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ABSTRACT

On electron kinetic scales, ions and electrons decouple, and electron velocity shear on electron inertial length �de can trigger
electromagnetic (EM) electron Kelvin–Helmholtz instability (EKHI). In this paper, we present an analytic study of EM EKHI in an inviscid
collisionless plasma with a step-function electron shear flow. We show that in incompressible collisionless plasma, the ideal electron frozen-
in condition Eþ ve � B=c ¼ 0 must be broken for the EM EKHI to occur. In a step-function electron shear flow, the ideal electron frozen-in
condition is replaced by magnetic flux conservation, i.e., r� ðEþ ve � B=cÞ ¼ 0, resulting in a dispersion relation similar to that of the
standard ideal and incompressible magnetohydrodynamics KHI. The magnetic field parallel to the electron streaming suppresses the EM
EKHI due to magnetic tension. The threshold for the EM mode of the EKHI is ðk � DUeÞ2 > ne1þne2

ne1ne2
½ne1ðvAe1 � kÞ2 þ ne2ðvAe2 � kÞ2�, where

vAe ¼ B=ð4pmeneÞ1=2; DUe, and ne are the electron streaming velocity shear and densities, respectively. The growth rate of the EM mode is
cem � Xce, which is the electron gyro-frequency.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0150895

I. INTRODUCTION

The electromagnetic (EM) Kelvin–Helmholtz instability (KHI) is
one of the most common instabilities in nature. It is driven by velocity
shear in a single continuous fluid or a velocity difference across the
interface between two fluids. Chandrasekhar’s systematic studies1

showed that the KHI can also occur in incompressible magnetohydro-
dynamics, although for a magnetized plasma, magnetic tension parallel
to the streaming can suppress the KHI. Subsequent investigations of
KHI in plasma were carried out in the compressible magnetohydrody-
namics (MHD) framework.2–6 Typically, KHI has been considered as
a large-scale fluid instability, and its importance on kinetic scales has
not been appreciated until recently.

Recent observations and kinetic simulations have found that KHI
on kinetic scales plays an important role in electron acceleration in
explosive events, such as planetary magnetospheric substorms and
solar flares.7–16 The instability is driven largely by the shear in electron
streams and hence is called an electron Kelvin–Helmholtz instability
(EKHI). In magnetic reconnection in collisionless plasma, the current
sheet shrinks to a width close to the electron inertial length de before
triggering explosive reconnection events. The EKHI is common in
magnetic reconnections that have velocity shear due to the anti-
parallel electron streaming along the magnetic field lines in a manner

similar to the MHD KHI,15 but the growth rate is much higher than
that of MHD KHI and the wavelength is much shorter. Interestingly,
the magnetospheric multiscale (MMS) observations appear to have
discovered EKHI and the corresponding vortices.10,11,16–18

The EKHI has not been studied analytically as a distinctively dif-
ferent instability from the MHD KHI, even for the simplest case. The
simplest and most commonly cited case is the EM KHI in an inviscid
and incompressible fluid for a step function velocity shear flow.1 If the
velocity U1 parallel to the magnetic field B1 and U2 parallel to the
magnetic field B2 are separated by an interface zs (Fig. 1), the disper-
sion relation is

x ¼ q1ðk � U1Þ þ q2ðk � U2Þ
q1 þ q2

6
i

q1 þ q2
N1=2;

N ¼ q1q2ðDU � kÞ2 � ðq1 þ q2Þðn1ðvA1 � kÞ2 þ n2ðvA2 � kÞ2Þ;
(1)

where DU � U1 � U2; vA � B=ð4pqÞ1=2 is the Alfv�en velocity, and
q ¼ mini þmene. We can see that a magnetic field parallel to the flow
direction suppresses KHI.

On electron dynamic scales �de, ions and electrons decouple.
Ions are demagnetized and can be treated as a background, and elec-
tron dynamics dominates. At MHD scales, Ohm’s law and the
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momentum equation are two independent equations, but on electron
scales, the electron momentum equation is also Ohm’s law,19 illustrat-
ing the key difference between the MHD scale and electron scale KHI:
The equations that govern the fluid dynamics on different scales do
not have an one-to-one correspondence. On MHD scales, the ideal
Ohm’s law/frozen-in condition is typically assumed to derive the stan-
dard KHI dispersion relations,1 including the one shown in Eq. (1).
On electron scales, the overlap of the momentum equation and Ohm’s
law makes it unclear whether we can simply extend the dispersion
relation for ideal MHD EHI to EKHI, in particular, to Eq. (1).

In the paper, we derive the dispersion relations for the EM mode
of the EKHI in inviscid and incompressible collisionless plasma with a
step function velocity shear flow. We show in incompressible and
inviscid collisionless plasma, the ideal frozen-in condition Eþ ve
�B=c ¼ 0 must be broken for EM EKHI to occur regardless of the
functional form of the velocity shear. The reason is that the frozen-in
condition decouples the electron dynamics from the magnetic and
electric fields. In an incompressible step function electron velocity
shear flow, the frozen-in condition is replaced by magnetic flux con-
servation r� ðEþ ve � B=cÞ ¼ 0. In this case, the magnetic field
plays a similar role to that in Eq. (1) and the electron Alfv�en velocity
vAe ¼ B=ð4pmeneÞ1=2 replaces the role of the MHD Alfv�en velocity
vA. The threshold for the EM EKHI to occur is ðk � DUeÞ2
> ne1þne2

ne1ne2
½ne1ðvAe1 � kÞ2 þ n2ðvAe2 � kÞ2�, where DUe and ne are the

electron streaming velocity shear and densities, respectively. The
growth rate is�Xce, which is the electron gyro-frequency.

II. ELECTRON DYNAMIC EQUATIONS AND THE STEP
FUNCTION ELECTRON SHEAR FLOW

On electron dynamic scales ranging from the electron Debye length
kDe � vte=xpe to the electron inertial length de � c=xpe, where vte is
the electron thermal speed, and xpe is the electron plasma frequency;
electrons and ions are no longer strongly coupled. Electrons dominate
the high-frequency dynamics, and ions behave like a stationary

background due to significantly larger mass. As a result, electrons carry
most of the current and are responsible for charge separation. Thus, on
electron dynamical scales, we neglect the ion dynamics. We assume
that the plasma is inviscid and incompressible collisionless and the elec-
tron fluid equations are

@tne þr � ðneveÞ ¼ 0; (2)

meneð@t þ ve � rÞve þ ene Eþ ve
c
� B

� �
þrPe ¼ 0; (3)

r � ve ¼ 0; (4)

and we assume that the electron pressure is a scalar Pe and the system
is coupled with Maxwell equations,

r � E ¼ 4peðni � neÞ; (5)

r � B ¼ 0; (6)

r� E ¼ � 1
c
@tB; (7)

r� B ¼ � 4pene
c

ve; (8)

where we neglect the temporal variation of the electric field in
Ampère’s law. The spatial scale of the inductive electric field is �de,
which is the electron inertial length, and the time variation of the mag-
netic field is �Xce � eB=mec, which is the electron gyro-frequency;
thus, in Faraday’s law, ðDE=DtÞ=ðDB=DtÞ � vAe=c � 1, where vAe
� B=ð4pmeneÞ1=2 is the electron Alfv�en wave speed. Consequently,
the electric displacement DE=Dt is negligible compared to the electron
current density in Ampère’s law. The current density on electron
kinetic scales can be approximated as j 	 je ¼ �eneve, and the ions’
contribution in Ampère’s equation (8) is neglected.

Following Chandrasekhar,1 we explore both the EM mode EKHI
for the simplest case as shown in Fig. 1: Two uniform electron fluids
in the relative horizontal motion along x separated by the horizontal
boundary at z¼ 0, where the electron velocities U1 and U2 are
discontinuous,

U0 ¼
U1x̂; z > 0;

U2x̂; z < 0:

(
(9)

On both sides of the boundary, we assume that the plasma is neu-
tral but with different plasma densities. We assume that the initial elec-
tron density is n1 and n2,

ne0 ¼
n1; z > 0;

n2; z < 0:

(
(10)

The initial electric field E0 ¼ 0, since the initial densities of electrons
and ions are equal, i.e., ne0 ¼ ni0.

The magnetic fields B1 and B2 are uniform. In particular, we will
show that both the dispersion relations of EM in such a velocity shear
configuration are independent of whether B1 and B2 are parallel or
anti-parallel,

B0 ¼
B1x̂; z > 0;

B2x̂; z < 0:

(
(11)

FIG. 1. An illustration of the coordinate system. The two uniform magnetic fields B1
and B2 are aligned along the stream velocity, and their directions can be ether par-
allel or anti-parallel. We will show that the EKHI depends only on the square of the
magnetic field and is independent of their directions.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 062110 (2023); doi: 10.1063/5.0150895 30, 062110-2

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0150895/18004981/062110_1_5.0150895.pdf

pubs.aip.org/aip/php


With this configuration, an out-of-plane component of the mag-
netic field By is also present, which is proportional to z, i.e., By / z.
When approaching the boundary interface z¼ 0, By approaches zero.
We neglect the By component in this study since the EKHI occurs in
the neighborhood of z¼ 0. The initial pressure P0 is determined by the
initial equilibrium P0 þ B2

0=8p ¼ constant on both sides of z¼ 0.

III. ELECTROMAGNETIC ELECTRON
KELVIN–HELMHOLTZ INSTABILITY
A. The breaking of the ideal frozen-in condition in EM
EKHI in incompressible plasma

In the following, we show that in the incompressible plasma, the
ideal electron frozen-in condition Eþ ve � B=c ¼ 0 must be broken
for EM EKHI to occur.

When the electrons are frozen-in with the magnetic field, the
electron momentum equation (3) reduces to

Eþ ve � B=c ¼ 0: (12)

The linearization of Eq. (5)–(8) gives

r2dEþrr � dE ¼ � 4p
c2

@tdje: (13)

The EM EKHI wavelength is�de; thus, Eq. (13) gives

x2
pedE � 2p@tdje: (14)

From the electron momentum equation (3), we can see that one
of the requirements for the ideal electron frozen-in condition to be sat-
isfied is

mene0ð@tdve þ ve � rdveÞ � ne0edE: (15)

This leads to

2p@tdje � x2
pedE: (16)

This result contradicts equation (14). Therefore, in incompressible
plasma, the ideal electron frozen-in condition prevents the EM EKHI
from occurring. This conclusion is consistent with the fact that the
frozen-in condition decouples the magnetic field from the electron
fluid dynamics. This decoupling occurs because the frozen-in condi-
tion separates the electron momentum equation from the magnetic
and electric fields. As a result, the growth rate of the instability is only
determined by the electron velocity shear, similar to the fluid
Kelvin–Helmholtz instability. This is due to the fact that the electron
Ohm’s law is equivalent to the momentum equation.

B. The threshold and growth rate of EM EKHI in a step
function incompressible electron shear flow

In the following, we neglect the subscript e for electrons. Here,
we derive the dispersion relation for EM EKHI in step function incom-
pressible electron shear flows as shown in Fig. 1.

In Fig. 1, the initial velocity shear is uniform at the both sides of
the interface z¼ 0 and is symmetric to the out-of-plane y-direction;
thus, this is a two-dimensional flow problem in inviscid plasma, and
the vorticity is conserved. The initial vorticity is zero and is conserved
at z 6¼ 0, i.e.,

r� v ¼ 0: (17)

Incompressibilityr � v ¼ 0 and Eq. (17) at z 6¼ 0 give

r2v ¼ 0: (18)

From the above analysis, we can see that for the EM mode, the conti-
nuity equation (2) and Poisson’s equation (5) are replaced by the
Laplace equation [Eq. (18)].

The magnetic field-induced electric field E impacts the electron
momentum equation (3) through Faraday’s law, i.e., Eq. (7). Taking
the curl of Eq. (3), at z 6¼ 0, we obtain

r� Eþ v
c
� B

� �
¼ 0: (19)

However, we can check that Eq. (19) is also satisfied at z¼ 0.
Equation (19) can be considered as an extension of the ideal elec-

tron frozen-in condition in an inviscid and incompressible electron
fluid. The ideal electron frozen-in condition Eþ v

c � B ¼ 0 is the sim-
plest (trivial) case of Eq. (19). In incompressible plasma, the EM EKHI
requires the breaking of the ideal electron frozen-in condition and
magnetic flux conservation is the simplest replacement.

Using Faraday’s law, r � B ¼ 0 and r � v ¼ 0, we rewrite Eq.
(19) as follows:

@tB ¼ B � rv� v � rB: (20)

Equation (20) connects the velocity and magnetic field. We can rewrite
the electron momentum equation (3) using Ampère’s law, i.e., Eq. (8)
to obtain

mnð@t þ v � rÞvþ enE� 1
4p

B � rBþrP
 ¼ 0; (21)

where

P
 ¼ P þ B2

8p
(22)

is the total pressure including magnetic pressure.
Equations (18), (20), and (21) form a complete set of equations

that describe the EMmode of EKHI in the incompressible and inviscid
plasma for the configuration in Fig. 1. We linearize these equations to
obtain

r2dv ¼ 0; (23)

@tdB� B0 � rdvþ U0 � rdBþ dv � rB0 � dB � U0 ¼ 0; (24)

mn0ð@t þ U0 � rÞdvþmn0dv � rU0 þ en0dE

� 1
4p

B0 � rdB� 1
4p

dB � rB0 þrdP
 ¼ 0; (25)

where we have used v ¼ U0 þ dv and n ¼ n0 þ dn; U0 and n0 repre-
sent the initial velocity U1 or U2 and density n1 or n2, respectively. We
also used E ¼ dE due to E0 ¼ 0, and B ¼ B0 þ dB and P
 ¼ P


0
þ dP
, and

P

0 ¼ P0 þ

B2
0

8p
; (26)

dP
 ¼ dP þ B0 � dB
4p

: (27)
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B0 and P0 represent the initial magnetic field and pressure, respec-
tively. E0 ¼ 0 leads to the term E0dn that vanishes, and as a result, the
density discontinuity at z¼ 0 does not affect the linearization.

Perturbations are continuous in the xy plane and discontinuous
at z¼ 0 in the z direction. We consider perturbations of the form
df ðzÞeiðkxxþkyy�xtÞ. As we demonstrated in Sec. II, the ratio ðDE=DtÞ=
ðDB=DtÞ � vAe=c � 1, indicating that the influence of the induced
electric field is insignificant. As a result, the induced electric field is not
a determining factor in the growth rate of the EKHI. Since we
neglected @tE in Ampère’s law, the induced electric field is also
neglected when we take the time derivative of the linearized equations
(25). Then, Eqs. (23) and (24) and the time derivation of Eq. (25) can
be approximated as follows:

The velocity Laplace equation is valid at z 6¼ 0,

ð@2
z � k2Þdv ¼ 0; (28)

and the magnetic flux conservation and the momentum equation are
valid in the whole space,

�iXdB� iB0 � kdvþ dv � rB0 � dB � rU0 ¼ 0; (29)

�imn0Xdvþmn0dv � rU0 �
i
4p

B0 � kdB� 1
4p

dB � rB0

þrdP
 ¼ 0; (30)

whereX ¼ x� k � U0 and k ¼ kxx̂ þ kyŷ .
The component equations of Eq. (30) are

mn0@tdvx þmn0U0@xdvx þmn0dvz@zU0 �
1
4p

B0@xdBx

� 1
4p

dBz@zB0 þ @xP

 ¼ 0; (31)

mn0@tdvy þmn0U0@xdvy �
1
4p

B0@By þ @yP

 ¼ 0; (32)

mn0@tdvz þmn0U0@xdvz �
1
4p

B0@Bz þ @zP

 ¼ 0: (33)

We multiply both sides of Eqs. (31) and (32) by ikx and iky ,
respectively, then sum, and make use ofr � dv ¼ 0 andr � dB ¼ 0 to
obtain

k2P
 ¼ imn0X@zdvz þ i
k � B0

4p
@zdBz þ ikxmn0@zU0dvz

� i
kx
4p

@zB0dBz: (34)

The z component of Eq. (29) gives

dBz ¼ � kxB0

X
dvz: (35)

On inserting Eq. (34) into Eq. (33) and using Eq. (35), we obtain

�mn0k
2Xdvz þ

k2k2xB
2
0

4pX
dvz þ @z

�
mn0X@zdvz �

k �B0

4p
@z

k �B0

X
dvz

� �

þkxmn0@zU0dvz þ
k �B0

4pX
@zðk �B0Þdvz

�
¼ 0: (36)

Equation (28) together with the boundary conditions dvz ¼ 0 at
z ¼ 1 gives the general solution,

dvz / eiðkxxþkyy�xtÞe�kz; z > 0; (37)

dvz / eiðkxxþkyy�xtÞekz; z < 0: (38)

We can then write df ðzÞ as a function proportional to e�kjzj. dv is not
continuous across z¼ 0. However, dv ¼ ddl=dt ¼ �iXdl, where dl is
the displacement of the any fluid element on the interface, which is
continuous at the z¼ 0 plane; thus, we can rewrite dv as follows:

dv ¼ dv0Xe
�kjzj; (39)

where dv0 is the velocity perturbation at z¼ 0.
On integrating Eq. (36) over the interface z¼ 0 from 0� � to

0þ �, where � ! 0 and applying the solution dvz for the two regions,
we obtain

n1ðX2
1 � ðvAe1 � kÞ2Þ þ n2ðX2

2 � ðvAe2 � kÞ2Þ ¼ 0; (40)

where vAe1 ¼ ðB2
1=4pmn1Þ1=2B1=B1; vAe1 ¼ ðB2

2=4pmn2Þ1=2B2=B2,
X1 ¼ x� k � U1, and X2 ¼ x� k � U2. On rearranging Eq. (40), we
obtain the dispersion relation for the EMmode of EKHI as follows:

x ¼ n1ðk � U1Þ þ n2ðk � U2Þ
n1 þ n2

6
i

n1 þ n2
n1n2ðDU � kÞ2
�

� ðn1 þ n2Þðn1ðvAe1 � kÞ2 þ n2ðvAe2 � kÞ2Þ�1=2; (41)

where DU ¼ U1 � U2. We can see that the threshold for the occur-
rence of EMmode in the EKHI is

ðk � DUÞ2 > n1 þ n2
n1n2

n1ðvAe1 � kÞ2 þ n2ðvAe2 � kÞ2
� �

: (42)

For U � vAe, we can neglect the magnetic field, and then for
DU � vAe, and 1=k � de, the growth rate cem is about cem � Xce and
is the electron gyro-frequency. For a special but common case where
n1¼ n2 and B1¼B2, the threshold is

DU > 2vAe: (43)

If the electron velocities on the two sides are anti-parallel
U1 ¼ �U2, the real frequency of the EKHI wave xr is zero, i.e., xr ¼ 0
andU > vAe.

Comparing the dispersion relations of the EMmode of the EKHI
in Eq. (41) and the dispersion relation of the ideal incompressible
MHD KHI in Eq. (1), we find that Eq. (41) is the same as Eq. (1) if we
replace the electron Alfve�n wave speed vAe with the Alfve�n wave speed
vA. In both cases, magnetic tension resists the development of the
instability and the pressure and magnetic pressure support the forma-
tion of vortices. However, the EM mode of the EKHI is not a direct
extension of ideal incompressible MHD KHI, in that the dynamics is
completely different. On the incompressible MHD scale, the plasma is
frozen-in with the magnetic field Eþ v� B=c ¼ 0, where is the
MHD velocity. However, on the electron dynamic scale, the frozen-in
condition must be broken for the EM EKHI to occur in incom-
pressible plasma. In the simplest case, magnetic flux conservation r
�ðEþ ve � B=cÞ ¼ 0 replaces Eþ ve � B=c ¼ 0. This condition
allows both the occurrence of electron heating and electron motions
that are not completely decoupled from the magnetic field, although
constrained, and explains why the magnetic field increases the thresh-
old of the EM mode of the EKHI, in particular a uniform magnetic
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field parallel to the direction of electron streaming suppresses the EM
mode of the EKHI thanks to the magnetic tension.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the threshold criteria and
growth rates of the electromagnetic (EM) electron Kelvin–Helmholtz
instabilities for step function velocity shear flows using an electron
fluid model coupled with Maxwell’s equations in an inviscid and colli-
sionless plasma. Unlike the KHI in ideal incompressible magnetohy-
drodynamics (MHD), we show that the ideal electron frozen-in
condition must be broken for the EM EKHI to occur in incompress-
ible plasma. Similar to the EM KHI in incompressible step function
velocity shear flows, the magnetic tension parallel to the velocity shear
inhibits the development of the EM EKHI and thus, the electron fluid
velocity shear must be larger than the electron Alfv�en speed, i.e.,
DU > vAe, to trigger the instability. The wavelength of the EM mode
of the EKHI is of the order of the electron inertial length de, and the
growth rate is of the order of the electron gyro-frequency cem � Xce.

The dispersion relations for the EM mode and the relevant
thresholds criteria and growth rates can be summarized as follows:

General dispersion relation

x ¼ xr 6 icem;

xr ¼
n1ðk � U1Þ þ n2ðk � U2Þ

n1 þ n2
;

cem ¼ 1
n1 þ n2

n1n2ðDU � kÞ2 � ðn1 þ n2Þðn1ðvAe1 � kÞ2
�

þ n2ðvAe2 � kÞ2Þ�1=2

:

Threshold

ðk � DUÞ2 > n1 þ n2
n1n2

n1ðvAe1 � kÞ2 þ n2ðvAe2 � kÞ2
� �

:

For a simple but common case where n1¼ n2 and B1¼B2, the
threshold becomes

DU > 2vAe:

If the velocity shear is anti-parallel, i.e., U1 ¼ �U2; the real fre-
quency of the EKHI wave is

xr ¼ 0:

We have presented an electron fluid analytic solution for EKHI,
which is more general than the qualitative result presented by Fermo
et al.20 In their study, Fermo et al. estimated the threshold for EKHI
by assuming that the growth rate of EKHI for a wavenumber of
k � 1=de is approximately cem � DU=de. This estimate is an exten-
sion from the growth rate of KHI for weak magnetic fields in uniform
plasma. Additionally, they assumed that the growth rate of EKHI
should exceed the whistler frequency. With these assumptions, they
obtained the threshold for EKHI as DU > vAe=2, with the growth rate
of cem ¼ Xce=2—which is an estimate for the special case of cem that
we presented above.

For a weak magnetic field and a uniform plasma density, our
result allows us to approximate cem ¼ DU=ð2kÞ. In this case, the
threshold for EKHI to occur is theoretically DU > 0. However, if we
consider the growth rate to be cem � Xce=2 and 1=k � de, we obtain

the threshold DU ¼ vAe=2. While this yields the same threshold for
the same growth rate as a special case, we can observe that it is a coin-
cidence. However, this may imply that the condition for EKHI to sup-
press whistler waves is for the growth rate of the EKHI to be larger
than the typical whistler wave frequency—this point needs more
verifications.

In this paper, we only consider step function shear flows in invis-
cid and incompressible plasma. The incompressibility leads to the infi-
nite acoustic wave speed, and thus, the results obtained in this paper
are suitable for low Mach number. Similar to MHD KHI, the com-
pressibility, non-uniform velocity shear (non-zero vorticity), and den-
sity can impact the dispersion relation of EKHI. How compressibility
and non-zero vorticity affect the development of EKHI requires fur-
ther investigations.
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