows with 3, ~ O(1), we find that the
magnetic island component dominates the transverse
fluctuations, and the Alfvénic fluctuations correspond
primarily to the forward (4) component whereas the
backward (—) Alfvénic fluctuations are a minority
component. We find that the Alfvénic cross helicity
oA ~ 41, indicating essentially unidirectional Alfvén
wave propagation. The Alfvén wave spectra for A 4 are
both given by rka’5 /3 and kjs /3, and the magnetic island

spectrum is described by kjs/ 3. The incompressible

magnetic field fluctuations dominate the compressible
magnetosonic fluctuations (longitudinal and transverse).
The highly flow-aligned case, possibly because it has
only a slightly different plasma beta value, yields results
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Figure 24. PSD plots of the fluctuating velocity field highly oblique case. Top row: the frequency spectra of the forward Alfvén, fast, and slow magnetosonic modes
(left); and the spectra of the backward Alfvén, fast, and slow magnetosonic modes (right). The dashed line in each plot is a reference f =3/3 spectrum. Middle row: the
parallel wavenumber spectra of the forward and backward Alfvén mode magnetic field fluctuations (left); the parallel wavenumber spectra of the parallel and
perpendicular components, as well as the total velocity field fluctuations of the fast magnetosonic modes (middle); and the parallel wavenumber spectra of the parallel
and perpendicular components, as well as the total velocity field fluctuations of the slow magnetosonic modes (right). Bottom row: the perpendicular wavenumber
spectra of the forward and backward Alfvén mode magnetic field fluctuations (left); the perpendicular wavenumber spectra of the parallel and perpendicular
components, as well as the total velocity field fluctuations of the fast magnetosonic modes (middle); and the perpendicular wavenumber spectra of the parallel and
perpendicular components, as well as the total velocity field fluctuations of the slow magnetosonic modes (right).

quite similar to the oblique case. For the highly oblique
case in which 3, > 2 over much of the 30 minute interval,
we found that the magnetic island and forward and
backward Alfvén modes were roughly balanced, which
appears to be consistent with NI MHD in the large plasma
beta regime.

Finally, possible sources of inaccuracy and error are of
course related to the accuracy of the inferred value of the
“measured” wavenumber k,, . We used Taylor’s hypothesis for
the full 30 minute plasma parcel, which seems a reasonable
assumption for a plasma parcel of this scale, and this yielded a
very natural estimate of the ratio win /k,, between the measured
frequency and the magnitude of the wavenumber. Nonetheless,
exploring different methods to estimate k,, would be valuable.
Second, single-spacecraft sampling of either highly aligned
or highly oblique (with respect to the mean magnetic field
and velocity vector) flow configurations can favor the observa-
tion of either k; or k, dominant fluctuations, respectively

30

(Zank et al. 2021b; Adhikari et al. 2022a, 2022b). The resulting
mode decomposition may therefore be deficient in one or the
other class of fluctuations. Fortunately, most flow-magnetic
field configurations in solar wind plasma parcels are rarely
perfectly aligned or perpendicular, and so this measurement
problem may not be especially severe. As illustrated in the
examples presented here, the mode decomposition appears to
work reasonably well for what are nominally highly aligned or
highly oblique cases.

To summarize, we have developed a new mode-decomposi-
tion method that resolves a solar wind plasma parcel into its
eight fundamental or constituent MHD modes, i.e., two
advected modes (the entropy and magnetic island modes) and
the usual six propagating wave modes (two Alfvén, two fast,
and two slow magnetosonic modes). The decomposition yields
both the amplitude and phase for each mode, and all are related
to the observed frequency and inferred wavenumber. Thanks to
the small-amplitude assumption, linearity ensures that the
frequency and wavenumber spectra for each mode are related
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Figure 25. The assumed coordinate system with the mean flow vector U,
aligned along the %-axis. The 2D wavenumber coordinates are also illustrated.

via the appropriate dispersion relations rather than Taylor’s
hypothesis. Although limited in this regard, the decomposition
proves a surprisingly accurate description of the data, allowing
for an accurate reconstruction of both the measured time series
data and the spectral data derived from a standard FFT of the
fluctuations in the given interval. Therefore, this provides
considerable insight into both identifying specific low-
frequency MHD modes and determining their individual
properties and spectral characteristics.
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Appendix A
2D Hydrodynamic Case

The simplest nontrivial case with which to consider mode
decomposition is that of 2D hydrodynamics. We assume there
exists a measured mean background ideal gas state py, Uy, and
Py (density, flow velocity, and pressure), and corresponding
fluctuations 8p,,, du,,, and 8p,,, measured at a frequency w!, and
corresponding wavenumber k,, in a laboratory or spacecraft
frame.

It is well-known (McKenzie & Westphal 1968; Zank et al.
2021a) that 2D hydrodynamics admits four linear small-
amplitude modes: advected entropy and vorticity modes, and
propagating fast (4+) and slow(—) acoustic waves. Their linear
dispersion relations and eigenrelations are given by the
following modes:
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Acoustic modes w' = *agk, where W' =w — Uy -k = 0,
with eigenrelations

5,3:5—1’2, 6ﬁ:¢k—/kéﬁ, 5B =0, a&:LPO
ag Podo Po
(sound speed). (A1)

Entropy modes w' = 0 with eigenrelations

55 = 2% 550, sa=0, sB=0, 55 arbitrary.
Po
(A2)

Vortical modes w' = 0, with eigenrelations, after introducing
k = k(cos 9, sinf) = k(a, ),

§p =0, 6B=0, 6p=0, &4 =0, 6 =0;

k- o =0= bt = oi(—0, o). (A3)

Here, U, is the mean bulk flow velocity, 6¥ corresponds to the
perturbed gas variables, i.e., ¥ =¥,+ é¥, and §U is the
amplitude associated with the normal mode, ie.,
50 = 60 expli(wt — k - x)], x = (x, y), and the wavenumber is
k= (k,, k).

We adopt the coordinate system illustrated in Figure 25, i.e.,
where the mean flow velocity Uy is aligned with the X-axis.

By defining a surface such that the normal is aligned with
U,, the perturbed conservation form of the 2D gas dynamic
equations can be expressed as

Ous 20 _ s, (A4)
Uo Po
I LSRN Y Y VI (AS)
Po Uo Pols
duy
— = 6 M,y; A6
o ' (A6)
bue  (a3/UD) (5_,, . 6_p) &(5%« 5_,0) _ &
Uy y—=1\Po po Ui \ Uo Po Us
(A7)

where & = (1/2)UZ + al/(y — 1).

To extract the amplitude, phase, and dispersion relation
information embedded in the perturbed conservation laws
(A4)—-(AT7), we need to decompose the gas fluctuations in terms
of the Doppler-shifted normal-mode analysis. The hydrody-
namic equations are expressed in the spacecraft frame such that
U=Uy+ éu and 6¥ = 6@exp[i(wt — k - x)]. We measure a
fluctuation 6¥ at x = 0, together with /!, and k,,, i.e., w!, is the
measured Doppler-shifted frequency, and o' = w — U - k.
We can express wt—k-x=uw't—k-x', where
x' = x — Uyt is the comoving spatial coordinate in the fluid
frame.

The measured density fluctuation 6p,, is the sum of the
entropy and the fast and slow acoustic density fluctuations, i.e.,
8pm=06p° + 6p“" + 6p* or

6i)mei(;u;,t7km-x’) _ 6i)eei(wet7ke~x)

+ 5ﬁa+ei(wa+sz"+»x) + 6ﬁafei(wa,sz”’-x)' (A8)
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Expressed in the fluid frame and incorporating the dispersion
relation, we have, e.g.,

6ﬁeei(wetfk‘?»x) _ 6‘beei(w'etfk”-x’) _ 6ﬁeefik”-x”

and 6paiei(w,,if—k“i~x) — 5ﬁaiei(w[,+t—kai-x’)’

(A9)
since w!, = 0.

The measurements are made at x = 0 in the spacecraft frame,
which implies that x’ = —Uyt. We set t = At to indicate that
the observation is made over a suitably short time interval.
Essentially, a parcel of gas within which the various linear
modes are embedded is measured over an interval At that
ensures that the gas parcel remains coherent with respect to the
decomposition. Accordingly, (A8) becomes

5/3 eiAz(w,’,,Jon-k,,,) _ 6IbeeiAtUo-k”)
m
A . ‘/ IG A~r_ T ., ! . -
+ 6pa+ezAt(wm+U0k’+) + §pa el (—w,+Upk? )’ (A10)
after using w),, = +aok?* = w), and W, = —aok?~ = —w),

in (A9). On expressing the exponential in terms of its real part
and using the Taylor expansion for w/, At < 1,

(wl + UO . k)Zn

SUALW' + Uy - k) = 5@% (D" (An>
(2n)

n=0
A 1 2
= 6\11(1 - E(At)z(w’ +U- k)) + ),
we find from (A10) that the amplitudes satisfy
(n=20) 6p, = 06p°+ 6p*t + 6p°-, (Al11)

and the phase information is contained at the next order,

n=1:  p,(wh + Uy kn)?* = 6p¢(Up - k¢)?
8P W+ Uy kD 4 6 (—w), + Uy - k)
(A12)
Similarly, for éu,, = éu” + éu®" + éu", we have
(n=0): o, = ou"+ da‘t + ou’;
(n=1) i, + Uy ky)?
= &' (Uy - k')? + oat (W, + Uy - k*+)?
+ 604~ (—w), + Uy - k)2, (A13)
since w!, = 0, and for &p,, = &p“t = p*,
(n=20): 6p, = op*t + p*;
n=1: &, (w, + Uy kp)?
= P (W, + Uy - k) + 6p* (—wi, + Uy - k%)
(Al4)

The n = 0 amplitude relations are used in the expansion of the
conservation laws (A4)—-(A7) and then reduced further by
application of the eigenrelations (A1)—(A3). This then requires
additional knowledge about the phases, which is contained in
the 7 = 1 expansion in terms of the measured frequency w/, and
wavenumber k,,. The phases derived from the n = 1 results are
therefore coupled to the n = 0 amplitudes and the conservation
law solutions.

There exist four unknown amglitudes, op, bu’ o bu’ =
Su*(— f3, a), and &p“* through du* o k** /kép“*. Evidently,
the eigenrelations embed phase information into the conserva-
tion laws. There are eight wavenumbers that are needed, k°, k",
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and k“*, or equivalently k¢, 6% k", 0"; and k“*, 6“F. We have
four conservation laws (A4)-(A7) for the four amplitudes
(n =0) and four equations (n = 1) to solve for the eight phase
variables k, 6. Fortunately, the number of phase variables is
easily reduced to four.

1. Since the entropy mode is advected only, k; =
k¢ sin#¢ = 0 implies ¢ =0 and k¢ = k. '

2. Since the fast (+) acoustic mode satisfies w/, =
apk®t = W), the magnitude k*t = W/ /ay and hence
kot = (w),/ag)cos 0o+,

3. Similarly, the slow (—) acoustic mode satisfies
W = —agk?t = ), giving k%~ = 4w, /ay so that
k& = +(w,/ag)cos 0+,

4. Finally, for the vorticity, k; = 0, k, = 0. However,
W, =w — Upk! =0, implying that k)= w/Uy=
k"cos6”.  Since W, =wl, =w— Uk!" =w —
Upk®t cos 0%t = w — (w! /ag)Uycos 9%, we  have
w = wh, (1 + Mycos0+), My= Uy/ay, and hence k, =
(Wh/Up)(1 + My cos ).

We are therefore left with just four phase unknowns: k¢, =,
and 0".

It is straightforward to show that
Equations (A12)—(A14) can be expressed as

the four n=1

e Ll _ 5
pO w:n pO w;n
Ha+ Ha—
+ op (1 + Mycos 9“")* + 6p_2(1 — Mycos09)?;
Poldo Poldo
(A15)
2 2
. . ©
6um,\ 1+ U()]jmx - _ oil sin §” UO/x
Uy Wy Uy W
Ha+ a+
Jd - COsO™ (1 4 Mycos 0a+y?
poas Mo
op*~ cos B4~ a2
— 5 (1 — Mycosf9)=; (A16)
poay Mo
S ’ 7 Uok! Y
ﬂ 1+U0_]fmx :_&/t Cosgv#
Uy Wy Uy W
Hat qi a+
op*" sin6 (1 + Mycos 64)?
poay Mo
op*~ sin 04~ a2
— 5 (1 — Mycosfa)~, (A17)
poao Mo
2
Sp Ha+
P (1 + Uo]f””‘) = — 8p =(1 + M, cos §4F)?2
Polo Wi Polo
ope- 2
+ (1 — My cos 697)= . (A18)
Polo

The four Equations (A15)—(A18) can be solved to provide the
needed phase information as follows. It is simplest to begin
with (A18). Because the amplitude equality (A14) (n = 0) must
hold, a consistent solution requires that both

(1 + Mycos 94?2 = (1 — Mycos§97)? (A19)
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Uokms |
and (1 + =2 ,’"*) = (1 + Mycos §9+)? (A20)
hold. From (A19), we require that cos 94+ = —cos 6%, or
04~ =1 — 09t (A21)
since 0 € [0, 7]. Hence, for the equality (A20) to hold, we have
cos 4t = L UO]fmx . (A22)
M() Wy

From Equation (Al5), to ensure that (n=0) 6p, = 6p° +
6pat + 6p~, we must have

2\2
(Uok ) — (1 4+ Mycos§9+)?

!/
m

from which we obtain

/

ke — %(1 + M cos 69H). (A23)
0

Similarly, using one of either (A16) or (Al17), we need to
ensure that one of Oy, = 6y, + 647/ + 6i¢;, holds,
which requires that

2
(lfj/k ) = (1 + Mycosf9H)2.

Thus, we have

/

k! = k' cos 0" = %(1 & My cos 0. (A24)
0

The remaining unused Equation (A16) or (A17) allows us to
solve for 8". In this case, using (A16) yields an equation that
has to be solved iteratively for 6" in concert with the

a+ pHa+ a— Ha—
(]+20059 n 1)5]9 2+(]20056 n l)ép 4

Mo Mg ) poag Mo Mg

sin 94+ 6pat

sin@4 6pe-

Mo Poao2 My pyag

Zank et al.

conservation Equations (A4)—(A7):

v a+ a— a+ 7
O Gngr — | 2y D |SOT Bl (55
Uo Podo Polo Mo Uo

Consequently, all the phase information can be derived from
6", which in turn is given by (A22). Hence, 8 is given by
(A21), k¢ by (A23), 6" by (A25), and k" by (A24).

By means of the amplitude relations (n=0) (A11)-(A14)
and the eigenrelations (Al)-(A3), we can rewrite the
conservation laws (A4)—(A7) in terms of the four normalized
unknown variables 6p°/p,, (the fluctuating density associated
with entropy modes), éi Uy (the magnitude of vortical
fluctuations), and fpe+ /(poaoz) (the pressure fluctuations of
fast (+) and slow (—) acoustic modes). For example, in (A4),

52 .
oM, = Py Bl ;
Po Uo
5D | . o 5p¢ §Het §pe—
DB —(p + p* + )=L+p—2+ E 5
Po  Po Po Polo Poco
5ux — L(ﬁ; + ﬁ;+ + 12;17) — _ﬁvéu

Uy Uy Uo
n k&t ket spet i ki /ke 613“‘.
My poag Mo pyag

This allows (A4)-(A7) to be expressed as

na-+
(1 + icosé)"*)ép—2 + (1 — 2 cos 9“)
M, Podo M,

na— ~e nv 5" O
« P =+ 00 _ Gingr2 _ 0w | e pog)
Poao Po Uo Po Uo
5 & 2 5
80 S _ P 8w Lz P (A27)
Podo  Po Uo Po Uo Mg poag
Y Ol
~+ cos gl _ Oim, (A28)
Uo Uo
1 Ycos0t | gpt
v=1Mg) My |pyaq
1 )cosf | op*—
+ 2 & 2
Y- 1My) Mo | pyag
1 sinﬂ”éu
Uy
op op
L P 10Dy (A29)

v—1 Mo2 Poao2 2 py

Equations (A26)—(A29) together with (A21)—(A25) completely specify the mode-decomposition problem for 2D hydrodynamics.
Thus, solving the linear system of equations for a measured set of fluctuations (8p,,, ou,,,, 5p,,) at a frequency w!, and wavenumber k,,

expresses the measured fluctuations as superposition of entropy, vorticity, and fast and slow acoustic modes. The approach outlined
here serves as a template for the more complicated problem of mode decomposition in MHD.
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Appendix B
Summary of the Amplitude Matrix Entries

The amplitude matrix appropriate to a mean flow aligned obliquely to the mean magnetic field is given by A = (a;), i,j=1--- 8,
an (8 x 8) matrix that contains the amplitudes and phases of the entropy, fast, and slow magnetosonic, Alfvénic, and magnetic island
modes. Here,

Ax =b, where A =(ap,x=(x),b=(0), i,j=1"8;
. (6pe Sprt spf— spt Sp utt Suh- @)’
Po Poa;  Poad poas poai Uo  Us By
The vector b is comprised of measured values and given below. Here, we list the elements (a;) of the matrix A derived from the

MHD conservation laws.
Continuity:

B

ajp=1;

1 Vi Vo cos¢/Tsin 0/t 1
an:(l + L 51nw+ﬁ5—00059f+cosw ;
o Vit

Mo ap VF— Vicos®9/+
a;z=ap(f—); ie.,f— replaces f inaj.
aiy =ap(s +); ie., s+ replaces f+ in app.
ais =ap(s —);

— A : .
aie = — " siny;
— A— .
a7 = — (%7 siny;
alg = 0.
Momentum: x—Component
as) = sin;
. 2 f+gin 65+ - /
. 1 1 4 sin?ep Vyy Vj cos¢/Tsin 6/ sin ) cos v ag f+
ap =siny(1 + = : —-cost
22 w( + Moz) + My ap V/g — Vﬁo cos2 9/t + My Vi
sing V7 — ag cos? 97+ cos VF cos ¢ *sin 0 cos 67+ .
Mz v7 My Vi—Vicos?6/t 7

ax =axn(f);
ars = an(sh);
azs = ax(s7);

ax = —(% + (1 + sin? w))ﬁAJr;

azy = (S22 = (1 sin ) ) 84

My
_cost g
azg = Mo ﬂ .
Momentum: y-component
as1 =0;
2 ¢in b fsin 07+
ay = Vysing Tsin0’" fcosy cos 0/ + 1 ;
T Vi VRgeos? 07 My My (07)

az=axn(f—);
azy = axn(s +);
azs = azxn(s — );

aze = (1 + M)CYA‘W

Mao
azy :(1 — M) A ;
Mao
COS
azg — — 2¢ .
MAO

34
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Momentum: zZ-component

a1 = cos;

. 2 b tsin 0+
1 costsintp Vyv Vi cosd/Tsind o Nao/ Vi f+
ap =cosyYll + — = 1 + cos —=cosf
42 7’[}( T M&) T V2= Vijcos? 07" + 0+ R

sin o V} cos ¢/ *sin 8/ cos §/+ cosp V} — ag cos? 07+ .

+ Mo Vi—Vipcos?0T M v? ’

apz=apn(f—);
ass = agp(s +);
ass = apn(s —);

g6 = —sinw(cosw + MLAU)ﬂAJr;

ag = —sinw(cosw - ML)ﬁA‘;
A0

asg = s[;jz:ﬁ’
Total energy:
asi =1
=
Qe — 1 I 1 n Er L sint) Vit V} cos ¢ sin 7+
PR Mg Uy My ag Vi — Vipcos? 67+
+ 5_3 +1 cosy 4 0s 0/t
UO MO Vf+
,singcosy V7 cos ¢/ sin 6/ *cos 6/ +
+
Mzo Vi — Vigcos? 6/ F
sin¢p Vi — ag cos? 0/ *
+2——= 5 :
Mo Vi

as3=asy(f —);
ass = asy(s +);
ass = as(s — );

& V.
ase = ((—2 + 1] + 2%) sinyB4+;

U() AQ
Er cosy | . _
as;=—|| = + 1| = 2—— [sinyp*
(( Us ) Mao )
sin) cos
58 =2 v > 1/}5’,
My

where &) = (1/2)U02 + aoz/(y —Dand &r = &y + Vﬁo.
Induction: x-component
as1 = 0;

5

VJ% cos ¢/ *sin §/F ( Vii/ag

2 2 2 0f+
— ag cos=0
Vi — Vigeos? 07T\ My )

| o

agr = COS Y + cos ) cos 9f+) + siny— 2
f

ae3=ae(f —);

aes = ae(s +);

aes = ae(s —);

age = —cos (1 + cos M) 34T;

agr=—cos (1 — cosPMug) 347

agg = cos? 3.

35
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Induction: y-component

ar = O
Vf sin ¢f+S11'1 0/t Ccos ¢ Vf+
Vf — VAO C052 9f+ M() ao
azz=an(f—);
ars = an(s +);
ars =an(s —);
ar6 = (Cos Y + Mpo) ™,
ar; = (cos — Mpg) o~

ajg — 704".

amn =

Zank et al.

+ cos 9f+)

Because the z-component for the induction equation is a linear combination of the x- and y-components of the induction equation, it is

neglected.
Magnetic island condition:

ag; = 0;

V7 cos ¢/ *sin 6/ *cos 6/+
Vi — Vipcos? 67+

agz = ag(f —);

ags = agy(s +);

ags = agy(s — );

ase = Mao 3+,

agy = —Mno 8475

agg=—[3'.

s

agy = —

Source vector b(élf/m). Here, we list the elements of the source vector (b;), i=1---

magnetic field variables:

8, that comprise the measured plasma and

1 6B 6B
+ ——| —cos " 4+ sin Uiy B

0 0

0 0

1 6B 6B
— —|sin " 4+ cos = 1,

6/\ A~
b= P 1 in ¢6umx + cos w%; (continuity)
Po Uo Uy
6/\ A~ A~ . 6A
by = sin 2P 4 (1 + sin ) 2 4 gin g cos O 4 Smf’ P
Po Uo Uo Mg poag A0
(x-momentum)
Oty 6B,
by = Umy _ 00521/) . (y-momentum)
Uy My, Bo
0Dy op
by = cos h—L + cos 1) smw M (1 + cos?v) Oilme COS;’Z] p,,,z
Po Uo Uo My poag Mo
(z-momentum)
16p & St & P
N e A Vs A .3
2 py Uy Uo Uy UO 7 — 1 My pyag
smw €08 1) 6By 4o sin® ) 6B,,,;
M}, By M}, By’
(total energy)
bs = cos wéu_mx — cos? wéBm”x + sine cos wwi; (x-induction)
U() B() BO
6 m 6ém y . .
b7 = cos p—— my — . (y-induction)
Uo By
B .
bg = OBy . (magnetic island).

0
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Appendix C
Algorithm Summary

Although the wavenumber boundary conditions are given in Section 3.4, it is convenient to list all the relations together and in
order. We solve the angles needed needed for the 8 x 8 system of equations Ax =b from

1 (M§ + Mio)(Wwh,/(Uokn))> — 1

1. cos?d/t = |
Mg My, (W / (Uoky))*
1
2. cosop/t =
¢ (w:n/(UOkmx))Mf (9f+) sin /+
3. 0/ =0/t
¢f7 — ¢f+’
Mo+
5. cos?fst = % cos? 0/t (Mg + M3, — Mf(ﬁf*)cosz 05 +):
0 Mxo
6. cos¢tt = M (07%) cos ¢/ +sin 6+
Mv(ger) sin 65t
7. 65 = 9t
8. ¢ =o't
9. ¢¢=0;
10. tanf°® = sint) + My (07 F)cos ¢/ Fsin 6/ F .

cosp + Mp(67F)cos 0/ F

The angles ¢**, %, and ¢ associated with the Alfvénic and magnetic island modes are solved iteratively from

st . st . _ Sl 1
1. singpAt + X —singpd— = - 4~
Uo ¢ + Uo ¢ U + My(67)
v sprt spr= Mfz 07 [ spo+ ps- M3 cos ¢/ Tsin 0/t
poag  poai  MIO D\ pag  pgag ) | Mio— M7(07P)cos? 071
saAT 864~ Oy
2. A+ A— — )
o8 AT + T 10) mn
sprt spl- 1 M3, sin ¢/ Fsin 67+
poag poag ) Mp©7") Mio — M7 (9 +)cos? 01+

opt op*- 1 M3y sin ¢ Fsin 5T
poad poad ) Ms(6°F) M3y — M2 (6 F)cos? 5+

M o + 1 sint + Mp(0/+)cos ¢/ Fsin 67+
3. tan AT = (cos ¢Ai) 1 Mag cos ¢ Y+ My & .

Mg cos 1 cos v+ M0/ )cos /F  °
5B cos ¢i - 5é,ny + pit opl= Mﬁo sin ¢/ *sin 6/ cos 0/
By T By poad poag ) My — MF(0!)cos? 0/

pst 8p° \ M3, sin ¢* Fsin 05 tcos 65+ At A A= A—
x4 Mpo| —— cos p2T + =—cos .
* (Poaoz + poad ) Mao — M (6°H)cos? 6 + Mao Uo oo+ Uo ¢
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