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Abstract: In high dimensional percolation at parameter p < pc, the one-arm proba-1

bility πp(n) is known to decay exponentially on scale (pc − p)−1/2. We show upper2

and lower bounds on the same exponential scale for the ratio πp(n)/π pc(n), establish-3

ing a form of a hypothesis of scaling theory. As part of our study, we provide sharp4

estimates (with matching upper and lower bounds) for several quantities of interest at5

the critical probability p c. These include the tail behavior of volumes of, and chemical6

distances within, spanning clusters, along with the scaling of the two-point function at7

“mesoscopic distance” from the boundary of half-spaces. As a corollary, we obtain the8

tightness of the number of spanning clusters of a diameter n box on scale n d−6; this9

result complements a lower bound of Aizenman (Nucl Phys B 485(3):551–582, 1997).10

1. Introduction11

In this paper, we address several questions involving geometric properties of the random12

graphs generated from the (bond) percolation model on the canonical d-dimensional13

hypercubic lattice Zd and its subgraphs, namely the boxes or ∞ balls and the half-14

space with normal direction e1, for sufficiently high dimenson d. Substantial progress15

has been made on the mathematical understanding of properties of these random graphs16

on Zd for d large and d = 2, as well as on the two-dimensional triangular lattice.17

It is well known that for any d≥ 2 the percolation model onZd (and many subgraphs)18

exhibit a nontrivial phase transition, with a critical point separating the highly connected19

supercritical regime from the highly disconnected subcritical regime. There are many20

useful tools and a well-developed theory for studying the percolation model on Z2
21

and on the triangular lattice at and near the critical point. In particular, the following22

key facts have been established. First, the behavior of two-dimensional percolation at23
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criticality and near criticality are very closely related via scaling or hyperscaling relations24

(first observed by Kesten [24]) which relate several key quantities of interest. Second,25

critical percolation on the triangular lattice exhibits conformal invariance, as shown by26

Smirnov [40], which has been used to show that SLE6 is the scaling limit of interfaces27

in the model. Finally, many power laws can be exactly computed via the connection to28

SLE [32,33]. The latter two classes of results have been proven only for the triangular29

lattice, though they are conjectured to extend toZ2. Notably, many of the aforementioned30

techniques apply to subgraphs ofZ2 or the triangular lattice as well. We direct the reader31

to [45] for an overview.32

For Zd with d large, several key aspects of percolation are less well-understood.33

Much less is known about the near-critical regime and the behavior of the model in sub-34

graphs such as sectors. One of the main aims of this paper is to narrow the gap between35

knowledge about the percolation model for d= 2 and for d large. Another related main36

aim is to obtain sharp results about the tail behaviors of several quantities for which only37

the rough scaling behaviors had so far been identified, for example through computing38

low moments. We show new refined results for various connectivity probabilities in-39

volving finite boxes at the near-(sub)critical regime, and we derive tail behavior of some40

percolation quantities at criticality. More specifically, we obtain (a) precise asymptotic41

behavior of the subcritical one-arm probability, with the correlation length determined42

up to constants; (b) upper and lower bounds establishing exponential decay for both43

the lower tail and the upper tail probabilities of the “chemical” (graph) distance within44

open clusters; (c) upper and lower bounds establishing stretched exponential decay (with45

exponent 1/3) of the lower tail of the cardinality of open clusters; and, as a result of the46

previous point, (d) tightness of the number of spanning clusters of large boxes on scale47

nd−6, complementing a well-known result of Aizenman [1], who derived a matching48

lower bound on this order. As a technical tool which may be interesting in its own right,49

we (e) derive up-to-constant asymptotics for connectivity probabilities in half-spaces,50

in the case that a vertex is “mesoscopically close” to the boundary of the half-space.51

The questions studied here are related to longstanding conjectures about high-52

dimensional percolation. For instance, precise information about the distribution of ver-53

tices within clusters and chemical distances between far away vertices would allow one54

to obtain the scaling limit of simple random walk on large critical percolation clusters55

[6]. We believe that many of the results and techniques that we obtain here could be56

useful for studying this and other open problems of the model.57

1.1. Definition of model and main results. In our work, we will consider percolation58

with base graph the cubic or hypercubic latticeZd . The usual standard basis coordinates59

of a vertex x ∈Zd will be denoted by x(i) = x ·ei , so x = (x(1), x(2), . . . ,x(d)). The60

origin is denoted by61

0 = (0, 0, . . .0).62

We will write x p for the usual p norm of an x ∈Rd ; if the p subscript is omitted,63

we mean the ∞ norm. The hypercubic lattice has vertex setZd and edge set64

E(Zd) := {x, y} : x − y 1 :=
d

i=1
|x(i) − y(i)| =1 .65

(We also use the symbolZd to refer to the graph.) Given a subset A ⊆ Zd , the symbol66

∂A denotes the set {x ∈A : ∃y ∈Zd \ A with y − x 1 = 1}.67
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Subcritical High Dimensional Percolation

We will also consider subgraphs of the hypercubic lattice. A few other settings will be68

briefly discussed: we will mention some past results on the two-dimensional triangular69

lattice, and many high-dimensional results also extend to the spread-out lattice having70

vertex setZd but with edges between all pairs of vertices with ∞ distance at most some71

constant. In fact, the new results of the present work all extend to the spread-out lattices72

under standard assumptions; see the discussion at Remark 2 below.73

The half-space is the subgraph of the hypercubic lattice induced by the set of vertices74

Zd
+ having nonnegative first coordinate: Zd

+ = {x ∈ Zd : x(1) ≥ 0}. We also call75

half spaces isomorphic graphs obtained by translation, reflection, or by permutation of76

coordinates. We note that we do not consider half-spaces with normal vectors other than77

±ei . The boxes or ∞ balls in these graphs are the subgraphs induced by the following78

vertex sets:79

B(n) = [−n, n]d ∩Zd and BH (n) = B(n) ∩Zd
+, respectively.80

As above, we blur the distinction between these vertex sets and the subgraphs they81

induce, using the same symbols to denote both.82

We study the Bernoulli bond percolation model—abbreviated percolation—on the83

above and other subgraphs of Zd . For its definition, we fix a p ∈ [0, 1] and let ω =84

(ωe)e∈E(Zd ) be a collection of independent and identically distributed (i.i.d.) Bernoulli(  p)85

random variables associated to edges e of Zd . We write for the space {0, 1}E(Zd ) of86

possible values of ω, with associated Borel sigma-algebra. An edge e such that ωe = 187

will be called open, and an edge e such that ωe = 0 will be called closed. The main88

object of study is the (random) open graph, having vertex setZd and edge set consisting89

of all open edges e ∈E(Zd), along with subgraphs of this open graph. Indeed, the open90

graph of Zd naturally induces graphs on vertex subsets of Zd : if G is a set of vertices,91

then the open subgraph of G has edge set consisting of those e = {x, y} ∈E(Zd) with92

both x , y ∈G and ωe = 1.93

Given a realization of ω and a subgraph G of Zd (including Zd itself), the open94

clusters are the components of the open subgraph of G. To distinguish various choices95

of G, we writeCG(x) for the open cluster containing x in the open subgraph of G∪ {x}.96

We writeC(x) = CZd (x) and CH (x) = CZ d
+
(x) for brevity. We will define the event97

x
G←→ y := {y ∈CG(x)} (1)98

and we abbreviate {x
Zd

←→ y}to {x ↔ y}.99

The distribution ofωwill be denoted byPp to indicate its dependence on the param-100

eter p. We define the critical probability (of the entire ambient graphZd ) by101

pc := inf p :Pp(|CZd (0)| = ∞) > 0 . (2)102

Here and later| · |denotes the cardinality of a set. When p< pc (resp. p = pc, p > pc),103

the model is said to be subcritical (resp. critical, supercritical). We stress that the value of104

pc depends on the value of d. One can define pc analogously for other graphs, including105

subgraphs ofZd—we will touch on this in discussing some results in this introduction,106

but keep pc as defined in (2) for the remaining sections of the paper.107

On Zd with d ≥ 2, it is widely conjectured that Ppc -almost surely there exists no108

infinite open cluster. Among other cases, this conjecture is proved in “high dimensions”,109

when d is sufficiently large; the current strongest results establish it for d ≥ 11. For all110
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these large values of d, more has been shown: for example, the probability of having111

long critical point-to-point connections is asymptotic to the Green’s function of simple112

random walk. This fact is expected to be true for all d > 6, the expected upper critical113

dimension of the model. We will discuss these issues in more detail in Sect. 1.2.114

All results of this paper will hold as long as d > 6 and the aforementioned Green’s115

function asymptotic holds. We introduce this formally, for use as a hypothesis of our116

theorems:117

Definition 1. The phrases high dimensions and high-dimensional refer to the hypercubic118

lattice Zd for any value of d > 6 such that119

c x − y 2−d ≤Ppc(x ↔ y) ≤ C x − y 2−d
120

holds for all pairs of distinct vertices x and y, for some uniform constants c, C > 0.121

As mentioned above, this definition can be broadened to include the spread-out lattice;122

see Remark 2 below. We direct the reader to the survey [21] for detailed discussion of123

high-dimensional percolation and related models. For an introduction to percolation on124

Zd for general d, and for an expository treatment of fundamental results, we refer to125

[13]. The book [34] discusses percolation in some detail, including in general settings126

beyond the hypercubic lattice. After the introduction, we will always assume we are in127

the high-dimensional setting of Definition 1.128

The main results of the paper, Theorems 1–6 in this section, relate to the behavior of129

the open clusters CB(n)(x) and CZd
+
(x) in high dimensions, for p = pc and p < pc but130

“close to” pc. As we state our theorems, we will introduce the definitions of the relevant131

quantities of interest. To allow us to discuss past results outside of the high dimensional132

setting, we make these definitions for general d.133

Definition 2. • The site x has one arm (in the extrinsic metric) to distance n in G if134

sup{ y − x ∞ : y ∈CG(x)} ≥n.135

In the case G = Zd , we often simply say that x has one arm to distance n without136

referring to G. The corresponding events are called arm events or one-arm events.137

We also set138

πp(n) :=Pp (the origin 0 has an arm to distance n).139

We sometimes write π(n) for πpc(n).140

• The correlation length ξ (p) is defined for p < pc by141

ξ (p) := − lim
n→∞ n[log πp(n)]−1 = − lim

n→∞ n[logPp(0 ↔ ne1)]−1;142

for the existence of the limit and the equality, see e.g. [13, (6.10) and (6.44)].143

We now begin to state the main results of this paper. The first theorem gives precise144

bounds on the asymptotic behavior of the one-arm probability in high dimensional145

percolation in the regime n → ∞ and p pc.146

Theorem 1. In the setting of percolation in high dimensions, there is a constant C> 0,147

depending only on d, such that for all n ∈N and for all p ∈ (0, pc],148

1
C

n−2 exp − Cn
√

pc − p ≤ πp(n) ≤ Cn −2 exp −n
√

pc − p
C

. (3)149
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Subcritical High Dimensional Percolation

The new content of the theorem is in the case p< pc . The analogous inequalities in the150

case p = pc are the main result of [30].151

It is expected (see, e.g. [13, (9.16) and Section 9.2]) that subcritical connectivity152

events on linear scale n obey “scaling hypotheses” in the simultaneous limit n → ∞153

and p pc: one expects quantities such as πp(n)/π( n) to behave as f (n/ξ( p)) for154

some rapidly decaying f . It has been shown [15] thatξ (p)  ( pc − p)−1/ 2 as p pc.155

So, in this language, Theorem 1 establishes such a scaling form forπp , up to constants156

in the determination of ξ (p).157

Here and later, we use the usual asymptotic notation: given two functions f, g on158

a subset U of R, we say that f (t) g(t) as t approaches t0 if lim supt→ t0 f (t)/ g(t)159

and lim supt→ t0 g(t)/ f (t) are both finite, where both limits are taken within U . If f, g160

instead map {1, 2, . . .} → [0, ∞), we write f (n) g(n) instead of “ f (n) g(n) as161

n → ∞ .”162

The main estimate of Theorem 1 enables us to describe certain lower tail behaviors163

in the critical phase. Our second result concerns the chemical distance in the critical164

regime.165

Definition 3. For A , B ⊂ Zd , let dchem (A, B) denote the length—that is, number of166

edges—of the shortest open path connecting some vertex of A and some vertex of B167

if such a path exists and ∞ otherwise. dchem (A, B) is called the chemical distance168

between the sets A and B. For x , y ∈Zd , we write d chem (x, ·) (resp. dchem (·, y)) to169

denote dchem ({x}, ·)(resp. dchem (·, {y}). If G ⊆Zd , we write dG
chem (A, B) for the length170

of the shortest open path from a vertex of A to a vertex of B which lies entirely in G,171

and we write dH
chem := dZd

+
chem .172

We denote173

Sn := dchem (0, ∂B(n)),174

the chemical distance between the origin and the boundary of the box  B(n).175

It is known [29,30,44] that in high dimensions, Sn is of order n2 on the event that the176

origin has an arm to Euclidean distance n. In the next theorem, we show that the lower177

tail of the normalized chemical distance n−2 Sn decays exponentially.178

Theorem 2. In the setting of critical percolation in high dimensions, there is a constant179

c > 0 such that for any λ > 0180

Ppc(Sn ≤ λn2 | 0 ↔ ∂ B(n)) ≤ exp(−cλ−1), (4)181

and there is a constant C > 0 such that for all λ ≥Cn −1, we have:182

Ppc(Sn ≤ λn2 | 0 ↔ ∂ B(n)) ≥ exp(−Cλ−1). (5)183

This theorem characterizes the lower tail behavior of S n , with the exponential rate184

of decay determined up to constants. We note that on {0 ↔ ∂ B(n)},we trivially have185

Sn ≥ n, and so the restriction on λ in the second part is necessary. As a corollary of186

Theorem 2, we are able to derive analogous results for point-to-point chemical distances,187

including188

Ppc(0 ↔ x, dchem (0, x) ≤ λ x 2) ≤ Ce−c/λ x 2−d ; (6)189

see Sect. 5.4 below for this and a related statement in half-spaces.190

Our third main result is the upper-tail counterpart to Theorem 2:191
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Theorem 3. In the setting of critical percolation in high dimensions, there is a constant192

c > 0 such that for any λ > 0193

Ppc(Sn ≥ λn2 | 0 ↔ ∂ B(n)) ≤ exp(−cλ).194

Using similar but simpler arguments, we obtain the following result analogous to (6),195

involving the upper tail of the point-to-point chemical distance within boxes196

for x ∈B(n), Ppc dchem (0, x) > λ x 2 | 0 B(2n)←→ x ≤ exp(−cλ). (7)197

At the end of Sect. 6, we give a sketch of how to adapt the argument proving Theorem 2198

to prove (7).199

Our fourth main result concerns the size of the clusterCB(n)(0) in the critical regime.200

It is known [1,30] that in high dimensions, |CB(n)(0)| is O p(n4) on the event that the201

origin has an arm to Euclidean distance n. On the same event, we show that the lower202

tail of the normalized cluster size n −4|CB(n)(0)| decays stretched-exponentially with203

exponent 1/3.204

Theorem 4. Consider critical percolation in high dimensions, and let α > 3d/2 be205

fixed. There are constants C, c = C(d), c(d, α) >0 such that the following holds.206

Ppc(|CB(n)(0)| ≤ λn4 | 0 ↔ ∂ B(n)) ≤ exp(−cλ− 1
3 ) for all λ > (log n)αn−3

≥ exp(−Cλ−1
3 ) for all λ > Cn −3.

207

(8)208

The probability appearing in (8) is zero when λ < n−3, and so the theorem covers es-209

sentially the entire support of|CB(n)(0)|. The interesting problem of obtaining matching210

constants on both sides of the inequality seems challenging, being related to well-known211

problems in the model—for instance, showing that πpc(n) = Cn −2 + o(n−2), stated as212

Open Problem 11.2 in [21].213

Our fifth main result concerns the number of spanning clusters1 of boxes at p = pc.214

Definition 4. An open cluster C intersecting the box B (n) is called a spanning cluster215

of B(n) if there are vertices x, y ∈C such that x(1) = −n and y (1) = n. We denote by216

Sn the set of spanning clusters of B(n):217

Sn := {C(z), z ∈B(n) : ∃x, y ∈C(z) such that x(1) = −n, y(1) = n}.218

This quantity was analyzed by Aizenman [1], who showed219

Ppc(|Sn| ≥o(1)nd−6) → 1, (9)220

as n → ∞ . A matching upper bound O(nd−6) was obtained for the number of spanning221

clusters of B (n) having size ≈ n4. Using our estimate for the lower tail of the cluster222

size, we can extend the upper bound to |Sn|, which includes all spanning clusters:223

Theorem 5. In the setting of critical percolation in high dimensions, there is a constant224

C > 0 such that Epc[|Sn|] ≤ Cn d−6. Therefore, the sequence of random variables225

{n6−d |Sn|}∞n=1 is tight.226

1 Here we use Aizenman’s [1] definition of “spanning cluster”; other natural definitions of this term exist.
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This sharpens the picture obtained in [1] for the behavior of the number of spanning227

clusters. Our lower tail estimates obtained in Theorem 4 allows us to overcome the228

difficulties encountered in [1] in handling “thin spanning clusters” having atypically229

small cardinality.230

Our sixth and final main result, Theorem 6, gives bounds for the two-point func-231

tion within half-spaces. We introduce some notation for this, along with the analogous232

notation for the two-point function in more general subgraphs, for future use.233

Definition 5. The two-point function τp(x, y) denotes the connectivity probability234

τp(x, y) :=Pp(x ↔ y) =Pp(x
Zd

←→ y).235

More generally, when G ⊆ Zd , the two-point function restricted to G is τG,p(x, y) =236

Pp(x
G←→ y). When G = Zd

+, we call τG,p(·, ·)the half-space two-point function and237

abbreviate it to τH,p(·, ·). We often suppress the suffix pc in τpc and τH,pc .238

Theorem 6. There is a constant C > 0 such that the following upper bound holds239

uniformly in m ≥ 0 and x ∈Zd
+:240

τH (x, me1) :=Ppc x
Zd

+←→ me1 ≤ C(m + 1) x − me1
1−d .241

There is a constant c> 0 such that the following lower bound holds uniformly in m≥ 0,242

and x ∈Zd
+ satisfying x (1) ≥ 1

2 x and x ≥ 4 m:243

τH (x, me1) ≥ c(m + 1) x − me1
1−d .244

This theorem is an extension of results of [8], which handled the case that at least one245

vertex is on the boundary of Zd
+. The present theorem allows one to consider points246

at “intermediate distance” from the boundary. This is necessary for key estimates in247

the proofs of other theorems. We also believe it is interesting in its own right and is a248

potential tool for studying other properties of open clusters (see e.g. the remark at the249

end of Section 3.2 of [37]).250

In the high-dimensional settings of Definition 1, the “unrestricted” two-point function251

τ (x, y) = τZd (x, y) is asymptotic to x − y 2−d . Theorem 1.1(b) of [8] shows, using252

this bound as input, that τH (x, y) is asymptotic to x − y 2−d (resp. x − y 1−d ) if253

both (resp. one of) x and y are macroscopically away from the boundary ofZd
+ and none254

(resp. one) lies on the boundary. The asymptotic result of Theorem 6 interpolates the255

above two behaviors of τH (x, y). In general, based on the heuristic approximation of256

high-dimensional percolation by Branching Random Walk (see [21, Section 2.2]), one257

expects the half-space two point function τH (x, y) to behave like the Green’s function258

of a random walk conditioned to remain in a half space in all regimes of  x and y.259

We conclude this subsection with a pair of remarks about our main results and some260

last definitions of important quantities in the model. The latter will be useful in the next261

subsection for describing past work on the model.262

Remark 1. As this work was being finalized, Hutchcroft, Michta and Slade posted a263

preprint [23] proving Theorem 1, as well as an upper bound for the subcritical two-point264

function, along different lines from this paper. A key technical input in their proof are265

estimates for the expectation and tail probabilities of the volume of  pioneer points on266

connections to hyperplanes, using the estimates (21) of the first two authors of the present267
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paper [8]. They use this to derive various results on percolation on high-dimensional tori268

of large volume, a setting we do not discuss here. Our proof of Theorem 1 depends269

instead on some of the other results presented here, and the theorem is used to prove270

some others. These concern aspects of high dimensional percolation inZd at the critical271

point not treated in [23].272

Remark 2. As mentioned earlier, the above results would generalize to the spread-out273

lattice, where edges are placed between all vertices at ∞ distance at most apart274

(where  ≥ 1 is an arbitrary parameter). The proofs in this paper go through with only275

minor modification in this case, as long as d > 6 and the Green’s function asymptotic276

for the two-point function appearing in Definition 1 hold. These lattices hold some277

interest because existing methods can establish this two-point function asymptotic for278

the spread-out model for any d> 6, as long as is chosen sufficiently large. We choose279

to write our proofs with a focus on the hypercubic lattice purely for notational simplicity.280

Remark 3. We believe the ideas of this paper are robust enough to extend our results to281

closely related cases of interest—for instance, extending volume and chemical distance282

bounds to the IIC of [43].283

Definition 6. • The density of open clusters θ (p) := Pp(|C(0)| = ∞) denotes the284

probability that the origin belongs to the infinite cluster.285

• The mean finite cluster size is denoted by χ (p) :=Ep[|C(0)|; |C(0)| < ∞].286

1.2. Past work relevant for our results. Much past work has dealt with the behavior of287

percolation at and near criticality. By “near critical” behavior, we mean that p= pc but288

that we consider events involving length scales at which the model looks approximately289

critical in some sense. While the subcritical and supercritical regimes of percolation290

on Zd are by now well-understood [2] at large scales, the critical regime is only well-291

understood when d = 2 and in high dimensions. The near-critical regime is fairly292

well-understood when d = 2, but less so in high dimensions (though several results,293

for instance the behavior of χ (p) as p pc, are known). Notably, the near-critical294

behavior of the one-arm probability πp is not yet understood in high dimensions.295

Relatedly, results about certain types of connectivity events at criticality seem sig-296

nificantly easier to prove in two-dimensional percolation than in high dimensions. A297

notable example is the relation between the two-point function and one-arm probability:298

on Z2 at pc , Kesten [24] showed299

τpc(0, ne1)  π( n)2 as n → ∞.300

This estimate is derived by connecting the clusters of 0 and ne 1 using the Russo–301

Seymour–Welsh (RSW) theorem. The corresponding result in high dimensions,τ (0, ne1) 302

n6−dπ(n)2 took until 2011 [30] to establish. A main reason is the proliferation of span-303

ning clusters in high dimensions, already noted at (9), which prevents the use of many304

d = 2 techniques based on the RSW theorem.305

Bridging this gap between d = 2 and high dimensions is a major focus of this paper.306

We will put our results into context by describing past work in both of these settings.307

1.2.1. Past relevant work in two dimensions At p = pc, connectivity probabilities like308

π(n) are believed to obey power laws, with the powers often called critical exponents.309

The work of Kesten [24] alluded to above established a relation between the critical310
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exponents governingπ , τ, and the tail of the cluster size|C(0)| at p = pc. Remarkably,311

this work predated the proof of the exact values of these exponents [31] by about 20 years.312

Kesten and Zhang [26] built upon these ideas to show that these exponents strictly change313

when Z2 is replaced by a sector: if we set for θ >0314

Sθ := {(r cos φ, r sin φ) ∈Z2 : r ≥ 0, 0 ≤ φ <2π − θ} and π(n, θ )315

:=Ppc(0
Sθ←→∂ B(n)),316

then π(n, θ ) ≤n−δπ(n) for all n ≥ 1, with δ some θ-dependent constant.317

In a related and important work, Kesten [25] clarified several aspects of the near-318

critical behavior of percolation, showing relations between probabilities of arm events319

at pc (in a more general sense than that of Definition 2) and quantities likeχ , θ, and ξ.320

A main and useful idea is that ξ (p) is roughly the length scale L (p) at which squares321

become very unlikely to be crossed by a spanning cluster. This allows one to give useful322

bounds on near-critical connectivity probabilities: for instance323

for p < pc, c1 exp(−C1k) ≤ πp(k L(p))/π pc(k L(p)) ≤ C2 exp(−c2k). (10)324

This can be compared to our Theorem 1.325

The development of SLE [38] and the proof of Cardy’s formula [40] allowed the com-326

putation of critical exponents for arm probabilities [31] on the two-dimensional triangular327

lattice. For instance, the one-arm probability π(n) = n−5/ 48+o(1). These exponents are328

believed to be identical on a wide class of two-dimensional lattices, a manifestation of329

the universality hypothesis. Using Kesten’s results mentioned above, one can use these330

to compute near-critical power laws:331

θ (p) = (p − pc)5/ 36+o(1), χ (p) = |p − pc|43/ 18+o(1), ξ (p) = (p − pc)−4/3+o(1).332

as p → p+
c , p → pc , and p → p−

c respectively. SLE methods also allow computation333

of critical exponents for, among others, arm probabilities in the sectors Sθ defined above.334

Conformal invariance of the model’s scaling limit makes clear how many quantities of335

interest vary when considering percolation on different subgraphs of the lattice.336

The RSW theorem allows for a number of detailed estimates of the size of large open337

clusters at criticality. A recent result of this type is due to Kiss [28], who found the sharp338

upper tail behavior of the size of the largest spanning cluster of a box (compare earlier339

results in [7]). See also e.g. [42] for results on the kth largest cluster, and [12] for a340

description of the scaling limit of the counting measure on points lying in large clusters.341

It is possible to prove using RSW methods and the asymptoticπ(n) = n−5/48+o(1) that342

− logPpc(|C(0)| ≤ λn2π(n) | 0 ↔ ∂ B(n)) = λ−43/48+o(1),343

but we have not been able to find this result in the literature.344

The exponent governing the chemical distance at pc is not known on Z2 or the345

triangular lattice, and it appears not to be directly computable via SLE methods (see346

[39]). Aizenman–Burchard [3] showed that chemical distances are superlinear: there is347

a δ >0 such that, on{0 ↔ ∂ B(n)}, the inequality Sn ≥ n1+δholds with high probability.348

An upper bound for the chemical distance between sides of a box is given by the length349

of the lowest crossing of the box B(n): on the triangular lattice, this crossing is known350

to have expected length n4/ 3+o(1) [35]. This was improved by Damron–Hanson–Sosoe351

[9], who showed that there also exist crossings of length at most C n4/3−ε; see [36] for352

the case of chemical distances to the origin. Since it is not even known that Sn = ns+o(1)
353

for some s in dimension d = 2, distributional results like Theorem 2 on scale n s are354

currently out of reach.355
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1.2.2. Past work in high dimensions The values of numerous critical exponents have356

been rigorously established in high dimensions, through methods very different from357

those available in two dimensions. A key point is that d = 6 is believed to be the358

model’s upper critical dimension, above which many critical exponents are believed to359

become dimension-independent, along with other aspects of the model’s behavior. For360

d > 6, large open clusters should gain a degree of independence from each other—this361

makes certain aspects of the model easier to understand, but also makes many RSW-type362

arguments inapplicable. See [21] for an extensive review of research on high-dimensional363

percolation, along with related results.364

The foundational results in high dimensions are based on the Lace Expansion, adapted365

to percolation by Hara and Slade [17], who showed thatθ (pc) = 0 for sufficiently large366

d. Indeed, they established the triangle condition of Aizenman–Newman [4]. This was367

extended by Hara et al. [18] (resp. Hara [16]), who showed the asymptotic of Definition 1368

holds on the spread-out lattice for d> 6 and large (resp. on the hypercubic lattice for369

d > 19):370

∃c, C > 0 : c x − y 2−d ≤ τpc(x, y) ≤ C x − y 2−d for all x = y ∈Zd . (11)371

On the hypercubic lattice, the asymptotic of (11) has so far been extended down to all372

d ≥ 11 by Fitzner and van der Hofstad [11]. It is expected to hold on the hypercubic373

lattice and each spread-out lattice for d > 6, in accord with Definition 1.374

In contrast to the situation on Z2, the relationships between many critical power375

laws took longer to establish in high dimensions. Using the triangle condition, Barsky–376

Aizenman showed in 1991 [5], 17 years before Hara’s proof of (11), that the critical377

exponent for the tail of |C(0)| is 1/2:378

Ppc(|C(0)| > t) t−1/ 2. (12)379

Kozma and Nachmias [30] computed the critical exponent governingπpc(n):380

πpc(n) n−2. (13)381

The proofs relating the quantities in (11), (12) and (13) are much more complicated than382

their two-dimensional analogues. We mention here also the related work [29], where383

the scaling of the intrinsic one-arm probability was computed. We say a vertex x has an384

intrinsic arm to distance n if x is the initial vertex of an open path containing at least n385

edges. One result of [29] is that386

Ppc (0 has an intrinsic arm to distance n) 1
n

. (14)387

The power laws of (12), (13), (14) will be useful to us in what follows, and so we388

emphasize that they are shown to hold in high dimensions, in the sense of Definition 1;389

they also hold in the spread-out model, whenever d > 6 and (11) hold.390

Unlike in two dimensions, the behavior of the high-dimensional model in sectors and391

similar subgraphs appears to be poorly understood. The paper [8] made advances in this392

direction, establishing analogues for (11), (12) and (13) in half-spaces. Some of these393

are quoted at (21) below, which says among other things that394

τH,pc(0, ne1) n1−d .395

These results did not address the two-point function in the case where neither vertex is396

on the boundary of the half-space, which is the content of our Theorem 6. The paper397
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[8] also showed that the two-point function bound (11) also holds in subgraphs of Zd ,398

as long as both endpoints are macroscopically far from the boundary: for each  M > 1,399

there exists c = c(M) > 0 such that400

for each n and all x, y ∈B(n), τB(Mn ),pc(x, y) ≥ c x − y 2−d . (15)401

Similarly to the case of subgraphs, near-critical behavior is also less well-understood402

in high dimensions than on Z2, though some results are known. Notable is Hara’s [15]403

asymptotic ξ (p)  ( pc − p)−1/ 2 as p pc, with ξ defined in the sense of Definition 2404

so that πp(n) = exp(−n/ξ( p) + o(n)). Our Theorem 1 sharpens this to extract the405

behavior of this arm probability when n≈ ξ(p), giving a result analogous to (10). Some406

other results of a near-critical type have been shown in high dimensions: for instance,407

the behavior ofχ (p) [4] as p pc and θ (p) as p pc [2] are known. The results here408

give less insight into the structure of open clusters than is available onZ2, where among409

other things it is shown that θ (p)  π p(L(p)) as p pc. Here L (p) is defined for410

p > pc as the length scale above which the crossing of a square by a spanning cluster411

is very likely [25].412

At pc, exponential upper tail bounds for the cluster volume |C(0)| conditional on413

{0 ↔ ∂ B(n)}can be shown via the methods of Aizenman–Newman [4] and Aizenman414

[1]. The best existing upper bounds onPpc (|C(0)| < λn4 | 0 ↔ ∂ B(n)) appear to be of415

the order λ−c for some power c. As mentioned above Theorem 5, the lower tail of|C(0)|416

on {0 ↔ ∂ B(n)}is related to the number of spanning clusters of a box. Our Theorem 4417

shows that this lower tail is actually stretched-exponential with power −1
3 , and allows418

us to give a comparable upper bound to Aizenman’s results on the number of spanning419

clusters, already mentioned at Theorem 4.420

Non-optimal bounds have previously been shown for the lower tail of the chemical421

distance. The strongest bound to date is due to van der Hofstad and Sapozhnikov [44],422

who showed that423

Ppc(Sn < λn2 | 0 ↔ ∂ B(n)) ≤ C exp(−cλ−1/ 2).424

Our Theorem 2 shows that this probability is actually exponential inλ−1.425

A number of other recent works have studied the properties of large open clusters in426

high dimensions. The papers [19,20,44] study percolation on large tori, showing that427

critical percolation on such graphs mimics the critical Erd ˝os–Rényi random graph in428

several ways. The paper [43] constructs the incipient infinite cluster, an appropriately429

defined version of an infinite open cluster at pc, and [22] studies properties of this object430

in greater detail and from new perspectives. The paper [41] finds the values of the “mass431

dimension” and “volume growth exponent” of the IIC.432

1.3. Organization of the paper, constants, and a standing assumption.433

1.3.1. Organization of the paper The order in which we present the proofs is partially434

determined by dependencies between arguments.435

In Sect. 2, we define and clarify some notation and provide a few estimates which436

will underpin our proofs. In Sect. 3, we prove Theorem 6; we note this result will be437

invoked in several later proofs. In Sect. 4, we show the inequality (5) of Theorem 2.438

This is by an explicit construction which forces the chemical distance to be small; this439

construction also guarantees thatCB(n)(0) is small, and thus also proves the probability440

lower bound of Theorem 4.441
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In Sect. 5, we prove Theorem 1 and the first inequality (4) of Theorem 2. In this442

argument, we make use of the inequality (5) proved in Sect. 4. In Sect. 6, we prove443

Theorem 3 and sketch the proof of its point-to-point analogue (7). In Sect. 7, we prove444

the remaining inequality (the upper bound on the probability) of Theorem 4. Finally, in445

Sect. 8, we show Theorem 5 using Theorem 4 as input.446

1.3.2. Standing assumption For the remainder of the paper, we consider subcritical447

and critical percolation in one of the high-dimensional settings of Definition 1. We448

use P (resp. Pp) for the probability distribution of critical percolation (resp. critical or449

subcritical percolation with parameter p). We write E (resp. Ep) for expectation with450

respect to P (resp. Pp).451

1.3.3. Constants We will generally let c, C denote positive constants; c will generally452

be small and C large. These often change from line to line or within a line. All such453

constants will generally depend on the value of d and may depend on other quantities.454

We will clarify the dependence of constants on other parameters when it is important455

and not clear from context, sometimes writing e.g. C= C(K ) to indicate C depends on456

the parameter K . We sometimes number constants as Ci , ci to refer to them locally.457

2. Further Notation and Preliminaries458

Recall we have introduced the ∞ ball or box B (n). We extend the notation to boxes459

with arbitrary centers, writing460

B(x; n) = x + B (n).461

Similarly, we define annuli by Ann (m, n) = B(n)\ B(m) and Ann (x; m, n) = x +462

Ann(m, n). Given two domains A ⊆ D, we write463

∂D A = {x ∈A : ∃y ∈D\ A with y − x 1 = 1}.464

We use the symbol ↔ in the obvious way; for instance, x ↔ y means that C(x) =465

C(y). When discussing a cluster CG or properties thereof in the case G = Zd , we466

sometimes use the term restricted; for instance, CZ d
+
(x) = CH (x) is the cluster of x467

restricted to the half-spaceZd
+. We also emphasize the slight asymmetry in the definition468

of restricted connections. In particular, given D and C ⊆ D, the notation x
D\ C←→ y469

describes the event that there is an open path from x to y whose vertices lie in D and470

not in C , with the possible exception of x , which is allowed to be in C .471

2.1. Correlation inequalities. We recall two central correlation inequalities. An event A472

depending on the status of the edges inE(D), for D a subset of Zd , is called increasing473

if ω ∈ A whenever ω ∈ {0, 1}E(D) and ω ≤ ω . The last inequality is understood474

componentwise, viewingωand ω as vectors with entries in{0, 1}. The Harris–Fortuin–475

Kasteleyn–Ginibre, henceforth abbreviated as FKG, inequality states that if  A and B are476

increasing events, then477

Pp(A ∩ B) ≥Pp(A)Pp(B). (16)478
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For events A and B, let A◦B denote the event of disjoint occurrence of A and B. That479

is, ω ∈A ◦ B if there exist disjoint edge sets E A, EB such that ω ∈ A (resp. ω ∈ B)480

whenever ω(e) = ω(e) for all e ∈E A (resp. for all e∈EB ). The van den Berg–Kesten–481

Reimer inequality (or “BK inequality”) is482

Pp(A ◦ B) ≤Pp(A)Pp(B). (17)483

2.2. Russo’s formula. Suppose D is a finite subset of Zd and A is an increasing event484

depending on the status of edges in E(D). An edge e is said to be pivotal for A in the485

outcome ω ∈ {0, 1}E(D) if 1A(ω) = 1A(ω), whereω is the outcome which agrees with486

ω on all edges except e and has ω(e) = 1 − ω(e). Russo’s formula [13, Section 2.4]487

says that488

d
d p
Pp(A) =

e∈E(D)
Pp(e is pivotal for A). (18)489

2.3. Cluster tail estimate. We record a simple consequence of the estimate (12) here:490

Lemma 1. There is a constant C such that, uniformly for r ≥ 1 and x 1, . . . ,xr ∈Zd
491

and μ > 0, we have:492

P( ∪r
j=1C(x j ) > μr2) ≤ Cμ−1/2.493

Proof. Write494

P | ∪r
j=1 C(x j )| > μr2) ≤

r

j=1
P(|C(x j )| > μr2

495

+ P

⎛
⎝

r

j=1
|C(x j )| > μr2, but |C(x )| ≤ μr2 for all 1 ≤  ≤ r

⎞
⎠ .496

The first term on the right is bounded directly using (12) and a union bound, yielding497

Cr (μr2)−1/ 2 = Cμ−1/2.498

For the second term with μr2 ≥ 2, Markov’s inequality yields the bound499

(μr2)−1 × r ×E[|C(0)|; |C(0)| ≤ μr2]500

≤ Cμ−1r−1
μr2

1
t−1/ 2 dt ≤ Cμ−1/2.501

502
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2.4. A lemma on extending clusters. The following result appears in [8, Lemma 3.2].503

Lemma 2. Let A 0 ⊂ A1 ⊂ Zd be arbitrary finite vertex sets with z ∈A0. Let B ⊂ ∂A1504

be a distinguished portion of the boundary of A1 and suppose that the ∞ distance from505

A0 to B is λ. Then for all M > 0, we have506

P(z
A1←→ B | CA0(z)) ≤ Mπ(λ)507

almost surely, on the event{|{y ∈ ∂A1 A0 : z
A0←→ y}| =M}.508

A typical application of this lemma is to estimate the probability that the cluster of509

z = 0 contains too few sites on ∂B(n/2) given 0 ↔ ∂ B(n). Let510

X = |CB(n/ 2)(0) ∩ ∂B(n/2)|.511

By (13), we haveP(X > 0) ≤ π(n/2) ≤ Cn −2. Applying Lemma 2 with A0 = B(n/2),512

A1 = B(n), and B = ∂B(n), and using (13) again, we have513

P X ≤ εn2 | 0 ↔ ∂ B(n)

= P 0 ↔ ∂ B(n) | 0 < X ≤ εn2 · P(0 < X ≤ εn2)
P(0 ↔ ∂ B(n))

≤ Cεn2π(n/2)
≤ Cε.

(19)514

As an immediate consequence of (19), we have the existence of a constant c > 0 such515

that516

P(X ≥ cn2) ≥ cπ(n) ≥ cn−2. (20)517

2.5. Half-space two-point estimate. We recall the following estimates of Chatterjee and518

Hanson for the two-point function in various regimes, where K > 0 is arbitrary and519

fixed:520

τH (x, y) 

⎧
⎪⎨
⎪⎩

x − y 2−d∞ in {(x, y) : 0 < x − y ∞ < K min{x(1), y(1)}};
x − y 1−d∞ in {(x, y) : x(1) = 0, 0 < x − y ∞ < K y(1)};
x − y −d∞ in {(x, y) : x = y, x(1) = 0, y(1) = 0}.

(21)521

Here the symbol means that the left-hand side is bounded above and below by positive522

constant multiples of the right-hand side, uniformly in pairs (x, y) of vertices lying in523

the specified regions.524

3. Half-Space Two-Point Bound Near the Boundary525

In this section, we prove our bound for the two-point function near the boundary, The-526

orem 6. The estimate can be understood as follows: a connection from  me1 to a distant527

vertex x consists of a connection from me1 to ∂B(me1; m), and a connection from this528

boundary to x , a further distance x −me1 away, lying in a half space. By the two-point529

function estimate (21) connecting me1 to a given point on the boundary has probability530
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of order m−d+2 while, summing over ∂B(me1; m), one expects the second connection531

to have probability of order ( x − me1/ m)−d+1 .532

The proof of Theorem 6 thus consists in showing that the probability of connection533

of x to me1 is comparable to the product of the latter two probabilities. The upper bound534

is rather straightforward, while the lower bound is more delicate: one needs to show that535

two disjoint connections, one inside of the box of side m and another connection from536

the boundary to x in a half-space, can be joined into a single connection from x to me1.537

In critical two-dimensional percolation, this type of statement is proved using “gluing538

techniques”, based on the FKG and Russo–Seymour–Welsh (RSW) inequalities, to join539

different open clusters across the boundary of boxes. This simple gluing methodology540

cannot be applied in high dimensions; among other things, it relies on planarity to connect541

the two crossing clusters. Even if analogs of RSW were true in higher dimensions, above542

the upper critical dimension d = 6, the proliferation of clusters [1] precludes a general543

extension method that would not consider the structure of the cluster on one side of the544

boundary.545

Kozma and Nachmias [30] introduced a technique for cluster extension in higher546

dimensions, which we use and further develop in this paper. Given that short loops are547

rare in high dimensions, the percolation cluster can be thought of as a tree, for which548

each vertex v on the boundary of a box is the root of an independent cluster outside549

the box emanating from this vertex (the forward cluster ofv). The expected number of550

vertices on the boundary of a box D of size m around me1 that are connected to x inside551

of a half space (and outside the box D) is of order m d−1 × x − me1
−d+1 , by (21).552

If one of these vertices can be further connected to me 1 inside the box, then we have553

the desired connection from x to me 1. If the cluster of x were truly a tree rooted at x ,554

only one of the vertices of its cluster that lie on the boundary of  D could be connected555

forward to me1, and the simple expectation calculation above would actually give us the556

probability of a connection.557

It is useful to think of the notion of regularity of the cluster introduced in [30] (see558

our modified Definition 7 below) as being motivated by the tree picture outlined above.559

If we wish to treat the elements of the cluster of x on the boundary of a region D as560

generating disjoint forward clusters beyond the region, exactly one of which connects561

to a given point y outside D, we need to put restrictions on the conditional distribution562

of the volume of the cluster in the vicinity of the point y one wishes to attach to the563

cluster, conditioned on the cluster inside D: for example, if the cluster is too dense on the564

boundary or inside D, then “backtracking” connections that exit and re-enter D cannot565

be excluded.566

These restrictions, expressed in Definition 7, allow us to ensure that a single point567

on the boundary of D is pivotal for the connection to x . We only require bounds on568

the (conditional) expected size of the clusters in question, which explains the difference569

between our definition of regularity, and that appearing in [30].570

3.1. Cluster boundaries. We will use adaptations of the tools in this section in some571

later arguments (though with differences in definitions depending on the needs of the572

specific problem). For this reason, we describe the setup somewhat generally here.573

Let D be some region to which we wish to restrict connections. Given such a region574

D, we denote by Q a portion of its vertex boundary (possibly relative to another set—575

for instance, if we are considering connections in Zd
+ and D = BH (n), we might set576

Q = ∂Zd
+

BH (n)). A typical setup has us condition on the status of edges in D, then for a577
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particular open cluster C of D, using vertices of some such Q to construct an extension578

of C into a portion of Zd \ D.579

Definition 7. For K > 0 an integer, we define580

• the (random) set EREGD(K ) to consist.2 of all z ∈D such that581

E[|CZd (z) ∩B(z; )| | CD(z)] < 9/ 2 for all  ≥ K ;582

• The set EREGD(A, K ) to consist of all z ∈D such that z ∈EREGD(K ) and such583

that584

E[|CZ d (z) ∩B(y; )| | CD(z)] < 9/2 for all  ≥ K and y ∈A.585

With mild abuse, we write EREGD(y, K ) for EREGD({y},K ).586

• The set587

D,Q(x) := Q ∩CD(x).588

We abbreviate XD,Q(x) := | D,Q(x)|. Similarly, we let589

EREG
D,Q (x) := EREG

D,Q (x, m; K ) = D,Q ∩ EREGD({0, me1},K ),590

and X EREG
D,Q (x) := | EREG

D,Q (x)|.591

3.2. Regularity. Consider the half-spaceZd
+, and let n ≥ 4m ≥ 4. We assume592

x = n and x(1) ≥ n/2, (22)593

where the fraction 1/2 is arbitrary and could be replaced by any fixed number in(0, 1).594

Our main result, Theorem 6, will be uniform in such x and in m , n as above. We de-595

compose the connection x ↔ me1 into a connection from x to BH (2m) lying entirely in596

Zd
+\ BH (2m) and then a further connection from some point of ∂BH (2 m) to me1. We597

thus introduce the following notation:598

D = Zd
+\ BH (2m); Q1 = {2m + 1} × [−m, m]d−1,

Q2 = [∂Zd
+

D] ∩ [me1 +Zd
+], Q3 = {0} × [−m, m]d−1.

(23)599

See Fig. 1. Our goal in this section is to check that vertices z∈Q = Q1 on the boundary600

of D are regular in the sense that z ∈EREGD(x, K ) for appropriate values of x and K601

(recall Definition 7).602

We recall here two results which are useful for our purposes.603

Lemma 3 ([1], [30, Lemma 4.4]). There are constants c, C such that, for all r ≥ 1 and604

all λ ≥1,605

P max
y∈B(r)

|C(y) ∩B(r)| > λr4 ≤ Cr d−6 exp(−cλ).606

2 The letter “E” in the abbreviation “EREG” refers to “expectation”. Compare our definition to that of
regularity appearing in [30, Section 4].
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Fig. 1. Geometry of the definitions in (23)

Lemma 4 ([30, Lemma 1.1]). Uniformly in r and in w1, w2 ∈B(r), we have607

P(w1
B(r)←→w 2) ≥ c exp(−C log2 r). (24)608

In particular,609

P(w1
BH (r)\ BH (2m)←→ w2) ≥ c exp(−C log2 r) (25)610

uniformly in m, in r ≥ 4m, and in w1, w2 ∈BH (r)\ BH (2 m).611

We now prove a regularity lemma similar in flavor to [30, Theorem 4]. It is weaker612

than theirs in one sense: it only controls the probability that a given vertex is regular,613

rather than trying to control the total number of regular vertices. On the other hand, it614

is slightly stronger in the sense that we control regularity “at an arbitrary base point”:615

roughly speaking, conditional on part ofC(z), the remaining portion ofC(z) is not likely616

to be too dense near a fixed vertex y.617

Lemma 5. There exist constants c, C > 0 such that the following holds uniformly in m,618

in k ≥ 1, in λ ≥1, in x ∈Zd
+\ BH (4 m), in y ∈BH (2 m) and in z ∈Q1:619

P |C(z) ∩B(y; k)| > λk4 log5(k) | z
D←→ x ≤ C exp(−c

√
λ log3 k). (26)620

In particular, there exists a K0 > 0 such that (uniformly as above), for all K > K0,621

P(z /∈EREGD(y; K ) | z
D←→ x) ≤ C exp(−cK 1/4). (27)622
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The powers 3 and 5 on log k appearing in the previous lemma are not meaningful on623

their own, as the proof will show. They are merely convenient choices.624

Proof. We begin by proving (26). For this, it suffices to prove the following slight625

modification of the claim in the lemma:626

Given k as in the statement of the lemma, there exists

k ∈ [k, 4d k] such that (26) holds with k replaced by k .
(28)627

Indeed, given (28), the statement of the lemma follows by noting that for such k, k ,628

|C(z) ∩ B(y; k)| ≤ |C(z) ∩B(y; k )|,629

and adjusting the constants C , c in (26). The reason to prove (28) is due to a minor630

technicality which will become clear at the end of the lemma. For most of what follows,631

we endeavor to prove that the bound of (26) holds for all k, and we will discover that632

we have to prove (28) to dispose of some “exceptional” values of k.633

If x − y ≤ kd , then we have x − z ≤ 4kd and so by (25) we have634

P(z
Z d

+\ BH (2m)←→ x) ≥P(z
BH (4kd )\ BH (2m)←→ x) ≥ c exp(−C log2 k).635

In this case, we can upper-bound (26) by636

C exp(C log2 k)P(|C(z) ∩B(y; k)| > λk4 log5(k)) ≤ C exp(−cλ log3 k)637

where we have used the tail result of Lemma 3.638

We now treat the case that k is small, that is x /∈B(y; kd). Let639

Ak := {for each cluster C of B(y; kd), we have |C ∩ B(y; k)| ≤
√

λk4 log3 k},640

where C being a cluster of B(y; kd) means considered as a component of the open641

subgraph of B(y; kd) (no connections outside this box are allowed). We also let642

Ak := {there are no more than
√

λ log2 k disjoint connections from B(y; k)643

to ∂B(y; kd)}.644

We can bound each of these events’ probabilities, using the one-arm probability asymp-645

totic (13), the BK inequality (17), and the cluster tail bound of Lemma 3: for each646

λ ≥1,647

P(Ak) ≥ 1 − exp(−c
√

λ log3 k);
P(Ak) ≥ 1 − (Ck d × k−2d)

√
λ log2 k ≥ 1 − exp(−c

√
λ log3 k).

(29)648

In bounding P(Ak), we used the following observation: for any t ≥ 1, if there is a649

z ∈B(y; kd) such that |C(z) ∩ B(y; k)| ≥ t , then there is also a z ∈B(y; k) such that650

|C(z ) ∩B(y; k)| ≥ t . (To see this, simply let zbe an arbitrary vertex ofC(z) ∩B(y; k).)651

We will argue that on A k ∩ Ak the cluster C(z) ∩ B(y; k) is not too large. Viewing652

C(z) ∩B(y; kd) as a subgraph of B(y; kd), we can decompose it into a union of disjoint653

connected components (Ci )t
i=1. We argue the following graph-theoretic fact:654

at most one Ci fails to contain an open crossing of B(y; kd)\ B(y; k). (30)655
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One (30) is shown, the following fact follows immediately:656

Suppose that the annulus B(y; kd)\ B(y; k) is crossed by at most
disjoint open paths; then at most + 1 of the Ci s can intersect B(y; k).

(31)657

We show (30) by contradiction, assuming that (by relabeling if necessary) C1 and658

C2 each fail to contain an open crossing of B(y; kd)\ B(y; k). Both C1 and C2 then659

intersect B(y; k) but not ∂B(y; kd). Choose elements w1 ∈ C1 ∩ B(y; k) and w2 ∈660

C2 ∩ B(y; k). Since w1 ∈C(z), there is an open path γ1 from w1 to z. Then γ1 cannot661

cross B (y; kd)\ B(y; k), since otherwise the segment of γ1 from w1 to its first exit of662

B(y; kd) would be an open crossing of the annulus B(y; kd)\ B(y; k) lying in C1.663

We can similarly find an open pathγ2 connecting w2 to z without exiting ∂B(y; kd).664

Concatenating γ1 and γ2, we see thatw1 and w2 are connected by a path lying entirely in665

B(y; kd). Thus C1 = C2, a contradiction, which shows that in factC1 or C2 must contain666

an open crossing of the annulus B(y; kd)\ B(y; k). This shows (30) and hence (31).667

Applying (31), we see that on the event Ak ∩ Ak , we have668

|C(z) ∩B(y; k)| ≤ λk4 log5 k.669

It therefore suffices to show, for x /∈B(y; kd),670

P(Ak ∩ Ak | x
D←→ z) ≥ 1 − exp(−c

√
λ log3 k). (32)671

We do this by conditioning on the cluster outside B (y; kd), noting that Ak and A k are672

independent of the status of edges outside B(y; kd). We write673

P({x D←→ z}\[Ak ∩ Ak]) ≤
C
P(CD\ B(y;kd )(x) = C)[1 −P(Ak ∩ Ak)]674

≤ C exp(−c
√

λ log3 k)
C
P(CD\ B(y;kd )(x) = C), (33)675

where the sum is overC compatible with the event{x
D←→ z}(in other words, such that676

P(x
D←→ z | CD\ B(y;kd )(x) = C) is nonzero) and we have used (29). To show (32), we677

need to compare the sum on the right to P(x
D←→ z). We will show that each term of678

that sum is at most exp(C log2 k)P(CD\ B(y;kd )(x) = C, z
D←→ x).679

For a clusterC as in (33) to be compatible with{x
D←→ z}, there are two possibilities:680

either x is connected to z in C, or it is possible to build an open connection from x to z681

which passes through B(y; kd). In the former case, we have682

P(CD\ B(y;kd)(x) = C) =P(CD\ B(y;kd )(x) = C, z
D←→ x). (34)683

In the latter case we will lower bound684

P(CD\ B(y;kd)(x) = C, z
D←→ x) ≥P(CD\ B(y;kd )(x) = C, ζx

B(y;kd )∩D←→ ζ z)685

for appropriate choices of vertices ζx , ζz ∈C. The events appearing on the right-hand686

side of the last display are independent, and so ifP(ζx
B(y;kd )∩D←→ ζ z) is sufficiently large,687

this (in conjunction with (34)) will suffice to show (26).688
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Indeed, we can measurably choose two disjoint open connections in C ∪ {x, z}, one689

from x to B (y; kd) in Zd
+ and one from z to B (y; kd) in Zd

+. If z ∈ B(y; kd), the latter690

“connection” consists of the vertex z, considered as a trivial open path. Given such691

disjoint connections to B (y; kd), we denote by ζx the endpoint on ∂B(y; kd) of the692

connection started from x , and byζz the endpoint of the connection started from z. The693

vertex ζz lies in ∂B(y; kd) unless z ∈B(y; kd), in which case ζz = z.694

If CD\ B(y;kd )(x) = C and if ζx
B(y;kd )∩D←→ ζ z , then x

D←→ z. The former two events695

depend on different edge sets and are hence independent. Therefore, as long as696

P(ζx
B(y;kd )∩D←→ ζ z) ≥ exp(−c log2 k), (35)697

we can upper bound each term of (33) by698

P(CD\ B(y;kd )(x) = C) ≤ exp(C log2 k)P(CD\ B(y;kd )(x) = C, z
D←→ x).699

Plugging this back in, we find in this case that700

P({x
D←→ z}\[Ak ∩ Ak]) ≤C exp(−c

√
λ log3 k).701

Combining the two cases, (32) and hence (26) follows.702

So it remains to finally argue for (35). We note that D∩B(y; kd) is a union of at most703

4d rectangles. As long as none of these rectangles is too “thin”, that is does not have704

the ratio of its longest sidelength to its smallest sidelength larger than (for instance) 10,705

then (35) follows easily from Lemma 4. In case at least one such rectangle is thin, for706

instance if y has distance k d − 1 from D, so that one rectangle has smallest sidelength707

1, it is easy to see that there exists some k ∈ [k, 4d k] such that no rectangles making up708

B(y; kd) ∩D2 are thin. Again for this k (35) follows, and so we have established (28).709

This establishes (26).710

We will conclude the proof by showing (27). Successively conditioning in (26), we711

have712

E P(|C(z) ∩B(y; k)| > k9/ 2/2 | CD(z)) z
D←→ x ≤ exp −ck1/ 4 log1/2 k .713

Using Markov’s inequality, we see714

P P(|C(z) ∩B(y; k)| > k9/ 2/2 | CD(z)) ≥ exp(−k1/ 4) z
D←→ x715

≤ exp(−ck1/ 4). (36)716

Noting that717

E [|C(z) ∩B(y; k)| |CD(z)] ≤ k9/2

2
+ kdP |C(z) ∩B(y; k)| > k9/ 2

2
CD(z)718

and applying (36), we find for all large k719

P E[|C(z) ∩B(y; k)| |CD(z)] > k9/ 2 z
D←→ x720

≤P P |C(z) ∩B(y; k)| > k9/ 2

2
CD(z) ≥ k9/2−d

2
z

D←→ x721

≤ exp(−ck1/4).722
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The bound (27) and hence the lemma now follow by choosing K0 sufficiently large.723

724

A direct consequence of the above is the following lower bound on the size of EREGD .725

Lemma 6. There exist constants K 0, c > 0 such that the following holds uniformly in726

m, in x satisfying (22), in z ∈Q1, and in K > K0:727

P z ∈EREGD({0, me1},K ), z
Zd

+←→ x ≥ cn1−d .728

Proof. Applying the half-space two-point function bound (21) and Lemma 5, we bound729

uniformly in m, x, z as above and uniformly in K :730

P(z ∈EREGD({0, me1}),z D←→ x)731

≥ cn1−d[1 −P(z /∈EREGD({0, me1};K ) | z
D←→ x)]732

≥ cn1−d[1 − C exp(−cK 1/4)].733

The result follows by enlarging K0 from Lemma 5 if necessary.734

3.3. Gluing. We have already shown a lower bound for E[X D,Q1] in Lemma 6. Our735

goal now is to upper boundE[X D,Q2]. This subsection provides the groundwork for this736

by showing that in a sense, most vertices of D,Q2 have conditional probability m2−d
737

to connect to me1 in Zd
+ and similarly have conditional probability m1−d to connect to738

0 in Zd
+.739

Definition 8. For each z ∈ Q2, we choose a deterministic neighbor z ∈ Zd
+\ D =740

BH (2 m). For each K and for any y ∈ BH (2 m) and for any x ∈Zd
+\ BH (4 m), we let741

Y (y) = Y (y, m, x; K ) be the (random) set of z∈Q2 satisfying the following properties:742

1. z ∈ EREG
D,Q2

(x, m; K );743

2. The edge {z, z }is open and pivotal for the event{x
Zd

+←→ y}.744

We will ultimately choose a large nonrandom K , fixed relative to m and x.745

The following facts relate Y(y) to the cluster of x .746

Proposition 7. For each m and K , and any x ∈Zd
+\ BH (4 m), y ∈BH (2 m), we have747

P(x
Zd

+←→ y) ≥P(|Y (y)| >0) =
z∈Q2

P(z ∈Y (y)). (37)748

We also have749

P(x
Zd

+←→ 0) ≤ C x 1−d
750

and so751

z∈Q2

P(z ∈Y (0)) ≤ C x 1−d . (38)752
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Proof. The first inequality of (37) is a consequence of the definition of Y , so we begin753

by proving the subsequent equality. This equality follows immediately once we establish754

that {|Y (y)| >0}is equal to the disjoint union∪z∈Q2{z ∈Y (y)}—in other words, Y(y)755

is either empty or a singleton.756

To show this, we fix an outcome and suppose that z1 and z2 are two distinct elements757

of Y(y)—since x
Zd

+←→ y when Y(y) is nonempty, there is some open self-avoiding path758

γ connecting x to y in Zd
+. By the pivotality condition in the definition of Y (y), it759

follows that this path must pass through both {z1, z1}and {z2, z2}. Suppose, relabeling760

if necessary, that γ passes first through {z1, z1}; letting γ̃ be the terminal segment of γ761

beginning with the edge {z2, z2}, we have z1 /∈ γ̃ .762

Now we produce a new open pathγ by appending a path from x to z2 lying entirely763

in D to the path γ̃. Then γ connects x to y in Zd
+, and it avoids the edge {z1, z1}, since764

γ̃ does, and since {z1, z1}does not have both endpoints in D. This contradicts the fact765

that {z1, z1}is open and pivotal (even when we close this edge, the pathγ still connects766

x to y), and so we have shown the claim about Y (y) and hence (37). Note that here we767

crucially use item 1) in Definition 8, which requires z2 ∈CD(x).768

The inequality above (38) is a consequence of (21), and then (38) follows by an769

application of the already-proved (37).770

We now show that for typical z ∈Q2, the conditional probability771

P(z ∈Y (y) | z ∈ EREG
D,Q2 (x))772

is at least order m2−d when y = me1 and at least order m1−d when y ∈Q3. In fact, we773

prove the former bound on average, for vertices within order constant distance of  me1.774

Proposition 8. We have the following bounds on the expectation of |Y (y)|, covering775

the cases of y ∈ Q3 and y ∈ B(me1; K ). These hold uniformly in m ≥ 1, in x ∈776

Zd
+\ BH (4 m), with K fixed relative to x, m, n, N but larger than some constant K1 > K0777

(uniform in x , m, n, N ).778

• There exists a constant c > 0 such that779

y∈Q3

E[ |Y (y)|; XEREG
D,Q2 (x) = N ] ≥cNP(XEREG

D,Q2 (x) = N ).780

• There exists a constant c > 0 such that781

y∈B(me1;K )
E[ |Y (y)|; XEREG

D,Q2 (x) = N ] ≥cNm 2−dP(XEREG
D,Q2 (x) = N ).782

Proof. This is a now-familiar extension argument originating in Kozma–Nachmias [30],783

with adaptations to half-spaces from Chatterjee–Hanson [8]. We define three families784

of events, indexed by vertices of the lattice:785

E1(z) = z ∈ EREG
D,Q2 (x), XEREG

D,Q2 (x) = N ;786

E2(z, z∗, y) = z∗Z d
+\C D(z)←→ y ;787

E3(z, z∗) = C(z) ∩C(z∗) = ∅ .788

2 2 0 4759
Jour. No Ms. No.

B Dispatch: 23/7/2023
Total pages: 71
Disk Received
Disk Used

Journal: Commun. Math. Phys.
Not Used
Corrupted
Mismatch



Re
vi

se
d 

Pr
oo

f
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Here the variable z ranges over Q 2 and, for a given value of z, the variable z ∗ ranges789

over the set790

K (z) := B(z; 2K ) ∩BH (2m − K )791

noting that | K (x)| ≥ cK d for a constant c uniform in x ∈ Q2, and in K 0 < K <792

m/8 < n/2. The variable y is an element of B H (2m), though we will specialize to793

y ∈Q3 or y ∈B(me1; K ).794

Our goal is to show that E2 and E3 have appropriately large probability, given E1.795

That is, we hope to show:796

Lemma 9. There exists a constant K 1 > K0 such that, for each K 1 < K < m/8 there797

is a c = c(K ) > 0 such that, for each x /∈BH (2 m), the following hold.798

1. For each z ∈Q2, there exists z∗∈ ( z) such that799

y∈Q3

P(E1(z) ∩E2(z, z∗, y) ∩E3(z, z∗)) ≥ cP(E1(z)).800

2. For each z ∈Q2, there exists z∗∈ ( z) such that801

y∈B(me1;K )
P(E1(z) ∩E2(z, z∗, y) ∩E3(z, z∗)) ≥ cm2−dP(E1(z)). (39)802

Assuming the truth of Lemma 9, we complete the proof of Proposition 8. The proof803

of the lemma appears below. It thus remains to use the above lemma to lower-bound  Y804

and complete the proof of Proposition 8. As in (37), we write805

y∈A

E[ |Y (y)|; X EREG
D,Q2 (x) = N] =

y∈A z∈Q2

P(z ∈Y (y), XEREG
D,Q2 (x) = N ).806

To lower-bound the right-hand side of the above, we use a crucial fact: fixing  K > K1807

as in Lemma 9, there is a uniform constant c = c(K ) such that808

P(z ∈Y (y), XEREG
D,Q2 (x) = N ) ≥ cP(E1(z) ∩E2(z, z∗, y) ∩E3(z, z∗)) (40)809

uniformly in m, x , y, z, and z ∗ as in Lemma 9. This is a standard edge modification810

argument (see [30, Lemma 5.1] or the argument in Step 5 of the proof of Lemma 14811

below), so we do not give a full proof. In outline: one must open a path with length of812

order K from z to z ∗ lying in Zd
+\ D, thereby ensuring that z is connected to y, while813

potentially closing some edges to ensure that the edge {z, z }is pivotal as the definition814

of Y (y).815

Applying (40), we see that816

y∈B(me1;K )
E[ |Y (y)|; XEREG

D,Q2 (x) = N ]817

≥ c
z∈Q2 y∈B(me1;K )

P(E1(z) ∩E2(z, z∗, y) ∩E3(z, z∗))818

(by Lemma 9) ≥ cm2−d

z∈Q2

P(E1(z))819

≥ cNm 2−dP(XEREG
D,Q2 (x) = N ).820
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This proves Proposition 8 for the case of y ∈ B(me1; K ). A similar calculation to821

the previous display establishes the case of y ∈ Q3, completing the proof of the822

proposition.823

Proof of Lemma 9. We first show an analogous statement involving just the first two824

events: for each large K , there exists c= c(K ) > 0 such that825

for m > 8K , for z ∈Q2, for each z∗∈ ( z) and for y ∈B(me1; K ) or y ∈Q3,

P(E1(z) ∩E2(z, z∗, y)) ≥ cP(z∗ Zd
+←→ y)P(E1(z)).

(41)826

To see this, we note thatE1(z) is measurable with respect to the sigma-algebra generated827

by CD(z), and we write828

P(E2(z, z∗, y) ∩E1(z)) =
C∈E1(z)

P(E2(z, z∗, y) |CD(z) = C)P(CD(z) = C),829

where the sum is over C such that E1(z) occurs when CD(z) = C.830

Now, for eachC as above,831

P(E2(z, z∗, y) |CD(z) = C) =P(z∗Z d
+\C←→ y), (42)832

where we can now treat C as a deterministic vertex set. Taking a union bound, the833

probability in (42) is at least834

P(z∗ Zd
+←→ y) −

ζ ∈C
P z∗↔ ζ ◦ ζ

Zd
+←→ y

 
835

≥P(z∗ Zd
+←→ y) −

ζ ∈C
P z∗↔ ζ P ζ

Z d
+←→ y .836

Because ζ /∈ BH (2m), the final factor appearing above is at most Cm 2−d (in case837

y ∈B(me1; K )) or Cm 1−d (in case y ∈Q3). On the other hand, we have identical (up838

to constant factors) lower bounds for P(z∗ Z d
+←→ y) because z ∈ Q2, the distance from839

z∗to z is at most 2K , and y ∈B(me1, K ) or y ∈Q3. We thus obtain the lower bound840

P(z∗ Z d
+←→ y) −CP(z∗ Zd

+←→ y)
ζ ∈C

P(z∗↔ ζ )841

for the expression appearing in (42).842

We now use the fact that (on CD(z) = C) the vertex z ∈ E REG
D,Q2

(x, m; K ) to upper843

bound the sum appearing in the last expression:844

ζ ∈C
P(z∗↔ ζ) =

≥ log2(K ) ζ ∈C∩[B(z∗;2 )\ B(z∗;2− 1)]
P(z∗↔ ζ )845

≤ C
≥ log2(K )

2(2−d)(− 1)|C ∩ B(z∗, 2 )|846

≤ C
≥ log2(K )

2(2−d)(− 1)|C ∩ B(z, 3 · 2 )|847

2 2 0 4759
Jour. No Ms. No.

B Dispatch: 23/7/2023
Total pages: 71
Disk Received
Disk Used

Journal: Commun. Math. Phys.
Not Used
Corrupted
Mismatch



Re
vi

se
d 

Pr
oo

f

Subcritical High Dimensional Percolation

≤ C
≥ log2(K )

2(2−d)(− 1)E[|CZd (z) ∩B(z; 3 · 2 )| |CD(z)]848

≤ C
≥ log2(K )

2(2−d)(− 1)(3 · 2 )9/ 2
849

≤ C
≥ log2(K )

2(13/ 2−d) ≤ C K13/ 2−d .850

Our shorthand in the limits of summation means is summed over integers satisfying851

the specified inequality. Inserting the above bounds into the left-hand side of (42) and852

summing over C shows (41).853

We next argue that854

For large K , there is a c855

= c(K ) > 0 such that, for K < m/8 < n/2 and z ∈Q2, there is856

a z∗∈ ( z) such that
y∈A

P(E2(z, z∗, y) ∩E3(z, z∗) | E1(z))857

≥ c, A = Q3;
cm2−d , A = B(me1; K ). (43)858

To show (43), we again condition onCD(z) = C for a C such that E1(z) occurs; we will859

upper bound860

|( z)|−1

y∈A z∗∈( z)
P(E2(z, z∗, y)\E3(z, z∗) |CD(z) = C) (44)861

by a quantity smaller than that appearing in (42). From this and (42), it follows that the862

bound on the right-hand side of (43) holds for a uniformly chosen random z ∗ ∈ ( z),863

hence for some particular value of z∗.864

Given CD(z) = C, the event E2(z, z∗, y)\E3(z, z∗) implies the following disjoint865

occurrence happens:866

ζ /∈C
{C ↔ ζ } ◦ {z∗Zd

+\C←→ ζ } ◦ {ζ
Zd

+\C←→ y}; (45)867

here the event {C ↔ z}is interpreted with C treated as a deterministic vertex set (and868

so this is an upper bound—in fact, the connection from C to ζ is in Zd
+\ D). Applying869

the BK inequality, noting that the events{CD(z) = C}and {z∗Zd
+\C←→ ζ } ◦ {ζ

Zd
+\C←→ y}are870

independent, and summing, we see the probability of the event in (45) is at most871

ζ /∈C
P(ζ ↔ C | CD(z) = C)P(z∗↔ ζ )P(ζ

Zd
+←→ y) (46)872

In other words, we have shown that873

(44)≤|( z)|−1

y∈A, z∗∈( z) ζ /∈C
P(ζ ↔ C | CD(z)=C)P(ζ ↔ z∗)P(ζ

Zd
+←→ y). (47)874
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The precise bound we find for (47) depends on whether we are summing over y∈Q3875

or y ∈B(me1; K ), though the structure is similar in both cases.876

CaseA = Q3 We bound the sums appearing in (47) by877

(47)≤C K−d

y∈Q3, z∗∈( z) ζ /∈C
P(ζ ↔ C | CD(z)=C)P(ζ ↔ z∗)ζ − y 1−d (48)878

We have used the fact that|( z)| ≥cK d and the two-point function bound (21).879

We further decompose the sum in (48) depending on whether ζ ∈ BH (3m/2) or880

ζ /∈BH (3m/2). In the former case, we use the uniform upper bound881

max
ζ ∈Zd y∈Q3

ζ − y 1−d ≤ C log m (49)882

to bound the y sum for fixedζ, z∗. Moreover, for each suchζ, we haveζ − z∗ ≥ m
2 −2K ,883

and so P(ζ ↔ z∗) ≤ Cm 2−d provided m ≥ 8K . Pulling these together, the portion of884

(48) where ζ is summed over BH (3m/2) is bounded by885

Cm 2−d log m
ζ ∈BH (3m/ 2)

P(ζ ↔ C | CD(z) = C) ≤ Cm 13/ 2−d log m, (50)886

where we have used the fact that z ∈ EREG
D,Q2 (x).887

To bound (48) for ζ /∈ BH (3m/2), we perform the y sum using the following re-888

placement for (49):889

max
ζ ∈Zd+\ BH (3m/ 2) y∈Q3

ζ − y 1−d ≤ C.890

The remaining sum can be dealt with by decomposing the sum into cases based on the891

scale of 2− 1 < ζ − z∗ ≤ 2 . We further note{ζ ↔ C} ∩ {CD(z) = C} ⊆ {ζ ∈C(z)}.892

This leads to the sequence of bounds893

z∗∈( z) ζ /∈C
P(ζ ↔ C | CD(z) = C)P(ζ ↔ z∗) (51)894

≤ C
z∗∈( z) ≥ log2 K / 2

E[C(z) ∩B(z∗; 2 ) |CD(z) = C]2( 2−d)
895

+ C
z∗∈( z) ζ ∈B(z∗;K )

P(ζ ↔ C | CD(z) = C)ζ − z∗ 2−d
896

≤ C Kd

≥ log2 K / 2
2(13/ 2−d) + K 2E[C(z) ∩ B(z, 4K ) | CD(z) = C] ≤C K13/ 2.897

(52)898

Applying this and (50) in (48), we produce an upper bound for (44):899

for A = Q3, (44) ≤ C K13/2−d .900
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We compare this to (41), noting that the sum of the right-hand side of that equation is901

bounded below by cP(E1(z)). We see there is some K1 large such that for each K> K1,902

there is a c = c(K ) with903

|( z)|−1

z∗∈( z) y∈A

P(E3(z, z∗) | E1(z) ∩E2(z, z∗, y)) ≥ c,904

and (43) follows for A = Q3.905

CaseA = B(me1; K ). We decompose the sum of (46) into two sums, one over ζ ∈906

B(me1; m/8) and the other over the remaining values of ζ. The first sum is slightly907

more complicated (involving the more stringent regularity notion of EREG), so we treat908

it in detail. We write, performing first the sum over z∗:909

z∗∈( z) ζ ∈B(me1;m/ 8) y∈B(me1;K )
P(ζ ↔ C | CD(z) = C)P(ζ ↔ z∗)P(ζ

Zd
+←→ y)910

≤ Cm 2−d |( z)|
ζ ∈B(me1;m/8) y∈B(me1;K )

P(ζ ↔ C | CD(z) = C)P(ζ
Z d

+←→ y). (53)911

We now further decompose the sum overζ in (53) into terms withζ ∈B(me1; 2K ) and912

ζ /∈B(me1; 2K ). For the former case, we bound913

ζ ∈B(me1;2K ) y∈B(me1;K )
P(ζ ↔ C | CD(z) = C)P(ζ

Z d
+←→ y)914

≤ C K2E[|C(z) ∩B(me1; 2K )| |CD(z) = C]915

≤ C K13/2, (54)916

where we have used the fact that z ∈ EREG
D,Q2

(x) in the last line. To bound (53) when917

ζ /∈ B(me1; 2K ), we decompose based on scale as in the bounds at (51), arriving as918

before at the bound919

ζ /∈B(me1;2K ) y∈B(me1;K )
P(ζ ↔ C | CD(z) = C)P(ζ

Z d
+←→ y) ≤ C K13/ 2. (55)920

The bounds (54) and (55) together show that921

(53) ≤ C K13/2+dm2−d , (56)922

and this controls the terms of (46) involving ζ ∈ B(me1; m/8). The contribution to923

(46) from ζ /∈ B(me1; m/8) can be controlled in a similar but simpler way; a main924

difference is that instead of uniformly bounding P(ζ ↔ z∗) as in (53), we can instead925

bound P(ζ ↔ y).926

We arrive at the bound927

when A = B(me1; K ), (44) ≤ Cm 2−d K 13/2.928

For comparison, summing (41) over y∈B(me1; K ) and using the fact thatP(z∗ Zd
+←→ y) ≥929

cm2−d uniformly in z∗∈ ( z) and y ∈B(me1; K ) gives930

|( z∗)|−1

y∈A z∗∈( z)
P(E2(z, z∗, y) | CD(z) = C) ≥ cm2−d K d .931

2 2 0 4759
Jour. No Ms. No.

B Dispatch: 23/7/2023
Total pages: 71
Disk Received
Disk Used

Journal: Commun. Math. Phys.
Not Used
Corrupted
Mismatch



Re
vi

se
d 

Pr
oo

f

S. Chatterjee, J. Hanson, P. Sosoe

Comparing the last two displays and recalling the uniform bound |( z)| ≥ cK d
932

completes the proof of (39) and the lemma.933

3.4. Two-point function asymptotics. In this section, we state and prove asymptotics934

for τZ d
+
(x, me1), completing the proof of Theorem 6. The proofs build on the estimates935

obtained in the previous sections. We first prove asymptotics for E[X E REG
D,Q1

(x)] and936

E[X E REG
D,Q2

(x)]. Since an open path from ne 1 to me1 with 2m < n (for instance) must937

pass through ∂BH (2m), these asymptotics are related to those for τZ d
+

itself.938

Corollary 10. For each K > K1, there exists a c = c(K ) such that the following holds939

uniformly in m > 2K , and in x with x > 4m:940

E[XEREG
D,Q1 (x)] ≥cE[X D,Q1(x)] ≥c(m/ x) d−1.941

Proof. We can write, using Lemma 5,942

E[XEREG
D,Q1 (x)] =

z∈Q1

P(z ∈EREGD({0, me1},K ) | z
D←→ x)P(z

D←→ x)943

≥ c
z∈Q1

P(z
D←→ x) = cE[X D,Q1(x)].944

We now use the two-point function asymptotic (21) to complete the proof:945

E[X D,Q1(x)] =
z∈Q1

P(z
D←→ x) ≥

z∈Q1

P(z
2me1+Z d

+←→ x) ≥ c(m/ x) d−1.946

947

The next lemma provides an upper bound on the quantity EXEREG
D,Q2

(itself an upper948

bound, up to a constant, forEX D,Q2 ) which matches that of Corollary 10 up to a constant949

factor.950

Lemma 11. For each K > K1, there exists a c = c(K ) such that the following holds951

uniformly in m > 2K , and in x with x > 4m:952

C−1E[X D,Q2(x)] ≤E[XEREG
D,Q2 (x)] ≤C(m/ x) d−1.953

Proof. The key ingredient of the proof is Proposition 7, and so we use the notation of954

that proposition. Indeed, fixing a K large enough and then summing the bound of the955

proposition, we find956

y∈Q3

E[|Y (y)|] ≥cE[XEREG
D,Q2 (x)],957

uniformly in x and m. On the other hand, as observed in Proposition 7, the left-hand958

side of the above is at most959

y∈Q3

P(x
Z d

+←→ y) ≤ Cm d−1 x 1−d ,960

where in the last inequality we used the two-point function bound (21).961

This completes the proof of the second inequality. The first follows using Lemma 6962

as in the proof of Corollary 10.963
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We are now equipped to prove the asymptotics for the two-point function inZd
+.964

Proof of Theorem 6. We prove the upper bound first. It is helpful to introduce a domain965

D∗consisting of Zd
+ with a “flattened version” of BH (4m) removed:966

D∗ :=Zd
+\ [0, 2m] × [−4m, 4m]d−1 ; Q4 := ∂Zd

+
(Zd

+\ D∗).967

If x
Zd

+←→ me1, then there exists a z ∈Q4 such that968

{x
D∗

←→ z} ◦ {z ↔ me1}.969

Using the BK inequality, then:970

P(x
Zd

+←→ me1) ≤
z∈Q4

P(x
D∗

←→ z)P(z ↔ me1)971

≤ Cm 2−d

z∈Q4

P(z
D∗

←→ x)972

≤ Cm 2−d

z∈Q4

P(z
−2me1+[Zd

+\ BH (4m)]←→ x). (57)973

The box −2me1 + [Zd
+\ BH (4m)] is a translate of the analogue of D with m replaced by974

2m; we emphasize also that the point x is in D∗. In particular, we can use Proposition 7975

to upper bound the quantity in the last display:976

(57) ≤ C x 1−d md−1 × m2−d
977

and the upper bound of the theorem follows.978

We turn to the lower bound onτH . As in the previous part, we build our connection979

from x to me 1 by first connecting x to the boundary of a box and then extending. By980

Corollary 10, we can choose a large constant K so that981

E[X EREG
D,Q1 (x)] ≥c(m/ x) d−1 uniformly in x, m as claimed in Theorem 6.982

Applying the bound of Proposition 8 and summing over N gives983

y∈B(me1;K )
E[|Y (y)|] ≥cm x 1−d .984

Using Proposition 7, this implies there exists a constant c = c (K ) such that985

for x , m as above, there exists y ∈B(me1; K ) such that τH (x, y) ≥ c m x 1−d .986

With x , m, and y as in the last display, we can write987

τH (x, me1) ≥P(x
Zd

+←→ y, y
Z d

+←→ me1) ≥ c m x 1−d ,988

by the previous display, the FKG inequality (16), and the fact that y − me1 ≤ K ,989

where c = c (K ). The theorem follows.990
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4. Lower Bounds for the Chemical Distance and Cluster Size991

4.1. Discussion and motivation. In this section, we show the inequality (5) of Theorem 2992

and the probability lower bound of Theorem 4. The main portion of the argument is993

Lemma 14 below, where we lower-bound the probability of a sequence of events whose994

occurrence guarantees that the cluster of the origin is small but that the origin is connected995

to the boundary of a box by a sufficiently small-length path.996

We begin with a very informal illustration of the idea for the benefit of the reader.997

How can the origin have an arm to a long distance n but have its chemical distance to998

∂B(n) be abnormally small? Heuristically, one expects this type of behavior when the999

cluster reaches distance n ballistically. That is, if every connection from 0 to ∂B(n)1000

crosses annuli of the form Ann ( m, ( + 1)m) without re-entering B(( − 1)m) for all1001

1 ≤  ≤ n/ m − 1, where m n. This is analogous to how one would try to force a1002

random walk to exit B(n) in time o(n2), by demanding it avoid re-entering smaller scale1003

boxes once it has exited them.1004

Unfortunately, it appears difficult to force such ballistic behavior, since the cluster1005

of the origin does not obey a Markov property like that of simple random walk. We are1006

forced to guarantee that the cluster obeys a certain degree of regularity inductively on a1007

sequence of length scales m—this regularity guarantees a degree of independence of1008

portions of the cluster which replaces the Markov property of simple random walk. We1009

then construct an event which implies the cluster crosses the annulus Ann( m, ( + 1)m)1010

ballistically in a way which preserves regularity in the sense alluded to above. We1011

further demand that each such annulus crossing have at most typical edge length, that1012

is containing order m 2 edges at most. Then the total length of the arm so constructed1013

is (n/ m)m2 = nm n2, where the first factor represents the total number of annuli1014

crossed. Since this arm has length much shorter than n2, this accomplishes our goal of1015

constructing a short arm.1016

4.2. Notation. We start our formal work with some definitions and preliminary esti-1017

mates. For a rectangle D = d
i=1[ai , bi ], we define its “right boundary”1018

∂R

d 

i=1
[ai , bi ]

!
:= {x ∈D : {x, y}is an edge with y · e1 > b1}.1019

We will also use the notation1020

∂W D = ∂D\∂ R D.1021

For positive integers α, we also define1022

Rect(α)(n) = [−αn, n] × [−αn, αn]d−1, (58)1023

and the shifted version1024

Rect(α)(x; n) := x + Rect(α)(n).1025

For notational simplicity, we introduce the convention that Rect(α)(n) = ∅when n < 0.1026

We note that1027

0 Rect(α)(n)←→ ∂ W Rect(α)(n) ⊆ {0 ↔ ∂ B(αn)},1028
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and the probability of the latter event is at most C (αn)−2 by (13). Therefore, for each1029

ε >0, we can choose α = α(ε)of order C/
√

ε to guarantee that1030

P(0 Rect(α)(n)←→ ∂ W Rect(α)(n)) ≤ εn−2. (59)1031

We introduce some notation that is reminiscent of the definitions in Sect. 3, with1032

some adaptations to the geometry in this section. Since the pertinent definitions from1033

Sect. 3 will not appear in this section, there is no risk of confusion. For an integer  n, we1034

define1035

n(x) := {y ∈ ∂RRect(α)(x; n) : y
Rect(α)(x;n)←→ x},1036

Xn(x) := | n(x)|.1037

We denote1038

n := n(0), Xn := Xn(0).1039

The above notation suppresses the dependence onαbecause we will fix a particular value1040

of α, to be denotedα∗, in Lemma 13. We will use thisα∗for the rest of this section. Once1041

we fix α∗, we will further abbreviate Rect(α∗)(n) by Rect(n), with a similar abbreviation1042

for Rect(α∗)(x; n).1043

We now fix an integer m ≥ 4 and  ≥ 1.1044

Definition 9. The random set SREG (x; , m, K )3 consists of all y ∈ ∂Rect(α)(x; m)1045

such that1046

E[|C(y) ∩ B(y; r)\ Rect(α)(x; ( − 1/2)m)| |CRect(α)(x; m)(y)] <r
9
21047

for all r ≥ K .1048

When x = 0, we omit it from the notation. See Fig. 2 for a schematic depiction. We1049

write (again omitting the argument when x = 0)1050

SREG
, m (x) := m(x) ∩SREG(x; , m, K ) (60)1051

XSREG
, m (x) := | SREG

, m (x)|. (61)1052

We also introduce a version of m restricted to vertices connected to x through “short1053

paths”. Let ρ > 0 and define1054

ρ-short
, m (x) = SREG

, m (x) ∩ {y ∈ ∂RRectα(x; m) : dRect(α)(x; m)
chem (x, y) ≤ ρ m2}.1055

Similarly, we write Xρ-short
, m (x) = | ρ-short

, m (x)|.1056

3 The letter “S” in the abbreviation “SREG” stands for “shell”. The regularity condition is restricted to a
shell to allow us to decouple portions of the cluster.
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4.3. Estimates. We first obtain a lower bound on the quantity m . The following is1057

Lemma 5 with minor modifications for this context.1058

Lemma 12. There are constants m 0, c, C > 0 such that, uniformly in m ≥ m0, in1059

k ≥ 1, and in λ ≥1, we have1060

P |C(y) ∩ B(y; k)| > λk4 log5(k) | 0
Rect( m)←→ y ≤ C exp(−c

√
λ log3 k).1061

Thus, as in Lemma 5, there exists a K0 > 0 such that uniformly in  ≥ 1 and m ≥ m0,1062

for all K > K0:1063

P(y /∈SREG(, m, K ) | 0
Rect( m)←→ y) ≤ C exp(−cK 1/ 4). (62)1064

Applying Lemma 12 and (21), we see1065

E[| m\ SREG
, m |] =

y∈∂RRect( m)
P(y /∈SREG(, m, K ) | 0 Rect( m)←→ y)P(0 Rect( m)←→ y)1066

≤ C exp(−cK 1/4)(α m)d−1( m)−d+1 ≤ Cαd−1 exp(−cK 1/ 4).1067

Thus by Markov’s inequality, we have, for eachδ >0,1068

P(| m\ SREG
, m | ≥ δ(m)2) ≤ Cδ−1( m)−2αd−1 exp(−cK 1/4). (63)1069

The following lemma will serve as the base case in an induction appearing in1070

Lemma 14.1071

Lemma 13. For each choice of α ≥ 1 from (58), there is a constant c > 0 and large1072

constants 1 ≤ ρ < ∞ and K 1 ≥ K0 depending only on α and the dimension d such1073

that, if K ≥ K1,1074

P(Xρ-short
1,m ≥ cm2) ≥ cm−2 (64)1075

for all m ≥ m0. In particular, there is some choice of integerα, henceforth denoted by1076

α∗, and some K1 = K1(α∗) > K0 such that for some c∂, C∂ < ∞ , we have1077

P C∂m2 > Xm(0) ≥ Xρ-short
1,m (0) ≥ c∂m2 \ 0 Rect(m)←→ ∂ W Rect(m)

 
≥ cm−2

1078

(65)1079

for all K ≥ K1 and m ≥ 1.1080

Proof. We first recall the bound (20), which implies1081

uniformly in n ≥ 1, P(Xn ≥ c1n2) ≥ c1n−2
1082

for some uniform c1 > 0 independent of α as long as α ≥ 1. Now, using (59), we can1083

find a α∗large and a constant c2 > 0 uniform in n such that1084

with α = α∗, P({Xn ≥ c2n2}\{0 Rect(α∗)(n)←→ ∂ W Rect(α
∗)(n)}) ≥c2n−2. (66)1085

We henceforth fix α∗as in (66).1086
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(A)

m

mαm

αm

α( + 1)m

x m

∂RRect(α)(x, m)
∂RRect(α)(x, ( + 1)m)

∂WRect(α)(x, m)

z

y

(B)

0
2m

2n

Fig. 2. A Schematic representation of Rect (α)(x, m), Rect (α)(x, ( + 1)m), and m (x). For a typical
regular boundary vertex y ∈ SREG

, m (x) of Rect (α)(x , m), the volume of the extended cluster (encircled
region) within B (y, m) and the chemical distance between y and ∂B(y, m) within this scales as O (m4) and

O(m2) respectively. z ∈ ρ−shor t
, m (x) if the chemical distance d Rect (α)(x, m)

chem (x , z) ≤ ρ m2. B Schematic
representation of the kind of cluster that suffices for the inductive lower bound argument to work

Using Markov’s inequality as in (63), we can choose K1 = K1(α∗) > K0 such that,1087

for K ≥ K1 and for all m,1088

P(Xm − XSREG
1,m ≥ c2m2/4) ≤ c2m−2/4. (67)1089

We estimate the expected number of edges on a path from 0 to a vertex  y ∈ m .1090

Let M(0, y; m) denote the number of edges on the shortest open path from 0 to  y in1091
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Rect(m), with the convention that M(0, y; m) = 0 when there is no such path. We have1092

E [M(0, y; m)] ≤ 2d
z∈Rect(m)

P({0 Rect(m)←→ z} ◦ {z Rect(m)←→ y})1093

≤ 2d
z∈Rect(m)

P(0
me1−Zd

+←→ z)P(z
me1−Zd

+←→ y)1094

≤ C1m3−d , (68)1095

where we have used the two-point function asymptotic of Theorem 6.1096

For each ρ > 0, with c2 as in (66),1097

on the event {XSREG
1,m − Xρ-short

1,m ≥ c2m2/2}, we have
y∈∂RRect(m)

M(0, y; m)1098

≥ c2ρm4/2;1099

the constant c2 in this display is independent of ρ. Taking expectations, we find1100

E

⎡
⎣

y∈∂RRect(m)
M(0, y; m)

⎤
⎦ ≥ c2ρm4/2P XSREG

1,m − Xρ-short
1,m ≥ c2m2/2 .1101

Contrasting the last display with (68), we see that we can make a choice ofρ independent1102

of m such that1103

P XSREG
1,m − Xρ-short

1,m ≥ c2m2/2 ≤ c2m−2/2. (69)1104

Finally, using (69) in conjunction with (67), we find (withρ as in (69))1105

P Xm − Xρ-short
1,m ≥ 3c2m2/4 ≤ 3c2m−2/4. (70)1106

Comparing (70) with (66) completes the proof of (64) and an analogue of (65) where1107

we do not demand Xm(0) ≤ C∂m2. To impose this condition, we note that1108

E[Xm(0)] ≤
x∈∂R Rect (m)

P(0
me1−Zd

+←→ x) ≤ C,1109

and we apply Markov’s inequality to see P(Xm ≥ C∂m2) ≤ c2m−2/8 for sufficiently1110

large C∂. This completes the proof of (65), concluding the proof of the lemma.1111

Lemma 14. Let ρ, C∂, c∂ be as in the statement of Lemma 13. There exist constants1112

Cvol < ∞ and m1 > m0 such that the following holds. Defining, for each pair of integers1113

 ≥ 1 and m ≥ m1, the event1114

G(, m) := A(, m) ∩B(, m), (71)1115

where1116
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Subcritical High Dimensional Percolation

A(, m) = C∂m2 > X m ≥ X2ρ-short
, m ≥ c∂m2

2
\ 0 Rect( m)←→ ∂ W Rect( m) (72)1117

B(, m) = |CRect( m)(0)| <Cvol m4
1118

∩ for each 0 ≤ i ≤ α, |CRect( m)(0)1119

∩Rect(( − i)m)\Rect(( − i − 1)m)| <Cvol im 4 , (73)1120

then we have P(G(, m)) ≥ c +1m−2 for a constant c uniform in  ≥ 1 and m ≥ m1.1121

We comment briefly on the definition of B (, m). The first event appearing in the in-1122

tersection in its definition is in some sense the operative one: it bounds the size of1123

CRect( m)(0), which is our main goal. The second event appears for technical reasons,1124

essentially serving as an accessory to regularity. See (79) and the following for how this1125

condition is applied, and see the end of Step 5 below for discussion of why we did not1126

try to impose a version of this condition as part of the definition of SREG.1127

Proof. The proof is by induction on for fixed m. The base case  = 1 is almost1128

furnished by Lemma 13; all that remains to prove is that the bound on |CRect(m)(0)| in1129

(73) can be imposed without changing the order of the probability bound in that lemma.1130

To do this, we simply apply a moment bound. Indeed,1131

E[|CRect(m)(0)|] ≤E[|C(0) ∩Rect(m)|] =
x∈Rect(m)

τ (0, x) ≤ Cm 2.1132

Applying Markov’s inequality and a union bound shows the claim of the lemma for1133

 = 1, for all sufficiently large values of Cvol .1134

We now prove the inductive step. We write1135

P(G( + 1, m)) ≥P(G( + 1, m) ∩G(, m))1136

=
C
P(G( + 1, m) | CRect( m)(0) = C)P(CRect( m) = C), (74)1137

where in (74) the sum is over realizations C of CRect( m) such that G(, m) occurs (this1138

event being measurable with respect toCRect( m)). Similarly, the sets m , ρ-short
, m , and1139

their cardinalities are functions ofCRect( m)(0); we write (for instance) X m(C) to denote1140

the (deterministic) value of X m that corresponds to the valueCRect( m)(0) = C.1141

The remainder of the proof will provide a uniform lower bound on the conditional1142

probability appearing in (74). We do this by successive conditioning, bounding the1143

probability cost as we impose the conditions of G( + 1, m). For clarity of presentation,1144

we organize this into steps. In what follows, C will be a fixed but arbitrary value of1145

CRect( m)(0) appearing in (74). Before starting the first step of the proof, we make some1146

definitions to allow us to notate events occurring off ofC more easily.1147

Definition 10. • &Zd ⊆ Zd is the vertex set [Zd \C] ∪ 2ρ-short
, m . With some abuse of1148

notation, we use the same symbol for &Zd and the graph with vertex set &Zd and with1149

edge set E(&Zd) defined by1150

{{x, y} ∈E(Zd) : x ∈ m , y ∈Zd \ Rect( m)} ∪ {{x, y} ∈E(Zd) : x, y ∈Zd \C}.1151
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• We denote the conditional percolation measure P( · | CRect( m) = C) on ' :=1152

{0, 1}E(&Zd) by 'P(·). Similarly, we write 'dchem for the chemical distance on the open1153

subgraph of &Zd .1154

Conditional on {CRect( m) = C}, the distribution of ωe for edges e of &Zd is the same as1155

their unconditional distribution: i.i.d. Bernoulli(pc). Indeed, whenC is such that G(, m)1156

occurs, E(&Zd) is exactly the set of edges inE(Zd) which are not examined to determine1157

CRect( m)(0) = C. So the measure 'P is just a projection of P onto a subset of the edge1158

variables of our original lattice.1159

We note that the restriction on m appearing in the statement of the lemma will arise1160

through the arguments below. Like in Sect. 3, we will need to introduce an auxiliary1161

parameter K which will be chosen large in order to make various error terms involving1162

cluster intersections small. All bounds will be uniform as long as m≥ m0 + 4K , and so1163

the ultimate value of m1 will be m0 + 4K for the choice of K made at (85). We will also1164

potentially need to enlarge the value of Cvol below in Step 6, but not any other constants1165

(and the value of Cvol will be manifestly independent of m and ).1166

Step 1. In what follows, we let K = 2k ≥ 1 be a constant larger than the K 1 from1167

Lemma 13, to be fixed shortly at (85). For each x ∈ 2ρ-short
, m , we define the following1168

events on the space of edge variables on &Zd .1169

• D1(x) is the event that1170

a. |{y ∈ ∂RRect(x; m) ∩ SREG
+1,m : 'dchem (x, y) ≤ 2ρm2}| ≥c∂m2,1171

b. y ∈ ∂Rect(( + 1)m) : y
Rect(( +1)m)\C←→ x < C∂m2,1172

c. {x, x + e1}is pivotal for m
&Zd ∩Rect(( +1)m)←→ ∂Rect(( + 1/2)m),1173

d. but we do not have x
Rect(( +1)m)←→ ∂ W Rect(( + 1)m).1174

• D1 is the event ∪x∈ ρ-short
m

D1(x).1175

We note that the conditional probability of the event1176

C∂m2 > X( +1)m ≥ X2ρ-short
+1,m ≥ c∂m2 \ 0 Rect(( +1)m)←→ ∂ W Rect(( + 1)m) (75)1177

conditioned on CRect( m) = C is bounded below by 'P(D1), and we turn to lower-1178

bounding 'P(D1).1179

The pivotality in the definition of D1(x) guarantees that D1(x1) ∩ D1(x2) = ∅ for1180

x1 = x2; in particular,1181

'P(D1) =
x∈ 2ρ-short

, m

'P(D1(x)). (76)1182

In light of (76) and (75), Steps 2–5 are devoted to establishing a uniform lower bound1183

on 'P(D1(x)).1184

Step 2. For each x as in (76), we set x ∗ = x + K e1. For use in this step, we introduce1185

notation for the analogues of X r and X 1,r (for r ≥ 1) when connections are forced not1186

to intersect C. Namely,1187

'Xr (x∗) := |{y ∈ ∂RRect(x∗; r) : y
Rect(x∗;r)\C←→ x∗}|,1188
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Subcritical High Dimensional Percolation

with the analogous definition for 'Xρ-short
1,r . Here we note that K plays both the role of the1189

shift of x∗and the implicit regularity parameter for 'Xρ-short
1,r .1190

We begin by arguing a probability lower bound for a modification of the event ap-1191

pearing in (65) but centered at x∗:1192

D2(x∗) := C∂(m − K )2 > 'Xm−K (x∗) ≥ 'Xρ-short
1,m−K (x∗) ≥ c∂(m − K )2

\ x∗Rect(x∗;m−K )\C←→ ∂W Rect(x; m − K )
(77)1193

Using a union bound, we find1194

'P D2(x∗) ≥P D2(x∗)

−P ∃z ∈C ∩ Rect(x∗; m − K ) :
{z ↔ ∂ RRect(x; m − K )} ◦ {z ↔ x∗}occurs .

(78)1195

It follows that the second term in (78) is bounded by1196

z∈C∩Rect(x∗;m−K )
P(z ↔ ∂ Rect(( + 1)m))P(x∗↔ z)1197

≤ Cm −2

z∈C∩Rect(x∗;m−K )
P(x∗↔ z). (79)1198

The sum over z in the last term can be further subdivided into the case that z also lies in1199

Rect(( − 1/2)m) and the case that z lies outside of Rect(( − 1/2)m). In the latter case,1200

we apply the facts that x ∈ SREG
, m and that x∗lies at distance K from x . In the former,1201

we use the fact that in this regime P(x∗ ↔ z) ≤ Cm 2−d and the fact that B(, m)1202

occurs, which implies that the number of z terms appearing in the sum is at most Cm4.1203

Using these two bounds, we see1204

(79) ≤ Cm −2 m6−d +
∞

s=k

2
9
2 s2(2−d)s

!
1205

≤ Cm −2 K
13
2 −d .1206

It remains to give a lower bound for the first term of (78). Indeed, this is almost the content1207

of Lemma 13 (specifically (65)) with m replaced by m − K , except for the appearance1208

of the set C in the portion of D2(x∗) involving connections to∂W Rect(x; m − K ). This1209

restriction only makesP(D2(x∗)) higher than the probability appearing in (65). As long1210

as m ≥ m0 + 4K , we can apply the bound of (65) in (78). We see there exists a K2 > K11211

and a c such that, for all K > K2 and m ≥ m0 + 4K ,1212

'P D2(x∗) ≥ cm−2 uniformly in , C, x. (80)1213

Step 3. We now upgrade the above, demanding further that x∗not be in the same cluster1214

as any element of m(C). We define1215

D3(x∗) := D2(x∗)\{∃z ∈ m : z
&Zd ∩Rect(( +1)m)←→ x∗} ⊆'.1216
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We note for future reference that1217

when D3(x∗) and {CRect( m)(0) = C}occur, then we do not have

x∗Rect(x∗;m−K )←→ ∂W Rect(( + 1)m).
(81)1218

This follows from (77), which ensures x∗has no connection to∂W Rect(( + 1)m) off C,1219

and the definition of D3(x∗), which ensures x∗has no connection to C.1220

We can lower bound the probability of D3(x∗) similarly to the argument establishing1221

(43) in the proof of Lemma 9:1222

'P(D3(x∗)) ≥ 'P(D2(x∗))1223

−
y∈Rect(( +1)m)\C

P

(
{ m

Rect(( +1)m)←→ y} ◦ {y ↔ x∗}
◦{y ↔ ∂ RRect(( + 1)m)} CRect( m)(0) = C

)
. (82)1224

We bound the sum in (82) by decomposing the sum into three terms: a) a term1225

corresponding to y ∈ Rect(( − 1/2)m), b) a term corresponding to y ∈ Rect(( +1226

1/2)m)\Rect(( − 1/2)m), and c) a term corresponding to y /∈Rect(( + 1/2)m). In1227

case a), we use the BK inequality to upper bound the sum by (letting m − y(1) = r )1228

Cπ(m/2) × | m(C)| ×
∞

r=m/2
rd−1r4−2d ≤ Cm 4−d = Cm −2(m6−d). (83)1229

Case c) is similar to a) but slightly more complicated. We use Theorem 6 to control1230

the connection probability between x∗and y, since y is close to ∂R Rect (( + 1)m). We1231

obtain the upper bound (letting max{( + 1)m − y(1), 1} =r )1232

C| m(C)|
m/2−1

r=1
rd−1 × (rm 1−d)2 × r−2 ≤ Cm −2(m6−d). (84)1233

Finally, the term corresponding to case b) can be bounded similarly to (39) using the1234

BK inequality and the fact that x∈ 2ρ-short
. m (C).We find, for K> K2 and m ≥ m0+4K ,1235

P(D3(x∗)) ≥ cm−2 − Cm −2 K 13/2−d uniformly in , C, x.1236

Thus, there exists a K 3 > K2 and a c > 0 such that, uniformly in K ≥ K3 and1237

m ≥ m0 + 4K ,1238

P(D3(x∗)) ≥ cm−2 uniformly in , C, and x . (85)1239

From here on, we fix K = K3, and assume m ≥ m1 = m0 + 4K3.1240

Step 4. We define one final subevent of D3(x∗), imposing the additional restriction that1241

no vertex of m(C) have an arm to ∂Rect(( + 1/2)m):1242

D4(x, x∗) = D3(x∗)\{∃z ∈ m : z
&Z d∩Rect(( +1/ 2)m)←→ ∂Rect(( + 1/ 2)m)}. (86)1243
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Subcritical High Dimensional Percolation

We lower-bound'P(D4(x, x∗)).To do this, we condition further onC&Z d ∩Rect(( +1)m)(x∗),1244

noting that D3(x∗) is measurable with respect to the sigma-algebra on ' generated by1245

this cluster:1246

'P(D4(x, x∗)) =
C

'P(D4(x, x∗) |C&Z d∩Rect(( +1)m)(x∗) = C )1247

P(C&Zd ∩Rect(( +1)m)(x∗) = C ). (87)1248

On D3(x∗), we have m ∩C&Z d∩Rect(( +1)m)(x∗) = ∅, and so the conditional prob-1249

ability in (87) is bounded by1250

1 − 'P(∃z ∈ m : z ↔ ∂ Rect(( + 1/2)m)) = 'P (∀z ∈ m : z ↔ ∂ Rect(( + 1/2)m))1251

(by FKG) ≥
 

z∈ m

P(z ↔ ∂ Rect(( + 1/2)m))1252

≥ (1 − cm−2)Cm 2 ≥ c.1253

In the second line, in addition to the FKG inequality, we used the fact that conditioning on1254

CRect( m) = C can only decrease the probability that m(C) is connected to ∂Rect(( +1255

1/2)m). The above bound is uniform inC , so reinserting into (87), we find1256

P(D4(x, x∗)) ≥ cm−2 uniformly in m ≥ m1 and , C, x. (88)1257

Step 5. We now turn (88) into the estimate1258

'P(D1(x)) ≥ cm−2 uniformly in m ≥ m1 and in , C, x (89)1259

by an edge modification argument. Let us writeωfor a typical configuration in D4(x, x∗),1260

considered as an element of . That is, we say ω ∈ is an element of D 4(x, x∗) if1261

ω ∈ {CRect( m) = C}and if the restriction ofωto ' is an element of D4(x, x∗). We write1262

ω for the modification of ωproduced as follows. We close all edges of E(&Zd) with an1263

endpoint in &Zd ∩ B(x; 2K ) except those in C&Z d (x∗). We then open edges of the form1264

{x + ne1, x + (n + 1)e1}for 0 ≤ n < K one by one, until the first time that x and x∗have1265

an open connection in Rect(( + 1)m) (at which time we stop opening edges).1266

Then in ω , we still have CRect( m)(0) = C, since we have not opened or closed1267

an edge with both endpoints in Rect ( m). Moreover, the vertices y counted by the 'X1268

variables from (77) are now in ( +1)m(x) in ω . In addition, each such y has1269

dchem (x, y) ≤ ρm2 + K ≤ 2ρm2
1270

(where the last inequality uses m ≥ m1).1271

To show that ω ∈ D1(x), we show pivotality—that every connection from m to1272

∂Rect(( + 1)m) in ω passes through {x, x + e1}—and then that the cluster of x in the1273

modified configurationω inherits the appropriate properties from the cluster of x∗in the1274

original configuration ω. To show pivotality, supposeγ is an open path in ω from m1275

to ∂Rect(( + 1)m). Then γ must use one of the edges opened in the mappingω → ω ,1276

since ω ∈D4(x, x∗). Letting e be the first such edge, if e is not {x, x + e 1}, then the1277

edge of γ just before e must terminate at some vertex x + i e 1, 1 ≤ i ≤ K . But this1278

edge would have been closed by the mappingω → ω unless it were an edge of 'C(x∗),1279

implying that x
Rect(( +1)m)←→ x∗in ω, a contradiction.1280
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By pivotality and the fact that the mappingω → ω modifies only edges of Rect(( +1281

1/2)m), we have1282

CRect(( +1)m)(x)[ω]\Rect(( + 1/2)m) = CRect(( +1)m)(x∗)[ω]\Rect(( + 1/2)m)1283

(90)1284

and in particular that ( +1)m(0)[ω] is 'C(x∗)[ω]. The definition (77) of D 2(x∗) then1285

implies that in ω , we have X ( +1)m < C∂m2; the fact (81) implies x does not have a1286

connection to∂W Rect(( +1)m). To complete the proof thatω ∈D1(x), all that remains1287

is to show that each y counted in 'Xρ-short
1,m−K in ωsatisfies y ∈ 2ρ-short

( +1),m [ω].1288

To show first that y ∈SREG(0; + 1, m, K )[ω], let r ≥ K ; we compute1289

E[|C(y) ∩B(y; r)\Rect(( + 1/2)m)| |CRect(( +1)m)(y)]1290

=
z∈B(y;r)\Rect(( +1/2)m)

P(y ↔ z | CRect(( +1)m)(y)) on ω. (91)1291

Fix z ∈B(y; r)\Rect(( + 1/2)m). Consider a realization ω having the same value1292

of CRect(( +1)m)(y) as in ω , and suppose that z ∈C(y). There are two possibilities:1293

1. z ∈CRect(( +1)m)(y)[ω ] = CRect(( +1)m)(y)[ω]. In this case, by (90), we actually1294

have that z ∈CRect(( +1)m)(x∗)[ω].1295

2. Otherwise, there is an open path from some element of ( +1)m[ω] to z which avoids1296

CRect(( +1)m)(x)[ω] (and hence CRect(( +1)m)(x∗)[ω]).1297

In either case, using (90), the conditional probability of the connection from y to z is at1298

most1299

P(y ↔ z | CRect(( +1)m)(x∗))[ω].1300

Since y is counted in 'Xρ-short
1,m−K in ω, we can use the last display to bound the sum in (91)1301

by Cm9/ 2. As noted at (75) and (76), this shows that there is a constant c1 > 0 such that1302

'P(A(, m)) ≥ 'P(D1) ≥ c1 uniformly in m ≥ m1, , C. (92)1303

We return briefly to the issue of the definition of B (, m). We note that the above1304

argument only gives effective control of the cluster of x outside of Rect (( + 1/2)m).1305

In principle, there could be many other vertices of m whose clusters span part of1306

Rect(( + 1/2)m)\Rect( m). Without controlling the number of vertices contained in1307

such “partial spanning clusters”, we would not be able to adequately bound (79). The1308

definition of B(, m) is designed to provide the necessary control.1309

Step 6. Let c1 be the constant in (92). We show that there is a choice of C vol as in the1310

definition of G(, m) sufficiently large such that1311

P(|CRect(( +1)m)(0)\CRect( m)(0)| <Cvolm4 | G(, m)) > 1 − c1/2. (93)1312

for all and m.1313

Given (93),P(B( + 1, m) | G(, m)) > 1 − c1/2 trivially follows. This proves the1314

lower bound onP(G( + 1, m)) and completes the induction; indeed,1315

P(A( + 1, m) ∩ B( + 1, m) | G(, m)) ≥P(A( + 1, m) | G(, m))1316

+ P(B( + 1, m) | G(, m)) −11317

≥ c1 + 1 − c1/2 − 11318

= c1/2,1319
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Subcritical High Dimensional Percolation

where we have used (92) and (93).1320

We now show (93), using the decomposition in (74). It will suffice to show1321

'P
⎛
⎝

x∈ m(C)

'C(x) > Cvolm4

⎞
⎠ < c1/2 (94)1322

for a large Cvol , uniformly in m and and in C. Of course, the clusters 'C(x) above are1323

stochastically dominated by the corresponding clusters in Zd , and so we can use the1324

Aizenman–Barsky tail asymptotic (12) forZd cluster sizes.1325

Indeed, we can upper-bound the the left-hand side of (94), with Cvol replaced by an1326

arbitrary parameter τ > 0, as follows:1327

'P
⎛
⎝

x∈ m(C)

'C(x) > τm4

⎞
⎠ ≤P

⎛
⎝

x∈ m(C)
C(x) > τm4

⎞
⎠ .1328

Recalling that X m(C) ≤ C∂m2 and using Lemma 1, we see that right-hand side of the1329

last display is at most C τ−1/ 2 uniformly in m, C, and ; in particular, there is a large1330

constant Cvol such that (94) holds uniformly in the same parameters. This completes the1331

proof of Lemma 14.1332

4.4. Proof of lower bounds in Theorems 2 and 4. We first prove the lower bound of1333

Theorem 4. Recalling the constant m0 from Lemma 14, we assume λ 1/3n ≥ m0;1334

this is where the constraint on λ arises. We fix m = λ 1
3 n and set  =  n/ m!. By1335

Lemmas 13, 14 and the one-arm probability (13), we see1336

P(|C(0)| ≤ λn4 | 0 ↔ ∂ B(n)) ≥ cn2P(|C(0)| ≤ λn4, 0 ↔ ∂ B(n))1337

≥ cn2P(G(, m)) ≥ n2m−2c +1
1338

≥ c +1 ≥ c exp(−Cλ−1/3).1339

Similarly, to prove (5) from Theorem 2, we take m = λ n (assuming that this is at1340

least m0) and again set  =  n/ m!. We note1341

P(Sn ≤ λn2 | 0 ↔ ∂ B(n)) ≥ cn2P(Sn < λn2, 0 ↔ ∂ B(n))1342

≥ cn2P(G ) ≥ n2m−2c +1
1343

≥ c +1 ≥ c exp(−Cλ−1).1344

The lower bounds are proved.1345

5. Proof of Theorem 1 and of (4) from Theorem 21346

We recall the correlation length ξ (p) introduced for p < pc in Definition 2. The lower1347

tail of the critical chemical distance will be related to the behavior of πp(n) with n of1348

order ξ (p). We introduce a quantity to be denoted L δ(p) which is related to ξ (p) and1349
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which will play the role of L (p) from Z2 appearing in (10). For each finite vertex set1350

D ⊆ Zd satisfying 0 ∈D, we write, similar to notation of Sect. 3,1351

X D := {x ∈ ∂D : 0 D←→ x} =CD(0) ∩ ∂D. (95)1352

For any n ∈N, δ >0 and p ∈ (0, pc), we define1353

D(n) := {D ⊂ Zd : 0 ∈D and sup { x ∞ : x ∈D} ≤n},1354

and1355

Lδ(p) := inf n ≥ 1 : inf
D∈D(n)

Ep[|X D|] ≤ δ . (96)1356

See [10], where a related quantity was used to provide a new proof of the fact that1357

ξ (p) < ∞ whenever p < pc. See also [13] for exposition of earlier proofs of this fact.1358

As a consequence of ξ (p) < ∞ , we have L δ(p) < ∞ for any p < pc. Moreover,1359

Lδ(p) ↑ ∞ as p pc with δ >0 held constant.1360

5.1. Upper bound onπp(n) from Theorem 1. The upper bound onπp(n) from Theorem 11361

follows by combining Lemmas 15 and 16 stated below.1362

Lemma 15. There is a constant C > 0 (depending on d only) such that uniformly in n,1363

δ ∈ (0, min{C−1, e−4/ 28}), and p < pc,1364

Pp(0 ↔ ∂ B(n)) ≤ Cn −2 exp(−n/ Lδ(p)). (97)1365

Lemma 16. For δas in the statement of Lemma 15, there are constants c(δ),C(δ) >01366

such that1367

c(pc − p)−1/ 2 ≤ Lδ(p) ≤ C(pc − p)−1/ 2
1368

uniformly in p ∈ (0, pc).1369

We recall that the asymptotic behavior of ξ (p) as p pc is known [15], namely1370

ξ (p)  ( pc − p)−1/ 2. Lemma 16 shows that identical asymptotic behavior holds for1371

Lδ(p).1372

Proof of Lemma 15. We will use the following claim, whose proof is given after the1373

proof of the lemma.1374

Claim 17. There is a constant c 1(d) such that Ep[X B(k Lδ(p))] ≤ δk/ 4 for all δ < c1,1375

p < pc, and integers k ≥ 4.1376

Claim 17 is related to Theorem 2 of [14] or Lemma 1.5 of [10]. Given Claim 17, we prove1377

the lemma using an induction argument. For ∈ N, our th induction hypothesis is that1378

the inequality in (97) holds for all n≤ 2 Lδ(p)and p < pc, where C := max{Ae8, c−1
1 },1379

for c1 as in Claim 17 and where A is the implicit constant in the upper bound in (13).1380

To prove our hypothesis for  ≤ 3 we use (13) and the monotonicity property of Pp(·)1381

in p to see1382

Pp(0 ↔ ∂ B(n)) ≤Ppc(0 ↔ ∂ B(n)) ≤ Cn −2e−n/ Lδ(p) (98)1383

for all p < pc and n ≤ 8L δ(p). (98) proves our induction hypothesis for  ≤ 3.1384
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n

0
y

kLδ(p) n −kLδ(p)

Fig. 3. Geometry in the proof of Lemma 15

Assuming that the th induction hypothesis is true, we now prove the ( + 1)st1385

hypothesis. Without loss of generality, we can take n ∈ (2 Lδ(p), 2 +1Lδ(p)], as1386

all n ≤ 2 Lδ(p) are covered in the th hypothesis. We take k := n/(2L δ(p)) . If1387

{0 ↔ ∂ B(n)}occurs, then there must be a y∈ ∂B(k Lδ(p)) such that {0 B(k Lδ(p))←→ y}and1388

{y ↔ ∂ B(y; n − k Lδ(p))}occur disjointly. See Fig. 3 for an illustration. So, using a1389

union bound, the BK inequality, and our th induction hypothesis,1390

Pp(0 ↔ ∂ B(n)) ≤
y∈∂B(k Lδ(p))

Pp(0 B(k Lδ(p))←→ y)Pp(y ↔ ∂ B(y; n − k Lδ(p)))1391

≤ C(n − k Lδ(p))−2 exp −n − k Lδ(p)
Lδ(p)1392

y∈∂B(k Lδ(p))
Pp(0 B(k Lδ(p))←→ y)1393

≤ C(n/2)−2ek−n/ Lδ(p)Ep[X B(k Lδ(p))],1394

as n − k Lδ(p) ≥ n/2. Finally, note that Ep[X B(k Lδ(p))] ≤ δk/4 by Claim 17, and1395

4eδ1/4 < 1. So the RHS of the last display is ≤ Cn −2e−n/ Lδ(p), which proves the1396

( + 1)st induction hypothesis. This completes the proof of the induction argument and1397

the lemma.1398

Proof of Claim 17. We abbreviate m = k Lδ(p). Let D be the infimizing set appearing1399

in the definition (96) of Lδ(p). We expand the expectation:1400

Ep[X B(m)] =
z∈∂B(m)

τB(m),p(0, z). (99)1401

Consider an outcome in {0 B(m)←→ z}, where z ∈ ∂B(m). In this outcome, we can decom-1402

pose the connection into segments which extend roughly distance L (p). We let y1 be1403
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Fig. 4. Geometry in the proof of Claim 17: the red dot represents y 1, the blue dot is y2, y3 is green

the first vertex of∂D encountered by some open path from 0 to z, then let y2 be the first1404

vertex on y1 + ∂D encountered by this path after y1, and so on. Proceeding in this way,1405

we see there is a sequence 0 = y0, y1, . . . ,yr of vertices of B(m) with r = k/2 , such1406

that y +1 ∈ [y + ∂D] for each  ≤ r − 1, such that yr − z ≥ m/2, and such that the1407

following disjoint connection event occurs:1408

{0 D←→ y1} ◦ {y1
y1+D←→ y2} ◦ · · · ◦ {yr−2

yr−2+D←→ yr−1} ◦ {yr
B(m)←→ z}.1409

We apply the BK inequality and sum over the y’s. Each term has a factor of the form1410

τB(m),p(yr , z); this is at most τB(m),pc(yr , z) and so is uniformly bounded by Cm 1−d
1411

using (21). This leads us to the estimate1412

τB(m),p(0, z)≤ Cm 1−d

y1∈∂Dy2∈[y1+∂D]
· · ·

yr∈[yr−1+∂D]
τD,p(0, y1) . . .τyr−1+D ,p(yr−1, yr ).1413

Evaluating the y sums and using the definition of D, the above is bounded by1414

Cm 1−dδr .1415

Finally, we sum over z ∈ ∂B(m) to find1416

Ep[X B(m)] ≤Cδk/2−1 ≤ δk/ 4
1417

for all δ smaller than some d-dependent constant and all k ≥ 4. This proves the claim.1418

1419

Proof of Lemma 16. To prove the upper bound for Lδ(p), first we recall the following1420

bound from [10, (1.3)]:1421

d
d p
Pp(0 ↔ ∂ B(n)) ≥ 1

p(1 − p)
[Pp(0 ↔ ∂ B(n))] inf

D∈D(n)
Ep[|X D|]. (100)1422
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Since p c ≤ 1/2 and Pp(0 ↔ ∂ B(n)) is decreasing (resp. increasing) in p (resp. n),1423

1
p(1 − p)

[Pp(0 ↔ ∂ B(n))] ≥ 1
pc(1 − pc)

[Ppc(0 ↔ ∂ B(1))] = (1 − pc)2d−1

pc
=: c01424

for all n ≥ 1 and p < pc. Combining the last two displays, we arrive at the following1425

bound.1426

d
d p
Pp(0 ↔ ∂ B(n)) ≥ c0 inf

D∈D (n)
Ep[|X D|], uniformly in n ≥ 1, p < pc. (101)1427

Next, we integrate both sides of the above inequality from p to pc (using the continuity1428

of Pp(E) for each cylinder event E ) to see1429

0 ≤Pp(0 ↔ ∂ B(n)) ≤Ppc(0 ↔ ∂ B(n)) −c0
pc

p
inf

D∈D(n)
Eq[|X D|]dq1430

≤ Cn −2 − c0
pc

p
inf

D∈D(n)
Eq[|X D|]dq, (102)1431

where in the last line we used (13). Clearly,Eq[X D] is increasing in q for each fixed D;1432

we can therefore bound the right-hand side of (102) by taking q= p inside the integral,1433

and obtain the inequality1434

Cn −2 ≥ c0(pc − p) inf
D∈D(n)

Ep[|X D|],1435

uniformly in n ≥ 1 and p < pc. Now, choosing p0 ∈ (0, pc) such that p > p0 implies1436

Lδ(p) ≥ 2, and taking n = Lδ(p) −1, we have1437

C(Lδ(p) −1)−2 ≥ c0δ(pc − p) for all p ∈ (p0, pc).1438

This proves the upper bound for Lδ(p).1439

To prove the lower bound for Lδ(p), recall that (see [15])1440

*
lim

n→∞
− logPp(0 ↔ ne1)

n

+−1
:= ξ(p)  ( pc − p)−1/ 2. (103)1441

Also, Pp(0 ↔ ne1) ≤ Pp(0 ↔ ∂ B(n)) ≤Ep[X B(n)] ≤ δn/4L δ(p) for n = k Lδ(p)1442

with k ≥ 4, by Claim 17. Using this last display, and looking at the limit as k → ∞1443

after taking the n-th root of both sides of the last inequality, we see that c1ξ (p) ≤ Lδ(p)1444

for some constant c1. This together with (103) proves the lower bound for Lδ(p).1445

5.2. Lower bound for the subcritical one arm probability. For λ ≥0, define1446

πp(n; λ) =Pp(An,λ), where An,λ := {0 ↔ ∂ B(n), Sn < λn2}.1447

Note that An,λ is an increasing event. The goal is to use the Russo’s formula to compute1448

the derivative of the above and show that πp(n; λ) is not too small for a “good choice1449

of λ”. Using Russo’s formula (18),1450

d
d p

πp(n; λ) =Ep Nn,λ, where Nn,λ :=
e∈E(B(n))

1{e is pivotal for the eventAn,λ}.1451
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It is easy to see that if1452

Nn,λ :=
e∈E(B(n))

1{e is open and is pivotal for the eventAn,λ},1453

then Nn,λ ≤ λn21An,λ and ENn,λ = p−1ENn,λ. It follows that1454

d
d p

πp(n; λ) ≤p−1λn2πp(n; λ).1455

Therefore, for any p0 ∈ (0, pc) and p ∈ (p0, pc), we have1456

d
d p

log πp(n; λ) ≤ 1
p0

λn2.1457

Integrating both sides of the above inequality from p to pc,1458

log
πpc(n; λ)
πp(n; λ) ≤ pc − p

p0
λn2,1459

which is equivalent to1460

πpc(n; λ)
πp(n; λ) ≤ exp( pc − p

p0
λn2).1461

In other words, there exists a constant C such that:1462

πp(n; λ) ≥exp(−C(pc − p)λn2)πpc(n; λ).1463

Using the lower bound for πpc(n; λ)from Theorem 2, we obtain1464

πp(n; λ) ≥exp(−C(pc − p)λn2) exp(−C/λ)n−2.1465

Now we chooseλ to optimize the RHS of the above display. Choosingλ = [n√
pc − p]−1,1466

we get1467

πp(n; λ) ≥exp(−Cn
√

pc − p)n−2.1468

This completes the proof of the lower bound.1469

5.3. Upper bound for the critical chemical distance. We will employ the usual coupling1470

of the measures Pp for different values of p. Let (ωe)e be i.i.d. Uniform(0, 1), ωn =1471

(ωe : both endpoints of eare in B(n)), and Pωn denote the distribution of ωn . An edge1472

e is called p-open if ωe ≤ p. A path is called p-open if all the edges on that path are1473

p-open. Let Sn(p) denote the smallest number of edges on any p-open path connecting1474

0 and ∂B(n). Also let {0 ↔ p A}denote the event that there is a p-open path connecting1475

0 and A.1476
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We use the following inequality, which has been used in the first display of [27,1477

Section 2].1478

Pωn (0 ↔ p ∂B(n), |Sn(p)| = )1479

≥Pωn (|Sn(pc)| = and the optimal pc-open path is p-open)1480

≥ p
pc

Pωn (0 ↔ pc ∂B(n), |Sn(pc)| = ). (104)1481

In the previous inequality, we choose “the optimal path” to mean a p c-open path of1482

minimal length connecting the origin to ∂B(n) chosen in some measurable way among1483

minimal paths.1484

Summing over  ≤ k and dividing both sides by Pωn (0 ↔ pc ∂B(n)),1485

Ppc (|Sn| ≤k | 0 ↔ ∂ B(n)) ≤ C
pc

p

k Pp(0 ↔ ∂ B(n))
Ppc(0 ↔ ∂ B(n))

.1486

Using the inequality log(x) ≤ x − 1 for all x > 1,1487

pc

p

k

= exp k(log pc − log p) ≤ exp k
pc − p

p
for all p < pc.1488

Combining the last two estimates, using the upper bound on the subcritical one-arm1489

probability given in Theorem 1, and applying the lower bound in (13), there are constants1490

c, C > 0 such that1491

Ppc(|Sn| ≤k | 0 ↔ ∂ B(n)) ≤ C exp k
pc − p

p
− cn

√
pc − p .1492

With these preliminaries completed, we can now prove (4) from Theorem 2; we1493

assume that λ ≥ n−1 since otherwise the probability appearing in (4) is trivially zero.1494

Replacing k by λn2 and p by p c − 1
C2

0λ2n2 for a C0 to be chosen (and using λn ≥ 1),1495

Ppc(|Sn| ≤ λn2 | 0 ↔ ∂ B(n)) ≤ exp

(
−λ−1 c

C0
− 1

C2
0(pc − C−2

0 )

!)
.1496

Choosing C0 large enough, we get the desired upper bound.1497

5.4. Point-to-point corollaries . In this section, we prove the corollary stated at (6) and1498

a related extension to half-spaces. These will also be useful in the proof of Theorem 3.1499

We state the results here formally:1500

Corollary 18. There exist constants C , c > 0 such that the following bounds on the1501

lower tail of the point-to-point chemical distance hold:1502

for all x ∈Zd , P(0 ↔ x, dchem (0, x) ≤ λ x 2) ≤ Ce−c/λ x 2−d ;1503

for all x ∈Zd
+, P(me1

Zd
+←→ x, d H

chem (me1, x)1504

≤ λ x − me1
2) ≤ Ce−c/λ m x − me1

1−d .1505
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We recall that d H
chem is the analogue of d chem for percolation restricted to the half-1506

space Zd
+. To prove the corollary, we need an intermediate lemma relating point-to-box1507

chemical distances to point-to-point chemical distances. For λ > 0, let1508

Xk
B(n) = #{x ∈ ∂B(n) : x

B(n)←→ 0 by a path of fewer than k edges}.1509

In other words, X k
B(n) is the number of vertices x ∈ ∂B(n) having dB(n)

chem (0, x) ≤ k.1510

Lemma 19. There is a uniform constant C such that, for each n ≥ 1 and each λ > 0,1511

there is an  ≤ n/2 with1512

Epc[Xλn2
B() ] ≤C exp(−(Cλ)−1).1513

Proof. We fixδsmall as in Lemma 15 and Claim 17. We will assume n≥ 8; the extension1514

to smaller values of n is trivial. The parameter p < pc will be chosen later such that1515

Lδ(p) ≤ n/2; we set k = n/2L δ(p) . Our ultimate choice of p will depend on λ and1516

n, and we will need λ smaller than some uniform constant to ensure L δ(p) ≤ n/2; we1517

assume this in what follows, since we can handle larger λ by adjusting constants.1518

Similarly to (104), we see that for each y ∈ ∂B(n) and each λ > 0,1519

Ppc (y is counted in Xλn2
B(k Lδ(p))) ≤

pc

p

λn2

Pp(y counted in X B(k Lδ(p))).1520

Summing the last inequality over y ∈ ∂B(n), we find1521

Epc[Xλn2
B(k Lδ(p))] ≤

pc

p

λn2

δk/ 4 ≤ pc

p

λn2

e−Cn (pc−p)1/ 2
1522

≤ exp λn2 pc − p
p

− Cn (pc − p)1/ 2 .1523

where we have used Claim 17 and then Lemma 16. The constant here is uniform in n1524

and p as above.1525

We set pc − p = (C1λ2n2)−1 for a suitably large uniform C1 > 0. The last estimate1526

becomes1527

For all n and λ, Epc[Xλn2
k Lδ(p)] ≤C exp(−c/λ).1528

Since k Lδ(p) ≤ n/2 for λ small relative to our constant C1, the proof is complete with1529

 = k L(p).1530

Proof of Corollary 18. We prove only the second inequality. The first is simpler to show,1531

and the argument requires only minor modifications.1532

We find an as in Lemma 19 (with the role of n played by x − me1/ 2). Then, on1533

the event under consideration, we can find a y ∈B(x; ) such that1534

{y
B(x;)←→ x, d B(x;)

chem (x, y) ≤ λ x − me1
2} ◦ {y Zd

+←→ me1}1535

occurs. Summing over y ∈ ∂B(x; ) and applying the BK inequality and Theorem 6,1536

we find1537

P(me1
Zd

+←→ x, d H
chem (me1, x) ≤ λ x − me1

2) ≤ Cm x − me1
1−dE[Xλ( x−me1/ 2)2]1538

≤ Ce−c/λ m x − me1
1−d ,1539

as claimed.1540
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6. Chemical Distance Upper Tail1541

In this section, we prove Theorem 3. We actually show something stronger; namely, that1542

the length of the longest self-avoiding path from 0 to ∂B(n) has exponential upper tail1543

on scale n2. In Sect. 6.1, we make some necessary definitions and then perform a first1544

moment calculation. In Sect. 6.2, we compute higher moments and conclude the proof.1545

We then comment briefly on how to show (7) using similar ideas.1546

6.1. First moment bound . Given a vertex y∈Zd
+, letLH (y) be the length of the longest1547

self-avoiding open path from y to∂Zd
+, if such a path exists. Otherwise we setLH (y) = 0.1548

This convention will be useful for avoiding expressions such asLH (y)1{y↔∂Z d
+}.1549

We letβ(y) denote a measurably chosen maximizer in the definition ofLH (y), with1550

β(y) = ∅ if no path from y to ∂Zd
+ exists. Then E[LH (y)] =E[|β(y)|] by definition,1551

where we interpret β(y) as a sequence of vertices when computing the cardinality. We1552

provide a uniform upper bound on the expectation:1553

sup
y∈Zd

+

E[LH (y)] < ∞. (105)1554

In what follows, we consider a fixed vertex x inZd
+ and then provide an upper bound1555

onE[LH (x)]which will be seen to be uniform in x . For ease of notation, we letδ =x(1)1556

denote the distance of our vertex from ∂Zd
+. Keeping track of δ-dependence will allow1557

us to make sure our constant upper bound is indeed uniform.1558

We first peel off an inconsequential piece of the expectation:1559

E[LH (x);LH (x) ≤ δ2] ≤ δ2P(x ↔ ∂ B(x; δ)) ≤C, (106)1560

where in the last inequality we used the one-arm probability bound (13). The constant1561

here is uniform because it is just the constant appearing in that upper bound on π(n).1562

On the event that LH (x) > δ2, we have to do significantly more work. We let β (x)1563

denote the “first half” of β(x)—in other words, the segment ofβ(x) beginning at x and1564

terminating after |β( x)|/2 edges. Of course, E[|β(x)|] ≤ 2E[|β(x)|] + 1, so if we1565

can show1566

E[|β(x)|; |β(x)| > δ2] ≤C, (107)1567

then the proof of (105) will be complete.1568

We first sum over B(x; δ). Let A(z; r) denote the event that a vertex z has an intrinsic1569

arm to distance r , as defined at (14). If z ∈ β (x) ∩ B(x; δ)and LH (x) > δ2, then1570

{x ↔ z} ◦A(z; δ2/2) occurs. Using the BK inequality, we see1571

E[|β(x) ∩B(x; δ)|;LH (x) > δ2] ≤
z∈B(x;δ)

τ (x, z)P(A(z; δ2/2))1572

≤ Cδ−2

z∈B(x;δ)
τ (x, z) ≤ C , (108)1573

where we have used the intrinsic one-arm probability upper bound (14).1574

To count the remaining portion of β (x), we will replicate the calculation leading1575

to (108) by summing over scales—here we are more careful and exploit the fact that1576

the τ from (108) could actually be taken as a τH . The more rapid decay of τH , from1577
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Theorem 6, will be necessary to show the sum converges. Let us abbreviate Ak =1578

Ann(x; δ2k , δ2k+1). Then1579

E[|β(x) ∩Ak|;LH (x) > δ2] =E[|β(x) ∩Ak|; LH (x) > 23k/2δ2]
+ E[|β(x) ∩Ak|; 23k/2δ2 ≥ LH (x) > δ2].

1580

(109)1581

We bound each of the terms on the right-hand side of (109) by different methods.1582

For the first term, we note that when LH (x) > 23k/2δ2, each z ∈ β(x) ∩Ak must1583

satisfy1584

{z
Zd

+←→ x} ◦A(z; 23k/ 2δ2/2).1585

Applying the BK inequality and summing, we find1586

E[|β (x) ∩Ak|;LH (x) > 23k/ 2δ2] ≤
z∈Ak

τH (x, z)P(A(z; 23k/2δ2/2))1587

≤ Cδ−22−3k/ 2

z∈Ak

τH (x, z)1588

≤ Cδ−22−3k/ 2 × (δ2k)d × δ × (δ2k)−(d−1)
1589

≤ C2−k/ 2.1590

In the second to last step, we have used Theorem 6.1591

For the second term of (109), we use Corollary 18:1592

E[|β (x) ∩Ak|;23k/ 2δ2 ≥ LH (x) > δ2]1593

≤
z∈Ak

P x
Zd

+←→ z, d H
chem (x, z) < 2−k/2(δ2k)2 P(A(z; δ2/2))1594

≤ Cδ−2 × (δ2k)d × e−c2k/2 × δ × (δ2k)1−d ≤ C2 ke−c2k/2 .1595

In both cases, all constants arise from the estimates on the one-arm probability, the1596

chemical distance lower tail, or the asymptotics forτH . In particular, these constants are1597

uniform in k and x . Combining the two estimates, we get that the left-hand side of (109)1598

is bounded uniformly by1599

C2−k/ 2.1600

Summing over k shows (107), and recombining this with (106) completes the proof.1601

6.2. Higher moments of path length. Let Ln denote the length of the longest self-1602

avoiding open path from 0 to ∂B(n) which lies entirely within B (n). As before, we1603

set Ln = 0 if no open arm from 0 to ∂B(n) exists. We now show the following result,1604

which implies Theorem 3 via the trivial inequality Sn ≤ Ln on {0 ↔ ∂ B(n)}.1605
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Proposition 20. There exists a constant C1 such that, for all integers n, k ≥ 1,1606

E[Lk
n | 0 ↔ ∂ B(n)] ≤k!(C1n2)k .1607

In particular, there is a constant C2 such that1608

P(Ln ≥ λn2 | 0 ↔ ∂ B(n)) ≤C2 exp
−λ
C2

.1609

Proof. The second claim follows by using the first to bound the moment generating1610

function ofLn/ n2. It therefore suffices to bound the moments ofLn . Similarly to before,1611

we let βn denote a measurably chosen self-avoiding open path from 0 to ∂B(n) of1612

maximal length. By expandingLn into a sum of indicators and using (13), we find1613

E[Lk
n | 0 ↔ ∂ B(n)] ≤Cn 2

z1,...,zk∈B(n)
P(z1, . . . ,zk ∈ βn, 0 ↔ ∂ B(n)). (110)1614

Since βn is self-avoiding, the vertices z1, . . . ,zk appear in a well-defined order along1615

this path. We abbreviate “w and y lie on βn with w appearing before y in order starting1616

at 0” by w ≺ y. Then1617

(110) = (Cn 2)(k!)
z1,...,zk∈B(n)

P(z1 ≺ z2 ≺ · · · ≺zk , 0 ↔ ∂ B(n))1618

= (Cn 2)(k!)
z1,...,zk−1∈B(n)

E
,|{y ∈ βn : zk−1 ≺ y}|1z1≺···≺zk−1

-
. (111)1619

We would like to evaluate the expectation in (111), and so we need some way to decouple1620

the variables there. To make the notation for this step easier, we abbreviate1621

V = V (z1, . . . ,zk−1) :=1z1≺···≺zk−1; W = W (zk−1) = |{y ∈ βn : zk−1 ≺ y}|.1622

Consider an outcome ω ∈ {V W ≥ λ}for some real number λ > 0. We see that1623

ω ∈ {0 ↔ z1} ◦ · · · ◦ {zk−2 ↔ zk−1} ◦ {∃open path of length1624

≥ λin B(n) from zk−1 to ∂B(n)}.1625

Indeed, disjoint witnesses for the events above are provided by disjoint segments ofβn .1626

Letting the length of the longest open path from z k−1 to ∂B(n) which lies entirely in1627

B(n) be denoted by W and using the BK inequality, we bound1628

E[V W] =
∞

0
P(V W ≥ λ)dλ1629

≤ τ (0, z1) · · · τ (zk−2, zk−1)
∞

0
P(W ≥ λ)dλ1630

= τ (0, z1) · · · τ (zk−2, zk−1)E[W ].1631

Any open path in B (n) from z k−1 to ∂B(n) is also an open path to one of the 2d1632

hyperplanes containing one of the 2d sides making up∂B(n), with this open path lying1633

entirely on one side of the hyperplane. In other words,E[W ] is bounded above by a sum1634
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of 2d terms of the form E[LH (yi )] for y i ’s appropriately chosen depending on z k−1.1635

Applying (105), we see there is a C uniform in n and z1, . . . ,zk−1 such that1636

E[V W] ≤Cτ (0, z1) · · · τ (zk−2, zk−1). (112)1637

Inserting the bound of (112) into (111) and summing over z1 through zk−1, we see1638

E[Lk
n | 0 ↔ ∂ B(n)] ≤Ckn2(k!)n2(k−1) = k!(Cn 2)k .1639

Because k was arbitrary and the constant C is uniform in n and k, the moment bound is1640

proved.1641

We now briefly describe how to show (7). Considering a shortest self-avoiding open1642

path from 0 to x, we can upper bound the kth moment of d chem (0, x) on {0 B(2n)←→ x}by1643

an expression like (110). The main differences are that the probability on the right-hand1644

side no longer includes the event{0 ↔ ∂ B(n)}, and that the prefactor is x d−2 instead1645

of n 2. (Here we use (15).) Fixing an ordering as in (111) gives rise to an analogous1646

prefactor of k!. Finally, we are left to sum an expression of the form1647

z1,...,zk

τ (0, z1)τ (z1, z2) . . . τ (zk , x).1648

This sum can be upper-bounded by Ck−1 x 2k+2−d using standard methods. Pulling1649

this factor together with the previous ones, we find1650

E[dchem (0, x)k | 0
B(2n)←→ x] ≤k!Ck x d−2 x 2k+2−d = k!(C x 2)k ,1651

completing the proof.1652

7. Proof of Upper Bound from Theorem 41653

In this section, we prove the inequality “≤” from (8). We wish to bound the probability,1654

conditional on 0 ↔ ∂ B(n), that |CB(n)(0)| ≤ λn4. As in the statement of Theorem 4,1655

we fix a value of α > 3d/2 and will consider only values of λ > (log n)α/ n3. We set1656

κ =  λ−1/3!; this parameter will be more directly useful than λ in our arguments, and1657

most of our estimates going forward are more naturally phrased in terms ofκ. We divide1658

up the annulus Ann (n/2, n) into κ annuli1659

A j = Ann
n
2

+
n j
2κ, n

2
+

n( j + 1)
2κ , j = 0, . . . , κ −1,1660

with associated boxes1661

B1
j = B 0; n

2
+

n j
2κ , B2

j = B 0; n
2

+
n(2 j + 1)

4κ .1662

We also introduce the sub-annulus1663

A j ⊃ A j = Ann
n
2

+
n(2 j + 1)

4κ
, n

2
+

n(4 j + 3)
8κ

= B 0; n
2

+
n j
2κ

+
3

8κ
\ B2

j .1664
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n/2

∂B 1
1

∂B 2
1

A1

0

Ann(n/2, n) = A0 ∪ A1 ∪ A2

n

∂A 1n
6

Fig. 5. Here κ = 3 and Ann (n/2, n) is divided into 3 annulus A 0, A1, A2

In words, B1
j is the inner box of A j , B2

j the box which extends halfway across A j , and1665

A j is an annulus which begins halfway across A j and ends three quarters of the way1666

across A j . See Fig. 5 for an illustration.1667

We note that κ < Cn /( log n)α/3 for some C = C(α). The fact that α/3 > d/2 will1668

be used in the proof of Lemma 21, essentially to ensure that the annuli above are thick1669

enough to recover some independence between the portions of the cluster CB(n)(0) in1670

different A j ’s. We will need n to be larger than some dimension-dependent constant,1671

guaranteeing in particular n ≥ 64κ. The smaller values of n are covered by adjusting1672

constants.1673

The main components of the proof involve showing that, on the event{0 ↔ ∂ B(n)},1674

the vertex setCB(n)(0) ∩A j typically contains order(n/κ)4 vertices, and thatCB(n)(0) ∩1675

A j andCB(n)(0)∩Ak have “enough independence” for j= k. This allows us to argue that1676

|CB(n)(0)| conditionally stochastically dominates c(n/κ)4 times a sum of independent1677

Bernoulli random variables, so is very likely to be of size at least orderκ ×(n/κ)4 ≈ λn4.1678

We note that of course this strategy will only work if our estimates are uniform in  n large1679

and in λ > (log n)α/ n3, which they will be. Henceforth, “uniform in n and λ [ or κ]”1680

means uniform over n larger than some C = C(d) and λ > (log n)α/ n3.1681

7.1. New cluster notation. For each j = 0, . . . , κ −1, our construction will involve ex-1682

ploring C(0) ∩A j in stages. To avoid unmanageably long expressions, we will condense1683

our usual notation for open clusters here; the notation introduced in this section will be1684

in force until the end of Sect. 7.5. Because we generally work with a fixed value of j ,1685

the j -dependence is often suppressed in our notation.1686

We will often write C(x; G) instead of CG(x); this improves readability when G is1687

represented by a complicated expression. The symbol C will always stand for a vertex1688

subset of B 1
j such that P(C(0; B1

j ) = C) > 0. We define the event1689

X (C) := {C(0; B1
j ) = C}.1690
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∂B1
j

∂B2
j

∂B1
j+1

0

y

y

Fig. 6. The black, red, and blue lines represent the clusters C,C∗(y) and C∗∗(y ) respectively

When conditioning on X (C), we recall that edges within B 1
j on the boundary of C1691

are conditionally closed, but edges connecting C to Zd \ B1
j remain i.i.d. Bernoulli(pc)1692

random variables. On the eventX (C), we write, for each x /∈C, the shorthand1693

C∗(x) := {y ∈B2
j : y

B2
j \C←→ x} = {y ∈B2

j : x ∈C(y; B2
j \ C)};1694

in other words, C∗(x) is the union of C(x; B2
j \ C) with those vertices of C which have1695

an open connection to x in B 2
j which touches C only at its initial point.1696

For each y ∈ ∂B2
j , we fix a neighbor y /∈B2

j . We writeC∗∗(y ) :=C(y ; B1
j +1\[C ∪1697

C∗(y)]). See Fig. 6 for an illustration.1698

The set of vertices of ∂B2
j through which connections from C can proceed will be1699

denoted1700

∗
j := {y ∈ ∂B2

j : C∗(y) ∩C = ∅}, with X ∗
j = | ∗

j |.1701

As we mentioned above, much of our proof will revolve around showing C(0; A j )1702

is large conditional on the value of C(0; B1
j ). Thus, until Sect. 8, we work conditional1703

on X (C) for some C as above, then derive results which are uniform inC which satisfy1704

a further condition. Indeed, by (13) and Lemma 2, we can choose a c0 uniform in n, κ,1705

and j such that1706

P(0 ↔ ∂ B1
j +1 | X (C) ∩ {X∗

j ≤ 2c0(n/κ) 2}) ≤1/4. (113)1707

We will restrict our attention toC satisfying the condition1708

for uniform c0 > 0 as in (113), E[X∗
j | X (C)] ≥c0(n/κ)2. (114)1709

As we will argue in Sect. 7.5, whenC does not satisfy (114), the eventX (C) is not too1710

likely conditional on {0 ↔ ∂ B(n)}.1711
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7.1.1. Regularity As usual, we will need some version of cluster regularity to ensure that1712

open connections from C can be extended. We would like not to impose very stringent1713

conditions on C, so that we recover some amount of independence between the portions1714

of the cluster in distinct annuli. This makes the situation somewhat delicate: the open1715

cluster of C in B 2
j need not be regular if C is not. For instance, if C = B1

j , then C is1716

typically connected to order|A j |(n/κ)−2 vertices of A j , makingC(0) ∩A j much larger1717

than four-dimensional. We introduced the setsC∗(y) above to mitigate this problem: the1718

C∗(y)’s will typically be regular, and that will suffice for our purposes.1719

In all that follows, C is an arbitrary set such that P(X (C)) > 0 and such that (114)1720

holds.1721

Definition 11. Suppose x ∈ ∂B2
j . We write1722

T ∗
s (x; δ) := {|C(x; B1

j +1\ C) ∩B(x; s)| < s5−δ}.1723

We note that the cluster considered here is the union ofC∗(x)\C with theC∗∗(x ) clusters1724

attached to it.1725

Given δ >0, we say that x is s-*-bad if1726

P(T ∗
s (x; δ) |C(x; B2

j \ C)) ≤ 1 − exp(−s1/ 3).1727

We say that x is K -*-regular if there is no s with K ≤ s such that x is 2 s -*-bad.1728

We will fix the value ofδin Lemma 21 below, depending only on the dimension d and the1729

value of α > 3d/2. Since we will not alter δ thereafter, we will generally suppress it in1730

our notation and write T ∗
s (x) = T ∗

s (x; δ). We note that the eventT ∗
s (x) is independent1731

of X (C), since we need not examine edges ofC to determineC(x; B2
j \C) orC(x; B1

j \ C).1732

In other words,1733

for each D, we haveP(T ∗
s (x; δ) |C(x; B2

j \C) =D)1734

= P(T ∗
s (x; δ) |X (C), {C(x; B2

j \C}) =D).1735

Recalling the random set ∗
j and its cardinality X ∗

j , we write ∗K
j for the set of1736

x ∈ ∗
j which are K -*-regular, and let X∗K

j = | ∗K
j |. The main statement on regularity1737

we need is as follows:1738

Lemma 21. Let α > d/2 as in the statement of Theorem 4 be fixed but arbitrary. There1739

exists K0 < ∞ such that, for each K> K0, there exist c, C = c(K ), C(K ) > 0 such that1740

the following holds. Uniformly in n and κ satisfying κ ≤ min{n/16, n/( log n)α}, in j ,1741

in y ∈ ∂B2
j satisfying P(y ∈ ∗

j | X (C)) ≥n−d , and inC satisfying a)P(X (C)) > 0,1742

b) C ∩ ∂B1
j = ∅,and c) the condition (114), we have1743

P y ∈ ∗K
j | X (C) ≥ 1

2
P y ∈ ∗

j | X (C) .1744

Proof. The proof is similar to that of Lemma 5, with some modifications due to the1745

differing geometry and conditioning. We will refer to elements of the earlier proof,1746

avoiding repetition of essentially identical steps.1747
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Let us consider an annulus of the form Ann(k, C0kd/2) for a large constant C0. Taking1748

a union bound and using (13), the probability of there being an open crossing of this1749

annulus (that is, an open path connecting ∂B(k) to ∂B(C0kd/ 2) is at most1750

(k + 1)d−1π(C0kd/2 − k) ≤ CC −2
0 ≤ 1/21751

for C0 chosen large depending only on the lattice. We henceforth take this value of  C01752

fixed.1753

We first prove the lemma in the case that C 0sd/ 2 ≤ n/8κ. This setting is easier to1754

handle because we will need to examine the cluster of y only within B(y; C0sd/ 2) ⊆ A j1755

to give a good upper bound on the size of C(y; B1
j +1\C) ∩ B(y; s). Letting δ < 1 be1756

arbitrary for now, we define the event1757

Es := {for each w ∈B(y; C0sd/2), we have |CB(y;C0sd/2)(w) ∩B(y; s)| ≤s9/ 2−δ/2},1758

We also let1759

Es := {there are no more than s 1/ 2−δ/2 disjoint connections from B (y; s) to ∂B(y; C0sd/ 2)}.1760

We boundP(Es) using the cluster tail bound of Lemma 3, and we bound P(Es) using1761

the choice of C0 and the BK inequality (17).1762

We conclude1763

P(Es) ≥ 1 − exp(−cs1/ 2−δ/2);
P(Es) ≥ 1 − (1/2)s1/2−δ/2 = 1 − exp(−cs1/2−δ/2).

(115)1764

In bounding P(Es), we used the following observation: for any t ≥ 1, if there is a w ∈1765

B(y; C0sd/ 2) such that |CB(y;C0sd/2)(w) ∩B(y; s)| ≥ t , then there is also aw ∈B(y; s)1766

such that |CB(y;s)(w ) ∩ B(y; s)| ≥ t . (To see this, simply letw be an arbitrary vertex1767

of C(w) ∩B(y; s).) Similarly to the discussion after (29), if there are at most disjoint1768

crossings of B(y; C0sd/2)\ B(y; s), then1769

C(y) ∩B(y; s) ⊂ ∪C[C ∩ B(y; s)],1770

where the union is over at most + 1 clusters C of B(y; C0sd/ 2).1771

In particular,1772

on the event Es ∩ Es , |C(y) ∩B(y; s)| ≤s5−δ. (116)1773

We will show1774

P(Es ∩ Es | X (C), y ∈ ∗
j ) ≥ 1 − exp(−cs1/ 2−δ/2). (117)1775

We do this by conditioning on C(0; B1
j +1\ B(y; C0sd/2)), noting that Es and E s are1776

independent of the status of edges outside B(y; C0sd). We write1777

P( X (C), y ∈ ∗
j \[ Es ∩ Es]) ≤

C
P(C(0; B1

j +1\ B(y; C0sd/ 2)) = C)[1 − P(Es ∩ Es )]1778

≤ exp(−cs1/ 2−δ/2)
C

P(C(0; B1
j +1\ B(y; C0sd/ 2)) =C), (118)1779
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where the sum is over C compatible with the event X (C) ∩ {y ∈ ∗
j}and we have1780

used (115). Here the “compatibility” means exactly thatX (C) occurs and thatC(0; B2
j )1781

contains a neighbor of B(y; C0sd/ 2) when C(0; B1
j +1\ B(y; C0sd/ 2)) = C (we note that1782

both of these conditions are determined by the value ofC(0; B1
j +1\ B(y; C0sd/ 2))).1783

To show (117), we need to compare the sum on the right toP(X (C), y ∈ ∗
j ).1784

This is done by arguments similar to those at (35), here using the fact that s is small1785

enough to ensure B(y; C0sd/2) ∩C = ∅. Independence and Lemma 4 imply1786

P C(0; B1
j +1\ B(y; C0sd/ 2)) = C, X (C), y ∈ ∗

j1787

≥ c exp(−C log2 s)P C(0; B1
j +1\ B(y; C0sd/2)) = C .1788

Inserting this bound into (118) and performing the sum overC gives1789

P(X (C), y ∈ ∗
j , |C(y; B1

j +1\ C)| > s5−δ)1790

≤ C exp(C log2 s) exp(−cs1/ 2−δ/2)P(X (C), y ∈ ∗
j )1791

≤ C exp(−cs1/ 2−δ/2)P(X (C), y ∈ ∗
j ).1792

The above was all derived under the assumption that C0sd/2 ≤ n/8κ. We next1793

handle the case that C 0sd/2 > n/8κ. In this case, we use the assumption that P(y ∈1794
∗
j | X (C)) ≥ n−d to upper bound1795

P({y ∈ ∗
j }\T ∗

s (y) | X (C))1796

≤
P

,
T ∗

s (y)
-c | X (C) P(y ∈ ∗

j | X (C))
P(y ∈ ∗

j | X (C))1797

≤ Cn dP(y ∈ ∗
j | X (C))P(|C(y; B1

j +1\ C) ∩ B(y; s)| > s5−δ | X (C))1798

≤ Cn dP(y ∈ ∗
j | X (C))P(|C(y) ∩B(y; s)| > s5−δ)1799

≤ Cn d exp(−cs1−δ)P(y ∈ ∗
j | X (C)).1800

Since s ≥ c(n/κ) 2/d ≥ (log n)1+c by our choice of α, for each δ >0 sufficiently small,1801

the above is at most1802

C exp(−cs1−δ).1803

Combining the two cases, (117) follows for all s as in the statement of the lemma. It1804

remains to argue for the conclusion of the lemma given (117). We write1805

P(T ∗
s (y), y ∈ ∗

j , X (C)) =
'C
P(T ∗

s (y), C(y; B2
j \ C) = 'C, X (C))1806

≥ (1 − e−cs1/2−δ/2)P(y ∈ ∗
j , X (C)), (119)1807

where the sum is over cluster realizations 'C such that {y ∈ ∗
j}occurs. The inequality1808

appearing in (119) follows from (116) and (117).1809
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We break the sum over'C into two terms depending on whether y is s-*-bad or not on1810

the event {C(y; B2
j \ C) = 'C}. Performing the sum and applying Definition 11, we can1811

upper bound the sum appearing in (119) by1812

(1 − e−s1/3)P {P(T ∗
s (y) | C(x; B2

j \C)) ≤ 1 − exp(−s1/3)},y ∈ ∗
j , X (C)

+ P {P(T ∗
s (y) |C(x; B2

j \ C)) > 1 − exp(−s1/ 3)}, y ∈ ∗
j , X (C) ,

1813

so we obtain1814

P(T ∗
s (y), y ∈ ∗

j , X (C)) ≤P(y ∈ ∗
j , X (C))

− e−s1/ 3
P {P(T ∗

s (y) | C(x; B2
j \ C)) ≤ 1 − exp(−s1/ 3)}, y ∈ ∗

j , X (C) .
1815

(120)1816

Comparing (120) with the lower bound of (119), we see that there is an s0 = s0(d, a)1817

such that, for all s > s0,1818

P {P(T ∗
s (y) | C(x; B2

j \C)) ≤1 − exp(−s1/3)} | {y ∈ ∗
j},X (C) ≤ exp(−s1/2−δ).1819

(121)1820

We sum over s ≥ K to obtain the bound1821

P(y /∈ ∗K
j | {y ∈ ∗

j},X (C)) ≤ C exp(−cK 1/3).1822

Choosing K 0 large enough that the right-hand side of the last display is smaller than1823

1/2 when K > K0 and multiplying both sides of that display by P(y ∈ ∗
j | X (C))1824

completes the proof.1825

7.2. C(0; B j +1) ∩A j is large with positive probability. We use Lemma 21 to argue that1826

C(0; B j +1)∩ A j is frequently large on the eventX (C). Formally, we prove the following1827

intermediate lemma, which furthermore decouplesC(0; B j ) ∩A j from C(0; Bi ), i < j :1828

1829

Lemma 22. There exists cv > 0 such that the following holds uniformly in n, in j , and1830

κ. For eachC satisfying (114), we have1831

P(|C(0; B1
j +1) ∩ A j | > cv(n/κ)4 | X (C)) ≥ cv.1832

The proof of Lemma 22 is based on the second moment method. In this section, we1833

define and prove facts about eventsA(y, z) on which the second moment argument will1834

be based. In Sect. 7.3, we prove the necessary first moment bounds; in Sect. 7.4 we prove1835

the second moment bound and complete the proof of the lemma.1836

Recall that for each y∈ ∂B2
j , we have chosen a deterministic neighbor y∈B1

j +1\ B2
j .1837

For each such edge {y, y }, and for each z ∈A j , we define1838

A(y, z, y , C) =A(y, z)1839

= X (C) ∩ {y ∈ ∗
j } ∩

⎧
⎨
⎩

{y, y }is open and pivotal for y
B1

j +1\C←→ z,
and C∗∗(y ) contains no vertices adjacent to B1

j

⎫
⎬
⎭ .1840

(122)1841
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Subcritical High Dimensional Percolation

We usually omit C from the notation because, as we have noted, all our bounds will be1842

uniform in C.1843

We will wish to argue that C(0; B1
j +1) ∩ A j is at least the number of pairs (y, z) for1844

which A(y, z) occurs. For this, we will use the following proposition:1845

Proposition 23. For each y ∈ ∂B2
j and z ∈ A j , we have A(y, z) ⊆ {z

B1
j +1←→ 0}. More-1846

over, for each pair z1, z2 ∈A j and each y1 = y2 ∈ ∂B2
j ,1847

A(y1, z1) ∩A(y2, z2) ⊆ {C∗∗(y1) ∩ [C∗(y2) ∪C∗∗(y2)] =∅}, (123)1848

and so (taking z = z1 = z2) we have A(y1, z) ∩A(y2, z) = ∅.1849

Proof. We first prove the containmentA(y, z) ⊆ {z
B2

j +1←→ 0}, which is relatively easy. On1850

A(y, z), there is an open connection from y to C by assumption, and ( by the definition1851

of X (C)) thusC(0; B2
j ) ' y. Then by the openness of{y, y }, we have y ∈C(0; B j +1);1852

finally, this openness and the pivotality of this edge ensure y
B j +1←→ z, completing this1853

part of the proof.1854

We will argue by contradiction for (123): we assume thatω ∈A(y1, z1)∩A(y2, z2)∩1855

{C∗∗(y1) ∩ [C∗(y2) ∪C∗∗(y2)] = ∅}and then show ωhas contradictory properties. We1856

further decompose this event and break the proof into two cases.1857

Case 1: ω ∈ {C∗(y1) = C∗(y2)}.We assume first that ω has the additional property1858

that, in ω, the clusters C∗(y1) and C∗(y2) are identical. In this case, by definition we1859

have that C∗∗(y1) ∩ C∗(y1) = ∅, and therefore C∗∗(y1) ∩ C∗(y2) = ∅. To show1860

C∗∗(y1) ∩C∗∗(y2) = ∅, we suppose thatC∗∗(y1) ∩C∗∗(y2) = ∅, which implies (again1861

using C∗(y1) = C∗(y2)) that C∗∗(y1) = C∗∗(y2). Let γ be the concatenation of a) an1862

open path in C∗∗(y2) from y2 to z1, b) the edge {y2, y2}, and c) an open path in C∗(y2)1863

from y2 to y1. By construction, the path γ avoids {y1, y1}. But since ω ∈A1(y1, z1),1864

the pivotal edge {y1, y1}must be in γ , a contradiction.1865

Case 2:ω ∈ {C∗(y1) = C∗(y2)}.We suppose instead thatC∗(y1) and C∗(y2) are distinct1866

(and henceC∗(y1) ∩C∗(y2) may contain only vertices ofC) in outcomeω.We first show1867

thatC∗∗(y1)∩C∗(y2) = ∅by assuming these clusters instead had nonempty intersection1868

and deriving a contradiction. Under this assumption, letγ be a path in C∗∗(y1) from y11869

to a vertex w̃ ∈C∗(y2).1870

We produce an open path by appending the segment ofγ from y1 to w̃ to a path lying1871

entirely in C∗(y2) ∩ A j from w̃ to a vertex adjacent to C. This is a path in B j +1 from1872

y1 to a vertex adjacent to B 1
j . It avoids C∗(y1) because γ avoids C∗(y1) and because1873

C∗(y1) ∩C∗(y2) ∩ A j = ∅. In particular, this path guarantees that C∗∗(y1) contains a1874

vertex adjacent to B1
j , a contradiction. This showsC∗∗(y1) ∩C∗(y2) = ∅ (and similarly1875

C∗∗(y2) ∩C∗(y1) = ∅).1876

We again show C∗∗(y1) ∩ C∗∗(y2) = ∅ by assuming the contrary and deriving a1877

contradiction. Under our assumption, we choose a vertexw ∈C∗∗(y1) ∩C∗∗(y2) and let1878

γi be a path in C∗∗(yi ) from yi to w (for i = 1, 2). Appending γ1 to γ2, we produce an1879

open path which (by the previous paragraph) lies outsideC∗(y1)∪C∗(y2) and connects y11880

to y2. Adjoining to this the open edge{y2, y2}and a path inC∗(y2) from y2 to a neighbor1881

of C, we see again that C∗∗(y1) contains a vertex adjacent to B1
j , a contradiction.1882

Proof of final claim. Finally, to showA(y1, z) ∩A(y2, z) = ∅, we note that onA(yi , z),1883

we have z ∈C∗∗(yi ), then we apply (123).1884
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As we have discussed, we wish to lower bound the size ofC(0; B j +1) ∩A j on X (C).1885

In fact, it helps (see (146) below) to consider a portion of this cluster whose connections1886

in A j “do not wander too far”, and which have a pivotal edge touching ∂B2
j for their1887

connection to C:1888

Z j := {(y, z) : y ∈ ∂B2
j , z ∈ A j ∩ B(y; n/16κ ),and A(y, z) occurs}. (124)1889

Proposition 23 immediately implies the following corollary.1890

Corollary 24. On X (C), C(0; B j +1) ∩ A j ≥ |Z j |.1891

We will use Corollary 24 to show Theorem 4. As already discussed, in the next two1892

sections we use the second moment method to show that |Z j | is often of order (n/κ)4
1893

conditional on X (C). Using Corollary 24, we see that C(0; B1
j +1) ∩ A j has uniformly1894

positive probability to be of order (n/κ)4. In Sect. 7.4, we use this fact to show that in1895

fact with high probabilityC(0; B1
j +1) ∩A j is of order (n/κ)4 simultaneously for at least1896

cκ values of j and complete the proof of Theorem 4.1897

7.3. Bounding the first moment of |Z j |. We now have the following result allowing us1898

to extend connections fromC to points z in the annulus A2
j , which we will subsequently1899

use to lower bound the first moment of |Z j |. The K 1 appearing here depends only on1900

the lattice Zd under consideration and the value of α as in Theorem 4.1901

Lemma 25. There is a K 1 > K0 such that the following holds. For each K > K1,1902

there exists a c > 0 such that, uniformly in n andκ satisfying the additional assumption1903

n/κ ≥ 32K , for all j , all C ⊆ B1
j such that (114) holds, all y ∈ ∂B2

j , and all M1904

satisfying 2K ≤ M ≤ n/16κ,1905

z∈B(y;M)∩A j

P({y, y }open, pivotal for y
B1

j +1\C←→ z | X (C), y ∈ ∗K
j ) ≥ cM 2. (125)1906

Proof. The proof uses a variant of the Kozma–Nachmias cluster extension method [29,1907

Theorem 2], using the notion of regularity we have introduced for this particular case,1908

which poses somewhat different issues than the extension arguments of Proposition 81909

above. We provide the details for the reader’s convenience.1910

We define the events1911

E1(y) = {X (C), y ∈ ∗K
j },1912

E2(y, y∗, z) = {y∗B1
j +1\[C∪C∗(y)]

←→ z},1913

E3(y, y∗) = {C(y; B1
j +1\ C)) ∩C(y∗; B1

j +1\C) = ∅}.1914

Defining1915

( y) = B(y; K )\( B2
j + B(0, K /2)),1916
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we show that there is a c > 0 such that, for each K larger than some constant K3 > K01917

(depending only on the lattice), given values of other parameters as in the statement of1918

the lemma, there is a y∗∈ ( y) with1919

z∈B(y;M)∩A j

P(E1(y) ∩E2(y, y∗, z) ∩E3(y, y∗)) ≥ cM 2P(E1(y)). (126)1920

We first show the existence of a K 2 > K0 and a constant c uniform in K > K2 as1921

well as in n, κ, C, j , and y as in the statement of the lemma, and in all y∗∈ ( y) such1922

that1923

z∈B(y;M)∩A j

P(E1(y) ∩E2(y, y∗, z)) ≥ cM 2P(E1(y)). (127)1924

Summing overD consistent with the event {C∗(y) =D, y ∈ ∗K
j }, we have1925

P(y∗B1
j +1\[C∪C∗(y)]

←→ z, X (C), y ∈ ∗K
j )1926

=
D
P(y∗B1

j +1\[C∪C∗(y)]
←→ z | X (C),C∗(y) =D)P(X (C),C∗(y) =D).1927

For the conditional probability, we have the lower bound1928

P(y∗B1
j +1\[C∪C∗(y)]

←→ z | X (C),C∗(y) =D)1929

≥ P(y∗A j \D←→ z)1930

≥ P(y∗ A j←→ z) −
ζ ∈D

P(ζ ↔ y∗◦ ζ ↔ z)1931

≥ P(y∗ A j←→ z) −C
ζ ∈D

P(ζ ↔ y∗)ζ − z 2−d .1932

We have used the BK inequality and (13) in the last step. Summing over z using (15),1933

we obtain the lower bound1934

cM 2 − C M2

ζ ∈D
ζ − y∗ 2−d . (128)1935

We note that if ζ ∈B2
j , we have ζ − y∗ ≥ K /2. So the sum appearing in the second1936

term is bounded by1937

C
k≥log2(K / 2)

|D ∩ B(y∗, 2k)|2(2−d)k
1938

≤ C
k≥log2(K / 2)

|D ∩ B(y, 2k+1)|2(2−d)k . (129)1939

For C, D consistent with {y ∈ ∗K
j }, we have1940

|D ∩ B(y, 2k+1)| ≤C2 (5−δ)k .1941
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Applying this estimate in (129), we obtain1942

ζ ∈D
ζ − y∗ 2−d ≤

k≥log(K /2)
2(7−d−δ)k

1943

≤ C K7−d−δ.1944

Since d > 6, we can make the second term of (128) negligible for each K larger than1945

some uniform K2. We obtain (127).1946

Next, we show the existence of a K 1 > K2 and a c > 0 uniform in n, κ, m, C,1947

K > K1, and y with1948

1
|( y)|

y∗∈( y) z∈B(y;M)∩A2
j

P(E1(y) ∩E2(y, y∗, z)\E3(y, y∗))

≤ C M2 K 7−d−δP(E1(y)).

(130)1949

Choosing the value of y∗which minimizes the inner sum of (130) and combining it with1950

(127) clearly implies (126).1951

The event on the left-hand side of (130) implies the existence of a vertexζ ∈B1
j +1\ C1952

such that1953

{E1(y), y
B1

j +1\C←→ ζ} ◦ {ζ ↔y∗} ◦ {ζ ↔z}.1954

Using the BK inequality, we have the upper bound:1955

1
|( y)|

y∗∈( y) z∈B(y;M)∩A j ζ
P(E1(y),C∗(y)

B1
j +1\C←→ ζ) P(y∗↔ ζ )P(ζ ↔ z)1956

≤ C M2

|( y)|
y∗∈( y) ζ

P(E1(y), {C∗(y)
B1

j +1\C←→ ζ }) ζ − y∗ 2−d . (131)1957

We break up the sum according to the distance ζ − y∗ and the value D of C∗(y)1958

(consistent with the event E1(y)). Thus (131) is bounded by1959

C M2

|( y)|
y∗∈( y) k>k0 D ζ ∈Ann (y∗;2k−1,2k)

P[{ζ
B1

j +1\C←→ D},X (C),C∗(y) =D] ζ − y∗ 2−d .

(132)

1960

We split the sum according to whether k> k0 or k ≤ k0, where k0 = log2(K /2). We1961

first bound the k > k0 terms; the inner sums over k,D, and ζ of (132) are bounded by1962

≤C
k>k0 D

E[|Bk(y∗)| |X (C),C∗(y) =D]P(X (C),C∗(y) =D)2(2−d)k . (133)1963

Here we have introduced, for w an arbitrary vertex, the notation1964

Bk(w) = {C(y; B1
j +1\C) ∩B(w;2k)}.1965
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Subcritical High Dimensional Percolation

We estimate the conditional expectation1966

E[|Bk(y∗)| |X (C),C∗(y) =D]1967

uniformly in y∗using the inclusion1968

Bk(y∗) ⊂Bk+1(y),1969

which is implied by y∗∈ ( y). If y ∈ ∗K
j , the definition of K ∗-regularity implies1970

E[|Bk+1(y)|1¬T ∗
k+1(y) | X (C),C∗(y) =D] ≤2(k+2)de−2k/3 ,1971

and1972

E[|Bk+1(y)|1T ∗
k+1(y) | X (C),C∗(y) =D] ≤2(5−δ)k+5.1973

Thus, we find1974

E[|Bk(y∗)| |X (C),C∗(y) =D] ≤C2 (5−δ), k > k0. (134)1975

Applying this bound, we see that (133) is at most1976

C
k>k0

2(7−d−δ)k ≤ C K7−d−δ
0 . (135)1977

We now turn to the k ≤ k0 terms of (132), for which it is useful to first perform the1978

y∗sum. Indeed, we have uniformly in ζ and y1979

y∗∈( y)
ζ − y∗ 2−d ≤ C K2.1980

Applying this last display, we see the k ≤ k0 terms of (132) are bounded above by1981

C M2 K 2−d

D
E[|BK +2(y)| |X (C),C∗(y)1982

=D]P(X (C),C∗(y) =D) ≤ C M2 K 7−d−δ,1983

where we have bounded the expectation as in the estimates producing (134). Pulling the1984

last display together with (135), we have shown (130). Finally, combining (130) with1985

(127) and assuming K is large, we see that (126) holds.1986

To obtain (125) from (126), we use an edge modification argument inside a box of1987

diameter order K , again similar to the one appearing in the proof of Lemma 14 or [29,1988

Lemma 5.1]. The edge modification shows1989

P({y, y }open, pivotal forC∗(y)
B1

j +1\C←→ z | X (C), y ∈ ∗K
j )1990

≥ c(K )P(E2(y, y∗, z) ∩E3(y, y∗) | E1(y)),1991

and the proof of the lemma follows using (126).1992

Our next goal is to slightly adapt the content of Lemma 25 to instead involve the1993

eventsA(y, z), which can be used in the application of Corollary 24:1994
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Lemma 26. For each K > K1 (the constant from Lemma 25), the following holds. There1995

exists a c > 0 such that, for all n, all κ, for all j , and for allC such that (114) holds1996

E[|Z j | |X (C)] =
y∈∂B2

j
z∈A j ∩B(y;n/ 16κ)

P(A(y, z) | X (C)) ≥ c(n/κ)2E[X∗K
j | X (C)].1997

(136)1998

Proof. We express the left-hand side of (136) in the form1999

y,z
P(A(y, z) | X (C)) =

y,z
P(A(y, z) | X (C), y ∈ ∗K

j )P(y ∈ ∗K
j | X (C)).2000

(137)2001

We will lower bound the conditional probability ofA(y, z) on the right-hand side using2002

Lemma 25—the missing ingredient is to show that the connection from y to z in the2003

event from (125) does not make a connection from yto neighbors of B1
j too likely. To do2004

this, we must restrict the sum over z somewhat—it will be easier to rule out such loops2005

back into B1
j for z comparatively near to y. Let us introduce a parameter 0< a < 1/16,2006

to be chosen small but fixed relative to n, λ, j , y, and C. Indeed, the value of a will2007

be chosen based on the constant appearing in (125) and the constants in the one-arm2008

probability bound (13). On X (C), we define the random set2009

Y (a, y) := z ∈B(y; an/κ) ∩ A j : {y, y }open, pivotal for y
B1

j +1\C←→ z

1
. (138)2010

Applying (125) with an playing the role of M, we find a c = c(K ) > 0 such that,2011

for each n, C, y, a, j, κas in (125), E[|Y (a, y)| |X (C), y∈ ∗K
j ]≥ca2n2. (139)2012

The event X (C) ∩ {y ∈ ∗K
j } ∩ {z ∈ Y (a, y)}\A(y, z) implies that one of the2013

following two events occurs:2014

• L1 := 2
ζ ∈∂B(y;n/ 8κ){ζB(y;n/ 8κ)\C∗(y)←→ y } ◦ {ζZ

d \[C∪C∗(y)]←→ z};2015

• L2 := 2
ζ ∈B(y;n/ 8κ){ζB(y;n/ 8κ)\C∗(y)←→ y } ◦ {ζB(y;n/ 8κ)\C ∗(y)←→ z} ◦ {ζZ d \C ∗(y)←→2016

∂B(y; 3n/16κ )}.2017

That is, either y is connected to z (off C∗(y)) by a path exiting the box B(y; n/8κ), or2018

y and z are connected within this box and are connected to the boundary of a slightly2019

larger box by a further open path. In particular, for each y, z:2020

P(A(y, z) | X (C), y ∈ ∗K
j )2021

≥P(z ∈Y (a, y) | X (C), y ∈ ∗K
j ) −P(L1 ∪ L2 | X (C), y ∈ ∗K

j ). (140)2022

We can decompose the eventX (C) ∩ {y ∈ ∗K
j }into a union of events of the form2023

X (C) ∩ {C∗(y) =D}; to upper-bound the probability of L1, we thus provide an upper2024
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bound on P(L1 | X (C),C∗(y) = D) uniform in realizations D of C∗(y) such that2025

y ∈ ∗K
j . Using the half-space two-point function bound (21), we find2026

P(L1 | X (C),C∗(y) =D) ≤ C|∂B(y; n/8κ )|(n/κ)1−d(n/κ)2−d ≤ C(n/κ) 2−d ,2027

where the constant C is uniform in the same parameters as (139). Similarly, we bound the2028

probability of L2 using the two-point function and the value of the (full-space) one-arm2029

exponent (13):2030

P(L2 | X (C),C∗(y) =D) ≤ C(n/κ)−2
2031

ζ ∈B(y;n/ 8κ)
ζ − y 2−dζ − z 2−d = C(n/κ)2−d .2032

Applying the last two displays in (140) and using (139), we see2033

z∈A j ∩B(y;an/κ)
P(A(y, z) | X (C), y ∈ ∗K

j ) ≥ ca2(n/κ)2 − Ca d(n/κ)2.2034

Choosing a small relative to the uniform constants in the last display (but fixed relative2035

to all other parameters) and summing over y ∈ ∂B2
j in (137), the right-hand side is at2036

least c(n/κ)2E[X∗K
n | X (C)] uniform in K large but fixed relative to n, in n, and in C.2037

This completes the proof.2038

Corollary 27. There exists a c > 0 uniform in the same parameters as Lemma 25 such2039

that2040

E[ |Zn| | X (C)] ≥c(n/κ)4.2041

Proof. By Lemma 26, it suffices to show2042

E[X∗K
j | X (C)] ≥cE[X∗

j | X (C)] ≥c(n/κ)2 (141)2043

holds uniformly in the same parameters as Lemma 25. The second inequality follows2044

from (114); it remains to show the first.2045

We write2046

E[X∗K
j | X (C)] =

y∈∂B2
j

P( y∈ ∗
j |X (C))≤n−d

P(y ∈ ∗K
j | X (C))2047

+
y∈∂B2

j
P( y∈ ∗

j |X (C))>n−d

P(y ∈ ∗K
j | X (C))2048

≥ 1
2

y∈∂B2
j

P( y∈ ∗
j |X (C))>n−d

P(y ∈ ∗
j | X (C))2049

≥ 1
2

y∈∂B2
j

P(y ∈ ∗
j | X (C)) − C1

n
= 1

2
E[X∗

j | X (C)] −C1

n
,2050

where in the second line we have used Lemma 21. The corollary follows by applying2051

(114).2052
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7.4. Bounding the second moment of |Z j |. We produce an upper bound on the second2053

moment of |Z j | complementing that of Corollary 27:2054

Proposition 28. There is a constant C such that the following holds uniformly in n, in2055

j , and inC satisfying (114):2056

E[ |Z j |2 | X (C)] ≤CE[ |Z j | | X (C)]2.2057

Proof. We write2058

E[|Z j |2 | X (C)] =
y1,y2∈∂B1

j

[P(y1, y2 ∈ j | X (C))2059

z1∈A j ∩B(y1;n/ 16κ)
z2∈A j ∩B(y2;n/ 16κ)

P(A(y1, z1) ∩A(y2, z2) | X (C) ∩ {y1, y2 ∈ j})]. (142)2060

We condition the inner sum further on the value ofC∗(y1) and C∗(y2); an upper bound2061

for the inner sum will follow once we bound2062

P(A(y1, z1) ∩A(y2, z2) | X (C) ∩ {C∗(y1) =D1, C∗(y2) =D2}) (143)2063

uniformly in realizationsD1 andD2 such that y1, y2 ∈ j when C∗(y1) =Di , i = 1, 2.2064

The bounds on the inner sum appearing in (142) are similar but slightly different2065

depending on whether y1 = y2 or y1 = y2.2066

In the case y1 = y2, we apply Proposition 23 to bound the conditional probability in2067

(143) by2068

P

(
{y1

B1
j +1\(C∪D1)
←→ z1} ◦ {y2

B1
j +1\(C∪D2)
←→ z2}

)
≤ C y1 − z1

2−d y2 − z2
2−d .2069

(144)2070

In case y1 = y2, we can instead upper bound the probability in (143) by2071

P z1, z2 ∈C(y1; B1
j +1\(C ∪D1) ≤P (z1, z2 ∈C(y1))

≤
w∈Zd

P ({y1 ↔ w}◦{z1 ↔ w}◦{z2 ↔ w}) .2072

(145)2073

Applying the upper bounds of (144) and (145) to (143), we sum over z1, z2 in (142)2074

and then perform the outer sum over y1, y2. We arrive at the upper bound2075

E[ |Z j |2 | X (C)] ≤C(n/κ)4E[X j | X (C)]2

+ C(n/κ)6E[X j | X (C)]
≤ CE[|Z j | | X (C)]2.

(146)2076

Here the constant C is uniform in n and C satisfying (114); the final inequality of (146)2077

is furnished by (136) and (141).2078
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Subcritical High Dimensional Percolation

Proof of Lemma 22. We use Proposition 28 in the Paley–Zygmund inequality. This2079

yields P(|Zn| ≥ (1/2)E[|Zn| | X (C)] | X (C)) ≥ c for a uniform c, and then the2080

uniform lower bound on E[Zn | A(C)] from Corollary 27 translates this into the state-2081

ment of the lemma.2082

We have now accomplished the goal of showing that CB(n)(0) ∩ A j is large, which2083

we began working towards in Sect. 7.2. In the next section, we extend this result to many2084

annuli at once and complete the proof of Theorem 4.2085

7.5. The main argument. The main goal of the section is to complete the proof of2086

Theorem 4, with Lemma 22 as a main input.2087

Proof of the upper bound from Theorem 4. We recall the constant c0 from (113) and the2088

constant cv appearing in Lemma 22. For each 1 ≤ j ≤ κ, we define the events2089

R j = {|C(0; B1
j +1) ∩ A j | ≥cvn4/κ 4}.2090

We will prove estimates on the probabilities of these events which are uniform in  n and2091

κ and which will suffice to establish the theorem.2092

Recall that κ =  λ−1/ 3!. For each ϕ > 0, we have2093

P(|CB(n)(0)| ≤ ϕcvλn4 | 0 ↔ ∂ B(n)) ≤P(|CB(n)(0)| ≤ ϕcvκ(n/κ)4 | 0 ↔ ∂ B(n))2094

≤P 1 ≤ j ≤ κ : R j occurs ≤ ϕκ |0 ↔ ∂ B(n) . (147)2095

We will show2096

there exist c, ϕ >0 uniform in n, κ such that (147) ≤ c−1(1 − c)κ; (148)2097

The right side of (148) is of the same form as the probability considered in Theorem 4.2098

Thus, the theorem will be proved once (148) has been established.2099

We define, for each 0 ≤ j ≤ κ −1,2100

Z j = 1{0↔∂ B(n/2)}
j 

k=1
1{0↔∂ B1

k+1}(1 + 1Rc
k
).2101

We first show an upper bound for the expectation of Z j , depending on ϕ and j but not2102

on n or κ. To do this, we use successive conditioning.2103

Since R j is in the sigma-algebra generated byCB1
j +1

(0), we can writeZ j =Z j (CB1
j +1

(0)).2104

To shorten notation, we defineX (C) as in Sect. 7.1, but with j = κ −1:2105

X (C) = {C(0; B1
κ−1) = C}.2106

Then, by conditioning, we see2107

E[Zκ−1] =
C
P(X (C))E[Zκ−1 | X (C)]2108

=
C
P(X (C))Zκ−2(C)E[(1 + 1Rc

κ−1
)1{0↔∂ B1κ} | X (C)]. (149)2109
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We estimate the conditional expectation in (149) differently depending on whether C2110

satisfies (114) or not. If E[X∗
κ−1 | X (C)] ≥ c0(n/κ)2, then invoking Lemma 22, we2111

see2112

E[(1 + 1Rc
κ−1

)1{0↔∂ B1κ} | X (C)] ≤1 +P(Rc
κ−1 | X (C)) ≤ 2 − c, (150)2113

where the constant c > 0 is uniform in n, κ.2114

On the other hand, if C does not satisfy (114)—that is, if2115

E[X∗
κ | X (C)] <c0(n/κ)2 (151)2116

—then2117

E[(1 + 1Rc
κ−1

)1{0↔∂ B1κ} | X (C)] ≤2P(0 ↔ ∂ B1
κ | X (C))2118

≤ 2P(X∗
κ ≥ 2c0(n/κ)2 | X (C)) (152)2119

+ 2P(0 ↔ ∂ B1
κ | X (C) ∩ {X∗

j ≤ 2c0(n/κ)2})2120

≤ 2(1/2 + 1/4) = 3/2. (153)2121

Here the term 1/2 comes from (151) and Markov’s inequality, and the term 1/4 comes2122

from (113). Pulling together (150) and (153) and then performing the sum over C in2123

(149), we see that there exists a c > 0 uniform in n and κ such that2124

E[Zκ−1] ≤ (2 − c)E[Zκ−2]. (154)2125

We now apply the same argument on the expectation on the right-hand side of (154) to2126

showE[Zκ−2] ≤ (2−c)E[Zκ−3]. The constant c here is the same as in (154) because that2127

constant c originated in (114), (113), and Lemma 22 (and these gave bounds which were2128

uniform in the choice of annulus A j ). Inducting and then at last taking the expectation2129

over the 1{0↔∂ B(n/ 2)}in the definition of Zκ−1, we find2130

there is an ϕ > 0 such that, uniformly in n, κ, E[Zκ−1]2131

≤P(0 ↔ ∂ B(n/2))(2 − 2ϕ)κ, (155)2132

where we have renamed the constant to connect to the statements of (147) and (148).2133

Indeed, choosing ϕ as in (155), if Rc
j occurs for more than(1 − ϕ)κvalues of j , then2134

we have Zκ−1 ≥ 2κ(1−ϕ). In particular, to show (148), we can write2135

P(|{0 ≤ j ≤ κ −1 : Rc
j occurs}| > (1 − ϕ)κ,0 ↔ ∂ B(n))2136

≤ 2−κ(1−ϕ)E[Zκ−1]2137

(by (155)) ≤ 2−κ(1−ϕ)2κ2κ log2(1−ϕ)P(0 ↔ ∂ B(n/2))2138

≤ 2−cκP(0 ↔ ∂ B(n/2)),2139

where as usual c is uniform in n and κ. Dividing the last display by P(0 ↔ ∂ B(n))2140

and using (13) yields (148). As we noted just below (148), this completes the proof of2141

Theorem 4.2142
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8. The Number of Spanning Clusters2143

We denote by Sn the set of spanning clusters of B(n):2144

Sn := {C(x), x ∈B(n) : ∃y1, y2 ∈C(x) such that y1(1) = −n, y2(1) = n}.2145

This quantity was analyzed in [1], where it was shown that2146

P(|Sn| ≥o(1)nd−6) → 1,2147

along with a matching upper bound provided only clusters of size ≈ n4 are counted.2148

Using Theorem 4, we remove the latter condition.2149

Theorem 7. There is a C > 0 such that E[|Sn|] ≤Cn d−6. In particular, the sequence2150

of random variables (n6−d |Sn|)∞n=1 is tight.2151

Proof. We decompose based on the cardinality of spanning clusters; we then use The-2152

orem 4 to control the contribution of abnormally sparse spanning clusters. We define2153

Sn,0 := {C ∈Sn : |C| ≥n4} ∪ {C ∈Sn : |C| ≤n2}2154

and, for 1 ≤ k ≤ 2 log2 n, we set2155

Sn,k := {C ∈Sn : 2−k ≤ |C|/n4 < 2−k+1}.2156

We then haveE[|Sn|] ≤3  2 log2 n!
k=0 E[|Sn,k|], and it suffices to bound each term on the2157

right-hand side of this inequality.2158

For k = 0, we write (using Theorem 4)2159

E[|Sn,0|] ≤ 1
n4

x∈B(n)
P(x ↔ ∂ B(x; n), |C(x)| ≥n4)2160

+
x∈B(n)

P(x ↔ ∂ B(x; n), |C(x)| ≤n2)2161

≤ 1
n4

x∈B(n)
π(n) + Cndπ(n) exp(−cn2/ 3) ≤ Cn d−6.2162

For k ≥ 1, we bound similarly2163

E[|Sn,k|] ≤
2k

n4
x∈B(n)

P(C(x) ∈Sn,k)2164

≤ 2k

n4
x∈B(n)

π(n)P(|C(x)|2165

< 2−k+1n4 | x ↔ B(x; n)) ≤ Cn d−62k exp(−c2k/ 3),2166

where in the last inequality we again used Theorem 4. Summing these estimates over k2167

completes the proof.2168

Acknowledgements. The authors thank Akira Sakai for helpful discussions about the problem addressed in2169

Theorem 6. The authors also thank two anonymous referees for extensive and helpful comments on an earlier2170

version of this manuscript.2171
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