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Abstract. If (ω(e))is a family of random variables (weights) assigned to the edges of Zd, the nearest neighbor graph is the directed
graph induced by all edges hx, yisuch that ω({x, y})is minimal among all neighbors y of x. That is, each vertex points to its closest
neighbor, if the weights are viewed as edge-lengths. Nanda-Newman introduced nearest neighbor graphs when the weights are i.i.d. and
continuously distributed and proved that a.s., all components of the undirected version of the graph are finite. We study the case of
translation invariant, distinct weights, and prove that nearest neighbor graphs do not contain doubly-infinite directed paths. In contrast
to the i.i.d. case, we show that in this stationary case, the graphs can contain either one or two infinite components (but not more)
in dimension two, and k infinite components for any k ∈ [1, ∞]in dimension ≥ 3. The latter constructions use a general procedure
to exhibit a certain class of directed graphs as nearest neighbor graphs with distinct weights, and thereby characterize all translation
invariant nearest neighbor graphs. We also discuss relations to geodesic graphs from first-passage percolation and implications for the
coalescing walk model of Chaika-Krishnan.
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1. Introduction

Random nearest neighbor graphs were introduced by Nanda-Newman [17] in the context of the cubic lattice Zd, but we
will define them on general graphs. The directed nearest neighbor graph ND is defined on a given graph G = (V, E)
using real-valued edge-weights (ω(e))e∈E . We will assume that G does not have self-loops (it has no edges of the form
{v, v}for v ∈ V) and does not have multiple edges between any two vertices (so that each edge is uniquely identified by
its endpoints). The vertex set of ND is V and the edge set is the set

{hx, yi : {x, y} ∈ Eand ω({x, y}) ≤ ω({x, z})for all z with {x, z} ∈ E} .

That is, each vertex points to its neighbors y which minimize the weight ω({x, y}). If some vertex x has infinite degree,
and no neighbor minimizes ω, then x does not point to any neighbor. The undirected nearest neighbor graph N is the
undirected version of ND , with vertex set V and edge set {{x, y} : hx, yiis an edge of ND }. Note that if a vertex has
finite degree in G, it has out-degree at least one inND and if the weights (ω(e))are all distinct, any vertex has out-degree
at most one in ND .

1.1. Background

In [17], Nanda-Newman studied nearest neighbor graphs on Zd in the case that the weights are i.i.d. with a common
uniform (0, 1)distribution. (Here, a.s. each vertex has out-degree exactly one in ND .) One of their main results was that

1



2

a.s., N has only finite components1 and, further, that connection probabilities decay rapidly:

P (0and x are in the same component of N ) ≤ Ckx−yk 1

kx − yk1!
.

[17, Lemma 2.3] also contains a complete description of all finite clusters ofN : if C is one of the connected components
of N , let CD be the directed subgraph of ND induced by the vertices of C. Then a.s. for all C,

1. C is a tree,
2. CD contains exactly one “miniloop” between some vertices x and y, and
3. every edge in CD (besides hx, yiand hy, xi) is directed toward both x and y.

Here, a “miniloop” is a directed circuit of length two (see the definition of a directed circuit in the next section). These
results give a more-or-less complete description of i.i.d. nearest neighbor graphs onZd, and were used by Nanda-Newman
to study “influence graphs” arising from energy minimization procedures in disordered Ising models.

In this paper, we study the structure of N and ND under weaker assumptions on the weights: that they are transla-
tion invariant and a.s. distinct. We first show in Theorem 1.1 that under these general conditions, ND cannot contain
doubly-infinite directed paths. Furthermore, although these graphs in the i.i.d. case contain only finite components, in
Corollary 1.1, we prove that for dimension d = 2, N can contain exactly one or exactly two infinite components, and for
dimensions d ≥ 3and any k ∈ [1, ∞], N can contain exactly k infinite components. (Theorem 1.1 immediately implies
that for d = 1there are only finite components; see Remark 1.) These constructions follow from a general result, Theo-
rem 1.3, which shows that directed graphs with certain properties (all vertices have out-degree one, there are no directed
cycles of length at least three, and there are no doubly-infinite directed paths) can be realized as nearest neighbor graphs
with distinct weights. In contrast to the situation in dimensiond ≥ 3, for dimension two, we show in Theorem 1.2 thatN
cannot have more than two infinite components. This result follows from a detailed analysis of the topological structure
of infinite components in the plane.

Although random nearest neighbor graphs onZd appear only to have been studied by Nanda-Newman, similar graphs
have appeared in the literature. For example, [13] studies percolation properties of some neighbor graphs, and in the
context of Poisson models [2, 12, 15] and bipartite graphs [18], several authors have studied nearest neighbor-type models.
Other work on Poisson models in [8, 14] establishes absence of percolation under various conditions by way of the mass
transport principle. Furthermore, Chaika-Krishnan [6, 7] have introduced models of stationary coalescing walks, and the
related directed graphs share some of the features of our graphs. In Section 1.3, we will explain the implications our
results have for their models.

One motivation for studying nearest neighbor models with translation invariant weights comes from geodesic graphs
constructed in first-passage percolation [1, 4, 9]. (See in particular above [4, Prop. 2.4] for the definition of geodesic
graphs.) These are distributional limits of directed graphs whose edge sets are unions of point-to-hyperplane geodesics. It
is known [4, Thm. 1.1] that geodesic graphs in any dimensiond ≥ 2do not contain doubly-infinite paths, but each of their
vertices has out-degree one and there are no directed cycles. Therefore they satisfy the conditions of Theorem 1.3 and
can be realized as nearest neighbor graphs. It is an important question to determine the number of infinite components of
geodesic graphs in general dimensions, It is known that there is only one component in two dimensions, but ford ≥ 3the
number of infinite components is not even known to be 1 or infinity. The results of this paper show that there are nearest
neighbor graphs in any dimension d ≥ 3with any number of infinite components, so any work on these questions for
geodesic graphs must use more detailed properties of the percolation model.

1.2. Main Results

Our probabilistic results will concern the cubic lattice Zd, Ed with translation invariant weights. (General graphs are
considered below.) For this reason, our probability space will be the product space Ω = REd

for some d ≥ 1with the
product Borel sigma-algebra. Our probability measure P will be assumed to satisfy the following conditions:

1A reviewer of this paper has suggested the following short argument that in i.i.d. nearest neighbor graphs, N has only finite components. Let
b ∈ Rsuch that p := P(ω(·) > b) > 0. Let ` be a positive integer. Consider the event A(0, b, `)corresponding to “there exists a directed path of
length ` starting at 0 and whose weight of the first edge is smaller than b.” The i.i.d. hypothesis should allow to prove that P(A(0, b, ` + 1)) ≤
(1 − p2d−1)P(A(0, b, `))for any ` and p as defined as before. It is then not difficult to conclude from this inequality.
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Assumption A:

A1. P is translation invariant. That is, for any z ∈ Zd, P = P ◦ T−1
z , where Tz is the translation by z: for ω ∈ Ω,

(1.1) Tzω ∈ Ωis given by (Tzω) (e) = ω(e + z),

where e + z = {x + z, y + z}if e = {x, y}.
A2. For any distinct e, f ∈ Ed, P (ω(e) = ω(f )) = 0.

Note that assumption A holds if the weights are i.i.d. with a continuous common distribution. Furthermore, under item
A2, a.s. every vertex has out-degree exactly one inND .

Our first result states that under assumption A,ND has no infinite backward paths. For its statement, ifx, yare vertices
of a directed graph, we write x → y if there is a directed path from x to y. We use the convention that x → x for any x,
so the graph Cx defined below always has at least one vertex.

Theorem 1.1. Let d ≥ 1and P be a measure satisfying assumption A. For anyx ∈ Zd, write Cx for the subgraph of ND
induced by the vertices y such that y → x in ND . Then

a.s., Cx is finite for all x ∈ Zd.

We will prove Theorem 1.1 in Section 2.1. Because it relies on the mass transport principle, the argument can be extended
to more general graphs satisfying the unimodular condition (see [16, Sec. 8.2]).
Remark 1. By Theorem 1.1, in the case d = 1, all components of N must be finite. Indeed, by translation invariance,
a.s. one of the following three must occur: (a) all edges inND point left, (b) all edges point right, or (c) there are infinitely
many left-pointing and right-pointing edges (and each left-pointing edge has a right-pointing edge somewhere to its left
and somewhere to its right). Cases (a) and (b) cannot occur by the theorem. In case (c), all components ofN are finite.

Theorem 1.1 states that nearest neighbor graphs cannot have infinite backward paths in any dimension. It is natural
then to ask whether they can have infinite components at all and, if so, then how many there can be. In the next result we
show that in two dimensions, there can be at most two infinite components.

Theorem 1.2. Let d = 2and P be a measure satisfying assumption A. A.s., N has at most two infinite components.

We prove Theorem 1.2 in Section 2.2. The argument gives more information than what is stated in the theorem. It
shows that if there are two infinite components, their closures in Z2 must be topological half-planes possibly separated
by infinitely many finite components. In Remark 3, we show that such finite separating components need not exist, but if
they do, they can be isolated from each other.

In the third result, we show that certain directed graphs (and therefore certain random graph models) can be realized as
nearest neighbor graphs. In its statement, a directed cycle of length ` in a directed graph is a sequence of directed edges
hx0, x1i, hx1, x2i, . . . , hx`−1, x̀ i such that x0, . . . , x`−1 are all distinct and x` = x0.

Theorem 1.3. Let G = (V, E)be a graph such thatE is countable and let G = (V, E)be a directed graph with the same
vertex set V . Assume that

1. if hx, yi ∈ Ethen {x, y} ∈ E,
2. each x ∈ Vhas out-degree one in G,
3. G has no directed cycles of length at least three, and
4. for each vertex x ∈ V, writing Cx for the subgraph of G induced by y ∈ Vsuch that y → x in G, Cx is finite.

There exists a collection (ω(e))e∈E of distinct weights such that the nearest neighbor graph ND corresponding to these
weights is G.

The proof of Theorem 1.3 will be given in Section 2.3.
Remark 2. Theorem 1.3 states that items 1-4 are sufficient for a given graph G to be a nearest neighbor graph. If the
graph G is a random directed graph sampled from a translation invariant distribution, then the definition of the weights
in (2.11) ensures that the corresponding P satisfies assumption A. Conversely, the statement and proof of Theorem 1.1
(see the enumerated properties of N in Section 2.1) show that in the case where G = Zd (or more generally, a graph
satisfying the unimodular condition), these properties listed in items 1-4 are also necessary. In other words, these results
characterize all nearest neighbor graphs under assumption A.

As a consequence, we can construct various different random nearest neighbor graphs on Zd with d ≥ 2for measures
satisfying A.
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Corollary 1.1. 1. Let d = 2and k ∈ {0, 1, 2}. There is a measure P satisfying A such that a.s., N has exactly k
infinite components.

2. Let d ≥ 3and k ∈ {0, 1, 2, . . . } ∪ {∞}. There is a measure P satisfying A such that a.s., N has exactly k infinite
components.

The proof of Corollary 1.1 will be given in Section 2.4. Because nearest neighbor graphs with i.i.d., continuously dis-
tributed weights provide examples with k = 0, we need only focus on the cases k ≥ 1.

1.3. Implications for coalescing walks

Our results, especially those of Theorem 1.2 in the Z2 setting, relate to some of those of Chaika-Krishnan [6, 7]. The
“stationary coalescing walk” model studied there amounts to a directed random graph G (whose distribution is ergodic
under lattice shifts) on the undirected graph (Zd, Ed), satisfying conditions similar to the items in our Theorem 1.3. The
main changes to these conditions are a) there are no cycles (i.e. “miniloops” are disallowed), b) Cx is allowed to be
infinite, and c) paths are assumed to pass hyperplanes: given any infinite directed path(x0, x1, . . .)in G, we have for each
k, xi · e1 > k for all large i . (The model of [6] is defined more generally, but these are the assumed conditions for their
theorems about component structure on Z2.)

In this setting, in the case d = 2, Chaika-Krishnan show a dichotomy: either Cx is a.s. finite for each x and also the
undirected version of G has one component, or a.s. each infinite directed path inG contains a site x with #Cx = ∞ (and
the undirected version of G must have infinitely many components). In their language, one says that G either exhibits
coalescence without bi-infinite trajectories, or each component contains a bi-infinite trajectory. While assumption c) is
natural in some coalescing walk models (notably first-passage percolation), there are many examples for which it fails,
and for these, the dichotomy can be false. See the example in Section 2.4.1 below, which exhibits neither bi-infinite
trajectories nor coalescence, its undirected version having two infinite components a.s.

Our Theorem 1.2 shows that this example demonstrates the most extreme failure of coalescence allowed: if G does
not exhibit bi-infinite trajectories, its undirected version has at most two components a.s. In other words, if the undirected
version of G has at least three infinite components, then G must exhibit bi-infinite trajectories. It is perhaps worth noting
that the dichotomy breaks down in other ways without assumption c): for instance, see [3] for a model which exhibits
a bi-infinite trajectory and also exhibits coalescence. Perhaps the techniques used to prove Theorem 1.2 can be used to
completely classify the allowed behavior of stationary coalescing walks which do not necessarily pass hyperplanes.

2. Proofs

In this section, we prove the main results, starting with Theorem 1.1 in Section 2.1, moving to Theorem 1.2 in Section 2.2,
and finishing with Theorem 1.3 in Section 2.3 and Corollary 1.1 in Section 2.4.

2.1. Proof of Theorem 1.1

Throughout the proof we make assumption A. We first note that forx, y, z ∈ Zd with x 6= z, from A2,

(2.1) a.s. if hx, yiand hy, ziare edges in ND then ω({x, y}) > ω({y, z}).

As a consequence, we have the following facts:

1. ND a.s. has no directed cycles of length at least 3. To show this, consider an outcome ω for which ω(e) 6= ω(f )
for all e 6= f and a directed cycle with vertices x0, x1, . . . , xk such that hxi , xi+1 i ∈ ND for i = 0, . . . , k − 1, with
x0, . . . , xk−1 all distinct and x0 = xk (so that the cycle has length k). Writing xk+1 also for x1, note that if k ≥ 3
then for each i = 0, . . . , k − 1, the edges {xi , xi+1 } and {xi+1 , xi+2} are distinct and share an endpoint xi+1 , so
ω({xi , xi+1 }) > ω({xi+1 , xi+2}). Iterating this bound, we obtain

ω({xk, xk+1}) = ω({x0, x1}) > · · · > ω({xk−1, xk}) > ω({xk, xk+1}),

a contradiction.
2. For x ∈ Zd, write Γx for the subgraph of ND induced by the vertices y such that x → y in ND . Then a.s. there are

two possibilities:
(a) Γx is finite and ends in a cycle of length two.
(b) Γx is an infinite vertex self-avoiding directed path.
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To see why, since each vertex has out-degree one, we can follow each out-edge starting at x and label the vertices
in order as x = x0, x1, . . .. There are two possibilities: either allxi ’s are distinct, or there is a firsti ≥ 2such that xi
is an element of {x0, . . . , xi−1}. In the first case, Γx is an infinite vertex self-avoiding directed path. In the second,
item 1 implies that xi = xi−2 , and so Γx ends in a cycle of length two.

3. If Γx is infinite, write its vertices in order as x = x0, x1, . . . .Then

ω({xi , xi+1}) > ω({xi+1 , xi+2 }) for all i ≥ 0.

In other words, Γx is a monotone decreasing path. This follows from (2.1) and item 2: Γx is an infinite vertex
self-avoiding directed path and we can apply (2.1) to each pair of adjacent edges. Similarly, if Γx is finite and not
a cycle of length two, we write its vertices in order as x = x0, x1, . . . , xN , xN+1 , where xN is the first vertex in a
cycle of length two. Then

ω({xi , xi+1 }) > ω({xi+1 , xi+2 }) if 0 ≤ i ≤ N − 1.

Given the three properties above, we continue with the proof of Theorem 1.1. For a contradiction, we assume that

(2.2) P(C0 is infinite) > 0.

By A1, if we show that (2.2) is false, then Theorem 1.1 will follow. Under (2.2), we also have

P(C0 is infinite and Γ0 contains at least three vertices) > 0.

This, along with assumption A2, implies that if we define for x ∈ Zd

I x = inf{ω({u, v}) : hu, viis an edge of Γx}and

Sx = sup{ω({u, v}) : hu, viis an edge of Γx},

then P(C0 is infinite and I 0 < S0) > 0, and we can therefore find (a deterministic) r such that

(2.3) P(C0 is infinite and I 0 < r < S0) > 0.

Following (2.3), for x, y ∈ Zd, we say that y is the “r-descendant of x” if

1. y is a vertex ofΓx and, writing z for the a.s. unique vertex such thathy, ziis an edge ofND , one has ω({y, z}) ≥ r,
and

2. for any edge hu, viof Γz , one has ω({u, v}) < r.

In other words, y is the last vertex in Γx whose out-edge has weight ≥ r.
Define the following random variable (“mass transport function”)m(x, y)for x, y ∈ Zd:

m(x, y) =
(

1 if y is the r-descendant of x
0 otherwise.

Because m satisfies m(x, y)(ω) = m(x − z, y − z)(Tzω)for x, y, z ∈ Zd, where T z was defined in (1.1), A1 implies that
we can apply the mass transport principle (see [11, 16] for an introduction) to obtain

(2.4) E
X

x∈Zd

m(x, 0) = E
X

x∈Zd

m(0, x).

Because
P

x∈Zd m(0, x) ≤ 1a.s., we obtain

(2.5) E
X

x
m(x, 0) = E

X

x∈Zd

m(0, x) ≤ 1.

However a.s. on the event in (2.3), there is a vertexy such that
P

x m(x, y) = ∞. Indeed, if I 0 < r < S0, then 0cannot be
in a cycle of length two, and item 3 gives that the weights alongΓ0 are decreasing, so0has an r-descendant. Furthermore,
for each vertex w of C0 (of which there are infinitely many) a.s. the graph Γw is equal to Γ0 with finitely many directed



6

edges appended in sequence to the beginning. All of these edges by item 3 have weight > r and so any such w has the
same r-descendant as does 0. Writing y for this r-descendant, we obtain

for an outcome as above,
X

x
m(x, y) ≥

X

w a vertex of C0

m(w, y) = ∞.

Therefore from (2.3) we deduce that

P
 

for some y ∈ Zd,
X

x
m(x, y) = ∞

!
> 0.

By A1, we obtainE P
x m(x, 0) = ∞and this contradicts (2.5). We find then that (2.3) must have been false, and therefore

so was (2.2). This completes the proof of Theorem 1.1.

2.2. Proof of Theorem 1.2

The proof will be split over two subsections. In Section 2.2.1, we derive some basic results about vertex sets and their
boundaries. In Section 2.2.2, we analyze the structure of infinite components inN and give the proof of Theorem 1.2.

To do this, we begin with some simple definitions. If x, y ∈ Z2, then x and y are site-neighbors if kx − yk1 = 1(this
is just a redefinition of “nearest-neighbors” in Z2, made to distinguish from neighbors in N ). A set V ⊂ Z2 of vertices
is site-connected if for each x, y ∈ V, there is a path (here a sequence of vertices x = x0, x1, . . . , xn = y such that xi
and xi+1 are site-neighbors for all i) from x to y remaining in V . A site-component of V is a maximal site-connected
subset of V . As usual, in addition to the (primal) lattice Z2, E2 with edge set E2 consisting of those edges between
neighboring vertices, we use the dual lattice Z2 ∗, E2 ∗ , with vertex set

Z2 ∗= Z2 + 1
2, 1

2

and edge set E2 ∗ consisting of edges between neighbors. Each dual edge e∗ bisects a unique edge e.

2.2.1. Basic topological properties of vertex sets
In this section, we derive some simple properties of vertex sets. These will be used in the main proof in the following
section. In the following definition, the setV is intended to be V “with its holes filled in,” so its complement should only
have infinite site-components.
Definition 1. Let V ⊂ Z2.

1. The closure of V , written V , is the union of V with all finite site-components of V c.
2. The dual edge boundary of V , written B(V ), is the subgraph of Z2 ∗, E2 ∗ induced by the set of dual edges

whose unique bisecting edge {x, y}has x ∈ Vand y /∈ V.

We note some simple properties of the definitions.

Lemma 2.1. Let V ⊂ Z2. Then V c
has only infinite site-components.

Proof. Assume for a contradiction that V c had a finite site-component containing a vertexx. Since V c ⊂ Vc and the
finite site-components ofV c are in V , x must be in an infinite site-component ofV c. Then pick a vertex self-avoiding path
π, starting from x and remaining in V c, which has infinitely many vertices. This path π must leave the site-component
of V c containing x, so it contains a vertex q ∈ V. But q ∈ π ⊂ Vc, so q must be in V \ V and therefore is in a finite
site-component C̃q of V c. However then π ⊂C̃q, giving a contradiction since π is infinite.

Next we show that the vertices on the site-boundary of V are actually in V . (Otherwise, they would be in finite holes
in the complement of V .) As a consequence, if V is site-connected, so is V .

Lemma 2.2. If x ∈ Vhas a neighbor in V c
, then x ∈ V.

Proof. The neighbor y of x that is in V c is not in V , and is therefore in an infinite site-component C̃ of V c (otherwise
it would be in V ). If x were not in V , then it would be in C̃ , as it is adjacent to an element of this site-component. But
this means x would be in an infinite site-component of V c and therefore would not be in V , a contradiction.
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Lemma 2.3. Let V ⊂ Z2 be site-connected. Then each vertex in the graph B(V ) has degree two. Therefore B(V ) is a
vertex-disjoint union of vertex self-avoiding circuits and vertex self-avoiding doubly-infinite paths. If V is also infinite,
then B(V ) contains no vertex self-avoiding circuits.

Proof. Because B(V ) is induced by a set of edges, each vertex has at least degree one. Because edges ofB(V ) separate
V from V c, its vertices must have degree 2 or 4, so we rule out degree 4. Assume for a contradiction that some dual
vertex x has degree 4 in B(V ). Then we can enumerate the (primal) vertices at distance

√ 2/2 of x by x1, . . . , x4 in
clockwise order so that xi ∈ Vif and only if i is odd. Because x1 and x3 are site-neighbors of V c, Lemma 2.2 implies
that they are in V . We can then choose a vertex self-avoiding pathπ from x1 to x3 which remains in V , and then a plane
curve P which starts at x1 and proceeds as follows. First, P connects the vertices of π in order by straight line segments.
At x3, P connects to x1 by a diagonal line segment (going throughx). P is a Jordan curve, and therefore its complement
(in R2) has two components: one bounded (its interior) and one unbounded (its exterior). Proceeding in a straight line
from x2 to x4, we cross P exactly once. Since neither x2 nor x4 is on P , one must be in each component. By symmetry,
let’s say that x2 is in the interior. Thenx2 ∈ Vc and must be in a bounded site-component ofV c, since any infinite vertex
self-avoiding path starting at x2 must leave the interior of P and therefore touch π (it cannot touch the interior of the
other segment composing P ). This is a contradiction, since x2 ∈ V c, and V contains the bounded site-components of
V c. We conclude that x must have degree 2 in B(V ).

Now suppose that V is infinite and, for a contradiction, assume that B(V ) contains a vertex self-avoiding circuit.
Again, form a Jordan curve P by proceeding along the circuit, using straight line segments to connect its vertices. Let
x ∈ Vand y ∈ V c be such that the edge {x, y}bisects a dual edge in P . Then x and y are in different components
of the complement of P (the edge {x, y}crosses P exactly once), so one of them is in the bounded component. First
suppose that it is x; then because V is infinite and connected, there is an infinite vertex self-avoiding pathπx started at x
which remains in V . But πx must then exit the bounded component of the complement of P and cross P to a vertex of
V c, which is a contradiction. If instead y is in the bounded component, then by Lemma 2.1, we can choose an infinite

vertex self-avoiding pathπy started at y which remains in V c. By the same reasoning, we obtain another contradiction.
Therefore B(V ) contains no vertex self-avoiding circuit.

2.2.2. Topology of nearest neighbor components
Our aim is to show that ford = 2, if the number of infinite components ofN is ≥ 2, then it must be 2. Essentially we will
show that in this case, the two components are both topologically half-planes which can come within distance 1 of each
other, and they may be separated by finite components of N . The first step is to show that if C is an infinite component
of N , then the closure of its vertex set is topologically either a full-plane or half-plane. We do this in the following
proposition.

Proposition 2.1. For any component C of N , write V (C) for its vertex set and B(C) for B(V (C)). Then under as-
sumption A, a.s., for each infinite component C of N , B(C) is either empty or is a vertex self-avoiding doubly-infinite
path.

Proof. Assume for a contradiction that

(2.6) P B(C) contains at least two distinct vertex self-avoiding
doubly-infinite paths for some infinite component C of N > 0.

We will show that for almost every outcome in this event, there is a vertexx with #Cx = ∞. This will be a contradiction,
as we have shown in Theorem 1.1 that this has zero probability.

By Lemma 2.3, the two doubly-infinite paths in (2.6) can be assumed to be vertex disjoint. So, for such an outcome, let
C be an infinite component ofN and let π1 and π2 be vertex disjoint, vertex self-avoiding doubly-infinite paths contained
in B(C) . Choose a dual edge e0 in π1 and enumerate the edges in either direction along π1 as . . . , e−1, e0, e1, . . .. For
n ∈ Z, write {xn , x0

n} for the edge which bisects en , so that xn ∈ V (C)and x0
n ∈ V (C)

c
. For n ≥ 1, since xn , x−n

are in V (C), there is a vertex self-avoiding path Pn in N connecting xn to x−n . Fixing any y ∈ V (C)such that some
edge {y, y0}bisects an edge of π2, we can also find a path π3 in N connecting x0 to y. See Figure 1.

We will now argue by the Jordan curve theorem that Pn must intersect π3. To do this, define the plane curve Pn as
follows. It proceeds fromxn to x−n along the edges ofN that connect vertices ofPn , then it connectsx−n to π1 halfway
through the edge {x−n , x0

−n }, then it proceeds along π1 until it meets the edge {xn , x0
n}, and last moves to xn halfway

through this edge. The curve Pn is a Jordan curve, and so its complement in R2 has a bounded component (the interior)
and an unbounded component (the exterior). We first note that

(2.7) for n ≥ 1, V (C)
c
⊂ ext Pn .
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x0

x′0

xn

x−n

y
y′

π1

π2

π3

Pn

x′n

x′−n

z

FIG 1. Illustration of the argument for Proposition 2.1. The closure V (C) of the component C lies between the two paths π1, π2, which are part of the
boundary B(C) . The xi ’s are the endpoints of edges dual to those of π1 that lie in V (C), and Pn is a path in N connecting xn to x−n . The path π3
is in N and connects x0 to y, an endpoint of an edge dual to one in π2. By the Jordan curve theorem, Pn must intersect π3 at some vertex z. Because
this is true for all n, one can argue that some such z has #C z = ∞ .

Indeed, if u ∈ V (C)
c
, then (by Lemma 2.1) u is in an unbounded site-component of V (C)

c
, and so there is an

infinite vertex self-avoiding pathπ starting from u and remaining in this component. Howeverπ cannot touch Pn because
it never leaves this component and therefore never comes in contact withPn or π1. Therefore u must be in the unbounded
component of the complement of Pn , and this shows (2.7).

Due to (2.7), we can now argue thatx0 is either on Pn or in its interior. So suppose thatx0 is not on Pn ; this means it
is not on Pn . Then the edge {x0, x0

0}only touches Pn at π1, and it only touches it once. However x0
0 is in the exterior of

Pn , so x0 must be in the interior. By similar reasoning, we can argue that y (the other endpoint of π3) is either on Pn or
in its exterior. Indeed, if it is not on Pn , then it is not on Pn , and then the edge {y, y0} does not touch Pn but ends at the
vertex y0, which is in the exterior. Therefore y is also in the exterior. Because x0 is not in the exterior of Pn , and y is not
in the interior, the curve formed by following straight line segments between the vertices of π3 must touch Pn . Since π3
doesn’t leave C , it must touch a vertex of Pn . Therefore we find that for all n, Pn shares a vertex with π3, as desired.

Because π3 is finite, there is a z ∈ π3 that is in Pnk for some subsequence (nk) of integers with nk → ∞ . We claim
that either xnk → z in ND or x−n k → z in ND . This is clear if one ofxnk or x−n k equals z. Otherwise, z has degree two
on Pnk . Since a.s., all vertices have out-degree one inND (and therefore so does z), one of its neighbors on Pnk , say w0,
is such that hw0, zi is an edge of ND . Enumerating the subsequent vertices (beyond w0) of Pnk as w1, . . . , wr , each wi
has out-degree one in ND , so hwi+1 , wi i is an edge of ND . Thus wr → z in ND . Since wr = xnk or x−n k , this proves
the claim and furthermore establishes that (2.6) implies

P ∃z ∈ Z2 such that #Cz = ∞ > 0.

This is a contradiction and completes the proof.

Now that each infinite component ofN is topologically a half-space, we must show that the complement cannot contain
more than one other infinite component. This could happen, for example, if three infinite components were separated by
an infinite union of finite components with at least three topological ends, or if three infinite components come within
distance 1 of each other. To rule out these and other possibilities, we will make use of the results of Burton-Keane in [5].
To begin, we make a few definitions, and state a structural lemma which follows from arguments of [5].
Definition 2. Write X for the subset of Z2 defined by

X = Z2 \
[

C
V (C),

where the union is over all infinite components of N . Then Z2 is the disjoint union of sets of the following three types:
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(a) V (C) for an infinite component C of N ,
(b) an infinite site-component of X , and
(c) a finite site-component of X .

Note that because the complement of X contains only infinite site-components, each set of type (b) or (c) is equal to
its closure. For the next lemma, we say that verticesx and y are ∗-neighbors (or ∗-adjacent) if kx − yk∞ = 1. We extend
this notion to sets in the usual way.

Lemma 2.4. Under assumption A, a.s., none of the following occur.

1. There is a set of type (b) whose complement has at least 3 site-components.
2. There is a dual vertex within Euclidean distance

√ 2/2 of three different sets of types (a) or (b).
3. There is a set of type (c) which is ∗-adjacent to at least three different sets of types (a) or (b).

Proof. Item 1 is a direct application of [5, Thm. 2], which states that in stationary site percolation on Z2, a.s., there is
no “ribbon” whose complement contains at least 3 site-components. To apply this result, we define variables (xv)v∈Z2

as xv = 1{v∈X} . The xv form a stationary site percolation, and any infinite site-component of X (a type (b) set) is a
“1-ribbon” (the closure of an infinite 1-cluster). The result follows.

Items 2 and 3 have similar proofs, and follow that of [5, Thm. 1] (see also [10]) , which states that in stationary
site percolation on Z2, a.s., no “rock” has at least 3 ribbons as ∗-neighbors. Because the details are the same, we only
sketch the proofs. To any dual vertex v as described in item 2, we associate three infinite vertex self-avoiding site-paths
γi (v) in different sets of types (a) or (b), starting from vertices within Euclidean distance

√ 2/2 of v. For any such
v ∈ [0, n]2, consider the first intersection xi (v) of γi (v) with ∂[0, n]2, and ordering them so that x1(v), x2(v), x3(v) are
in counterclockwise order, we say that x2(v) is the “central point” associated with v. (It appears that even in the original
argument of [5], a bit more care needs to be taken to define the central point: the xi (v) should be chosen as functions of
the intersection of their corresponding (a) or (b) set with [0, n]2.) One then uses a Jordan curve argument to prove that
central points corresponding to different v’s are distinct, and therefore there can be at most4nsuch v’s in [0, n]2. (In this
part, it is important that for given v, v0, the starting points of the γi (v0)’s must all lie in the closure of one of the regions
between the γi (v)’s.) However, if the event described in item 2 has positive probability, translation invariance implies that
the expected number of v in [0, n]2 is of order n2, a contradiction for large n.

The argument for item 3 is similar, defining three paths corresponding to each type (c) set as described, paths γi , and
corresponding central points. Again, central points associated to distinct such type (c) sets are distinct, and we conclude
as above.

Given these preparations, we now prove thatN has at most 2 infinite components.

Proof of Theorem 1.2. We start by defining the∗-boundary for an infinite componentC of N , using our dual pathB(C) .
Writing D for the event in Proposition 2.1, consider a configuration in D in which N has at least 2 infinite components.
Let C be any one of them, and note thatB(C) is a (nonempty) doubly-infinite, vertex self-avoiding dual path. Enumerate
the dual edges of B(C) as . . . , e−1, e0, e1, . . ., and write xi for the vertex of V (C)

c
which is an endpoint of the

edge whose dual is ei . The sequence (xn) is ∗-connected (it is in fact a ∗-path), but it not necessarily site-connected. To
remedy this, we define a doubly-infinite sequenceP = P (C)of vertices by following the xi ’s, but inserting between any
xi and xi+1 which are ∗-neighbors but are not site-neighbors their unique common site-neighbor which is in V (C)

c
.

(For example, ifxi = (0, 0)and xi+1 = (1, 1), with ei = {(−1/2, 1/2), (1/2, 1/2)}and ei+1 = {(1/2, 1/2), (1/2, 3/2)},
then this neighbor is the vertex (1, 0). In fact, this is the only possible case up to translation, reflection, and rotation by
multiples of π/2.) Then P is a natural enumeration of the ∗-boundary of V (C) and is clearly site-connected (it is a path
which might not be vertex self-avoiding). For our given C and P , we will consider the different possible sets of types
(a)-(c) which can intersect P .

First, we argue that no infinite component can be a ∗-neighbor to two other sets of type (a) or (b):

(2.8) P ∃x, y ∈ P = P (C)in different sets of type (a)
or (b) for some infinite component C of N = 0.

For a contradiction, assume that this probability is positive. We will show that in this case, we can find either a dual
vertex as in item 2 of Lemma 2.4 or a set of type (c) as in item 3 of Lemma 2.4. To do this, consider an outcome in the
intersection of D with the event in (2.8), withC, P, x, yas described, and write B1 for the set of type (a) or (b) containing
x. Following P from x to y, we must exit B1.
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u u uv v

vC C C
en enen+1

en+1

FIG 2. The three possibilities in the argument of case 1 for equation (2.8). In the first, u = xn for some n and v is as well. In the second, u = xn
for some n, but v is not, although it is in P . In the last, u ∈ P is not of the form xn but v is. In all possibilities, the central dual vertex (taken to be
(1/2, 1/2)) satisfies the condition of item 2 of Lemma 2.4.

Case 1. If we enter a different type (a) or (b) set, sayB2, then write u for the last point in P of B1 before entering B2,
and v for the first point of B2. If u = xn for some n, then after translating, rotating, and reflecting, we may assume that
u = (0, 0)and (0, 1) ∈ V (C)(so that en = {(−1/2, 1/2), (1/2, 1/2)} ∈ B(C)). If en+1 = {(1/2, 1/2), (3/2, 1/2)}, then
v = xn+1 = (1, 0)then the dual vertex (1/2, 1/2)satisfies item 2 of Lemma 2.4 with sets B1, B2, V (C). (See Figure 2.)
If instead en+1 = {(1/2, 1/2), (1/2, 3/2)}, then v = (1, 0)is in P but not in the sequence (xn); however,(1/2, 1/2)still
satisfies item 2 with sets B1, B2, V (C). We cannot have en+1 = {(1/2, 1/2), (1/2, −1/2)}because then v = xn = u,
but u and v are in different sets of type (a) or (b). The last possibility is that u is not any of the xn ’s, in which case after
translating, rotating, and reflecting, we may assume that u = (1, 0)and v = (1, 1)with (0, 1) ∈ V (C). Here, again the
vertex (1/2, 1/2)satisfies item 2 with the same sets B1, B2, V (C).

Case 2. The other possibility is that, after we leave B1, we enter a set Y of type (c). In this case, B1 must be of type
(a). If, as we proceed along P , we next re-enter B1, we simply wait until we leave B1 once again. Otherwise, once we
leave Y , we enter another set B2 of type (a) which is not B1 and also not V (C). In this case, the set Y is site-adjacent to
both B1 and B2 but also ∗-adjacent to V (C) (as every vertex of P is ∗-adjacent to V (C)). Therefore Y satisfies item 3
of Lemma 2.4.

In either case, assuming that (2.8) fails implies that at least one of the events described in Lemma 2.4 has positive
probability, a contradiction. Therefore (2.8) holds.

Next, we argue that if any infinite component of N is a ∗-neighbor of another one (by the above, the component can
have at most one such ∗-neighbor), then there are exactly two infinite components ofN :

(2.9) P ∃x ∈ P = P (C)in a set of type (a) for some infinite
component C of N and N has at least 3 infinite components = 0.

As before, we argue by contradiction and assume that this probability is positive. Choose any outcome in the intersection
of D and this event such that the event in (2.8) does not occur, and pick C, xas described in (2.9). Note that if V (C0) is
the set of type (a) containing x, then infinitely many vertices of P (in both directions) are in V (C0). (This implies that
P consists of vertices of V (C0) separated by finite segments of vertices in (c) components.) Indeed, if this were not true,
then in some direction along P , all vertices from some point on would be in X (since they could not be in another type
(a) set due to the event in (2.8) not occurring). But these vertices are site-connected, so they would be part of a set of type
(b), and this would also lead us back to the event in (2.8).

Because the event in (2.9) occurs, we can choose, in addition to the componentsC and C0, yet another infinite compo-
nent C00of N . Pick a site-connected pathπ from C00to C and follow it until its first vertex inV (C) ∪ V (C0) (this cannot
be the initial vertex of π). By symmetry, we may assume that this vertex is in V (C). Let w be the vertex of π directly
before it. Since w ∈ P(as it is site-adjacent to V (C)), but not in V (C0), and vertices of P are either in V (C0) or in type
(c) sets, w must be in a set Y of type (c). Note that then Y is site-adjacent to V (C), but it is also site-adjacent to V (C0),
as we can follow P through Y directly to V (C0). Following π backward from w until we exit Y , we must enter another
type (a) set, but this set cannot be V (C) or V (C0). We conclude that Y is site-adjacent to 3 sets of type (a); that is, Y
satisfies the condition of item 3 of Lemma 2.4. Just as in case 1, we see that our assumption that (2.9) fails implies the
event described in item 3 of Lemma 2.4 has positive probability, a contradiction. Therefore (2.9) holds.

Last, we deal with the remaining possibility: that all vertices ofP = P (C)are in one set of type (b), and that this holds
for all infinite components C of N . In this case, we will show that the number of infinite components of N is at most
two:

(2.10) P all x ∈ P = P (C)are in a set of type (b) for all infinite
components C of N and N has at least 3 infinite components = 0.
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For a contradiction, assume this probability is positive, and consider any outcome in the intersection ofD and this event.
Pick infinite components C1, C2, C3 of N and write P1, P2, P3 for their corresponding ∗-boundary paths. Then Pi is
contained entirely in some set Yi of type (b). In this case, we will show that all Yi ’s are equal and that their complement
has at least 3 site-components, as in item 1 of Lemma 2.4.

Choose a site-connected path π from Ci to Cj for some i 6= j. Let w be the vertex directly before entering V (Cj ) for
the first time and note that sincew is site-adjacent to V (Cj ), it must be in Pj , and therefore in Yj . Following π backward
from w until it last leaves Yj at some vertex z, we see that z must be in V (Ci ). The reason is that otherwise z must be
in another set of type (a), and this set would have ∗-boundary path fully contained in Yj (as it is site-adjacent to Yj ), so
to reach Ci , we would need to re-enter Yj , contradicting the definition of z. We find, therefore, that Yj is site-adjacent to
V (Ci ) as well, and so Yi = Yj .

Because Y1 = Y2 = Y3, each of V (C1), V (C2), V (C3) are ∗-adjacent only to Y1, This implies that the sets V (Ci ) are
contained in different site-components ofY c

1 (otherwise we could move from one to the other without touchingY1). Thus
Y1 satisfies the condition of item 1 of Lemma 2.4. This means that if we assume that (2.10) fails, then the event described
in item 1 has positive probability, a contradiction. Therefore (2.10) holds. This completes the proof.

2.3. Proof of Theorem 1.3

Suppose that G = (V, E)is a graph such that E is countable and G = (V, E)is a directed graph with the properties stated
in the theorem: if hx, yi ∈ Ethen {x, y} ∈ E, each x ∈ Vhas out-degree one in G, G has no directed cycles of length at
least three, and for each vertexx ∈ V, Cx is finite. We define weightsω(e)for edges e ∈ Eas follows. Let (U (e))e∈E be
a collection of i.i.d. uniform [0, 1]random variables and let E be the set of edges {x, y} ∈ Esuch that hx, yi ∈ E. If e ∈ E
with e = {x, y}and hx, yi ∈ E, write V (e)for the number of vertices in Cx . Note that V is well-defined: if hx, yiand
hy, xiare both in E, then the graphs Cx and Cy are the same, so they have the same number of vertices. Our definition of
ω(e)is

(2.11) ω(e) =
(

1
V (e)+U(e) if e ∈ E
1 + U (e) otherwise.

Note that a.s., the weights ω(e)are distinct. Therefore to prove Theorem 1.3, we will show that a.s., the nearest
neighbor graph ND constructed from the weights is equal to G. First suppose that hx, yiis an edge of G; we will prove
that it is in ND . To do this, we will show that for z 6= ywith {z, x} ∈ E, we have ω({z, x}) > ω({x, y}). There are two
cases. If {z, x} /∈ E, then a.s.

ω({z, x}) = 1 + U ({z, x}) > 1 > 1
V ({x, y}) + U ({x, y})= ω({x, y}),

since V ({x, y}) ≥ 1. Alternatively, if {z, x} ∈ E, then because x has out-degree one in G, hz, xi ∈ Eand therefore
V ({z, x})is the number of vertices in Cz . We claim that Cz is strictly contained in Cx : each vertex of Cz is in Cx , but
x /∈ Cz . Assuming this for the moment, we obtain V ({x, z}) ≤ V ({x, y}) − 1and so a.s.

ω({x, y}) = 1
V ({x, y}) + U ({x, y})< 1

V ({z, x}) + 1<
1

V ({z, x}) + U ({z, x})= ω({z, x}).

This implies that a.s. if hx, yi ∈ Ethen hx, yiis an edge of ND .
To prove the claim, observe that if w is a vertex of Cz then it is clearly a vertex of Cx : any directed path from w to z

can be extended to x by simply appending the edge hz, xito the end. So we assume for a contradiction that x is a vertex
of Cz . Then there is a directed path π from x to z in G (which we may assume is vertex self-avoiding). This path cannot
contain an edge from x to z since hx, zi /∈ E, so it must first visit someu which is not equal tox or z. But then appending
the edge hz, xito the end of π produces a directed cycle of length at least three inG, a contradiction. We conclude thatx
is not a vertex of Cz and therefore the claim holds.

To complete the proof of Theorem 1.3, suppose thathx, yi /∈ Ebut {x, y} ∈ E. Since x has out-degree one in G, there
is some z 6= ysuch that hx, zi ∈ E. As we saw above, this implies a.s. that hx, ziis an edge of ND . Since x a.s. has
out-degree at most one in ND (as the weights are distinct), we find that hx, yicannot be an edge of ND . This shows that
the edges of G and ND are the same, and finishes the proof.
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2.4. Proof of Corollary 1.1

To prove the corollary, we will build various random directed graphs and use Theorem 1.3 to exhibit them as nearest
neighbor graphs for some choices of weights. Because i.i.d., continuously distributed weights produce nearest neighbor
graphs with all finite components, it suffices to take k ≥ 1. Our underlying graph will be Zd for some d ≥ 2and we
will identify any directed graph G with vertex set Zd with a point in the space {0, 1}~Ed

, where ~Ed is the set {hx, yi :
x, y ∈ Zd, kx − yk1 = 1}of directed edges of the lattice. (We give this space the usual product Borel sigma-algebra.)
Any translation T z acts on this space just as it did on the edge-weight space Ω: for η ∈ {0, 1}~Ed

, we set (T zη)(hx, yi) =
η(hx + z, y + zi). Last, to a directed graph G = Z d, E we naturally associate the point η = η(G):

η(hx, yi) =
(

1 if hx, yi ∈ E
0 otherwise.

By Theorem 1.3, to show that there is a measureP satisfying A such that a.s. the graphND has, say, propertyP , it suffices
to show that there is a random directed graph G (measure on {0, 1}~Ed

) which is invariant under all translations T z such
that a.s., G has property P and the properties stated in the theorem: if hx, yi ∈ Ethen {x, y} ∈ Ed, each x ∈ Zd has
out-degree one in G, G has no directed cycles of length at least three, and for eachx ∈ Zd, Cx is finite. This is because if
the distribution of G is invariant under translations, then the weights (ω(e))defined in (2.11) will be as well, so A1 will
hold, and the weights are all distinct, so A2 will hold as well.

Given these preliminaries, we move to the constructions.

2.4.1. Case d = 2and k = 2
To construct the measure P for the case d = 2and k = 2, we use the graph from [19, Sec. 3]. It is a.s. a union of two
directed trees, each built from coalescing random walks: one tree moves up-right and the other moves down-left, both
trees being dual to each other. Let (Bx)x∈Z2 be a family of i.i.d. Bernoulli(1/2) random variables and define a directed
graph G0 using these variables as follows. The vertex set ofG0 is Z2 and the edge set is

[

x:B x =1
{h2x, 2x + e2i, h2x + e2, 2x + 2e2i, h2x + e1, 2x + e1 − e2i, h2x + e1 + e2, 2x + e1i}

[ [

x:B x =0
{h2x, 2x + e1i, h2x + e1, 2x + 2e1i, h2x + e2, 2x + e2 − e1i, h2x + e1 + e2, 2x + e2i} .

Here e1 and e2 are the standard basis vectors ofR2. (See [19, Figs. 2,3] for illustrations of the structure ofG0.) Although
G0 is not translation invariant, we can remedy this by lettingU be an independent uniform vector on the set{0, e1, e2, e1+
e2}and setting G to be the translation of G0 by U . That is, G has vertex set Z2 but edge set

{hx + U, y + U i : hx, yiis an edge of G0} .

In [19, p. 1730] it is shown that the distribution ofG is invariant (and even ergodic) under lattice translations.
By construction, a.s. each vertex has out-degree one in G and the graph Γx obtained by starting with a vertex x and

following each out-edge is a symmetric random walk that, once it reaches a vertex z, steps either (a) up twice or right
twice if z · (1, 1)is even or (b) down twice or left twice ifz · (1, 1)is odd. Because all paths of type (a) intersect, as do all
paths of type (b), but paths of type (a) do not intersect those of type (b), it follows that the undirected version of G (the
graph with the same vertex set but edge set equal to {{x, y} : hx, yiis an edge of G}) has exactly two components a.s.
(These are the two directed trees mentioned above.) In [19, p. 1730] it is shown that “for any x the subtree for which x
is the root is a.s. finite.” In our notation, this means that for each x ∈ Z2, the number of vertices in Cx is finite. Because
this G a.s. satisfies the conditions of Theorem 1.3, is invariant under translations, and its undirected version has two
components, this completes the case d = 2and k = 2.
Remark 3. In the language of the proof of Theorem 1.2, the above example exhibits the lattice Z2 as a union of two
disjoint type-(a) sets, V1 and V2, corresponding to the up-right tree and the down-left tree. The dual edge boundaries
B(V1) and B(V2) coincide and, furthermore, each vertex of Z2 is an endpoint of an edge dual to one on this boundary.
One can modify this example to produce a model consisting of two type-(a) sets separated by type-(c) sets as follows. For
any z such that all vertices x with hx, zian edge of G satisfy #Cx = 1, we remove the out-edge of z from G and add a
new out-edge from z to any such x (choosing one in a deterministic manner). The resulting directed graph is then seen to
be a nearest neighbor graph for weights satisfying assumption  A, and every z listed above becomes part of a type-(c) set
separating the two type-(a) sets.
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(0,0) (23 − 1,0)

(0,23 − 1)

FIG 3. Illustration of the dyadic construction of η0 for d = 2restricted to the box C3 of side-length 8 = 23. In each block of side-length 2, arrows point
down from the top level, and to the left from the lower-right vertex. In each block of side-length 4, we repeat this construction, viewing the side-length
2 blocks as vertices: the top-level blocks point down and the lower-right block points left. In blocks of side-length 8 (the whole figure), the top-level
side-length 4 blocks point down and the lower-right one points left.

2.4.2. Case d ≥ 3and k = ∞
To prove item 2 in the case d ≥ 3and k = ∞ we use a layered construction. We produce a translation-invariant random
graph G with vertex set Zd which satisfies the conditions of Theorem 1.3 and whose undirected version has infinitely
many infinite components. We do this by induction, so suppose there is such a random graphGd for a given dimension d
with at least two infinite components (by the above argument, we know this is true ford = 2); we will show one exists in
dimension d + 1with infinitely many infinite components. Write ηd for the (random) point in {0, 1}~Ed

corresponding to
Gd in d-dimensions and define an element η ∈ {0, 1}~Ed+1

by

η (hx, yi) =
(

ηd (hπd(x), πd(y)i) if πd(x) 6= πd(y)
0 otherwise.

Here πd : Zd+1 → Zd is the projection πd(x) =P d
i=1 (x · ei )ei . If G is the graph corresponding toη, then the intersection

of G with each hyperplane {x · ed+1 = n}(for n ∈ Z) is a copy of Gd, and there are no edges in G connecting these
hyperplanes. Therefore the distribution of G is invariant under translations. Furthermore, each x ∈ Zd+1 has out-degree
one, it has no directed cycles of length at least three, and each Cx is finite. Last, since the undirected version of Gd has
multiple infinite components, so does the undirected version of G (in fact it has infinitely many). This proves the case
d ≥ 3and k = ∞.

2.4.3. Case d ≥ 2and k = 1
For the case d ≥ 2and k = 1, we give a dyadic construction. Define the orthant O = {x ∈ Zd : x · ei ≥ 0for all i}. For
any nonzero x ∈ O, let

k(x) = min k ≥ 1 : x/2k /∈ Zd .

Because x/2k(x)−1 ∈ Zd but x/2k(x) /∈ Zd, at least one coordinate ofx/2k(x)−1 is odd. Let i(x) be the largest such index.
(For example, if x = (4, 8, 15)then k(x) = 1and i(x) = 3, and if x = (0, 8, 16)then k(x) = 4and i(x) = 2.) Now define
η0 ∈ {0, 1}~Ed

by

η0 hx, x − ei(x) i = 1for all nonzero x ∈ O,

and η0 (hx, yi) = 0for all other directed edges hx, yi. Write G0 for the directed graph corresponding to η0. See Figure 3.
In G0, the vertex 0 has out-degree 0, as does every vertex that is not in O. Each non-zero x ∈ Ohas out-degree one.

Therefore the directed subgraph Γ0
x of G0 induced by the vertices y such that x → y is a directed path. Starting from any
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x ∈ Oand moving along Γ0
x , the vertices are obtained from x as follows. We decrement the largest odd coordinate of x

by 1, then the next largest odd coordinate by 1, and so on, until all coordinates are even. Then we decrement the largest
coordinate that is not divisible by 4 repeatedly until it becomes divisible by 4, then the next largest coordinate that is not
divisible by 4, and so on, until all coordinates are divisible by 4. We then iterate the steps with 8 in place of 4, then 16,
and all powers of 2, until we reach the origin. We observe that in this procedure,

(2.12) after all coordinates are divisible by 2k , at most one is not at any time.

For any k ≥ 1, O is a disjoint union of “ 2k -boxes” of the form 2kz + Ck , where Ck = {0, . . . , 2k − 1}d and z ∈ O.
Here,

(2.13) if x ∈ 2kz + Ck , then z = (x/2k) · e1 , . . . ,(x/2k) · ed .

Note that for k ≥ 1and z ∈ O,

(2.14) if x ∈ 2kz + Ck then Γ0
x touches 2kz within d2k steps without leaving 2kz + Ck.

This follows from the above description of Γ0
x : as we traverse Γ0

x , we start at x and decrement coordinates in the order
described above until all coordinates are divisible by 2k .

Before we translate and average to build a measure, we note the following properties ofG0:

(A) If hx, yiis an edge of G0, then {x, y} ∈ Ed. This is clear by the construction.
(B) Each x ∈ Othat is nonzero has out-degree one in G0. This was stated above.
(C) G0 has no directed cycles. This is because each directed edge points in the direction of decreasing i-th coordinate

for some i .
(D) If x ∈ Ois in a 2k -box 2kz + Ck for z ∈ Oand k ≥ 1, and has at least two coordinates which are not multiples of

2k , then C0
x (the subgraph of G0 induced by y such that y → x in G0) contains no vertices outside of2kz + Ck . To

prove this, suppose that y is a vertex of C0
x . If y is in a different 2k -box from x, say 2kz0+ Ck for z06= z, then by

(2.14), traversing Γ0
y leads us to 2kz0 without leaving 2kz0+ Ck (in particular not touching x). Because of (2.12)

and the assumed properties of x, Γ0
y never touches x.

(E) For k ≥ 1, if x, yare elements of the same k-box, then while traversing Γ0
x starting from x, we intersect Γ0

y within
d2k steps. Indeed, we note that such x and y can be written for some z ∈ Oas

x = 2kz + x0, y = 2kz + y0for x0, y0∈ Ck.

So by (2.14), after at most d2k steps on Γ0
x , we reach 2kz (and similarly for Γ0

y).

The next step is to define a sequence of variables (Zn)n≥1 such that Zn is uniform on {0, . . . , 2n − 1}d, and set
ηn = TZn η0 to be the translation of η0 by Zn . Because the ηn form a tight sequence (the space {0, 1}~Ed

is compact),
there is a subsequence (ni ) such that ηn i converges in distribution to some η. (In fact, a subsequence is not necessary.)
Letting G be the (random) directed graph corresponding to η, it is standard that G is invariant under translations. We are
then left to prove that a.s., G satisfies the conditions of Theorem 1.3, and that a.s., the undirected version of G has only
one component.

To show the desired properties of G, we start with item 1 of Theorem 1.3, and this is the most obvious. For any
x, y ∈ Zd, the event

n
τ ∈ {0, 1}~Ed : τ (hx, yi) = 1

o
is a cylinder event, so its indicator is a (bounded) continuous function.

Therefore P(η(hx, yi) = 1) = limk→∞ P(ηnk (hx, yi) = 1). If x and y are not neighbors (that is, kx − yk1 > 1), this
probability is zero by item (A) above. This means G satisfies item 1 of Theorem 1.3 a.s.

For item 2, note that the event that the origin has out-degree one is a cylinder event. Again this implies that

P(0 has out-degree one in G) = lim
i→∞

P(Zn i has out-degree one in G0).

By item (B), the right side equals limi→∞ (1 − 1/2dni ) = 1.By translation invariance, we conclude item 2. By a similar
argument, we can show item 3: a.s. G has no directed cycles of length at least 3. (In fact, it has no directed cycles.)
Letting Cbe a deterministic (finite) directed cycle, the event that all directed edges inCare present in the graph (the event
{τ : τ (hx, yi) = 1for all edges hx, yiin C}) is again a cylinder event. By item (C) above, the probability that η is in this
event is zero. Taking a union over all finite cycles shows item 3.
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We now show item 4: a.s. for each x ∈ Zd, the graph Cx is finite. By translation invariance, it suffices to consider
x = 0. Writing #C0 for the number of vertices in C0, note that because {#C0 > λ}is a cylinder event, we have

P(#C0 > λ) = lim
i→∞

P #C0
Zn i

> λ .

For λ ≥ 2d and k = blog2d λc, write zn i for the unique point of O such that Zn i ∈ 2kzn i + Ck . Then by item (D),

lim
i→∞

P #C0
Zn i

> λ ≤ lim
i→∞

P C Zn i
contains a vertex outside 2kzn i + Ck

≤ lim
i→∞

P at most one coordinate of Zn i is not divisible by 2k

= 2−dk + d2−k(d−1) (1 − 2−k )

≤ d + 1
2k(d−1)

≤ 2d−1(d + 1)
λ d−1

d
.

Letting λ → ∞ , we obtain #C0 < ∞ a.s. and this proves item 4.
Finally we prove that the undirected version ofG has one infinite component a.s. For x ∈ Zd and an integer λ > 0, let

Ex = Ex(λ) be the event that there are directed paths π0 in Γ0 starting from 0 and πx in Γx starting from x, both with
λ many edges, which intersect. Note that this event is defined even when some vertices have out-degree greater than one,
but in our graphs Γ0 and Γx are directed paths. (As usual, Γx is the subgraph induced by the vertices y such that x → y.)
Because Ex is also a cylinder event,

(2.15) P(η ∈ Ex) = lim
i→∞

P(ηn i ∈ Ex).

The event on the right is thatΓ0
Zn i

and Γ0
Zn i +x (recall these are the paths in the graphG0) both have at leastλ many steps,

and, following either from its starting point, we intersect the other within λ many steps. Note that if every coordinate of
Zn i is at least λ + kxk∞ , then both paths will have at least λ many steps. Furthermore, if both of these points are in the
same 2k -box 2kzn i + Ck , then by item (E), the paths will intersect withind2k steps. Therefore if we put k = blog2(λ/d)c
(for λ ≥ 2d), we see that if Zn i and Zn i + xare in the same 2k -box, then Γ0

Zn i
and Γ0

Zn i +x will intersect within λ many
steps. This means the right side in (2.15) is at least

lim
i→∞

P Z n i and Zn i + xare in the same 2k-box and have all coordinates ≥ λ

≥ lim
i→∞

1 −d(λ + kxk∞ )
2n i

− P Zn i and Zn i + xare in different 2k-boxes .(2.16)

If Zn i and Zn i + xare in different 2k -boxes, then by (2.13),

b(Zn i /2k) · e1c, . . . , b(Zn i /2k) · edc 6= b((Zn i + x)/2k) · e1c, . . . , b((Zn i + x)/2k) · edc .

The probability of this is at most 2dkxk∞ /2k . Putting this in (2.16), and then combining with (2.15), we find

P(η ∈ Ex) ≥ lim
i→∞

1 −d(λ + kxk∞ )
2n i

− 2dkxk∞
2k ≥ 1 −4d2kxk∞

λ .

Recalling the definition of Ex , if we take λ → ∞ , we see that a.s. both Γ0 and Γx are infinite and intersect. Since this is
true for all x, a.s. the undirected version of G has one infinite component. This completes the proof of the cased ≥ 2and
k = 1.

2.4.4. Case d ≥ 3and k ∈ [2, ∞)
We have seen in Section 2.4.2 that when d ≥ 3,it is possible to construct nearest-neighbor graphs whose undirected
versions have infinitely many infinite components, contrary to the situation whend = 2. This could lead one to ask about
the possibility of some arbitrary finite number k ≥ 2of components. Fix some such integer k ∈ [2, ∞)for the remainder
of this section. We will explicitly construct a translation-invariant measure P such that, a.s., N has exactly k infinite
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components. We do this by describing how to generate a translation-invariant random directed graph G which satisfies
the hypotheses of Theorem 1.3 and whose unoriented version has exactly k infinite components. We write G = (Zd, ~E) ;
we construct the (directed) edge set ~E in stages, writing ~E = ~E (1) ∪ · · · ∪~E (k+1) .

Recall the nearest-neighbor measure constructed in Section 2.4.3. This was a translation-invariant nearest-neighbor
model with the property that, a.s.,N has exactly one infinite component. LetG(1), . . . , G(k) denote k independent samples
from this measure. We begin by using G(1) to define ~E (1) . Given an edge {x, x + ei } of Ed, we include in ~E (1) an
appropriate orientation of each of the edges{4kx, 4kx + ei }, {4kx + ei , 4kx + 2ei }, . . . , {4kx + (4k − 1)ei , 4k(x + ei )};
exactly one orientation of each of these edges will be chosen to appear in~E (1) . Which orientations of each of these edges
appears in ~E (1) depends on whether a) hx, x + ei i is an edge of G(1) , b)hx + ei , xi is an edge of G(1) , or c) neither
hx, x + ei i nor hx + ei , xi is an edge of G(1) (note that, by the construction of G(1) , these are a.s. the only possibilities).

• In case a), the edges h4kx + `ei , 4kx + (` + 1)ei i ∈ ~E (1) for each 0 ≤ ` ≤ 4k − 1(and the other orientation is
omitted: h4kx + (` + 1)ei , 4kx + `ei i /∈~E (1)).

• Case b) is identical but reflected: each edge h4kx + (` + 1)ei , 4kx + `ei i ∈ ~E (1) for each 0 ≤ ` ≤ 4k − 1, and the
other orientation is again omitted.

• Lastly, in case c), we orient edges toward the closer of 4kx and 4k(x + ei ): the edges h4kx + ei , 4kxi,
h4kx + 2ei , 4kx + ei i, . . . ,h4kx + 2kei , 4kx + (2k − 1)ei i ∈ ~E (1) , and also h4kx + (2k + 1)ei , 4kx + (2k +
2)ei i, . . . , h4kx + (4k − 1)ei , 4k(x + ei )i ∈ ~E (1) , with none of the reversed orientations of these edges appearing
in ~E (1) .

We can think of this construction as in a sense “stretching out the lattice Zd” by a factor 4k; each edge of the lattice is
turned into a segment of 4kedges. The above definition guarantees that these segments are traversed by an oriented path
in ~E (1) exactly when the corresponding “un-stretched” edges of ~Ed appear in G(1) .

Let V (1) denote the set of endpoints of the edges considered above — in other words,

V (1) = {4kx + `ei : x ∈ Zd, 0 ≤ ` ≤ 4k − 1, 1 ≤ i ≤ d}.

We can consider ~E (1) as inducing a random directed graph with vertex setV (1) . We note several properties of this graph
which follow directly from the definition and from properties ofG(1) . First,

(2.17) a.s., each y ∈ V(1) has out-degree one in ~E (1) ;

Next, for each x ∈ Zd,

#{y ∈ V(1) : y → 4kxby a path in ~E (1)} ≤ 8kd#{z ∈ Zd : z → x by a path in G(1)}.(2.18)

From (2.18), we immediately see that

(2.19) a.s., for each y ∈ V(1) , #{z ∈ V(1) : z → yby a path in ~E (1)} < ∞.

No edge of ~E (j) , j ≥ 2 will be incident to any vertex of V (1) , so the above properties will be preserved throughout
the remainder of the construction. Statements (2.17) and (2.19) (and their analogues for the endpoints of edges in ~E (j) ,
j ≥ 2) will guarantee that the graph G satisfies the hypotheses of Theorem 1.3 and hence can be represented as a nearest
neighbor graph.

Let E (1) denote the set of undirected versions of edges in ~E (1) ; a final important property of the above is that

(V (1), E(1)) a.s. has exactly one infinite component.

This is again easy to see from the definition. Indeed, the construction above preserves the component structure of vertices
of the form 4kx: there is a path of edges of E (1) from 4kx1 to 4kx2 if and only if there is a path of (undirected versions
of) edges of G(1) from x1 to x2, and other vertices of V (1) can only connect up via vertices of the form 4kx.

The construction of ~E (2), . . . ,~E (k) proceeds analogously, but on shifted sublattices. The vertex set V (2) = V(1) +
(4, 4, . . . , 4). Edges are included in ~E (2) via an analogous version of the above procedure, but using the realization G(2)

and with the entire construction shifted by (4, . . . , 4); we use the status of edges of the form hx, x + ei i to determine the
status of directed versions of edges of the form {4kx + (4, 4, . . . , 4) + `ei , 4kx + (4, 4, . . . , 4) + (` + 1)ei }. To construct
~E (3) , we proceed analogously but with V (3) = V(1) + (8, 8, . . . , 8), and so on. A vertex x ∈ V(j) has the property that

(2.20) x · ei ≡ 4(j − 1) mod 4k
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for at least d − 1values of i; hence, V (j) ∩ V(k) = ∅when j 6= k. In other words, we have constructedk “noninteracting”
and independent directed graphs on distinct sublattices of Zd, each of which obeys the properties (2.17) and (2.18), and
whose undirected version a.s. has exactly one infinite component.

To complete the construction, we must choose ~E (k+1) in a way which guarantees the hypotheses of Theorem 1.3 are
satisfied. Once this is done, we will have constructed a random graph which is realizable as a nearest-neighbor graph,
though (as in the construction in Section 2.4.3) this nearest-neighbor model will not be translation-invariant. To finish
the construction and recover translation invariance, we conclude by shifting the entire graph by an independent random
integer vector in the cube [0, 4k − 1)d.

It remains to choose ~E (k+1) . Suppose we chose ~E (k+1) = ∅, or in other words had the (oriented) edge set of G be
~E (1) ∪ · · · ∪~E (k) . Then the hypotheses of Theorem 1.3 would not be satisfied: the setV (k+1) := Zd \ (V (1) ∪ · · · ∪ V(k) ) is
nonempty, and each vertex ofV (k+1) would have both out- and in-degree zero under this oriented edge set. We complete
the construction by choosing ~E (k+1) in a way such that

• Each vertex of V (k+1) has out-degree one in (V (k+1) , ~E (k+1) );
• No edge of ~E (k+1) connects a vertex of V (k+1) to a vertex of Zd \ V (k+1) (or vice-versa);
• The undirected version E (k+1) of ~E (k+1) has components of `∞ diameter no larger than 4k.

These properties guarantee that the directed graph(V (k+1) , ~E (k+1) ) again “does not interact with” the graphs(V (i) , ~E (i) )
for i ≤ k, and that the graph G satisfies the hypotheses of Theorem 1.3. Moreover, since there are no infinite components
in (V (k+1) , ~E (k+1) ), the graph G has exactly k infinite components.

We choose the edges of ~E (k+1) to have both endpoints in a common cube of the form 4kx + [−2k, 2k)d; this
will guarantee the diameter condition above holds. To do this, for each x ∈ Zd, consider the site-components of
Rx := 4kx + [−2k, 2k)d \ (V (1) ∪ . . . ∪ V(k) ). For each site-component C, choose a deterministic spanning tree of
the vertices of C oriented toward some deterministic root, then insert a single additional oriented edge from this root
toward one of its neighbors (note that this choice can be done in a non-random way, identically for eachx; all of the Rx ’s
are translates of one another).

This construction guarantees that the above bulleted properties hold: the latter two are obvious, and the first holds by
construction as long as each site-component C has at least two vertices. To see why each site-component has at least two
vertices, consider a vertex y ∈ R0, and let C be the corresponding site component of y. By symmetry, we may assume
y · e1 ≥ 0. If y + e1 ∈ C, then we are done. Otherwise, ify + e1 /∈ C, then either i)y + e1 /∈ [−2k, 2k)d or ii) y + e1 ∈ V(j)

for some 1 ≤ j ≤ k. In case i), we have y · e1 = 2k, and then (y − e1) · e1 = 2k − 1, whence y − e1 cannot be in V (m)

for any 1 ≤ m ≤ k. In case ii), y − e1 ∈ [−2k, 2k)d since y · e1 ≥ 0. Moreover, y − e1 /∈ V(j) , since otherwise we would
also have y ∈ V(j) . Lastly, y − e1 cannot be in V (m) for any m 6= j, because then V (j) and V (m) would be at Euclidean
distance two from each other. We conclude that in either case, y − e1 is also an element of y’s site component C. Thus,
the site components of Rx are not singletons, and so the first bulleted property above holds.
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