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We consider first-passage percolation (FPP) on the triangular lattice with
vertex weights (tv) whose common distribution function F satisfies F (0) =
1/2. This is known as the critical case of FPP because large (critical) zero-
weight clusters allow travel between distant points in time which is sublinear
in the distance. Denoting by T (0, ∂B(n)) the first-passage time from 0 to
{x : x ∞ = n}, we show existence of a “time constant” and find its exact
value to be

limn→∞
T (0, ∂B(n))

logn
= I

2
√

3π
almost surely,

where I = inf{x >0 : F (x) >1/ 2}and F is any critical distribution for tv.
This result shows that this time constant is universal and depends only on the
value of I . Furthermore, we find the exact value of the limiting normalized
variance, which is also only a function of I , under the optimal moment con-
dition on F . The proof method also shows an analogous universality on other
two-dimensional lattices, assuming the time constant exists.

1. Introduction. Let T be the triangular lattice. We will take T to be embedded in R2

with vertex setZ2 and with edges between points of the form(x1, y1) and (x2, y2) with either
(a) (x 1, y1) − (x2, y2) 1 = 1 or (b) both x2 = x1 + 1 and y2 = y1 − 1.

We will consider first-passage percolation (FPP) on T, which is defined as follows. Let
(ωx)x∈Z2 be a family of i.i.d. uniform random variables on (0, 1) defined on a probability
space (, F , P). Fix a distribution function F with F (0−) =0. We define tx = F−1(ωx) (so
that tx has distribution F ), where for t ∈ (0, 1),

F −1(t ) :=inf y ∈R : F (y) ≥ t.

A path is a sequence of vertices (x1, . . . , xn) with xi being adjacent to xi+1 for all i =
1, . . . , n −1, and a circuit is a path (x1, . . . , xn) with x1 = xn. We will always assume that
paths and circuits are self-avoiding. (A self-avoiding circuit is one such that(x1, . . . , xn−1) is
self-avoiding.) For a path γ = (x1, . . . , xn), we define its passage time by

T (γ ) =
n

i=2
txi ,

and for vertex sets A, B ⊆Z2, we define the first-passage time from A to B by

T (A, B) =inf T (γ ) : γis a path from a vertex in A to a vertex in B .

For notational simplicity, for x ∈Z2 and B ⊆Z2, we will write T (x, B)for T ({x}, B). (Note
that unlike in the case of edge-FPP, our definition ofT is not symmetric; this will not matter in
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our arguments.) In first-passage percolation, one studies the asymptotic behavior of random
variables such as T (0, ∂B(n)), where B(n) = {x ∈Z2 : x ∞ ≤ n}and ∂B(n) = {x ∈Z2 :
x ∞ = n}.

In this paper, we will study the critical case, namely F (0) = pc = 1/2, where pc is the
critical threshold for site percolation on T. In this case, it is shown by Damron–Lam–Wang
in [2] that under suitable moment assumptions on tx, one has

(1.1)

ET 0, ∂B(n)
logn

k=2
F −1 pc +2−k and

Var T 0, ∂B(n)
logn

k=2
F −1 pc +2−k 2,

and further if Var (T (0, ∂B(n))) → ∞ as n → ∞ , then one also has a Gaussian central
limit theorem for the variables (T (0, ∂B(n))).1 (Here we write an  b n if the ratio an/bn
is bounded away from 0 and ∞ .) Sharper asymptotics were proved by C.-L. Yao in [13, 14]
(these results were further developed in [4, 15]) in the special case where tx is Bernoulli (i.e.,
tx = 0 with probability 1/2 and tx = 1 with probability 1/2):

(1.2)

T (0, ∂B(n))
log n

→ 1
2
√

3π
a.s.,

ET (0, ∂B(n))
log n

→ 1
2
√

3π
,

Var(T (0, ∂B(n)))
log n

→ 2
3
√

3π
− 1

2π2

as n → ∞ . (The existence of the limit without explicit values, shown in [13], preceded
[2].) By analogy with the noncritical case of FPP, we will refer to the limit on the left (of
T (0, ∂B(n))/log n) as the time constant for the model. In [13], Remark 1.3, Yao asks whether
one can extend these limit theorems to general distributions.

The behaviors in (1.1) show that the limits in the limit theorems, if existent, should also
depend on the behavior of F −1 near pc, or equivalently the behavior of F near 0. We will
show existence of these limits and, from their explicit forms, it is manifest that this is indeed
the case. Let

I = inf x >0 : F (x) > pc

be the infimum of the support of the law of tx excluding 0.

THEOREM 1.1. On the triangular lattice T, we have a law of large numbers:

(1.3) lim
n→∞

T (0, ∂B(n))
log n

= I
2
√

3π
almost surely.

Furthermore, if E min{t1, . . . , t6}2 < ∞, where t1, . . . , t6 are i.i.d. copies of tv, then

(1.4) lim
n→∞

Var(T (0, ∂B(n)))
log n

= I2 2
3
√

3π
− 1

2π2 .

1These results were proved for edge-FPP on the square lattice, but similar arguments give them for the current
setting.
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REMARK 1.

1. One can also show that if E min{t1, . . . , t6} < ∞, then

(1.5) lim
n→∞

ET (0, ∂B(n))
log n

= I
2
√

3π
.

This can be proved by using a similar, but simpler, method than that for (1.4). We omit the
details here. Note, however, that (1.5) follows from (1.3) and (1.4) under the stronger moment
assumption that is used for (1.4).

2. Our proof method extends to a large class of two-dimensional lattices (including pla-
nar lattices where RSW tools are available, like the square grid). It gives a weaker result,
since the limits (1.2) are only known to hold for the Bernoulli distribution on the triangular
lattice (due to the use of CLE 6 in their proofs). However, if any of these are shown to exist
on other lattices (with possibly different limits), then our method shows that they also hold
for general distributions (under suitable moment assumptions).

In the course of the proof, one would need to replace the exact values of arm exponents
used in Lemma 5.3 by inequalities for these exponents on general lattices given in [8]. Pre-
cisely, we use the fact that the five-arm exponent in a half-plane or 3/4-plane, and the six-arm
exponent in the full-plane, are all strictly bigger than 2. The five-arm inequalities follow from
the five-arm exponent on the full-plane, which is known to be 2 on general lattices, combined
with the arguments of [8], which only require RSW methods (not conformal invariance). The
six-arm inequality follows from the five-arm exponent on the full-plane combined with the
BK-Reimer inequality.

3. In the standard case of FPP, where F (0) < pc, there is no similar universality of the
time constant. Indeed, using [12], Theorem (2.13), one can construct two bounded distribu-
tions for tx such that they have the same infimum, but the limits lim n→∞ T (0,∂B(n))

n for the
different distributions are positive and distinct real numbers.

4. The moment conditions in Theorem 1.1 and equation (1.5) are optimal in the follow-
ing senses. By a variant of [1], Lemma 3.1, one has for anyq >0, ET (0, ∂B(n))q < ∞ if and
only if E min{t1, . . . , t6}q < ∞. Therefore if the above moment conditions fail, then either the
mean or the variance ofT (0, ∂B(n))will be infinite. There is no need for a moment condition
in (1.3) because the infinite path γ constructed in Section 4 has all but finitely many edges
with weight ≤ I +1.

5. One can prove point-to-point analogues of the statements of Theorem 1.1 (replacing
T (0, ∂B(n))with T (0, x)and log n by log x ) with a.s. convergence in (1.3) replaced by
convergence in probability. For (1.4), one needs a slightly stronger moment condition. See a
similar modification in [14].

1.0.0.1. Question. According to (1.1), there exist distributions such that E T (0, ∂B(n)) =
o(log n) and Var(T (0, ∂B(n))) = o(log n), but both quantities diverge to infinity as n → ∞ .
In this case, does

lim
n→∞

T (0, ∂B(n))
logn

k=2 F −1(pc + 2−k)
exist?

At the time of this writing, this question appears to be open.
In this paper, the symbol Ci (where i ∈N) denotes a (possibly) large constant, and the

symbol ci (i ≥4) denotes a (possibly) small constant.c1, c2, c3 are reserved for Definition 3.1
and the definition of a good circuit. The symbol  · will refer to the Euclidean norm.
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1.1. Sketch of proofs.

1.1.1. Sketch of (1.3). We begin by coupling together our vertex weights with Bernoulli
weights: we define the Bernoulli weights as tB

v = I ·1{tv>0}. Because tB
v ≤ tv, one has

I
2
√

3π
= lim

n→∞
TB(0, ∂B(n))

logn
≤ lim inf

n→∞
T (0, ∂B(n))

log n
almost surely.

(Here, TB is the passage time using the Bernoulli weights.)
To show the other inequality, it will suffice to prove that

T 0, ∂B(n) − TB 0, ∂B(n) = o(logn) almost surely.

The idea for this proof is to use that T B is equal to the maximal number of disjoint closed
(i.e., with weight > 0) circuits separating 0 from ∂B(n). To construct such circuits, we note
in Lemma 2.3 that results of [7] allow us to find an infinite sequence of disjoint closed circuits
surrounding the origin which are successively “outermost”. Specifically, ifCk is the kth circuit
in the sequence, andC̊k is its interior, thenCk lies in C̊k+1, and any other closed circuitC inside
C̊k+1 has C̊ ⊆ C̊k. (We make the notion “outermost” precise in Definition 2.2.)

In particular, the sequence(Ck) is maximal, so it is not possible to find a closed circuit lying
entirely in the region strictly between two adjacent circuits in the sequence. In addition, by
the outermost property, from each vertex on one circuit, there is a zero-weight path starting
at an adjacent vertex and ending adjacent to the next circuit. Using this property, one can
construct an infinite path by starting at 0, following any open (i.e., with weight = 0) path
from 0 to the first circuit, using a vertex from this circuit, following any open path to the next
circuit, and so on. (Here we remark that if we were to use “innermost” circuits, we would
need to build paths starting on a circuit and proceeding inward to circuits in its interior. This
would produce only a finite path, and then we would need to take a limit of these paths.) One
can show that if n is the portion of until its first intersection with ∂B(n), then

TB( n) − TB 0, ∂B(n) = o(logn) almost surely.

The goal then is to show that

(1.6) T ( n) − TB( n) = o(log n) almost surely

for a particular choice of .
To choose , we use an adaptation of the “good circuit” construction from [7]. Given an

 > 0, we consider a vertex v to be of “low weight” if tv ≤ I + . (This is not the full defini-
tion; low-weight vertices are defined more precisely in Definition 3.1.) In Section 3, we show
that with high probability, any open path starting at one circuit in the above sequence and
ending at the next—so long as these circuits have sufficient distance from each other—can be
modified to retain the same initial point, but to end adjacent to a vertex in the second circuit
which has low weight. (See Figure 1.) This idea underlies the main construction (Lemma 3.2)
in which we build an infinite path γ starting at 0 which passes through each circuit exactly
once and contains only finitely many vertices which are not of low weight. We take  = γ ,
so that n is an initial segment γn of γ . Then

T (γn) − TB(γn) =
v:tv>0,v∈γn

(tv − I) ≤ C +
v:tv>0,v∈γn

= C + (/I )T B(γn) ≤ C log n.

This is true for any , so this shows (1.6) and completes the sketch.
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FIG . 1. Illustration of the modification of open paths from Lemma 3.2. The circuits k+i, i = 0, 1, 2 are con-
secutive outermost circuits from the construction of Lemma 2.3. The light gray paths connecting verticesv(i) on
the circuits are open. So long as the circuits have sufficient distance from each other, one can find many modified
open paths which begin at the same point and end at the next circuit. With high probability, at least one such path
will end at a low-weight vertex.

1.1.2. Sketch of (1.4). To show universality of the variance, we represent the passage
time as a sum of martingale differences k, so that

Var T (0,On) =
n

k=0
E 2

k,

where On is the innermost open circuit in any annulus of the form B(2m+1) \ B(2m) for
m ≥ n. Here, k is the martingale difference of T (0,On) using the filtration generated by
weights on and inside Ok. (The argument for the variance uses, in addition to closed circuits
as in the proof of (1.3), an open circuit construction. The purpose of using open circuits is to
decompose the passage time from the origin to the boundary of a box as a sum of passage
times between successive open circuits.) Using a representation of k from [9], we split the
difference

Var T (0,On) − Var TB(0,On) =
n

k=0
E 2

k − B
k

2

into a sum of three terms, each of which is bounded similarly. The term we focus on can
be written (see Lemma 5.1, where the term we are discussing is called Y) as a difference of
passage times between two open circuits:

T (Ok, Ǒk) − TB(Ok, Ǒk).

(In Lemma 5.1, this difference is called Ỹ .) Here Ǒk is the next circuit of the formOm which
is not equal to Ok. Therefore the proof reduces to showing

(1.7)
n

k=0
E T (Ok, Ǒk) − TB(Ok, Ǒk) 2 = o(n).

(Note the o(n) appears instead of o(log n) because we are working on logarithmic scale.)
Once this is done, then the proof is completed by bounding the difference between point-to-
box passage times of the form T (0, ∂B(2n)) and point-to-circuit passage times of the form



1706 M. DAMRON, J. HANSON AND W.-K. LAM

T (0,On). Although such bounds have been derived in previous works under stronger moment
assumptions, the situation here is more delicate. We give this argument after (5.27).

To bound the terms of (1.7), we use the construction of low-weight paths from Section 3.
To use this method, we need to show in Lemma 5.3 that with high enough probability, the
circuit Ok is sufficiently far away from closed circuits Cj from the sequence in Lemma 2.3.
When this occurs, one can, as in the proof of universality of the time constant, bound the
difference of passage times in (1.7) using paths connecting these circuits which pass through
some number of closed circuits using only low-weight vertices. Partitioning the expectation
according to this “sufficiently far” event, one has a bound for the summands of (1.7) of the
form

o(1) + E(maximal # of closed circuits between Ok and Ǒk)2.

Here, the o(1) term corresponds to the bound C/
√

k in (5.22), and represents the expectation
on the event thatOk is close to a closed circuit Cj . The second term appears in (5.25) (where

is written as a k-dependent term a2
k). After showing that this expectation is bounded by

a constant, we obtain the bound o(1) + C for summands in (1.7), and this completes the
sketch.

2. Preliminaries. We begin with some definitions.

DEFINITION 2.1.

1. For a circuit , we define ˚ to be the interior of , namely the bounded connected
component of Z2 \ seen as a subgraph of T.

2. We say that a vertex x is open if ωx ≤1/ 2 and closed otherwise.
3. A path (or circuit) is open if all its vertices are open; it is closed if all its vertices are

closed.

Many of our arguments in this paper will involve careful analysis of circuits, so we reca-
pitulate many of their most important properties. We recall that C̊ denotes the interior of the
self-avoiding circuit C.

DEFINITION 2.2. Let A ⊆Z2 be a Jordan domain (we identify A with the set of vertices
Z2 ∩A and with the subgraph induced by these vertices), and letB ⊆ Abe a connected vertex
set.

• An open circuit C ⊆ A \ B is said to be the outermost open circuit in A \ B if B ⊆ C̊, and
if, for each open circuit D⊆ A \ Bwith B ⊆ D̊, we haveD⊆ (C ∪ C̊).

• Similarly, an open circuit C ⊆ A \ B is said to be the innermost open circuit in A \ B if
B ⊆ C̊ and if, for each open circuit D⊆ A \ Bwith B ⊆ D̊, we have C ⊆ (D ∪ D̊).

Of course, we extend Definition 2.2 to the case of outermost or innermost closed circuits,
replacing the word “open” with “closed” throughout. It is immediate from the definition that
if it exists, the innermost or outermost open (resp. closed) circuit is unique.

If there exists an open (resp. closed) circuit in A \ B having B in its interior, then out-
ermost and innermost open (resp. closed) circuits also exist. This is by now well known,
following from arguments along the lines of the proof of existence of extremal crossings (see
[5], Lemma 1). We describe the idea in the case of outermost circuits, for definiteness. One
can define a partial ordering on open circuits surroundingB in A, where D precedes C in this
ordering if D⊆ [C ∪ C̊]. It is easy to see that every chain in this ordering has an upper bound,
so there exists a maximal element. Moreover, this maximal element is unique and succeeds
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all open circuits in A \ B having B in their interior: if D and C are not comparable, they
intersect, and one can loop-erase their union to produce a circuit C with [C ∪D] ⊆ [C∪ C̊].
The existence of a unique maximal element for the ordering—the outermost open circuit—
follows.

Another consequence of the definition which makes outermost (resp. innermost) circuits
particularly useful is that it requires no reference to an exploration process, though such
processes are often useful. Indeed, the definition gives a more or less explicit representation
for the indicator function of the event{C is the outermost open circuit in A\B} (and similarly
for innermost circuits). The final consequence we will use, which is of extreme importance,
is that knowing the value of the outermost (resp. innermost) circuit in A \ B tells us nothing
about the status of vertices inside (resp. outside) this circuit. Formally,

{C is the outermost open circuit in A \ B}is independent of {ωx : x ∈C̊} ,

with similar statements holding for the innermost circuit (as usual, “open” may be replaced
with “closed” as well). See, for example, the statement of the analogous statement for ex-
tremal crossings which appears below Lemma 1 of [5].

We will use several (modified) lemmas from [7]. We sketch some of the proofs; they are
mostly intricate RSW-type arguments that are valid for general lattices. The first provides an
infinite sequence of “outermost” closed circuits (Ck) surrounding 0. This sequence will be
maximal in the sense that Ck ⊆ C̊k+1 and there is no closed circuit contained in the region
between Ck and Ck+1.

LEMMA 2.3. Almost surely, there exists a sequence of random disjoint circuits (Ck)k≥1
with 0 ∈C̊k, so that each of these circuits is closed,Ck ⊆ C̊k+1, and Ck is the outermost circuit
in C̊k+1 which is entirely closed: all its vertices are closed. (Also there is no closed circuit
surrounding 0 in C̊1.) Moreover, there exist constants C1, C2, c4 > 0 such that almost surely,
diam(Ck+1) ≤ kC1 diam(Ck) for all large k, and

(2.1) c4 ≤ lim inf
k→∞

log(diam(Ck))
k

≤ lim sup
k→∞

log(diam(Ck))
k

≤ C2.

PROOF . This statement is the same as that of [7], Lemma 1, except that in that paper, the
circuits may be open or closed, and there is no mention of there being no circuit surrounding
0 in C̊1. For the reader’s convenience, we include here a sketch of the proof.

Consider a large boxB(2N ); let C(N )be the outermost open circuit inB(2N ) \ {0}. (There
exists such a circuit with high probability for N large, by the Russo–Seymour–Welsh theo-
rem). Either there is no closed circuit in ˚C(N ) \ {0}, or we can find an outermost closed circuit
D in ˚C(N ) \ {0}. Continuing in this way, we can find an outermost closed circuit in D̊ \ {0}
and so on, until we find a circuit with no closed circuits in its interior.

We enumerate the circuits we found from the inside out: letC1 denote the innermost closed
circuit found above (i.e., the final circuit that we find as we progress inward fromC(N)), let C2
denote the second-innermost, and so on. We conclude the enumeration withD. The sequence
of Ci ’s so found has all the properties in the lemma, except it is finite. The final piece of the
construction is to show that the sequence we find is consistent with respect to the choice of
box: if we chooseM > N and construct a sequence (Ci) of circuits inside C(M) via the above
procedure, then Ci =Ci whenever both of these are defined.

Letting Cj denote the outermost circuit of the (Ci) sequence which lies in C(N) ∪ C̊(N ),
we claim that Cj =D. We note that Cj cannot intersect C(N) , and so lies entirely in C̊(N) ;
similarly, Cj+ 1 does not intersect C(N) ∪ C̊(N) (if Cj+ 1 does not exist, one can replace it
for the remainder of this paragraph by C(M)). By the outermost property of D, we have
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Cj ⊆ [D∪ D̊]. But then Cj =D, since otherwise D would be larger in the partial ordering on
circuits but still lie entirely within Cj+ 1. It is now clear from the construction that Cj = Cj ,
and that Ci = Ci for i < j .

The diameter bounds follow from standard Russo–Seymour–Welsh arguments; we briefly
describe the reasoning behind the final upper bound of (2.1). Indeed, the RSW theorem gives
the existence of a uniform constant c >0 such that, uniformly in each k ≥3, P(Qk) ≥ c,
where

Qk := there exist open circuits O, O and a closed circuit C
in B(2k) \ B(2k−1) with O⊆ C̊ and D⊆ O̊ .

Moreover, Qk is independent of {Q }=k . In particular, with probability one, the density of k
for which Qk occurs is positive.

Now, when Qk occurs, it is easy to see that some Ci from the sequence constructed above
must lie in the region between O and O . In particular, there is a c > 0 such that, almost
surely, the box B(2n) contains at least c n many Ci , for all large n. The bound follows.

The next lemma controls the number of circuits from the above sequence which intersect
fixed boxes. It is a combination of [7], Lemma 6, and the inequality in its proof (second
paragraph in [7], p. 23).

LEMMA 2.4. For c ∈ (0, 1), j ≥ 1 and r, s ∈Z, define

τ (r, s) = τ (r, s; c, j ) =r2c(j +1), (r +3)2c(j +1) × s2c(j +1), (s +3)2c(j +1)

and N (j, c)to be the number of squares τ (r, s)which intersect B(2j+ 1) and intersect two
successive circuits Ck and Ck+1 with diam (Ck) ≥2j . Then for fixed c ∈ (0, 1), there exists
C3 > 0 such that

(2.2) P N (j, c) > j2 ≤ C3
j 2 .

In particular, for fixed c ∈ (0, 1), almost surely,

(2.3) N (j, c) ≤ j2 for all large j .
Moreover, ifN (3)(j, c) is the number of squaresτ (r, s)which intersect B(2j+ 1) and intersect
three successive circuits Ck, Ck+1, Ck+2 with diam(Ck) ≥2j −(log j )2 , then there exists C4 > 0
such that

(2.4) P N (3)(j, c) >0 ≤ C4
j 2 .

In particular, almost surely,

(2.5) N (3)(j, c) =0 for all large j .

The following deterministic lemma is a simplified version of [7], Lemma 7, which is a
consequence of the pigeonhole principle. For any sets of vertices S, S , we write d(S, S) for
min{x − y : x ∈ S, y ∈ S}.

LEMMA 2.5. Let Ck+1 and Ck+2 be two successive circuits from the sequence of
Lemma 2.3. Assume that 2 j ≤ diam(Ck+1) <2j+ 1. Let v(k+1)

1 , v(k+1)
2 , . . . , v(k+1)

M be M ar-
bitrary vertices of Ck+1 for which

(2.6) v(k+1)
p − v(k+1)

q ≥8 · 2cj , for all p, qwith p = q.

If N (j, c) ≤ j2, then at least M − j2 of the vertices v(k+1)
m satisfy d(v(k+1)

m ,Ck+2) >2cj .
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We will also define “good circuits,” which will allow us in Section 3 to construct an infinite
path starting at zero whose intersection with those circuits have low weights. Let be a circuit
surrounding the origin with 2j ≤ diam( ) <2j+ 1. For constants c1, c3 ∈ (0, 1), we consider
open connected sets D with some or all of the following properties:

D⊆ ˚ and D contains exactly one vertex adjacent to ;(2.7)

diam(D) ≥ diam( )c1;(2.8)

the open cluster of D in ˚ contains at least (diam( ))c2 vertices

wm which are adjacent to and satisfy w p − wq ≥ ( diam( ))c1c3

for p = q; moreover, there exists a vertex z ∈D and for each of

the wm an open path from z to wm such that only its endpoint

wm is adjacent to .

(2.9)

Here, the open cluster ofD in ˚ is the largest open connected set in ˚ that containsD. We say
a closed circuit is (c1, c2, c3)-good if any open connected set D with (2.7) and (2.8) also
satisfies (2.9). Note that if is (c1, c2, c3)-good, then for any ĉ2 ≤ c2, it is also (c1, ĉ2, c3)-
good. We will use this definition with D equal to the open cluster of an open segment in a
geodesic from a coupled Bernoulli FPP model. Property (2.9) will allow us to reroute this
segment to end at a vertex wm which is adjacent to a low-weight vertex.

LEMMA 2.6. For any c1, c3 ∈ (0, 1) with c1 sufficiently close to 1, we can choose c2 ∈
(0, 1), depending only on c1 and c3, such that

(2.10)
P ∃ a circuit Ck with 2j ≤diam(Ck) <2j+ 1 which is not (c1, c2, c3)-good

≤ C5e−c5j ,

where C5, c5 depend only on c1, c3. Moreover, given such ci ’s, we can choose c1, c2, c3 ∈
(0, 1) with c1c3 > c1 and c2 = c2 such that (2.10) holds with ci replaced by ci , i =1, 2, 3.

PROOF . The lemma follows directly from [7], Proposition 1, and for this reason we
sketch that proposition in the Appendix. Here, we describe how to apply the proposition
to prove the lemma. In [7], the authors define a circuit to be good if any open connected
set D with (2.7) and (2.8) also satisfies the following (instead of (2.9)):

the open cluster of D in ˚ contains at least (diam( ))c2 self-avoiding paths θm which are
adjacent to , have length ≥ c6 log log(diam( ))(where c6 > 0 is a constant) and satisfy
d(θp, θq) ≥ (diam( ))c1c3 for p = q; moreover, there exists a vertexz ∈D and for each of
the θm an open path from z to θm such that only its endpoint on θm is adjacent to .

Since the above requires more than (2.9), by [7], Proposition 1, we obtain (2.10).

3. Construction of a low-weight path. Let (Ci) be fixed as ( i) for some sequence of
circuits with i ⊆ ˚ i+1. We would like to construct a self-avoiding path from 0 such that
(except for finitely many vertices) it contains only open vertices or some v(k) ∈ k with v(k)

being of low weight. For the definition of low weight, let c2 ∈ (0, 1) (which will be taken to
be the same as the c2 in (2.9)) and recall that I = inf{x >0 : F (x) > pc}.
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DEFINITION 3.1. Let be a circuit such that 0 ∈ ˚ with 2j ≤diam( ) <2j+ 1.

1. If P(tv = I ) >0 and I > 0, we say that a vertex v ∈ is of (j -)low-weight if tv = I
and we define aj = 0 for all j .

2. If P(tv = I ) =0 or I = 0, we fix any nonincreasing sequence (aj ) such that P (I <
tv ≤ I + aj ) ≥2−c2j/ 2−1 and aj → 0 as j → ∞ , and we say that a vertex v ∈ is of ( j -
)low-weight if I < tv ≤ I + aj .

For the following statement, given a configuration of open/closed vertices, let P̄ be the
(regular) conditional distribution of the variables (ωx) given this configuration.

LEMMA 3.2. Choose c1, c3 and c1, c3 in (0, 1) with corresponding c2 = c2 as dictated
by Lemma 2.6, and both c ∈ (c1, c1c3) and ĉ ∈ (0, c1c3). Also fix C6, C7, c7 > 0. There exists
c8 > 0 such that the following holds for all sufficiently largek. For a given configurationη of
open/closed vertices, suppose 2j ≤diam( k+1) <2j+ 1 and v(k) ∈ k satisfies

(3.1) d v(k), k+1 ≥2 diam( k+1) c1.
Assume that:

• N (i, c) ≤ i2, N (i, ĉ) ≤ i2, and N (3)(i, c1) =0 for all i ≥ j,
• one has

(3.2) diam( i+2) ≤ (i +1)C6 diam( i+1) for all i ≥ k,
• one has

(3.3) c7i ≤ log diam( i+2) ≤ C7i for all i ≥ k,
• i+1 and i+2 are (c1, c2, c3)- and (c1, c2, c3)-good for all i ≥ k.

With P̄-probability at least 1 − e−c8j , (conditioned on η) we can find sequences (v(i))i≥k+1
and (D(i))i≥k such that for all i :

1. for i ≥ k, v(i) ∈ i and D(i) is an open path connecting a neighbor of v(i) with a
neighbor of v(i+1);

2. for i ≥ k +1, v(i) is of low weight; and
3. for i ≥ k, D(i) contains only one vertex adjacent to i+1.

PROOF . The proof is similar to the construction of double paths in [7], Section 5. We
will first construct v(k+1) and D(k). Because v(k) ∈ k, there exists an open path D̂(k) from a
neighbor of v(k) to a neighbor of k+1 that only contains one vertex adjacent to k+1. Due to
(3.1), we have

diam D̂(k) ≥2 diam( k+1) c1 −4 ≥ diam( k+1) c1.

Since k+1 is (c1, c2, c3)-good, there are at least (diam( k+1))c2 ≥ 2c2j many vertices
wm in the open cluster of D̂(k) which are adjacent to k+1 and satisfy w p − wq ≥
(diam( k+1))c1c3 if p = q. This implies (for k large) w p − wq ≥ 16(diam( k+1))c if
p = q. So if we choose (v(k+1)

m )m as vertices in k+1 adjacent to the wm’s (in some de-
terministic and η-measurable way), then if p = q,

v(k+1)
p − v(k+1)

q ≥8 diam( k+1) c ≥8 · 2cj .

Since N (c, j ) ≤ j2, by Lemma 2.5, at least 2c2j −j 2 of the v(k+1)
m ’s satisfy d(v(k+1)

m , k+2) >
2cj . We claim that with conditional probability at least 1 − e−c9j , more than j 2 of the
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v(k+1)
m ’s have low weight. To see why, we use the Chernoff bound: letting X1, . . . , Xr be

i.i.d. Bernoulli random variables with parameter 2−c2j/ 2, and r =2c2j , then

P̄ at most j 2 of the tv(k+1)
m

’s have low weight ≤P X1 + · · · + Xr ≤ j2

= P exp −(X1 + · · · + Xr) ≥ e−j 2

≤ ej 2 E exp(−X1) r

= ej 2
1 − 2−c2j/ 2 + e−12−c2j/ 2 2c2j

≤ e−c102c11j .

(Here, we have assumed that Item 2 of Definition 3.1 holds; otherwise, the proof is even
easier.) This shows the claim. When it holds (i.e., more than j 2 of the vertices have low
weight), we say that “the first stage is successful”. Note that given η, the outcome of the first
stage depends only on the weights for vertices on k+1.

Assuming that the first stage is successful, we can choose v(k+1) ∈ {v(k+1)
m }such that both

conditions hold:

d v(k+1), k+2 > 2cj and v(k+1) is of low-weight.

This implies by (3.2) that for large k,

(3.4) d v(k+1), k+2 ≥2 diam( k+2) c1.

Last, we define D(k) by modifying D̂(k) so that it begins at a neighbor of v(k) and ends at a
neighbor of v(k+1) (with only one vertex adjacent to k+1).

Now we construct the further paths D(k+1),D(k+2), . . .and v(k+2), v(k+3), . . .. Inequality
(3.4) means we can find an open pathD̂(k+1) connecting a neighbor ofv(k+1) with a neighbor
of k+2, with only one vertex adjacent to k+2, such that

diam D̂(k+1) ≥2 diam( k+2) c1 − 4 ≥ diam( k+2) c1.

Therefore we can repeat the argument leading to (3.4) with D̂(k+1) in place of D(k), using
now that k+2 is (c1, c2, c3)-good (and putting ĉ in place of c), to construct an open path
D(k+1) from a neighbor of v(k+1) to a neighbor of some v(k+2) ∈ k+2 of low weight that
has only one vertex adjacent to k+2. Again, we will only be able to do this with conditional
probability ≥ 1 − exp(−c9 log2 diam( k+2)) , given both η and the outcome of the first
stage. (Note that conditioning on the outcome of the first stage only gives information about
the weights on k+1.) If we are able to find such D̂(k+1) and v(k+2), then we say that “the
Stage 2a is successful”.

Unfortunately the argument above only givesd(v(k+2), k+3) ≥2(diam( k+3))α for some
α < c1 and this is not enough to iterate the argument (the estimate will continue to deteriorate
at each further iteration). We now claim that we can choose D(k+1) and v(k+2) such that

(3.5) d v(k+2), k+3 ≥2 diam( k+3) c1.

To show (3.5), we argue as follows. If it so happens that diam(D(k+1)) ≥ (diam( k+2))c1 ,
then we repeat the argument leading to (3.4) withD(k+1) in place ofD(k) (and the same value
of c) to produce yet another open pathD(k+1) connecting a neighbor ofv(k+1) with a neighbor
of some v(k+2) ∈ k+2 of low weight, with only one vertex adjacent to k+2, but this time
we will have the estimate (3.5) using D(k+1) in place of D(k+1). The conditional probability
that we can find such D(k+1) and v(k+2) is again at least 1 −exp(−c9 log2 diam( k+2)) . (If
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we can find such a path and vertex, we say that “the Stage 2b is successful”.) Otherwise, we
must have

diam D(k+1) < diam( k+2) c1,
and so
(3.6) v(k+1) − v(k+2) ≤diam D(k+1) + 4 < 2 diam( k+2) c1.
In this case, we always declare Stage 2b to be successful. If (3.5) fails, for large k, we use
(3.2) to see that

d v(k+2), k+3 < 2 diam( k+2) c1.
This, together with (3.6), implies that each of k+1, k+2, k+3 must have a point inv(k+2) +
B(2(diam( k+2))c1). Letting i be such that 2i ≤diam( k+2) <2i+1, there exist r, s so that

v(k+2) ∈ r2c1(i+1), (r +1)2c1(i+1) × s2c1(i+1), (s +1)2c1(i+1) .
Therefore, if q is chosen such that c1q ≥4,

τ 2−c1q(r −2) , 2−c1q(s −2) ; c1, i + q

⊇ r2c1(i+1), (r +1)2c1(i+1) × s2c1(i+1), (s +1)2c1(i+1) + B 2 · 2c1(i+1)

would intersect B(2i+1) ⊆ B(2i+q+1), as well as k+1, k+2, and k+3. Since diam( k+3) ≥
diam( k+2) ≥ 2i and by (3.2) and (3.3), diam( k+1) ≥ (k + 1)−C6 diam( k+2) ≥
2i+q−(log (i+q))2 for large i , we would have N (3)(i + q, c1) = 0, but this is impossible by
the hypothesis. Therefore (3.5) holds.

At this point, we have constructed D(k), D(k+1), v(k+1), and v(k+2). The conditional prob-
ability that Stages 1, 2a, 2b are all successful is at least

P̄(Stage 2b is successful | Stages 2a and 1 are successful)

× P̄(Stage 2a is successful | Stage 1 is successful)

× P̄(Stage 1 is successful)

≥ 1 − exp −c9 log2 diam( k+2) 2 1 − e−c9j .
Now that we have constructed v(k+2) and D(k+1) such that (3.5) holds, we can now repeat

the argument we just gave that derived (3.5) from (3.4), but with v(k+2), v(k+3) in place of
v(k+1), v(k+2) and D(k+1), D(k+2) in place of D(k), D(k+1). From this, we reproduce the
estimate (3.5) with v(k+3), k+4 in place of v(k+2), k+3, so long as the corresponding steps
2a and 2b (which we will label 3a and 3b) are successful. The probability that these Stages
3a and 3b are both successful, conditioned on the success of Stages 1, 2a, and 2b, is at least

1 − exp −c9 log2 diam( k+3) 2.
Continuing in this way, we produce all pathsD(i) and vertices v(i) with conditional probabil-
ity at least

1 − e−c9j
∞

i=k
1 − exp −c9 log2 diam( i+2) 2

≥ 1 − e−c9j
∞

i=k
1 − exp(−c9c7i/ 2) 2

≥ 1 − e−c9j 1 − e−c12k

≥1 − e−c8j .
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Here, we have used (3.3) to go from the first to second line, and then (3.3) again, along with
the inequality diam( k+1) ≥2j , to go from the third to fourth line. This completes the proof.

REMARK 2. In the statement of Lemma 3.2, the vertex v(k) is assumed to be on k and
to obey the distance bound (3.1). It is straightforward to check that these conditions may be
replaced by the following: there is an open path starting at a neighbor of v(k) of diameter
(diam( k+1))c1 that contains only one vertex adjacent to k+1. (Here v(k) is not assumed to
be on k.) In this case, the result holds with the same conditional probability bound: at least
1 − e−c8 log2 diam( k+1) .

4. Universality of the time constant (asymptotic form). In this section, we prove (1.3).
We define (tB

x )x∈Z2 to be a family of Bernoulli random variables coupled to the weights (tx):
we set tB

x = I ·1{ωx>1/2}. We also write TB for the first-passage time using the weights (tB
x ).

By [14], Proposition 3.6,

(4.1) lim
n→∞

TB(0, ∂B(n))
log n

= I
2
√

3π
almost surely.

We now construct an infinite path using Lemma 3.2, so choose c1, c3 and c1, c3 with
corresponding c2 = c2 as dictated by Lemma 2.6. Also fix C6, C7, c7 > 0, c ∈ (c1, c1c3), and
ĉ ∈ (0, c1c3). For j, k ≥1, let j,k be the set of η for which there exists v(k) such that the
hypotheses of Lemma 3.2 hold for η, j , k, v(k). (In particular, 2j ≤diam(Ck+1) <2j+ 1.) By
the lemma, the probability that there exists an infinite path γ starting at some vertex v(k) of
Ck (for k fixed and large) that is open except for its intersection with each Ci (i ≥ k), which
consists of a low-weight vertex, is at least

∞

j= 1
P( j,k ) 1 − e−c8j ≥

∞

j=c4k/2
P( j,k ) 1 − e−c8j

≥ 1 − e−c8c4k/2
∞

j=c4k/2
P( j,k ).

(4.2)

By Lemma 2.4, almost surely, there exists a (random) integer j such that

max N (i, c), N (i, ˆc), N i, c1 ≤ i2 and N (3) i, c1 = 0 for all i ≥ j.

Also, by a minor adaptation of [7] and the above Lemma 2.3, equation (5.25), the probability
that (3.2) and (3.3) hold goes to one as k → ∞ , so long as C6 and C7 are large enough and
c7 is small enough. Last, by Lemma 2.6, the probability tends to one as k → ∞ that for all
i ≥ k, Ci+1 and Ci+2 are (c1, c2, c3)- and (c1, c2, c3)-good. As for condition (3.1), if it fails
for our k, then we must have N (i, c1) > i2 for some i ≥ (log2 k) −1. This has probability
tending to zero as k → ∞ . These facts, in conjunction with the fact that ( j,k )j is a disjoint
family for each k, shows that P( j j,k ) → 1 as k → ∞ . Therefore, to show that (4.2) tends
to 1 as k → ∞ , we must show that c4k/2

j= 1 P( j,k ) → 0 as k → ∞ . But by disjointedness
again,

c4k/2

j= 1
P( j,k ) ≤P diam(Ck+1) ≤2c4k/2+1 → 0 as k → ∞

by (2.1). We conclude that almost surely, there exists an infinite path γ as described above,
starting at a vertex v(k) of Ck for some (random) k.
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Fix a configuration ωfor which γ exists, and write γn for the segment of γ starting at v(k)

and ending at the first intersection of γ with ∂B(n). (γn is set to be empty if v(k) /∈ B(n).)
Then

TB 0, ∂B(n) ≤ T 0, ∂B(n) ≤ T 0, v(k) + T (γn)

≤ T 0, v(k) +
∞

= 1
I + a() 1{C ∩B(n)=∅},

(4.3)

where a() = a j if 2 j ≤ diam(C ) <2j+ 1. The sum on the right behaves like I #{ : C ∩
B(n) = ∅}, which we will show is similar to T B(0, ∂B(n)). Rigorously, given  > 0, since
aj ≤ for j large, the above is bounded by

T 0, v(k) +
L

= 1
I + a() 1{C ∩B(n)=∅}+ (I + ) #  : C ∩ B(n) =∅ ,

where L is some (random) finite number independent of n. We next use that TB(0, ∂B(n))
equals I times the maximal number of disjoint closed circuits surrounding 0 inB(n) (see, for
instance, [14], Proposition 2.4) to bound this above by

(4.4) T 0, v(k) +
L

= 1
I + a() 1{C ∩B(n)=∅}+ (I + ) TB 0, ∂B(n) /I + Nm ,

where Nm is the maximal number of disjoint closed circuits surrounding 0 that intersect
B(2m+1) \ B(2m), and m = log2 n . By the RSW theorem and the BK inequality (see [3],
Ch. 11), one has

P(Nm≥ K) ≤ e−c13K for some c13 > 0 and all K ≥ 1,
and so by the Borel–Cantelli lemma, Nm≤ log2 m for all large m, almost surely. Returning
to (4.4), for large n, we obtain the bound

T 0, v(k) +
L

= 1
I + a() 1{C ∩B(n)=∅}+ (I + ) TB 0, ∂B(n) /I + log2(log2 n) .

Combining this with (4.1) and (4.3), we obtain
I

2
√

3π
≤ lim inf

n→∞
T (0, ∂B(n))

log n
≤ lim sup

n→∞
T (0, ∂B(n))

log n
≤ I + 

2
√

3π
almost surely.

As was arbitrary, this completes the proof.

5. Universality of limiting variance. In this section, we prove (1.4) under the moment
assumption E min{t1, . . . , t6}2 < ∞. We will use the martingale introduced in [9]. Define, for
k ≥0,

A(k) = B2k+1 \ B 2k ,
and

m(k) =inf n ≥ k : A(n)contains an open circuit surrounding 0 ,
which is a.s. finite due to the RSW theorem. We also define

Ok = innermost open circuit surrounding 0 in A(m(k))
for k ≥0 and O−1 = {0}. Finally, for k ≥ −1, we define

Fk = σ-field generated by {{Ok = } ∩ {tx1 ∈ A1, . . . , txn ∈ An}} ,xi ,Ai
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for a circuit surrounding 0 outside of B(2k), xi ∈ , and Ai ⊆R Borel. (This is the sub-σ-
field of our original σ-field F “generated by the weights on and inside Ok,” and refers to
the union of and its interior ˚ .) We note thatO and T (0,O ) are measurable with respect
to Fk for  ≤ k .

Since Ok−1 ⊆Ok, we have Fk−1 ⊆Fk, and hence

T (0,On) −ET (0,On) =
n

k=0
E T (0,On)|Fk − E T (0,On)|Fk−1

=:
n

k=0
k.

Then

Var T (0,On) =
n

k=0
E 2

k.

Write B
k for the corresponding k with Bernoulli weights. (Here, as in the last section, we

couple (tx) with (tB
x ), a family of i.i.d. Bernoulli(1/2) random variables, and write TB for

the passage time using (tB
x ).) We would like to compare Var(T (0,On)) with Var(TB(0,On)),

and so we would like to bound E 2
k − E( B

k)2.
First we need another formula for k. Let ( ,F , P ) be another copy of the probability

space (, F , P). Let E denote the expectation with respect to P and ω denote a sample
point in . Define

n, ω, ω= mm(n, ω) +1, ω .

Now, we have

k(ω) = TOk−1(ω),Ok(ω) (ω) +E T Ok(ω),O(k,ω,ω ) ω ω
−E T Ok−1(ω),O(k,ω,ω ) ω ω .

The above comes from the following facts: for 0 ≤ k ≤ n,
• T (0,On) = T (0,Ok−1) + T (Ok−1,Ok) + T (Ok,On),
• by (conditional) independence,

E T (Ok,On) |Fk = E T Ok,On ω ω ,

• T (Ok(ω),On(ω))(ω) = T (Ok(ω),O(k,ω,ω )(ω))(ω) + T (O(k,ω,ω )(ω),On(ω))(ω).
See the proofs of [9], Lemmas 1, 2, for details, and the discussion around [9], equation (2.22),
for the motivation of the random variable (k, ω, ω).

By the Cauchy–Schwarz inequality,

Var T (0,On) −Var TB(0,On) ≤
n

k=0
E 2

k − E B
k

2

≤
n

k=0
E k −  B

k
2 1/2 E k +  B

k
2 1/2.

Now,

E k +  B
k

2 ≤2E 2
k + 2E B

k
2 ≤2 E k −  B

k
2 + E B

k
2 2 + 2E B

k
2

≤4E k −  B
k

2 + 6E B
k

2,



1716 M. DAMRON, J. HANSON AND W.-K. LAM

so using
√

a + b ≤√ a +√
b for a =4E( k −  B

k)2 and b =6E( B
k)2, we obtain

Var T (0,On) − Var TB(0,On) ≤2
n

k=0
E k −  B

k
2

+
√

6 sup
k

E B
k

2
n

k=0
E k −  B

k
2 1/2.

Due to [2], Lemma 5.5, supkE( B
k)2 < ∞, and so

(5.1) Var T (0,On) − Var TB(0,On) ≤ C8

n

k=0
E k −  B

k
2 1/2 + E k −  B

k
2 .

To bound E( k −  B
k)2, we write

X = X(k) = TOk−1(ω),Ok(ω) (ω) − TB Ok−1(ω),Ok(ω) (ω),

Y = Y (k) = TOk(ω),O(k,ω,ω ) ω ω − TB Ok(ω),O(k,ω,ω ) ω ω ,
and

Z = Z(k) = TOk−1(ω),O(k,ω,ω ) ω ω − TB Ok−1(ω),O(k,ω,ω ) ω ω .
Then by the Cauchy–Schwarz and Jensen inequalities,

(5.2) E k −  B
k

2 = E X +E Y −E Z 2 ≤9 max EX2, EE Y2, EE Z2 .
We will only bound EE Y2, as bounding EE Z2 is similar and bounding EX2 is even easier.

We first give an alternate representation for EE Y2 which only depends on ω.

LEMMA 5.1. One has

(5.3) EE Y2 = EỸ2,
where Ỹ = T (Ok(ω),O(k,ω,ω)(ω))(ω) − TB(Ok(ω),O(k,ω,ω)(ω))(ω).

PROOF . To show this, it suffices to show that
TY , TB

Y = TỸ , TB
Ỹ in distribution,

where
TY = T Ok(ω),O(k,ω,ω ) ω ω ,
TỸ = T Ok(ω),O(k,ω,ω)(ω) (ω)

and TB
Y , TB

Ỹ are defined analogously using the Bernoulli variables (tB
x ). To prove this, note

that for any Borel set E ⊆R2,
P × P TY , TB

Y ∈ E

=
≥k ⊆A()

P × P TY , TB
Y ∈ E, m(k, ω) = ,Ok = .

The summand equals
P × P T ,Om(+ 1,ω) ω ω , TB ,Om(+ 1,ω) ω ω ∈ E, m(k, ω) = ,Ok = 

= P T ,Om(+ 1,ω) ω ω , TB ,Om(+ 1,ω) ω ω ∈ E
× P m(k, ω) = ,Ok = 

= P T ,Om(+ 1,ω)(ω) (ω), TB ,Om(+ 1,ω)(ω) (ω) ∈ E P m(k, ω) = ,Ok = .
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Note that the event {m(k, ω) = ,Ok = }depends only on variables associated to vertices
in . (For more detail, see the discussion above [9], equation (1.20).) So we can regroup the
probabilities by independence, and reverse the steps to obtain P ((TỸ , TB

Ỹ ) ∈ E). This shows
(5.3).

We will also need some preliminary bounds on moments of Ỹ and k.

LEMMA 5.2. One has E Ỹ2 < ∞ for all k. Also, there exists C9 < ∞ and k0 such that
if k ≥ k0, then E Ỹ4 ≤ C9. The same bounds hold for k: one has E 2

k < ∞ for all k and
E 4

k ≤ C9 for all k ≥ k0.

PROOF . The proofs for k and Ỹ are very similar, so we show the case ofỸ . The first step
is to (nonoptimally) bound thepth moment of annulus passage times. Letm, nbe nonnegative
integers with m ≤ n. We will show that for any p >0, there exist C10, C11 > 0 and m0 such
that

(5.4) ET B(m), ∂B(n)p ≤ C10 log
n
m

C11
if n ≥ m ≥ m0.

To do this, we takeR to be a large fixed integer, and constructR disjoint sectors as follows.
Define the first sector S1 to be the open region of R2 whose boundary consists of the circle
of radius m centered at 0, the circle of radius 2 n centered at zero, the positive e1-axis, and
the ray started at 0 (in the first quadrant) with angle π/R with the positive e1-axis. Si for
i = 2, . . . , Ris the rotation of S1 by the angle π(i − 1)/R . (We choose the constant m0 to
prevent the sectors from being exiguous.) For i = 1, . . . , R, let πi be a path connecting the
inner boundary of Si to the outer boundary with the minimal number Ni of nonzero-weight
vertices. (See Figure 2.) Then since the variables T (πi) are independent, for  ∈ (0, 1/6) (so
that a vertex-weight tv satisfies Etv < ∞),

ET B(m), ∂B(n)p ≤E min T (π1), . . . , T (πR) p

≤1 +
∞

1
pyp−1 max

i
P T (πi) ≥ yR dy

≤1 +
∞

1
pyp−1 maxi ET (πi)

y
R

dy(5.5)

= 1 + max
i

ET (πi)
R ∞

1
pyp−1−R dy

≤ C12 1 + max
i

ET (πi)
R

,

so long as R > p/ . The inner expected value is computed by introducing K = log3(n/m)
and writing

ET (πi) =ET (πi)1{Ni≤K}+
∞

j= 1
ET (πi)1{Ni∈(j K,(j +1)K]}.

By conditioning on the sigma-algebra generated by the family (tB
x ), we can bound

ET (πi)1{Ni∈(a,b]}≤ 2bEt P(Ni ≥ a) for any integers a, b with 0 ≤ a ≤ b. Here, Et is
the th moment of a vertex weight. Applying this in the above, we obtain

(5.6) ET (πi) ≤2K Et 1 +
∞

j= 1
(j + 1)P(Ni ≥ jK) .
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FIG . 2. The blue solid lines are the πi ’s, paths connecting the inner boundary ofSi to the outer boundary with
the minimal number Ni of nonzero-weight vertices. On S1 (say), for each nonzero-weight vertex that π1 passes
through, by minimality and planar duality, there must be a closed path containing that vertex and connecting the
bottom of S1 to the top of S1. These closed paths are the red dotted curves in the figure.

Now to bound P(Ni ≥ jK) , we note that if Ni ≥ jK , then by planar duality, there must be
at least jK many disjoint paths connecting the side boundaries of Si to each other, and con-
sisting only of nonzero-weight vertices. Splitting Si into at most log2(n/m) many sets
of the form Si ∩ [B(2k) \ B(2k−1)] and writing these sets as {Sri }r , we see that at least
j K/ log2(n/m) many of these paths must intersect some Sr

i . By the RSW theorem, the
probability that there exists at least one such path is bounded above by 1 − c14 for some c14
positive, uniformly in r, m, n. By the BK inequality, we therefore obtain

P(Ni ≥ jK) ≤
r

P at least jK/ log2(n/m) such paths intersect Sr
i

≤ log2(n/m) (1 − c14)j K/ log2(n/m)

≤ C13e−c15j .
We plug this estimate back into (5.6) to obtain

ET (πi) ≤ C14 log3(n/m),
and then back in (5.5) to obtain

ET B(m), ∂B(n)p ≤ C15 log3R(n/m).
This shows (5.4).

The next step is to extend (5.4) in the case when p =2 to all m, n with n ≥ m. We claim
that there are numbers C16, C17, C18 such that

(5.7) ET B(m), ∂B(n)2 ≤ C16 + C17 log
n
m

C18
if n ≥ m ≥0.

To do this, we note that if n ≥ m ≥ m0 (where m0 is from (5.4)), then the inequality follows
from (5.4). Otherwise m < m0 and either n ≤ m0 + 100, say, or n > m0 + 100. In the first
case, we upper bound

(5.8) ET B(m), ∂B(n)2 ≤ET 0, ∂B(m0 + 100) 2.



UNIVERSALITY IN CRITICAL FPP 1719

In the second case, we let π be a geodesic between B(m0) and ∂B(n) (chosen in some
deterministic way) and π be the portion of π from its initial point to its first intersection with
∂B(m0 +100). Then

ET B(m), ∂B(n)2 ≤2ET (0, π )2 + 2ET B(m0), ∂B(n) 2

≤2
P

ET (0, P )2 + 2ET B(m0), ∂B(n) 2,(5.9)

where the sum is over all paths P that start at ∂B(m0) and end at ∂B(m0 +100).
We bound the terms in (5.8) and (5.9) similarly. For example, for (5.9), a moment’s reflec-

tion shows that one can construct six deterministic paths ρ1, . . . , ρ6 that start at 0 and end at
P , and are vertex disjoint except for their initial points. The upper bound we obtain is then
(using (5.4))

ET B(m), ∂B(n)2 ≤2
P

E min T (ρ1), . . . , T (ρ6) 2 + C17 log
n
m

C18
.

The argument of [1], Lemma 3.1, shows that since we have assumed E min{t1, . . . , t6}2 < ∞,
then the first term on the right is bounded by a constant. The bound on (5.8) using this method
is just a constant, so this implies (5.7).

We now move to showing that for somek0,
(5.10) EỸ4 ≤ C9 for all k ≥ k0.
Given (5.4), the claimed inequality will follow forthwith. Indeed, sinceTB ≤ T, we write the
left side as

E T Ok(ω),O(k,ω,ω)(ω) (ω) − TB Ok(ω),O(k,ω,ω)(ω) (ω) 4

≤E T Ok(ω),O(k,ω,ω)(ω) (ω) 4

=
∞

r=k

∞

s=r+1
E T Ok(ω),O(k,ω,ω)(ω) (ω) 41{m(k)=r,(k,ω,ω)=s}

≤
∞

r=k

∞

s=r+1
ET B 2r , ∂B 2s+1 41{m(k)=r,(k,ω,ω)=s}.

(5.11)

By the Cauchy–Schwarz inequality, we obtain the upper bound
∞

r=k

∞

s=r+1
ET B 2r , ∂B 2s+1 8P m(k) = r, (k, ω, ω) = s.

Assuming that k ≥ k0, where k0 is large enough so that B(2k0) ⊇ B(m0) (here m0 is from
(5.4) with p =8), we can use (5.4) to further bound this by

C18

∞

r=k

∞

s=r+1
(s +1 − r)C19 P m(k) = r, (k, ω, ω) = s

≤ C19

∞

r=k
e−c16(r−k)

∞

s=r+1
(s +1 − r)C20e−c17(s−r)

≤ C21

∞

r=k
e−c18(r−k)

≤ C22.

(5.12)

In the second line, we have used the RSW theorem. This proves (5.10).
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Last, to show E Ỹ2 < ∞ for all k, due to (5.10), we need only consider the case when
k < k0. Then we move to (5.11) with an exponent 2 instead of 4:

EỸ2 ≤
∞

r=k

∞

s=r+1
ET B 2r , ∂B 2s+1 21{m(k)=r,(k,ω,ω)=s}.

The proof from here follows similar lines to that of the above, so we only briefly indicate
the idea. For values of r, s such that r ≤ k0 and s ≤ k0 + 100, we upper bound by removing
the indicator and summing over these (finitely many) values with the bound (5.7) to obtain a
finite number. For values ofr, s which are > k0, we apply the Cauchy–Schwarz inequality to
obtain a sum over such r, s of

ET B 2r , ∂B 2s+1 4P m(k) = r, (k, ω, ω) = s,

and sum this as in the case of bounding E Ỹ4. Last, if r ≤ k0 but s > k0 + 100, we bound
T (B(2r), ∂B(2s+1)) above by the sum of T (0, π̃ )and T (B(2k0), ∂B(2s+1)) (where π̃ is a
geodesic connecting B(2k0) to ∂B(2k0+100) chosen analogously to that above (5.9)), and note
that the first term has finite second moment. The second term is bounded as in the case where
r, s > k0. Combining the cases will produce the final inequality, EỸ2 < ∞.

To bound EỸ2 from (5.3) more tightly, we introduce two events. Choose c1, c3 and c1,
c3 with corresponding c2 = c2 as dictated by Lemma 2.6. Also fix c ∈ (c1, c1c3), and ĉ ∈
(0, c1c3). Write C̃k for the first circuit in the sequence in Lemma 2.3 with Ok in the interior
of C̃k, and let

Fk = ∃v ∈Ok such that d(v,C̃k) <2 diam(C̃k) c1 .
Also, for C6, C7, c7 > 0, let Gk be the event that at least one of the following fails:

• each circuit from the sequence in Lemma 2.3 with diameter at least 2 k is (c1, c2, c3)-good
and (c1, c2, c3)-good,

• N (j, c) ≤ j2, N (j, ĉ) ≤ j2, and N (3)(j, c3) =0 for all j ≥ k,
• diam(Ci+2) ≤ (i +1)C6 diam(Ci+1) and c7i ≤ log(diam(Ci+2)) ≤ C7i for all i such that Ci

has diameter at least 2k.

Then,

(5.13) EE Y2 = EỸ2 = EỸ21F c
k∩Gc

k
+ EỸ21Fk∪Gk.

LEMMA 5.3. For C6 and C7 chosen to be large enough and c7 chosen to be small
enough, there exist C23, C24, c19 > 0 such that

P(Gk) ≤ C23/k
and

(5.14) P(Fk) ≤ C24e−c19k.

PROOF . The bound on P(Gk) follows from Lemma 2.6, (2.2), (2.4), and the fact that for
all k ≥1,

(5.15) P log diam(Cj+ 2) < c7j or ≥ C7j for some j ≥ k ≤ C25
k

,

and

(5.16) P diam(Cj+ 2) > (j +1)C6 diam(Cj+ 1) for some j ≥ k ≤ C26
k

.
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Here C6, C7 are chosen large enough and c7 is chosen small enough. One can show both
(5.15) and (5.16) hold for all k by following the proof of [7], Lemma 4. We omit the details
here.

We now move to the proof of the second statement, the bound on P (Fk). In A(r) (r ≥0),
let Ôr be the innermost open circuit (if there exists one) and let Ĉr be the first circuit in the
sequence in Lemma 2.3 with Ôr in the interior of Ĉr . BecauseOk ⊆ A(m(k)), the probability
P(Fk) equals

∞

=k
P ∃v ∈Ok with d(v,C̃k) <2 diam(C̃k) c1 | m(k) = P m(k) = 

≤
∞

=k
P ∃v ∈Ô with d(v,Ĉ ) <2 diam(Ĉ ) c1 |

∃open circuit around 0 in A() e−c20(−k) .

(5.17)

To change the conditioning above, we used independence of the site variables in disjoint
annuli, and to bound P(m(k) = ), we used the RSW theorem (see [9], equation (2.28)).

To bound (5.17), we first show that for any choice ofν ∈ (c1, 1), one has 2(diam(Ĉ ))c1 <
2ν with high probability. To see this, fix α >1 and consider P(diam(Ĉ ) ≥2α ). For r ≥0,
define Er to be the event that:

• there exists a closed circuit surrounding 0 in A(r) , and
• there exists an open circuit surrounding the above closed circuit in A(r) .

By the RSW theorem, there exists κ >0 such that P (Er) > κ for all r ≥ 0. Because there
is no closed circuit surrounding 0 strictly between Ô and Ĉ , the event {diam(Ĉ ) ≤2d}
contains Ed. Therefore, by independence,

(5.18) P diam(Ĉ ) ≥2α | ∃open circuit around 0 in A() ≤P
p()

k=1
E c

+k ≤ e−βp()

for some β >0 depending only on α, and p() is the integer such that

diam B 2+p() ≤2α < diam B 2+p()+ 1 .

Solving for p() , we see that p() > (α −1) − 5/2. Thus

P diam(Ĉ ) ≥2α ≤ e−β

for some β > 0 depending only on α.
In particular, for any ν ∈ (c1, 1), we can apply (5.18) with α =1+ν/c1

2 to obtain

P ∃v ∈Ô such that d(v,Ĉ ) <2 diam(Ĉ ) c1 | ∃open circuit around 0 in A()

≤P ∃v ∈Ô such that d(v,Ĉ ) <2ν | ∃open circuit around 0 in A() + e−β

≤ C27P ∃v ∈Ô such that d(v,Ĉ ) <2ν + e−β

(5.19)

for some β > 0 depending on ν and c1. Here, we have used the RSW theorem to remove the
conditioning.

We now coverA() by the squares τ (r, s)from Lemma 2.4. These were defined as

τ (r, s) = τ (r, s; ν, ) =r2ν(+ 1), (r +3)2ν(+ 1) × s2ν(+ 1), (s +3)2ν(+ 1) ,
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FIG . 3. If Ô is too close to Ĉ = Cq, then locally there is a 6-arm event (see the blue annulus). Four of the six
arms are furnished by the circuits Ô and Ĉ themselves, and the other two, drawn in red, exist because Ô is
innermost and Ĉ is outermost in the interior ofCq+1. If Cq+1 is also close to Ĉ , there is even a 7-arm event.

where ν (as above) is any number in (c1, 1). These squares are defined so that any v ∈ A()
is in the central square τ (r, s)of sidelength 2ν(+ 1) of some τ (r, s).

To bound the probability in (5.19), we need the notion of arm events. For any j ≥ 1, any
sequence σ = (σ1, . . . , σj ), where σi ∈ {open, closed}, and any positive integers n, N with
n ≤ N, we define the j -arm event, Aj,σ (n, N ), to be the event that there existj disjoint paths
from B(n) to ∂B(N) , and the i th path has occupation status σi (either open or closed), taken
in counterclockwise order. Similarly, we define A1/2

j,σ (n, N )and A3/4
j,σ (n, N )in the same way,

but further restrict the paths to lie entirely in the upper half plane and in the union of the first
three quadrants respectively. It is known (see, for instance, [10] or [11]) that if the σi ’s are
not all open or all closed (this is irrelevant except in the full plane),

(5.20)
P Aj,σ (n, N )= N

n
−(j 2−1)/12+o(1)

,

P A1/2
j,σ (n, N )= N

n
−j (j+1)/6+o(1)

as N/n → ∞.

Further, by conformal invariance of limiting crossing probabilities, one can also deduce that

(5.21) P A3/4
j,σ (n, N )= N

n
−j (j+1)/9+o(1)

as N/n → ∞.

For our chosen ν ∈ (c1, 1), now pick ν ∈ (ν,1), and suppose that the event

∃v ∈Ô such that d(v,Ĉ ) <2ν

occurs and select such a v. We will sketch the idea of how arm events help us to bound the
probability of this event. Because it is a standard “arms reckoning” argument, we omit details
and refer the reader to similar arguments in [7], Lemma 6. Choose a central square τ (r, s)
that contains v. If the distance between τ (r, s)and the box B(2 ) is at least 2 ν , then there
is a 6-arm event in B(v,2ν ) \ τ(r, s)(here B(v, q) = v + B(q)). Otherwise, it will yield a
5-arm event on a half plane or on a 3/ 4-plane, depending on the position of τ (r, s).
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The reason that a 6-arm event will occur is as follows. First, sinceÔ is the innermost open
circuit in A() , for any vertex inÔ , in particular v, there exists a closed path from that vertex
to the inner boundary of A() . Since B(v,2ν ) ⊆ A() , there is a closed path from τ (r, s)
to ∂B(v,2ν ). The circuit Ô furnishes two more disjoint open paths. Similarly, because
Ĉ = Cq is a circuit in the sequence of Lemma 2.3, for any vertex on Ĉ , there exists an open
path from that vertex to the next circuit in the sequence, Cq+1. If Cq+1 does not intersect
B(v,2ν ) \ τ(r, s), then we choose for our other three paths the open path mentioned in the
previous sentence, and two disjoint closed paths furnished by the circuitĈ . These would give
the final three of the required six arms.

If, on the other hand, Cq+1 does intersect B(v,2ν ) \ τ(r, s), then we have six arms from
τ (r, s)to the boundary of some intermediate annulus (between τ (r, s)and B(v,2ν )), and
then seven arms from the boundary of this annulus to ∂B(v,2ν ) (see Figure 3). (The cir-
cuits Ĉ and Cq+1 furnish four more arms.) Writingπj (n1, n2) for the probability of thej -arm
event in B(2ν+(ν −ν)n2) \ B(2ν+(ν −ν)n1), where n2 > n1, and summing over possible posi-
tions of the intermediate annulus, we have the following probability bound corresponding to
cases in which τ (r, s)has distance at least 2ν from B(2 ):

C28# τ (r, s)intersecting B 2+ 1
− 1

r=1
π6(0, r)π7(r +1, ).

The sum is further bounded above by

C292(2−2ν)
− 1

r=1
2−(35/12+o(1))(ν −ν)r2−(4+o(1))(ν −ν)(−r)

≤ C302(−(35/12+o(1))(ν −ν)+(2−2ν)) ,

where the exponents −35/ 12 and −4 come from (5.20) (putting j = 6 and 7 respectively).
The right side goes to 0 if ν ∈ (24

35 + 11
35ν,1).

To deal with the cases where τ (r, s)is close to either a corner or a side of B(2 ), we use
a similar argument, but further decomposing the arm events according to their distance to
B(2 ). Because the exponents for the 5-arm event in the half plane and in the 3 / 4-plane are
5 and 10/ 3 respectively (putting j = 5 in (5.20) and (5.21)), and both are greater than 2, we
are able to choose ν close enough to 1 so that the probability corresponding to such τ (r, s)
is also small. Putting together all the cases, we have

P ∃v ∈Ô such that d(v,Ĉ ) <2ν ≤ C31e−c21 .

Plugging this back into (5.19), and then back into (5.17) completes the proof.

We return to (5.13). First, the inequality

(5.22) EỸ21Fk∪Gk ≤ C32/
√

k

follows directly from Lemmas 5.2 and 5.3. (For small k, we remove the indicator and use
Lemma 5.2 only, and for larger k, we bound by EỸ4P(Fk ∪ Gk) and apply both lemmas.)

Next, we bound the second term of (5.13) by showing that for large k,

(5.23) EỸ21F c
k∩Gc

k
≤ C33a2

k + C34e−c8k/2.

To do this, we apply Remark 2. Since C̃k is the first circuit in the sequence from Lemma 2.3
outside of Ok, there are no closed circuits in the region strictly between them. By planar
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duality, there must be an open path D connecting a neighbor of Ok to a neighbor of C̃k.
Choose v(k) to be any vertex of Ok adjacent to this open path. Because the event F c

k occurs,
v(k) must have distance at least 2(diam(C̃k))c1 from C̃k, and so the diameter of the open path
D is at least (diam(C̃k))c1 . Together with the conditions comprising the event Gc

k, this is
sufficient to invoke the remark, and to deduce that, with conditional probability ≥1 − e−c8k

(conditioned on η), there are sequences (v(i))i≥k+1 and (D(i))i≥k as in the conclusion of
Lemma 3.2. In particular, we may find an infinite path γ starting from a neighbor of v(k)

which consists of only zero-weight vertices or low-weight vertices which are on the circuits
Cj (at most one from each Cj ) from Lemma 2.3. Letting ϒ be the event that this γ exists, we
obtain by the Cauchy–Schwarz inequality that for large k,

EỸ21F c
k∩Gc

k
≤EỸ21ϒ +E E Ỹ21ϒc | η1F c

k∩Gc
k

≤EỸ21ϒ + e−c8k/2E E Ỹ4 | η1F c
k∩Gc

k
(5.24)

≤EỸ21ϒ + C34e−c8k/2,

where we used Lemma 5.2 in the last line.
On the event ϒ , write γk for the segment of γ beginning at v(k) and ending at the first

intersection of γ with O(k,ω,ω) . Then

TB(Ok,O(k,ω,ω)) ≤ T (Ok,O(k,ω,ω)) ≤ T (γk).

All vertices w on γk which have nonzero weight are of low weight, and so suchw satisfy tw ≤
I + ak. (Here we use that the sequence (aj ) is nonincreasing.) Distinct w’s on γk correspond
to distinct circuits Cj . Therefore if we define

NL = maximal number of disjoint closed circuits around 0 intersecting B(2L ) \ B(2k),

then we have

(5.25) EỸ21ϒ ≤ a2
kEN2

(k,ω,ω) .

Next, we use [15], Lemma 2, which, in our context, states that E N4
L ≤ C35 log4(2L / 2k),

and this is bounded by C36(L − k)4. Therefore, the expectation in (5.25) equals

EN2
(k,ω,ω) =

∞

m=k

∞

t=0
EN2

(k,ω,ω)1{m(k,ω)=m}1{(k,ω,ω)=m+t+1}

≤
∞

m=k

∞

t=0
EN4

m+t+1
1/2P m(k, ω) = m, (k, ω, ω) = m + t +1 1/2

≤
∞

m=k

∞

t=0
C1/2

36 (1 + t + m − k)2P m(k, ω) = m, (k, ω, ω) = m + t +1 1/2.

Since P(m(k, ω) = m, (k, ω, ω) = m + t +1) ≤ C37e−c22(t+m−k)by the RSW theorem, the
above expression is summable and independent of k. Returning to (5.25), and placing this in
(5.24), we obtain EỸ21F c

k∩Gc
k
≤ C33a2

k + C34e−c8k/2. This shows (5.23).
Together, (5.22) and (5.23) show that EỸ2 ≤ C38 max{a2k, k−1/2}. X and Z from (5.2) can

be bounded similarly, so returning to (5.1) yields

(5.26) Var T (0,On) − Var TB(0,On) ≤ C39

n

k=1
max a2

k + ak, k−1/2 + k−1/4 = o(n).
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Finally, we argue that the above inequality implies

(5.27) Var T 0, ∂B(n) − Var TB 0, ∂B(n) = o(log n),

which, along with Yao’s results quoted above Theorem 1.1, gives (1.4). The main ingredient
in the proof of (5.27) is the following moment bound. (Our argument is modified from [2],
Lemma 5.7). There exists C38 such that for all sufficiently large n, q ≥1 such that 2 q−1 ≤
n <2q,

(5.28) E T 0, ∂B(n) − T (0,Oq) 2 ≤ C40.

The same method can be used (or [2], Lemma 5.7, can be used directly) to show the
corresponding statement for TB in place of T . Observe that for 1 ≤  ≤ q , on the event
{m(q − ) ≥ q −1 > m(q −  −1)} ∩ {m(q) = q + t}, we have

T 0, ∂B(n) − T (0,Oq) ≤ T ∂B 2q−− 1 , ∂B 2q+t+1

and on the event {m(q − ) ≥ q −1 > m(q −  −1)}, we have

T 0, ∂B(n) − T (0,Oq) ≤ T ∂B 2q−− 1 ,Oq .

Then define the events A := {m(q − ) ≥ q −1 > m(q −  −1)}, for 1 ≤  ≤ q , and
Bt := {m(q) = q + t}, for t ≥0. Using the above inequalities and the fact that the events
A ∩ Bt (over all t, ) cover the whole probability space, we have

E T 0, ∂B(n) − T (0,Oq) 2 ≤
q−q0

= 1

∞

t=0
ET 2 ∂B 2q−− 1 , ∂B 2q+t+1 1A ∩Bt

+
q

=q−q 0+1
ET 2 ∂B 2q−− 1 ,Oq 1A .

(5.29)

Here, q0 is equal to log2 m0 + 1, where m0 is from (5.4). For summands in the first line,
we use the Cauchy–Schwarz inequality to bound them by

ET 4 ∂B 2q−− 1 , ∂B 2q+t+1 P(A )P(Bt) 1/4 ≤ C41(t +  +2)C42 P(A )P(Bt) 1/4.

For summands in the second line, assuming that 2 q ≥ m0 + 100, we replicate the argument
leading to (5.9). Specifically, letting π be a geodesic between B(m0) and Oq, and π̃ be
the portion of π from its initial point to its first intersection with ∂B(m0 + 100), then the
summand of (5.29) is at most

(5.30) 2ET 2(0, π̃) +2
∞

t=0
ET 2 B(m0), ∂B 2q+t+1 1A ∩Bt.

We can then, as before, sum over all possible values of π̃ = P, and bound the passage time
from 0 to P using six disjoint (except for their initial points) deterministic paths. This leads
to the bound E T2(0, π̃) ≤ C41. Applying the Cauchy–Schwarz inequality to the other term
gives the following bound for (5.30):

C43 + C41

∞

t=0
(q + t +1 − log2 m0)C42 P(A )P(Bt) 1/4.
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Using these inequalities in (5.29) gives

E T 0, ∂B(n) − T (0,Oq) 2

≤
q−q0

= 1

∞

t=0
C39(t +  + 2)C42 P(A )P(Bt) 1/4 + q0C43

+ C41

q

=q−q 0+1

∞

t=0
(q + t +1 − logm0)C42 P(A )P(Bt) 1/4.

By the RSW theorem, there is c23 such that P(A ) ≤ e−c23 and P(Bt) ≤ e−c23t, so this leads
to (5.28).

Now that we have proved (5.28), we can quickly derive (5.27). Indeed, we estimate as
follows, with 2q−1 ≤ n <2q:

Var T 0, ∂B(n) − Var TB 0, ∂B(n)
≤ Var T 0, ∂B(n) − Var T (0,Oq)

(5.31)

+ Var TB 0, ∂B(n) − Var TB(0,Oq)(5.32)

+ Var T (0,Oq) − Var TB(0,Oq) .(5.33)

By (5.26), (5.33) iso(q) = o(log n). The term (5.32) is a special case of (5.31) (with Bernoulli
weights). To bound (5.31), we use the inequality

Var(X1) −Var(X2) ≤Var(X1 − X2) +2 Var(X1 − X2)Var(X2).

To derive this, one sets X = X −EX for a random variable X and writes the left side as

X1
2
2 − X2

2
2 ≤ X1 − X2 2 X1 − X2 2 + 2 X2 2 .

We putX1 = T (0, ∂B(n))and X2 = T (0,Oq) to bound (5.31), noting that (5.28) implies that
Var(X1 − X2) ≤ C40. We obtain

C40 + 2 C40 VarT (0,Oq).

Finally, VarT (0,Oq) = q
k=0 E 2

k, which, by Lemma 5.2, is bounded by C44q. Therefore
the sum of (5.31), (5.32), and (5.33) is bounded above by

2C40 + 4 C40C44q + o(log n) = o(log n).

This completes the proof of (1.4).

APPENDIX: SKETCH OF [7], PROPOSITION 1

In this appendix, we sketch the idea of [7], Proposition 1, which we used in Lemma 2.6 to
construct “good” circuits. We provide this for the reader’s convenience, as a guide to reading
[7], so we use their notation, although it may conflict with some of ours from previous sec-
tions. In particular, we will use the terms “occupied” and “vacant” for “open” and “closed.”
Furthermore, we will reverse the roles of open and closed (this is fine by symmetry) and as-
sume that the sequence (Ck) of circuits consists of both occupied and vacant circuits. Last,
we use S(n) in place of B(n).

Let us first recall the statement. Let C be a circuit surrounding 0. For certain constants
0 < c30, c31, c33 < 1, c32 > 0, still to be determined, we consider vacant connected sets D
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with some or all of the following properties:

D⊂ C̊ and D contains exactly one vertex adjacent to C;(A.1)

diam(D) ≥ diam(C) c30;(A.2)

the vacant cluster of D in C̊ contains at least [diam(C)]c31

selfavoiding paths θm which are adjacent to C, have
length(θm) ≥ c32 log log(diam(C)) and satisfy
d(θp, θq) ≥ [diam(C)]c33c30 for p = q;
moreover, there exists a vertex z ∈D and for each of the θm
a vacant path from z to θm and such that only its
endpoint on θm is adjacent to C.

(A.3)

We call an occupied circuit C good (or more explicitly (c30-c33-good) if it has the following
property:

(A.4) Any vacant connected set D with the
properties (A.1) and (A.2) also satisfies (A.3).

Then [7], Proposition 1, says:

PROPOSITION A.1. For any 0< c33 < 1, and 0 < c30 < 1, but c30 sufficiently close to 1,
we have

(A.5)
P there exists an occupied circuit Ck with 2j ≤diam(Ck) <2j+ 1

and which is not good

≤ c34 exp(−c35j ).

PROOF . Most of the proof serves to reduce the number of possible variables involved:
the different circuits Ck, and the different possible sets D. We will also need to use the “out-
ermost” property of the Ck’s in a crucial way, to independently make constructions in their
interiors.

Note that if any Ck surrounds 0 and has 2 j ≤ diam(Ck) <2j+ 1 then it must be contained
in S(2j+ 1) but must also contain points outside S(2j− 2). To fix the offending Ck, we let Cτ
be the last circuit in our sequence (Ck) which is contained in S(2j+ 1) and write

(A.5) ≤
0≤p<j2

P p < τ,Cτ−p is occupied, has
diameter ≥2j , but is not good(A.6)

+ P τ > j2, Cτ −j2 is not contained in S 2j− 2 .(A.7)

Using the RSW theorem, one can show (see [7], equation (4.8))

(A.8) (A.7) ≤ (2c3 + 1)e−c36j .
For (A.6), we sum over all possible values of Cτ−p with the notation

E(p, C) = {τ > p,Cτ−p is occupied and equals C}.
We obtain

(A.6) =
0≤p<j2 C

P C is not good | E(p, C) P E(p, C)

≤ j2 sup
p,C

P C is not good | E(p, C) ,
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where the supremum is over all circuits C surrounding 0 in S(2j+ 1) but with diameter ≥2j ,
and over all p ∈ [0, j2). Putting this back in (A.6), we find that our desired probability is

(A.9) (A.5) ≤ j2 sup
p,C

P C is not good | E(p, C) + (2c3 + 1)e−c36j .

To analyze the supremum in (A.9), we use the outermost property ofCτ−p. Specifically, its
definition entails that the event E(p, C) depends only on the state of vertices inCext ∪ C(the
exterior of C union with C). From the paragraph above [7], equation (4.37), we quote “(Note
that the condition {p < τ,Cτ−p = C}merely says that C is one of ourCk and there are exactly
p of the circuits Ck outside C but inside S(2j+ 1); this only involves vertices on or outsideC.)
Given E(p, C), the further conditions for Cτ−p to be good, depend only on the vertices in
C̊.” This means that to calculate P(C is not good | E(p, C)), “even with the conditioning on
E(p, C), we may assume that all vertices in the interior ofC are still independently occupied
or vacant with probability 1/2.”

In addition to the independence mentioned in the last paragraph, we note that the vacant
set D in the definition of good circuit can be replaced by a path. That is (see [7], p. 33), if
Cτ−p = C and Cτ−p is occupied but not good, with associated vacant set D, then there is a
vertex selfavoiding vacant path ξ = (v1, . . . , vq) ⊂D such that

v1 is the unique vertex of ξ adjacent to C and ξ ⊂C̊;(A.10)

diam(ξ ) ≥1
2

diam(C) c30(A.11)

and such that (A.3) with D replaced by ξ fails.
Using the results of the last two paragraphs in (A.6), we obtain

(A.5) ≤ (2c3 +1)e−c36j

+ j2 sup
C

P

⎛
⎝

∃ a vacant path ξ = (v1, . . . , vq)
which satisfies(A.10) and (A.11)

but for which (A.3) fails

⎞
⎠ ,

(A.12)

where the supremum is over all circuits C surrounding 0 in S(2j+ 1) but with diameter ≥2j .
To bound the supremum in (A.12), we apply the method of [6], Lem. 8.2. (It is done in steps
4 and 5 of [7], in [7], p. 37-52.) This is an inductive argument and in our context constructs
for a given “extremal” candidate vacant path ξ, order 2cj many vacant paths connecting ξ to
the circuit C, along with the required vacant paths θm that run along the inner boundary of
C. The induction is carried out by comparison to a branching process, and roughly speaking,
goes as follows. In the first step, one attempts to construct a vacant arc ξ connecting ξ to C
in an annulus S(2 ) \ S(2− 1) with of order j centered at v1 whose endpoint w1 adjacent
to C is the beginning of a path θm as in the definition of good circuit. If this is possible, we
assign two children to the root node of our branching process, and otherwise, we assign only
one child. At the next step, we attempt to construct similar vacant arcs corresponding now
to grandchildren of the root node, but this time in smaller annuli: one centered at v1 with
replaced by minus a constant (connectingξ to C), and another of the same size, but centered
at w1 (and connecting ξ to C). In this step, we find either 0, 1, or 2 many vacant paths; we
assign 2 children to either node whose corresponding annulus contains such a vacant path, and
1 child otherwise. This procedure continues, with each node in our branching process having
1 or 2 children, and each node at a given level in the process corresponds to a path θm as in
the definition of good circuit. One can show that the probability that a node has 2 children is
uniformly positive, over all possible histories of the construction (see [7], equations (4.62),
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(4.63)), and since there are order j many stages in the construction, with exponentially high
probability, the process produces order exp(cj )many paths. This implies in the end that

(A.12) ≤ Ce−cj + (2c3 + 1)e−c36j .

(An inequality of this type eventually arises from substituting the bound [7], equation (4.91),
on the moment generating type function (α, h, D) into [7], equation (4.79).)

There are a number of difficulties in implementing this program and they consume most of
the 27-page proof. The major one is how to enumerate candidate vacant paths ξ in a sensible
way. This is done by finding a suitable smaller-scale annulus in which to exhibit ξ as an
occupied crossing from the inner boundary of C to a boundary point of the annulus. To do
this, the box S(2j+ 1) is tiled by squares S(r, s)of the form

S(r, s) =r2 , (r +1)2 × s2 , (s +1)2 , −2j+ 1− ≤ r, s ≤2j+ 1−

and surrounding squares

S(r, s) =(r −1)2 , (r +2)2 × (s −1)2 , (s +2)2 ,

where  = c 30j − 2 logj/ log 2 − 4, so that the total number of squares is at most
c37j 422(1−c30)j . Any path ξ as in (A.12) originates at a vertex v1 which is in some S(r, s),
adjacent to C, and so is on a certain arcF of a component J of the inner boundary ofC which
connects two vertices outside of but adjacent to S(r, s). One defines a certain class C of cir-
cuits C which have too many crossings of any one of the S(r, s)(more than c38j 422(1−c30)j )
and shows that (see [7], equation (4.13))

P(∃circuit in C) ≤ c39 exp −c40j 422(1−c30)j .

This means that in the initial decomposition ((A.6) and (A.7)), we may discard the small
probability that our Ck is in C, allowing us to restrict our supremum in (A.12) to circuits C
that are not in the class C. (This class is further enlarged to forbid too many crossings of
more, similarly defined annuli below [7], equation (4.36).)

In Steps 2 and 3 of [7], it is argued by topological considerations that the total number of
choices (given that C is not in the class C) of boundary components J , arcs F , and squares
S(r, s)is at most c42j 422(1−c30)j . This leads to introducing the conditions

(A.13) v1 ∈ S(r, s), vq /∈S(r, s),but vi ∈S(r, s)for 1 ≤ i ≤ q −1

and

(A.14) vq ∈  Ŝ,

where Ŝ is the topological boundary of

Ŝ =Ŝ(r, s) =(r −1)2 − 1, (r +2)2 +1 × (s −1)2 − 1, (s +2)2 + 1

(which just surrounds Ŝ), and replacing the first summand on the right of (A.12) by

(A.15)
c42j 422(1−c30)j j 2

× sup P ∃ a vacant path ξ = (v1, . . . , vq) which satisfies (A.10),
(A.13), (A.14) and vq ∈ ˚J , v1 ∈ F, but for which (A.3) fails .

Here, the supremum is over all choices of C, all (r, s), and choices of J and F .
It is in the setting of the new supremum (A.15) that one can define suitable ξ, called the

“permissible” paths (see [7], equation (4.40)). These paths can be ordered as ξ(1), ξ(2), . . .
according to a partial ordering so that they have an extremal property: for a given γ , the
event that ξ(i) = γ depends only on vertices on γ and on one side (properly defined). This
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extremal property is again important so we can make constructions on one side (associated
to the previously-described branching process). In addition to this, if a ξ exists as in (A.15),
then for some choice of C, (r, s), J , and F , there is a path ξ(i) in the ordering that does not
satisfy (A.3). Therefore we bound (A.15) by

c42j 422(1−c30)j j 2 sup
i≥1

P ξ(i) exists, but (A.3) fails for ξ(i)

(see [7], equation (4.78)). By now running the branching process argument with ξ(i) in place
of ξ and using the independence due to the extremal property described, one obtains the
bound

c42j 422(1−c30)j j 2 sup
i≥1

P ξ(i) exists × Ce−cj .

However (see [7], equation (4.14)), P(ξ(i) exists) ≤ (1 − c41)i , and so this sum gives a bound
of

c42j 422(1−c30)j j 2Ce−cj

i≥1
(1 − c41)i .

Placing this back in (A.15) finally gives the stated inequality in (A.5), so long as c30 is suffi-
ciently close to 1.
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