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Abstract: In high dimensional percolation at parameter p < p., the one-arm proba-
bility 1, (n) is known to decay exponentially on scale (p. — p)~V2. We show upper
and lower bounds on the same exponential scale for the ratio 1, (n)/T ,_(n), establish-
ing a form of a hypothesis of scaling theory. As part of our study, we provide sharp
estimates (with matching upper and lower bounds) for several quantities of interest at

the critical probability p.. These include the tail behavior of volumes of, and chemical
distances within, spanning clusters, along with the scaling of the two-point function at
“mesoscopic distance” from the boundary of half-spaces. As a corollary, we obtain the
tightness of the number of spanning clusters of a diameter n box on scale n ¢7°; this
result complements a lower bound of Aizenman (Nucl Phys B 485(3):551-582, 1997).

1. Introduction

In this paper, we address several questions involving geometric properties of the random
graphs generated from the (bond) percolation model on the canonical d-dimensional
hypercubic lattice Z@ and its subgraphs, namely the boxes or * balls and the half-
space with normal direction e, for sufficiently high dimenson d. Substantial progress
has been made on the mathematical understanding of properties of these random graphs
on Z“ for d large and d = 2, as well as on the two-dimensional triangular lattice.

It is well known that for any & 2 the percolation model orZ¢ (and many subgraphs)
exhibit a nontrivial phase transition, with a critical point separating the highly connected
supercritical regime from the highly disconnected subcritical regime. There are many
useful tools and a well-developed theory for studying the percolation model ~ on 7?2
and on the triangular lattice at and near the critical point. In particular, the following
key facts have been established. First, the behavior of two-dimensional percolation at
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criticality and near criticality are very closely related via scaling or hyperscaling relations
(first observed by Kesten [24]) which relate several key quantities of interest. Second,
critical percolation on the triangular lattice exhibits conformal invariance, as shown by
Smirnov [40], which has been used to show that SLEg is the scaling limit of interfaces

in the model. Finally, many power laws can be exactly computed via the connection to
SLE [32,33]. The latter two classes of results have been proven only for the triangular
lattice, though they are conjectured to extend t&>. Notably, many of the aforementioned
techniques apply to subgraphs ofZ? or the triangular lattice as well. We direct the reader
to [45] for an overview.

For Z¢ with d large, several key aspects of percolation are less well-understood.
Much less is known about the near-critical regime and the behavior of the model in sub-
graphs such as sectors. One of the main aims of this paper is to narrow the gap between
knowledge about the percolation model for d= 2 and for d large. Another related main
aim is to obtain sharp results about the tail behaviors of several quantities for which only
the rough scaling behaviors had so far been identified, for example through computing
low moments. We show new refined results for various connectivity probabilities in-
volving finite boxes at the near-(sub)critical regime, and we derive tail behavior of some
percolation quantities at criticality. More specifically, we obtain (a) precise asymptotic
behavior of the subcritical one-arm probability, with the correlation length determined
up to constants; (b) upper and lower bounds establishing exponential decay for both
the lower tail and the upper tail probabilities of the “chemical” (graph) distance within
open clusters; (c) upper and lower bounds establishing stretched exponential decay (with
exponent 1/3) of the lower tail of the cardinality of open clusters; and, as a result of the
previous point, (d) tightness of the number of spanning clusters of large boxes on scale
nd=o, complementing a well-known result of Aizenman [1], who derived a matching
lower bound on this order. As a technical tool which may be interesting in its own right,
we (e) derive up-to-constant asymptotics for connectivity probabilities in half-spaces,
in the case that a vertex is “mesoscopically close” to the boundary of the half-space.

The questions studied here are related to longstanding conjectures about high-
dimensional percolation. For instance, precise information about the distribution of ver-
tices within clusters and chemical distances between far away vertices would allow one
to obtain the scaling limit of simple random walk on large critical percolation clusters
[6]. We believe that many of the results and techniques that we obtain here could be
useful for studying this and other open problems of the model.

1.1. Definition of model and main results. In our work, we will consider percolation
with base graph the cubic or hypercubic latticeZ?. The usual standard basis coordinates
of a vertex x €Z¢ will be denoted by x(i) = x -e;,s0x = (x(1), x(2), . . .¥(d)). The
origin is denoted by

0=(,0,..0).

We will write x ,, for the usual ” norm of anx € RY: if the p subscript is omitted,
we mean the ® norm. The hypercubic lattice has vertex set Z¢ and edge set

d
E29) = oy} x—y = k@) =y =1.
i=1
(We also use the symbol Z to refer to the graph.) Given a subset A € Z¢, the symbol
dA denotes the set fr €A : Iy EZN\Awith y—x | =1}
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Subcritical High Dimensional Percolation

We will also consider subgraphs of the hypercubic lattice. A few other settings will be
briefly discussed: we will mention some past results on the two-dimensional triangular
lattice, and many high-dimensional results also extend to the spread-out lattice having
vertex set Z< but with edges between all pairs of vertices with ® distance at most some
constant. In fact, the new results of the present work all extend to the spread-out lattices
under standard assumptions; see the discussion at Remark 2 below.

The half-space is the subgraph of the hypercubic lattice induced by the set of vertices
Zf having nonnegative first coordinate: Z‘j ={x €7% : x(1) = 0} We also call
half spaces isomorphic graphs obtained by translation, reflection, or by permutation of
coordinates. We note that we do not consider half-spaces with normal vectors other than
+e;. The boxes or © balls in these graphs are the subgraphs induced by the following
vertex sets:

B(n) = [, nl¥nZ? and By(n) = B(n) anf, respectively.

As above, we blur the distinction between these vertex sets and the subgraphs they
induce, using the same symbols to denote both.

We study the Bernoulli bond percolation model—abbreviated percolation—on the
above and other subgraphs of Z?. For its definition, we fixap € [0, 1] and let W =
(w) «cE(z4) be a collection of independent and identically distributed (i.i.d.) Bernoulli( p)

random variables associated to edges e of Z¢. We write  for the space {0, 1 }E(Zd) of
possible values of w, with associated Borel sigma-algebra. An edge e such thatw, = 1
will be called open, and an edge e such that w, = 0 will be called closed. The main
object of study is the (random) open graph, having vertex séZ? and edge set consisting
of all open edges e € £(Z¢), along with subgraphs of this open graph. Indeed, the open
graph of Z¢ naturally induces graphs on vertex subsets of Z¢: if G is a set of vertices,
then the open subgraph of G has edge set consisting of those ¢ = {, y} €£(Z) with
bothx, y €Gand W, = 1.

Given a realization of w and a subgraph G of Z? (including Z itself), the open
clusters are the components of the open subgraph of G. To distinguish various choices
of G, we write € (x) for the open cluster containing x in the open subgraph of GU £}
We write €(x) = €5q(x) and €y (x) = le,i(x) for brevity. We will define the event

by = § EC()} 1)

. z4
and we abbreviate {x <= y}to {x & y}
The distribution of wwill be denoted by P, to indicate its dependence on the param-

eter p. We define the critical probability (of the entire ambient graph Z<) by
pei=inf p:P,(|€z4(0)] = ©) >0 . 2)

Here and later| - {lenotes the cardinality of a set. When p< p. (resp.p = pe, p > pe),
the model is said to be subcritical (resp. critical, supercritical). We stress that the value of
pc depends on the value of d. One can define p analogously for other graphs, including
subgraphs of Z¢—we will touch on this in discussing some results in this introduction,
but keep p. as defined in (2) for the remaining sections of the paper.

On Z¢ with d = 2, it is widely conjectured that P p.-almost surely there exists no
infinite open cluster. Among other cases, this conjecture is proved in “high dimensions”,
when d is sufficiently large; the current strongest results establish it for d = 11. For all
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these large values of d, more has been shown: for example, the probability of having
long critical point-to-point connections is asymptotic to the Green’s function of simple
random walk. This fact is expected to be true for all d > 6, the expected upper critical
dimension of the model. We will discuss these issues in more detail in Sect. 1.2.

All results of this paper will hold as long as d > 6 and the aforementioned Green’s
function asymptotic holds. We introduce this formally, for use as a hypothesis of our
theorems:

Definition 1. The phrases high dimensions and high-dimensional refer to the hypercubic
lattice Z¢ for any value of d > 6 such that

cx—y 2_dSIPpL,(x<-> y)<C x—y 2

holds for all pairs of distinct vertices x and y, for some uniform constants ¢, C > 0.

As mentioned above, this definition can be broadened to include the spread-out lattice;
see Remark 2 below. We direct the reader to the survey [21] for detailed discussion of
high-dimensional percolation and related models. For an introduction to percolation on
Z¢ for general d, and for an expository treatment of fundamental results, we refer to
[13]. The book [34] discusses percolation in some detail, including in general settings
beyond the hypercubic lattice. After the introduction, we will always assume we are in
the high-dimensional setting of Definition 1.

The main results of the paper, Theorems 1-6 in this section, relate to the behavior of
the open clusters €p(,)(x) and @zﬁ(x) in high dimensions, for p = p, and p < p. but
“close to” p.. As we state our theorems, we will introduce the definitions of the relevant
quantities of interest. To allow us to discuss past results outside of the high dimensional
setting, we make these definitions for general d.

Definition 2. ¢ The site x has one arm (in the extrinsic metric) to distance 7 in G if
sup{ y—x » ! y €ECG(x)} =n.

In the case G = Z¢, we often simply say that x has one arm to distance n without
referring to G. The corresponding events are called arm events or one-arm events.
We also set

1m,(n) :=1P, (the origin 0 has an arm to distance n).

We sometimes write 11(n) for 11, (n).
* The correlation length & p) is defined for p < p. by

&€ p) := —lim nllogn,(n)]™" = — lim nflogP,(0 & ne;)1™";
n—o n—o

for the existence of the limit and the equality, see e.g. [13, (6.10) and (6.44)].

We now begin to state the main results of this paper. The first theorem gives precise
bounds on the asymptotic behavior of the one-arm probability in high dimensional
percolation in the regime n = © andp  pe.

Theorem 1. In the setting of percolation in high dimensions, there is a constant C> 0,
depending only on d, such that for all n €N and for all p € 0, p.],

1
C

_n pc—p
C
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150 The new content of the theorem is in the case p< p.. The analogous inequalities in the
151 case p = p. are the main result of [30].

152 It is expected (see, e.g. [13, (9.16) and Section 9.2]) that subcritical connectivity
153 events on linear scale n obey “scaling hypotheses” in the simultaneous limit n = — o
154 and p Pe: one expects quantities such as 1T,(n)/m(n) to behave as f (n/&(p)) for
155 some rapidly decaying f. It has been shown [15] that§ p) ( pe—p) Y2asp  pe.
156 S0, in this language, Theorem 1 establishes such a scaling form form,, up to constants
157 in the determination of & ).

158 Here and later, we use the usual asymptotic notation: given two functions f, g on
159 asubset Uof R, wesaythat f(r)  g(z) ast approaches 7y if lim sup,_, f f(t)/g(t)
10 and lim sup,_, , g(t)/ f(t) are both finite, where both limits are taken within U . If f, g
w1 instead map {l,2, ...} =0, ), we write f (n) g(n) instead of “ f(n)  g(n) as
2 n—> oo 7

163 The main estimate of Theorem 1 enables us to describe certain lower tail behaviors
164 in the critical phase. Our second result concerns the chemical distance in the critical
165 regime.

s Definition 3. For A, B < Z?, let d¢jem (A, B) denote the length—that is, number of
17 edges—of the shortest open path connecting some vertex of A and some vertex of B
s if such a path exists and o otherwise. dopem (A, B) is called the chemical distance
e between the sets A and B. Forx, y € Z%, we write d chem (x, *) (tesp. depem (*, y)) to
170 denote dupem (fc}, “Xresp. depem (-, 3V 1 G S Z4, we write cgwm (A, B) for the length
171 of the shortest open path from a vertex of A to a vertex of B which lies entirely in G,

. zd
172 and we write dﬁem =dy
173 We denote
174 Sp = dchem (0, 3B(n)),

175 the chemical distance between the origin and the boundary of the box B(n).

176 It is known [29,30,44] that in high dimensions, §, is of order 7 on the event that the
177 origin has an arm to Euclidean distance 7. In the next theorem, we show that the lower
176 tail of the normalized chemical distance n=2S,, decays exponentially.

179 Theorem 2. In the setting of critical percolation in high dimensions, there is a constant
w0 ¢ > 0 such that for any A >0

- P, (S, < A% |0 e dB(n) <exp(—cA™!), %)
we and there is a constant C > 0 such that for allA =Cn ™", we have:

163 P, (S, < M* |0 8 B(n)) =exp(—CA™)). 5)
184 This theorem characterizes the lower tail behavior of S ,,, with the exponential rate

s of decay determined up to constants. We note that on {0 & 9 B(n)},we trivially have
186 Sy, = n, and so the restriction on A in the second part is necessary. As a corollary of

157 Theorem 2, we are able to derive analogous results for point-to-point chemical distances,
s including

189 P, (0 e x, depem(0,x) S Ax 2) < Ce —A 2=d, (6)

10 see Sect. 5.4 below for this and a related statement in half-spaces.
191 Our third main result is the upper-tail counterpart to Theorem 2:
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Theorem 3. In the setting of critical percolation in high dimensions, there is a constant
¢ > 0 such that for any A >0

P, (S, = &> |0 & 8 B(n)) <exp(—cA).

Using similar but simpler arguments, we obtain the following result analogous to (6),
involving the upper tail of the point-to-point chemical distance within boxes

forx €B(n), Py, dopem(0, ) >Ax 21085 ¢ sexp(-cA). @)

At the end of Sect. 6, we give a sketch of how to adapt the argument proving Theorem 2
to prove (7).

Our fourth main result concerns the size of the cluste€ p(,)(0) in the critical regime.
It is known [1,30] that in high dimensions, |€g(,)(0)] is O ,,(n4) on the event that the
origin has an arm to Euclidean distance n. On the same event, we show that the lower
tail of the normalized cluster size 1 ~*|€p(,)(0)| decays stretched-exponentially with
exponent 1/3.

Theorem 4. Consider critical percolation in high dimensions, and let & > 3d/2 be
fixed. There are constants C, c = C(d), c(d, &) >0 such that the following holds.

Sexp(—c/\_%) forall A > (ogn)®n=3

P, (1€5()(0)| < A* |0 © 3 B(n))
r (€50 O] | " zexp(—C/\_.%) forall A >Cn73.

®)

The probability appearing in (8) is zero when A < n™>, and so the theorem covers es-
sentially the entire support of|€z(,)(0)|. The interesting problem of obtaining matching
constants on both sides of the inequality seems challenging, being related to well-known
problems in the model—for instance, showing that 11, (n) = Cn 2 4 o(n2), stated as
Open Problem 11.2 in [21].

Our fifth main result concerns the number of spanning clusters of boxes at p = p..

Definition 4. An open cluster ( intersecting the box B (n) is called a spanning cluster
of B(n) if there are vertices x, y € Csuch that x(1) = —n and y(1) = n. We denote by
¥, the set of spanning clusters of B(n):

= €(z), z €B(n) : Ax, y €C(z) such thatx(1) = —n, y(1) =n}.
This quantity was analyzed by Aizenman [1], who showed
Py (17] Zo(Un?™0) > 1, ©)

asn — o . A matching upper bound O(n¢~®) was obtained for the number of spanning
clusters of B (n) having size = n. Using our estimate for the lower tail of the cluster
size, we can extend the upper bound to |-%},|, which includes all spanning clusters:

Theorem 5. In the setting of critical percolation in high dimensions, there is a constant
C > Osuch that E, [|7,|] = Cn~C. Therefore, the sequence of random variables

{n6_d|fn|}2°=l is tight.
! Here we use Aizenman’s [1] definition of “spanning cluster’’; other natural definitions of this term exist.
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Subcritical High Dimensional Percolation

This sharpens the picture obtained in [ 1] for the behavior of the number of spanning
clusters. Our lower tail estimates obtained in Theorem 4 allows us to overcome the
difficulties encountered in [1] in handling “thin spanning clusters” having atypically
small cardinality.

Our sixth and final main result, Theorem 6, gives bounds for the two-point func-
tion within half-spaces. We introduce some notation for this, along with the analogous
notation for the two-point function in more general subgraphs, for future use.

Definition 5. The two-point function T,(x, y) denotes the connectivity probability

Zd
T(x,y) :=Pp(x © y) =P,(x <> y).

More generally, when G S Z¢, the two-point function restricted to G is Tg, ,(x, y) =

G . .
P,(x <= y). When G = 74, we call T, p (", *)the half-space two-point function and
abbreviate it to Ty, ,(*, *) We often suppress the suffix p. in T, and Ty, ..

Theorem 6. There is a constant C > 0 such that the following upper bound holds
uniformly inm =0 and x €74

d
T (x, mey) :=P,, x(—z—+> me; =C(m+1) x —me; ™.
There is a constant ¢> 0 such that the following lower bound holds uniformly in nz 0,
and x EZf satisfying x (1) = % x and x = 4m:
Ty (x, mey) =c(m+1) x —me; ™.

This theorem is an extension of results of [8], which handled the case that at least one
vertex is on the boundary of fo. The present theorem allows one to consider points
at “intermediate distance” from the boundary. This is necessary for key estimates in
the proofs of other theorems. We also believe it is interesting in its own right and is a
potential tool for studying other properties of open clusters (see e.g. the remark at the
end of Section 3.2 of [37]).

In the high-dimensional settings of Definition 1, the “unrestricted” two-point function
T £, y) = Ta(x, y) is asymptoticto x —y 2=d Theorem 1.1(b) of [8] shows, using
this bound as input, that Ty (x, y) is asymptoticto x —y 27¢ (resp. x —y '79)if
both (resp. one of) x and y are macroscopically away from the boundary to and none
(resp. one) lies on the boundary. The asymptotic result of Theorem 6 interpolates the
above two behaviors of Ty (x, y). In general, based on the heuristic approximation of
high-dimensional percolation by Branching Random Walk (see [21, Section 2.2]), one
expects the half-space two point function Ty (x, y) to behave like the Green’s function
of a random walk conditioned to remain in a half space in all regimes of x and y.

We conclude this subsection with a pair of remarks about our main results and some
last definitions of important quantities in the model. The latter will be useful in the next
subsection for describing past work on the model.

Remark 1. As this work was being finalized, Hutchcroft, Michta and Slade posted a
preprint [23] proving Theorem 1, as well as an upper bound for the subcritical two-point
function, along different lines from this paper. A key technical input in their proof are
estimates for the expectation and tail probabilities of the volume of pioneer points on
connections to hyperplanes, using the estimates (21) of the first two authors of the present
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paper [8]. They use this to derive various results on percolation on high-dimensional tori
of large volume, a setting we do not discuss here. Our proof of Theorem 1 depends
instead on some of the other results presented here, and the theorem is used to prove
some others. These concern aspects of high dimensional percolation irnZ? at the critical
point not treated in [23].

Remark 2. As mentioned earlier, the above results would generalize to the spread-out
lattice, where edges are placed between all vertices at * distance at most  apart
(where = 1 is an arbitrary parameter). The proofs in this paper go through with only
minor modification in this case, as long as d > 6 and the Green’s function asymptotic
for the two-point function appearing in Definition 1 hold. These lattices hold some
interest because existing methods can establish this two-point function asymptotic for
the spread-out model for any d> 6, as long as is chosen sufficiently large. We choose
to write our proofs with a focus on the hypercubic lattice purely for notational simplicity.

Remark 3. We believe the ideas of this paper are robust enough to extend our results to
closely related cases of interest—for instance, extending volume and chemical distance
bounds to the IIC of [43].

Definition 6.  * The density of open clusters 6 p) := P ,(|€(0)| = =) denotes the
probability that the origin belongs to the infinite cluster.
* The mean finite cluster size is denoted by x (p) :=1E,[|€(0)]; £(0)| < «].

1.2. Past work relevant for our results. Much past work has dealt with the behavior of
percolation at and near criticality. By “near critical” behavior, we mean that p= p. but
that we consider events involving length scales at which the model looks approximately
critical in some sense. While the subcritical and supercritical regimes of percolation
on Z¢ are by now well-understood [2] at large scales, the critical regime is only well-
understood when d = 2 and in high dimensions. The near-critical regime is fairly
well-understood when d = 2, but less so in high dimensions (though several results,
for instance the behavior of ¥ (p) as p Pc, are known). Notably, the near-critical
behavior of the one-arm probability 1T, is not yet understood in high dimensions.

Relatedly, results about certain types of connectivity events at criticality seem sig-
nificantly easier to prove in two-dimensional percolation than in high dimensions. A
notable example is the relation between the two-point function and one-arm probability:
on 72 at pe, Kesten [24] showed

T,.(0,ne;) m( n)* as n - .

This estimate is derived by connecting the clusters of 0 and ne | using the Russo—
Seymour—Welsh (RSW) theorem. The corresponding result in high dimensiors,(), ne;)
n®~?1(n)? took until 2011 [30] to establish. A main reason is the proliferation of span-
ning clusters in high dimensions, already noted at (9), which prevents the use of many
d = 2 techniques based on the RSW theorem.

Bridging this gap between d = 2 and high dimensions is a major focus of this paper.
We will put our results into context by describing past work in both of these settings.

1.2.1. Past relevant work in two dimensions At p = p., connectivity probabilities like
n(n) are believed to obey power laws, with the powers often called critical exponents.
The work of Kesten [24] alluded to above established a relation between the critical

) Dispatch: 23/7/2023 | Journal: Commun. Math. Phys.
2 2 (] 4759 B Total pages: 71 Not Used []
Disk Received [] Corrupted L]
Jour. No | Ms. No. Disk Used [] Mismatch [




311
312
313
314

315

316

317
318
319
320
321
322
323

324

325
326
327
328
329
330
331

332

333
334
335
336
337
338
339
340
341
342

343

344
345
346
347
348
349
350
351
352
353
354
355

Subcritical High Dimensional Percolation

exponents governing IT, T, and the tail of the cluster size|(‘l( O)| at p = p.. Remarkably,
this work predated the proof of the exact values of these exponents [31] by about 20 years.
Kesten and Zhang [26] built upon these ideas to show that these exponents strictly change
when Z? is replaced by a sector: if we set for @ >0

Sg := {fcos @, rsin @) €72 r=0,0< @ <2m — 6%} and n(n, 6)
=P, (053 B(n)),

then 1(n, 6 ) <1~%m(n) for all n = 1, with & some O-dependent constant.

In a related and important work, Kesten [25] clarified several aspects of the near-
critical behavior of percolation, showing relations between probabilities of arm events
at p. (in a more general sense than that of Definition 2) and quantities like , 6, and &.
A main and useful idea is that & ) is roughly the length scale L (p) at which squares
become very unlikely to be crossed by a spanning cluster. This allows one to give useful
bounds on near-critical connectivity probabilities: for instance

for p <p. crexp(—Cik) < m,(k L(p))/mp (k L(p)) < Caexp(—czk). (10)

This can be compared to our Theorem 1.

The development of SLE [38] and the proof of Cardy’s formula [40] allowed the com-
putation of critical exponents for arm probabilities [31] on the two-dimensional triangular
lattice. For instance, the one-arm probability 11(n) = n~/48*+(1) These exponents are
believed to be identical on a wide class of two-dimensional lattices, a manifestation of
the universality hypothesis. Using Kesten’s results mentioned above, one can use these
to compute near-critical power laws:

2] ﬁ) — (P _ Pc)5/36+0(])/ X (p) Y 4 IP _pcl43/18+a(1), E é’) — (P _ Pc)_4/3+0(1)-

asp = pl,p— pc,andp = p_ respectively. SLE methods also allow computation
of critical exponents for, among others, arm probabilities in the sectorsgSlefined above.
Conformal invariance of the model’s scaling limit makes clear how many quantities of
interest vary when considering percolation on different subgraphs of the lattice.

The RSW theorem allows for a number of detailed estimates of the size of large open
clusters at criticality. A recent result of this type is due to Kiss [28], who found the sharp
upper tail behavior of the size of the largest spanning cluster of a box (compare earlier
results in [7]). See also e.g. [42] for results on the kth largest cluster, and [12] for a
description of the scaling limit of the counting measure on points lying in large clusters.
It is possible to prove using RSW methods and the asymptoticrt(n) = n~5/48+(1) that

—1og P, (|€(0)| < M*m(n) |0 & 3 B(n)) = A4¥/48+0(1),

but we have not been able to find this result in the literature.

The exponent governing the chemical distance at p. is not known on Z? or the
triangular lattice, and it appears not to be directly computable via SLE methods (see
[39]). Aizenman—Burchard [3] showed that chemical distances are superlinear: there is
a6 >0 such that, on{) © 3 B(n)} the inequality §, = n'*holds with high probability.
An upper bound for the chemical distance between sides of a box is given by the length
of the lowest crossing of the box B(n): on the triangular lattice, this crossing is known
to have expected length n*3+o(1) [35]. This was improved by Damron—Hanson—Sosoe
[9], who showed that there also exist crossings of length at most C 4 3=¢: see [36] for
the case of chemical distances to the origin. Since it is not even known that,S= nsto(l)
for some s in dimension d = 2, distributional results like Theorem 2 on scale n *
currently out of reach.

are
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1.2.2. Past work in high dimensions The values of numerous critical exponents have
been rigorously established in high dimensions, through methods very different from
those available in two dimensions. A key point is that d = 6 is believed to be the
model’s upper critical dimension, above which many critical exponents are believed to
become dimension-independent, along with other aspects of the model’s behavior. For
d > 6, large open clusters should gain a degree of independence from each other—this
makes certain aspects of the model easier to understand, but also makes many RSW-type
arguments inapplicable. See [21] for an extensive review of research on high-dimensional
percolation, along with related results.

The foundational results in high dimensions are based on the Lace Expansion, adapted
to percolation by Hara and Slade [17], who showed thaB f.) = 0 for sufficiently large
d. Indeed, they established the triangle condition of Aizenman—Newman [4]. This was
extended by Hara et al. [18] (resp. Hara [16]), who showed the asymptotic of Definition 1
holds on the spread-out lattice for d> 6 and large (resp. on the hypercubic lattice for
d >19):

,C>0: cx—y? =1 (x,y)sSCx—y* forall x=y€2Z (11)

On the hypercubic lattice, the asymptotic of (11) has so far been extended down to all
d = 11 by Fitzner and van der Hofstad [11]. It is expected to hold on the hypercubic
lattice and each spread-out lattice for d > 6, in accord with Definition 1.

In contrast to the situation on 7?2, the relationships between many critical power
laws took longer to establish in high dimensions. Using the triangle condition, Barsky—
Aizenman showed in 1991 [5], 17 years before Hara’s proof of (11), that the critical
exponent for the tail of |€(0)] is 1/2:

P,.(|e(0)] >1) /2, (12)
Kozma and Nachmias [30] computed the critical exponent governingrt, (n):
. (n) n=>. (13)

The proofs relating the quantities in (11), (12) and (13) are much more complicated than
their two-dimensional analogues. We mention here also the related work [29], where
the scaling of the intrinsic one-arm probability was computed. We say a vertex x has an
intrinsic arm to distance # if x is the initial vertex of an open path containing at least n
edges. One result of [29] is that

1
P, (0 has an intrinsic arm to distance n)  —. (14)
n

The power laws of (12), (13), (14) will be useful to us in what follows, and so we
emphasize that they are shown to hold in high dimensions, in the sense of Definition 1;
they also hold in the spread-out model, whenever d > 6 and (11) hold.

Unlike in two dimensions, the behavior of the high-dimensional model in sectors and
similar subgraphs appears to be poorly understood. The paper [8] made advances in this
direction, establishing analogues for (11), (12) and (13) in half-spaces. Some of these
are quoted at (21) below, which says among other things that

T, p, (0, ney) n'=,
These results did not address the two-point function in the case where neither vertex is
on the boundary of the half-space, which is the content of our Theorem 6. The paper
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[8] also showed that the two-point function bound (11) also holds in subgraphs of Z¢,
as long as both endpoints are macroscopically far from the boundary: for each M > 1,
there exists ¢ = ¢(M) > 0 such that

foreachnand allx y €B(n), Tg(mn),p.(x,y) =c x —y 2—d (15)

Similarly to the case of subgraphs, near-critical behavior is also less well-understood
in high dimensions than on Z?2, though some results are known. Notable is Hara’s [15]
asymptoticE ) ( p.—p)~V*asp  pe, with € defined in the sense of Definition 2
so that 1, (n) = exp(—n/&(p) + o(n)). Our Theorem 1 sharpens this to extract the
behavior of this arm probability when n= &(p), giving a result analogous to (10). Some
other results of a near-critical type have been shown in high dimensions: for instance,
the behavior ofy (p) [4]asp  p.and O p)asp  p.[2] are known. The results here
give less insight into the structure of open clusters than is available o>, where among
other things it is shown that 6 p) m ,(L(p)) asp pe. Here L (p) is defined for
p > pc as the length scale above which the crossing of a square by a spanning cluster
is very likely [25].

At p., exponential upper tail bounds for the cluster volume |€(0)| conditional on
{0 & 0 B(n)}can be shown via the methods of Aizenman—Newman [4] and Aizenman
[1]. The best existing upper bounds onlP ,, (|€(0)| < M* | 0 © 3 B(n)) appear to be of
the order A=¢ for some power c. As mentioned above Theorem 3, the lower tail d&(0)|
on {0 © 9 B(n) }is related to the number of spanning clusters of a box. Our Theorem 4
shows that this lower tail is actually stretched-exponential with power —1. and allows
us to give a comparable upper bound to Aizenman’s results on the number of spanning
clusters, already mentioned at Theorem 4.

Non-optimal bounds have previously been shown for the lower tail of the chemical
distance. The strongest bound to date is due to van der Hofstad and Sapozhnikov [44],
who showed that

P, (S, < M? |0 aB(n) <Cexp(—cA™"?).

Our Theorem 2 shows that this probability is actually exponential in A~

A number of other recent works have studied the properties of large open clusters in
high dimensions. The papers [19,20,44] study percolation on large tori, showing that
critical percolation on such graphs mimics the critical Erd “os—Rényi random graph in
several ways. The paper [43] constructs the incipient infinite cluster, an appropriately
defined version of an infinite open cluster at p, and [22] studies properties of this object
in greater detail and from new perspectives. The paper [41] finds the values of the “mass
dimension” and “volume growth exponent” of the IIC.

1.3. Organization of the paper, constants, and a standing assumption.

1.3.1. Organization of the paper The order in which we present the proofs is partially
determined by dependencies between arguments.

In Sect. 2, we define and clarify some notation and provide a few estimates which
will underpin our proofs. In Sect. 3, we prove Theorem 6; we note this result will be
invoked in several later proofs. In Sect. 4, we show the inequality (5) of Theorem 2.
This is by an explicit construction which forces the chemical distance to be small; this
construction also guarantees that € g(,)(0) is small, and thus also proves the probability
lower bound of Theorem 4.
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In Sect. 5, we prove Theorem 1 and the first inequality (4) of Theorem 2. In this
argument, we make use of the inequality (5) proved in Sect. 4. In Sect. 6, we prove
Theorem 3 and sketch the proof of its point-to-point analogue (7). In Sect. 7, we prove
the remaining inequality (the upper bound on the probability) of Theorem 4. Finally, in
Sect. 8, we show Theorem 5 using Theorem 4 as input.

1.3.2. Standing assumption For the remainder of the paper, = we consider subcritical

and critical percolation in one of the high-dimensional settings of Definition 1. We
use IP (resp. IP,) for the probability distribution of critical percolation (resp. critical or
subcritical percolation with parameter p). We write IE (resp. IE,) for expectation with
respect to IP (resp. IP ).

1.3.3. Constants We will generally let ¢, C denote positive constants; ¢ will generally
be small and C large. These often change from line to line or within a line. All such
constants will generally depend on the value of d and may depend on other quantities.
We will clarify the dependence of constants on other parameters when it is important
and not clear from context, sometimes writing e.g. C= C(K) to indicate C depends on
the parameter K . We sometimes number constants as G, ¢; to refer to them locally.

2. Further Notation and Preliminaries

Recall we have introduced the * ball or box B (n). We extend the notation to boxes
with arbitrary centers, writing

B(x:n) =x+ B(n).

Similarly, we define annuli by Ann (m,n) = B(n)\B(m) and Ann (x;m,n) = x+
Ann(m, n). Given two domains A S D, we write

pA = €A:JyED\Awith y—x | =1}.

We use the symbol ¢ in the obvious way; for instance, x ¢ y means that €(x) =
@(y). When discussing a cluster € or properties thereof in the case G = Z4, we
sometimes use the term restricted; for instance, Czﬁ(x) = Cy(x) is the cluster of x

restricted to the half—spacerf. We also emphasize the slight asymmetry in the definition

. . . . . D\C
of restricted connections. In particular, given D and C < D, the notationx «<— y
describes the event that there is an open path from x to y whose vertices lie in D and
not in C , with the possible exception of x , which is allowed to be in C .

2.1. Correlation inequalities. We recall two central correlation inequalities. An event A
depending on the status of the edges in&(D), for D a subset of 74 is called increasing
if w € Awhenever w € P, 1¥® and w < w. The last inequality is understood
componentwise, viewing Wand w as vectors with entries in{0, 1}. The Harris—Fortuin—
Kasteleyn—Ginibre, henceforth abbreviated as FKG, inequality states that if A and B are
increasing events, then
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For events A and B, let A° B denote the event of disjoint occurrence of A and B. That
is, W €A ° Bif there exist disjoint edge sets E 4, Ep such that W € A (resp. W € B)
whenever W(e) = w(e) for all e EE 4 (resp. for all e€ Eg). The van den Berg-Kesten—
Reimer inequality (or “BK inequality”) is

P,(A © B) <P,(A)P,(B). (17)

2.2. Russo’s formula. Suppose D is a finite subset of Z¢ and A is an increasing event
depending on the status of edges in £(D). An edge e is said to be pivotal for A in the
outcome W € P, 1¥P)if 14(w) = 14(w), where w is the outcome which agrees with
won all edges except e and has w(e) = 1 — we). Russo’s formula [13, Section 2.4]
says that

d
—P,(A) = P, (e is pivotal for A). (18)

dp ¢€E(D)

2.3. Cluster tail estimate. We record a simple consequence of the estimate (12) here:

Lemma 1. There is a constant C such that, uniformly forr = 1 andx,, . . .5, €Z¢
and U > 0, we have:

P( Vo, €(x;) > pr?) scu™"2

Proof. Write

<

P U ex)| > p?) = Ple(x))| > w?
( =

r
+P\ Je@;)] > but|e(x )] < plforalll = < r/ .
j=1

The first term on the right is bounded directly using (12) and a union bound, yielding
Crur?)™V? = cu~V2,
For the second term with 7% = 2, Markov’s inequality yields the bound

(ur?)~! x r x E[|€(0)[; £0)] = w?]
pr?
scu~ ! 1724 < cuV2
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2.4. A lemma on extending clusters. The following result appears in [§, Lemma 3.2].

Lemma 2. Let Ay € A; € Z9 be arbitrary finite vertex sets with z € Ag. Let B © 9A
be a distinguished portion of the boundary of A and suppose that the © distance from
Ag to Bis A. Then for all M > 0, we have

P(z <% B | €a(2) < MTI(A)

A
almost surely, on the event {|§ € &, Ao : z<> y}| =M}

A typical application of this lemma is to estimate the probability that the cluster of
z = 0 contains too few sites on d B(n/2) given 0 & 9 B(n). Let

X = |Q:B(n/2)(0) n aB(n/Z)l.

By (13), we haveP(X > 0) < m(n/2) < Cn~2. Applying Lemma 2 with 4 = B(n/2),
Ay = B(n), and B = 9B(n), and using (13) again, we have

PX<a’|0edB(n)

PO < X < &?)

=P0odBMn)|0<X=<=&?  — =7
@ 0 B(n) | P(0 & 0 B(n)) (19)

< Cen’n(n/2)

=<Ce.

As an immediate consequence of (19), we have the existence of a constant ¢ > 0 such
that

P(X =cn?) =cn(n) =cn 2. (20)

2.5. Half-space two-point estimate. We recall the following estimates of Chatterjee and
Hanson for the two-point function in various regimes, where K > 0 is arbitrary and
fixed:

J x—y 2% in {&,y):0< x—y o <Kmin{x(1), y(1)}};
Ty (x, y) L x—y L% in {f ) :x(1) =0,0< x—y « <Ky1)}; 2D
x—y ¢ in {& y):x=y,x(1) =0,y(1) =0}.

Here the symbol means that the left-hand side is bounded above and below by positive
constant multiples of the right-hand side, uniformly in pairs (x, y) of vertices lying in
the specified regions.

3. Half-Space Two-Point Bound Near the Boundary

In this section, we prove our bound for the two-point function near the boundary, The-
orem 6. The estimate can be understood as follows: a connection from me; to a distant
vertex x consists of a connection from me| to d B(me1; m), and a connection from this
boundary to x , a further distance x —me; away, lying in a half space. By the two-point
function estimate (21) connecting me; to a given point on the boundary has probability
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of order m ~*2 while, summing over d B(me1; m), one expects the second connection

to have probability of order ( x — me1/ m)~¢+!.

The proof of Theorem 6 thus consists in showing that the probability of connection
of x to me| is comparable to the product of the latter two probabilities. The upper bound
is rather straightforward, while the lower bound is more delicate: one needs to show that
two disjoint connections, one inside of the box of side m and another connection from
the boundary to x in a half-space, can be joined into a single connection from x to me.
In critical two-dimensional percolation, this type of statement is proved using “gluing
techniques”, based on the FKG and Russo—Seymour—Welsh (RSW) inequalities, to join
different open clusters across the boundary of boxes. This simple gluing methodology
cannot be applied in high dimensions; among other things, it relies on planarity to connect
the two crossing clusters. Even if analogs of RSW were true in higher dimensions, above
the upper critical dimension d = 6, the proliferation of clusters [1] precludes a general
extension method that would not consider the structure of the cluster on one side of the
boundary.

Kozma and Nachmias [30] introduced a technique for cluster extension in higher
dimensions, which we use and further develop in this paper. Given that short loops are
rare in high dimensions, the percolation cluster can be thought of as a tree, for which
each vertex V on the boundary of a box is the root of an independent cluster outside
the box emanating from this vertex (the forward cluster of V). The expected number of
vertices on the boundary of a box D of size m around m¢ that are connected to x inside
of a half space (and outside the box D) is of order m 47! X x —me; ~%! by (21).
If one of these vertices can be further connected to me | inside the box, then we have
the desired connection from x to me 1. If the cluster of x were truly a tree rooted at x ,
only one of the vertices of its cluster that lie on the boundary of D could be connected
forward to me;, and the simple expectation calculation above would actually give us the
probability of a connection.

It is useful to think of the notion of regularity of the cluster introduced in [30] (see
our modified Definition 7 below) as being motivated by the tree picture outlined above.
If we wish to treat the elements of the cluster of x on the boundary of a region D as
generating disjoint forward clusters beyond the region, exactly one of which connects
to a given point y outside D, we need to put restrictions on the conditional distribution
of the volume of the cluster in the vicinity of the point y one wishes to attach to the
cluster, conditioned on the cluster inside D: for example, if the cluster is too dense on the
boundary or inside D, then “backtracking” connections that exit and re-enter D cannot
be excluded.

These restrictions, expressed in Definition 7, allow us to ensure that a single point
on the boundary of D is pivotal for the connection to x. We only require bounds on
the (conditional) expected size of the clusters in question, which explains the difference
between our definition of regularity, and that appearing in [30].

3.1. Cluster boundaries. We will use adaptations of the tools in this section in some
later arguments (though with differences in definitions depending on the needs of the
specific problem). For this reason, we describe the setup somewhat generally here.

Let D be some region to which we wish to restrict connections. Given such a region
D, we denote by Q a portion of its vertex boundary (possibly relative to another set—
for instance, if we are considering connections in Zﬂf and D = Bpy(n), we might set
0= azﬁBH (n)). A typical setup has us condition on the status of edges in D, then for a
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particular open cluster € of D, using vertices of some such Q to construct an extension
of Cinto a portion of Z4\ D.

Definition 7. For K > 0 an integer, we define
* the (random) set EREGp(K) to consist.Z of all z € D such that
El|¢,a(z) NB(z; )| | €p(x)]1 < ¥? forall = K;

e The set EREGp (A, K) to consist of all z € D such that z EEREGp(K) and such
that

El|¢,a(z) nB(y; )| | €p(z)1< ¥? forall = K and y EA.

With mild abuse, we write EREGp (y, K) for EREGp({y},K).
* The set

p,0(x) :=0 Nn<p(x).

We abbreviate Xp,o(x) := | p,o(x)|. Similarly, we let
o (x) = Cx,m;K) = po NEREGp({), me },K),

andXEREG(x) | EREG(X)'

3.2. Regularity. Consider the half-space Z¢, and let n = 4m = 4. We assume
x= n and x(1) =n/2, (22)

where the fraction 1/2 is arbitrary and could be replaced by any fixed number in(0, 1).
Our main result, Theorem 6, will be uniform in such x and in m , n as above. We de-
compose the connection x € me into a connection from x to By (2m) lying entirely in
Zi\ By (2m) and then a further connection from some point of d B (2 m) to me . We
thus introduce the following notation:

=ZN\By(2m); Q1= m+1} X [m,ml~!,

02 = [34D1 0 e + 241, 03 = D} X [m, ml'~", 29

See Fig. 1. Our goal in this section is to check that vertices & Q = Q; on the boundary
of D are regular in the sense that z EEREGp(x, K) for appropriate values of x and K
(recall Definition 7).

We recall here two results which are useful for our purposes.

Lemma 3 ([1], [30, Lemma 4.4]). There are constants ¢ C such that, for all r = 1 and
allA =1,
P max [&(y) nB(r)| > X < Cr? %exp(—cA).
yEB(r)

2 The letter “E” in the abbreviation “EREG” refers to “expectation”.  Compare our definition to that of
regularity appearing in [30, Section 4].
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Q3 Q1

Q2

Fig. 1. Geometry of the definitions in (23)

Lemma 4 ([30, Lemma 1.1]). Uniformly in r and in Wi, ws € B(r), we have

P(w, (E(—rzw 2) =cexp(—C log2 r). (24)
In particular,
2
P(w, B\ B (2m) W) = cexp(—C log2 r) (25)

uniformly in m, in r = 4m, and in W, W, €By(r)\ By (2 m).

We now prove a regularity lemma similar in flavor to [30, Theorem 4]. It is weaker
than theirs in one sense: it only controls the probability that a given vertex is regular,
rather than trying to control the total number of regular vertices. On the other hand, it
is slightly stronger in the sense that we control regularity “at an arbitrary base point’:
roughly speaking, conditional on part of&(z), the remaining portion of&(z) is not likely
to be too dense near a fixed vertex y.

Lemma 5. There exist constants ¢, C > 0 such that the following holds uniformly in m,
ink=1,inA =1, inx EZf\BH(4 m),iny EBy(2m)andinz €EQ;:

V_
P |€(z) nB(y; k)| > N logs(k) |z<—2> x =Cexp(—c }\log3 k). (26)
In particular, there exists a Ko > 0 such that (uniformly as above), for all K > Ky,

P(z EEREGp(y; K) | 22 x) = Cexp(—cK /4). 27
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The powers 3 and 5 on log k appearing in the previous lemma are not meaningful on
their own, as the proof will show. They are merely convenient choices.

Proof. We begin by proving (26). For this, it suffices to prove the following slight
modification of the claim in the lemma:

Given k as in the statement of the lemma, there exists

28
k € k, 4%k] such that (26) holds with k replaced by k. (28)

Indeed, given (28), the statement of the lemma follows by noting that for such & k ,
|€(z) nB(y; k)| = E(z) nB(y; k)|,

and adjusting the constants C, ¢ in (26). The reason to prove (28) is due to a minor
technicality which will become clear at the end of the lemma. For most of what follows,
we endeavor to prove that the bound of (26) holds for all k, and we will discover that
we have to prove (28) to dispose of some “exceptional” values of k.

If x—y =< k? thenwehave x —z < 4k¢ and so by (25) we have

Z‘ii—Bi(zm)x BH(4kd(_)\_£3H(2m)

P(z ) =P(z x) =cexp(—C log2 k).

In this case, we can upper-bound (26) by
Cexp(C log2 k)P(|¢(z) nB(y; k)| > A logs(k)) < Cexp(—cA log3 k)

where we have used the tail result of Lemma 3.
We now treat the case that k is small, that is x & B(y; k¢). Let

V_
Ay := for each cluster Cof B(y; k%), wehave |Cn B(y; k)| = Ak*log®k},

where C being a cluster of  B(y; k%) means considered as a component of the open
subgraph of B(y; kd) (no connections outside this box are allowed). We also let

A, := there are no more than Alog? k disjoint connections from B(y; k)
to dB(y; k%)}.

We can bound each of these events’ probabilities, using the one-arm probability asymp-
totic (13), the BK inequality (17), and the cluster tail bound of Lemma 3: for each
A=1,

V_
P(Ax) =1 —exp(—c Alogj k),

- v_ 29)
P(A,) =1 — (Ck9 x k™) Mgk > | —exp(—c Alog’k).

In bounding P(A;), we used the following observation: for any ¢ = 1, if there is a
z €B(y; k%) such that [€(z) nB(y; k)| =1, then there is also a z € B(y; k) such that
|€(z) nB(y; k)| =t . (To see this, simply let zbe an arbitrary vertex of&(z) NB(y; k).)

We will argue that on A N A, the cluster ¢(z) N B(y; k) is not too large. Viewing
@(z) NB(y; k%) as a subgraph of B(y; k¢), we can decompose it into a union of disjoint
connected components ((;)!_,. We argue the following graph-theoretic fact:

at most one ¢ fails to contain an open crossing of B(y; k)\ B(y; k). (30)
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Subcritical High Dimensional Percolation

One (30) is shown, the following fact follows immediately:

Suppose that the annulus B(y; k%)\ B(y; k) is crossed by at most 31
disjoint open paths; then at most + 1 of the (; s can intersect B(y; k).

We show (30) by contradiction, assuming that (by relabeling if necessary) (1 and
O each fail to contain an open crossing of  B(y; k?)\ B(y; k). Both ¢} and ¢ then
intersect B(y; k) but not dB(y; k%). Choose elements w; € ¢} n B(y; k) and w, €
G, N B(y; k). Since wy € €(z), there is an open path y; from w; to z. Then y; cannot
cross B (y; kY)\ B(y; k), since otherwise the segment of y; from W to its first exit of
B(y; k?) would be an open crossing of the annulus B(y; k)\ B(y; k) lying in C}.

We can similarly find an open pathys connecting W to z without exiting d B(y; k%).
Concatenating y; and y», we see thatW; and W, are connected by a path lying entirely in
B(y; k?). Thus &, = (5, a contradiction, which shows that in factC} or ¢» must contain
an open crossing of the annulus B(y; kY)\ B(y; k). This shows (30) and hence (31).

Applying (31), we see that on the event A; N A, we have

|€(z) nB(y; k)| = X*log’ k.

It therefore suffices to show, for x & B(y; k4),
D \/— 3
P(AxNA, | x<= z) =1 —exp(—c Alog’k). (32)

We do this by conditioning on the cluster outside B (y; kd), noting that A; and A i are
independent of the status of edges outside B(y; k?). We write

P(fre> :NAnAD < Py gy (x) = Ol = P(A; 0 A)]
C

vV_
< Cexp(—c Alog’k)  P(Cp\pia)(x) =0), (33)
c

where the sum is over C compatible with the event {x PN z}(in other words, such that
P(x 2 z | €\ B(y;kd) (x) = C) is nonzero) and we have used (29). To show (32), we
need to compare the sum on the right to P(x 2 z). We will show that each term of

that sum is at most exp(C log? k)IP(Q:D\B(y;kd) (x) =C, z 2 x).

For a cluster Cas in (33) to be compatible with{x <= z} there are two possibilities:
either x is connected to z in C, or it is possible to build an open connection from x to z
which passes through B(y; k9). In the former case, we have

P(Cp\ eysnty)(X) =€) =P(Epy pryiy(x) = C, 26> x). (34)

In the latter case we will lower bound

D B(y;k")
]P(QD\B(y;kd)(x) =C, z¢> x) 2IP(Q:D\B(),;/{d)()C) =0( G )‘}__)%D )

for appropriate choices of vertices {;, ¢ € C. The events appearing on the right-hand

B(y;k? . .
side of the last display are independent, and so iflP( (%——z ¢ is sufficiently large,

this (in conjunction with (34)) will suffice to show (26).
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Indeed, we can measurably choose two disjoint open connections in CU 4, z}, one
from x to B (y; k%) in Z¢ and one from z to B (y; k¢) in Z<¢. If z € B(y; k%), the latter
“connection” consists of the vertex z, considered as a trivial open path. Given such
disjoint connections to B (y; k%), we denote by ; the endpoint on dB(y; k%) of the
connection started from x , and by, the endpoint of the connection started from z. The
vertex , lies in dB(y; k%) unless z € B(y; k%), in which case {, = z.

. B(y;k%) D
If QZD\B(y;kd)(x) = Candif {; «- ., then x <= z. The former two events

depend on different edge sets and are hence independent. Therefore, as long as

P, PP ) = exp(—c o k), (35)

we can upper bound each term of (33) by

D
P(€p\ p(yine) (x) = ) < exp(Clog® k)P(€py peypay(x) = C, 2> x).

Plugging this back in, we find in this case that

vV_
P(fr <> 214 N A, D) <Cexp(—c Alog k).

Combining the two cases, (32) and hence (26) follows.

So it remains to finally argue for (35). We note that D B(y; k9) is a union of at most
49 rectangles. As long as none of these rectangles is too “thin”, that is does not have
the ratio of its longest sidelength to its smallest sidelength larger than (for instance) 10,
then (35) follows easily from Lemma 4. In case at least one such rectangle is thin, for
instance if y has distance k¢ — 1 from D, so that one rectangle has smallest sidelength
1, it is easy to see that there exists some k € k, 4k] such that no rectangles making up
B(y; k%) 0 D5 are thin. Again for this k£ (35) follows, and so we have established (28).
This establishes (26).

We will conclude the proof by showing (27). Successively conditioning in (26), we
have

E P(I€() nB(y; k)] >k7%/2]€p() 1> x sexp —ck*log"k .
Using Markov’s inequality, we see
P P(|e(z) nB(y; k)| >k7%/2 | €p(2) =exp(—k*) z e x

< exp(—ck 4). (36)

Noting that

9/2 9/2
Elle(2) nB(y; k)| |€n(2)] < kT P |e(z) By k)| > kT Cp(z)

and applying (36), we find for all large k

P E[|C(z) nB(y; k)| |Cn(2)] kY2 72 x

% K/2—d
=P P |¢(z) nB(y; k)| > Cplz) =

=< exp(—ck1/4).
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Subcritical High Dimensional Percolation
The bound (27) and hence the lemma now follow by choosing Kj sufficiently large.

A direct consequence of the above is the following lower bound on the size of EREG.

Lemma 6. There exist constants K o, ¢ > 0 such that the following holds uniformly in
m, in x satisfying (22), inz €Q1, andin K > Ky:

zd
P 7 EEREGp({, me },K), z> x =cn' .

Proof. Applying the half-space two-point function bound (21) and Lemma 5, we bound
uniformly in m, x, z as above and uniformly in K :

P(z €EEREGp({0), me1}),z <> x)

> cn!~[1 — P(z EEREGp (0, me  }:K) |z <> x)]
= cn' 71 = Cexp(—ck /4)].

The result follows by enlarging Ko from Lemma 5 if necessary.

3.3. Gluing. We have already shown a lower bound for E[Xp, ¢,]in Lemma 6. Our
goal now is to upper boundE[ X D,0» ]. This subsection provides the groundwork for this

by showing that in a sense, most vertices of  p, 9, have conditional probability m>~4
to connect to meq in Zﬁf and similarly have conditional probability m'~ to connect to
0in Z<.

Definition 8. For each z € Q,, we choose a deterministic neighbor z € Zﬁ\ D =
By (2 m). For each K and for any y € By (2 m) and for any x EZ{\ By (4 m), we let
Y(y) =Y (y, m, x; K)be the (random) set of Z= Q5 satisfying the following properties:

L.z € [E(x, m; K);

Zd
2. The edge {, z }is open and pivotal for the event {x «=> y}
We will ultimately choose a large nonrandom K , fixed relative to m and x.
The following facts relate Y(y) to the cluster of x .
Proposition 7. For each m and K , and any x EZ%\ By (4m),y €By(2 m), we have

zd
P(x<> y) =P(|Y(y)] >0) =  P(z €Y(y)). G7)
760>
We also have

d

Z
P(x«> 0) <C x '™
and so

P(z €Y(0) <C x ', (38)
2602
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73 Proof. The first inequality of (37) is a consequence of the definition of Y, so we begin
74 by proving the subsequent equality. This equality follows immediately once we establish
755 that {}'(y)| > 0}is equal to the disjoint unionU,ep, &£ €Y (y) }—in other words, Y(y)
756 1S either empty or a singleton.

757 To show this, we fix an outcome and suppose that gand z; are two distinct elements

d
758 of Y(y)—since x & y when Y(y) is nonempty, there is some open self-avoiding path
75 Y connecting x to y in Zf. By the pivotality condition in the definition of ¥ (), it
760 follows that this path must pass through both {1, z, }and {z2, z, } Suppose, relabeling
71 if necessary, that y passes first through {z1, z, } letting ¥ be the terminal segment of y
72 beginning with the edge {z2, z,}; we have z; EY.

763 Now we produce a new open pathy by appending a path from x to z» lying entirely
764 in D to the path Y. Then y connects x to y in Z‘i, and it avoids the edge {z1, z, }; since
76s Y does, and since {z1, z; }does not have both endpoints in D. This contradicts the fact
s that {71, 73 }is open and pivotal (even when we close this edge, the pathy still connects
77 xtoy), and so we have shown the claim about Y (y) and hence (37). Note that here we
s crucially use item 1) in Definition 8, which requires zo €€ p(x).

769 The inequality above (38) is a consequence of (21), and then (38) follows by an
770 application of the already-proved (37).

m We now show that for typical z € Q», the conditional probability
772 IP(Z EY()’) |Z € %Rg(z}(x))

7s s at least order m?>~¢ when y = me; and at least order m'™? when y € Q3. In fact, we
774 prove the former bound on average, for vertices within order constant distance of me.

775 Proposition 8. We have the following bounds on the expectation of |Y(y)|, covering
76 the cases of y € Q3 andy € B(mey; K). These hold uniformlyinm =1, inx €
777 Zf\ By (4 m), with K fixed relative to x m, n, N but larger than some constant K > K
778 (uniforminx, m,n, N ).

779 ® There exists a constant ¢ > 0 such that
780 EL [ (y)]; X o0 (x) = N1 =eNP(XEE0(x) = N).
y&03
781 ® There exists a constant ¢ > 0 such that
2 EL Y (0)]; X555 (x) = N1 =cNm >~ P(X560 (x) = N).
yEB(me1;K)

73 Proof. Thisis a now-familiar extension argument originating in Kozma—Nachmias [30],
78« with adaptations to half-spaces from Chatterjee—Hanson [8]. We define three families
755 of events, indexed by vertices of the lattice:

()= € BREG(y xEEG() =y
ZN\Cp(z)

787 é"z(z,z*,y)= Z* e y

788 &(z,7%) = ¢(z) ne(zH =0 .
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Subcritical High Dimensional Percolation

Here the variable z ranges over Q » and, for a given value of z, the variable z * ranges
over the set

k(z) :=B(z;2K) NBy(2m — K)

noting that | x(x)| = cK ¢ for a constant ¢ uniforminx € Qs,andinK o < K <
m/8 < n/2. The variable y is an element of B g (2m), though we will specialize to
y €EQ3zory EB(mey; K).

Our goal is to show that & and & have appropriately large probability, given &.
That is, we hope to show:

Lemma 9. There exists a constant K| > K such that, for each K1 < K < m/8 there
isac = c(K) >0 such that, for each x & By (2 m), the following hold.

1. For each 7 € Qa, there exists z* € ( z) such that

P(&(z) n&(z 2% y) N&(z 2Y) =cP(&(2)).
y&€03

2. For each 7 € Q», there exists z* € ( z) such that

P(&(z) N&(z 2% y) n&(z %) =em® ™ P(&(2). (39
yEB(mey;K)
Assuming the truth of Lemma 9, we complete the proof of Proposition 8. The proof

of the lemma appears below. It thus remains to use the above lemma to lower-bound Y
and complete the proof of Proposition 8. As in (37), we write

EL Y (y)|; X555 (x) =N] = P(z €Y(y), X553 (x) = N).
yEA YEA zE0>

To lower-bound the right-hand side of the above, we use a crucial fact: fixing K > K|
as in Lemma 9, there is a uniform constant ¢ = ¢(K) such that

P(z €Y(y), X550 (x) =N) =cP(&(z) n&(z, 25 y) n&(z,2%)  (40)

uniformly in m, x,y, z, and z*as in Lemma 9. This is a standard edge modification
argument (see [30, Lemma 5.1] or the argument in Step 5 of the proof of Lemma 14
below), so we do not give a full proof. In outline: one must open a path with length of
order K from z to z *lying in Zf\ D, thereby ensuring that z is connected to y, while
potentially closing some edges to ensure that the edge {, z }is pivotal as the definition
of Y(y).

Applying (40), we see that

EL Y (0)]; X5g5 (x) = N1
yEB(mey;K)

=c P(&(z) n&(z, 2% y) n&(z, %)
780, yEB(mey;K)
(by Lemma 9) = ¢m?™¢ P(&i(z)
280,
= cNm *~IP(X50 (x) = N).
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This proves Proposition 8 for the case of y € B(meq; K). A similar calculation to
the previous display establishes the case of y € 3, completing the proof of the
proposition.

Proof of Lemma 9. We first show an analogous statement involving just the first two
events: for each large K , there exists ¢ = ¢(K) > 0 such that

form > 8K, forz €Q,, foreachz*€ ( z) andfor y EB(me;; K)ory €Q3,
zd (41)
P(&(z) N&(z, 2% y) =cP(* S y)P(&(2)).

To see this, we note that] (z) is measurable with respect to the sigma-algebra generated
by €p(z), and we write

P(&5(z, 2% y) n&(z) = P(&(z, 2% y) | €p(z) = QP(Cp(z) = 0),
Ce&E(z)

where the sum is over C such that & (z) occurs when €p(z) = C.
Now, for each C as above,

d
P(&(z 2% y) | €n(s) = O) = P(*EY y), 42)

where we can now treat (C as a deterministic vertex set. Taking a union bound, the
probability in (42) is at least

24 x 4
]P(Z(——)y)— P Z(—)C®€<——)y
(&3
* 24 * 4
=P(zTe> y) — PzFteol P (e
(&3

Because { & By (2m), the final factor appearing above is at most Cm 2>~ (in case

y €B(me;; K)) or Cm I=d (in case y € Q3). On the other hand, we have identical (up
d

Z
to constant factors) lower bounds for P(. XD y) because z € Q», the distance from
z¥to zis at most 2K , and y €B(me;, K) or y € Q3. We thus obtain the lower bound

z4 zd
P(z*<5 y) —CP(z*<> y)  P(z*e )
&€
for the expression appearing in (42).

We now use the fact that (on €p(z) = C) the vertex z € gRng (x, m; K) to upper
bound the sum appearing in the last expression:

P(z*e Q) = P(z¥*e 7)
(€ = log; (K) T €n[B(z*%2 \B(z%2~ 1)]
<C 20=D=V1cn B(% 2 )]
= log,(K)

<C 2= Ve B(z,3:2))
= log, (K)
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=c 2070 VE[|eza(2) NB(z;3+2 )] [€p(2)]
= log,(K)

<C 9(2=d)(= 1)(3 .2 )9/2
= log,(K)

<C 2(13/2—d) < CK13/2_d.
= log,(K)

Our shorthand in the limits of summation means is summed over integers satisfying
the specified inequality. Inserting the above bounds into the left-hand side of (42) and

summing over C shows (41).
We next argue that

For large K, there is a ¢
= ¢(K) > 0 such that, for K <m/8 <n/2 and z € Q», there is
az*€ ( z) such that P(&(z, 2% y) N&(z, 2 | &(2)
yEA
¢, A =03

> 43
cm?™4, A = B(me;; K). 43)

To show (43), we again condition on€p(z) = C for a Csuch that £ (z) occurs; we will
upper bound

[( 2! P(&(z, 25 I\ &(z, 2% | Cp(z) =0 (44)
yEA Z¥E( z)

by a quantity smaller than that appearing in (42). From this and (42), it follows that the
bound on the right-hand side of (43) holds for a uniformly chosen random z * € ( z),
hence for some particular value of z*

Given €p(z) = C, the event &(z, 2% y)\ &(z, z*) implies the following disjoint
occurrence happens:

o0y A&y - @5y, (45)
J&C

here the event {C & z}is interpreted with C treated as a deterministic vertex set (and
so this is an upper bound—in fact, the connection from C'to { is in Zi\ D). Applying

. . . LZAO\C I\C
the BK inequality, noting that the events {€p(z) = C}and *<—>C } © {é’% y }are

independent, and summing, we see the probability of the event in (45) is at most

24
P(lo C|ep(z) =QP(z* e )P« y) (46)
J&
In other words, we have shown that

d
@h=|( )| P(C & C| Ep(z)=0P(C & P S y). (47)
YEA, 2¥E( 7)) TE
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The precise bound we find for (47) depends on whether we are summing over& Q3
ory € B(mej; K), though the structure is similar in both cases.
CaseA = Q3 We bound the sums appearing in (47) by

47)=C K™ P o C|lep(x)=CP( e N — y =  48)
y&03, 2}€( z) T

We have used the fact that|( z)| =cK ¢ and the two-point function bound (21).
We further decompose the sum in (48) depending on whether ¢ € By (3m/2) or
C £By(3m/2). In the former case, we use the uniform upper bound

max -y '™ <Clogm (49)
¢ez y&03
to bound the y sum for fixed, z* Moreover, for each sucl, we havel — z* = 72K,
and so P( © z% =< Cm?™? provided m = 8K . Pulling these together, the portion of
(48) where C is summed over By (3m/2) is bounded by

cm>log m P e C|lep(z) =C) <Cm™¥*logm,  (50)
¢ By (3m/2)

where we have used the fact that 7 € %Rgg (x).

To bound (48) for & By (3m/2), we perform the y sum using the following re-
placement for (49):

max -y ' <c.
C €Z\By(3m/2) V€05

The remaining sum can be dealt with by decomposing the sum into cases based on the
scaleof 27 ' <  — z*¥=< 2 . We further note {C © ¢} ndp(z) =C} < {T €(2)}
This leads to the sequence of bounds

P(C o Clep(z) =QP( o % (51
¥e( ) T&C
<C El¢(z) nB(z%2) |¢p(z) = (¥
7%€( z) = log, K/2
+C P( o C|epz) =7 — ¥
¥€( 7) { B(z%K)
< CK? 2(3/2=d) | K2E[e(z) nB(z, 4K) | €p(z) =]l =CK'¥2.
= log, K/2
(52)

Applying this and (50) in (48), we produce an upper bound for (44):

for A=Q3 (44)=<CK¥?,
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We compare this to (41), noting that the sum of the right-hand side of that equation is
bounded below by dP(£1(z)). We see there is some K large such that for each K> K|,
there is a ¢ = ¢(K) with

I( 2| P(&(z, 2% | &) n&(z 2% y) =,
XE( 7)) yEA

and (43) follows for A = Q3.

CaseA = B(mey; K). We decompose the sum of (46) into two sums, one over { €
B(me ; m/8) and the other over the remaining values of . The first sum is slightly
more complicated (involving the more stringent regularity notion of EREG), so we treat
it in detail. We write, performing first the sum over 7%

24
P(C o C|Cp(z) =QP(T & P[> y)
Z¥€( z) { B(me ;m/8) yEB(me|;K)

_ 2
scom?>™|( )| P& C|eEp(z) = QP[> y). (53)
C B(me1;m/8) yEB(me|;K)

We now further decompose the sum overC in (53) into terms with{ € B(me ; 2K ) and
C £B(meq; 2K ). For the former case, we bound

z4
P(C e C|Cp(z) =QP(T«> y)
C B(me;2K) yEB(me1;K)

< CK*El[|e(z) nB(me ;2K)| |€p(z) = C]
=CcK"?, (54)

where we have used the fact that z € %Rg(; (x) in the last line. To bound (53) when

C £ B(me1; 2K ), we decompose based on scale as in the bounds at (51), arriving as
before at the bound

zd
P o C|Cp(z) =P <> y) <sCK'Y2, (55
(B (me1;2K) yEB(me1; K)

The bounds (54) and (55) together show that
(53) = C K'¥Y2+dp2=d, (56)

and this controls the terms of (46) involving { € B(mey; m/8). The contribution to
(46) from ¢ & B(me;; m/8) can be controlled in a similar but simpler way; a main
difference is that instead of uniformly bounding P( & z*) as in (53), we can instead
bound P(C & y).

We arrive at the bound

when A = B(mey; K), (44) < Cm* ™K'/,

z{
For comparison, summing (41) over Y= B(me; K) and using the fact thaP(z*<= y) =
m?~ uniformly in z¥* € ( z) and y € B(me;; K) gives

[( 29! P(&(z, 2% y) | €p(z) =C) =em® 4K,
YEA ZXE( z)
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Comparing the last two displays and recalling the uniform bound  |( z)| = ¢K?
completes the proof of (39) and the lemma.

3.4. Two-point function asymptotics. In this section, we state and prove asymptotics
for Tzi(x, me1), completing the proof of Theorem 6. The proofs build on the estimates

obtained in the previous sections. We first prove asymptotics for E[X} E REG (x)] and
E[X glkgf (x)]. Since an open path from ne | to me; with 2m < n (for 1nstance) must
pass through 0 By (2m), these asymptotics are related to those for T4 itself.

Corollary 10. For each K > K|, there exists a c = ¢(K) such that the following holds
uniformly inm > 2K, and in x with x > 4m:

]E[XEREG(X)] >cE[Xp,p,(x)] =c(m/ x) 471

Proof. We can write, using Lemma 5,

EIXEREG(x)] = P(z EEREGp(D, mei },K) |22 x)P(z > x)
20
>c  P(ze> x) =cE[Xp,g,(x)].
2601

We now use the two-point function asymptotic (21) to complete the proof:

E[Xp,o,(x)] = P(z IR x) = IP(Z2”<EI—+>Z x) =c(m/ x) 4L

780, 7801

The next lemma provides an upper bound on the quantity EX EREG (itself an upper
bound, up to a constant, fof2 X p, ,) which matches that of Corollary 10 up to a constant
factor.

Lemma 11. For each K > K, there exists a c = c(K) such that the following holds
uniformly inm > 2K , and in x with x > 4m:

C_IE[XD,QZ(X)] SE[X%%?(,V)] <C(m/ x) 47N,

Proof. The key ingredient of the proof is Proposition 7, and so we use the notation of
that proposition. Indeed, fixing a K large enough and then summing the bound of the
proposition, we find

E[lY (y)|] ZcE[X%l?g?(X)],
y&03

uniformly in x and m. On the other hand, as observed in Proposition 7, the left-hand
side of the above is at most

zd
P(x > y) =cm?™! x 179,
y&03
where in the last inequality we used the two-point function bound (21).
This completes the proof of the second inequality. The first follows using Lemma 6
as in the proof of Corollary 10.
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Subcritical High Dimensional Percolation

We are now equipped to prove the asymptotics for the two-point function inZ¢ .

Proof of Theorem 6. We prove the upper bound first. It is helpful to introduce a domain
D* consisting of Zf with a “flattened version” of By (4m) removed:

D* =7\ [0, 2m] X [=4m, 4mF'~" 5 Q4 1= 34(Z\DY.

zd
If x «= me, then there exists a z € Q4 such that

D*
fee= 7z} oo mer}.
Using the BK inequality, then:

Zﬁf D*
P(x <= me;) < P(x <= z)P(z © me;)

7804
*
=cm?*™ P(z PN x)
7&04

-2 z4 4
<cmd pg gL,

). (57)
7&04

The box —2me| + [Zf\ By (4m)1is a translate of the analogue of D with m replaced by
2m; we emphasize also that the point x is in D* In particular, we can use Proposition 7
to upper bound the quantity in the last display:

57) =C x "TpdT x 2

and the upper bound of the theorem follows.

We turn to the lower bound on Ty . As in the previous part, we build our connection
from x to me 1 by first connecting x to the boundary of a box and then extending. By
Corollary 10, we can choose a large constant K so that

E[X%lfg? (x)] =c(m/ x) 47! uniformly in x, m as claimed in Theorem 6.
Applying the bound of Proposition 8 and summing over N gives

E[lY(y)|l =2cm x 1=d
yEB(me;K)
Using Proposition 7, this implies there exists a constant ¢ = ¢ (K) such that

for x, m as above, there exists y € B(me; K) such that Ty(x, y) =cm x 1=d

With x , m, and y as in the last display, we can write

Zd d _
Ta(x, me)) =P(x > y, ye> mey) =c m x 1=d

by the previous display, the FKG inequality (16), and the factthat y —me; < K,
where ¢ = ¢ (K). The theorem follows.
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4. Lower Bounds for the Chemical Distance and Cluster Size

4.1. Discussion and motivation. In this section, we show the inequality (5) of Theorem 2
and the probability lower bound of Theorem 4. The main portion of the argument is
Lemma 14 below, where we lower-bound the probability of a sequence of events whose
occurrence guarantees that the cluster of the origin is small but that the origin is connected
to the boundary of a box by a sufficiently small-length path.

We begin with a very informal illustration of the idea for the benefit of the reader.
How can the origin have an arm to a long distance n but have its chemical distance to
0 B(n) be abnormally small? Heuristically, one expects this type of behavior when the
cluster reaches distance n ballistically. That is, if every connection from 0 to 9 B(n)
crosses annuli of the form Ann ( m, ( + 1)m) without re-entering B(( — 1)m) for all
1< =< n/m—1,wherem n. This is analogous to how one would try to force a
random walk to exit B(n) in time o(n?), by demanding it avoid re-entering smaller scale
boxes once it has exited them.

Unfortunately, it appears difficult to force such ballistic behavior, since the cluster
of the origin does not obey a Markov property like that of simple random walk. We are
forced to guarantee that the cluster obeys a certain degree of regularity inductively on a
sequence of length scales m—this regularity guarantees a degree of independence of
portions of the cluster which replaces the Markov property of simple random walk. We
then construct an event which implies the cluster crosses the annulus Anfr m, ( + 1)m)
ballistically in a way which preserves regularity in the sense alluded to above. We
further demand that each such annulus crossing have at most typical edge length, that
is containing order m > edges at most. Then the total length of the arm so constructed
is (n/ m)m2 = nm nz, where the first factor represents the total number of annuli
crossed. Since this arm has length much shorter than n2, this accomplishes our goal of
constructing a short arm.

4.2. Notation. We start our formal work with some definitions and preliminary esti-

mates. For a rectangle D = f-iz 1 [a;i, b;], we define its “right boundary”

|
d .

Or lai, bi] =4 €D : {, y}isanedge withy -e; > b }.
i=1

We will also use the notation
owD = 0D\oRD.
For positive integers @, we also define
Rect@(n) = [—au, n] X [—a, anl’™!, (58)
and the shifted version
Rect@(x;n) :=x + Rect @(n).

For notational simplicity, we introduce the convention that Reé¥ (n) = @whenn < 0.
We note that

Rect(@
0 e<c——>(’3 wRect@(m) < o aBlan)},
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Subcritical High Dimensional Percolation

and the probability of the latter event is at mgst C (an)~2 by (13). Therefore, for each
€ >0, we can choose @ = a(&)of order C/ € to guarantee that

(a)
PORESY | Rect@(n) < @172, (59)

We introduce some notation that is reminiscent of the definitions in Sect. 3, with
some adaptations to the geometry in this section. Since the pertinent definitions from
Sect. 3 will not appear in this section, there is no risk of confusion. For an integer n, we
define

Rect(® (x;n)
L)y,

2(x) 1= § € &Rect@(x;n) 1y
Xn(x) : I n(x)l

We denote
n = n(O), Xy :=Xn(0)-

The above notation suppresses the dependence ot because we will fix a particular value
of @, to be denoteda™ in Lemma 13. We will use thist*for the rest of this section. Once
we fix a*, we will further abbreviate Recf®” (n) by Rect(n), with a similar abbreviation
for Rect(@” (x:n).

We now fix an integer m=4 and = 1.

Definition 9. The random set SREG (x; , m, K)? consists of all y € Rect@(x: m)
such that

E[€(y) nB(y; PIARect @ (x; (= 1/2)m)] | €gees@ e my (V)] <r3

forallr = K.

When x = 0, we omit it from the notation. See Fig. 2 for a schematic depiction. We
write (again omitting the argument when x = 0)

SREG(x) 1= ,,(x) NSREG(x; , m, K) (60)
X0 () = | PUC (). 1)

We also introduce a version of  ,, restricted to vertices connected to x through “short
paths”. Let p > 0 and define

: (@) (x:
o) = SREG(x) n § € gRect®(x; m) 1d5 " " (x, y) < pm}.

, m chem
Similarly, we write Xp 'lflhort(x) = | f";hon(x)L

3 The letter “S” in the abbreviation “SREG” stands for “shell”. The regularity condition is restricted to a
shell to allow us to decouple portions of the cluster.
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4.3. Estimates. We first obtain a lower bound on the quantity m- The following is
Lemma 5 with minor modifications for this context.

Lemma 12. There are constants m , ¢, C > 0 such that, uniformly inm = my, in
k=1,andinA =1, we have

Rect( m)
_)

V_
P |€(y) nB(y; k)| > A*log’(k) |0 y =Cexp(—c Alog’k).

Thus, as in Lemma 5, there exists a Ko > 0 such that uniformly in = 1 and m = my,
forall K > Ky:

P(y ESREG(, m, K) |0 5™ ) < Cexp(=ck V). (62)
Applying Lemma 12 and (21), we see
E[l m\ ,SlanGl] — P(y ESREG( n K) |0Rect( m) )P(ORect( m)y)

yE&Rect( m)
< Cexp(—cK ") (a m)?~'( m)~™ " < ca® ' exp(—ck /*).

Thus by Markov’s inequality, we have, for eachd >0,
P(| o\ SRES| = 6(m)?) =6 ( m) 2o exp(—ck 4). (63)

The following lemma will serve as the base case in an induction appearing in
Lemma 14.

Lemma 13. For each choice of & = 1 from (58), there is a constant ¢ > 0 and large
constants 1 <= p < o and K1 = Kq depending only on o and the dimension d such
that, if K = K,

P(Xﬁ_r‘;hm >cm?) =cm™? (64)

for allm = my. In particular, there is some choice of integer Q, henceforth denoted by
a* and some K1 = K1(a*) > K such that for some c3, Cy < o, we have

P Com? > X, (0) = XP(0) =com? \ 0 LRect(m) = cm2

1,m
(65)
forallK = Ky andm = 1.

Proof. We first recall the bound (20), which implies
uniformly inn =1, P(X, =cn?) =cin”?

for some uniform ¢; > 0 independent of & as long as @ = 1. Now, using (59), we can
find a a*large and a constant ¢ > 0 uniform in » such that

Rect(@

witha = @ P({X, = con’ P\ e 5 wRect@ (n)}) =con™2. (66)

We henceforth fix a*as in (66).
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a(+1)m

—— 9 Rect?(x, m)

Im

__dzRect¥(x, m)

\ M

Rect?(x, ( + 1)m)

(B)

Fig. 2. A Schematic representation of Rect (¥(x, m), Rect @ (x, ( +1)m), and  ,,(x). For a typical
regular boundary vertex y € Sl}fG (x) of Rect (@) (x, m), the volume of the extended cluster (encircled

region) within B (y, m) and the chemical distance between y and 9 B(y, m) within this scales as O (m*) and

— (@)
0(m?) respectively. z € p mShort(x) if the chemical distance d 5;:]; (x, m) (x,z) =p m2. B Schematic

representation of the kind of cluster that suffices for the inductive lower bound argument to work

Using Markov’s inequality as in (63), we can choose K] = K (a® > Ko such that,
for K = K and for all m,

P(X,, — Xlsll}nEG = com?/4) < com /4. (67)

We estimate the expected number of edges on a path from O to a vertex y € .
Let M (0, y; m) denote the number of edges on the shortest open path from 0 to y in

Dispatch: 23/7/2023 | Journal: Commun. Math. Phys.
2 2 (]} 4759B Total pages: 71 Not Used []
Disk Received [] Corrupted [ ]
Jour. No | Ms. No. Disk Used [] Mismatch [




S. Chatterjee, J. Hanson, P. Sosoe

192 Rect(m), with the convention that M(0, y; m) = 0 when there is no such path. We have

109 E[M(0, y; m)] <2d PN 3 o L5 1Y)
z&Rect(m)
1094 =2d P(0 mf—l—) 7)P(z m(e—]—) v)
7&Rect(m)
1095 < C1m3_d, 68)

1006 where we have used the two-point function asymptotic of Theorem 6.
1007 For each p > 0, with ¢; as in (66),

1098 on the event {XilanG - Xf’;hm > c,m?/2}, we have M(0, y; m)
yE&kRect(m)

1099 = Czpm4/ 2,

100 the constant ¢ in this display is independent of p. Taking expectations, we find

1101 EI_ M (0, y,m)J >c2pm4/2]P XSREG Xf;hort >c2m2/2 .
yE&kRect(m)

1oz Contrasting the last display with (68), we see that we can make a choice @findependent
1103 of m such that

1104 P XSREG X{),—;hort = 62m2/2 = sz_z/z. (69)
1os  Finally, using (69) in conjunction with (67), we find (with 0 as in (69))
T106 P X, — X090 = 3¢m?/4 < 3cm /4, (70)

1107 Comparing (70) with (66) completes the proof of (64) and an analogue of (65) where
1e  we do not demand X,,,(0) < Camz. To impose this condition, we note that

_Zd
E[X,,(0)] = PO"<Sx) <,
xE& Rect (m)

1o and we apply Markov’s inequality to see P(X,, = Cym?) < com™%/8 for sufficiently
111 large Ca. This completes the proof of (65), concluding the proof of the lemma.

12 Lemma 14. Let p, Cs, cy be as in the statement of Lemma 13. There exist constants
13 Cyo < © and my > mg such that the following holds. Defining, for each pair of integers
1ma = 1 and m = m;, the event

1115 G(, m) :=A(, m) ﬂB(, m): (71)

e where
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2
20-short __ ColM

Al m) = Com® > Xy 2 X0 2 2 o R

wRect( m) (72)

B(, m) = |Crect( m(0)| <Cuoy m*
N foreach0<i < a, €rect( m)(0)
NRect(( — i)m)\Rect(( — i — 1)m)| <Cymim* , (73)

then we have P(G(, m)) =c¢ *'m™2 for a constant ¢ uniformin = 1and m =mj.

We comment briefly on the definition of B (, m). The first event appearing in the in-
tersection in its definition is in some sense the operative one: it bounds the size of
CRect( m)(0), which is our main goal. The second event appears for technical reasons,
essentially serving as an accessory to regularity. See (79) and the following for how this
condition is applied, and see the end of Step 5 below for discussion of why we did not
try to impose a version of this condition as part of the definition of SREG.

Proof. The proof is by induction on for fixed m. The base case = 1 is almost
furnished by Lemma 13; all that remains to prove is that the bound on |Creci(m)(0)| in
(73) can be imposed without changing the order of the probability bound in that lemma.
To do this, we simply apply a moment bound. Indeed,

E[|Crect(m) (0)]1 <E[€(0) NRect(m)]|] = T0,x) <Cm>.
x&Rect(m)

Applying Markov’s inequality and a union bound shows the claim of the lemma for
= 1, for all sufficiently large values of Cy,;.
We now prove the inductive step. We write

P(G( +1,m)) =2P(G( +1,m) nG(, m))

= P(G( +1,m) |Q:Rect( m)(o) = QIP(Q:Rect( m) = 0), (74)
C

where in (74) the sum is over realizations € of Crect( ) such that G(, m) occurs (this

event being measurable with respect to Crect( m)). Similarly, the sets P Short , and

their cardinalities are functions of€Rect( m)(0); we write (for instance) X ,, (C) to denote
the (deterministic) value of X ,, that corresponds to the value Crect( m)(0) =

The remainder of the proof will provide a uniform lower bound on the conditional
probability appearing in (74). We do this by successive conditioning, bounding the
probability cost as we impose the conditions of & + 1, m). For clarity of presentation,
we organize this into steps. In what follows, ¢ will be a fixed but arbitrary value of
CRrect( m)(0) appearing in (74). Before starting the first step of the proof, we make some
definitions to allow us to notate events occurring off of € more easily.

Definition 10. * £¢ C 79 is the vertex set [Z\C] u ?’i:hort. With some abuse of

notation, we use the same symbol for $4 and the graph with vertex set $4 and with
edge set é'(éd) defined by

{£.yyezd) : x € .,y EZN\Rect( m)} U &{y} €(Z%) : x, y €Z\C}.
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* We denote the conditional percolation measure P( - | Crect( m) = ) on =

0,1 }E(éu) by Pe). Similarly, we write depem for the chemical distance on the open
subgraph of P

Conditional on {€rect( m) = C}; the distribution of ), for edges e of @d is the same as
their unconditional distribution: i.i.d. Bernoullfp.). Indeed, when(is such that &, m)
occurs, £(84) is exactly the set of edges in&(Z?) which are not examined to determine
Crect( m)(0) = C. So the measure P is just a projection of P onto a subset of the edge
variables of our original lattice.

We note that the restriction on m appearing in the statement of the lemma will arise
through the arguments below. Like in Sect. 3, we will need to introduce an auxiliary
parameter K which will be chosen large in order to make various error terms involving
cluster intersections small. All bounds will be uniform as long as m= mg + 4K , and so
the ultimate value of my will be mg + 4K for the choice of K made at (85). We will also
potentially need to enlarge the value of (,; below in Step 6, but not any other constants
(and the value of Cy,; will be manifestly independent of m and ).

Step 1. In what follows, we let K = 2k = 1 be a constant larger than the K | from

Lemma 13, to be fixed shortly at (85). For each x € 2P*M" we define the following

, m

events on the space of edge variables on .

e Di(x) is the event that .
a. |[{y € &Rect(x;m) n SREG - g, . (x,y) <20m>}| =cym?,

+1,m
Rect(( +1)m)\C
——> X

b. ye& Rect(( +1)m) 1y < Cym?,

Bu
REL ) dRect(( +1/2)m),

wRect(( + 1)m).

c. {x, x + e }is pivotal for

d. but we do not have xReCi{—tlgn)

* DyistheeventU o-short D1 (X).

We note that the conditional probability of the event

i R 1
Com® > X(wim = X200 2 com? \ 0L yRect(( + m)  (75)
conditioned on Crec( ) = C is bounded below by P(D,), and we turn to lower-

bounding P(Dy).
The pivotality in the definition of D (x) guarantees that D(x;) N Dy(x;) = @ for
X1 = xp; in particular,

P(p)) = P(D;(x)). (76)
M= 2p-short

,m

In light of (76) and (75), Steps 2-5 are devoted to establishing a uniform lower bound
on P(D; (x)).

Step 2. For each x as in (76), we set x * = x + K e;. For use in this step, we introduce
notation for the analogues of X, and X1, (for » = 1) when connections are forced not
to intersect C. Namely,

Reczixir)\cx *} |’

X, (x% := [§ € &kRect(x*r) 1 y
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'X p-short

11se  with the analogous definition for . Here we note that K plays both the role of the

meo  shift of x*and the implicit regularlty parameter for X P Short
1191 We begin by arguing a probability lower bound for a modlﬁcatlon of the event ap-
112 pearing in (65) but centered at x*:

Dy(x® 1= Colm — K)* > Xpeg (x® = X728 (6% = ca(m — K)?
(77)

1o *Rect(x*;m—K)\C
X “—

\ owRect(x;m — K)

11ea  Using a union bound, we find

P D,(xH =P Dy(x™

1195 I ECnRect(x*m —K) : (78)
{z © dgRect(x;m — K)} oo x*}occurs °

119 It follows that the second term in (78) is bounded by

1197 P(Z © aRCCt(( + 1)m))IP(x*<—> Z)
z&CNRect(x ¥m—K)

1198 <Cm -2 IP(x*H z). (79)
z&CNRect(x ¥m—K)

1199 The sum over z in the last term can be further subdivided into the case that z also lies in
1200 Rect(( — 1/2)m) and the case that z lies outside of Rec{( — 1/2)m). In the latter case,
1200 we apply the facts that x € SREG and that x *lies at distance K from x . In the former,

1202 we use the fact that in this reglme P(x* & z) = Cm?™9 and the fact that B(, m)
1203 occurs, which implies that the number of z terms appearing in the sum is at most Cm*.
1204 Using these two bounds, we see

I

1205 (79) < Cm™2 m0~d4  235Cds
s=k

— 13 _
1206 <sCcm 2Kz ¢

1207 It remains to give a lower bound for the first term of (78). Indeed, this is almost the content
1208 of Lemma 13 (specifically (65)) with m replaced by m — K , except for the appearance

1200 of the set Cin the portion of D> (x*) involving connections to dyRect(x; m — K). This

1210 restriction only makesIP(D,(x*)) higher than the probability appearing in (65). As long

1211 asm = mg+ 4K, we can apply the bound of (65) in (78). We see there exists a)k> K

1212 and a ¢ such that, for all K > K, and m = mq + 4K ,

1213 P Dy(x® =cem™2 uniformly in, C, x. (80)

1214 Step 3. We now upgrade the above, demanding further that ¥not be in the same cluster
1215 as any element of (). We define

$u .
Di(x® = Dy(x (T €, 20 MREU AW ay
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We note for future reference that

when D3(x™*) and {C€Rect( m)(0) = C}occur, then we do not have
81)

X
R o Rect(( + Dm).

This follows from (77), which ensures x*has no connection todwRect(( + 1)m) off C,
and the definition of D3(x*), which ensures x *has no connection to C.

We can lower bound the probability of B(x*) similarly to the argument establishing
(43) in the proof of Lemma 9:

P(D3(x*%) ZiP(Dz(x*(‘)) )

Rect(( +1)m)
_ Pl e e Tt gm0 = . (82
y&Rect(( +1)m)\C ° {y © o gRect((" +m)}

We bound the sum in (82) by decomposing the sum into three terms: a) a term
corresponding to y € Rect(( — 1/2)m), b) a term corresponding toy € Rect(( +
1/2)m)\Rect(( — 1/2)m), and c) a term corresponding to y & Rect(( + 1/2)m). In
case a), we use the BK inequality to upper bound the sum by (letting m — y(1) =r)

cr(m/2) X | (0] % pd=1p472d < o d=4 = Cm "2 (m®79), (83)
r=m/2

Case c) is similar to a) but slightly more complicated. ~We use Theorem 6 to control
the connection probability between x*and y, since y is close to dg Rect (( + 1)m). We
obtain the upper bound (letting max{( + 1)m — y(1), 1} =r)

m/2—1
Cl w(0] AU em ') x 172 < Cm T2 (mb79). (84)

r=1

Finally, the term corresponding to case b) can be bounded similarly to (39) using the
BK inequality and the fact that x€ 2P*"°"((). We find, for K> K and m = mo+4K ,

. m
P(D3(x*) =em™2 — Cm 2K "2~ uniformly in, G, x.

Thus, there existsa K 3 > Ky andac > 0such that, uniformlyin K = K3 and
m = mg+ 4K,

P(D3(x*) = cm™2 uniformly in, ¢, and x. (85)

From here on, we fix K = K3, and assume m = m| = mq + 4K3.
Step 4. We define one final subevent of I3 (x*), imposing the additional restriction that
no vertex of  ,,(C) have an arm to dRect(( + 1/2)m):

B4 aRect(( +1/2
Da(x, x) = Dy(x (T E 12 e
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We lower-boundP (D4 (x, x*). To do this, we condition further o 51 (Rect (« +1)m) (x*),

noting that D3(x*) is measurable with respect to the sigma-algebra on ' generated by
this cluster:

P(Dax, x) = P(Dalx, x) | €gurpecti +1ym) XD =€)
c

(> NRect(( +1)m) () =c). 87)

On D3(x*), we have ,, N Csu ARect(( +1)m) (x* = @, and so the conditional prob-
ability in (87) is bounded by

1-P(xZ€ ,:ze0Rect(( +1/29)m) =Pz E ,, 7 dRect(( +1/2)m))

(by FKG) = P(z & oRect(( +1/2)m))
7S m

_ 2
> (1 —cm ) =,

In the second line, in addition to the FKG inequality, we used the fact that conditioning on
CRrect( m) = Ccan only decrease the probability that =, (C) is connected to dRect(( +
1/2)m). The above bound is uniform in C, so reinserting into (87), we find

P(D4(x, x*) = cm ™2 uniformly inm = m and, C, x. (88)
Step 5. We now turn (88) into the estimate
P(D((x) =cm™2 uniformly in m = m and in, C, x (89)

by an edge modification argument. Let us writfor a typical configuration in B(x, x*),
considered as an element of . That is, we say Iw € isanelement of D 4(x, x*) if
W € &Rrect( m) = Cand if the restriction ofwto is an element of Dy(x, x*). We write

w for the modification of w produced as follows. We close all edges of &£ P ) with an

endpoint in P n B(x; 2K ) except those in Csu (x*). We then open edges of the form
{x + ney, x + (n + )e; }for 0 < n < K one by one, until the first time that x and x*have
an open connection in Rect(( + 1)m) (at which time we stop opening edges).

Then in W, we still have Crect( m)(0) = C, since we have not opened or closed
an edge with both endpoints in Rect ( m). Moreover, the vertices y counted by the X

variables from (77) are now in  ( 41); (x) in w. In addition, each such y has
dehem (x, y) = p712 +K =< 2pm2

(where the last inequality uses m = m).

To show that w € D;(x), we show pivotality—that every connection from  ,, to
oRect(( + 1)m) in w passes through {x, x + e; }—and then that the cluster of x in the
modified configuration w inherits the appropriate properties from the cluster of ¥in the
original configuration w. To show pivotality, supposey is an open path in W from
to dRect(( + 1)m). Then y must use one of the edges opened in the mappingw = W ,
since W € Dy(x, x¥). Letting e be the first such edge, if e is not  {x, x + e }, then the
edge of Yy just before e must terminate at some vertex x+ie |, 1 <i < K. But this
edge would have been closed by the mappingw — w unless it were an edge of e(x®,

Rect(( +1)m) *
—— X

implying that x in W, a contradiction.
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By pivotality and the fact that the mappingw = w modifies only edges of Rec(( +
1/2)m), we have

Crect(( +1)m) () WI\Rect(( + 1/2)m) = Crecr(( +1)m) (x wIRect(( + 1/2)m)
(90)

and in particular that  ( ;1),,(0)[w] is €(x*[w] The definition (77) of D 2(x*) then
implies that in W, we have X ( 1), < Cam?; the fact (81) implies x does not have a

connection todyRect(( +1)m). To complete the proof that € Dj(x), all that remains
is to show that each y counted in X f ;hfr;( in wsatisfies y € ?p;?l;onr;[w].

To show first that y ESREG(0; + 1, m, K)[w], let r = K ; we compute
E[|€(y) nB(y; r)\Rect(( +1/2)m)| | €rect(( +1)m)(¥)]

= P(y © z | Creci(( +1)m)(y)) onw. 91
zEB(y;r)\Rect(( +1/2)m)

Fix z € B(y; r)\Rect(( + 1/2)m). Consider a realization W having the same value
of €rect(( +1)m)(y) as in w, and suppose that z E€(y). There are two possibilities:
1. 2 € Crect(( +1)m) (Y)W 1 = Crect(( +1)m)(¥)[W]. In this case, by (90), we actually
have that z € Creci(( +1)m) (x H[w].
2. Otherwise, there is an open path from some element of ( 41),,[W]to z which avoids
Crect(( +)m) (x)[w] (and hence Crecy(( +1)m) (x D[ w).
In either case, using (90), the conditional probability of the connection from y to z is at
most

P(y © z | Crect(( +1)m)(x ) W].

Since y is counted in X f ’ih_orlt{ in W, we can use the last display to bound the sum in (91)

by Cm¥?. As noted at (75) and (76), this shows that there is a constant;c> 0 such that
PeA(, m)) =P(Dy) =, uniformly inm =my, , C. (92)

We return briefly to the issue of the definition of B (, m). We note that the above
argument only gives effective control of the cluster of x outside of Rect (( + 1/2)m).
In principle, there could be many other vertices of m Whose clusters span part of
Rect(( + 1/2)m)\Rect( m). Without controlling the number of vertices contained in
such “partial spanning clusters”, we would not be able to adequately bound (79). The
definition of B(, m) is designed to provide the necessary control.

Step 6. Let ¢ be the constant in (92). We show that there is a choice of C y,; as in the
definition of G(, m) sufficiently large such that

IP(leRect(( +1)m)(0)\¢Rect( m)(o)l <CV()lm4 | G(, m)) >1—ci/2. (93)

for all and m.
Given (93),P(B( +1,m) | G(, m)) >1 — c1/2 trivially follows. This proves the
lower bound on P(G( + 1, m)) and completes the induction; indeed,
P(A( +1,m) nB( +1,m) |G(, m)) =2P(A( +1,m) | G(, m))
+P(B( +1,m) |G(, m)) —1
=ci+1—ci/2—-1
=c1/2,
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where we have used (92) and (93).
We now show (93), using the decomposition in (74). It will suffice to show

( |

P\ e(x) > Cyym*] <ci/2 (94)
x€ m(C)

for a large Cy,y, uniformly in m and and in C. Of course, the clusters IQ()c) above are
stochastically dominated by the corresponding clusters in  Z?, and so we can use the
Aizenman-Barsky tail asymptotic (12) for Z¢ cluster sizes.

Indeed, we can upper-bound the the left-hand side of (94), with G, replaced by an
arbitrary parameter T > 0, as follows:

( Vo |

1?\ e(x) > Tm4} S]P\ C(x) > Tm4) .
x€ m(C) x€ m(C)

Recalling that X ,,(C) < Cam? and using Lemma 1, we see that right-hand side of the
last display is at most C T2 uniformly in m, C, and ;in particular, there is a large
constant Cy,; such that (94) holds uniformly in the same parameters. This completes the
proof of Lemma 14.

4.4. Proof of lower bounds in Theorems 2 and 4. We first prove the lower bound of
Theorem 4. Recalling the constant m( from Lemma 14, we assume A 13, = mo;

this is where the constraint on A arises. We fixm = A 5n and set = n/m!. By
Lemmas 13, 14 and the one-arm probability (13), we see
P(|e(0)] = h* |0 3 B(n) =cn’P(|€(0)] < M*, 0 e 3 B(n)
> cn’P(G(, m)) =n*m %c *!
>c*t=¢ exp(—C}\_l/3).
Similarly, to prove (5) from Theorem 2, we take m = A n (assuming that this is at
least mg) and again set = n/m!. We note
P(S, < M% |0 e 3 B(n)) =cn®P(S, < Mm% 0o 3 B(n))
=cn’P(G ) =n’m % *!

>c ™ =cexp(—CA7!).

The lower bounds are proved.

5. Proof of Theorem 1 and of (4) from Theorem 2

We recall the correlation length & §) introduced for p < p in Definition 2. The lower
tail of the critical chemical distance will be related to the behavior of T, (n) with n of
order & ). We introduce a quantity to be denoted L g(p) which is related to & p) and
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1ss0  which will play the role of L (p) from Z? appearing in (10). For each finite vertex set
wst D S 79 satisfying 0 € D, we write, similar to notation of Sect. 3,

352 Xpi=§EM:0e> x} =¢pH(0) n aD. (95)
s Foranyn €N, 6 >0andp € (), p.), we define

1354 9() =P c7®:0EDand sup{x » :x €ED} =n},
1355 and

L :=inf =1: inf E,[|X =6. 96
1356 5(]9) n DEI(n) p[l Dl] ( )

157 See [10], where a related quantity was used to provide a new proof of the fact that
s € ) < o whenever p < p.. See also [13] for exposition of earlier proofs of this fact.
130 As a consequence of & p) < o , wehave Lg(p) < o foranyp < p.. Moreover,
o Ls(p) T oasp  pe with & >0 held constant.

wet  5.1. Upper bound onlt,(n) from Theorem 1. The upper bound onT,, (n) from Theorem 1
1362 follows by combining Lemmas 15 and 16 stated below.

13ss  Lemma 15. There is a constant C > 0 (depending on d only) such that uniformly in n,
s O E(, min{C_l, 6_4/28}) andp < pe,

P,(0 & 8 B(n)) <Cn*exp(—n/Ls(p)). (97)

136 Lemma 16. For 6 as in the statement of Lemma 15, there are constants (8),C(6) >0
1367 such that

1368 C(Pc _ 17)_1/2 = L6(I7) = C(pc - p)_1/2
160 uniformly inp € 0, p.).

1370 We recall that the asymptotic behavior of & p) as p Pe is known [15], namely
wi EP) ( pe— p)~"?. Lemma 16 shows that identical asymptotic behavior holds for
w2 Ls(p).

1373 Proof of Lemma 15. We will use the following claim, whose proof is given after the
1374 proof of the lemma.

175 Claim 17. There is a constant ¢ 1(d) such that E,[X g 15(p))] =< 874 forall 6 < ¢y,
1w p < pe, and integers k = 4.

1377 Claim 17 is related to Theorem 2 of [14] or Lemma 1.5 of [10]. Given Claim 17, we prove
1378 the lemma using an induction argument. For € IN, our th induction hypothesis is that

w7 the inequality in (97) holds for all =2 Lg(p)and p < p., where C:= max {Ae8, cl_1 I3

130 for ¢y as in Claim 17 and where A is the implicit constant in the upper bound in (13).

st To prove our hypothesis for = 3 we use (13) and the monotonicity property of IP,(*)

1382 1N p to see

1383 P,(0 ¢ 8 B(n) <P, (0 3dB(n) <Cn 2e™"Lolr) (98)
1 forall p < p.andn < 8Lg(p). (98) proves our induction hypothesis for < 3.
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Fig. 3. Geometry in the proof of Lemma 15

Assuming that the th induction hypothesis is true, we now prove the ( + 1)st
hypothesis. Without loss of generality, we cantaken € (2 Lg(p), 2 *'Ls(p)], as
alln = 2 Ls(p) are covered in the th hypothesis. We take k := n/(2Ls(p)) . If

{0 © 0 B(n) }occurs, then there must be a yE€ aB(k Ls(p)) such that {0 Bq{—lﬁ{p)) y }and

{y © 0 B(y; n — k Ls(p)) }occur disjointly. See Fig. 3 for an illustration. So, using a
union bound, the BK inequality, and our th induction hypothesis,

B(k Ls(p))

P,(0 e 9 B(n)) < P,(0 <> y)P,(y © dB(y;n—kLs(p)))
YEB(k Ls(p))
—k
< C(n—kLs(p))~*exp _n=kLelp)
Ls(p)
P, (0 &5 )
YEB(k Ls(p))

< C(n/2)72 7 LPVE [ X g 150o0)],

asn — kLs(p) = n/2. Finally, note that E,[Xp 15p))] = oK/ by Claim 17, and
4¢87* < 1. So the RHS of the last display is < Cn ~2e™/L6(P)which proves the
( + 1)st induction hypothesis. This completes the proof of the induction argument and
the lemma.

Proof of Claim 17. We abbreviate m = k Ls(p). Let D be the infimizing set appearing
in the definition (96) of Ls(p). We expand the expectation:

Ep [XB(m)] = TB(m),p(Ol Z)- 99)
z€aB(m)

B
Consider an outcome in {0 <—(Ln>) 7}, where z € aB(m). In this outcome, we can decom-
pose the connection into segments which extend roughly distance L (p). We let y; be
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Fig. 4. Geometry in the proof of Claim 17: the red dot represents y 1, the blue dot is yo, y3 is green

the first vertex of d D encountered by some open path from O to z, then let p be the first
vertex on y; + 0D encountered by this path after y;, and so on. Proceeding in this way,
we see there is a sequence 0 = yq, y1, . . . y, of vertices of B(m) with r = k/2 , such
thaty ,; € [y +dD]foreach < r —1,suchthat y, —z = m/2, and such that the
following disjoint connection event occurs:
D +D by —2+D B(m)
D= m oo e Y o w5 ) ok e o)
We apply the BK inequality and sum over the y's. Each term has a factor of the form

TB(m), p(yr, 2); this is at most  Tg(m), p. (y+, z) and so is uniformly bounded by Cm 1-d
using (21). This leads us to the estimate

TB(m),p(O/ 7)s le_d e TD,p(OI y1) .. -;;_1+D,p()}r—lr Yr)-
y1€EDy,E+dD]  y,EW,—1#0D]

Evaluating the y sums and using the definition of D, the above is bounded by
cm'§.
Finally, we sum over z € aB(m) to find
E,[XBm] <ce/?! < §/4

for all 6 smaller than some d-dependent constant and all k = 4. This proves the claim.

Proof of Lemma 16. To prove the upper bound for Ls(p), first we recall the following
bound from [10, (1.3)]:

4 p 0eaBm) =

1 .
T P00 9 BT it E,[XbIL - (100)

p(1—p)
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Since p, =< 1/2 and P,,(0 & 8 B(n)) is decreasing (resp. increasing) in p (resp. n),

L P00 086D =— - [p, 0001 =720
- n => . = = C
p(l - P) b pc(l - pc) P Pc
foralln = 1 and p < p.. Combining the last two displays, we arrive at the following
bound.

d . . .
@IP,,(O © 3 B(n) =co Dgg{n) E,[|Xp|], uniformlyinn =1, p < p.. (101)

Next, we integrate both sides of the above inequality from p to p. (using the continuity
of IP,(E) for each cylinder event E ) to see

Ppe
0=P,(0e dB(n) <P, (0 dB(n) —co inf E,[|Xp|ldg
» DEI(w)
pe
C inf E,[|Xpl|ldg, 102
0 ) ¢[|Xp|ldg (102)

=Cn~?-

where in the last line we used (13). Clearly JE, [X p]is increasing in ¢ for each fixed D;
we can therefore bound the right-hand side of (102) by taking ¢= p inside the integral,
and obtain the inequality

Cn~? = co(pe — inf T,[|Xpll,
n co(pe p)Dle%z(n) oL1Xpl]

uniformly in n = 1 and p < p.. Now, choosing pg € 0, p.) such that p > po implies
Ls(p) =2, and taking n = Lg(p) — 1, we have

C(Ls(p) —1)72 = cob(pe — p) forall p € (o, pe).

This proves the upper bound for Ls(p).
To prove the lower bound for Ls(p), recall that (see [15])
. log P (0 & ney) !
. —lo ney _
T 1= &) ( pe—p)V2 (103)

n—o n

Also, P, (0 © nej) =P,(0 & 8 B(n)) <E,[Xpw] = 8*6P) forn =k Ls(p)
with k = 4, by Claim 17. Using this last display, and looking at the limit as k — o
after taking the n-th root of both sides of the last inequality, we see thay & ) < Ls(p)
for some constant ¢;. This together with (103) proves the lower bound for Ls(p).

5.2. Lower bound for the subcritical one arm probability. For A =0, define
m,(n; A) =P (,,2), where o7, p := 0 © dB(n), S, < M’}

Note that <7, ) is an increasing event. The goal is to use the Russo’s formula to compute
the derivative of the above and show that 17, (n; A)is not too small for a “good choice
of A”. Using Russo’s formula (18),

d
d_ m, (n; A) =Ep Ny, where Ny p o= 1 {e is pivotal for the event.a, A }+
P € (B(n))
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It is easy to see that if

Nn,/\ = 1 {e is open and is pivotal for the eventeZ, ¥
e€E(B(n))

then N, , < Anzlﬁym and EN, ) = p_lENn’A. It follows that

d -
E)np(n; A) =p~'AnPm,(n; A).

Therefore, for any po € 0, p.) and p € (o, p.), we have

d 1
—log mMy(n; A) < — 2.
dp Po

Integrating both sides of the above inequality from p to p,,

Mp(n; A _pe=p, o

lo =
£ 00 N 70
which is equivalent to
. (n; A =
L} < exp(pc pAnz)_
m,(n; A) Po

In other words, there exists a constant C such that:
m,(n; A) =exp(—C(pc — p)/\nz)r[pc(n; A).

Using the lower bound for 17, (n; A)from Theorem 2, we obtain
m,(n; A) Zexp(—=C(pc — p)/\nz) exp(—C//\)n_z.

- . , (A
Now we chooseA to optimize the RHS of the above display. Choosidg= [z p. — p1~",
we get

v
m,(n; A) =exp(—Cn p. — p)n_z.

This completes the proof of the lower bound.

5.3. Upper bound for the critical chemical distance. We will employ the usual coupling
of the measures P, for different values of p. Let (W), be i.i.d. Uniform(0, 1), w* =
(W, : both endpoints of eare in B(n)), and Py denote the distribution of w'. An edge
e is called p-open if W, < p. A path is called p-open if all the edges on that path are
p-open. Let S, (p) denote the smallest number of edges on any p-open path connecting
0 and 8B(n). Also let {0 © , A}denote the event that there is a p-open path connecting
0and A.
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1477 We use the following inequality, which has been used in the first display of [27,
178 Section 2].

1479 Puwi (0 , 0B(n), [S.(p)| =)

1480 =P (|S.(p.)| = and the optimal p.-open path is p-open)

. > f— P (0 © . 3B(n), [Su(pe)| = ). (104)
C

g2 In the previous inequality, we choose “the optimal path” to mean a p .-open path of
s minimal length connecting the origin to d B(n) chosen in some measurable way among
14sa  minimal paths.

1485 Summing over < k and dividing both sides by Py (0 © ,. dB(n)),

k
pe * P,(0 e 3B(n))
P, (|S,| <k|0e 0B =C — S
1486 Pc(l nl | (n) p IPPc(O « 0 B(n))

1z Using the inequality log(x) <x — 1 forallx > 1,

k
Pe

1488 — =exp k(logp: —logp) =<exp pPe =P
p

for all p < pc.

148s  Combining the last two estimates, using the upper bound on the subcritical one-arm
1490 probability given in Theorem 1, and applying the lower bound in (13), there are constants
1a91 ¢, C > 0 such that

Pc— P

v
1492 P, (|S,| =k |0e 0B(n)) <Cexp k —cn pe—p

1493 With these preliminaries completed, we can now prove (4) from Theorem 2; we
1es assume that A = n~! since otherwise the probability appearing in (4) is trivially zero.

ues  Replacing k by An” and p by p . — ﬁ for a Cy to be chosen (and using An = 1),
0
( )

1
1496 P C(S =k |0e dB(n)) <exp N —
p(15] | Co  C2(pe—Cy%)

147 Choosing Cy large enough, we get the desired upper bound.

s 5.4. Point-to-point corollaries . In this section, we prove the corollary stated at (6) and
1499 a related extension to half-spaces. These will also be useful in the proof of Theorem 3.
1500 We state the results here formally:

1501 Corollary 18. There exist constants C , ¢ > 0 such that the following bounds on the
1502 lower tail of the point-to-point chemical distance hold:

1503 for all x €z PO o x,dpem(0,x) <Ax 2) < Ce™ A x 274,
Zd

1504 for all x EZf, P(me; <= x, dﬁem (meq, x)

1505 <Ax—me %) <Ce ™ m x —me; 79,
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We recall that d CHh om 18 the analogue of d cjem for percolation restricted to the half-

space Z<. To prove the corollary, we need an intermediate lemma relating point-to-box
chemical distances to point-to-point chemical distances. ForA >0, let

X]Z;(n) =#{x €B(n) : x &Y 0 by a path of fewer than k edges}.

In other words, Xlé(n) is the number of vertices x € aB(n) having d B(n) 0, x) <k.

chem

Lemma 19. There is a uniform constant C such that, for eachn = 1 and each A > 0,
there isan < n/2 with

Epc[XB() ] SCexp(—(C/\)_l).

Proof. We fixOsmall as in Lemma 15 and Claim 17. We will assumezn 8; the extension

to smaller values of 7 is trivial. The parameter p < p. will be chosen later such that

Ls(p) =n/2; wesetk = n/2Lg(p) . Our ultimate choice of p will depend on A and

n, and we will need A smaller than some uniform constant to ensure Ls(p) < n/2; we

assume this in what follows, since we can handle larger A by adjusting constants.
Similarly to (104), we see that for each y € aB(n) and each A >0,

An?
P, (v is counted in X’I‘g’}; lé(p))) = % P, (y counted in X p(k 15(p)))-

Summing the last inequality over y € dB(n), we find

an? pe Mg pe M utpp
c c —C; .=
]Ellc [XB’}k 16(17))] = ; d{ = ; e nip P

2Pc— P —Cn(p _p)l/z

<exp An

where we have used Claim 17 and then Lemma 16. The constant here is uniform in n
and p as above.

We set p. — p = (C1A*n?) ™! for a suitably large uniform G > 0. The last estimate
becomes

For all n and A, EPC[XkLg( )] < Cexp(—c/A).

Since k Ls(p) < n/2 for A small relative to our constant Cy, the proof is complete with
= kL(p).
Proof of Corollary 18. We prove only the second inequality. The first is simpler to show,
and the argument requires only minor modifications.
We find an  as in Lemma 19 (with the role of n played by x —me1/ 2). Then, on
the event under consideration, we can find a y € B(x; ) such that

d

) ) A
593k, aBY () < Ax —me; 2} (€S mei)

chem
occurs. Summing over y € 9B(x; ) and applying the BK inequality and Theorem 6,
we find
— 2
(mel, )<Ax—mel )<Cm X —me; 1 dE[X/\(X mey/ 2) ]

<Ce ™ m x —me; 179,

2
P(me; <= x, Chem

as claimed.
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1541 6. Chemical Distance Upper Tail

142 In this section, we prove Theorem 3. We actually show something stronger; namely, that
1543 the length of the longest self-avoiding path from 0 to d B(n) has exponential upper tail
1s4a on scale n%. In Sect. 6.1, we make some necessary definitions and then perform a first
1545 moment calculation. In Sect. 6.2, we compute higher moments and conclude the proof.
146 We then comment briefly on how to show (7) using similar ideas.

1547 6.1. First moment bound . Given a vertex yEZS’r, let £ (y) be the length of the longest
w48 self-avoiding open path from y t@Z¢, if such a path exists. Otherwise we s&y (y) =0.

129 This convention will be useful for avoiding expressions such as £y (y)1 ooz Iy

1550 We let B(y) denote a measurably chosen maximizer in the definition of £y (y), with

w51 B(y) = @if no path from y to dZ¢ exists. Then E[£g (y)] = E[|B(y)|]by definition,

152 where we interpret B(y) as a sequence of vertices when computing the cardinality. We

1553 provide a uniform upper bound on the expectation:

1564 sup E[Ly(y)] < . (105)
yEZ
1655 In what follows, we consider a fixed vertex x ian and then provide an upper bound

155 on IB[£ 7 (x)]which will be seen to be uniform in x . For ease of notation, we &t=x(1)
1557 denote the distance of our vertex from azﬁ. Keeping track of 6-dependence will allow
1558 us to make sure our constant upper bound is indeed uniform.

1559 We first peel off an inconsequential piece of the expectation:

1560 ElLu(x); £u(x) < 8] <= 6P(x & 3 B(x; 6)) <C, (106)

161 where in the last inequality we used the one-arm probability bound (13). The constant
1562 here is uniform because it is just the constant appearing in that upper bound on 11(n).
ses  On the event that £ (x) > &2, we have to do significantly more work. We let B (x)
156« denote the “first half” of B(x)—in other words, the segment of B(x) beginning at x and
165 terminating after |B( x)|/2 edges. Of course, E[|B(x)|] = 2E[|B (x)|]1+ 1, so if we
1566 can show

ELIB (x)|; |B&)| > 8] =C, (107)

18 then the proof of (105) will be complete.

1569 We first sum over Hx; 6) Let A(z; r) denote the event that a vertex z has an intrinsic
1570 arm to distance r, as defined at (14). If z € B (x) n B(x; 6)and £x(x) > 62, then
571 {x © z} °A(z; &/2) occurs. Using the BK inequality, we see

E[|B (x) nB(x; 6)|;€n(x) > 8] < T €, 2)P(A(z; 6/2))
7EB(x;6)

1573 <C67? T§z) <C, (108)
zEB(x,6)

1574 where we have used the intrinsic one-arm probability upper bound (14).

1575 To count the remaining portion of B (x), we will replicate the calculation leading
1576 to (108) by summing over scales—here we are more careful and exploit the fact that
1577 the T from (108) could actually be taken as a Ty . The more rapid decay of Ty, from
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Theorem 6, will be necessary to show the sum converges. Let us abbreviate ; =
Ann(x; &%, 1) Then

E[|B (x) nAi|; Lu(x) > 8] =E[|B (x) nUx|; Lx(x) >23k/252]

+E[|B (x) nA]; 2226 = £(x) > &1
(109)

We bound each of the terms on the right-hand side of (109) by different methods.
For the first term, we note that when L5 (x) > 23%28 eachz € B(x) N2 must
satisfy

zd
e x} A 202672).
Applying the BK inequality and summing, we find

E[|B (x) n2|; Cu(x) > 23281 = 1(x, JP(A(z; 2°%28/2))
€A,
=c6 2272 1y(x, 2)
ZEA,
<=C6 20w x (8 ) x 6 x (&)Y
=272,

In the second to last step, we have used Theorem 6.
For the second term of (109), we use Corollary 18:

E[|B (x) nA|; 2328 = &p(x) > &1
= P Bl (v ) <2 V&Y P(AG; 8/2)
€A
=C62%2x (8)! xe

—2? 5 6 x (F)174 = 2k,

In both cases, all constants arise from the estimates on the one-arm probability, the
chemical distance lower tail, or the asymptotics forTy . In particular, these constants are
uniform in k and x . Combining the two estimates, we get that the left-hand side of (109)
is bounded uniformly by

2 —k/2.

Summing over k shows (107), and recombining this with (106) completes the proof.

6.2. Higher moments of path length. Let £, denote the length of the longest  self-
avoiding open path from 0 to 9B(n) which lies entirely within B (n). As before, we
set £, = 0if no open arm from 0 to 3 B(n) exists. We now show the following result,
which implies Theorem 3 via the trivial inequality S, < £, on {0 & 0 B(n) }
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Proposition 20. There exists a constant Cy such that, for all integers n, k = 1,
B[k |0 & d B(n)] =k!(Cin?)F.

In particular, there is a constant G such that

=A
P(g, = M |0 e 3 B(n) <Crexp -
2

Proof. The second claim follows by using the first to bound the moment generating
function of £,/ n>. It therefore suffices to bound the moments of2,,. Similarly to before,
we let 3, denote a measurably chosen self-avoiding open path from O to 9 B(n) of
maximal length. By expanding £, into a sum of indicators and using (13), we find

Elgf 0o aB®n)] =Cn? Pz, ...2 € B, 00 3 B(n). (110)

Since f3, is self-avoiding, the vertices 3, . . . 3¢ appear in a well-defined order along
this path. We abbreviate ‘w and y lie on 3, with w appearing before y in order starting
at 0” by w <y. Then

(110) = (Cn?)(k!) P(z1 <z2 <" <, 09 B(n)
21,2k EB(n)

= (Cn?)(k") E'[{ €B: a1 <yHiy<w<y - (11D
21,0 2k—1EB ()

We would like to evaluate the expectation in (111), and so we need some way to decouple
the variables there. To make the notation for this step easier, we abbreviate

V=V, ...5-1) =<« W=W-1) =4 E€BR: z-1<y}.
Consider an outcome W € ¥ W = A Hor some real number A > 0. We see that

wede 71} ° - ado © zk—1} © {dben path of length
= Ain B(n) from z;—1 to dB(n) }.

Indeed, disjoint witnesses for the events above are provided by disjoint segments ofB,,.
Letting the length of the longest open path from z —; to d B(n) which lies entirely in
B(n) be denoted by W and using the BK inequality, we bound

0

E[V W] P(VW = A)MA

0
= TG z1) Tl zk—1) . P(W = AMdA
=710, z1) - Tl u-)E[W 1L

Any open path in B (n) from z;—; to dB(n) is also an open path to one of the 2d
hyperplanes containing one of the 2d sides making upd B(n), with this open path lying
entirely on one side of the hyperplane. In other worddE[W ]is bounded above by a sum
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of 2d terms of the form IE[£p(y;)] for y;’s appropriately chosen depending on z ;—;.
Applying (105), we see there is a C uniform in n and z1, . . . 3k—1 such that

E[VW] =CT0,z21) - - - Tl zx—1). (112)
Inserting the bound of (112) into (111) and summing over z; through z;—, we see
ELLk |0 9 B(n)] < Ckn? (k)%= = k1 (Cn?)F,

Because k was arbitrary and the constant C is uniform in n and k, the moment bound is
proved.

We now briefly describe how to show (7). Considering a shortest self-avoiding open

path from O to x, we can upper bound the kth moment of d cjer, (0, x) on {0 sy x}by
an expression like (110). The main differences are that the probability on the right-hand
side no longer includes the event{) © @ B(n)} and that the prefactor is x ¢~2 instead
of n2. (Here we use (15).) Fixing an ordering as in (111) gives rise to an analogous
prefactor of k!. Finally, we are left to sum an expression of the form

TO0,2)T €1, 22) ... Tl x).

This sum can be upper-bounded by =1 x 2k+2~d

this factor together with the previous ones, we find

using standard methods. Pulling

2 — —
Eldoom (0, 1) [ 082 ] <kick x 472 5 2= = pic x 2)K,

completing the proof.

7. Proof of Upper Bound from Theorem 4

In this section, we prove the inequality ‘“<” from (8). We wish to bound the probability,
conditional on 0 ¢ @ B(n), that |€p(,)(0)| < An*. As in the statement of Theorem 4,
we fix a value of & > 3d/2 and will consider only values of A > (log n)%/ n3. We set
K= A"Y31: this parameter will be more directly useful than A in our arguments, and
most of our estimates going forward are more naturally phrased in terms of. We divide
up the annulus Ann (n/2, n) into K annuli

n nj n+n(j+1)
2 2K 2 2K

with associated boxes

j 2j+1
Bl-=BO;z+ﬂ, BZ-=BO;E+n(J ).
1 2 2K J 2 4K
We also introduce the sub-annulus
2j+1 4j+73 i 3
Aj DA, = Ann E+n(] ),E+n(] ) =5 0: 2+ 2 \p2
J 2 4K 2 8K 2 2K 8K J
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0B
() <k<——<“"’é)£3 %
o 72 a1 /aA 1
6 n /2 <
<t——<—‘“"<—'/q 1
\ I —

\

Ann(n/2, n) = AUA1 UA>

Fig. 5. Here K =3 and Ann (n/2, n) is divided into 3 annulus A o, A1, Ay

In words, le. is the inner box of A ;, sz. the box which extends halfway across A ;, and
A j is an annulus which begins halfway across A ; and ends three quarters of the way
across A ;. See Fig. 5 for an illustration.

We note that K < Cn/(log n)¥3 for some C = C(a). The fact that a/3 > d/2 will
be used in the proof of Lemma 21, essentially to ensure that the annuli above are thick
enough to recover some independence between the portions of the cluster €p(,)(0) in
different A;’s. We will need n to be larger than some dimension-dependent constant,
guaranteeing in particular n = 64K. The smaller values of n are covered by adjusting
constants.

The main components of the proof involve showing that, on the evenf) © 9 B(n)};
the vertex set€p(,) (0) NA; typically contains order(n/K) 4 vertices, and thatCp(y(0) N
Ajand €p(,)(0) N Ag have “enough independence” for j= k. This allows us to argue that
|€5(,)(0)| conditionally stochastically dominates c(n/k)* times a sum of independent
Bernoulli random variables, so is very likely to be of size at least orderx (i/k)* = An*.
We note that of course this strategy will only work if our estimates are uniform in » large
andin A > (log n)%/n>, which they will be. Henceforth, “uniform inn and A [ or K]|”
means uniform over n larger than some C = C(d) and A > (log n)%/n>.

7.1. New cluster notation. Foreachj =0, . . ., K i our construction will involve ex-
ploring €(0) NA; in stages. To avoid unmanageably long expressions, we will condense
our usual notation for open clusters here; the notation introduced in this section will be
in force until the end of Sect. 7.5. Because we generally work with a fixed value of j,
the j -dependence is often suppressed in our notation.

We will often write €(x; G) instead of € (x); this improves readability when G is
represented by a complicated expression. The symbol £ will always stand for a vertex
subset of le. such that P(€(0; B}) = () > 0. We define the event

2(0) := £(0; Bj) =}
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)

—C

o5}t

oB?

25—

[
/

Fig. 6. The black, red, and blue lines represent the clusters C, € *(y) and ¢* ¥y ) respectively

When conditioning on 2"((), we recall that edges within B ]] on the boundary of C
are conditionally closed, but edges connecting C to Z%\ B} remain i.i.d. Bernoulli(p,)

random variables. On the event 2 (C), we write, for each x & C, the shorthand

* 2 BI\C 2 2
Cx) = $ €B;: y> x} ={ €B; 1 x €Ly; B\O};

in other words, €*(x) is the union of €(x; B/Z.\ () with those vertices of ¢ which have
an open connection to x in Blz. which touches C only at its initial point.

For each y € asz., we fix a neighbor y EBJZ.. We write@* ¥y ) :=¢(y ; B}H\[C’U
@*(y)]). See Fig. 6 for an illustration.

The set of vertices of 6Bj2. through which connections from € can proceed will be
denoted

;!‘;: b e GB? :¢Xy) nCc =0}, withX;»k= [ ;k|

As we mentioned above, much of our proof will revolve around showing €(0; A j )
is large conditional on the value of €(0; B} ). Thus, until Sect. 8, we work conditional

on 2" (C) for some C as above, then derive results which are uniform inC which satisfy
a further condition. Indeed, by (13) and Lemma 2, we can choose a @ uniform in 7, K,
and j such that

PO dB),, | 2(0 n &F=2co(n/k)*}) <1/4. (113)
We will restrict our attention to C satisfying the condition
for uniform ¢y > 0 asin (113), IE[X}'< | Z(0)] = co(n/K)>. (114)

As we will argue in Sect. 7.5, when € does not satisfy (114), the event 2" () is not too
likely conditional on {0 < 9@ B(n)}.
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1712 7.1.1. Regularity As usual, we will need some version of cluster regularity to ensure that
1713 open connections from C can be extended. We would like not to impose very stringent
1714 conditions on C, so that we recover some amount of independence between the portions
1715 of the cluster in distinct annuli. This makes the situation somewhat delicate: the open

1716 cluster of Cin B/z. need not be regular if £ is not. For instance, if C = B}, then Cis
w717 typically connected to order|A ;| (n/k) ~2 vertices of A ;, making €(0) NA; much larger
178 than four-dimensional. We introduced the sets®*(y) above to mitigate this problem: the
ime  @*(y)’s will typically be regular, and that will suffice for our purposes.

1720 In all that follows, Cis an arbitrary set such that (2" (£)) > 0 and such that (114)
1721 holds.

1722 Definition 11. Suppose x € an.. We write

7Xx; 6) := ¥(x; B}, \O) nB(x;5)| <s°°}.

1722 We note that the cluster considered here is the union &*(x)\ Cwith the ©*¥x ) clusters
1725 attached to it.
1726 Given 6 >0, we say that x is s-*-bad if

727 P(7%(x; 6) [¢(x; BAC) <1 —exp(—s"?).

1728 We say that x is K -*-regular if there is no s with K < s such that x is 2 -*-bad.

1729 We will fix the value obin Lemma 21 below, depending only on the dimension d and the
1730 value of @ >3d/2. Since we will not alter O thereafter, we will generally suppress it in
1731 our notation and write 7,%(x) = 7.%(x; 6) We note that the event 7,(x) is independent
w2 of 27((), since we need not examine edges of’to determine €(x; sz.\ C) or €(x; le.\ Q).
1733 In other words,

1734 foreach 2, we have IP(7S'*(x; 0) |¢(x; B?\(,’) =2)

1735 =P(7X(x; 6) |2°(C), {&(x; B?\U}) =D).

1736 Recalling the random set 7‘ and its cardinality X ;.", we write ;"K for the set of
77 x € ¥which are K -*-regular, and let X;"K = | ;"K |. The main statement on regularity

1738 we need is as follows:

1739 Lemma 21. Let @ > d/?2 as in the statement of Theorem 4 be fixed but arbitrary. There
1740 exists Ko < o such that, for each K> K, there exist ¢ C = c(K), C(K) > 0 such that
171 the following holds. Uniformly in n and K satisfying K < min{n/16, n/(log n)®} inj,
e iny € aBJZ. satisfying P(y € ;k | 2°(C) =n~9, and in Csatisfying a) P(2 (C)) >0,

ms b)CN 0B]1- = @,and c) the condition (114), we have

1
1744 P yeE ;kKlgbV(C) EEIP y € ;’(I%(C’)

145 Proof. The proof is similar to that of Lemma 5, with some modifications due to the
s differing geometry and conditioning. We will refer to elements of the earlier proof,
1747 avoiding repetition of essentially identical steps.
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Let us consider an annulus of the form Anfk, Cokd/ 2) for a large constant @. Taking
a union bound and using (13), the probability of there being an open crossing of this
annulus (that is, an open path connecting d B(k) to 3 B( Cok¥?) is at most

(k+ 1) 'n(Cok? —k) =ccy* <1/2

for Cy chosen large depending only on the lattice. We henceforth take this value of Gy
fixed.

We first prove the lemma in the case that C ¢s%? < n/8k. This setting is easier to
handle because we will need to examine the cluster of y only within By; Cosd/ 2) CA;
to give a good upper bound on the size of €(y; le. .\O) N B(y;s). Letting 6 < 1 be
arbitrary for now, we define the event

E, := {or each w €B(y; Cos¥?), we have 1€ 5y:cost/2) (W) NB(y;s)| <sY/2702y,

We also let

E, := {here are no more than s 1/2-6/2 disjoint connections from B (y; s) to 9 B(y; Cosd/z) }.

We bound P(E;) using the cluster tail bound of Lemma 3, and we bound P(E,) using
the choice of Cp and the BK inequality (17).
We conclude

P(E;) =1 — exp(—csl/z_é/z);

= 115
P(E,) =1— (/20" (>

=1- exp(—csl/z_‘m).

In bounding IP(E;), we used the following observation: for any # = 1, if there isa w €
B(y; Cos¥?) such that |Q:B(y;cosd/2)(W) NB(y; s)| =t, then there is also av € B(y; s)
such that |Cp(y;) (W) N B(y; s)| =t . (To see this, simply letw be an arbitrary vertex
of €(w) nB(y;s).) Similarly to the discussion after (29), if there are at most disjoint
crossings of B(y; Cosd/z)\B(y; s), then

&(y) nB(y;s) € Ul n B(y;s)],

where the union is over at most + 1 clusters C of B(y; Cosd/z).

In particular,
ontheevent E;, N E;, |€(y) NB(y;s)| <5579 (116)
We will show
P(E;NE | 2(0),y € %) =1—exp(—cs/?7P). (117)
We do this by conditioning on  €(0; B}H\B(y; Cos%?)), noting that E; and E | are
independent of the status of edges outside B(y; Cosd ). We write

P(2(C),y € NENED =< P(e0; B}, \B(y; Cos”?)) =C)ll = P(E; n Ey)]
C
<exp(—cs/2792)  p(e(0; B}+1\B(y; Cos¥?) =C), (118)
C
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Subcritical High Dimensional Percolation

where the sum is over C compatible with the event 2°(C) n § € ;k} and we have
used (115). Here the “compatibility” means exactly that? () occurs and that&(0; sz.)
contains a neighbor of B(y; Cos%?) when ¢(0; BJI-H\B(y; Cos¥?)) = C (we note that
both of these conditions are determined by the value of €(0; B jl H\B(y; Cos¥2))).

To show (117), we need to compare the sum on the right tolP(2°((), y € }").

This is done by arguments similar to those at (35), here using the fact that s is small
enough to ensure B(y; Cos?) nC = Q. Independence and Lemma 4 imply

P €(0; B, \B(y; Cos”?) =¢C, 2(0),y € ¥

= cexp(—Clog?s)P ¢(0; le‘+1\ B(y; Cos¥?) =C .

Inserting this bound into (118) and performing the sum over( gives

P(2(0),y € % Ky BL,AO| >5°79)
< Cexp(C log2 s) exp(—csl/z_éﬂ)P(%(Q, y € ;-k)
=< Cexp(—cs>"OP)P(2°(0), y € ¥).
The above was all derived under the assumption that Cos¥? < n/8K. We next
handle the case that C os%? > n/8K. In this case, we use the assumption that P(y €
HEA@) =1 to upper bound
P({y € Th7¥0) | 2(0)
_P TH) 1 2(0) P(y € *| 2(0)
= Py E F12(0)
=Cn'P(y € ¥| 2(Q)P(Ie(y; B, \O) nB(y;s)| >5°°| 2°(0))
=Cn'P(y € ¥| 2(Q)P(I€(y) nB(y;s)| > 579
= Cnexp(—cs'OP(y € ¥| 2°(0)).

Since s = c(n/k) ¥4 = (log n)'*¢ by our choice of @, for each & >0 sufficiently small,
the above is at most

C exp(—csl_é).

Combining the two cases, (117) follows for all s as in the statement of the lemma. It
remains to argue for the conclusion of the lemma given (117). We write

P(7Xy), y € ¥ 2(0)

jl

P(7X(y), €(y; B\O) =C, 2°(C))
¢

- (1 _ e_CSI/Z—G/Z

JP(y € % 2(0), (119

where the sum is over cluster realizations C such that { e ;‘} occurs. The inequality
appearing in (119) follows from (116) and (117).
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1810 We break the sum over:c’ into two terms depending on whether y is s-*-bad or not on
111 the event {&(y; BJZ.\ () = (7} Performing the sum and applying Definition 11, we can
1812 upper bound the sum appearing in (119) by

(11—~ )P ®(7H0) | (x; BA\Q) =1—exp(=s"?)}y € % 2(0)
+P P(7X) |€(x; BAO) > 1 —exp(=s")},y € 1 20 ,

1813

1814 SO we obtain

P(7Xy), y € T, 2(0) <sP(y € T, 2(0)

jl
1815
=P @(740) | €l BAD) <1 —exp(—s")}y € % 2(0) .
1816 (120)
1817 Comparing (120) with the lower bound of (119), we see that there is arys= so(d, a)

1818 such that, for all s > s,

wo P {PTXy) |€(x; BAQ) <1 —exp(—s"3)} [ € 1}, 2(0 =exp(—s"?79).
1820 121)
1.2 We sum over s = K to obtain the bound

1822 P(y & ;kK | { € ;k},%(@) = Cexp(—cK ]/3).

123 Choosing K ¢ large enough that the right-hand side of the last display is smaller than
w22 1/2 when K > Kj and multiplying both sides of that display by P(y € ;k | 2°(C)
1825 completes the proof. '

w2e  /.2. €(0; Bj 1) NA; is large with positive probability. We use Lemma 21 to argue that
ez €(0; Bj+1)N A is frequently large on the eventZ” (C). Formally, we prove the following
1e2s  intermediate lemma, which furthermore decouples€(0; B;) NA; from €(0; B;), i < j:
1829

1830  Lemma 22. There exists ¢y, => 0 such that the following holds uniformly in n, inj, and
1831 K. For each C satisfying (114), we have

1832 P(1¢(0; Bj,) NA;| >cy(n/K)* | 2(0) zcv.

18as  The proof of Lemma 22 is based on the second moment method. In this section, we
183« define and prove facts about events.4(y, z) on which the second moment argument will
135 be based. In Sect. 7.3, we prove the necessary first moment bounds; in Sect. 7.4 we prove
183 the second moment bound and complete the proof of the lemma.

1837 Recall that for each y& asz., we have chosen a deterministic neighbor y& le. o\ sz..

1838 For each such edge {y, y } and for each z €A, we define

1839 /l(y, Y, C) = -/4()’/ z)
le'+l\C \L
1840 =2 nfE ;."} n {y, v }is open and pivotal for y <> z, _
L and ¢*¥y ) contains no vertices adjacent to B} J
1841 (122)
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Subcritical High Dimensional Percolation

We usually omit € from the notation because, as we have noted, all our bounds will be
uniform in C.

We will wish to argue that €(0; le. +/) NA; is at least the number of pairs (y, z) for
which A(y, z) occurs. For this, we will use the following proposition:

B!
Proposition 23. For eachy € BB? and 7 € Aj, we have A(y,z) € & EAY 0} More-
over, for each pair 71, 7o EAj and each y; = y, € asz.,

Aly1, z1) N A(y2, 22) € €5%y) n E¥(n) ue*Ty,)] =0}, (123)

and so (taking 7 = z1 = z2) we have A(y1, z) N A(y», z) = @.

B2,
Proof. We first prove the containment4(y, z) € € <5 0} which is relatively easy. On
Aly, z), there is an open connection from y to € by assumption, and ( by the definition
of Z°(()) thus €(0; BJZ.) ' y. Then by the openness of{y, y } we have y €€(0; Bj,1);

B .
finally, this openness and the pivotality of this edge ensure y Ay z, completing this

part of the proof.

We will argue by contradiction for (123): we assume thatd €4(y;, z1)N A(y2, z2)N
L*ty Jn EX(y,) UC*’(yZ)] = Q@}and then show whas contradictory properties. We
further decompose this event and break the proof into two cases.

Case 1: w € €X(y;) = ¢*(y)}.We assume first that  has the additional property
that, in &, the clusters ¢*(y1) and ¢*(y,) are identical. In this case, by definition we
have that ¢* ’(yl) n ¢*(y;) = @, and therefore ¢* >l'yl) n ¢*(y;) = @. To show
¢*fy,) n€*¥y,) = B, we suppose that * ¥y, ) N€*Yy,) = @, which implies (again
using €¥(y1) = €*(y,)) that Q*Tyl) = ¢* >t’yz). Let y be the concatenation of a) an
open path in C*Tyz) from y, to z1, b) the edge {y2, y,} and ¢) an open path in c*(y2)
from y; to y. By construction, the path y avoids {y, yl}. But since W €.A4,(y1, z1),
the pivotal edge {y1, y, }must be in y, a contradiction.

Case 2: w € €*(y;) = €*(y2) }.We suppose instead that¢ *(y;) and ¢*(y,) are distinct
(and hence €*(y;) NC*(y,) may contain only vertices ofC) in outcome w. We first show
that ¢* ’(yl )neX( v2) = @by assuming these clusters instead had nonempty intersection
and deriving a contradiction. Under this assumption, lety be a path in ¢* Ty 1 ) from y 1
to a vertex W €¢*(y,).

We produce an open path by appending the segment of from y, to W to a path lying
entirely in €*(y;) N A j from W to a vertex adjacent to (. This is a path in B j 4 from
y; to a vertex adjacent to B jl It avoids €*(y;) because Yy avoids €*(y;) and because
cXy1) n¢X(y,) nA ; = ©.In particular, this path guarantees that (’J*Tyl ) contains a
vertex adjacent to le-, a contradiction. This shows€*¥y,) N€*(y,) = @ (and similarly
e*ty,) n€¥(y1) = Q).

We again show €*¥y,) n ¢*¥y,) = @ by assuming the contrary and deriving a
contradiction. Under our assumption, we choose a vertex €€*¥y,) n€*¥y,) and let
Y; be a path in Qﬁ*’(yl.) from y; to w (for i = 1, 2). Appending Vi to >, we produce an
open path which (by the previous paragraph) lies outsid&*(y;)U€*(y,) and connects y,
to y,. Adjoining to this the open edge{y,, y> }and a path in€*(y,) from y, to a neighbor
of C, we see again that ¢* >Tyl) contains a vertex adjacent to B!, a contradiction.
Proof of final claim. Finally, to showA(y1, z) NA(y2, z) = @, we note that on.A4(y;, z),
we have z E¢*¥y;), then we apply (123).
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As we have discussed, we wish to lower bound the size of(0; B +1) NA; on Z'(C).
In fact, it helps (see (146) below) to consider a portion of this cluster whose connections
in A ; “do not wander too far”, and which have a pivotal edge touching GB? for their
connection to C:

Zj:=A{f,2) 1y € B}, z €A; n B(y;n/16K ),and A(y, z) occurs}. (124)

Proposition 23 immediately implies the following corollary.
Corollary 24. On 2°(C), ¢€(0;B;1) NA; = |Z;].

We will use Corollary 24 to show Theorem 4. As already discussed, in the next two
sections we use the second moment method to show that |Z;| is often of order (n/K) 4

conditional on .2 (C). Using Corollary 24, we see that €(0; le. +/ NAj has uniformly
positive probability to be of order (n/k)*. In Sect. 7.4, we use this fact to show that in
fact with high probability €(0; le. +¢) NAj is of order (n/k) 4 simultaneously for at least
cK values of j and complete the proof of Theorem 4.

7.3. Bounding the first moment of |Z;|. We now have the following result allowing us
to extend connections from C'to points z in the annulus A?, which we will subsequently
use to lower bound the first moment of |Z;|. The K | appearing here depends only on
the lattice Z¢ under consideration and the value of & as in Theorem 4.

Lemma 25. There isa K | > K such that the following holds. For each K > Kj,
there exists a ¢ > 0 such that, uniformly in n andK satisfying the additional assumption
n/K = 32K, forall j,all C S B}. such that (114) holds, all y € asz., and all M
satisfying 2K < M < n/ 16K,

B!, \C
P({y, y Yopen, pivotal for y <57, | Z°(0), y € ;kK) =cM?. (125)
2EB(y;M)NA;

Proof. The proof uses a variant of the Kozma—Nachmias cluster extension method [29,
Theorem 2], using the notion of regularity we have introduced for this particular case,
which poses somewhat different issues than the extension arguments of Proposition 8
above. We provide the details for the reader’s convenience.

We define the events

&(y) = (), yE ¥},

B!, \[CUCH(y)]
&y, yXz) =§* e z},

&y, y") = €(y; Bj,\Q) ne(y* B}, \O) =}
Defining

( y) =B(y; K)\(B} +B(0, K/2)),
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we show that there is a ¢ > 0 such that, for each K larger than some constant K3 > K
(depending only on the lattice), given values of other parameters as in the statement of
the lemma, there is a y* € ( y) with

P(&(y) n&(y, vy 2) n&(y, yY) =eM?P(&(y).  (126)
2EB(y;M)NA;

We first show the existence of a K, > K¢ and a constant ¢ uniform in K > K3 as
well asin n, K, C,j , and y as in the statement of the lemma, and in all y* € ( y) such
that

P(&i(y) n&(y, y* 2)) =cM>P(&(y)). (127)
zEB(y:M)nAj

Summing over 2 consistent with the event {£*(y) = D, y € ;"K }, we have

AL CUCH)]

B(y* o 20,y € ¥¥)

P(y * 1+1\[CUC*())]

D

2| 2(0), €¥y) = DP(2(0), €X(y) = D).

For the conditional probability, we have the lower bound

+\[Cuc*(y)]
P(y* " 2| 2(0), ¢Xy) = D)

Z]P’(y*ﬁj\—l? z)
SP(y*eh 2) = P e y*o (o)
(4>
A.
=>P(y*e> ) —=C  P(C e yHT - 7 77
D

We have used the BK inequality and (13) in the last step. Summing over z using (15),
we obtain the lower bound

oM T- y*¥72e (128)
D

We note that if Esz., we have { — y*= K/2. So the sum appearing in the second
term is bounded by

c |20 B(y* 2") 2~ *
k=log,(K/2)

<C |20 B(y, 24" |22k, (129)
k=log,(K/2)

For C, D consistent with {y € ;kK}, we have

|20 B(y, 21)| = 2670k,
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Applying this estimate in (129), we obtain

7 — y*2d < (1—d—6)
P k=log(K/2)
<CK'™470
Since d > 6, we can make the second term of (128) negligible for each K larger than
some uniform K». We obtain (127).

Next, we show the existence of a K | > Ky andac¢ > Ouniforminn, K, m, C,
K > K1, and y with

P(&(y) n&(y, y% I\N&E(y, y¥)
y*e( )‘)zEB(y;M)ﬂA? (130)

< CM2KT™40p(£ ().

[( ¥

Choosing the value of y*which minimizes the inner sum of (130) and combining it with
(127) clearly implies (126).

The event on the left-hand side of (130) implies the existence of a verte§ € B ]1 TG\ C
such that

1
B_j+l

C
i),y L5T) (T oy o {T )

Using the BK inequality, we have the upper bound:

1 BLAC
Tl P(&(y), €X(y) €= Q) P(y*o T)P(T & z)
Y y¥( y) Z€B(y;M)NA, 4
C M? Bj,\C _
ST P(&(y), €50) <573 T —y* . (131)
Yyxe(y) ¢

We break up the sum according to the distance { — y* and the value 2 of ¢*(y)
(consistent with the event & (y)). Thus (131) is bounded by

’ Bl \C
I?A;[)I P{{<5 DY, 2°(C), ¢X(y) =D T — y* 2.

y¥E( y)k>ko D T @nn(y*2k—1,2k)

(132)

We split the sum according to whether k> kg or k < ko, where ky = log,(K/2). We
first bound the k > k¢ terms; the inner sums over k, 2, and  of (132) are bounded by

=C BB (Y| | 2 (0, €Xy) = DIP(2 (C), €X(y) = D)2k (133)
k>ky D

Here we have introduced, for W an arbitrary vertex, the notation

B (w) = £(y; B} ,\O) nB(w;2)}.
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1966 We estimate the conditional expectation

1967 E[|&(y)] | 2°(0), €¥(y) = D]
wes  uniformly in y *using the inclusion

1969 Bi(y®) < B (3),

w70 which is implied by y* € ( y). Ify € 7«, the definition of K *regularity implies

197" E[|Bis1 (D=5, () | 27(0), €X(y) = D] < o+2)d ;=243
1972 and
1978 ElBt (D11, () | 27(0), €X(y) = D) =267k,

1974 Thus, we find

EN& (9] 1 2°(0), €X(y) =PI <2079, k> k. (134)

176 Applying this bound, we see that (133) is at most

1o77 c 207470k < cg]7470 (135)
k>ko

1978 We now turn to the k < ko terms of (132), for which it is useful to first perform the
179 y*sum. Indeed, we have uniformly in and y

1980 -— y* 2= < Cc K2
y*e( y)

1s1  Applying this last display, we see the k < k¢ terms of (132) are bounded above by

1982 CM2K2_d E[|5’K+2(y)| | 3{(6), (’Z*(y)
D

= DIP(2(C), eX(y) = D) <CM*K"~47F,

s« where we have bounded the expectation as in the estimates producing (134). Pulling the
1985 last display together with (135), we have shown (130). Finally, combining (130) with
16 (127) and assuming K is large, we see that (126) holds.

1987 To obtain (125) from (126), we use an edge modification argument inside a box of
1988 diameter order K , again similar to the one appearing in the proof of Lemma 14 or [29,
1e9  Lemma 5.1]. The edge modification shows

" B}, \C &
1990 P({y, y }open, pivotal for€%(y) <= z | 2°(C0), y € )
1991 = o(K)P(&(y, y% 2) n&B, YD | &),
1992 and the proof of the lemma follows using (126).

1993 Our next goal is to slightly adapt the content of Lemma 25 to instead involve the
1904 events 4(y, z), which can be used in the application of Corollary 24:
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Lemma 26. For each K > K (the constant from Lemma 25), the following holds. There
exists a ¢ > 0 such that, for all n, all K, for all j, and for allC such that (114) holds

E[Z;| | Z(O)] = P(A(y, 2) | 2(Q) zc(n/K)’EIX T | 2°(O)].
yeaBj?
ZEAjnB(y;n/léK)
(136)
Proof. We express the left-hand side of (136) in the form
P(A(y,2) | 2(0) = P(Aly,2) | 20,y € )P(y€E€ ¥ |2(0).
.z ¥,z
137)

We will lower bound the conditional probability of.4(y, z) on the right-hand side using
Lemma 25—the missing ingredient is to show that the connection from y to z in the
event from (125) does not make a connection from yo neighbors of B1 too likely. To do
this, we must restrict the sum over z somewhat—it will be easier to rule out such loops
back into B! i for z comparatively near to y. Let us introduce a parameter 0< a < 1/16,
to be chosen small but fixed relative to n, A, j,y, and C. Indeed, the value of a will
be chosen based on the constant appearing in (125) and the constants in the one-arm
probability bound (13). On 2 (), we define the random set
1
: Bj.\C
Y(a,y) := z €B(y;an/K) n A {y, y Yopen, pivotal fory <= z . (138)

Applying (125) with an playing the role of M, we find a ¢ = ¢(K) > 0 such that,
foreachn, C, y, a, j, Kasin (125), E[|Y(a, y)| | Z°(C), yE *K]_ca n%. (139)

The event 2°(C) n § € TK} n £ € Y(a, y)}\A(y, z) implies that one of the
following two events occurs:

2 (vin/8K)\C *(y) N\[CUCH(y)]

s L= f e T TESCY yy o (ENES

. */ . *7o d\C *(+,
{CB(y.n(/_Sg\C (y) B(y.n(/_SQ\C () Z(lC_)(y)

y}eAQ 2} ¢

* Ly = C B(y;n/8k)
0B(y;3n/16K )}.

That is, either y is connected to z (off €*(y)) by a path exiting the box B(y; n/8K), or
y and z are connected within this box and are connected to the boundary of a slightly
larger box by a further open path. In particular, for each y, z:

P(A(y,2) | 20,y € F¥)
2P(z€Y(a,y) |20,y € ) =P(LiVL | 2(0),y € T¥).(140)

We can decompose the event 2" (C) n § € ;"K }into a union of events of the form
2°(C) n €X(y) = D} to upper-bound the probability of L{, we thus provide an upper
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bound on P(L; | 2°((), €X(y) = D) uniform in realizations 2 of ¢*(y) such that
y € ;kK Using the half-space two-point function bound (21), we find
P(L, | 2°(0), ¢X(y) = D) <C|oB(y; n/8k )|/k) '~ (n/k)*~ < C(n/k)>~¢,

where the constant C is uniform in the same parameters as (139). Similarly, we bound the
probability of L; using the two-point function and the value of the (full-space) one-arm
exponent (13):

P(Ly | 2°(0), €¥(y) = D) < C(n/k) >
{— y 297 — 2 =Cn/k)* .
¢ B(y;n/8kK)
Applying the last two displays in (140) and using (139), we see
P(A(y, 2) | Z(O), y € ;"K) = ca’(n/k)* — Ca‘ (n/k)>.
zEAjnB(y;an/K)
Choosing a small relative to the uniform constants in the last display (but fixed relative

to all other parameters) and summing over y € an. in (137), the right-hand side is at

least c¢(n/K) ZE[X,;"K | 2°(C)]uniform in K large but fixed relative to n, in n, and in C.
This completes the proof.

Corollary 27. There exists a ¢ > 0 uniform in the same parameters as Lemma 25 such
that

E[ 4| | 2°(Q] =c(n/k)*.
Proof. By Lemma 26, it suffices to show
EIX® | 2()) = cEIX¥| 2/(Q] 2c(n/k)? (141)

holds uniformly in the same parameters as Lemma 25. The second inequality follows
from (114); it remains to show the first.

We write
ELX ¥ | 2(0)] = P(ye [ |2(0)
yE&B}Z
P(yE H2(Q)=n™
+ P(y € ;"K | 2°(C)
yEGBJZ.
P(yE ¥H2(Q)>n~
1
> = P(y € ;k| 2°(C)
yEaB;
P(yE 2 (C)>n~
1 C 1 C
=~  PGHE ¥|2() - =_Elx¥|2(@]--1,
2 J n 2 J n

2
yE&Bj

where in the second line we have used Lemma 21. The corollary follows by applying
(114).
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7.4. Bounding the second moment of |Z;|. We produce an upper bound on the second
moment of |Z;| complementing that of Corollary 27:

Proposition 28. There is a constant C such that the following holds uniformly in n, in
J, and inC satisfying (114):

ELIZ;* | 2(01 <CEL |£;] | 2 (OP-

Proof. We write

ElZ;|* | 2(0] = [Py, y2 € [ 2(0)
1,2 EB]

P(A(y1, z1) N A(y2, 22) | Z°(C) n {1, 2 € J})] (142)
Z1€AjnB(y1;n/16K)
22€A ;NB(y2;n/16K)

We condition the inner sum further on the value of € *(y;) and ¢*(y,); an upper bound
for the inner sum will follow once we bound

P(A(y1, z1) N A(y2, 22) | 2(C) 0 €5(y1) = Dy, €5(2) =,})  (143)

uniformly in realizations 22| and 7% such that y;, y» € ; when Q*(yl) =2,i=1,2.
The bounds on the inner sum appearing in (142) are similar but slightly different
depending on whether y; = y; or y; = y».
In the case y; = y;, we apply Proposition 23 to bound the conditional probability in
(143) by

B! 1\(CUD]) B! l\(CUDQ) _ _
Ces T oo Tes T} sC oy — T4y, —n T

(144)

In case y; = y»2, we can instead upper bound the probability in (143) by

P zi, 20 €C(y1; B}H\(C'U D) =P (z1,22 €&y1))

< P(irowtfnreowloefpew).
wEeZ
(145)

Applying the upper bounds of (144) and (145) to (143), we sum over 3, z2 in (142)
and then perform the outer sum over y;, y». We arrive at the upper bound
E[ ;] | 2(Q] =C(n/K)*EIX; | 2 (OF
+C(n/K)°ELX; | 2 (O] (146)
< CEl|Z;| | 2 (OF.

Here the constant C is uniform in n and C satisfying (114); the final inequality of (146)
is furnished by (136) and (141).
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Proof of Lemma 22. We use Proposition 28 in the Paley—Zygmund inequality. =~ This
yields P(|Z,| = (1/2)E[|Z,| | Z(C)]1| 2°(C)) = c for a uniform ¢, and then the
uniform lower bound on E[Z,, | A(C)]from Corollary 27 translates this into the state-
ment of the lemma.

We have now accomplished the goal of showing that €p,)(0) N Aj is large, which
we began working towards in Sect. 7.2. In the next section, we extend this result to many
annuli at once and complete the proof of Theorem 4.

7.5. The main argument. The main goal of the section is to complete the proof of
Theorem 4, with Lemma 22 as a main input.

Proof of the upper bound from Theorem 4. We recall the constant ¢ from (113) and the
constant ¢y appearing in Lemma 22. For each 1 < j < K, we define the events

Rj = {¢(Or B}+l) nA]l Ecvn4/K4}.

We will prove estimates on the probabilities of these events which are uniform in n and
K and which will suffice to establish the theorem.
Recall that K = A~Y31. For each ¢ >0, we have

P(|€p(m)(0)| = ¢rvAn* | 0 © 8 B(n)) <P(|Cp)(0)| < drvk(n/k)* |0 & 3 B(n))
=P 1=j=<K:Rjoccurs < @K |[0e 0dB(n) . (147)

We will show
there exist ¢, ¢ >0 uniform in n, Ksuch that (147) < ¢~ (1 — ¢)¥; (148)

The right side of (148) is of the same form as the probability considered in Theorem 4.
Thus, the theorem will be proved once (148) has been established.
We define, foreach0 < j < K —1,

J
3j = lpoa B2y  lpes B, y1+ 1gg).
k=1

We first show an upper bound for the expectation of 3, depending on ¢ and j but not
on n or K. To do this, we use successive conditioning.
Since R is in the sigma-algebra generated by 1 1(O), we can writed; =3 (€ p1 1(0)).
Jt J+

To shorten notation, we define 2 (C) as in Sect. 7.1, but with j = K —1:
2°(c) = £(0; BL_,) =C}.
Then, by conditioning, we see

P(2(O) El3k-1 | ()]
c

P(2(0)) 3k El(1 + 1ge_ )1gos g1y | Z(O)]. (149)
C

E[3k-1]
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2110 We estimate the conditional expectation in (149) differently depending on whether C
2 satisfies (114) or not. If IE[X,’("_1 | 2°(C)]1 = co(n/K)?, then invoking Lemma 22, we
2112 S€€

2113 E[(1+1R;_1)1{0‘_,33&}| 2 (0] 51+IP(R'C(_1 | 2(0) <2 —c¢, (150)

2114 where the constant ¢ > 0 is uniform in n, K.
2115 On the other hand, if € does not satisfy (114)—that is, if

2116 EIX¥| 2(0] <coln/k)*? (151)
2117 —then

2118 E[(1+1R,‘;_1)1{0«»a3,g}|«%(5)] S2IP(O(->GB,1( | 2 (C)

2119 <2P(XX=2co(n/k)? | 2(C)) (152)
2120 +2P(0 © 3 By | 27(0) n & =<2c0(n/k)*})
2121 =2(1/2+1/4) =3/2. (153)

2122 Here the term 1/2 comes from (151) and Markov’s inequality, and the term 1/4 comes
2123 from (113). Pulling together (150) and (153) and then performing the sum over ( in
2124 (149), we see that there exists a ¢ > 0 uniform in »n and K such that

2125 E[BK—I] =Q- C)E[BK—Z]- (154)

2126 We now apply the same argument on the expectation on the right-hand side of (154) to
o127 showE[3k—2] = €@—c)E[3k—3]. The constant c here is the same as in (154) because that
2128 constant ¢ originated in (114), (113), and Lemma 22 (and these gave bounds which were
2120 uniform in the choice of annulus A ;). Inducting and then at last taking the expectation

2130 over the 1pes p(n/2)}in the definition of 3x—1, we find

2131 there is an ¢ >0 such that, uniformly in n, K, TE[3x—1]
2132 =P(0 o 6B(n/2))(2—2¢)K, (155)

2133 where we have renamed the constant to connect to the statements of (147) and (148).
2134 Indeed, choosing ¢ as in (155), if Rj occurs for more than (1 — ¢)Kvalues of j , then

2135 we have 3x—1 = 2K(1=9) 1n particular, to show (148), we can write

2136 PlPD=j=k-1: R? occurs}| > 1 — ¢)k,0 & 0 B(n))
2137 = Z_K(I_WEBK—I]

2138 (by (155)) <27 K(0=8)KkoKlon(1=0)p () & 3 B(n/2))

2139 <27P(0 & 3 B(n/2)),

210 Where as usual ¢ is uniform in n and K. Dividing the last display by P(0 ¢ 0 B(n))
2141 and using (13) yields (148). As we noted just below (148), this completes the proof of
2142 Theorem 4.
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8. The Number of Spanning Clusters
We denote by ., the set of spanning clusters of B(n):

Fp = £(x), x €EB(n) : y;, y2 €E&(x) such that y (1) = —n, y2(1) =n}.
This quantity was analyzed in [1], where it was shown that

P(|.%,| =o(1)n?™°) - 1,
along with a matching upper bound provided only clusters of size =~ n* are counted.

Using Theorem 4, we remove the latter condition.

Theorem 7. There is a C > 0 such that E[|.7,|]1 <Cn~C. In particular, the sequence
of random variables (n®~¢|.7, |)_, is tight.

Proof. We decompose based on the cardinality of spanning clusters; we then use The-
orem 4 to control the contribution of abnormally sparse spanning clusters. We define

o= CES | =n*Y ULES, : |C] =n”}
and, for 1 =k =< 2log, n, we set

S = TCES : 278 < |a/n* <271},

3
We then haveE[|.7,|] = kzzl(?gz n E[].%,k|], and it suffices to bound each term on the

right-hand side of this inequality.
For k = 0, we write (using Theorem 4)

1
E[lS,0l] =— P(x ¢ 3 B(x;n), |€(x)| =n*)
n xEB(n)

+ P(x & 8 B(x;n), [€(x)| =n?)
xEB(n)

== n(n) + Cnmn(n) exp(—cn2/3) <cn?0,
xEB(n)

For k = 1, we bound similarly

2k
E[7, (] =3 P(&(x) €ESp1)
xEB(n)

Zk
=/— m(n)P(|€(x)|

xEB(n)
< kL4 | x & B(x;n)) = Cnd=02k exp(—cZk/3),

n

where in the last inequality we again used Theorem 4. Summing these estimates over k
completes the proof.
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