

Subcritical Connectivity and Some Exact Tail Exponents in High Dimensional Percolation

Shirshendu Chatterjee¹, Jack Hanson¹, Philippe Sosoe²

¹ Department of Mathematics, City University of New York, City College and Graduate Center, New York, USA. E-mail: jhanson@ccny.cuny.edu; shirshendu@ccny.cuny.edu

² Department of Mathematics, Cornell University, Ithaca, USA. E-mail: psosoe@math.cornell.edu

Received: 12 August 2021 / Accepted: 15 April 2023

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract: In high dimensional percolation at parameter $p < p_c$, the one-arm probability $\pi_p(n)$ is known to decay exponentially on scale $(p_c - p)^{-1/2}$. We show upper and lower bounds on the same exponential scale for the ratio $\pi_p(n)/\pi_{p_c}(n)$, establishing a form of a hypothesis of scaling theory. As part of our study, we provide sharp estimates (with matching upper and lower bounds) for several quantities of interest at the critical probability p_c . These include the tail behavior of volumes of, and chemical distances within, spanning clusters, along with the scaling of the two-point function at “mesoscopic distance” from the boundary of half-spaces. As a corollary, we obtain the tightness of the number of spanning clusters of a diameter n box on scale n^{d-6} ; this result complements a lower bound of Aizenman (Nucl Phys B 485(3):551–582, 1997).

1. Introduction

In this paper, we address several questions involving geometric properties of the random graphs generated from the (*bond*) *percolation* model on the canonical d -dimensional *hypercubic lattice* \mathbb{Z}^d and its subgraphs, namely the *boxes* or ∞ balls and the *half-space* with normal direction e_1 , for sufficiently high dimension d . Substantial progress has been made on the mathematical understanding of properties of these random graphs on \mathbb{Z}^d for d large and $d = 2$, as well as on the two-dimensional *triangular lattice*.

It is well known that for any $d \geq 2$ the percolation model on \mathbb{Z}^d (and many subgraphs) exhibit a nontrivial phase transition, with a critical point separating the highly connected supercritical regime from the highly disconnected subcritical regime. There are many useful tools and a well-developed theory for studying the percolation model on \mathbb{Z}^2 and on the triangular lattice at and near the critical point. In particular, the following key facts have been established. First, the behavior of two-dimensional percolation at

The research of S.C. is supported in part by NSF grant DMS-2154564. The research of J.H. is supported in part by NSF grant DMS-1954257. The research of P.S. is supported in part by NSF grant DMS-1811093.

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	<input type="checkbox"/> Not Used
			Disk Received	<input type="checkbox"/>
			Disk Used	<input type="checkbox"/> Corrupted
				<input type="checkbox"/> Mismatch

criticality and near criticality are very closely related via scaling or hyperscaling relations (first observed by Kesten [24]) which relate several key quantities of interest. Second, critical percolation on the triangular lattice exhibits conformal invariance, as shown by Smirnov [40], which has been used to show that SLE₆ is the scaling limit of interfaces in the model. Finally, many power laws can be exactly computed via the connection to SLE [32,33]. The latter two classes of results have been proven only for the triangular lattice, though they are conjectured to extend to \mathbb{Z}^2 . Notably, many of the aforementioned techniques apply to subgraphs of \mathbb{Z}^2 or the triangular lattice as well. We direct the reader to [45] for an overview.

For \mathbb{Z}^d with d large, several key aspects of percolation are less well-understood. Much less is known about the near-critical regime and the behavior of the model in subgraphs such as sectors. One of the main aims of this paper is to narrow the gap between knowledge about the percolation model for $d=2$ and for d large. Another related main aim is to obtain sharp results about the tail behaviors of several quantities for which only the rough scaling behaviors had so far been identified, for example through computing low moments. We show new refined results for various connectivity probabilities involving finite boxes at the near-(sub)critical regime, and we derive tail behavior of some percolation quantities at criticality. More specifically, we obtain (a) precise asymptotic behavior of the subcritical one-arm probability, with the correlation length determined up to constants; (b) upper and lower bounds establishing exponential decay for both the lower tail and the upper tail probabilities of the “chemical” (graph) distance within open clusters; (c) upper and lower bounds establishing stretched exponential decay (with exponent 1/3) of the lower tail of the cardinality of open clusters; and, as a result of the previous point, (d) tightness of the number of spanning clusters of large boxes on scale n^{d-6} , complementing a well-known result of Aizenman [1], who derived a matching lower bound on this order. As a technical tool which may be interesting in its own right, we (e) derive up-to-constant asymptotics for connectivity probabilities in half-spaces, in the case that a vertex is “mesoscopically close” to the boundary of the half-space.

The questions studied here are related to longstanding conjectures about high-dimensional percolation. For instance, precise information about the distribution of vertices within clusters and chemical distances between far away vertices would allow one to obtain the scaling limit of simple random walk on large critical percolation clusters [6]. We believe that many of the results and techniques that we obtain here could be useful for studying this and other open problems of the model.

1.1. *Definition of model and main results.* In our work, we will consider percolation with base graph the cubic or hypercubic lattice \mathbb{Z}^d . The usual standard basis coordinates of a vertex $x \in \mathbb{Z}^d$ will be denoted by $x(i) = x \cdot \mathbf{e}_i$, so $x = (x(1), x(2), \dots, x(d))$. The origin is denoted by

$$0 = (0, 0, \dots, 0).$$

We will write $\|x\|_p$ for the usual $\| \cdot \|_p$ norm of an $x \in \mathbb{R}^d$; if the p subscript is omitted, we mean the ∞ norm. The hypercubic lattice has vertex set \mathbb{Z}^d and edge set

$$\mathcal{E}(\mathbb{Z}^d) := \{x, y\} : \|x - y\|_1 := \sum_{i=1}^d |x(i) - y(i)| = 1.$$

(We also use the symbol \mathbb{Z}^d to refer to the graph.) Given a subset $A \subseteq \mathbb{Z}^d$, the symbol ∂A denotes the set $\{x \in A : \exists y \in \mathbb{Z}^d \setminus A \text{ with } \|y - x\|_1 = 1\}$.

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

We will also consider subgraphs of the hypercubic lattice. A few other settings will be briefly discussed: we will mention some past results on the two-dimensional triangular lattice, and many high-dimensional results also extend to the *spread-out lattice* having vertex set \mathbb{Z}^d but with edges between all pairs of vertices with ∞ distance at most some constant. In fact, the new results of the present work all extend to the spread-out lattices under standard assumptions; see the discussion at Remark 2 below.

The *half-space* is the subgraph of the hypercubic lattice induced by the set of vertices $\mathbb{Z}_+^d = \{x \in \mathbb{Z}^d : x(1) \geq 0\}$. We also call *half spaces* isomorphic graphs obtained by translation, reflection, or by permutation of coordinates. We note that we do not consider half-spaces with normal vectors other than $\pm \mathbf{e}_i$. The boxes or ∞ balls in these graphs are the subgraphs induced by the following vertex sets:

$$B(n) = [-n, n]^d \cap \mathbb{Z}^d \quad \text{and} \quad B_H(n) = B(n) \cap \mathbb{Z}_+^d, \quad \text{respectively.}$$

As above, we blur the distinction between these vertex sets and the subgraphs they induce, using the same symbols to denote both.

We study the Bernoulli bond percolation model—abbreviated percolation—on the above and other subgraphs of \mathbb{Z}^d . For its definition, we fix a $p \in [0, 1]$ and let $\omega = (\omega_e)_{e \in \mathcal{E}(\mathbb{Z}^d)}$ be a collection of independent and identically distributed (i.i.d.) Bernoulli(p) random variables associated to edges e of \mathbb{Z}^d . We write $\mathcal{E}(\mathbb{Z}^d)$ for the space $\{0, 1\}^{\mathcal{E}(\mathbb{Z}^d)}$ of possible values of ω , with associated Borel sigma-algebra. An edge e such that $\omega_e = 1$ will be called *open*, and an edge e such that $\omega_e = 0$ will be called *closed*. The main object of study is the (random) *open graph*, having vertex set \mathbb{Z}^d and edge set consisting of all open edges $e \in \mathcal{E}(\mathbb{Z}^d)$, along with subgraphs of this open graph. Indeed, the open graph of \mathbb{Z}^d naturally induces graphs on vertex subsets of \mathbb{Z}^d : if G is a set of vertices, then the open subgraph of G has edge set consisting of those $e = \{x, y\} \in \mathcal{E}(\mathbb{Z}^d)$ with both $x, y \in G$ and $\omega_e = 1$.

Given a realization of ω and a subgraph G of \mathbb{Z}^d (including \mathbb{Z}^d itself), the *open clusters* are the components of the open subgraph of G . To distinguish various choices of G , we write $\mathfrak{C}_G(x)$ for the open cluster containing x in the open subgraph of G . We write $\mathfrak{C}(x) = \mathfrak{C}_{\mathbb{Z}^d}(x)$ and $\mathfrak{C}_H(x) = \mathfrak{C}_{\mathbb{Z}_+^d}(x)$ for brevity. We will define the event

$$x \xleftrightarrow{G} y := \{v \in \mathfrak{C}_G(x)\} \quad (1)$$

and we abbreviate $\{x \xleftrightarrow{\mathbb{Z}^d} y\}$ to $\{x \leftrightarrow y\}$.

The distribution of ω will be denoted by \mathbb{P}_p to indicate its dependence on the parameter p . We define the *critical probability* (of the entire ambient graph \mathbb{Z}^d) by

$$p_c := \inf p : \mathbb{P}_p(|\mathfrak{C}_{\mathbb{Z}^d}(0)| = \infty) > 0. \quad (2)$$

Here and later $|\cdot|$ denotes the cardinality of a set. When $p < p_c$ (resp. $p = p_c, p > p_c$), the model is said to be *subcritical* (resp. *critical, supercritical*). We stress that the value of p_c depends on the value of d . One can define p analogously for other graphs, including subgraphs of \mathbb{Z}^d —we will touch on this in discussing some results in this introduction, but keep p_c as defined in (2) for the remaining sections of the paper.

On \mathbb{Z}^d with $d \geq 2$, it is widely conjectured that \mathbb{P}_{p_c} -almost surely there exists no infinite open cluster. Among other cases, this conjecture is proved in “high dimensions”, when d is sufficiently large; the current strongest results establish it for $d \geq 11$. For all

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

these large values of d , more has been shown: for example, the probability of having long critical point-to-point connections is asymptotic to the Green's function of simple random walk. This fact is expected to be true for all $d > 6$, the expected *upper critical dimension* of the model. We will discuss these issues in more detail in Sect. 1.2.

All results of this paper will hold as long as $d > 6$ and the aforementioned Green's function asymptotic holds. We introduce this formally, for use as a hypothesis of our theorems:

Definition 1. The phrases *high dimensions* and *high-dimensional* refer to the hypercubic lattice \mathbb{Z}^d for any value of $d > 6$ such that

$$c|x - y|^{2-d} \leq \mathbb{P}_{p_c}(x \leftrightarrow y) \leq C|x - y|^{2-d}$$

holds for all pairs of distinct vertices x and y , for some uniform constants $c, C > 0$.

As mentioned above, this definition can be broadened to include the spread-out lattice; see Remark 2 below. We direct the reader to the survey [21] for detailed discussion of high-dimensional percolation and related models. For an introduction to percolation on \mathbb{Z}^d for general d , and for an expository treatment of fundamental results, we refer to [13]. The book [34] discusses percolation in some detail, including in general settings beyond the hypercubic lattice. After the introduction, we will always assume we are in the high-dimensional setting of Definition 1.

The main results of the paper, Theorems 1–6 in this section, relate to the behavior of the open clusters $\mathfrak{C}_{B(n)}(x)$ and $\mathfrak{C}_{\mathbb{Z}_+^d}(x)$ in high dimensions, for $p = p_c$ and $p < p_c$ but “close to” p_c . As we state our theorems, we will introduce the definitions of the relevant quantities of interest. To allow us to discuss past results outside of the high dimensional setting, we make these definitions for general d .

Definition 2. • The site x has *one arm* (in the extrinsic metric) to distance n in G if

$$\sup\{|y - x|_\infty : y \in \mathfrak{C}_G(x)\} \geq n.$$

In the case $G = \mathbb{Z}^d$, we often simply say that x has one arm to distance n without referring to G . The corresponding events are called *arm events* or *one-arm events*. We also set

$$\pi_p(n) := \mathbb{P}_p(\text{the origin 0 has an arm to distance } n).$$

We sometimes write $\pi(n)$ for $\pi_{p_c}(n)$.

• The *correlation length* $\xi(p)$ is defined for $p < p_c$ by

$$\xi(p) := -\lim_{n \rightarrow \infty} n[\log \pi_p(n)]^{-1} = -\lim_{n \rightarrow \infty} n[\log \mathbb{P}_p(0 \leftrightarrow n\mathbf{e}_1)]^{-1};$$

for the existence of the limit and the equality, see e.g. [13, (6.10) and (6.44)].

We now begin to state the main results of this paper. The first theorem gives precise bounds on the asymptotic behavior of the one-arm probability in high dimensional percolation in the regime $n \rightarrow \infty$ and $p \rightarrow p_c$.

Theorem 1. *In the setting of percolation in high dimensions, there is a constant $C > 0$, depending only on d , such that for all $n \in \mathbb{N}$ and for all $p \in [0, p_c]$,*

$$\frac{1}{C}n^{-2} \exp\left(-Cn\sqrt{\frac{p_c - p}{p_c - p}}\right) \leq \pi_p(n) \leq Cn^{-2} \exp\left(-\frac{n\sqrt{p_c - p}}{C}\right). \quad (3)$$

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

150 The new content of the theorem is in the case $p < p_c$. The analogous inequalities in the
 151 case $p = p_c$ are the main result of [30].

152 It is expected (see, e.g. [13, (9.16) and Section 9.2]) that subcritical connectivity
 153 events on linear scale n obey “scaling hypotheses” in the simultaneous limit $n \rightarrow \infty$
 154 and $p \rightarrow p_c$: one expects quantities such as $\pi_p(n)/\pi(n)$ to behave as $f(n/\xi(p))$ for
 155 some rapidly decaying f . It has been shown [15] that $\xi(p) \sim (p_c - p)^{-1/2}$ as $p \rightarrow p_c$.
 156 So, in this language, Theorem 1 establishes such a scaling form for π_p , up to constants
 157 in the determination of $\xi(p)$.

158 Here and later, we use the usual asymptotic notation: given two functions f, g on
 159 a subset U of \mathbb{R} , we say that $f(t) \sim g(t)$ as t approaches t_0 if $\limsup_{t \rightarrow t_0} |f(t)/g(t)|$
 160 and $\limsup_{t \rightarrow t_0} |g(t)/f(t)|$ are both finite, where both limits are taken within U . If f, g
 161 instead map $\{1, 2, \dots\} \rightarrow \mathbb{Q}, \infty$, we write $f(n) \sim g(n)$ instead of “ $f(n) = g(n)$ as
 162 $n \rightarrow \infty$.”

163 The main estimate of Theorem 1 enables us to describe certain lower tail behaviors
 164 in the critical phase. Our second result concerns the chemical distance in the critical
 165 regime.

166 **Definition 3.** For $A, B \subset \mathbb{Z}^d$, let $d_{chem}(A, B)$ denote the length—that is, number of
 167 edges—of the shortest open path connecting some vertex of A and some vertex of B
 168 if such a path exists and ∞ otherwise. $d_{chem}(A, B)$ is called the *chemical distance*
 169 between the sets A and B . For $x, y \in \mathbb{Z}^d$, we write $d_{chem}(x, \cdot)$ (resp. $d_{chem}(\cdot, y)$) to
 170 denote $d_{chem}(\{x\}, \cdot)$ (resp. $d_{chem}(\cdot, \{y\})$). If $G \subseteq \mathbb{Z}^d$, we write $d_{chem}^G(A, B)$ for the length
 171 of the shortest open path from a vertex of A to a vertex of B which lies entirely in G ,
 172 and we write $d_{chem}^H := d_{chem}^{\mathbb{Z}_+^d}$.

173 We denote

$$174 \quad S_n := d_{chem}(0, \partial B(n)),$$

175 the chemical distance between the origin and the boundary of the box $B(n)$.

176 It is known [29, 30, 44] that in high dimensions, S_n is of order n^2 on the event that the
 177 origin has an arm to Euclidean distance n . In the next theorem, we show that the lower
 178 tail of the normalized chemical distance $n^{-2} S_n$ decays exponentially.

179 **Theorem 2.** *In the setting of critical percolation in high dimensions, there is a constant
 180 $c > 0$ such that for any $\lambda > 0$*

$$181 \quad \mathbb{P}_{p_c}(S_n \leq \lambda n^2 \mid 0 \leftrightarrow \partial B(n)) \leq \exp(-c\lambda^{-1}), \quad (4)$$

182 and there is a constant $C > 0$ such that for all $\lambda \geq Cn^{-1}$, we have:

$$183 \quad \mathbb{P}_{p_c}(S_n \leq \lambda n^2 \mid 0 \leftrightarrow \partial B(n)) \geq \exp(-C\lambda^{-1}). \quad (5)$$

184 This theorem characterizes the lower tail behavior of S_n , with the exponential rate
 185 of decay determined up to constants. We note that on $\{\emptyset \leftrightarrow \partial B(n)\}$, we trivially have
 186 $S_n \geq n$, and so the restriction on λ in the second part is necessary. As a corollary of
 187 Theorem 2, we are able to derive analogous results for point-to-point chemical distances,
 188 including

$$189 \quad \mathbb{P}_{p_c}(0 \leftrightarrow x, d_{chem}(0, x) \leq \lambda x^{-2}) \leq C e^{-c/\lambda} x^{-2-d}; \quad (6)$$

190 see Sect. 5.4 below for this and a related statement in half-spaces.

191 Our third main result is the upper-tail counterpart to Theorem 2:

220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.			

192 **Theorem 3.** *In the setting of critical percolation in high dimensions, there is a constant
193 $c > 0$ such that for any $\lambda > 0$*

194
$$\mathbb{P}_{p_c}(S_n \geq \lambda n^2 \mid 0 \leftrightarrow \partial B(n)) \leq \exp(-c\lambda).$$

195 Using similar but simpler arguments, we obtain the following result analogous to (6),
196 involving the upper tail of the point-to-point chemical distance within boxes

197
$$\text{for } x \in B(n), \quad \mathbb{P}_{p_c}(d_{chem}(0, x) > \lambda n^2 \mid 0 \leftrightarrow x) \leq \exp(-c\lambda). \quad (7)$$

198 At the end of Sect. 6, we give a sketch of how to adapt the argument proving Theorem 2
199 to prove (7).

200 Our fourth main result concerns the size of the cluster $\mathcal{C}_{B(n)}(0)$ in the critical regime.
201 It is known [1,30] that in high dimensions, $|\mathcal{C}_{B(n)}(0)|$ is $O_p(n^4)$ on the event that the
202 origin has an arm to Euclidean distance n . On the same event, we show that the lower
203 tail of the normalized cluster size $n^{-4}|\mathcal{C}_{B(n)}(0)|$ decays stretched-exponentially with
204 exponent 1/3.

205 **Theorem 4.** *Consider critical percolation in high dimensions, and let $\alpha > 3d/2$ be
206 fixed. There are constants $C, c = C(d), c(d, \alpha) > 0$ such that the following holds.*

207
$$\begin{aligned} \mathbb{P}_{p_c}(|\mathcal{C}_{B(n)}(0)| \leq \lambda n^4 \mid 0 \leftrightarrow \partial B(n)) &\leq \exp(-c\lambda^{-\frac{1}{3}}) \quad \text{for all } \lambda > (\log n)^\alpha n^{-3} \\ &\geq \exp(-C\lambda^{-\frac{1}{3}}) \quad \text{for all } \lambda > Cn^{-3}. \end{aligned} \quad (8)$$

208 The probability appearing in (8) is zero when $\lambda < n^{-3}$, and so the theorem covers es-
209 sentially the entire support of $|\mathcal{C}_{B(n)}(0)|$. The interesting problem of obtaining matching
210 constants on both sides of the inequality seems challenging, being related to well-known
211 problems in the model—for instance, showing that $\pi_{p_c}(n) = Cn^{-2} + o(n^{-2})$, stated as
212 Open Problem 11.2 in [21].

213 Our fifth main result concerns the number of spanning clusters¹ of boxes at $p = p_c$.

214 **Definition 4.** An open cluster \mathcal{C} intersecting the box $B(n)$ is called a *spanning cluster*
215 of $B(n)$ if there are vertices $x, y \in \mathcal{C}$ such that $x(1) = -n$ and $y(1) = n$. We denote by
216 \mathcal{S}_n the set of spanning clusters of $B(n)$:

217
$$\mathcal{S}_n := \{\mathcal{C}(z), z \in B(n) : \exists x, y \in \mathcal{C}(z) \text{ such that } x(1) = -n, y(1) = n\}.$$

218 This quantity was analyzed by Aizenman [1], who showed

219
$$\mathbb{P}_{p_c}(|\mathcal{S}_n| \geq o(1)n^{d-6}) \rightarrow 1, \quad (9)$$

220 as $n \rightarrow \infty$. A matching upper bound $O(n^{d-6})$ was obtained for the number of spanning
221 clusters of $B(n)$ having size $\approx n^4$. Using our estimate for the lower tail of the cluster
222 size, we can extend the upper bound to $|\mathcal{S}_n|$, which includes all spanning clusters:

223 **Theorem 5.** *In the setting of critical percolation in high dimensions, there is a constant
224 $C > 0$ such that $\mathbb{E}_{p_c}[|\mathcal{S}_n|] \leq Cn^{d-6}$. Therefore, the sequence of random variables
225 $\{n^{6-d}|\mathcal{S}_n|\}_{n=1}^\infty$ is tight.*

1 Here we use Aizenman's [1] definition of "spanning cluster"; other natural definitions of this term exist.

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

227 This sharpens the picture obtained in [1] for the behavior of the number of spanning
 228 clusters. Our lower tail estimates obtained in Theorem 4 allows us to overcome the
 229 difficulties encountered in [1] in handling “thin spanning clusters” having atypically
 230 small cardinality.

231 Our sixth and final main result, Theorem 6, gives bounds for the two-point function
 232 within half-spaces. We introduce some notation for this, along with the analogous
 233 notation for the two-point function in more general subgraphs, for future use.

234 **Definition 5.** The *two-point function* $\tau_p(x, y)$ denotes the connectivity probability

$$235 \quad \tau_p(x, y) := \mathbb{P}_p(x \leftrightarrow y) = \mathbb{P}_p(x \xleftrightarrow{\mathbb{Z}^d} y).$$

236 More generally, when $G \subseteq \mathbb{Z}^d$, the *two-point function restricted to G* is $\tau_{G,p}(x, y) =$
 237 $\mathbb{P}_p(x \xleftrightarrow{G} y)$. When $G = \mathbb{Z}_+^d$, we call $\tau_{G,p}(\cdot, \cdot)$ the *half-space two-point function* and
 238 abbreviate it to $\tau_H(\cdot, \cdot)$. We often suppress the suffix p_c in τ_{p_c} and τ_{H,p_c} .

239 **Theorem 6.** *There is a constant $C > 0$ such that the following upper bound holds
 240 uniformly in $m \geq 0$ and $x \in \mathbb{Z}_+^d$:*

$$241 \quad \tau_H(x, m\mathbf{e}_1) := \mathbb{P}_{p_c}(x \xleftrightarrow{\mathbb{Z}_+^d} m\mathbf{e}_1) \leq C(m+1) |x - m\mathbf{e}_1|^{1-d}.$$

242 *There is a constant $c > 0$ such that the following lower bound holds uniformly in $n \geq 0$,
 243 and $x \in \mathbb{Z}_+^d$ satisfying $x(1) \geq \frac{1}{2} |x|$ and $|x| \geq 4m$:*

$$244 \quad \tau_H(x, m\mathbf{e}_1) \geq c(m+1) |x - m\mathbf{e}_1|^{1-d}.$$

245 This theorem is an extension of results of [8], which handled the case that at least one
 246 vertex is on the boundary of \mathbb{Z}_+^d . The present theorem allows one to consider points
 247 at “intermediate distance” from the boundary. This is necessary for key estimates in
 248 the proofs of other theorems. We also believe it is interesting in its own right and is a
 249 potential tool for studying other properties of open clusters (see e.g. the remark at the
 250 end of Section 3.2 of [37]).

251 In the high-dimensional settings of Definition 1, the “unrestricted” two-point function
 252 $\tau(\mathbf{x}, \mathbf{y}) = \tau_{\mathbb{Z}^d}(x, y)$ is asymptotic to $|x - y|^{2-d}$. Theorem 1.1(b) of [8] shows, using
 253 this bound as input, that $\tau_H(x, y)$ is asymptotic to $|x - y|^{2-d}$ (resp. $|x - y|^{1-d}$) if
 254 both (resp. one of) x and y are macroscopically away from the boundary of \mathbb{Z}_+^d and none
 255 (resp. one) lies on the boundary. The asymptotic result of Theorem 6 interpolates the
 256 above two behaviors of $\tau_H(x, y)$. In general, based on the heuristic approximation of
 257 high-dimensional percolation by Branching Random Walk (see [21, Section 2.2]), one
 258 expects the half-space two point function $\tau_H(x, y)$ to behave like the Green’s function
 259 of a random walk conditioned to remain in a half space in all regimes of x and y .

260 We conclude this subsection with a pair of remarks about our main results and some
 261 last definitions of important quantities in the model. The latter will be useful in the next
 262 subsection for describing past work on the model.

263 *Remark 1.* As this work was being finalized, Hutchcroft, Michta and Slade posted a
 264 preprint [23] proving Theorem 1, as well as an upper bound for the subcritical two-point
 265 function, along different lines from this paper. A key technical input in their proof are
 266 estimates for the expectation and tail probabilities of the volume of *pioneer points* on
 267 connections to hyperplanes, using the estimates (21) of the first two authors of the present

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	
			Disk Received <input type="checkbox"/>	Not Used <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Mismatch <input type="checkbox"/>

268 paper [8]. They use this to derive various results on percolation on high-dimensional tori
 269 of large volume, a setting we do not discuss here. Our proof of Theorem 1 depends
 270 instead on some of the other results presented here, and the theorem is used to prove
 271 some others. These concern aspects of high dimensional percolation in \mathbb{Z}^d at the critical
 272 point not treated in [23].

273 *Remark 2.* As mentioned earlier, the above results would generalize to the spread-out
 274 lattice, where edges are placed between all vertices at ∞ distance at most γ apart
 275 (where $\gamma \geq 1$ is an arbitrary parameter). The proofs in this paper go through with only
 276 minor modification in this case, as long as $d > 6$ and the Green's function asymptotic
 277 for the two-point function appearing in Definition 1 hold. These lattices hold some
 278 interest because existing methods can establish this two-point function asymptotic for
 279 the spread-out model for any $d > 6$, as long as γ is chosen sufficiently large. We choose
 280 to write our proofs with a focus on the hypercubic lattice purely for notational simplicity.

281 *Remark 3.* We believe the ideas of this paper are robust enough to extend our results to
 282 closely related cases of interest—for instance, extending volume and chemical distance
 283 bounds to the IIC of [43].

284 **Definition 6.** • The *density of open clusters* $\theta(p) := \mathbb{P}_p(|\mathcal{C}(0)| = \infty)$ denotes the
 285 probability that the origin belongs to the infinite cluster.
 286 • The *mean finite cluster size* is denoted by $\chi(p) := \mathbb{E}_p[|\mathcal{C}(0)|; |\mathcal{C}(0)| < \infty]$.

287 *1.2. Past work relevant for our results.* Much past work has dealt with the behavior of
 288 percolation at and near criticality. By “near critical” behavior, we mean that $p = p_c$ but
 289 that we consider events involving length scales at which the model looks approximately
 290 critical in some sense. While the subcritical and supercritical regimes of percolation
 291 on \mathbb{Z}^d are by now well-understood [2] at large scales, the critical regime is only well-
 292 understood when $d = 2$ and in high dimensions. The near-critical regime is fairly
 293 well-understood when $d = 2$, but less so in high dimensions (though several results,
 294 for instance the behavior of $\chi(p)$ as $p \rightarrow p_c$, are known). Notably, the near-critical
 295 behavior of the one-arm probability π_p is not yet understood in high dimensions.

296 Relatedly, results about certain types of connectivity events at criticality seem sig-
 297 nificantly easier to prove in two-dimensional percolation than in high dimensions. A
 298 notable example is the relation between the two-point function and one-arm probability:
 299 on \mathbb{Z}^2 at p_c , Kesten [24] showed

$$\tau_{p_c}(0, ne_1) \propto \pi(n)^2 \text{ as } n \rightarrow \infty.$$

300 This estimate is derived by connecting the clusters of 0 and ne_1 using the Russo–
 301 Seymour–Welsh (RSW) theorem. The corresponding result in high dimensions, \mathbb{Z}^d , $\pi(n)^2$
 302 $n^{6-d} \pi(n)^2$ took until 2011 [30] to establish. A main reason is the proliferation of span-
 303 ning clusters in high dimensions, already noted at (9), which prevents the use of many
 304 $d = 2$ techniques based on the RSW theorem.

305 Bridging this gap between $d = 2$ and high dimensions is a major focus of this paper.
 306 We will put our results into context by describing past work in both of these settings.

308 *1.2.1. Past relevant work in two dimensions* At $p = p_c$, connectivity probabilities like
 309 $\pi(n)$ are believed to obey *power laws*, with the powers often called *critical exponents*.
 310 The work of Kesten [24] alluded to above established a relation between the critical

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	
				Disk Received <input type="checkbox"/>	Not Used <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Corrupted <input type="checkbox"/>
					Mismatch <input type="checkbox"/>

311 exponents governing π , τ , and the tail of the cluster size $|\mathcal{C}(0)|$ at $p = p_c$. Remarkably,
 312 this work predated the proof of the exact values of these exponents [31] by about 20 years.
 313 Kesten and Zhang [26] built upon these ideas to show that these exponents strictly change
 314 when \mathbb{Z}^2 is replaced by a sector: if we set for $\theta > 0$

$$315 \quad S_\theta := \{(\cos \varphi, r \sin \varphi) \in \mathbb{Z}^2 : r \geq 0, 0 \leq \varphi < 2\pi - \theta\} \text{ and } \pi(n, \theta) \\ 316 \quad := \mathbb{P}_{p_c}(0 \xrightarrow{S_\theta} \partial B(n)),$$

317 then $\pi(n, \theta) \leq \pi(n)$ for all $n \geq 1$, with δ some θ -dependent constant.

318 In a related and important work, Kesten [25] clarified several aspects of the near-
 319 critical behavior of percolation, showing relations between probabilities of arm events
 320 at p_c (in a more general sense than that of Definition 2) and quantities like χ , θ , and ξ .
 321 A main and useful idea is that $\xi(p)$ is roughly the length scale $L(p)$ at which squares
 322 become very unlikely to be crossed by a spanning cluster. This allows one to give useful
 323 bounds on near-critical connectivity probabilities: for instance

$$324 \quad \text{for } p < p_c, \quad c_1 \exp(-C_1 k) \leq \pi_p(k L(p)) / \pi_{p_c}(k L(p)) \leq C_2 \exp(-c_2 k). \quad (10)$$

325 This can be compared to our Theorem 1.

326 The development of SLE [38] and the proof of Cardy's formula [40] allowed the com-
 327 putation of critical exponents for arm probabilities [31] on the two-dimensional triangular
 328 lattice. For instance, the one-arm probability $\pi(n) = n^{-5/48+o(1)}$. These exponents are
 329 believed to be identical on a wide class of two-dimensional lattices, a manifestation of
 330 the *universality* hypothesis. Using Kesten's results mentioned above, one can use these
 331 to compute near-critical power laws:

$$332 \quad \theta(p) = (p - p_c)^{5/36+o(1)}, \quad \chi(p) = |p - p_c|^{43/18+o(1)}, \quad \xi(p) = (p - p_c)^{-4/3+o(1)}.$$

333 as $p \rightarrow p_c^+$, $p \rightarrow p_c$, and $p \rightarrow p_c^-$ respectively. SLE methods also allow computation
 334 of critical exponents for, among others, arm probabilities in the sectors defined above.
 335 Conformal invariance of the model's scaling limit makes clear how many quantities of
 336 interest vary when considering percolation on different subgraphs of the lattice.

337 The RSW theorem allows for a number of detailed estimates of the size of large open
 338 clusters at criticality. A recent result of this type is due to Kiss [28], who found the sharp
 339 upper tail behavior of the size of the largest spanning cluster of a box (compare earlier
 340 results in [7]). See also e.g. [42] for results on the k th largest cluster, and [12] for a
 341 description of the scaling limit of the counting measure on points lying in large clusters.
 342 It is possible to prove using RSW methods and the asymptotic $\pi(n) = n^{-5/48+o(1)}$ that

$$343 \quad -\log \mathbb{P}_{p_c}(|\mathcal{C}(0)| \leq \lambda^2 \pi(n) | 0 \leftrightarrow \partial B(n)) = \lambda^{-43/48+o(1)},$$

344 but we have not been able to find this result in the literature.

345 The exponent governing the chemical distance at p_c is not known on \mathbb{Z}^2 or the
 346 triangular lattice, and it appears not to be directly computable via SLE methods (see
 347 [39]). Aizenman–Burchard [3] showed that chemical distances are superlinear: there is
 348 a $\delta > 0$ such that, on $\{0 \leftrightarrow \partial B(n)\}$, the inequality $S_i \geq n^{1+\delta}$ holds with high probability.
 349 An upper bound for the chemical distance between sides of a box is given by the length
 350 of the lowest crossing of the box $B(n)$: on the triangular lattice, this crossing is known
 351 to have expected length $n^{4/3+o(1)}$ [35]. This was improved by Damron–Hanson–Sosoe
 352 [9], who showed that there also exist crossings of length at most $C n^{4/3-\varepsilon}$; see [36] for
 353 the case of chemical distances to the origin. Since it is not even known that $nS = n^{s+o(1)}$
 354 for some s in dimension $d = 2$, distributional results like Theorem 2 on scale n^s are
 355 currently out of reach.

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

356 1.2.2. *Past work in high dimensions* The values of numerous critical exponents have
 357 been rigorously established in high dimensions, through methods very different from
 358 those available in two dimensions. A key point is that $d = 6$ is believed to be the
 359 model's *upper critical dimension*, above which many critical exponents are believed to
 360 become dimension-independent, along with other aspects of the model's behavior. For
 361 $d > 6$, large open clusters should gain a degree of independence from each other—this
 362 makes certain aspects of the model easier to understand, but also makes many RSW-type
 363 arguments inapplicable. See [21] for an extensive review of research on high-dimensional
 364 percolation, along with related results.

365 The foundational results in high dimensions are based on the Lace Expansion, adapted
 366 to percolation by Hara and Slade [17], who showed that $\theta(p_c) = 0$ for sufficiently large
 367 d . Indeed, they established the *triangle condition* of Aizenman–Newman [4]. This was
 368 extended by Hara et al. [18] (resp. Hara [16]), who showed the asymptotic of Definition 1
 369 holds on the spread-out lattice for $d > 6$ and large (resp. on the hypercubic lattice for
 370 $d > 19$):

$$371 \quad \exists c, C > 0 : c|x - y|^{2-d} \leq \tau_{p_c}(x, y) \leq C|x - y|^{2-d} \quad \text{for all } x = y \in \mathbb{Z}^d. \quad (11)$$

372 On the hypercubic lattice, the asymptotic of (11) has so far been extended down to all
 373 $d \geq 11$ by Fitzner and van der Hofstad [11]. It is expected to hold on the hypercubic
 374 lattice and each spread-out lattice for $d > 6$, in accord with Definition 1.

375 In contrast to the situation on \mathbb{Z}^2 , the relationships between many critical power
 376 laws took longer to establish in high dimensions. Using the triangle condition, Barsky–
 377 Aizenman showed in 1991 [5], 17 years before Hara's proof of (11), that the critical
 378 exponent for the tail of $|\mathcal{C}(0)|$ is $1/2$:

$$379 \quad \mathbb{P}_{p_c}(|\mathcal{C}(0)| > t) \sim t^{-1/2}. \quad (12)$$

380 Kozma and Nachmias [30] computed the critical exponent governing $\pi_{p_c}(n)$:

$$381 \quad \pi_{p_c}(n) \sim n^{-2}. \quad (13)$$

382 The proofs relating the quantities in (11), (12) and (13) are much more complicated than
 383 their two-dimensional analogues. We mention here also the related work [29], where
 384 the scaling of the *intrinsic* one-arm probability was computed. We say a vertex x has an
 385 intrinsic arm to distance n if x is the initial vertex of an open path containing at least n
 386 edges. One result of [29] is that

$$387 \quad \mathbb{P}_{p_c}(0 \text{ has an intrinsic arm to distance } n) \sim \frac{1}{n}. \quad (14)$$

388 The power laws of (12), (13), (14) will be useful to us in what follows, and so we
 389 emphasize that they are shown to hold in high dimensions, in the sense of Definition 1;
 390 they also hold in the spread-out model, whenever $d > 6$ and (11) hold.

391 Unlike in two dimensions, the behavior of the high-dimensional model in sectors and
 392 similar subgraphs appears to be poorly understood. The paper [8] made advances in this
 393 direction, establishing analogues for (11), (12) and (13) in half-spaces. Some of these
 394 are quoted at (21) below, which says among other things that

$$395 \quad \tau_{H, p_c}(0, ne_1) \sim n^{1-d}.$$

396 These results did not address the two-point function in the case where neither vertex is
 397 on the boundary of the half-space, which is the content of our Theorem 6. The paper

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>

[8] also showed that the two-point function bound (11) also holds in subgraphs of \mathbb{Z}^d , as long as both endpoints are macroscopically far from the boundary: for each $M > 1$, there exists $c = c(M) > 0$ such that

$$\text{for each } n \text{ and all } x, y \in B(n), \quad \tau_{B(Mn), p_c}(x, y) \geq c |x - y|^{2-d}. \quad (15)$$

Similarly to the case of subgraphs, near-critical behavior is also less well-understood in high dimensions than on \mathbb{Z}^2 , though some results are known. Notable is Hara's [15] asymptotic $\xi(p) \sim (p_c - p)^{-1/2}$ as $p \rightarrow p_c$, with ξ defined in the sense of Definition 2 so that $\pi_p(n) = \exp(-n/\xi(p) + o(n))$. Our Theorem 1 sharpens this to extract the behavior of this arm probability when $n \approx \xi(p)$, giving a result analogous to (10). Some other results of a near-critical type have been shown in high dimensions: for instance, the behavior of $\chi(p)$ [4] as $p \rightarrow p_c$ and $\theta(p)$ as $p \rightarrow p_c$ [2] are known. The results here give less insight into the structure of open clusters than is available on \mathbb{Z}^2 , where among other things it is shown that $\theta(p) \sim \pi_p(L(p))$ as $p \rightarrow p_c$. Here $L(p)$ is defined for $p > p_c$ as the length scale above which the crossing of a square by a spanning cluster is very likely [25].

At p_c , exponential upper tail bounds for the cluster volume $|\mathcal{C}(0)|$ conditional on $\{0 \leftrightarrow \partial B(n)\}$ can be shown via the methods of Aizenman–Newman [4] and Aizenman [1]. The best existing upper bounds on $\mathbb{P}_{p_c}(|\mathcal{C}(0)| < \lambda n^4 \mid 0 \leftrightarrow \partial B(n))$ appear to be of the order λ^{-c} for some power c . As mentioned above Theorem 5, the lower tail $\mathbb{P}_{p_c}(|\mathcal{C}(0)| > \lambda n^4 \mid 0 \leftrightarrow \partial B(n))$ is related to the number of spanning clusters of a box. Our Theorem 4 shows that this lower tail is actually stretched-exponential with power $-\frac{1}{3}$, and allows us to give a comparable upper bound to Aizenman's results on the number of spanning clusters, already mentioned at Theorem 4.

Non-optimal bounds have previously been shown for the lower tail of the chemical distance. The strongest bound to date is due to van der Hofstad and Sapozhnikov [44], who showed that

$$\mathbb{P}_{p_c}(S_n < \lambda n^2 \mid 0 \leftrightarrow \partial B(n)) \leq C \exp(-c\lambda^{-1/2}).$$

Our Theorem 2 shows that this probability is actually exponential in λ^{-1} .

A number of other recent works have studied the properties of large open clusters in high dimensions. The papers [19, 20, 44] study percolation on large tori, showing that critical percolation on such graphs mimics the critical Erdős–Rényi random graph in several ways. The paper [43] constructs the incipient infinite cluster, an appropriately defined version of an infinite open cluster at p , and [22] studies properties of this object in greater detail and from new perspectives. The paper [41] finds the values of the “mass dimension” and “volume growth exponent” of the IIC.

1.3. Organization of the paper, constants, and a standing assumption.

1.3.1. Organization of the paper The order in which we present the proofs is partially determined by dependencies between arguments.

In Sect. 2, we define and clarify some notation and provide a few estimates which will underpin our proofs. In Sect. 3, we prove Theorem 6; we note this result will be invoked in several later proofs. In Sect. 4, we show the inequality (5) of Theorem 2. This is by an explicit construction which forces the chemical distance to be small; this construction also guarantees that $\mathcal{C}_{B(n)}(0)$ is small, and thus also proves the probability lower bound of Theorem 4.

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

442 In Sect. 5, we prove Theorem 1 and the first inequality (4) of Theorem 2. In this
 443 argument, we make use of the inequality (5) proved in Sect. 4. In Sect. 6, we prove
 444 Theorem 3 and sketch the proof of its point-to-point analogue (7). In Sect. 7, we prove
 445 the remaining inequality (the upper bound on the probability) of Theorem 4. Finally, in
 446 Sect. 8, we show Theorem 5 using Theorem 4 as input.

447 *1.3.2. Standing assumption* For the remainder of the paper, we consider subcritical
 448 and critical percolation in one of the high-dimensional settings of Definition 1. We
 449 use \mathbb{P} (resp. \mathbb{P}_p) for the probability distribution of critical percolation (resp. critical or
 450 subcritical percolation with parameter p). We write \mathbb{E} (resp. \mathbb{E}_p) for expectation with
 451 respect to \mathbb{P} (resp. \mathbb{P}_p).

452 *1.3.3. Constants* We will generally let c, C denote positive constants; c will generally
 453 be small and C large. These often change from line to line or within a line. All such
 454 constants will generally depend on the value of d and may depend on other quantities.
 455 We will clarify the dependence of constants on other parameters when it is important
 456 and not clear from context, sometimes writing e.g. $C = C(K)$ to indicate C depends on
 457 the parameter K . We sometimes number constants as \bar{C}_i, c_i to refer to them locally.

458 2. Further Notation and Preliminaries

459 Recall we have introduced the $^\infty$ ball or box $B(n)$. We extend the notation to boxes
 460 with arbitrary centers, writing

$$461 B(x; n) = x + B(n).$$

462 Similarly, we define annuli by $Ann(m, n) = B(n) \setminus B(m)$ and $Ann(x; m, n) = x +$
 463 $Ann(m, n)$. Given two domains $A \subseteq D$, we write

$$464 \partial_D A = \{x \in A : \exists y \in D \setminus A \text{ with } |y - x|_1 = 1\}.$$

465 We use the symbol \leftrightarrow in the obvious way; for instance, $x \leftrightarrow y$ means that $\mathfrak{C}(x) =$
 466 $\mathfrak{C}(y)$. When discussing a cluster \mathfrak{C}_G or properties thereof in the case $G = \mathbb{Z}^d$, we
 467 sometimes use the term *restricted*; for instance, $\mathfrak{C}_{\mathbb{Z}_+^d}(x) = \mathfrak{C}_H(x)$ is the cluster of x
 468 restricted to the half-space \mathbb{Z}_+^d . We also emphasize the slight asymmetry in the definition
 469 of restricted connections. In particular, given D and $C \subseteq D$, the notation $x \xleftrightarrow{D \setminus C} y$
 470 describes the event that there is an open path from x to y whose vertices lie in D and
 471 not in C , with the possible exception of x , which is allowed to be in C .

472 *2.1. Correlation inequalities.* We recall two central correlation inequalities. An event A
 473 depending on the status of the edges in $\mathcal{E}(D)$, for D a subset of \mathbb{Z}^d , is called *increasing*
 474 if $\omega \in A$ whenever $\omega \in \{0, 1\}^{\mathcal{E}(D)}$ and $\omega \leq \omega'$. The last inequality is understood
 475 componentwise, viewing ω and ω' as vectors with entries in $\{0, 1\}$. The Harris–Fortuin–
 476 Kasteleyn–Ginibre, henceforth abbreviated as FKG, inequality states that if A and B are
 477 increasing events, then

$$478 \mathbb{P}_p(A \cap B) \geq \mathbb{P}_p(A)\mathbb{P}_p(B). \quad (16)$$

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

479 For events A and B , let $A \circ B$ denote the event of disjoint occurrence of A and B . That
 480 is, $\omega \in A \circ B$ if there exist disjoint edge sets E_A, E_B such that $\omega \in A$ (resp. $\omega \in B$)
 481 whenever $\omega(e) = \omega(e)$ for all $e \in E_A$ (resp. for all $e \in E_B$). The van den Berg–Kesten–
 482 Reimer inequality (or “BK inequality”) is

483
$$\mathbb{P}_p(A \circ B) \leq \mathbb{P}_p(A)\mathbb{P}_p(B). \quad (17)$$

484 2.2. *Russo’s formula.* Suppose D is a finite subset of \mathbb{Z}^d and A is an increasing event
 485 depending on the status of edges in $\mathcal{E}(D)$. An edge e is said to be pivotal for A in the
 486 outcome $\omega \in \{0, 1\}^{\mathcal{E}(D)}$ if $\mathbf{1}_A(\omega) = \mathbf{1}_A(\omega)$, where ω is the outcome which agrees with
 487 ω on all edges except e and has $\omega(e) = 1 - \omega(e)$. Russo’s formula [13, Section 2.4]
 488 says that

489
$$\frac{d}{dp} \mathbb{P}_p(A) = \sum_{e \in \mathcal{E}(D)} \mathbb{P}_p(e \text{ is pivotal for } A). \quad (18)$$

490 2.3. *Cluster tail estimate.* We record a simple consequence of the estimate (12) here:

491 **Lemma 1.** *There is a constant C such that, uniformly for $r \geq 1$ and $x_1, \dots, x_r \in \mathbb{Z}^d$
 492 and $\mu > 0$, we have:*

493
$$\mathbb{P}(|\cup_{j=1}^r \mathcal{C}(x_j)| > \mu r^2) \leq C\mu^{-1/2}.$$

494 *Proof.* Write

495
$$\mathbb{P}(|\cup_{j=1}^r \mathcal{C}(x_j)| > \mu r^2) \leq \mathbb{P}(|\mathcal{C}(x_j)| > \mu r^2 \text{ for all } 1 \leq j \leq r) + \mathbb{P}(|\mathcal{C}(x_j)| > \mu r^2, \text{ but } |\mathcal{C}(x_j)| \leq \mu r^2 \text{ for all } 1 \leq j \leq r).$$

496 The first term on the right is bounded directly using (12) and a union bound, yielding

497
$$Cr(\mu r^2)^{-1/2} = C\mu^{-1/2}.$$

498 For the second term with $\mu r^2 \geq 2$, Markov’s inequality yields the bound

500
$$(\mu r^2)^{-1} \times r \times \mathbb{E}[|\mathcal{C}(0)|; |\mathcal{C}(0)| \leq \mu r^2]$$

 501
$$\leq C\mu^{-1} r^{-1} \int_1^{\mu r^2} t^{-1/2} dt \leq C\mu^{-1/2}.$$

503 2.4. *A lemma on extending clusters.* The following result appears in [8, Lemma 3.2].

504 **Lemma 2.** *Let $A_0 \subset A_1 \subset \mathbb{Z}^d$ be arbitrary finite vertex sets with $z \in A_0$. Let $B \subset \partial A_1$
505 be a distinguished portion of the boundary of A_1 and suppose that the ∞ distance from
506 A_0 to B is λ . Then for all $M > 0$, we have*

507
$$\mathbb{P}(z \xleftrightarrow{A_1} B \mid \mathfrak{C}_{A_0}(z)) \leq M\pi(\lambda)$$

508 almost surely, on the event $\{|\{x \in \partial_1 A_0 : z \xleftrightarrow{A_0} x\}| = M\}$.

509 A typical application of this lemma is to estimate the probability that the cluster of
510 $z = 0$ contains too few sites on $\partial B(n/2)$ given $0 \leftrightarrow \partial B(n)$. Let

511
$$X = |\mathfrak{C}_{B(n/2)}(0) \cap \partial B(n/2)|.$$

512 By (13), we have $\mathbb{P}(X > 0) \leq \pi(n/2) \leq Cn^{-2}$. Applying Lemma 2 with $A_0 = B(n/2)$,
513 $A_1 = B(n)$, and $B = \partial B(n)$, and using (13) again, we have

514
$$\begin{aligned} \mathbb{P}(X \leq \varepsilon n^2 \mid 0 \leftrightarrow \partial B(n)) \\ = \mathbb{P}(0 \leftrightarrow \partial B(n) \mid 0 < X \leq \varepsilon n^2) \cdot \frac{\mathbb{P}(0 < X \leq \varepsilon n^2)}{\mathbb{P}(0 \leftrightarrow \partial B(n))} \\ \leq C\varepsilon n^2 \pi(n/2) \\ \leq C\varepsilon. \end{aligned} \tag{19}$$

515 As an immediate consequence of (19), we have the existence of a constant $c > 0$ such
516 that

517
$$\mathbb{P}(X \geq cn^2) \geq c\pi(n) \geq cn^{-2}. \tag{20}$$

518 2.5. *Half-space two-point estimate.* We recall the following estimates of Chatterjee and
519 Hanson for the two-point function in various regimes, where $K > 0$ is arbitrary and
520 fixed:

521
$$\tau_H(x, y) \begin{cases} x - y \xrightarrow{\infty} \frac{2-d}{\infty} & \text{in } \{\langle x, y \rangle : 0 < \|x - y\|_\infty < K \min\{x(1), y(1)\}\}; \\ x - y \xrightarrow{\infty} \frac{1-d}{\infty} & \text{in } \{\langle x, y \rangle : x(1) = 0, 0 < \|x - y\|_\infty < K y(1)\}; \\ x - y \xrightarrow{\infty} \frac{-d}{\infty} & \text{in } \{\langle x, y \rangle : x = y, x(1) = 0, y(1) = 0\}. \end{cases} \tag{21}$$

522 Here the symbol $\xrightarrow{\infty}$ means that the left-hand side is bounded above and below by positive
523 constant multiples of the right-hand side, uniformly in pairs (x, y) of vertices lying in
524 the specified regions.

525 3. Half-Space Two-Point Bound Near the Boundary

526 In this section, we prove our bound for the two-point function near the boundary, The-
527 oreem 6. The estimate can be understood as follows: a connection from me_1 to a distant
528 vertex x consists of a connection from me_1 to $\partial B(me_1; m)$, and a connection from this
529 boundary to x , a further distance $x - me_1$ away, lying in a half space. By the two-point
530 function estimate (21) connecting me_1 to a given point on the boundary has probability

	2 2 0	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

531 of order m^{-d+2} while, summing over $\partial B(me_1; m)$, one expects the second connection
 532 to have probability of order $(x - me_1/m)^{-d+1}$.

533 The proof of Theorem 6 thus consists in showing that the probability of connection
 534 of x to me_1 is comparable to the product of the latter two probabilities. The upper bound
 535 is rather straightforward, while the lower bound is more delicate: one needs to show that
 536 two disjoint connections, one inside of the box of side m and another connection from
 537 the boundary to x in a half-space, can be joined into a single connection from x to me_1 .
 538 In critical two-dimensional percolation, this type of statement is proved using “gluing
 539 techniques”, based on the FKG and Russo–Seymour–Welsh (RSW) inequalities, to join
 540 different open clusters across the boundary of boxes. This simple gluing methodology
 541 cannot be applied in high dimensions; among other things, it relies on planarity to connect
 542 the two crossing clusters. Even if analogs of RSW were true in higher dimensions, above
 543 the upper critical dimension $d = 6$, the proliferation of clusters [1] precludes a general
 544 extension method that would not consider the structure of the cluster on one side of the
 545 boundary.

546 Kozma and Nachmias [30] introduced a technique for cluster extension in higher
 547 dimensions, which we use and further develop in this paper. Given that short loops are
 548 rare in high dimensions, the percolation cluster can be thought of as a tree, for which
 549 each vertex v on the boundary of a box is the root of an independent cluster outside
 550 the box emanating from this vertex (the *forward cluster* of v). The expected number of
 551 vertices on the boundary of a box D of size m around me_1 that are connected to x inside
 552 of a half space (and outside the box D) is of order $m^{d-1} \times (x - me_1)^{-d+1}$, by (21).
 553 If one of these vertices can be further connected to me_1 inside the box, then we have
 554 the desired connection from x to me_1 . If the cluster of x were truly a tree rooted at x ,
 555 only one of the vertices of its cluster that lie on the boundary of D could be connected
 556 forward to me_1 , and the simple expectation calculation above would actually give us the
 557 probability of a connection.

558 It is useful to think of the notion of *regularity* of the cluster introduced in [30] (see
 559 our modified Definition 7 below) as being motivated by the tree picture outlined above.
 560 If we wish to treat the elements of the cluster of x on the boundary of a region D as
 561 generating disjoint forward clusters beyond the region, exactly one of which connects
 562 to a given point y outside D , we need to put restrictions on the conditional distribution
 563 of the volume of the cluster in the vicinity of the point y one wishes to attach to the
 564 cluster, conditioned on the cluster inside D : for example, if the cluster is too dense on the
 565 boundary or inside D , then “backtracking” connections that exit and re-enter D cannot
 566 be excluded.

567 These restrictions, expressed in Definition 7, allow us to ensure that a single point
 568 on the boundary of D is pivotal for the connection to x . We only require bounds on
 569 the (conditional) expected size of the clusters in question, which explains the difference
 570 between our definition of regularity, and that appearing in [30].

571 *3.1. Cluster boundaries.* We will use adaptations of the tools in this section in some
 572 later arguments (though with differences in definitions depending on the needs of the
 573 specific problem). For this reason, we describe the setup somewhat generally here.

574 Let D be some region to which we wish to restrict connections. Given such a region
 575 D , we denote by Q a portion of its vertex boundary (possibly relative to another set—
 576 for instance, if we are considering connections in \mathbb{Z}_+^d and $D = B_H(n)$, we might set
 577 $Q = \partial_{\mathbb{Z}_+^d} B_H(n)$). A typical setup has us condition on the status of edges in D , then for a

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	
			Disk Received <input type="checkbox"/>	Not Used <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Mismatch <input type="checkbox"/>

578 particular open cluster \mathcal{C} of D , using vertices of some such Q to construct an extension
 579 of \mathcal{C} into a portion of $\mathbb{Z}^d \setminus D$.

580 **Definition 7.** For $K > 0$ an integer, we define

581 • the (random) set $\text{EREG}_D(K)$ to consist.² of all $z \in D$ such that

$$582 \mathbb{E}[|\mathcal{C}_{\mathbb{Z}^d}(z) \cap B(z;)| \mid \mathcal{C}_D(z)] < \sqrt{2} \quad \text{for all } \geq K;$$

583 • The set $\text{EREG}_D(A, K)$ to consist of all $z \in D$ such that $z \in \text{EREG}_D(K)$ and such
 584 that

$$585 \mathbb{E}[|\mathcal{C}_{\mathbb{Z}^d}(z) \cap B(y;)| \mid \mathcal{C}_D(z)] < \sqrt{2} \quad \text{for all } \geq K \quad \text{and } y \in A.$$

586 With mild abuse, we write $\text{EREG}_D(y, K)$ for $\text{EREG}_D(\{y\}, K)$.

587 • The set

$$588 \mathcal{D}_Q(x) := Q \cap \mathcal{C}_D(x).$$

589 We abbreviate $X_{D, Q}(x) := |\mathcal{D}_Q(x)|$. Similarly, we let

$$590 \mathcal{D}_Q(x) := \mathcal{D}_Q(x, m; K) = \mathcal{D}_Q \cap \text{EREG}_D(\{m\mathbf{e}_1\}, K),$$

591 and $X_{D, Q}^{\text{EREG}}(x) := |\mathcal{D}_Q(x)|$.

592 *3.2. Regularity.* Consider the half-space \mathbb{Z}_+^d , and let $n \geq 4m \geq 4$. We assume

$$593 x = n \quad \text{and} \quad x(1) \geq n/2, \quad (22)$$

594 where the fraction $1/2$ is arbitrary and could be replaced by any fixed number in $(0, 1)$.
 595 Our main result, Theorem 6, will be uniform in such x and in m, n as above. We de-
 596 compose the connection $x \leftrightarrow m\mathbf{e}_1$ into a connection from x to $B_H(2m)$ lying entirely in
 597 $\mathbb{Z}_+^d \setminus B_H(2m)$ and then a further connection from some point of $\partial B_H(2m)$ to $m\mathbf{e}_1$. We
 598 thus introduce the following notation:

$$599 \begin{aligned} D &= \mathbb{Z}_+^d \setminus B_H(2m); \quad Q_1 = \{m+1\} \times [m, m]^{d-1}, \\ Q_2 &= [\partial \mathbb{Z}_+^d D] \cap [m\mathbf{e}_1 + \mathbb{Z}_+^d], \quad Q_3 = \emptyset \times [m, m]^{d-1}. \end{aligned} \quad (23)$$

600 See Fig. 1. Our goal in this section is to check that vertices $\in Q = Q_1$ on the boundary
 601 of D are regular in the sense that $z \in \text{EREG}_D(x, K)$ for appropriate values of x and K
 602 (recall Definition 7).

603 We recall here two results which are useful for our purposes.

604 **Lemma 3** ([1], [30, Lemma 4.4]). *There are constants c, C such that, for all $r \geq 1$ and
 605 all $\lambda \geq 1$,*

$$606 \mathbb{P} \max_{y \in B(r)} |\mathcal{C}(y) \cap B(r)| > \lambda^4 \leq C r^{d-6} \exp(-c\lambda).$$

² The letter “E” in the abbreviation “EREG” refers to “expectation”. Compare our definition to that of regularity appearing in [30, Section 4].

	2	2	0	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No		Ms. No.				Total pages: 71	Not Used <input type="checkbox"/>
						Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
						Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

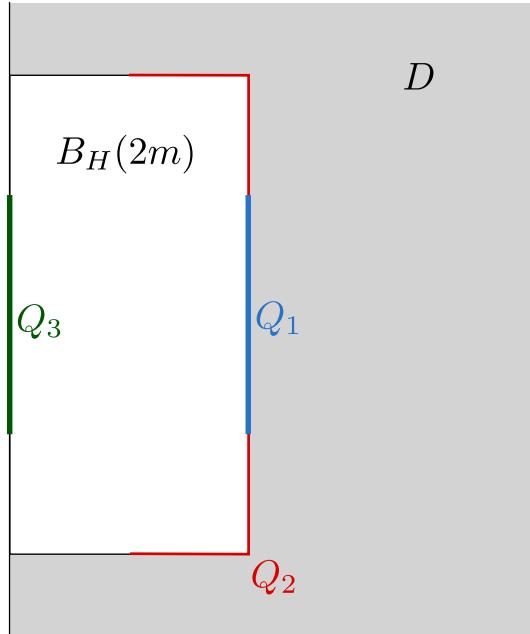


Fig. 1. Geometry of the definitions in (23)

607 **Lemma 4** ([30, Lemma 1.1]). *Uniformly in r and in $w_1, w_2 \in B(r)$, we have*

$$608 \quad \mathbb{P}(w_1 \xleftrightarrow{B(r)} w_2) \geq c \exp(-C \log^2 r). \quad (24)$$

609 *In particular,*

$$610 \quad \mathbb{P}(w_1 \xleftrightarrow{B_H(r) \setminus B_H(2m)} w_2) \geq c \exp(-C \log^2 r) \quad (25)$$

611 *uniformly in m , in $r \geq 4m$, and in $w_1, w_2 \in B_H(r) \setminus B_H(2m)$.*

612 We now prove a regularity lemma similar in flavor to [30, Theorem 4]. It is weaker
 613 than theirs in one sense: it only controls the probability that a given vertex is regular,
 614 rather than trying to control the total number of regular vertices. On the other hand, it
 615 is slightly stronger in the sense that we control regularity “at an arbitrary base point”:
 616 roughly speaking, conditional on part of $\mathcal{C}(z)$, the remaining portion of $\mathcal{C}(z)$ is not likely
 617 to be too dense near a fixed vertex y .

618 **Lemma 5.** *There exist constants $c, C > 0$ such that the following holds uniformly in m ,
 619 in $k \geq 1$, in $\lambda \geq 1$, in $x \in \mathbb{Z}_+^d \setminus B_H(4m)$, in $y \in B_H(2m)$ and in $z \in Q_1$:*

$$620 \quad \mathbb{P}(|\mathcal{C}(z) \cap B(y; k)| > \lambda k^4 \log^5(k) \mid z \xleftrightarrow{D} x) \leq C \exp(-c \frac{\sqrt{\lambda}}{\lambda} \log^3 k). \quad (26)$$

621 *In particular, there exists a $K_0 > 0$ such that (uniformly as above), for all $K > K_0$,*

$$622 \quad \mathbb{P}(z \notin \text{EREG}_D(y; K) \mid z \xleftrightarrow{D} x) \leq C \exp(-cK^{1/4}). \quad (27)$$

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

623 The powers 3 and 5 on $\log k$ appearing in the previous lemma are not meaningful on
 624 their own, as the proof will show. They are merely convenient choices.

625 *Proof.* We begin by proving (26). For this, it suffices to prove the following slight
 626 modification of the claim in the lemma:

627 Given k as in the statement of the lemma, there exists
 628 $k \in \mathbb{k}, 4^d k]$ such that (26) holds with k replaced by k . (28)

629 Indeed, given (28), the statement of the lemma follows by noting that for such k ,

$$630 |\mathcal{C}(z) \cap B(y; k)| \leq |\mathcal{C}(z) \cap B(y; k')|,$$

630 and adjusting the constants C, c in (26). The reason to prove (28) is due to a minor
 631 technicality which will become clear at the end of the lemma. For most of what follows,
 632 we endeavor to prove that the bound of (26) holds for all k , and we will discover that
 633 we have to prove (28) to dispose of some “exceptional” values of k .

634 If $x - y \leq k^d$, then we have $x - z \leq 4k^d$ and so by (25) we have

$$635 \mathbb{P}(z \xrightarrow{Z_+^d \setminus B_H(2m)} x) \geq \mathbb{P}(z \xrightarrow{B_H(4k^d) \setminus B_H(2m)} x) \geq c \exp(-C \log^2 k).$$

636 In this case, we can upper-bound (26) by

$$637 C \exp(C \log^2 k) \mathbb{P}(|\mathcal{C}(z) \cap B(y; k)| > \lambda k^4 \log^5(k)) \leq C \exp(-c \lambda \log^3 k)$$

638 where we have used the tail result of Lemma 3.

639 We now treat the case that k is small, that is $x \notin B(y; k^d)$. Let

$$640 A_k := \{ \text{for each cluster } \mathcal{C} \text{ of } B(y; k^d), \text{ we have } |\mathcal{C} \cap B(y; k)| \leq \sqrt{\bar{\lambda}} k^4 \log^3 k \},$$

641 where \mathcal{C} being a cluster of $B(y; k^d)$ means considered as a component of the open
 642 subgraph of $B(y; k^d)$ (no connections outside this box are allowed). We also let

$$643 A_k := \{ \text{there are no more than } \sqrt{\bar{\lambda}} \log^2 k \text{ disjoint connections from } B(y; k) \\ 644 \text{ to } \partial B(y; k^d) \}.$$

645 We can bound each of these events’ probabilities, using the one-arm probability asymptotic (13), the BK inequality (17), and the cluster tail bound of Lemma 3: for each
 646 $\lambda \geq 1$,

$$647 \mathbb{P}(A_k) \geq 1 - \exp(-c \sqrt{\bar{\lambda}} \log^3 k); \\ 648 \mathbb{P}(A_k) \geq 1 - (Ck^d \times k^{-2d}) \sqrt{\bar{\lambda}} \log^2 k \geq 1 - \exp(-c \sqrt{\bar{\lambda}} \log^3 k). (29)$$

649 In bounding $\mathbb{P}(A_k)$, we used the following observation: for any $t \geq 1$, if there is a
 650 $z \in B(y; k^d)$ such that $|\mathcal{C}(z) \cap B(y; k)| \geq t$, then there is also a $z \in B(y; k)$ such that
 651 $|\mathcal{C}(z) \cap B(y; k)| \geq t$. (To see this, simply let z be an arbitrary vertex of $\mathcal{C}(z) \cap B(y; k)$.)

652 We will argue that on $A_k \cap A_k$ the cluster $\mathcal{C}(z) \cap B(y; k)$ is not too large. Viewing
 653 $\mathcal{C}(z) \cap B(y; k^d)$ as a subgraph of $B(y; k^d)$, we can decompose it into a union of disjoint
 654 connected components $(\mathcal{C}_i)_{i=1}^t$. We argue the following graph-theoretic fact:

655 at most one \mathcal{C}_i fails to contain an open crossing of $B(y; k^d) \setminus B(y; k)$. (30)

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

656 One (30) is shown, the following fact follows immediately:

657 Suppose that the annulus $B(y; k^d) \setminus B(y; k)$ is crossed by at most
 658 disjoint open paths; then at most $+1$ of the \mathcal{C}_i 's can intersect $B(y; k)$. (31)

659 We show (30) by contradiction, assuming that (by relabeling if necessary) \mathcal{C}_1 and
 660 \mathcal{C}_2 each fail to contain an open crossing of $B(y; k^d) \setminus B(y; k)$. Both \mathcal{C}_1 and \mathcal{C}_2 then
 661 intersect $B(y; k)$ but not $\partial B(y; k^d)$. Choose elements $w_1 \in \mathcal{C}_1 \cap B(y; k)$ and $w_2 \in$
 662 $\mathcal{C}_2 \cap B(y; k)$. Since $w_1 \in \mathcal{C}(z)$, there is an open path γ_1 from w_1 to z . Then γ_1 cannot
 663 cross $B(y; k^d) \setminus B(y; k)$, since otherwise the segment of γ_1 from w_1 to its first exit of
 $B(y; k^d)$ would be an open crossing of the annulus $B(y; k^d) \setminus B(y; k)$ lying in \mathcal{C}_1 .

664 We can similarly find an open path γ_2 connecting w_2 to z without exiting $\partial B(y; k^d)$.
 665 Concatenating γ_1 and γ_2 , we see that w_1 and w_2 are connected by a path lying entirely in
 666 $B(y; k^d)$. Thus $\mathcal{C}_1 = \mathcal{C}_2$, a contradiction, which shows that in fact \mathcal{C}_1 or \mathcal{C}_2 must contain
 667 an open crossing of the annulus $B(y; k^d) \setminus B(y; k)$. This shows (30) and hence (31).

668 Applying (31), we see that on the event $A_k \cap A_{k'}$, we have

$$669 \quad |\mathcal{C}(z) \cap B(y; k)| \leq \lambda^4 \log^5 k.$$

670 It therefore suffices to show, for $x \notin B(y; k^d)$,

$$671 \quad \mathbb{P}(A_k \cap A_{k'} \mid x \xleftrightarrow{D} z) \geq 1 - \exp(-c \sqrt{\bar{\lambda} \log^3 k}). \quad (32)$$

672 We do this by conditioning on the cluster outside $B(y; k^d)$, noting that A_k and $A_{k'}$ are
 673 independent of the status of edges outside $B(y; k^d)$. We write

$$674 \quad \mathbb{P}(\{x \xleftrightarrow{D} z\} \setminus [A_k \cap A_{k'}]) \leq \mathbb{P}(\mathcal{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C}) [1 - \mathbb{P}(A_k \cap A_{k'})] \\ 675 \quad \leq C \exp(-c \sqrt{\bar{\lambda} \log^3 k}) \mathbb{P}(\mathcal{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C}), \quad (33)$$

676 where the sum is over \mathcal{C} compatible with the event $\{x \xleftrightarrow{D} z\}$ (in other words, such that
 677 $\mathbb{P}(x \xleftrightarrow{D} z \mid \mathcal{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C})$ is nonzero) and we have used (29). To show (32), we
 678 need to compare the sum on the right to $\mathbb{P}(x \xleftrightarrow{D} z)$. We will show that each term of
 679 that sum is at most $\exp(C \log^2 k) \mathbb{P}(\mathcal{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C}, z \xleftrightarrow{D} x)$.

680 For a cluster \mathcal{C} as in (33) to be compatible with $\{x \xleftrightarrow{D} z\}$, there are two possibilities:
 681 either x is connected to z in \mathcal{C} , or it is possible to build an open connection from x to z
 682 which passes through $B(y; k^d)$. In the former case, we have

$$683 \quad \mathbb{P}(\mathcal{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C}) = \mathbb{P}(\mathcal{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C}, z \xleftrightarrow{D} x). \quad (34)$$

684 In the latter case we will lower bound

$$685 \quad \mathbb{P}(\mathcal{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C}, z \xleftrightarrow{D} x) \geq \mathbb{P}(\mathcal{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C}, \zeta_x \xleftrightarrow{B(y; k^d) \cap D} \zeta_z)$$

686 for appropriate choices of vertices $\zeta_x, \zeta_z \in \mathcal{C}$. The events appearing on the right-hand
 687 side of the last display are independent, and so if $\mathbb{P}(\zeta_x \xleftrightarrow{B(y; k^d) \cap D} \zeta_z)$ is sufficiently large,
 688 this (in conjunction with (34)) will suffice to show (26).

220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.			

Indeed, we can measurably choose two disjoint open connections in $\mathcal{C} \cup \{\mathfrak{x}, z\}$, one from x to $B(y; k^d)$ in \mathbb{Z}_+^d and one from z to $B(y; k^d)$ in \mathbb{Z}_+^d . If $z \in B(y; k^d)$, the latter “connection” consists of the vertex z , considered as a trivial open path. Given such disjoint connections to $B(y; k^d)$, we denote by ζ_x the endpoint on $\partial B(y; k^d)$ of the connection started from x , and by ζ_z the endpoint of the connection started from z . The vertex ζ_z lies in $\partial B(y; k^d)$ unless $z \in B(y; k^d)$, in which case $\zeta_z = z$.

If $\mathfrak{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C}$ and if $\zeta_x \xleftrightarrow{B(y; k^d) \cap D} \zeta_z$, then $x \xleftrightarrow{D} z$. The former two events depend on different edge sets and are hence independent. Therefore, as long as

$$\mathbb{P}(\zeta_x \xleftrightarrow{B(y; k^d) \cap D} \zeta_z) \geq \exp(-c \log^2 k), \quad (35)$$

we can upper bound each term of (33) by

$$\mathbb{P}(\mathfrak{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C}) \leq \exp(C \log^2 k) \mathbb{P}(\mathfrak{C}_{D \setminus B(y; k^d)}(x) = \mathcal{C}, z \xleftrightarrow{D} x).$$

Plugging this back in, we find in this case that

$$\mathbb{P}(\{\mathfrak{x} \xleftrightarrow{D} z\} \setminus [A_k \cap A_k]) \leq C \exp(-c \sqrt{\bar{\lambda} \log^3 k}).$$

Combining the two cases, (32) and hence (26) follows.

So it remains to finally argue for (35). We note that $\mathbb{D} B(y; k^d)$ is a union of at most 4^d rectangles. As long as none of these rectangles is too “thin”, that is does not have the ratio of its longest sidelength to its smallest sidelength larger than (for instance) 10, then (35) follows easily from Lemma 4. In case at least one such rectangle is thin, for instance if y has distance $k^d - 1$ from D , so that one rectangle has smallest sidelength 1, it is easy to see that there exists some $k \in [\mathfrak{k}, 4^d k]$ such that no rectangles making up $B(y; k^d) \cap D_2$ are thin. Again for this k (35) follows, and so we have established (28). This establishes (26).

We will conclude the proof by showing (27). Successively conditioning in (26), we have

$$\mathbb{E} \mathbb{P}(|\mathfrak{C}(z) \cap B(y; k)| > k^{9/2}/2 \mid \mathfrak{C}_D(z)) \mathbb{P}(z \xleftrightarrow{D} x) \leq \exp(-ck^{1/4} \log^{1/2} k).$$

Using Markov’s inequality, we see

$$\begin{aligned} \mathbb{P} \mathbb{P}(|\mathfrak{C}(z) \cap B(y; k)| > k^{9/2}/2 \mid \mathfrak{C}_D(z)) &\geq \exp(-k^{1/4}) \mathbb{P}(z \xleftrightarrow{D} x) \\ &\leq \exp(-ck^{1/4}). \end{aligned} \quad (36)$$

Noting that

$$\mathbb{E} [|\mathfrak{C}(z) \cap B(y; k)| \mid \mathfrak{C}_D(z)] \leq \frac{k^{9/2}}{2} + k^d \mathbb{P}(|\mathfrak{C}(z) \cap B(y; k)| > \frac{k^{9/2}}{2} \mid \mathfrak{C}_D(z))$$

and applying (36), we find for all large k

$$\begin{aligned} \mathbb{P} \mathbb{E}[|\mathfrak{C}(z) \cap B(y; k)| \mid \mathfrak{C}_D(z)] &> k^{9/2} \mathbb{P}(z \xleftrightarrow{D} x) \\ &\leq \mathbb{P} \mathbb{P}(|\mathfrak{C}(z) \cap B(y; k)| > \frac{k^{9/2}}{2} \mid \mathfrak{C}_D(z)) \geq \frac{k^{9/2-d}}{2} \mathbb{P}(z \xleftrightarrow{D} x) \\ &\leq \exp(-ck^{1/4}). \end{aligned}$$

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Disk Received <input type="checkbox"/>	Not Used <input type="checkbox"/>

723 The bound (27) and hence the lemma now follow by choosing K_0 sufficiently large.

724

725 A direct consequence of the above is the following lower bound on the size of EREG_D .

726 **Lemma 6.** *There exist constants $K_0, c > 0$ such that the following holds uniformly in*
 727 *m , in x satisfying (22), in $z \in Q_1$, and in $K > K_0$:*

728

$$\mathbb{P}(z \in \text{EREG}_D(\emptyset, m\mathbf{e}_1\}, K, z \xleftrightarrow{\mathbb{Z}_+^d} x) \geq cn^{1-d}.$$

729 *Proof.* Applying the half-space two-point function bound (21) and Lemma 5, we bound
 730 uniformly in m, x, z as above and uniformly in K :

731

$$\begin{aligned} \mathbb{P}(z \in \text{EREG}_D(\emptyset, m\mathbf{e}_1\}), z \xleftrightarrow{D} x) \\ \geq cn^{1-d}[1 - \mathbb{P}(z \notin \text{EREG}_D(\emptyset, m\mathbf{e}_1\}; K) | z \xleftrightarrow{D} x)] \\ \geq cn^{1-d}[1 - C \exp(-cK^{1/4})]. \end{aligned}$$

734 The result follows by enlarging K_0 from Lemma 5 if necessary.

735 **3.3. Gluing.** We have already shown a lower bound for $\mathbb{E}[X_{D, Q_1}]$ in Lemma 6. Our
 736 goal now is to upper bound $\mathbb{E}[X_{D, Q_2}]$. This subsection provides the groundwork for this
 737 by showing that in a sense, most vertices of D, Q_2 have conditional probability m^{2-d}
 738 to connect to $m\mathbf{e}_1$ in \mathbb{Z}_+^d and similarly have conditional probability m^{1-d} to connect to
 739 0 in \mathbb{Z}_+^d .

740 **Definition 8.** For each $z \in Q_2$, we choose a deterministic neighbor $z \in \mathbb{Z}_+^d \setminus D = B_H(2m)$. For each K and for any $y \in B_H(2m)$ and for any $x \in \mathbb{Z}_+^d \setminus B_H(4m)$, we let
 741 $Y(y) = Y(y, m, x; K)$ be the (random) set of $z \in Q_2$ satisfying the following properties:

742 1. $z \in \text{EREG}_{D, Q_2}(x, m; K)$;

743 2. The edge $\{z, z\}$ is open and pivotal for the event $\{x \xleftrightarrow{\mathbb{Z}_+^d} y\}$.

744 We will ultimately choose a large nonrandom K , fixed relative to m and x .

745 The following facts relate $Y(y)$ to the cluster of x .

746 **Proposition 7.** *For each m and K , and any $x \in \mathbb{Z}_+^d \setminus B_H(4m)$, $y \in B_H(2m)$, we have*

747

$$\mathbb{P}(x \xleftrightarrow{\mathbb{Z}_+^d} y) \geq \mathbb{P}(|Y(y)| > 0) = \mathbb{P}(z \in Y(y)). \quad (37)$$

748 We also have

749

$$\mathbb{P}(x \xleftrightarrow{\mathbb{Z}_+^d} 0) \leq C x^{-1-d}$$

750 and so

751

$$\mathbb{P}(z \in Y(0)) \leq C x^{-1-d}. \quad (38)$$

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

753 *Proof.* The first inequality of (37) is a consequence of the definition of Y , so we begin
 754 by proving the subsequent equality. This equality follows immediately once we establish
 755 that $\{Y(y) \neq \emptyset\}$ is equal to the disjoint union $\bigcup_{z \in Q_2} \{z \in Y(y)\}$ —in other words, $Y(y)$
 756 is either empty or a singleton.

757 To show this, we fix an outcome and suppose that z_1 and z_2 are two distinct elements
 758 of $Y(y)$ —since $x \leftrightarrow^d y$ when $Y(y)$ is nonempty, there is some open self-avoiding path
 759 γ connecting x to y in \mathbb{Z}_+^d . By the pivotality condition in the definition of $Y(y)$, it
 760 follows that this path must pass through both $\{z_1, z_1\}$ and $\{z_2, z_2\}$. Suppose, relabeling
 761 if necessary, that γ passes first through $\{z_1, z_1\}$; letting $\tilde{\gamma}$ be the terminal segment of γ
 762 beginning with the edge $\{z_2, z_2\}$, we have $z_1 \notin \tilde{\gamma}$.

763 Now we produce a new open path γ by appending a path from x to z_2 lying entirely
 764 in D to the path $\tilde{\gamma}$. Then γ connects x to y in \mathbb{Z}_+^d , and it avoids the edge $\{z_1, z_1\}$, since
 765 $\tilde{\gamma}$ does, and since $\{z_1, z_1\}$ does not have both endpoints in D . This contradicts the fact
 766 that $\{z_1, z_1\}$ is open and pivotal (even when we close this edge, the path γ still connects
 767 x to y), and so we have shown the claim about $Y(y)$ and hence (37). Note that here we
 768 crucially use item 1) in Definition 8, which requires $z_2 \in \mathcal{C}_D(x)$.

769 The inequality above (38) is a consequence of (21), and then (38) follows by an
 770 application of the already-proved (37).

771 We now show that for typical $z \in Q_2$, the conditional probability

$$772 \quad \mathbb{P}(z \in Y(y) \mid z \in \mathcal{X}_{D, Q_2}^{\text{EREG}}(x))$$

773 is at least order m^{2-d} when $y = m\mathbf{e}_1$ and at least order m^{1-d} when $y \in Q_3$. In fact, we
 774 prove the former bound on average, for vertices within order constant distance of $m\mathbf{e}$.

775 **Proposition 8.** *We have the following bounds on the expectation of $|Y(y)|$, covering
 776 the cases of $y \in Q_3$ and $y \in B(m\mathbf{e}_1; K)$. These hold uniformly in $m \geq 1$, in $x \in$
 777 $\mathbb{Z}_+^d \setminus B_H(4m)$, with K fixed relative to x, m, n, N but larger than some constant $K > K_0$
 778 (uniform in x, m, n, N).*

779 • *There exists a constant $c > 0$ such that*

$$780 \quad \mathbb{E}_{y \in Q_3} [|Y(y)|; X_{D, Q_2}^{\text{EREG}}(x) = N] \geq cN \mathbb{P}(X_{D, Q_2}^{\text{EREG}}(x) = N).$$

781 • *There exists a constant $c > 0$ such that*

$$782 \quad \mathbb{E}_{y \in B(m\mathbf{e}_1; K)} [|Y(y)|; X_{D, Q_2}^{\text{EREG}}(x) = N] \geq cNm^{2-d} \mathbb{P}(X_{D, Q_2}^{\text{EREG}}(x) = N).$$

783 *Proof.* This is a now-familiar extension argument originating in Kozma–Nachmias [30],
 784 with adaptations to half-spaces from Chatterjee–Hanson [8]. We define three families
 785 of events, indexed by vertices of the lattice:

$$786 \quad \mathcal{E}_1(z) = z \in \mathcal{X}_{D, Q_2}^{\text{EREG}}(x), X_{D, Q_2}^{\text{EREG}}(x) = N ;$$

$$787 \quad \mathcal{E}_2(z, z^*, y) = z^* \xleftrightarrow{\mathbb{Z}_+^d \setminus \mathcal{C}_D(z)} y ;$$

$$788 \quad \mathcal{E}_3(z, z^*) = \mathcal{C}(z) \cap \mathcal{C}(z^*) = \emptyset .$$

	2 2 0	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>

Disk Received

Disk Used

Corrupted

Mismatch

789 Here the variable z ranges over Q_2 and, for a given value of z , the variable z^* ranges
 790 over the set

$$791 \quad \kappa(z) := B(z; 2K) \cap B_H(2m - K)$$

792 noting that $|\kappa(x)| \geq cK^d$ for a constant c uniform in $x \in Q_2$, and in $K_0 < K <$
 793 $m/8 < n/2$. The variable y is an element of $B_H(2m)$, though we will specialize to
 794 $y \in Q_3$ or $y \in B(me_1; K)$.

795 Our goal is to show that \mathcal{E}_2 and \mathcal{E}_3 have appropriately large probability, given \mathcal{E}_1 .
 796 That is, we hope to show:

797 **Lemma 9.** *There exists a constant $K_1 > K_0$ such that, for each $K_1 < K < m/8$ there
 798 is a $c = c(K) > 0$ such that, for each $x \notin B_H(2m)$, the following hold.*

799 1. For each $z \in Q_2$, there exists $z^* \in \kappa(z)$ such that

$$800 \quad \mathbb{P}(\mathcal{E}_1(z) \cap \mathcal{E}_2(z, z^*, y) \cap \mathcal{E}_3(z, z^*)) \geq c \mathbb{P}(\mathcal{E}_1(z)).$$

$$y \in Q_3$$

801 2. For each $z \in Q_2$, there exists $z^* \in \kappa(z)$ such that

$$802 \quad \mathbb{P}(\mathcal{E}_1(z) \cap \mathcal{E}_2(z, z^*, y) \cap \mathcal{E}_3(z, z^*)) \geq cm^{2-d} \mathbb{P}(\mathcal{E}_1(z)). \quad (39)$$

$$y \in B(me_1; K)$$

803 Assuming the truth of Lemma 9, we complete the proof of Proposition 8. The proof
 804 of the lemma appears below. It thus remains to use the above lemma to lower-bound Y
 805 and complete the proof of Proposition 8. As in (37), we write

$$806 \quad \mathbb{E}_{y \in A} [\mathbb{P}(y) |; X_{D, Q_2}^{\text{EREG}}(x) = N] = \mathbb{P}_{y \in A, z \in Q_2} (z \in Y(y), X_{D, Q_2}^{\text{EREG}}(x) = N).$$

807 To lower-bound the right-hand side of the above, we use a crucial fact: fixing $K > K_1$
 808 as in Lemma 9, there is a uniform constant $c = c(K)$ such that

$$809 \quad \mathbb{P}(z \in Y(y), X_{D, Q_2}^{\text{EREG}}(x) = N) \geq c \mathbb{P}(\mathcal{E}_1(z) \cap \mathcal{E}_2(z, z^*, y) \cap \mathcal{E}_3(z, z^*)) \quad (40)$$

810 uniformly in m , x , y , z , and z^* as in Lemma 9. This is a standard edge modification
 811 argument (see [30, Lemma 5.1] or the argument in Step 5 of the proof of Lemma 14
 812 below), so we do not give a full proof. In outline: one must open a path with length of
 813 order K from z to z^* lying in $\mathbb{Z}_+^d \setminus D$, thereby ensuring that z is connected to y , while
 814 potentially closing some edges to ensure that the edge $\{z, z^*\}$ is pivotal as the definition
 815 of $Y(y)$.

816 Applying (40), we see that

$$817 \quad \mathbb{E}_{y \in B(me_1; K)} [\mathbb{P}(y) |; X_{D, Q_2}^{\text{EREG}}(x) = N]$$

$$\geq c \mathbb{P}_{z \in Q_2, y \in B(me_1; K)} (\mathcal{E}_1(z) \cap \mathcal{E}_2(z, z^*, y) \cap \mathcal{E}_3(z, z^*))$$

$$818 \quad (\text{by Lemma 9}) \geq cm^{2-d} \mathbb{P}_{z \in Q_2} (\mathcal{E}_1(z))$$

$$819 \geq cNm^{2-d} \mathbb{P}(X_{D, Q_2}^{\text{EREG}}(x) = N).$$

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

821 This proves Proposition 8 for the case of $y \in B(m\mathbf{e}_1; K)$. A similar calculation to
 822 the previous display establishes the case of $y \in Q_3$, completing the proof of the
 823 proposition.

824 *Proof of Lemma 9.* We first show an analogous statement involving just the first two
 825 events: for each large K , there exists $c = c(K) > 0$ such that

$$826 \text{for } m > 8K, \text{ for } z \in Q_2, \text{ for each } z^* \in (z) \text{ and for } y \in B(m\mathbf{e}_1; K) \text{ or } y \in Q_3, \\ \mathbb{P}(\mathcal{E}_1(z) \cap \mathcal{E}_2(z, z^*, y)) \geq c \mathbb{P}(z^* \xleftrightarrow{\mathbb{Z}_+^d} y) \mathbb{P}(\mathcal{E}_1(z)). \quad (41)$$

827 To see this, we note that $\mathcal{E}_1(z)$ is measurable with respect to the sigma-algebra generated
 828 by $\mathcal{C}_D(z)$, and we write

$$829 \mathbb{P}(\mathcal{E}_2(z, z^*, y) \cap \mathcal{E}_1(z)) = \sum_{C \in \mathcal{C}_D(z)} \mathbb{P}(\mathcal{E}_2(z, z^*, y) \mid \mathcal{C}_D(z) = C) \mathbb{P}(\mathcal{C}_D(z) = C),$$

830 where the sum is over C such that $\mathcal{E}_1(z)$ occurs when $\mathcal{C}_D(z) = C$.

831 Now, for each C as above,

$$832 \mathbb{P}(\mathcal{E}_2(z, z^*, y) \mid \mathcal{C}_D(z) = C) = \mathbb{P}(z^* \xleftrightarrow{\mathbb{Z}_+^d \setminus C} y), \quad (42)$$

833 where we can now treat C as a deterministic vertex set. Taking a union bound, the
 834 probability in (42) is at least

$$835 \mathbb{P}(z^* \xleftrightarrow{\mathbb{Z}_+^d} y) - \sum_{\zeta \notin C} \mathbb{P}(z^* \leftrightarrow \zeta) \circ \zeta \xleftrightarrow{\mathbb{Z}_+^d} y \\ 836 \geq \mathbb{P}(z^* \xleftrightarrow{\mathbb{Z}_+^d} y) - \sum_{\zeta \notin C} \mathbb{P}(z^* \leftrightarrow \zeta) \mathbb{P}(\zeta \xleftrightarrow{\mathbb{Z}_+^d} y).$$

837 Because $\zeta \notin B_H(2m)$, the final factor appearing above is at most Cm^{2-d} (in case
 838 $y \in B(m\mathbf{e}_1; K)$) or Cm^{1-d} (in case $y \in Q_3$). On the other hand, we have identical (up
 839 to constant factors) lower bounds for $\mathbb{P}(z^* \xleftrightarrow{\mathbb{Z}_+^d} y)$ because $z \in Q_2$, the distance from
 840 z^* to z is at most $2K$, and $y \in B(m\mathbf{e}_1; K)$ or $y \in Q_3$. We thus obtain the lower bound

$$841 \mathbb{P}(z^* \xleftrightarrow{\mathbb{Z}_+^d} y) - C \mathbb{P}(z^* \xleftrightarrow{\mathbb{Z}_+^d} y) \sum_{\zeta \notin C} \mathbb{P}(z^* \leftrightarrow \zeta)$$

842 for the expression appearing in (42).

843 We now use the fact that (on $\mathcal{C}_D(z) = C$) the vertex $z \in E_{D, Q_2}^{\text{REG}}(x, m; K)$ to upper
 844 bound the sum appearing in the last expression:

$$845 \mathbb{P}(z^* \leftrightarrow \zeta) = \sum_{\zeta \notin C} \mathbb{P}(z^* \leftrightarrow \zeta) \\ \geq \log_2(K) \sum_{\zeta \in \mathcal{C} \cap [B(z^*, 2) \setminus B(z^*, 2^{-1})]} 1 \\ 846 \leq C 2^{(2-d)(-1)} |\mathcal{C} \cap B(z^*, 2)| \\ \geq \log_2(K) \\ \leq C 2^{(2-d)(-1)} |\mathcal{C} \cap B(z, 3 \cdot 2)| \\ 847 \geq \log_2(K)$$

	2 2 0	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

$$\begin{aligned}
&\leq C 2^{(2-d)(-1)} \mathbb{E}[|\mathcal{C}_{\mathbb{Z}^d}(z) \cap B(z; 3 \cdot 2^d)| \mid \mathcal{C}_D(z)] \\
&\geq \log_2(K) \\
&\leq C 2^{(2-d)(-1)} (3 \cdot 2^d)^{9/2} \\
&\geq \log_2(K) \\
&\leq C 2^{(13/2-d)} \leq C K^{13/2-d} \\
&\geq \log_2(K)
\end{aligned}$$

Our shorthand in the limits of summation means is summed over integers satisfying the specified inequality. Inserting the above bounds into the left-hand side of (42) and summing over \mathcal{C} shows (41).

We next argue that

$$\begin{aligned}
&\text{For large } K, \text{ there is a } c \\
&= c(K) > 0 \text{ such that, for } K < m/8 < n/2 \text{ and } z \in Q_2, \text{ there is} \\
&\text{a } z^* \in (-z) \text{ such that } \mathbb{P}(\mathcal{E}_2(z, z^*, y) \cap \mathcal{E}_3(z, z^*) \mid \mathcal{E}_1(z)) \\
&\quad y \in A \\
&\geq c, \quad A = Q_3; \\
&\quad cm^{2-d}, \quad A = B(m\mathbf{e}_1; K).
\end{aligned} \tag{43}$$

To show (43), we again condition on $\mathcal{C}_D(z) = \mathcal{C}$ for a \mathcal{C} such that $\mathcal{E}_1(z)$ occurs; we will upper bound

$$\left|(-z)\right|^{-1} \mathbb{P}_{y \in A, z^* \in (-z)}(\mathcal{E}_2(z, z^*, y) \cap \mathcal{E}_3(z, z^*) \mid \mathcal{C}_D(z) = \mathcal{C}) \tag{44}$$

by a quantity smaller than that appearing in (42). From this and (42), it follows that the bound on the right-hand side of (43) holds for a uniformly chosen random $z^* \in (-z)$, hence for some particular value of z^* .

Given $\mathcal{C}_D(z) = \mathcal{C}$, the event $\mathcal{E}_2(z, z^*, y) \cap \mathcal{E}_3(z, z^*)$ implies the following disjoint occurrence happens:

$$\{\mathcal{C} \leftrightarrow \zeta\} \circ_{z^*} \{\zeta \xleftrightarrow{\mathbb{Z}_+^{d \setminus C}} \zeta\} \circ \{\zeta \xleftrightarrow{\mathbb{Z}_+^{d \setminus C}} y\}; \tag{45}$$

here the event $\{\mathcal{C} \leftrightarrow z\}$ is interpreted with \mathcal{C} treated as a deterministic vertex set (and so this is an upper bound—in fact, the connection from \mathcal{C} to ζ is in $\mathbb{Z}_+^{d \setminus C}$). Applying the BK inequality, noting that the events $\{\mathcal{C}_D(z) = \mathcal{C}\}$ and $\{\zeta \xleftrightarrow{\mathbb{Z}_+^{d \setminus C}} \zeta\} \circ \{\zeta \xleftrightarrow{\mathbb{Z}_+^{d \setminus C}} y\}$ are independent, and summing, we see the probability of the event in (45) is at most

$$\mathbb{P}_{\zeta \in \mathcal{C}}(\zeta \leftrightarrow \mathcal{C} \mid \mathcal{C}_D(z) = \mathcal{C}) \mathbb{P}(z^* \leftrightarrow \zeta) \mathbb{P}(\zeta \xleftrightarrow{\mathbb{Z}_+^{d \setminus C}} y) \tag{46}$$

In other words, we have shown that

$$(44) \leq \left|(-z)\right|^{-1} \mathbb{P}_{y \in A, z^* \in (-z)}(\zeta \in \mathcal{C}) \mathbb{P}(z^* \leftrightarrow \zeta) \mathbb{P}(\zeta \xleftrightarrow{\mathbb{Z}_+^{d \setminus C}} y). \tag{47}$$

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
			Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>
Jour. No	Ms. No.			

875 The precise bound we find for (47) depends on whether we are summing over $\zeta \in Q_3$
 876 or $y \in B(me_1; K)$, though the structure is similar in both cases.

877 Case A = Q_3 We bound the sums appearing in (47) by

$$878 \quad (47) \leq C K^{-d} \sum_{\substack{y \in Q_3, z^* \in (-z) \zeta \in \mathbb{C}}} \mathbb{P}(\zeta \leftrightarrow \mathcal{C} \mid \mathfrak{C}_D(z) = \mathcal{C}) \mathbb{P}(\zeta \leftrightarrow z^*) \zeta - y^{-1-d} \quad (48)$$

879 We have used the fact that $|(-z)| \geq cK^d$ and the two-point function bound (21).

880 We further decompose the sum in (48) depending on whether $\zeta \in B_H(3m/2)$ or
 881 $\zeta \notin B_H(3m/2)$. In the former case, we use the uniform upper bound

$$882 \quad \max_{\substack{\zeta \in \mathbb{C} \\ y \in Q_3}} \zeta - y^{-1-d} \leq C \log m \quad (49)$$

883 to bound the y sum for fixed ζ, z^* . Moreover, for each such ζ , we have $\zeta - z^* \geq \frac{m}{2} - 2K$,
 884 and so $\mathbb{P}(\zeta \leftrightarrow z^*) \leq Cm^{2-d}$ provided $m \geq 8K$. Pulling these together, the portion of
 885 (48) where ζ is summed over $B_H(3m/2)$ is bounded by

$$886 \quad Cm^{2-d} \log m \sum_{\substack{\zeta \in \mathbb{C} \\ \zeta \notin B_H(3m/2)}} \mathbb{P}(\zeta \leftrightarrow \mathcal{C} \mid \mathfrak{C}_D(z) = \mathcal{C}) \leq Cm^{13/2-d} \log m, \quad (50)$$

887 where we have used the fact that $z \in \mathbb{E}_{D, Q_2}^{\text{REG}}(x)$.

888 To bound (48) for $\zeta \notin B_H(3m/2)$, we perform the y sum using the following re-
 889 placement for (49):

$$890 \quad \max_{\substack{\zeta \in \mathbb{C} \setminus B_H(3m/2) \\ y \in Q_3}} \zeta - y^{-1-d} \leq C.$$

891 The remaining sum can be dealt with by decomposing the sum into cases based on the
 892 scale of $2^{-1} < \zeta - z^* \leq 2$. We further note $\{\zeta \leftrightarrow \mathcal{C}\} \cap \mathfrak{C}_D(z) = \mathcal{C} \subseteq \{\zeta \in \mathbb{C}(z)\}$.
 893 This leads to the sequence of bounds

$$894 \quad \mathbb{P}(\zeta \leftrightarrow \mathcal{C} \mid \mathfrak{C}_D(z) = \mathcal{C}) \mathbb{P}(\zeta \leftrightarrow z^*) \quad (51)$$

$$z^* \in (-z) \zeta \in \mathbb{C}$$

$$895 \quad \leq C \mathbb{E}[\mathbb{C}(z) \cap B(z^*; 2) \mid \mathfrak{C}_D(z) = \mathcal{C}] 2^{(2-d)}$$

$$z^* \in (-z) \geq \log_2 K/2$$

$$896 \quad + C \mathbb{P}(\zeta \leftrightarrow \mathcal{C} \mid \mathfrak{C}_D(z) = \mathcal{C}) \zeta - z^* 2^{-d}$$

$$z^* \in (-z) \zeta \in B(z^*; K)$$

$$897 \quad \leq C K^d 2^{(13/2-d)} + K^2 \mathbb{E}[\mathbb{C}(z) \cap B(z, 4K) \mid \mathfrak{C}_D(z) = \mathcal{C}] \leq C K^{13/2}.$$

$$\geq \log_2 K/2 \quad (52)$$

898 Applying this and (50) in (48), we produce an upper bound for (44):

$$900 \quad \text{for } A = Q_3, \quad (44) \leq C K^{13/2-d}.$$

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

901 We compare this to (41), noting that the sum of the right-hand side of that equation is
 902 bounded below by $d\mathbb{P}(\mathcal{E}_1(z))$. We see there is some K large such that for each $K > K_1$,
 903 there is a $c = c(K)$ with

$$904 \quad |(-z)|^{-1} \quad \mathbb{P}(\mathcal{E}_3(z, z^*) \mid \mathcal{E}_1(z) \cap \mathcal{E}_2(z, z^*, y)) \geq c, \\ z^* \in (-z) \quad y \in A$$

905 and (43) follows for $A = Q_3$.

906 Case $A = B(\mathbf{m}_1; K)$. We decompose the sum of (46) into two sums, one over $\zeta \in$
 907 $\overline{B(\mathbf{m}_1; m/8)}$ and the other over the remaining values of ζ . The first sum is slightly
 908 more complicated (involving the more stringent regularity notion of EREG), so we treat
 909 it in detail. We write, performing first the sum over z^* :

$$910 \quad \mathbb{P}(\zeta \leftrightarrow \mathcal{C} \mid \mathcal{C}_D(z) = \mathcal{C}) \mathbb{P}(\zeta \leftrightarrow z^*) \mathbb{P}(\zeta \xleftrightarrow{\mathbb{Z}_+^d} y) \\ z^* \in (-z) \quad \zeta \oplus (\mathbf{m}_1; m/8) \quad y \in B(\mathbf{m}_1; K) \\ 911 \quad \leq Cm^{2-d} |(-z)| \quad \mathbb{P}(\zeta \leftrightarrow \mathcal{C} \mid \mathcal{C}_D(z) = \mathcal{C}) \mathbb{P}(\zeta \xleftrightarrow{\mathbb{Z}_+^d} y). \quad (53)$$

$$\zeta \oplus (\mathbf{m}_1; m/8) \quad y \in B(\mathbf{m}_1; K)$$

912 We now further decompose the sum over ζ in (53) into terms with $\zeta \in B(\mathbf{m}_1; 2K)$ and
 913 $\zeta \notin B(\mathbf{m}_1; 2K)$. For the former case, we bound

$$914 \quad \mathbb{P}(\zeta \leftrightarrow \mathcal{C} \mid \mathcal{C}_D(z) = \mathcal{C}) \mathbb{P}(\zeta \xleftrightarrow{\mathbb{Z}_+^d} y) \\ \zeta \oplus (\mathbf{m}_1; 2K) \quad y \in B(\mathbf{m}_1; K) \\ 915 \quad \leq CK^2 \mathbb{E}[|\mathcal{C}(z) \cap B(\mathbf{m}_1; 2K)| \mid \mathcal{C}_D(z) = \mathcal{C}] \\ 916 \quad \leq CK^{13/2}, \quad (54)$$

917 where we have used the fact that $z \in \mathbb{E}_{D, Q_2}^{\text{EREG}}(x)$ in the last line. To bound (53) when
 918 $\zeta \notin B(\mathbf{m}_1; 2K)$, we decompose based on scale as in the bounds at (51), arriving as
 919 before at the bound

$$920 \quad \mathbb{P}(\zeta \leftrightarrow \mathcal{C} \mid \mathcal{C}_D(z) = \mathcal{C}) \mathbb{P}(\zeta \xleftrightarrow{\mathbb{Z}_+^d} y) \leq CK^{13/2}. \quad (55)$$

$$\zeta \notin B(\mathbf{m}_1; 2K) \quad y \in B(\mathbf{m}_1; K)$$

921 The bounds (54) and (55) together show that

$$922 \quad (53) \leq CK^{13/2+d} m^{2-d}, \quad (56)$$

923 and this controls the terms of (46) involving $\zeta \in B(\mathbf{m}_1; m/8)$. The contribution to
 924 (46) from $\zeta \notin B(\mathbf{m}_1; m/8)$ can be controlled in a similar but simpler way; a main
 925 difference is that instead of uniformly bounding $\mathbb{P}(\zeta \leftrightarrow z^*)$ as in (53), we can instead
 926 bound $\mathbb{P}(\zeta \leftrightarrow y)$.

927 We arrive at the bound

$$928 \quad \text{when } A = B(\mathbf{m}_1; K), (44) \leq CK^{13/2}.$$

929 For comparison, summing (41) over $y \in B(\mathbf{m}_1; K)$ and using the fact that $\mathbb{P}(z^* \xleftrightarrow{\mathbb{Z}_+^d} y) \geq$
 930 cm^{2-d} uniformly in $z^* \in (-z)$ and $y \in B(\mathbf{m}_1; K)$ gives

$$931 \quad |(-z^*)|^{-1} \quad \mathbb{P}(\mathcal{E}_2(z, z^*, y) \mid \mathcal{C}_D(z) = \mathcal{C}) \geq cm^{2-d} K^d.$$

$$y \in A \quad z^* \in (-z)$$

220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.			

Comparing the last two displays and recalling the uniform bound $|(\ z)| \geq cK^d$ completes the proof of (39) and the lemma.

3.4. *Two-point function asymptotics.* In this section, we state and prove asymptotics for $\tau_{\mathbb{Z}_+^d}(x, m\mathbf{e}_1)$, completing the proof of Theorem 6. The proofs build on the estimates obtained in the previous sections. We first prove asymptotics for $\mathbb{E}[X_{D, Q_1}^{\text{EREG}}(x)]$ and $\mathbb{E}[X_{D, Q_2}^{\text{EREG}}(x)]$. Since an open path from $m\mathbf{e}_1$ to $m\mathbf{e}_1$ with $2m < n$ (for instance) must pass through $\partial B_H(2m)$, these asymptotics are related to those for $\tau_{\mathbb{Z}_+^d}$ itself.

Corollary 10. *For each $K > K_1$, there exists a $c = c(K)$ such that the following holds uniformly in $m > 2K$, and in x with $|x| > 4m$:*

$$\mathbb{E}[X_{D, Q_1}^{\text{EREG}}(x)] \geq c\mathbb{E}[X_{D, Q_1}(x)] \geq c(m/|x|)^{d-1}.$$

Proof. We can write, using Lemma 5,

$$\begin{aligned} \mathbb{E}[X_{D, Q_1}^{\text{EREG}}(x)] &= \mathbb{P}(z \in \text{EREG}_D(\{0, m\mathbf{e}_1\}, K) \mid z \xleftrightarrow{D} x) \mathbb{P}(z \xleftrightarrow{D} x) \\ &\geq c \mathbb{P}(z \xleftrightarrow{D} x) = c\mathbb{E}[X_{D, Q_1}(x)]. \end{aligned}$$

We now use the two-point function asymptotic (21) to complete the proof:

$$\mathbb{E}[X_{D, Q_1}(x)] = \mathbb{P}(z \xleftrightarrow{D} x) \geq \mathbb{P}(z \xleftrightarrow{2m\mathbf{e}_1 + \mathbb{Z}_+^d} x) \geq c(m/|x|)^{d-1}.$$

947

The next lemma provides an upper bound on the quantity $\mathbb{E}X_{D, Q_2}^{\text{EREG}}$ (itself an upper bound, up to a constant, for $\mathbb{E}X_{D, Q_2}$) which matches that of Corollary 10 up to a constant factor.

Lemma 11. *For each $K > K_1$, there exists a $c = c(K)$ such that the following holds uniformly in $m > 2K$, and in x with $|x| > 4m$:*

$$C^{-1}\mathbb{E}[X_{D, Q_2}(x)] \leq \mathbb{E}[X_{D, Q_2}^{\text{EREG}}(x)] \leq C(m/|x|)^{d-1}.$$

Proof. The key ingredient of the proof is Proposition 7, and so we use the notation of that proposition. Indeed, fixing a K large enough and then summing the bound of the proposition, we find

$$\mathbb{E}[|Y(y)|] \geq c\mathbb{E}[X_{D, Q_2}^{\text{EREG}}(x)],$$

uniformly in x and m . On the other hand, as observed in Proposition 7, the left-hand side of the above is at most

$$\mathbb{P}(x \xleftrightarrow{\mathbb{Z}_+^d} y) \leq Cm^{d-1}|x|^{1-d},$$

where in the last inequality we used the two-point function bound (21).

This completes the proof of the second inequality. The first follows using Lemma 6 as in the proof of Corollary 10.

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	
				Disk Received <input type="checkbox"/>	Not Used <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Corrupted <input type="checkbox"/>
					Mismatch <input type="checkbox"/>

964 We are now equipped to prove the asymptotics for the two-point function in \mathbb{Z}_+^d .

965 *Proof of Theorem 6.* We prove the upper bound first. It is helpful to introduce a domain
 966 D^* consisting of \mathbb{Z}_+^d with a “flattened version” of $B_H(4m)$ removed:

$$967 D^* := \mathbb{Z}_+^d \setminus [0, 2m] \times [-4m, 4m]^{d-1}; \quad Q_4 := \partial_{\mathbb{Z}_+^d}(\mathbb{Z}_+^d \setminus D^*).$$

968 If $x \xleftrightarrow{\mathbb{Z}_+^d} m\mathbf{e}_1$, then there exists a $z \in Q_4$ such that

$$969 \{x \xleftrightarrow{D^*} z\} \circ z \{ \leftrightarrow m\mathbf{e}_1 \}.$$

970 Using the BK inequality, then:

$$\begin{aligned} 971 \mathbb{P}(x \xleftrightarrow{\mathbb{Z}_+^d} m\mathbf{e}_1) &\leq \underset{z \in Q_4}{\mathbb{P}(x \xleftrightarrow{D^*} z)} \mathbb{P}(z \leftrightarrow m\mathbf{e}_1) \\ 972 &\leq Cm^{2-d} \underset{z \in Q_4}{\mathbb{P}(z \xleftrightarrow{D^*} x)} \\ 973 &\leq Cm^{2-d} \underset{z \in Q_4}{\mathbb{P}(z \xleftrightarrow{-2m\mathbf{e}_1 + [\mathbb{Z}_+^d \setminus B_H(4m)]} x)}. \end{aligned} \quad (57)$$

974 The box $-2m\mathbf{e}_1 + [\mathbb{Z}_+^d \setminus B_H(4m)]$ is a translate of the analogue of D with m replaced by
 975 $2m$; we emphasize also that the point x is in D^* . In particular, we can use Proposition 7
 976 to upper bound the quantity in the last display:

$$977 (57) \leq C x^{-1-d} m^{d-1} \times m^{2-d}$$

978 and the upper bound of the theorem follows.

979 We turn to the lower bound on τ_H . As in the previous part, we build our connection
 980 from x to $m\mathbf{e}_1$ by first connecting x to the boundary of a box and then extending. By
 981 Corollary 10, we can choose a large constant K so that

$$982 \mathbb{E}[X_{D, Q_1}^{\text{EREG}}(x)] \geq c(m/x)^{d-1} \text{ uniformly in } x, m \text{ as claimed in Theorem 6.}$$

983 Applying the bound of Proposition 8 and summing over N gives

$$984 \mathbb{E}[|Y(y)|] \geq cm x^{-1-d}.$$

$$y \in B(m\mathbf{e}_1; K)$$

985 Using Proposition 7, this implies there exists a constant $c = c(K)$ such that

986 for x, m as above, there exists $y \in B(m\mathbf{e}_1; K)$ such that $\tau_H(x, y) \geq c m x^{-1-d}$.

987 With x, m , and y as in the last display, we can write

$$988 \tau_H(x, m\mathbf{e}_1) \geq \mathbb{P}(x \xleftrightarrow{\mathbb{Z}_+^d} y, y \xleftrightarrow{\mathbb{Z}_+^d} m\mathbf{e}_1) \geq c m x^{-1-d},$$

989 by the previous display, the FKG inequality (16), and the fact that $|y - m\mathbf{e}_1| \leq K$,
 990 where $c = c(K)$. The theorem follows.

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

991 4. Lower Bounds for the Chemical Distance and Cluster Size

992 4.1. *Discussion and motivation.* In this section, we show the inequality (5) of Theorem 2
 993 and the probability lower bound of Theorem 4. The main portion of the argument is
 994 Lemma 14 below, where we lower-bound the probability of a sequence of events whose
 995 occurrence guarantees that the cluster of the origin is small but that the origin is connected
 996 to the boundary of a box by a sufficiently small-length path.

997 We begin with a very informal illustration of the idea for the benefit of the reader.
 998 How can the origin have an arm to a long distance n but have its chemical distance to
 999 $\partial B(n)$ be abnormally small? Heuristically, one expects this type of behavior when the
 1000 cluster reaches distance n *ballistically*. That is, if every connection from 0 to $\partial B(n)$
 1001 crosses annuli of the form $\text{Ann}(m, (m+1)m)$ without re-entering $B((m-1)m)$ for all
 1002 $1 \leq m \leq n/m - 1$, where $m \leq n$. This is analogous to how one would try to force a
 1003 random walk to exit $B(n)$ in time $o(n^2)$, by demanding it avoid re-entering smaller scale
 1004 boxes once it has exited them.

1005 Unfortunately, it appears difficult to force such ballistic behavior, since the cluster
 1006 of the origin does not obey a Markov property like that of simple random walk. We are
 1007 forced to guarantee that the cluster obeys a certain degree of regularity inductively on a
 1008 sequence of length scales m —this regularity guarantees a degree of independence of
 1009 portions of the cluster which replaces the Markov property of simple random walk. We
 1010 then construct an event which implies the cluster crosses the annulus $\text{Ann}(m, (m+1)m)$
 1011 ballistically in a way which preserves regularity in the sense alluded to above. We
 1012 further demand that each such annulus crossing have at most typical edge length, that
 1013 is containing order m^2 edges at most. Then the total length of the arm so constructed
 1014 is $(n/m)m^2 = nm = n^2$, where the first factor represents the total number of annuli
 1015 crossed. Since this arm has length much shorter than n^2 , this accomplishes our goal of
 1016 constructing a short arm.

1017 4.2. *Notation.* We start our formal work with some definitions and preliminary esti-
 1018 mates. For a rectangle $D = \bigcup_{i=1}^d [a_i, b_i]$, we define its “right boundary”

$$1019 \partial_R [a_i, b_i] := \{x \in D : \{x, y\} \text{ is an edge with } y \cdot e_1 > b_1\}.$$

1020 We will also use the notation

$$1021 \partial_W D = \partial D \setminus \partial_R D.$$

1022 For positive integers α , we also define

$$1023 \text{Rect}^{(\alpha)}(n) = [-\alpha n, n] \times [-\alpha n, \alpha n]^{d-1}, \quad (58)$$

1024 and the shifted version

$$1025 \text{Rect}^{(\alpha)}(x; n) := x + \text{Rect}^{(\alpha)}(n).$$

1026 For notational simplicity, we introduce the convention that $\text{Rect}^{(\alpha)}(n) = \emptyset$ when $n < 0$.

1027 We note that

$$1028 0 \xleftrightarrow{\text{Rect}^{(\alpha)}(n)} \partial_W \text{Rect}^{(\alpha)}(n) \subseteq \{0 \leftrightarrow \partial B(\alpha n)\},$$

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1029 and the probability of the latter event is at most $C(\alpha n)^{-2}$ by (13). Therefore, for each
 1030 $\varepsilon > 0$, we can choose $\alpha = \alpha(\varepsilon)$ of order C/ε to guarantee that

$$1031 \quad \mathbb{P}(0 \xrightarrow{\text{Rect}^{(\alpha)}(n)} \partial \text{Rect}^{(\alpha)}(n)) \leq \varepsilon n^{-2}. \quad (59)$$

1032 We introduce some notation that is reminiscent of the definitions in Sect. 3, with
 1033 some adaptations to the geometry in this section. Since the pertinent definitions from
 1034 Sect. 3 will not appear in this section, there is no risk of confusion. For an integer n , we
 1035 define

$$1036 \quad \begin{aligned} {}_n(x) &:= \{y \in \partial \text{Rect}^{(\alpha)}(x; n) : y \xrightarrow{\text{Rect}^{(\alpha)}(x; n)} x\}, \\ 1037 \quad X_n(x) &:= |{}_n(x)|. \end{aligned}$$

1038 We denote

$$1039 \quad {}_n := {}_n(0), \quad X_n := X_n(0).$$

1040 The above notation suppresses the dependence on α because we will fix a particular value
 1041 of α , to be denoted α^* , in Lemma 13. We will use this α^* for the rest of this section. Once
 1042 we fix α^* , we will further abbreviate $\text{Rect}^{(\alpha^*)}(n)$ by $\text{Rect}(n)$, with a similar abbreviation
 1043 for $\text{Rect}^{(\alpha^*)}(x; n)$.

1044 We now fix an integer $m \geq 4$ and ≥ 1 .

1045 **Definition 9.** The random set $\text{SREG}(x; , m, K)$ ³ consists of all $y \in \partial \text{Rect}^{(\alpha)}(x; , m)$
 1046 such that

$$1047 \quad \mathbb{E}[|\mathcal{C}(y) \cap B(y; r) \setminus \text{Rect}^{(\alpha)}(x; , -1/2)m)| \mid \mathcal{C}_{\text{Rect}^{(\alpha)}(x; , m)}(y)] < r^{\frac{9}{2}}$$

1048 for all $r \geq K$.

1049 When $x = 0$, we omit it from the notation. See Fig. 2 for a schematic depiction. We
 1050 write (again omitting the argument when $x = 0$)

$$1051 \quad {}_{, m}^{\text{SREG}}(x) := {}_m(x) \cap \text{SREG}(x; , m, K) \quad (60)$$

$$1052 \quad X_{, m}^{\text{SREG}}(x) := |{}_{, m}^{\text{SREG}}(x)|. \quad (61)$$

1053 We also introduce a version of ${}_{, m}$ restricted to vertices connected to x through “short
 1054 paths”. Let $\rho > 0$ and define

$$1055 \quad {}_{, m}^{\rho\text{-short}}(x) = {}_{, m}^{\text{SREG}}(x) \cap \{y \in \partial \text{Rect}^{(\alpha)}(x; , m) : d_{\text{chem}}^{\text{Rect}^{(\alpha)}(x; , m)}(x, y) \leq \rho m^2\}.$$

1056 Similarly, we write $X_{, m}^{\rho\text{-short}}(x) = |{}_{, m}^{\rho\text{-short}}(x)|$.

³ The letter “S” in the abbreviation “SREG” stands for “shell”. The regularity condition is restricted to a shell to allow us to decouple portions of the cluster.

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1057 4.3. *Estimates.* We first obtain a lower bound on the quantity m . The following is
 1058 Lemma 5 with minor modifications for this context.

1059 **Lemma 12.** *There are constants $m_0, c, C > 0$ such that, uniformly in $m \geq m_0$, in
 1060 $k \geq 1$, and in $\lambda \geq 1$, we have*

$$1061 \mathbb{P} (|\mathcal{C}(y) \cap B(y; k)| > \lambda k^4 \log^5(k) \mid 0 \xrightarrow{\text{Rect}(m)} y) \leq C \exp(-c \sqrt{\lambda} \log^3 k).$$

1062 Thus, as in Lemma 5, there exists a $K_0 > 0$ such that uniformly in ≥ 1 and $m \geq m_0$, for all $K > K_0$:

$$1064 \mathbb{P}(y \notin \text{SREG}(\cdot, m, K) \mid 0 \xrightarrow{\text{Rect}(m)} y) \leq C \exp(-cK^{1/4}). \quad (62)$$

1065 Applying Lemma 12 and (21), we see

$$1066 \mathbb{E}[|\cdot_m \setminus \text{SREG}_m|] = \mathbb{P}(y \notin \text{SREG}(\cdot, m, K) \mid 0 \xrightarrow{\text{Rect}(m)} y) \mathbb{P}(0 \xrightarrow{\text{Rect}(m)} y) \\ 1067 \leq C \exp(-cK^{1/4}) (\alpha m)^{d-1} (\cdot_m)^{-d+1} \leq C \alpha^{d-1} \exp(-cK^{1/4}).$$

1068 Thus by Markov's inequality, we have, for each $\delta > 0$,

$$1069 \mathbb{P}(|\cdot_m \setminus \text{SREG}_m| \geq \delta(m)^2) \leq C \delta^{-1} (\cdot_m)^{-2} \alpha^{d-1} \exp(-cK^{1/4}). \quad (63)$$

1070 The following lemma will serve as the base case in an induction appearing in
 1071 Lemma 14.

1072 **Lemma 13.** *For each choice of $\alpha \geq 1$ from (58), there is a constant $c > 0$ and large
 1073 constants $1 \leq \rho < \infty$ and $K_1 \geq K_0$ depending only on α and the dimension d such
 1074 that, if $K \geq K_1$,*

$$1075 \mathbb{P}(X_{1,m}^{\rho\text{-short}} \geq cm^2) \geq cm^{-2} \quad (64)$$

1076 for all $m \geq m_0$. In particular, there is some choice of integer α , henceforth denoted by
 1077 α^* , and some $K_1 = K_1(\alpha^*) > K_0$ such that for some $c_\partial, C_\partial < \infty$, we have

$$1078 \mathbb{P}(C_\partial m^2 > X_m(0) \geq X_{1,m}^{\rho\text{-short}}(0) \geq c_\partial m^2 \mid 0 \xrightarrow{\text{Rect}(m)} \partial \text{ }_W \text{Rect}(m)) \geq cm^{-2} \\ 1079 \quad (65)$$

1080 for all $K \geq K_1$ and $m \geq 1$.

1081 *Proof.* We first recall the bound (20), which implies

$$1082 \text{uniformly in } n \geq 1, \quad \mathbb{P}(X_n \geq c_1 n^2) \geq c_1 n^{-2}$$

1083 for some uniform $c_1 > 0$ independent of α as long as $\alpha \geq 1$. Now, using (59), we can
 1084 find a α^* large and a constant $c_2 > 0$ uniform in n such that

$$1085 \text{with } \alpha = \alpha^*, \quad \mathbb{P}(\{X_n \geq c_2 n^2\} \setminus \{0 \xrightarrow{\text{Rect}(\alpha^*)(n)} \partial \text{ }_W \text{Rect}(\alpha^*)(n)\}) \geq c_2 n^{-2}. \quad (66)$$

1086 We henceforth fix α^* as in (66).

	2 2 0	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

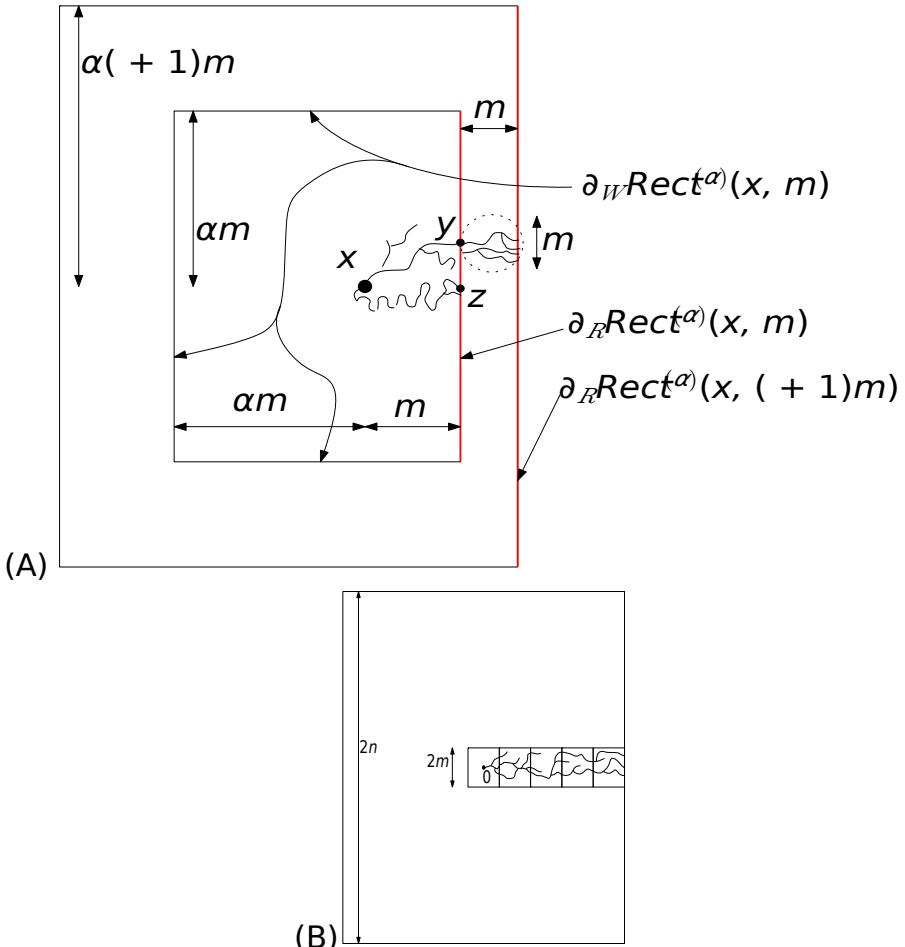


Fig. 2. **A** Schematic representation of $\text{Rect}^{(\alpha)}(x, m)$, $\text{Rect}^{(\alpha)}(x, (\alpha + 1)m)$, and $\text{Rect}_m(x)$. For a typical regular boundary vertex $y \in \text{SREG}_{\alpha m}(x)$ of $\text{Rect}^{(\alpha)}(x, m)$, the volume of the extended cluster (encircled region) within $B(y, m)$ and the chemical distance between y and $\partial B(y, m)$ within this scales as $O(m^4)$ and $O(m^2)$ respectively. $z \in \rho\text{-short}_m(x)$ if the chemical distance $d_{\text{chem}}^{\text{Rect}^{(\alpha)}(x, m)}(x, z) \leq \rho m^2$. **B** Schematic representation of the kind of cluster that suffices for the inductive lower bound argument to work

1087 Using Markov's inequality as in (63), we can choose $K_1 = K_1(\alpha^*) > K_0$ such that,
1088 for $K \geq K_1$ and for all m ,

1089

$$\mathbb{P}(X_m - X_{1,m}^{\text{SREG}} \geq c_2 m^2/4) \leq c_2 m^{-2}/4. \quad (67)$$

1090 We estimate the expected number of edges on a path from 0 to a vertex $y \in \text{SREG}_m(x)$.
1091 Let $M(0, y; m)$ denote the number of edges on the shortest open path from 0 to y in

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1092 $\text{Rect}(m)$, with the convention that $M(0, y; m) = 0$ when there is no such path. We have

$$\begin{aligned}
 1093 \quad & \mathbb{E}[M(0, y; m)] \leq 2d \quad \mathbb{P}(\{0 \xrightarrow[z \in \text{Rect}(m)]{} z\} \circ \{z \xrightarrow{} y\}) \\
 & \leq 2d \quad \mathbb{P}(0 \xrightarrow[z \in \text{Rect}(m)]{} z) \mathbb{P}(z \xrightarrow{} y) \\
 1094 \quad & \leq C_1 m^{3-d}, \\
 1095
 \end{aligned} \tag{68}$$

1096 where we have used the two-point function asymptotic of Theorem 6.

1097 For each $\rho > 0$, with c_2 as in (66),

1098 on the event $\{X_{1,m}^{\text{SREG}} - X_{1,m}^{\rho\text{-short}} \geq c_2 m^2/2\}$, we have $M(0, y; m)$
 $y \in \partial \text{Rect}(m)$

$$\begin{aligned}
 1099 \quad & \geq c_2 \rho m^4/2;
 \end{aligned}$$

1100 the constant c_2 in this display is independent of ρ . Taking expectations, we find

$$\begin{aligned}
 1101 \quad & \mathbb{E} \left[M(0, y; m) \right] \geq c_2 \rho m^4/2 \mathbb{P}_{y \in \partial \text{Rect}(m)} X_{1,m}^{\text{SREG}} - X_{1,m}^{\rho\text{-short}} \geq c_2 m^2/2.
 \end{aligned}$$

1102 Contrasting the last display with (68), we see that we can make a choice of ρ independent
1103 of m such that

$$\begin{aligned}
 1104 \quad & \mathbb{P}_{y \in \partial \text{Rect}(m)} X_{1,m}^{\text{SREG}} - X_{1,m}^{\rho\text{-short}} \geq c_2 m^2/2 \leq c_2 m^{-2}/2. \tag{69}
 \end{aligned}$$

1105 Finally, using (69) in conjunction with (67), we find (with ρ as in (69))

$$\begin{aligned}
 1106 \quad & \mathbb{P}_{y \in \partial \text{Rect}(m)} X_m - X_{1,m}^{\rho\text{-short}} \geq 3c_2 m^2/4 \leq 3c_2 m^{-2}/4. \tag{70}
 \end{aligned}$$

1107 Comparing (70) with (66) completes the proof of (64) and an analogue of (65) where
1108 we do not demand $X_m(0) \leq C_\partial m^2$. To impose this condition, we note that

$$\begin{aligned}
 1109 \quad & \mathbb{E}[X_m(0)] \leq \mathbb{P}_{x \in \partial \text{Rect}(m)} (0 \xrightarrow{x} x) \leq C,
 \end{aligned}$$

1110 and we apply Markov's inequality to see $\mathbb{P}(X_m \geq C_\partial m^2) \leq c_2 m^{-2}/8$ for sufficiently
1111 large C_∂ . This completes the proof of (65), concluding the proof of the lemma.

1112 **Lemma 14.** *Let $\rho, C_\partial, c_\partial$ be as in the statement of Lemma 13. There exist constants
1113 $C_{\text{Vol}} < \infty$ and $m_1 > m_0$ such that the following holds. Defining, for each pair of integers
1114 ≥ 1 and $m \geq m_1$, the event*

$$\begin{aligned}
 1115 \quad & G(_, m) := A(_, m) \cap B(_, m), \tag{71}
 \end{aligned}$$

1116 where

	2	2	0	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
	Jour. No	Ms. No.				Total pages: 71	Not Used <input type="checkbox"/>
						Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
						Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

$$1117 \quad A(\cdot, m) = C_\partial m^2 > X_m \geq X_m^{2\rho\text{-short}} \geq \frac{c_\partial m^2}{2} \setminus 0 \xleftrightarrow{\text{Rect}(\cdot, m)} w\text{Rect}(\cdot, m) \quad (72)$$

$$1118 \quad B(\cdot, m) = |\mathcal{C}_{\text{Rect}(\cdot, m)}(0)| < C_{\text{Vol}} m^4$$

$$1119 \quad \cap \text{ for each } 0 \leq i \leq \alpha, \mathcal{C}_{\text{Rect}(\cdot, m)}(0)$$

$$1120 \quad \cap \text{Rect}((\cdot - i)m) \setminus \text{Rect}((\cdot - i - 1)m) | < C_{\text{Vol}} m^4, \quad (73)$$

1121 then we have $\mathbb{P}(G(\cdot, m)) \geq c^{-1}m^{-2}$ for a constant c uniform in \cdot ≥ 1 and $m \geq m_1$.

1122 We comment briefly on the definition of $B(\cdot, m)$. The first event appearing in the
 1123 intersection in its definition is in some sense the operative one: it bounds the size of
 1124 $\mathcal{C}_{\text{Rect}(\cdot, m)}(0)$, which is our main goal. The second event appears for technical reasons,
 1125 essentially serving as an accessory to regularity. See (79) and the following for how this
 1126 condition is applied, and see the end of Step 5 below for discussion of why we did not
 1127 try to impose a version of this condition as part of the definition of SREG.

1128 *Proof.* The proof is by induction on \cdot for fixed m . The base case $\cdot = 1$ is almost
 1129 furnished by Lemma 13; all that remains to prove is that the bound on $|\mathcal{C}_{\text{Rect}(m)}(0)|$ in
 1130 (73) can be imposed without changing the order of the probability bound in that lemma.
 1131 To do this, we simply apply a moment bound. Indeed,

$$1132 \quad \mathbb{E}[|\mathcal{C}_{\text{Rect}(m)}(0)|] \leq \mathbb{E}[|\mathcal{C}(0) \cap \text{Rect}(m)|] = \tau(\emptyset, x) \leq Cm^2.$$

$$x \in \text{Rect}(m)$$

1133 Applying Markov's inequality and a union bound shows the claim of the lemma for
 1134 $\cdot = 1$, for all sufficiently large values of C_{Vol} .

1135 We now prove the inductive step. We write

$$1136 \quad \mathbb{P}(G(\cdot + 1, m)) \geq \mathbb{P}(G(\cdot + 1, m) \cap G(\cdot, m))$$

$$1137 \quad = \sum_{\mathcal{C}} \mathbb{P}(G(\cdot + 1, m) \mid \mathcal{C}_{\text{Rect}(\cdot, m)}(0) = \mathcal{C}) \mathbb{P}(\mathcal{C}_{\text{Rect}(\cdot, m)} = \mathcal{C}), \quad (74)$$

1138 where in (74) the sum is over realizations \mathcal{C} of $\mathcal{C}_{\text{Rect}(\cdot, m)}$ such that $G(\cdot, m)$ occurs (this
 1139 event being measurable with respect to $\mathcal{C}_{\text{Rect}(\cdot, m)}$). Similarly, the sets X_m , $X_m^{2\rho\text{-short}}$, and
 1140 their cardinalities are functions of $\mathcal{C}_{\text{Rect}(\cdot, m)}(0)$; we write (for instance) $X_m(\mathcal{C})$ to denote the (deterministic)
 1141 value of X_m that corresponds to the value $\mathcal{C}_{\text{Rect}(\cdot, m)}(0) = \mathcal{C}$.

1142 The remainder of the proof will provide a uniform lower bound on the conditional
 1143 probability appearing in (74). We do this by successive conditioning, bounding the
 1144 probability cost as we impose the conditions of $G(\cdot + 1, m)$. For clarity of presentation,
 1145 we organize this into steps. In what follows, \mathcal{C} will be a fixed but arbitrary value of
 1146 $\mathcal{C}_{\text{Rect}(\cdot, m)}(0)$ appearing in (74). Before starting the first step of the proof, we make some
 1147 definitions to allow us to notate events occurring off of \mathcal{C} more easily.

1148 **Definition 10.** • $\mathbb{Z}^d \subseteq \mathbb{Z}^d$ is the vertex set $[\mathbb{Z}^d \setminus \mathcal{C}] \cup X_m^{2\rho\text{-short}}$. With some abuse of
 1149 notation, we use the same symbol for \mathbb{Z}^d and the graph with vertex set \mathbb{Z}^d and with
 1150 edge set $\mathcal{E}(\mathbb{Z}^d)$ defined by

$$1151 \quad \{\{x, y\} \in \mathcal{E}(\mathbb{Z}^d) : x \in X_m, y \in \mathbb{Z}^d \setminus \text{Rect}(\cdot, m)\} \cup \{\{y\} \in \mathcal{E}(\mathbb{Z}^d) : x, y \in \mathbb{Z}^d \setminus \mathcal{C}\}.$$

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

1152 • We denote the conditional percolation measure $\mathbb{P}(\cdot \mid \mathcal{C}_{\text{Rect}(m)} = \mathcal{C})$ on $\{0, 1\}^{\mathbb{Z}^d}$ by $\mathbb{P}(\cdot)$. Similarly, we write d_{chem} for the chemical distance on the open subgraph of \mathbb{Z}^d .

1155 Conditional on $\{\mathcal{C}_{\text{Rect}(m)} = \mathcal{C}\}$, the distribution of ω_e for edges e of \mathbb{Z}^d is the same as
 1156 their unconditional distribution: i.i.d. Bernoulli(p_c). Indeed, when \mathcal{C} is such that $G(\cdot, m)$
 1157 occurs, $\mathcal{E}(\mathbb{Z}^d)$ is exactly the set of edges in $\mathcal{E}(\mathbb{Z}^d)$ which are not examined to determine
 1158 $\mathcal{C}_{\text{Rect}(m)}(0) = \mathcal{C}$. So the measure \mathbb{P} is just a projection of \mathbb{P} onto a subset of the edge
 1159 variables of our original lattice.

1160 We note that the restriction on m appearing in the statement of the lemma will arise
 1161 through the arguments below. Like in Sect. 3, we will need to introduce an auxiliary
 1162 parameter K which will be chosen large in order to make various error terms involving
 1163 cluster intersections small. All bounds will be uniform as long as $m \geq m_0 + 4K$, and so
 1164 the ultimate value of m_1 will be $m_0 + 4K$ for the choice of K made at (85). We will also
 1165 potentially need to enlarge the value of C_{vol} below in Step 6, but not any other constants
 1166 (and the value of C_{vol} will be manifestly independent of m and K).

1167 **Step 1.** In what follows, we let $K = 2^k \geq 1$ be a constant larger than the K_1 from
 1168 Lemma 13, to be fixed shortly at (85). For each $x \in \mathbb{Z}^d$, we define the following
 1169 events on the space of edge variables on \mathbb{Z}^d .

- 1170 • $D_1(x)$ is the event that
 - 1171 a. $|\{y \in \partial \text{Rect}(x; m) \cap \text{SREG}_{+1, m} : d_{\text{chem}}(x, y) \leq 2\rho m^2\}| \geq c_\partial m^2$,
 - 1172 b. $y \in \partial \text{Rect}((+1)m) : y \xleftrightarrow{\text{Rect}((+1)m) \setminus C} x < C_\partial m^2$,
 - 1173 c. $\{x, x + \mathbf{e}_1\}$ is pivotal for $\xleftrightarrow{m} \partial \text{Rect}((+1)m) \setminus \partial \text{Rect}((+1/2)m)$,
 - 1174 d. but we do not have $x \xleftrightarrow{\partial} w \in \text{Rect}((+1)m)$.
- 1175 • D_1 is the event $\bigcup_{x \in \mathbb{Z}^d} \text{rho-short } D_1(x)$.

1176 We note that the conditional probability of the event

$$1177 C_\partial m^2 > X_{(+1)m} \geq X_{(+1)m}^{2\rho\text{-short}} \geq c_\partial m^2 \setminus 0 \xleftrightarrow{\text{Rect}((+1)m)} w \in \text{Rect}((+1)m) \quad (75)$$

1178 conditioned on $\mathcal{C}_{\text{Rect}(m)} = \mathcal{C}$ is bounded below by $\mathbb{P}(D_1)$, and we turn to lower-
 1179 bounding $\mathbb{P}(D_1)$.

1180 The pivotality in the definition of $D_1(x)$ guarantees that $D_1(x_1) \cap D_1(x_2) = \emptyset$ for
 1181 $x_1 = x_2$; in particular,

$$1182 \mathbb{P}(D_1) = \bigcup_{x \in \mathbb{Z}^d} \mathbb{P}(D_1(x)). \quad (76)$$

1183 In light of (76) and (75), Steps 2–5 are devoted to establishing a uniform lower bound
 1184 on $\mathbb{P}(D_1(x))$.

1185 **Step 2.** For each x as in (76), we set $x^* = x + K \mathbf{e}_1$. For use in this step, we introduce
 1186 notation for the analogues of X_r and $X_{1,r}$ (for $r \geq 1$) when connections are forced not
 1187 to intersect \mathcal{C} . Namely,

$$1188 X_r(x^*) := |\{y \in \partial \text{Rect}(x^*; r) : y \xleftrightarrow{\text{Rect}(x^*; r) \setminus C} x^*\}|,$$

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

1189 with the analogous definition for $X_{1,r}^{\rho\text{-short}}$. Here we note that K plays both the role of the
 1190 shift of x^* and the implicit regularity parameter for $X_{1,r}^{\rho\text{-short}}$.

1191 We begin by arguing a probability lower bound for a modification of the event ap-
 1192 pearing in (65) but centered at x^* :

$$1193 \begin{aligned} D_2(x^*) &:= C_\partial(m-K)^2 > X_{m-K}(x^*) \geq X_{1,m-K}^{\rho\text{-short}}(x^*) \geq c_\partial(m-K)^2 \\ &\setminus x^* \xrightarrow{\leftrightarrow} \partial_W \text{Rect}(x; m-K) \end{aligned} \quad (77)$$

1194 Using a union bound, we find

$$1195 \begin{aligned} \mathbb{P} \ D_2(x^*) &\geq \mathbb{P} \ D_2(x^*) \\ &\quad - \mathbb{P} \ \exists z \in \mathcal{C} \cap \text{Rect}(x^*; m-K) : \\ &\quad \{z \leftrightarrow \partial_R \text{Rect}(x; m-K)\} \circ \{z \leftrightarrow x^*\} \text{ occurs} \end{aligned} \quad (78)$$

1196 It follows that the second term in (78) is bounded by

$$1197 \begin{aligned} &\mathbb{P}(z \leftrightarrow \partial \text{Rect}((+1)m)) \mathbb{P}(x^* \leftrightarrow z) \\ &\quad z \in \mathcal{C} \cap \text{Rect}(x^*; m-K) \\ 1198 &\leq Cm^{-2} \mathbb{P}(x^* \leftrightarrow z) \\ &\quad z \in \mathcal{C} \cap \text{Rect}(x^*; m-K) \end{aligned} \quad (79)$$

1199 The sum over z in the last term can be further subdivided into the case that z also lies in
 1200 $\text{Rect}((-1/2)m)$ and the case that z lies outside of $\text{Rect}((-1/2)m)$. In the latter case,
 1201 we apply the facts that $x \in \text{SREG}_{\lfloor m \rfloor}$ and that x^* lies at distance K from x . In the former,
 1202 we use the fact that in this regime $\mathbb{P}(x^* \leftrightarrow z) \leq Cm^{2-d}$ and the fact that $B(\cdot, m)$
 1203 occurs, which implies that the number of z terms appearing in the sum is at most Cm^4 .
 1204

Using these two bounds, we see

$$1205 \begin{aligned} (79) &\leq Cm^{-2} m^{6-d} + \sum_{s=k}^{\infty} 2^{\frac{9}{2}s} 2^{(2-d)s} \\ 1206 &\leq Cm^{-2} K^{\frac{13}{2}-d}. \end{aligned}$$

1207 It remains to give a lower bound for the first term of (78). Indeed, this is almost the content
 1208 of Lemma 13 (specifically (65)) with m replaced by $m-K$, except for the appearance
 1209 of the set \mathcal{C} in the portion of $D_2(x^*)$ involving connections to $\partial_W \text{Rect}(x; m-K)$. This
 1210 restriction only makes $\mathbb{P}(D_2(x^*))$ higher than the probability appearing in (65). As long
 1211 as $m \geq m_0 + 4K$, we can apply the bound of (65) in (78). We see there exists $a_2 K > K_1$
 1212 and a c such that, for all $K > K_2$ and $m \geq m_0 + 4K$,

$$1213 \mathbb{P} \ D_2(x^*) \geq cm^{-2} \text{ uniformly in } \mathcal{C}, x. \quad (80)$$

1214 **Step 3.** We now upgrade the above, demanding further that \tilde{x} not be in the same cluster
 1215 as any element of \mathcal{C} . We define

$$1216 D_3(x^*) := D_2(x^*) \setminus \{ \exists z \in \mathcal{C} : z \xrightarrow{\leftrightarrow} x^* \}.$$

220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.			

1217 We note for future reference that

1218 when $D_3(x^*)$ and $\{\mathcal{C}_{\text{Rect}((m))}(0) = \mathcal{C}\}$ occur, then we do **not** have

$$x^* \xrightarrow{\text{Rect}(x^*, m-K)} \partial_W \text{Rect}((+1)m). \quad (81)$$

1219 This follows from (77), which ensures x^* has no connection to $\partial_W \text{Rect}((+1)m)$ off \mathcal{C} ,
1220 and the definition of $D_3(x^*)$, which ensures x^* has no connection to \mathcal{C} .

1221 We can lower bound the probability of $D_3(x^*)$ similarly to the argument establishing
1222 (43) in the proof of Lemma 9:

$$\begin{aligned} 1223 \quad & \mathbb{P}(D_3(x^*)) \geq \mathbb{P}(D_2(x^*)) \\ 1224 \quad & - \mathbb{P}_{\substack{y \in \text{Rect}((+1)m) \setminus \mathcal{C} \\ \text{Rect}((+1)m) \setminus \mathcal{C}}} \{ \text{Rect}((+1)m) \xrightarrow{\text{Rect}((+1)m)} y \} \circ \{ y \leftrightarrow x^* \} \circ \{ y \leftrightarrow \partial_R \text{Rect}((+1)m) \} \mathcal{C}_{\text{Rect}((m))}(0) = \mathcal{C} \quad . \quad (82) \end{aligned}$$

1225 We bound the sum in (82) by decomposing the sum into three terms: a) a term
1226 corresponding to $y \in \text{Rect}((- 1/2)m)$, b) a term corresponding to $y \in \text{Rect}((+ 1/2)m) \setminus \text{Rect}((- 1/2)m)$, and c) a term corresponding to $y \notin \text{Rect}((+ 1/2)m)$. In
1227 case a), we use the BK inequality to upper bound the sum by (letting $m - y(1) = r$)

$$1229 \quad C\pi(m/2) \times |\mathcal{C}_m(\mathcal{C})| \times \sum_{r=m/2}^{\infty} r^{d-1} r^{4-2d} \leq Cm^{4-d} = Cm^{-2}(m^{6-d}). \quad (83)$$

1230 Case c) is similar to a) but slightly more complicated. We use Theorem 6 to control
1231 the connection probability between x^* and y , since y is close to $\partial_R \text{Rect}((+1)m)$. We
1232 obtain the upper bound (letting $\max\{(+1)m - y(1), 1\} = r$)

$$1233 \quad C|\mathcal{C}_m(\mathcal{C})| \sum_{r=1}^{m/2-1} r^{d-1} \times (rm^{1-d})^2 \times r^{-2} \leq Cm^{-2}(m^{6-d}). \quad (84)$$

1234 Finally, the term corresponding to case b) can be bounded similarly to (39) using the
1235 BK inequality and the fact that $y \in \mathcal{C}_{m/2}(\mathcal{C})$. We find, for $K > K_2$ and $m \geq m_0 + 4K$,

$$1236 \quad \mathbb{P}(D_3(x^*)) \geq cm^{-2} - Cm^{-2}K^{13/2-d} \text{ uniformly in } \mathcal{C}, x.$$

1237 Thus, there exists a $K_3 > K_2$ and a $c > 0$ such that, uniformly in $K \geq K_3$ and
1238 $m \geq m_0 + 4K$,

$$1239 \quad \mathbb{P}(D_3(x^*)) \geq cm^{-2} \text{ uniformly in } \mathcal{C} \text{ and } x. \quad (85)$$

1240 From here on, we fix $K = K_3$, and assume $m \geq m_1 = m_0 + 4K_3$.

1241 **Step 4.** We define one final subevent of $D_3(x^*)$, imposing the additional restriction that
1242 no vertex of $\mathcal{C}_m(\mathcal{C})$ have an arm to $\partial \text{Rect}((+1/2)m)$:

$$1243 \quad D_4(x, x^*) = D_3(x^*) \setminus \{ \exists z \in \mathcal{C}_m : z \xrightarrow{\mathcal{E}_d \cap \text{Rect}((+1/2)m)} \partial \text{Rect}((+1/2)m) \}. \quad (86)$$

	2 2 0	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

We lower-bound $\mathbb{P}(D_4(x, x^*))$. To do this, we condition further on $\mathcal{C}_{\mathbb{Z}^d \cap \text{Rect}((+1)m)}(x^*)$, noting that $D_3(x^*)$ is measurable with respect to the sigma-algebra on \mathcal{C} generated by this cluster:

$$\begin{aligned} \mathbb{P}(D_4(x, x^*)) &= \underset{\mathcal{C}}{\mathbb{P}}(D_4(x, x^*) \mid \mathcal{C}_{\mathbb{Z}^d \cap \text{Rect}((+1)m)}(x^*) = \mathcal{C}) \\ &\quad \mathbb{P}(\mathcal{C}_{\mathbb{Z}^d \cap \text{Rect}((+1)m)}(x^*) = \mathcal{C}). \end{aligned} \quad (87)$$

On $D_3(x^*)$, we have $\mathcal{C}_{\mathbb{Z}^d \cap \text{Rect}((+1)m)}(x^*) = \emptyset$, and so the conditional probability in (87) is bounded by

$$\begin{aligned} 1 - \mathbb{P}(\exists z \in \mathbb{Z}^d : z \leftrightarrow \partial \text{Rect}((+1/2)m)) &= \mathbb{P}(\forall z \in \mathbb{Z}^d : z \leftrightarrow \partial \text{Rect}((+1/2)m)) \\ &\quad (\text{by FKG}) \geq \underset{z \in \mathbb{Z}^d}{\mathbb{P}}(z \leftrightarrow \partial \text{Rect}((+1/2)m)) \\ &\geq (1 - cm^{-2})^{Cm^2} \geq c. \end{aligned}$$

In the second line, in addition to the FKG inequality, we used the fact that conditioning on $\mathcal{C}_{\text{Rect}((+1)m)} = \mathcal{C}$ can only decrease the probability that $\mathcal{C}_{\text{Rect}((+1)m)}(\mathcal{C})$ is connected to $\partial \text{Rect}((+1/2)m)$. The above bound is uniform in \mathcal{C} , so reinserting into (87), we find

$$\mathbb{P}(D_4(x, x^*)) \geq cm^{-2} \text{ uniformly in } m \geq m_1 \text{ and } \mathcal{C}, x. \quad (88)$$

Step 5. We now turn (88) into the estimate

$$\mathbb{P}(D_1(x)) \geq cm^{-2} \text{ uniformly in } m \geq m_1 \text{ and in } \mathcal{C}, x \quad (89)$$

by an edge modification argument. Let us write ω for a typical configuration in $D(x, x^*)$, considered as an element of \mathcal{C} . That is, we say $\omega \in \mathcal{C}$ is an element of $D_4(x, x^*)$ if $\omega \in \mathcal{C}_{\text{Rect}((+1)m)} = \mathcal{C}$ and if the restriction of ω to \mathbb{Z}^d is an element of $D_4(x, x^*)$. We write ω for the modification of ω produced as follows. We close all edges of $\mathcal{E}(\mathbb{Z}^d)$ with an endpoint in $\mathbb{Z}^d \cap B(x; 2K)$ except those in $\mathcal{C}_{\mathbb{Z}^d}(x^*)$. We then open edges of the form $\{x + n\mathbf{e}_1, x + (n+1)\mathbf{e}_1\}$ for $0 \leq n < K$ one by one, until the first time that x and x^* have an open connection in $\text{Rect}((+1)m)$ (at which time we stop opening edges).

Then in ω , we still have $\mathcal{C}_{\text{Rect}((+1)m)}(0) = \mathcal{C}$, since we have not opened or closed an edge with both endpoints in $\text{Rect}((+1)m)$. Moreover, the vertices y counted by the X variables from (77) are now in $\text{Rect}((+1)m)(x)$ in ω . In addition, each such y has

$$d_{\text{chem}}(x, y) \leq \rho n^2 + K \leq 2\rho m^2$$

(where the last inequality uses $m \geq m_1$).

To show that $\omega \in D_1(x)$, we show pivotality—that every connection from \mathbb{Z}^d to $\partial \text{Rect}((+1)m)$ in ω passes through $\{x, x + \mathbf{e}_1\}$ —and then that the cluster of x in the modified configuration ω inherits the appropriate properties from the cluster of x^* in the original configuration ω . To show pivotality, suppose γ is an open path in ω from \mathbb{Z}^d to $\partial \text{Rect}((+1)m)$. Then γ must use one of the edges opened in the mapping $\omega \rightarrow \omega$, since $\omega \in D_4(x, x^*)$. Letting e be the first such edge, if e is not $\{x, x + \mathbf{e}_1\}$, then the edge of γ just before e must terminate at some vertex $x + i\mathbf{e}_1$, $1 \leq i \leq K$. But this edge would have been closed by the mapping $\omega \rightarrow \omega$ unless it were an edge of $\mathcal{C}(x^*)$, implying that $x \xleftrightarrow{\text{Rect}((+1)m)} x^*$ in ω , a contradiction.

220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.			

1281 By pivotality and the fact that the mapping $\omega \rightarrow \omega$ modifies only edges of $\text{Rect}((+ 1/2)m)$, we have
 1282

$$1283 \mathcal{C}_{\text{Rect}((+ 1)m)}(x)[\omega] \setminus \text{Rect}((+ 1/2)m) = \mathcal{C}_{\text{Rect}((+ 1)m)}(x^*)[\omega] \text{Rect}((+ 1/2)m) \quad (90)$$

1284

1285 and in particular that $\mathcal{C}_{\text{Rect}((+ 1)m)}(0)[\omega]$ is $\mathcal{C}(x^*)[\omega]$. The definition (77) of $D_2(x^*)$ then
 1286 implies that in ω , we have $X_{(+ 1)m} < C_0 m^2$; the fact (81) implies x does not have a
 1287 connection to $\partial \text{Rect}((+ 1)m)$. To complete the proof that $\omega \in D_1(x)$, all that remains
 1288 is to show that each y counted in $X_{1,m-K}^{\rho\text{-short}}$ in ω satisfies $y \in X_{(+ 1),m}^{2\rho\text{-short}}[\omega]$.

1289 To show first that $y \in \text{SREG}(0; + 1, m, K)[\omega]$, let $r \geq K$; we compute

$$1290 \mathbb{E}[\mathcal{C}(y) \cap B(y; r) \setminus \text{Rect}((+ 1/2)m) \mid \mathcal{C}_{\text{Rect}((+ 1)m)}(y)] \\ 1291 = \mathbb{P}(y \leftrightarrow z \mid \mathcal{C}_{\text{Rect}((+ 1)m)}(y)) \text{ on } \omega. \quad (91)$$

1292 $z \in B(y; r) \setminus \text{Rect}((+ 1/2)m)$

Fix $z \in B(y; r) \setminus \text{Rect}((+ 1/2)m)$. Consider a realization ω having the same value
 of $\mathcal{C}_{\text{Rect}((+ 1)m)}(y)$ as in ω , and suppose that $z \in \mathcal{C}(y)$. There are two possibilities:

1. $z \in \mathcal{C}_{\text{Rect}((+ 1)m)}(y)[\omega] = \mathcal{C}_{\text{Rect}((+ 1)m)}(y)[\omega]$. In this case, by (90), we actually have that $z \in \mathcal{C}_{\text{Rect}((+ 1)m)}(x^*)[\omega]$.
2. Otherwise, there is an open path from some element of $\mathcal{C}_{\text{Rect}((+ 1)m)}(y)[\omega]$ to z which avoids $\mathcal{C}_{\text{Rect}((+ 1)m)}(x)[\omega]$ (and hence $\mathcal{C}_{\text{Rect}((+ 1)m)}(x^*)[\omega]$).

In either case, using (90), the conditional probability of the connection from y to z is at most

$$\mathbb{P}(y \leftrightarrow z \mid \mathcal{C}_{\text{Rect}((+ 1)m)}(x^*)[\omega]).$$

Since y is counted in $X_{1,m-K}^{\rho\text{-short}}$ in ω , we can use the last display to bound the sum in (91) by $Cm^{9/2}$. As noted at (75) and (76), this shows that there is a constant $c_1 > 0$ such that

$$1303 \mathbb{P}(A(, m)) \geq \mathbb{P}(D_1) \geq c_1 \text{ uniformly in } m \geq m_1, \quad (92)$$

We return briefly to the issue of the definition of $B(, m)$. We note that the above argument only gives effective control of the cluster of x outside of $\text{Rect}((+ 1/2)m)$. In principle, there could be many other vertices of $\mathcal{C}_{\text{Rect}((+ 1/2)m)}(m)$ whose clusters span part of $\text{Rect}((+ 1/2)m) \setminus \text{Rect}((m))$. Without controlling the number of vertices contained in such “partial spanning clusters”, we would not be able to adequately bound (79). The definition of $B(, m)$ is designed to provide the necessary control.

Step 6. Let c_1 be the constant in (92). We show that there is a choice of C_{vol} as in the definition of $G(, m)$ sufficiently large such that

$$1312 \mathbb{P}(|\mathcal{C}_{\text{Rect}((+ 1)m)}(0) \setminus \mathcal{C}_{\text{Rect}((m))}(0)| < C_{\text{vol}} m^4 \mid G(, m)) > 1 - c_1/2. \quad (93)$$

1313 for all m and m .

Given (93), $\mathbb{P}(B(+ 1, m) \mid G(, m)) > 1 - c_1/2$ trivially follows. This proves the lower bound on $\mathbb{P}(G(+ 1, m))$ and completes the induction; indeed,

$$1316 \mathbb{P}(A(+ 1, m) \cap B(+ 1, m) \mid G(, m)) \geq \mathbb{P}(A(+ 1, m) \mid G(, m)) \\ 1317 + \mathbb{P}(B(+ 1, m) \mid G(, m)) - 1 \\ 1318 \geq c_1 + 1 - c_1/2 - 1 \\ 1319 = c_1/2,$$

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1320 where we have used (92) and (93).

1321 We now show (93), using the decomposition in (74). It will suffice to show

$$1322 \mathbb{P} \left(\bigcup_{x \in \mathbb{m}(\mathcal{C})} |\mathcal{C}(x)| > C_{Vol} m^4 \right) < c_1/2 \quad (94)$$

1323 for a large C_{Vol} , uniformly in m and \mathcal{C} . Of course, the clusters $\mathcal{C}(x)$ above are
 1324 stochastically dominated by the corresponding clusters in \mathbb{Z}^d , and so we can use the
 1325 Aizenman–Barsky tail asymptotic (12) for \mathbb{Z}^d cluster sizes.

1326 Indeed, we can upper-bound the left-hand side of (94), with C_{Vol} replaced by an
 1327 arbitrary parameter $\tau > 0$, as follows:

$$1328 \mathbb{P} \left(\bigcup_{x \in \mathbb{m}(\mathcal{C})} |\mathcal{C}(x)| > \tau m^4 \right) \leq \mathbb{P} \left(\bigcup_{x \in \mathbb{m}(\mathcal{C})} |\mathcal{C}(x)| > \tau m^4 \right).$$

1329 Recalling that $X_{\mathbb{m}(\mathcal{C})} \leq C_0 m^2$ and using Lemma 1, we see that right-hand side of the
 1330 last display is at most $C \tau^{-1/2}$ uniformly in m , \mathcal{C} , and \mathcal{C} ; in particular, there is a large
 1331 constant C_{Vol} such that (94) holds uniformly in the same parameters. This completes the
 1332 proof of Lemma 14.

1333 *4.4. Proof of lower bounds in Theorems 2 and 4.* We first prove the lower bound of
 1334 Theorem 4. Recalling the constant m_0 from Lemma 14, we assume $\lambda^{1/3} n \geq m_0$;
 1335 this is where the constraint on λ arises. We fix $m = \lambda^{1/3} n$ and set $\mathcal{C} = n/m!$. By
 1336 Lemmas 13, 14 and the one-arm probability (13), we see

$$1337 \mathbb{P}(|\mathcal{C}(0)| \leq \lambda n^4 \mid 0 \leftrightarrow \partial B(n)) \geq cn^2 \mathbb{P}(|\mathcal{C}(0)| \leq \lambda n^4, 0 \leftrightarrow \partial B(n)) \\ 1338 \geq cn^2 \mathbb{P}(G(\mathcal{C}, m)) \geq n^2 m^{-2} c^{-1} \\ 1339 \geq c^{-1} \geq c \exp(-C\lambda^{-1/3}).$$

1340 Similarly, to prove (5) from Theorem 2, we take $m = \lambda n$ (assuming that this is at
 1341 least m_0) and again set $\mathcal{C} = n/m!$. We note

$$1342 \mathbb{P}(S_n \leq \lambda n^2 \mid 0 \leftrightarrow \partial B(n)) \geq cn^2 \mathbb{P}(S_n < \lambda n^2, 0 \leftrightarrow \partial B(n)) \\ 1343 \geq cn^2 \mathbb{P}(G(\mathcal{C}, m)) \geq n^2 m^{-2} c^{-1} \\ 1344 \geq c^{-1} \geq c \exp(-C\lambda^{-1}).$$

1345 The lower bounds are proved.

1346 5. Proof of Theorem 1 and of (4) from Theorem 2

1347 We recall the correlation length $\xi(p)$ introduced for $p < p_c$ in Definition 2. The lower
 1348 tail of the critical chemical distance will be related to the behavior of $\pi_p(n)$ with n of
 1349 order $\xi(p)$. We introduce a quantity to be denoted $L_\delta(p)$ which is related to $\xi(p)$ and

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1350 which will play the role of $L(p)$ from \mathbb{Z}^2 appearing in (10). For each finite vertex set
 1351 $D \subseteq \mathbb{Z}^d$ satisfying $0 \in D$, we write, similar to notation of Sect. 3,

$$1352 \quad X_D := \{x \in \partial D : 0 \xleftrightarrow{D} x\} = \mathbb{C}_D(0) \cap \partial D. \quad (95)$$

1353 For any $n \in \mathbb{N}$, $\delta > 0$ and $p \in (0, p_c)$, we define

$$1354 \quad \mathcal{D}(n) := \{x \in \mathbb{Z}^d : 0 \in D \text{ and } \sup \{x_\infty : x \in D\} \leq n\},$$

1355 and

$$1356 \quad L_\delta(p) := \inf n \geq 1 : \inf_{D \in \mathcal{D}(n)} \mathbb{E}_p[|X_D|] \leq \delta. \quad (96)$$

1357 See [10], where a related quantity was used to provide a new proof of the fact that
 1358 $\xi(p) < \infty$ whenever $p < p_c$. See also [13] for exposition of earlier proofs of this fact.
 1359 As a consequence of $\xi(p) < \infty$, we have $L_\delta(p) < \infty$ for any $p < p_c$. Moreover,
 1360 $L_\delta(p) \uparrow \infty$ as $p \rightarrow p_c$ with $\delta > 0$ held constant.

1361 *5.1. Upper bound on $\pi_p(n)$ from Theorem 1.* The upper bound on $\pi_p(n)$ from Theorem 1
 1362 follows by combining Lemmas 15 and 16 stated below.

1363 **Lemma 15.** *There is a constant $C > 0$ (depending on d only) such that uniformly in n ,
 1364 $\delta \in (0, \min\{C^{-1}, e^{-4}/2^8\})$ and $p < p_c$,*

$$1365 \quad \mathbb{P}_p(0 \leftrightarrow \partial B(n)) \leq Cn^{-2} \exp(-n/L_\delta(p)). \quad (97)$$

1366 **Lemma 16.** *For δ as in the statement of Lemma 15, there are constants $c(\delta), C(\delta) > 0$
 1367 such that*

$$1368 \quad c(p_c - p)^{-1/2} \leq L_\delta(p) \leq C(p_c - p)^{-1/2}$$

1369 uniformly in $p \in (0, p_c)$.

1370 We recall that the asymptotic behavior of $\xi(p)$ as $p \rightarrow p_c$ is known [15], namely
 1371 $\xi(p) \sim (p_c - p)^{-1/2}$. Lemma 16 shows that identical asymptotic behavior holds for
 1372 $L_\delta(p)$.

1373 *Proof of Lemma 15.* We will use the following claim, whose proof is given after the
 1374 proof of the lemma.

1375 **Claim 17.** *There is a constant $c_1(d)$ such that $\mathbb{E}_p[X_{B(kL_\delta(p))}] \leq \delta^{k/4}$ for all $\delta < c_1$,
 1376 $p < p_c$, and integers $k \geq 4$.*

1377 Claim 17 is related to Theorem 2 of [14] or Lemma 1.5 of [10]. Given Claim 17, we prove
 1378 the lemma using an induction argument. For $n \in \mathbb{N}$, our n th induction hypothesis is that
 1379 the inequality in (97) holds for all $\delta \leq 2L_\delta(p)$ and $p < p_c$, where $C := \max\{Ae^8, c_1^{-1}\}$,
 1380 for c_1 as in Claim 17 and where A is the implicit constant in the upper bound in (13).
 1381 To prove our hypothesis for $\delta \leq 3$ we use (13) and the monotonicity property of $\mathbb{P}_p(\cdot)$
 1382 in p to see

$$1383 \quad \mathbb{P}_p(0 \leftrightarrow \partial B(n)) \leq \mathbb{P}_{p_c}(0 \leftrightarrow \partial B(n)) \leq Cn^{-2}e^{-n/L_\delta(p)} \quad (98)$$

1384 for all $p < p_c$ and $n \leq 8L_\delta(p)$. (98) proves our induction hypothesis for $\delta \leq 3$.

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

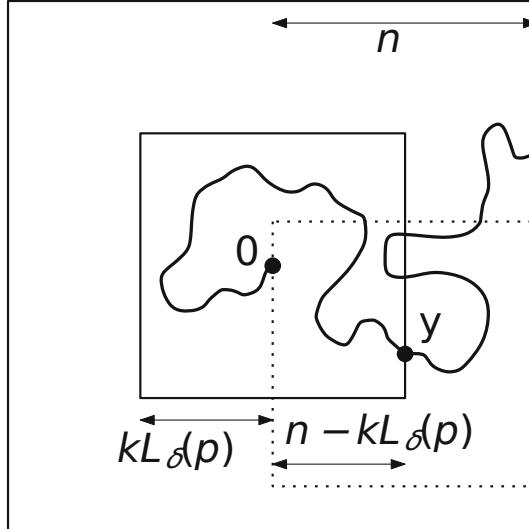


Fig. 3. Geometry in the proof of Lemma 15

Assuming that the ℓ th induction hypothesis is true, we now prove the $(\ell + 1)$ st hypothesis. Without loss of generality, we can take $n \in (2L\delta(p), 2^{+1}L\delta(p)]$, as all $n \leq 2L\delta(p)$ are covered in the ℓ th hypothesis. We take $k := \lfloor n/(2L\delta(p)) \rfloor$. If $\{0 \leftrightarrow \partial B(n)\}$ occurs, then there must be a $y \in \partial B(kL\delta(p))$ such that $\{0 \xleftrightarrow{B(kL\delta(p))} y\}$ and $\{y \leftrightarrow \partial B(y; n - kL\delta(p))\}$ occur disjointly. See Fig. 3 for an illustration. So, using a union bound, the BK inequality, and our ℓ th induction hypothesis,

$$\begin{aligned}
 \mathbb{P}_p(0 \leftrightarrow \partial B(n)) &\leq \mathbb{P}_{p, y \in \partial B(kL\delta(p))}(0 \xleftrightarrow{B(kL\delta(p))} y) \mathbb{P}_p(y \leftrightarrow \partial B(y; n - kL\delta(p))) \\
 &\leq C(n - kL\delta(p))^{-2} \exp \left(-\frac{n - kL\delta(p)}{L\delta(p)} \right) \\
 &\quad \mathbb{P}_{p, y \in \partial B(kL\delta(p))}(0 \xleftrightarrow{B(kL\delta(p))} y) \\
 &\leq C(n/2)^{-2} e^{k-n/L\delta(p)} \mathbb{E}_p[X_{B(kL\delta(p))}].
 \end{aligned}$$

as $n - kL\delta(p) \geq n/2$. Finally, note that $\mathbb{E}_p[X_{B(kL\delta(p))}] \leq \delta^{k/4}$ by Claim 17, and $4e\delta^{1/4} < 1$. So the RHS of the last display is $\leq Cn^{-2}e^{-n/L\delta(p)}$, which proves the $(\ell + 1)$ st induction hypothesis. This completes the proof of the induction argument and the lemma.

Proof of Claim 17. We abbreviate $m = kL\delta(p)$. Let D be the infimizing set appearing in the definition (96) of $L\delta(p)$. We expand the expectation:

$$\mathbb{E}_p[X_{B(m)}] = \mathbb{E}_{z \in \partial B(m)} \tau_{B(m), p}(0, z). \quad (99)$$

Consider an outcome in $\{0 \xleftrightarrow{B(m)} z\}$, where $z \in \partial B(m)$. In this outcome, we can decompose the connection into segments which extend roughly distance $L(p)$. We let y_1 be

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

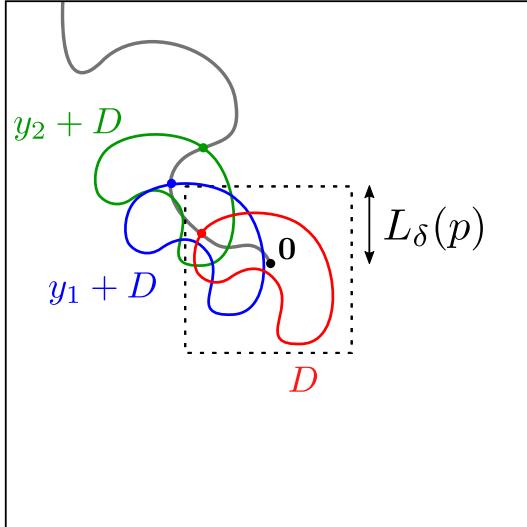


Fig. 4. Geometry in the proof of Claim 17: the red dot represents y_1 , the blue dot is y_2 , y_3 is green

1404 the first vertex of ∂D encountered by some open path from 0 to z , then let y be the first
 1405 vertex on $y_1 + \partial D$ encountered by this path after y_1 , and so on. Proceeding in this way,
 1406 we see there is a sequence $0 = y_0, y_1, \dots, y_r$ of vertices of $B(m)$ with $r = k/2$, such
 1407 that $y_{+1} \in [y + \partial D]$ for each $\leq r - 1$, such that $y_r - z \geq m/2$, and such that the
 1408 following disjoint connection event occurs:

$$1409 \quad \{0 \xleftrightarrow{D} y_1\} \circ \{y_1 \xleftrightarrow{y_1+D} y_2\} \circ \dots \circ \{y_{r-2} \xleftrightarrow{y_{r-2}+D} y_{r-1}\} \circ \{y_{r-1} \xleftrightarrow{B(m)} z\}.$$

1410 We apply the BK inequality and sum over the y 's. Each term has a factor of the form
 1411 $\tau_{B(m), p}(y_r, z)$; this is at most $\tau_{B(m), p_c}(y_r, z)$ and so is uniformly bounded by Cm^{1-d}
 1412 using (21). This leads us to the estimate

$$1413 \quad \tau_{B(m), p}(0, z) \leq Cm^{1-d} \cdot \dots \cdot \tau_{D, p}(0, y_1) \dots \tau_{y_{r-1}+D, p}(y_{r-1}, y_r).$$

$y_1 \in \partial D$ $y_2 \in [y_1 + \partial D]$ \dots $y_r \in [y_{r-1} + \partial D]$

1414 Evaluating the y sums and using the definition of D , the above is bounded by

$$1415 \quad Cm^{1-d}\delta.$$

1416 Finally, we sum over $z \in \partial B(m)$ to find

$$1417 \quad \mathbb{E}_p[X_{B(m)}] \leq C\delta^{k/2-1} \leq \delta^{k/4}$$

1418 for all δ smaller than some d -dependent constant and all $k \geq 4$. This proves the claim.

1419

1420 *Proof of Lemma 16.* To prove the upper bound for $L_\delta(p)$, first we recall the following
 1421 bound from [10, (1.3)]:

$$1422 \quad \frac{d}{dp} \mathbb{P}_p(0 \leftrightarrow \partial B(n)) \geq \frac{1}{p(1-p)} [\mathbb{P}_p(0 \leftrightarrow \partial B(n))] \inf_{D \in \mathcal{D}(n)} \mathbb{E}_p[|X_D|]. \quad (100)$$

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1423 Since $p_c \leq 1/2$ and $\mathbb{P}_p(0 \leftrightarrow \partial B(n))$ is decreasing (resp. increasing) in p (resp. n),

$$1424 \frac{1}{p(1-p)}[\mathbb{P}_p(0 \leftrightarrow \partial B(n))] \geq \frac{1}{p_c(1-p_c)}[\mathbb{P}_{p_c}(0 \leftrightarrow \partial B(1))] = \frac{(1-p_c)^{2d-1}}{p_c} =: c_0$$

1425 for all $n \geq 1$ and $p < p_c$. Combining the last two displays, we arrive at the following
1426 bound.

$$1427 \frac{d}{dp} \mathbb{P}_p(0 \leftrightarrow \partial B(n)) \geq c_0 \inf_{D \in \mathcal{D}(n)} \mathbb{E}_p[|X_D|], \text{ uniformly in } n \geq 1, p < p_c. \quad (101)$$

1428 Next, we integrate both sides of the above inequality from p to p_c (using the continuity
1429 of $\mathbb{P}_p(E)$ for each cylinder event E) to see

$$1430 0 \leq \mathbb{P}_p(0 \leftrightarrow \partial B(n)) \leq \mathbb{P}_{p_c}(0 \leftrightarrow \partial B(n)) - c_0 \inf_p \inf_{D \in \mathcal{D}(n)} \mathbb{E}_q[|X_D|] dq \\ 1431 \leq Cn^{-2} - c_0 \inf_p \inf_{D \in \mathcal{D}(n)} \mathbb{E}_q[|X_D|] dq, \quad (102)$$

1432 where in the last line we used (13). Clearly $\mathbb{E}_q[|X_D|]$ is increasing in q for each fixed D ;
1433 we can therefore bound the right-hand side of (102) by taking $q = p$ inside the integral,
1434 and obtain the inequality

$$1435 Cn^{-2} \geq c_0(p_c - p) \inf_{D \in \mathcal{D}(n)} \mathbb{E}_p[|X_D|],$$

1436 uniformly in $n \geq 1$ and $p < p_c$. Now, choosing $p_0 \in (0, p_c)$ such that $p > p_0$ implies
1437 $L_\delta(p) \geq 2$, and taking $n = L_\delta(p) - 1$, we have

$$1438 C(L_\delta(p) - 1)^{-2} \geq c_0 \delta(p_c - p) \text{ for all } p \in (p_0, p_c).$$

1439 This proves the upper bound for $L_\delta(p)$.

1440 To prove the lower bound for $L_\delta(p)$, recall that (see [15])

$$1441 \lim_{n \rightarrow \infty} \frac{\ast}{n} \frac{-\log \mathbb{P}_p(0 \leftrightarrow n\mathbf{e}_1)}{n} := \xi(p) \cdot (p_c - p)^{-1/2}. \quad (103)$$

1442 Also, $\mathbb{P}_p(0 \leftrightarrow n\mathbf{e}_1) \leq \mathbb{P}_p(0 \leftrightarrow \partial B(n)) \leq \mathbb{E}_p[X_{B(n)}] \leq \delta^{4L_\delta(p)}$ for $n = kL_\delta(p)$
1443 with $k \geq 4$, by Claim 17. Using this last display, and looking at the limit as $k \rightarrow \infty$
1444 after taking the n -th root of both sides of the last inequality, we see that $|\xi(p)| \leq L_\delta(p)$
1445 for some constant c_1 . This together with (103) proves the lower bound for $L_\delta(p)$.

1446 5.2. Lower bound for the subcritical one arm probability. For $\lambda \geq 0$, define

$$1447 \pi_p(n; \lambda) = \mathbb{P}_p(\mathcal{A}_{n,\lambda}), \text{ where } \mathcal{A}_{n,\lambda} := \{0 \leftrightarrow \partial B(n), S_n < \lambda n^2\}.$$

1448 Note that $\mathcal{A}_{n,\lambda}$ is an increasing event. The goal is to use the Russo's formula to compute
1449 the derivative of the above and show that $\pi_p(n; \lambda)$ is not too small for a "good choice
1450 of λ ". Using Russo's formula (18),

$$1451 \frac{d}{d\lambda} \pi_p(n; \lambda) = \mathbb{E}_p N_{n,\lambda}, \text{ where } N_{n,\lambda} := \mathbf{1}_{\{e \text{ is pivotal for the event } \mathcal{A}_{n,\lambda}\}} \quad e \in \partial B(n)$$

2 2 0	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1452 It is easy to see that if

1453 $N_{n,\lambda} := \mathbf{1}_{\{e \in (B(n))\}}$ is open and is pivotal for the event $\mathcal{A}_{n,\lambda}$

1454 then $N_{n,\lambda} \leq \lambda n^2 \mathbf{1}_{\mathcal{A}_{n,\lambda}}$ and $\mathbb{E}N_{n,\lambda} = p^{-1} \mathbb{E}N_{n,\lambda}$. It follows that

1455 $\frac{d}{dp} \pi_p(n; \lambda) \leq p^{-1} \lambda n^2 \pi_p(n; \lambda).$

1456 Therefore, for any $p_0 \in (0, p_c)$ and $p \in (p_0, p_c)$, we have

1457 $\frac{d}{dp} \log \pi_p(n; \lambda) \leq \frac{1}{p_0} \lambda n^2.$

1458 Integrating both sides of the above inequality from p to p_c ,

1459 $\log \frac{\pi_{p_c}(n; \lambda)}{\pi_p(n; \lambda)} \leq \frac{p_c - p}{p_0} \lambda n^2,$

1460 which is equivalent to

1461 $\frac{\pi_{p_c}(n; \lambda)}{\pi_p(n; \lambda)} \leq \exp\left(\frac{p_c - p}{p_0} \lambda n^2\right).$

1462 In other words, there exists a constant C such that:

1463 $\pi_p(n; \lambda) \geq \exp(-C(p_c - p)\lambda n^2) \pi_{p_c}(n; \lambda).$

1464 Using the lower bound for $\pi_{p_c}(n; \lambda)$ from Theorem 2, we obtain

1465 $\pi_p(n; \lambda) \geq \exp(-C(p_c - p)\lambda n^2) \exp(-C/\lambda) n^{-2}.$

1466 Now we choose λ to optimize the RHS of the above display. Choosing $\lambda = [n^{\sqrt{\frac{1}{p_c - p}}}]^{-1}$,
1467 we get

1468 $\pi_p(n; \lambda) \geq \exp(-Cn^{\sqrt{\frac{1}{p_c - p}}}) n^{-2}.$

1469 This completes the proof of the lower bound.

1470 **5.3. Upper bound for the critical chemical distance.** We will employ the usual coupling
1471 of the measures \mathbb{P}_p for different values of p . Let $(\omega_e)_e$ be i.i.d. Uniform(0, 1), $\omega^r =$
1472 $(\omega_e : \text{both endpoints of } e \text{ are in } B(n))$, and \mathbb{P}_{ω^r} denote the distribution of ω^r . An edge
1473 e is called p -open if $\omega_e \leq p$. A path is called p -open if all the edges on that path are
1474 p -open. Let $S_n(p)$ denote the smallest number of edges on any p -open path connecting
1475 0 and $\partial B(n)$. Also let $\{\emptyset \leftrightarrow_p A\}$ denote the event that there is a p -open path connecting
1476 0 and A .

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

We use the following inequality, which has been used in the first display of [27, Section 2].

$$\begin{aligned}
 1479 \quad & \mathbb{P}_{\omega^*}(0 \leftrightarrow_p \partial B(n), |S_n(p)| =) \\
 1480 \quad & \geq \mathbb{P}_{\omega^*}(|S_n(p_c)| = \text{ and the optimal } p_c\text{-open path is } p\text{-open}) \\
 1481 \quad & \geq \frac{p}{p_c} \mathbb{P}_{\omega^*}(0 \leftrightarrow_{p_c} \partial B(n), |S_n(p_c)| =). \tag{104}
 \end{aligned}$$

In the previous inequality, we choose “the optimal path” to mean a p_c -open path of minimal length connecting the origin to $\partial B(n)$ chosen in some measurable way among minimal paths.

Summing over $\leq k$ and dividing both sides by $\mathbb{P}_{\omega^*}(0 \leftrightarrow_{p_c} \partial B(n))$,

$$1486 \quad \mathbb{P}_{p_c}(|S_n| \leq k \mid 0 \leftrightarrow \partial B(n)) \leq C \frac{p_c}{p}^k \frac{\mathbb{P}_p(0 \leftrightarrow \partial B(n))}{\mathbb{P}_{p_c}(0 \leftrightarrow \partial B(n))}.$$

Using the inequality $\log(x) \leq x - 1$ for all $x > 1$,

$$1488 \quad \frac{p_c}{p}^k = \exp k(\log p_c - \log p) \leq \exp k \frac{p_c - p}{p} \quad \text{for all } p < p_c.$$

Combining the last two estimates, using the upper bound on the subcritical one-arm probability given in Theorem 1, and applying the lower bound in (13), there are constants $c, C > 0$ such that

$$1492 \quad \mathbb{P}_{p_c}(|S_n| \leq k \mid 0 \leftrightarrow \partial B(n)) \leq C \exp k \frac{p_c - p}{p} - cn \sqrt{\frac{p_c - p}{p_c - p}}.$$

With these preliminaries completed, we can now prove (4) from Theorem 2; we assume that $\lambda \geq n^{-1}$ since otherwise the probability appearing in (4) is trivially zero. Replacing k by λn^2 and p by $p_c - \frac{1}{C_0^2 \lambda^2 n^2}$ for a C_0 to be chosen (and using $\lambda n \geq 1$),

$$1496 \quad \mathbb{P}_{p_c}(|S_n| \leq \lambda n^2 \mid 0 \leftrightarrow \partial B(n)) \leq \exp -\lambda^{-1} \frac{c}{C_0} - \frac{1}{C_0^2 (p_c - C_0^{-2})} \quad !.$$

Choosing C_0 large enough, we get the desired upper bound.

5.4. *Point-to-point corollaries*. In this section, we prove the corollary stated at (6) and a related extension to half-spaces. These will also be useful in the proof of Theorem 3. We state the results here formally:

Corollary 18. *There exist constants $C, c > 0$ such that the following bounds on the lower tail of the point-to-point chemical distance hold:*

for all $x \in \mathbb{Z}^d$, $\mathbb{P}(0 \leftrightarrow x, d_{chem}(0, x) \leq \lambda |x|^2) \leq Ce^{-c/\lambda} |x|^{2-d}$;

for all $x \in \mathbb{Z}_+^d$, $\mathbb{P}(m\mathbf{e}_1 \leftrightarrow x, d_{chem}^H(m\mathbf{e}_1, x) \leq \lambda |x - m\mathbf{e}_1|^2) \leq Ce^{-c/\lambda} m |x - m\mathbf{e}_1|^{1-d}$.

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

We recall that d_{chem}^H is the analogue of d_{chem} for percolation restricted to the half-space \mathbb{Z}_+^d . To prove the corollary, we need an intermediate lemma relating point-to-box chemical distances to point-to-point chemical distances. For $\lambda > 0$, let

$$X_{B(n)}^k = \#\{x \in \partial B(n) : x \xleftrightarrow{B(n)} 0 \text{ by a path of fewer than } k \text{ edges}\}.$$

In other words, $X_{B(n)}^k$ is the number of vertices $x \in \partial B(n)$ having $d_{chem}^{B(n)}(0, x) \leq k$.

Lemma 19. *There is a uniform constant C such that, for each $n \geq 1$ and each $\lambda > 0$, there is an $\delta \leq n/2$ with*

$$\mathbb{E}_{p_c}[X_{B(\delta)}^{\lambda n^2}] \leq C \exp(-(C\lambda)^{-1}).$$

Proof. We fix δ small as in Lemma 15 and Claim 17. We will assume $\delta \geq 8$; the extension to smaller values of n is trivial. The parameter $p_c < p_c$ will be chosen later such that $L\delta(p) \leq n/2$; we set $k = n/2L\delta(p)$. Our ultimate choice of p will depend on λ and n , and we will need λ smaller than some uniform constant to ensure $L\delta(p) \leq n/2$; we assume this in what follows, since we can handle larger λ by adjusting constants.

Similarly to (104), we see that for each $y \in \partial B(n)$ and each $\lambda > 0$,

$$\mathbb{P}_{p_c}(y \text{ is counted in } X_{B(kL\delta(p))}^{\lambda n^2}) \leq \frac{p_c}{p} \mathbb{P}_p(y \text{ counted in } X_{B(kL\delta(p))}).$$

Summing the last inequality over $y \in \partial B(n)$, we find

$$\begin{aligned} \mathbb{E}_{p_c}[X_{B(kL\delta(p))}^{\lambda n^2}] &\leq \frac{p_c}{p} \delta^{n^2} \leq \frac{p_c}{p} e^{-Cn(p_c - p)^{1/2}} \\ &\leq \exp \lambda n^2 \frac{p_c - p}{p} - Cn(p_c - p)^{1/2}. \end{aligned}$$

where we have used Claim 17 and then Lemma 16. The constant here is uniform in n and p as above.

We set $p_c - p = (C_1 \lambda^2 n^2)^{-1}$ for a suitably large uniform $C_1 > 0$. The last estimate becomes

$$\text{For all } n \text{ and } \lambda, \quad \mathbb{E}_{p_c}[X_{B(kL\delta(p))}^{\lambda n^2}] \leq C \exp(-c/\lambda).$$

Since $kL\delta(p) \leq n/2$ for λ small relative to our constant C_1 , the proof is complete with $\delta = kL\delta(p)$.

Proof of Corollary 18. We prove only the second inequality. The first is simpler to show, and the argument requires only minor modifications.

We find an δ as in Lemma 19 (with the role of n played by $|x - m\mathbf{e}_1|/2$). Then, on the event under consideration, we can find a $y \in B(x; \delta)$ such that

$$\{y \xleftrightarrow{B(x; \delta)} x, d_{chem}^{B(x; \delta)}(x, y) \leq \lambda |x - m\mathbf{e}_1|^2\} \circ \xleftrightarrow{\mathbb{Z}_+^d} m\mathbf{e}_1$$

occurs. Summing over $y \in \partial B(x; \delta)$ and applying the BK inequality and Theorem 6, we find

$$\begin{aligned} \mathbb{P}(m\mathbf{e}_1 \xleftrightarrow{\mathbb{Z}_+^d} x, d_{chem}^H(m\mathbf{e}_1, x) \leq \lambda |x - m\mathbf{e}_1|^2) &\leq Cm |x - m\mathbf{e}_1|^{1-d} \mathbb{E}[X^{\lambda(|x - m\mathbf{e}_1|^2)^2}] \\ &\leq Ce^{-c/\lambda} m |x - m\mathbf{e}_1|^{1-d}, \end{aligned}$$

as claimed.

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1541 6. Chemical Distance Upper Tail

1542 In this section, we prove Theorem 3. We actually show something stronger; namely, that
 1543 the length of the *longest* self-avoiding path from 0 to $\partial B(n)$ has exponential upper tail
 1544 on scale n^2 . In Sect. 6.1, we make some necessary definitions and then perform a first
 1545 moment calculation. In Sect. 6.2, we compute higher moments and conclude the proof.
 1546 We then comment briefly on how to show (7) using similar ideas.

1547 6.1. *First moment bound*. Given a vertex $y \in \mathbb{Z}_+^d$, let $\mathcal{L}_H(y)$ be the length of the longest
 1548 self-avoiding open path from y to $\partial \mathbb{Z}_+^d$, if such a path exists. Otherwise we set $\mathcal{L}_H(y) = 0$.
 1549 This convention will be useful for avoiding expressions such as $\mathcal{L}_H(y) \mathbf{1}_{\{y \leftrightarrow \partial \mathbb{Z}_+^d\}}$.

1550 We let $\beta(y)$ denote a measurably chosen maximizer in the definition of $\mathcal{L}_H(y)$, with
 1551 $\beta(y) = \emptyset$ if no path from y to $\partial \mathbb{Z}_+^d$ exists. Then $\mathbb{E}[\mathcal{L}_H(y)] = \mathbb{E}[|\beta(y)|]$ by definition,
 1552 where we interpret $\beta(y)$ as a sequence of vertices when computing the cardinality. We
 1553 provide a uniform upper bound on the expectation:

$$1554 \sup_{y \in \mathbb{Z}_+^d} \mathbb{E}[\mathcal{L}_H(y)] < \infty. \quad (105)$$

1555 In what follows, we consider a fixed vertex x in \mathbb{Z}_+^d and then provide an upper bound
 1556 on $\mathbb{E}[\mathcal{L}_H(x)]$ which will be seen to be uniform in x . For ease of notation, we let $\delta = x(1)$
 1557 denote the distance of our vertex from $\partial \mathbb{Z}_+^d$. Keeping track of δ -dependence will allow
 1558 us to make sure our constant upper bound is indeed uniform.

1559 We first peel off an inconsequential piece of the expectation:

$$1560 \mathbb{E}[\mathcal{L}_H(x); \mathcal{L}_H(x) \leq \delta] \leq \delta \mathbb{P}(x \leftrightarrow \partial B(x; \delta)) \leq C, \quad (106)$$

1561 where in the last inequality we used the one-arm probability bound (13). The constant
 1562 here is uniform because it is just the constant appearing in that upper bound on $\pi(n)$.
 1563 On the event that $\mathcal{L}_H(x) > \delta^2$, we have to do significantly more work. We let $\beta(x)$
 1564 denote the “first half” of $\beta(x)$ —in other words, the segment of $\beta(x)$ beginning at x and
 1565 terminating after $|\beta(x)|/2$ edges. Of course, $\mathbb{E}[|\beta(x)|] \leq 2\mathbb{E}[|\beta(x)|] + 1$, so if we
 1566 can show

$$1567 \mathbb{E}[|\beta(x)|; |\beta(x)| > \delta] \leq C, \quad (107)$$

1568 then the proof of (105) will be complete.

1569 We first sum over $B(x; \delta)$. Let $A(z; r)$ denote the event that a vertex z has an intrinsic
 1570 arm to distance r , as defined at (14). If $z \in \beta(x) \cap B(x; \delta)$ and $\mathcal{L}_H(x) > \delta^2$, then
 1571 $\{x \leftrightarrow z\} \cap A(z; \delta/2)$ occurs. Using the BK inequality, we see

$$1572 \mathbb{E}[|\beta(x) \cap B(x; \delta)|; \mathcal{L}_H(x) > \delta] \leq \sum_{z \in B(x; \delta)} \tau(x, z) \mathbb{P}(A(z; \delta/2)) \\ 1573 \leq C \delta^{-2} \sum_{z \in B(x; \delta)} \tau(x, z) \leq C, \quad (108)$$

1574 where we have used the intrinsic one-arm probability upper bound (14).

1575 To count the remaining portion of $\beta(x)$, we will replicate the calculation leading
 1576 to (108) by summing over scales—here we are more careful and exploit the fact that
 1577 the τ from (108) could actually be taken as a τ_H . The more rapid decay of τ_H , from

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	
			Disk Received	<input type="checkbox"/>
			Disk Used	<input type="checkbox"/>
			Not Used	<input type="checkbox"/>
			Corrupted	<input type="checkbox"/>
			Mismatch	<input type="checkbox"/>

1578 Theorem 6, will be necessary to show the sum converges. Let us abbreviate $\mathfrak{A}_k =$
 1579 $\text{Ann}(x; \mathfrak{D}^k, \mathfrak{D}^{k+1})$. Then

$$\begin{aligned} \mathbb{E}[|\beta(x) \cap \mathfrak{A}_k|; \mathfrak{L}_H(x) > \delta] &= \mathbb{E}[|\beta(x) \cap \mathfrak{A}_k|; \mathfrak{L}_H(x) > 2^{3k/2}\delta^2] \\ &\quad + \mathbb{E}[|\beta(x) \cap \mathfrak{A}_k|; 2^{3k/2}\delta^2 \geq \mathfrak{L}_H(x) > \delta]. \end{aligned} \quad (109)$$

1582 We bound each of the terms on the right-hand side of (109) by different methods.

1583 For the first term, we note that when $\mathfrak{L}_H(x) > 2^{3k/2}\delta^2$, each $z \in \beta(x) \cap \mathfrak{A}_k$ must
 1584 satisfy

$$\{z \xrightarrow{\mathbb{Z}_+^d} x\} \circ A(z; 2^{3k/2}\delta^2/2).$$

1586 Applying the BK inequality and summing, we find

$$\begin{aligned} \mathbb{E}[|\beta(x) \cap \mathfrak{A}_k|; \mathfrak{L}_H(x) > 2^{3k/2}\delta^2] &\leq \sum_{z \in \mathfrak{A}_k} \tau_H(x, z) \mathbb{P}(A(z; 2^{3k/2}\delta^2/2)) \\ &\leq C\delta^{-2} 2^{-3k/2} \sum_{z \in \mathfrak{A}_k} \tau_H(x, z) \\ &\leq C\delta^{-2} 2^{-3k/2} \times (\mathfrak{D}^k)^d \times \delta \times (\mathfrak{D}^k)^{-(d-1)} \\ &\leq C2^{-k/2}. \end{aligned}$$

1591 In the second to last step, we have used Theorem 6.

1592 For the second term of (109), we use Corollary 18:

$$\begin{aligned} \mathbb{E}[|\beta(x) \cap \mathfrak{A}_k|; 2^{3k/2}\delta^2 \geq \mathfrak{L}_H(x) > \delta] &\leq \sum_{z \in \mathfrak{A}_k} \mathbb{P}(x \xrightarrow{\mathbb{Z}_+^d} z, d_{\text{chem}}^H(x, z) < 2^{-k/2}(\delta 2^k)^2) \mathbb{P}(A(z; \delta/2)) \\ &\leq C\delta^{-2} \times (\mathfrak{D}^k)^d \times e^{-c2^{k/2}} \times \delta \times (\mathfrak{D}^k)^{1-d} \leq C2^k e^{-c2^{k/2}}. \end{aligned}$$

1596 In both cases, all constants arise from the estimates on the one-arm probability, the
 1597 chemical distance lower tail, or the asymptotics for τ_H . In particular, these constants are
 1598 uniform in k and x . Combining the two estimates, we get that the left-hand side of (109)
 1599 is bounded uniformly by

$$C2^{-k/2}.$$

1601 Summing over k shows (107), and recombining this with (106) completes the proof.

1602 *6.2. Higher moments of path length.* Let \mathfrak{L}_n denote the length of the longest self-
 1603 avoiding open path from 0 to $\partial B(n)$ which lies entirely within $B(n)$. As before, we
 1604 set $\mathfrak{L}_n = 0$ if no open arm from 0 to $\partial B(n)$ exists. We now show the following result,
 1605 which implies Theorem 3 via the trivial inequality $S_n \leq \mathfrak{L}_n$ on $\{0 \leftrightarrow \partial B(n)\}$.

	2 2 0	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>

Disk Received

Disk Used

Corrupted

Mismatch

1606 **Proposition 20.** *There exists a constant C_1 such that, for all integers $n, k \geq 1$,*

1607
$$\mathbb{E}[\mathcal{L}_n^k \mid 0 \leftrightarrow \partial B(n)] \leq k!(C_1 n^2)^k.$$

1608 *In particular, there is a constant C_2 such that*

1609
$$\mathbb{P}(\mathcal{L}_n \geq \lambda n^2 \mid 0 \leftrightarrow \partial B(n)) \leq C_2 \exp \frac{-\lambda}{C_2}.$$

1610 *Proof.* The second claim follows by using the first to bound the moment generating
 1611 function of \mathcal{L}_n/n^2 . It therefore suffices to bound the moments of \mathcal{L}_n . Similarly to before,
 1612 we let β_n denote a measurably chosen self-avoiding open path from 0 to $\partial B(n)$ of
 1613 maximal length. By expanding \mathcal{L}_n into a sum of indicators and using (13), we find

1614
$$\mathbb{E}[\mathcal{L}_n^k \mid 0 \leftrightarrow \partial B(n)] \leq C n^2 \mathbb{P}(z_1, \dots, z_k \in \beta_n, 0 \leftrightarrow \partial B(n)). \quad (110)$$

1615 Since β_n is self-avoiding, the vertices z_1, \dots, z_k appear in a well-defined order along
 1616 this path. We abbreviate ‘‘ w and y lie on β_n with w appearing before y in order starting
 1617 at 0’’ by $w \prec y$. Then

1618
$$(110) = (Cn^2)(k!) \mathbb{P}(z_1 \prec z_2 \prec \dots \prec z_k, 0 \leftrightarrow \partial B(n))$$

$$z_1, \dots, z_k \in B(n)$$

 1619
$$= (Cn^2)(k!) \mathbb{E}'[\{y \in \beta_n : z_{k-1} \prec y\} \mathbb{1}_{z_1 \prec \dots \prec z_{k-1}}]. \quad (111)$$

$$z_1, \dots, z_{k-1} \in B(n)$$

1620 We would like to evaluate the expectation in (111), and so we need some way to decouple
 1621 the variables there. To make the notation for this step easier, we abbreviate

1622
$$V = V(z_1, \dots, z_{k-1}) := \mathbb{1}_{z_1 \prec \dots \prec z_{k-1}}, \quad W = W(z_{k-1}) = |\{y \in \beta_n : z_{k-1} \prec y\}|.$$

1623 Consider an outcome $\omega \in \{W \geq \lambda\}$ for some real number $\lambda > 0$. We see that

1624
$$\omega \in \{z_1 \prec \dots \prec z_{k-1}\} \circ \dots \circ \{z_{k-1} \prec z_k\} \circ \{\text{open path of length}$$

 1625
$$\geq \lambda \text{ in } B(n) \text{ from } z_{k-1} \text{ to } \partial B(n)\}.$$

1626 Indeed, disjoint witnesses for the events above are provided by disjoint segments of β_n .
 1627 Letting the length of the longest open path from z_{k-1} to $\partial B(n)$ which lies entirely in
 1628 $B(n)$ be denoted by W and using the BK inequality, we bound

1629
$$\mathbb{E}[VW] = \int_0^\infty \mathbb{P}(VW \geq \lambda) d\lambda$$

 1630
$$\leq \tau(\emptyset, z_1) \dots \tau(z_{k-2}, z_{k-1}) \int_0^\infty \mathbb{P}(W \geq \lambda) d\lambda$$

 1631
$$= \tau(\emptyset, z_1) \dots \tau(z_{k-2}, z_{k-1}) \mathbb{E}[W].$$

1632 Any open path in $B(n)$ from z_{k-1} to $\partial B(n)$ is also an open path to one of the $2d$
 1633 hyperplanes containing one of the $2d$ sides making up $\partial B(n)$, with this open path lying
 1634 entirely on one side of the hyperplane. In other words, $\mathbb{E}[W]$ is bounded above by a sum

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1635 of $2d$ terms of the form $\mathbb{E}[\mathcal{L}_H(y_i)]$ for y_i 's appropriately chosen depending on z_{k-1} .
 1636 Applying (105), we see there is a C uniform in n and z_1, \dots, z_{k-1} such that

$$1637 \quad \mathbb{E}[VW] \leq C \tau(\emptyset, z_1) \dots \tau_{k-2}(z_{k-1}). \quad (112)$$

1638 Inserting the bound of (112) into (111) and summing over z_1 through z_{k-1} , we see

$$1639 \quad \mathbb{E}[\mathcal{L}_n^k \mid 0 \leftrightarrow \partial B(n)] \leq C^k n^2 (k!) n^{2(k-1)} = k! (Cn^2)^k.$$

1640 Because k was arbitrary and the constant C is uniform in n and k , the moment bound is
 1641 proved.

1642 We now briefly describe how to show (7). Considering a shortest self-avoiding open
 1643 path from 0 to x , we can upper bound the k th moment of $d_{chem}(0, x)$ on $\{0 \xleftrightarrow{B(2n)} x\}$ by
 1644 an expression like (110). The main differences are that the probability on the right-hand
 1645 side no longer includes the event $\{0 \leftrightarrow \partial B(n)\}$, and that the prefactor is x^{d-2} instead
 1646 of n^2 . (Here we use (15).) Fixing an ordering as in (111) gives rise to an analogous
 1647 prefactor of $k!$. Finally, we are left to sum an expression of the form

$$1648 \quad \tau(\emptyset, z_1) \tau(\ell_1, z_2) \dots \tau_k(x).$$

z_1, \dots, z_k

1649 This sum can be upper-bounded by $C^{k-1} x^{2k+2-d}$ using standard methods. Pulling
 1650 this factor together with the previous ones, we find

$$1651 \quad \mathbb{E}[d_{chem}(0, x)^k \mid 0 \xleftrightarrow{B(2n)} x] \leq k! C^k x^{d-2} x^{2k+2-d} = k! (C x^2)^k,$$

1652 completing the proof.

1653 7. Proof of Upper Bound from Theorem 4

1654 In this section, we prove the inequality “ \leq ” from (8). We wish to bound the probability,
 1655 conditional on $0 \leftrightarrow \partial B(n)$, that $|\mathcal{C}_{B(n)}(0)| \leq \lambda n^4$. As in the statement of Theorem 4,
 1656 we fix a value of $\alpha > 3d/2$ and will consider only values of $\lambda > (\log n)^\alpha / n^3$. We set
 1657 $\kappa = \lambda^{-1/3}!$; this parameter will be more directly useful than λ in our arguments, and
 1658 most of our estimates going forward are more naturally phrased in terms of κ . We divide
 1659 up the annulus $Ann(n/2, n)$ into κ annuli

$$1660 \quad A_j = Ann\left(\frac{n}{2} + \frac{n}{2\kappa} j, \frac{n}{2} + \frac{n(j+1)}{2\kappa}\right), \quad j = 0, \dots, \kappa \pm,$$

1661 with associated boxes

$$1662 \quad B_j^1 = B\left(0; \frac{n}{2} + \frac{n}{2\kappa} j\right), \quad B_j^2 = B\left(0; \frac{n}{2} + \frac{n(2j+1)}{4\kappa}\right).$$

1663 We also introduce the sub-annulus

$$1664 \quad A_j \supset A_j = Ann\left(\frac{n}{2} + \frac{n(2j+1)}{4\kappa}, \frac{n}{2} + \frac{n(4j+3)}{8\kappa}\right) = B\left(0; \frac{n}{2} + \frac{n}{2\kappa} j + \frac{3}{8\kappa}\right) \setminus B_j^2.$$

	2	2	0	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
	Jour. No	Ms. No.				Total pages: 71	Not Used <input type="checkbox"/>
						Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
						Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

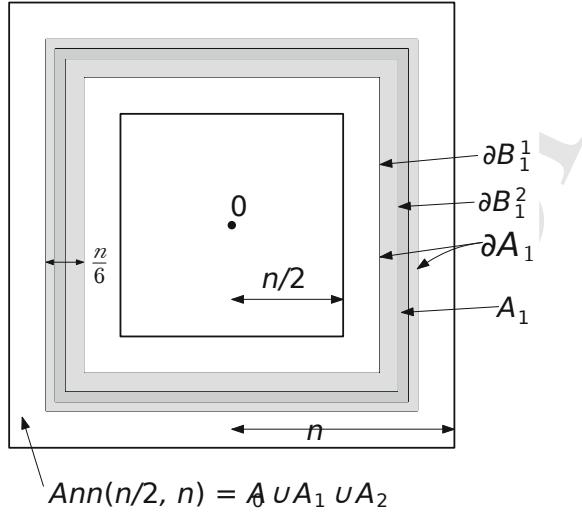


Fig. 5. Here $\kappa = 3$ and $Ann(n/2, n)$ is divided into 3 annulus A_0, A_1, A_2

1665 In words, B_j^1 is the inner box of A_j , B_j^2 the box which extends halfway across A_j , and
 1666 A_j is an annulus which begins halfway across A_j and ends three quarters of the way
 1667 across A_j . See Fig. 5 for an illustration.

1668 We note that $\kappa < Cn/(\log n)^{\alpha/3}$ for some $C = C(\alpha)$. The fact that $\alpha/3 > d/2$ will
 1669 be used in the proof of Lemma 21, essentially to ensure that the annuli above are thick
 1670 enough to recover some independence between the portions of the cluster $\mathcal{C}_{B(n)}(0)$ in
 1671 different A_j 's. We will need n to be larger than some dimension-dependent constant,
 1672 guaranteeing in particular $n \geq 64\kappa$. The smaller values of n are covered by adjusting
 1673 constants.

1674 The main components of the proof involve showing that, on the event $\{0 \leftrightarrow \partial B(n)\}$,
 1675 the vertex set $\mathcal{C}_{B(n)}(0) \cap A_j$ typically contains order $(n/\kappa)^4$ vertices, and that $\mathcal{C}_{B(n)}(0) \cap$
 1676 A_j and $\mathcal{C}_{B(n)}(0) \cap A_k$ have “enough independence” for $j = k$. This allows us to argue that
 1677 $|\mathcal{C}_{B(n)}(0)|$ conditionally stochastically dominates $c(n/\kappa)^4$ times a sum of independent
 1678 Bernoulli random variables, so is very likely to be of size at least order $(n/\kappa)^4 \approx \lambda n^4$.
 1679 We note that of course this strategy will only work if our estimates are uniform in n large
 1680 and in $\lambda > (\log n)^\alpha/n^3$, which they will be. Henceforth, “uniform in n and λ [or κ]”
 1681 means uniform over n larger than some $C = C(d)$ and $\lambda > (\log n)^\alpha/n^3$.

1682 **7.1. New cluster notation.** For each $j = 0, \dots, \kappa$, our construction will involve ex-
 1683 ploring $\mathcal{C}(0) \cap A_j$ in stages. To avoid unmanageably long expressions, we will condense
 1684 our usual notation for open clusters here; the notation introduced in this section will be
 1685 in force until the end of Sect. 7.5. Because we generally work with a fixed value of j ,
 1686 the j -dependence is often suppressed in our notation.

1687 We will often write $\mathcal{C}(x; G)$ instead of $\mathcal{C}_G(x)$; this improves readability when G is
 1688 represented by a complicated expression. The symbol \mathcal{C} will always stand for a vertex
 1689 subset of B_j^1 such that $\mathbb{P}(\mathcal{C}(0; B_j^1) = \mathcal{C}) > 0$. We define the event

$$1690 \mathcal{X}(\mathcal{C}) := \{\mathcal{C}(0; B_j^1) = \mathcal{C}\}.$$

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

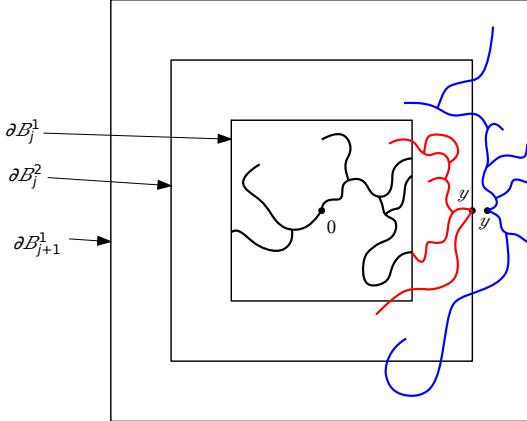


Fig. 6. The black, red, and blue lines represent the clusters C , $C^*(y)$ and $C^{**}(y)$ respectively

1691 When conditioning on $\mathcal{X}(\mathcal{C})$, we recall that edges within B_j^1 on the boundary of \mathcal{C}
1692 are conditionally closed, but edges connecting \mathcal{C} to $\mathbb{Z}^d \setminus B_j^1$ remain i.i.d. Bernoulli(p_c)
1693 random variables. On the event $\mathcal{X}(\mathcal{C})$, we write, for each $x \notin \mathcal{C}$, the shorthand

1694
$$\mathcal{C}^*(x) := \{y \in B_j^2 : y \leftrightarrow x\} = \{y \in B_j^2 : x \in \mathcal{C}(y; B_j^2 \setminus \mathcal{C})\};$$

1695 in other words, $\mathcal{C}^*(x)$ is the union of $\mathcal{C}(x; B_j^2 \setminus \mathcal{C})$ with those vertices of \mathcal{C} which have
1696 an open connection to x in B_j^2 which touches \mathcal{C} only at its initial point.

1697 For each $y \in \partial B_j^2$, we fix a neighbor $y \notin B_j^2$. We write $\mathcal{C}^{**}(y) := \mathcal{C}(y; B_{j+1}^1 \setminus (\mathcal{C} \cup$
1698 $\mathcal{C}^*(y)))$. See Fig. 6 for an illustration.

1699 The set of vertices of ∂B_j^2 through which connections from \mathcal{C} can proceed will be
1700 denoted

1701
$$X_j^* := \{y \in \partial B_j^2 : \mathcal{C}^*(y) \cap \mathcal{C} = \emptyset\}, \text{ with } X_j^* = |\mathcal{X}_j^*|.$$

1702 As we mentioned above, much of our proof will revolve around showing $\mathcal{C}(0; A_j)$
1703 is large conditional on the value of $\mathcal{C}(0; B_j^1)$. Thus, until Sect. 8, we work conditional
1704 on $\mathcal{X}(\mathcal{C})$ for some \mathcal{C} as above, then derive results which are uniform in \mathcal{C} which satisfy
1705 a further condition. Indeed, by (13) and Lemma 2, we can choose a c_0 uniform in n, K ,
1706 and j such that

1707
$$\mathbb{P}(0 \leftrightarrow \partial B_{j+1}^1 \mid \mathcal{X}(\mathcal{C}) \cap \mathcal{X}_j^* \leq 2c_0(n/\kappa)^2) \leq 1/4. \quad (113)$$

1708 We will restrict our attention to \mathcal{C} satisfying the condition

1709 for uniform $c_0 > 0$ as in (113), $\mathbb{E}[X_j^* \mid \mathcal{X}(\mathcal{C})] \geq c_0(n/\kappa)^2$. (114)

1710 As we will argue in Sect. 7.5, when \mathcal{C} does not satisfy (114), the event $\mathcal{X}(\mathcal{C})$ is not too
1711 likely conditional on $\{0 \leftrightarrow \partial B(n)\}$.

	2 2 0	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	
				Disk Received <input type="checkbox"/>	Not Used <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Corrupted <input type="checkbox"/>
					Mismatch <input type="checkbox"/>

7.1.1. *Regularity* As usual, we will need some version of cluster regularity to ensure that open connections from \mathcal{C} can be extended. We would like not to impose very stringent conditions on \mathcal{C} , so that we recover some amount of independence between the portions of the cluster in distinct annuli. This makes the situation somewhat delicate: the open cluster of \mathcal{C} in B_j^2 need not be regular if \mathcal{C} is not. For instance, if $\mathcal{C} = B_j^1$, then \mathcal{C} is typically connected to order $|A_j|(n/\kappa)^{-2}$ vertices of A_j , making $\mathcal{C}(0) \cap A_j$ much larger than four-dimensional. We introduced the sets $\mathcal{C}^*(y)$ above to mitigate this problem: the $\mathcal{C}^*(y)$'s will typically be regular, and that will suffice for our purposes.

In all that follows, \mathcal{C} is an arbitrary set such that $\mathbb{P}(\mathcal{X}(\mathcal{C})) > 0$ and such that (114) holds.

Definition 11. Suppose $x \in \partial B_j^2$. We write

$$\mathcal{T}_s^*(x; \delta) := \{x; B_{j+1}^1 \setminus \mathcal{C} \cap B(x; s) | < s^{5-\delta}\}.$$

We note that the cluster considered here is the union $\mathcal{C}^*(x) \setminus \mathcal{C}$ with the $\mathcal{C}^*(x)$ clusters attached to it.

Given $\delta > 0$, we say that x is s^* -bad if

$$\mathbb{P}(\mathcal{T}_s^*(x; \delta) | \mathcal{C}(x; B_j^2 \setminus \mathcal{C})) \leq 1 - \exp(-s^{1/3}).$$

We say that x is K -regular if there is no s with $K \leq s$ such that x is s^* -bad.

We will fix the value of δ in Lemma 21 below, depending only on the dimension d and the value of $\alpha > 3d/2$. Since we will not alter δ thereafter, we will generally suppress it in our notation and write $\mathcal{T}_s^*(x) = \mathcal{T}_s^*(x; \delta)$. We note that the event $\mathcal{T}_s^*(x)$ is independent of $\mathcal{X}(\mathcal{C})$, since we need not examine edges of \mathcal{C} to determine $\mathcal{C}(x; B_j^2 \setminus \mathcal{C})$ or $\mathcal{C}(x; B_j^1 \setminus \mathcal{C})$. In other words,

$$\begin{aligned} \text{for each } \mathcal{D}, \text{ we have } \mathbb{P}(\mathcal{T}_s^*(x; \delta) | \mathcal{C}(x; B_j^2 \setminus \mathcal{C}) = \mathcal{D}) \\ = \mathbb{P}(\mathcal{T}_s^*(x; \delta) | \mathcal{X}(\mathcal{C}), \{\mathcal{C}(x; B_j^2 \setminus \mathcal{C})\} = \mathcal{D}). \end{aligned}$$

Recalling the random set \mathcal{T}_j^* and its cardinality X_j^* , we write \mathcal{T}_j^{*K} for the set of $x \in \mathcal{T}_j^*$ which are K -regular, and let $X_j^{*K} = |\mathcal{T}_j^{*K}|$. The main statement on regularity we need is as follows:

Lemma 21. *Let $\alpha > d/2$ as in the statement of Theorem 4 be fixed but arbitrary. There exists $K_0 < \infty$ such that, for each $K > K_0$, there exist $c \mathcal{C} = c(K)$, $C(K) > 0$ such that the following holds. Uniformly in n and κ satisfying $\kappa \leq \min\{n/16, n/(\log n)^\alpha\}$, in j , in $y \in \partial B_j^2$ satisfying $\mathbb{P}(y \in \mathcal{T}_j^* | \mathcal{X}(\mathcal{C})) \geq n^{-d}$, and in \mathcal{C} satisfying a) $\mathbb{P}(\mathcal{X}(\mathcal{C})) > 0$, b) $\mathcal{C} \cap \partial B_j^1 = \emptyset$, and c) the condition (114), we have*

$$\mathbb{P}(y \in \mathcal{T}_j^{*K} | \mathcal{X}(\mathcal{C})) \geq \frac{1}{2} \mathbb{P}(y \in \mathcal{T}_j^* | \mathcal{X}(\mathcal{C})).$$

Proof. The proof is similar to that of Lemma 5, with some modifications due to the differing geometry and conditioning. We will refer to elements of the earlier proof, avoiding repetition of essentially identical steps.

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1748 Let us consider an annulus of the form $An(k, C_0k^{d/2})$ for a large constant Q . Taking
 1749 a union bound and using (13), the probability of there being an open crossing of this
 1750 annulus (that is, an open path connecting $\partial B(k)$ to $\partial B(C_0k^{d/2})$) is at most

$$1751 (k+1)^{d-1} \pi(C_0k^{d/2} - k) \leq CC_0^{-2} \leq 1/2$$

1752 for C_0 chosen large depending only on the lattice. We henceforth take this value of C_0
 1753 fixed.

1754 We first prove the lemma in the case that $C_0s^{d/2} \leq n/8\kappa$. This setting is easier to
 1755 handle because we will need to examine the cluster of y only within $B(y; C_0s^{d/2}) \subseteq A_j$
 1756 to give a good upper bound on the size of $\mathcal{C}(y; B_{j+1}^1 \setminus \mathcal{C}) \cap B(y; s)$. Letting $\delta < 1$ be
 1757 arbitrary for now, we define the event

1758 $E_s := \{ \text{for each } w \in B(y; C_0s^{d/2}), \text{ we have } |\mathcal{C}_{B(y; C_0s^{d/2})}(w) \cap B(y; s)| \leq s^{9/2-\delta/2} \},$

1759 We also let

1760 $E_s := \{ \text{there are no more than } s^{1/2-\delta/2} \text{ disjoint connections from } B(y; s) \text{ to } \partial B(y; C_0s^{d/2}) \}.$

1761 We bound $\mathbb{P}(E_s)$ using the cluster tail bound of Lemma 3, and we bound $\mathbb{P}(E_s)$ using
 1762 the choice of C_0 and the BK inequality (17).

1763 We conclude

$$1764 \begin{aligned} \mathbb{P}(E_s) &\geq 1 - \exp(-cs^{1/2-\delta/2}); \\ \mathbb{P}(E_s) &\geq 1 - (1/2)^{s^{1/2-\delta/2}} = 1 - \exp(-cs^{1/2-\delta/2}). \end{aligned} \quad (115)$$

1765 In bounding $\mathbb{P}(E_s)$, we used the following observation: for any $t \geq 1$, if there is a $w \in$
 1766 $B(y; C_0s^{d/2})$ such that $|\mathcal{C}_{B(y; C_0s^{d/2})}(w) \cap B(y; s)| \geq t$, then there is also a $v \in B(y; s)$
 1767 such that $|\mathcal{C}_{B(y; s)}(v) \cap B(y; s)| \geq t$. (To see this, simply let w be an arbitrary vertex
 1768 of $\mathcal{C}(w) \cap B(y; s)$.) Similarly to the discussion after (29), if there are at most δ disjoint
 1769 crossings of $B(y; C_0s^{d/2}) \setminus B(y; s)$, then

$$1770 \mathcal{C}(y) \cap B(y; s) \subset \cup_{\mathcal{C}} [\mathcal{C} \cap B(y; s)],$$

1771 where the union is over at most $\delta + 1$ clusters \mathcal{C} of $B(y; C_0s^{d/2})$.

1772 In particular,

$$1773 \text{on the event } E_s \cap E_s, \quad |\mathcal{C}(y) \cap B(y; s)| \leq s^{5-\delta}. \quad (116)$$

1774 We will show

$$1775 \mathbb{P}(E_s \cap E_s \mid \mathcal{X}(\mathcal{C}), y \in \mathcal{C}) \geq 1 - \exp(-cs^{1/2-\delta/2}). \quad (117)$$

1776 We do this by conditioning on $\mathcal{C}(0; B_{j+1}^1 \setminus B(y; C_0s^{d/2}))$, noting that E_s and E_s are
 1777 independent of the status of edges outside $B(y; C_0s^{d/2})$. We write

$$1778 \begin{aligned} \mathbb{P}(\mathcal{X}(\mathcal{C}), y \in \mathcal{C} \mid E_s \cap E_s) &\leq \mathbb{P}(\mathcal{C}(0; B_{j+1}^1 \setminus B(y; C_0s^{d/2})) = \mathcal{C}) [1 - \mathbb{P}(E_s \cap E_s)] \\ &\leq \exp(-cs^{1/2-\delta/2}) \mathbb{P}(\mathcal{C}(0; B_{j+1}^1 \setminus B(y; C_0s^{d/2})) = \mathcal{C}), \end{aligned} \quad (118)$$

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

1780 where the sum is over \mathcal{C} compatible with the event $\mathcal{X}(\mathcal{C}) \cap \{y \in \mathbb{J}^*\}$ and we have
 1781 used (115). Here the “compatibility” means exactly that $\mathcal{X}(\mathcal{C})$ occurs and that $\mathcal{C}(0; B_j^2)$
 1782 contains a neighbor of $B(y; C_0 s^{d/2})$ when $\mathcal{C}(0; B_{j+1}^1 \setminus B(y; C_0 s^{d/2})) = \mathcal{C}$ (we note that
 1783 both of these conditions are determined by the value of $\mathcal{C}(0; B_{j+1}^1 \setminus B(y; C_0 s^{d/2}))$).

1784 To show (117), we need to compare the sum on the right to $\mathbb{P}(\mathcal{X}(\mathcal{C}), y \in \mathbb{J}^*)$.

1785 This is done by arguments similar to those at (35), here using the fact that s is small
 1786 enough to ensure $B(y; C_0 s^{d/2}) \cap \mathcal{C} = \emptyset$. Independence and Lemma 4 imply

$$\begin{aligned} 1787 \mathbb{P}(\mathcal{C}(0; B_{j+1}^1 \setminus B(y; C_0 s^{d/2})) = \mathcal{C}, \mathcal{X}(\mathcal{C}), y \in \mathbb{J}^*) \\ 1788 \geq c \exp(-C \log^2 s) \mathbb{P}(\mathcal{C}(0; B_{j+1}^1 \setminus B(y; C_0 s^{d/2})) = \mathcal{C}). \end{aligned}$$

1789 Inserting this bound into (118) and performing the sum over \mathcal{C} gives

$$\begin{aligned} 1790 \mathbb{P}(\mathcal{X}(\mathcal{C}), y \in \mathbb{J}^*, |\mathcal{C}(y; B_{j+1}^1 \setminus \mathcal{C})| > s^{5-\delta}) \\ 1791 \leq C \exp(C \log^2 s) \exp(-cs^{1/2-\delta/2}) \mathbb{P}(\mathcal{X}(\mathcal{C}), y \in \mathbb{J}^*) \\ 1792 \leq C \exp(-cs^{1/2-\delta/2}) \mathbb{P}(\mathcal{X}(\mathcal{C}), y \in \mathbb{J}^*). \end{aligned}$$

1793 The above was all derived under the assumption that $C_0 s^{d/2} \leq n/8\kappa$. We next
 1794 handle the case that $C_0 s^{d/2} > n/8\kappa$. In this case, we use the assumption that $\mathbb{P}(y \in \mathbb{J}^* | \mathcal{X}(\mathcal{C})) \geq n^{-d}$ to upper bound
 1795

$$\begin{aligned} 1796 \mathbb{P}(\{y \in \mathbb{J}^*\} \setminus \mathcal{T}_s^*(y) | \mathcal{X}(\mathcal{C})) \\ 1797 \leq \frac{\mathbb{P}'(\mathcal{T}_s^*(y)^c | \mathcal{X}(\mathcal{C})) \mathbb{P}(y \in \mathbb{J}^* | \mathcal{X}(\mathcal{C}))}{\mathbb{P}(y \in \mathbb{J}^* | \mathcal{X}(\mathcal{C}))} \\ 1798 \leq Cn^d \mathbb{P}(y \in \mathbb{J}^* | \mathcal{X}(\mathcal{C})) \mathbb{P}(|\mathcal{C}(y; B_{j+1}^1 \setminus \mathcal{C}) \cap B(y; s)| > s^{5-\delta} | \mathcal{X}(\mathcal{C})) \\ 1799 \leq Cn^d \mathbb{P}(y \in \mathbb{J}^* | \mathcal{X}(\mathcal{C})) \mathbb{P}(|\mathcal{C}(y) \cap B(y; s)| > s^{5-\delta}) \\ 1800 \leq Cn^d \exp(-cs^{1-\delta}) \mathbb{P}(y \in \mathbb{J}^* | \mathcal{X}(\mathcal{C})). \end{aligned}$$

1801 Since $s \geq c(n/\kappa)^{2/d} \geq (\log n)^{1+c}$ by our choice of α , for each $\delta > 0$ sufficiently small,
 1802 the above is at most

$$1803 C \exp(-cs^{1-\delta}).$$

1804 Combining the two cases, (117) follows for all s as in the statement of the lemma. It
 1805 remains to argue for the conclusion of the lemma given (117). We write

$$\begin{aligned} 1806 \mathbb{P}(\mathcal{T}_s^*(y), y \in \mathbb{J}^*, \mathcal{X}(\mathcal{C})) &= \sum_{\mathcal{C}} \mathbb{P}(\mathcal{T}_s^*(y), \mathcal{C}(y; B_j^2 \setminus \mathcal{C}) = \mathcal{C}, \mathcal{X}(\mathcal{C})) \\ 1807 &\geq (1 - e^{-cs^{1/2-\delta/2}}) \mathbb{P}(y \in \mathbb{J}^*, \mathcal{X}(\mathcal{C})), \end{aligned} \quad (119)$$

1808 where the sum is over cluster realizations \mathcal{C} such that $\{y \in \mathbb{J}^*\}$ occurs. The inequality
 1809 appearing in (119) follows from (116) and (117).

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

We break the sum over \mathcal{C} into two terms depending on whether y is s -*-bad or not on the event $\{\mathcal{C}(y; B_j^2 \setminus \mathcal{C}) = \mathcal{C}\}$. Performing the sum and applying Definition 11, we can upper bound the sum appearing in (119) by

$$(1 - e^{-s^{1/3}}) \mathbb{P} \{ \mathbb{P}(\mathcal{T}_s^*(y) \mid \mathcal{C}(x; B_j^2 \setminus \mathcal{C})) \leq 1 - \exp(-s^{1/3}) \}, y \in \mathcal{X}_j^*, \mathcal{X}(\mathcal{C}) \\ + \mathbb{P} \{ \mathbb{P}(\mathcal{T}_s^*(y) \mid \mathcal{C}(x; B_j^2 \setminus \mathcal{C})) > 1 - \exp(-s^{1/3}) \}, y \in \mathcal{X}_j^*, \mathcal{X}(\mathcal{C}) ,$$

1814 so we obtain

$$\begin{aligned} \mathbb{P}(\mathcal{T}_s^*(y), y \in \mathcal{X}_j^*, \mathcal{X}(\mathcal{C})) &\leq \mathbb{P}(y \in \mathcal{X}_j^*, \mathcal{X}(\mathcal{C})) \\ &- e^{-s^{1/3}} \mathbb{P}\{\mathbb{P}(\mathcal{T}_s^*(y) \mid \mathcal{E}(x; B_j^2 \setminus \mathcal{C})) \leq 1 - \exp(-s^{1/3})\}, y \in \mathcal{X}_j^*, \mathcal{X}(\mathcal{C}) . \end{aligned} \quad (120)$$

Comparing (120) with the lower bound of (119), we see that there is an $s = s_0(d, a)$ such that, for all $s > s_0$,

$$1819 \quad \mathbb{P} \{ \mathbb{P}(T_s^*(y) \mid \mathcal{C}(x; B_j^2 \setminus C)) \leq 1 - \exp(-s^{1/3}) \} \mid \{ \mathcal{X}_j^* \}, \mathcal{X}(C) \leq \exp(-s^{1/2-\delta}). \quad (121)$$

1821 We sum over $s \geq K$ to obtain the bound

$$\mathbb{P}(y \notin \bigcup_j \mathcal{X}_j^* \mid \{y \in \bigcup_j \mathcal{X}_j^*\}, \mathcal{X}(\mathcal{C})) \leq C \exp(-cK^{1/3}).$$

1823 Choosing K_0 large enough that the right-hand side of the last display is smaller than
 1824 $1/2$ when $K > K_0$ and multiplying both sides of that display by $\mathbb{P}(y \in \mathcal{X}_j^* | \mathcal{X}(\mathcal{C}))$
 1825 completes the proof.

1826 7.2. $\mathbb{C}(0; B_{j+1}) \cap A_j$ is large with positive probability. We use Lemma 21 to argue that
 1827 $\mathbb{C}(0; B_{j+1}) \cap A_j$ is frequently large on the event $\mathcal{C}(\mathcal{C})$. Formally, we prove the following
 1828 intermediate lemma, which furthermore decouples $\mathbb{C}(0; B_j) \cap A_j$ from $\mathbb{C}(0; B_i)$, $i < j$:

1830 **Lemma 22.** *There exists $c_V > 0$ such that the following holds uniformly in n , in j , and*
 1831 *K . For each \mathcal{C} satisfying (114), we have*

$$\mathbb{P}(|\mathcal{C}(0; B_{j+1}^1) \cap A_j| > c_V(n/\kappa)^4 \mid \mathcal{X}(\mathcal{C})) \geq c_V.$$

1833 The proof of Lemma 22 is based on the second moment method. In this section, we
 1834 define and prove facts about events $\mathcal{A}(y, z)$ on which the second moment argument will
 1835 be based. In Sect. 7.3, we prove the necessary first moment bounds; in Sect. 7.4 we prove
 1836 the second moment bound and complete the proof of the lemma.

1837 Recall that for each $y \in \partial B_j^2$, we have chosen a deterministic neighbor $y \in B_{j+1}^1 \setminus B_j^2$.
1838 For each such edge $\{y, y'\}$, and for each $z \in A_j$, we define

$$\begin{aligned} \mathcal{A}(y, z, \mathcal{C}) &= \mathcal{A}(y, z) \quad \left\{ \begin{array}{l} \{y, z\} \text{ is open and pivotal for } y \xleftrightarrow{B_{j+1}^1 \setminus C} z, \\ \text{and } \mathcal{C}^*(y) \text{ contains no vertices adjacent to } B_j^1. \end{array} \right\} \\ &= \mathcal{X}(\mathcal{C}) \cap \{y \in \mathcal{C}^*\} \cap \left\{ \begin{array}{l} \{y, z\} \text{ is open and pivotal for } y \xleftrightarrow{B_{j+1}^1 \setminus C} z, \\ \text{and } \mathcal{C}^*(y) \text{ contains no vertices adjacent to } B_j^1. \end{array} \right\}. \end{aligned} \quad (122)$$

We usually omit \mathcal{C} from the notation because, as we have noted, all our bounds will be uniform in \mathcal{C} .

We will wish to argue that $\mathcal{C}(0; B_{j+1}^1) \cap A_j$ is at least the number of pairs (y, z) for which $\mathcal{A}(y, z)$ occurs. For this, we will use the following proposition:

Proposition 23. For each $y \in \partial B_j^2$ and $z \in A_j$, we have $\mathcal{A}(y, z) \subseteq \{\longleftrightarrow^{B_{j+1}^1} 0\}$. Moreover, for each pair $z_1, z_2 \in A_j$ and each $y_1 = y_2 \in \partial B_j^2$,

$$\mathcal{A}(y_1, z_1) \cap \mathcal{A}(y_2, z_2) \subseteq [\mathcal{C}^*(y_1) \cap [\mathcal{C}^*(y_2) \cup \mathcal{C}^*(y_2)]] = \emptyset, \quad (123)$$

and so (taking $z = z_1 = z_2$) we have $\mathcal{A}(y_1, z) \cap \mathcal{A}(y_2, z) = \emptyset$.

Proof. We first prove the containment $\mathcal{A}(y, z) \subseteq \{\longleftrightarrow^{B_{j+1}^1} 0\}$, which is relatively easy. On $\mathcal{A}(y, z)$, there is an open connection from y to \mathcal{C} by assumption, and (by the definition of $\mathcal{X}(\mathcal{C})$) thus $\mathcal{C}(0; B_j^2) \setminus y$. Then by the openness of $\{y, y\}$, we have $y \in \mathcal{C}(0; B_{j+1}^1)$;

finally, this openness and the pivotality of this edge ensure $y \longleftrightarrow^{B_{j+1}^1} z$, completing this part of the proof.

We will argue by contradiction for (123): we assume that $\omega \in \mathcal{A}(y_1, z_1) \cap \mathcal{A}(y_2, z_2) \cap \{\mathcal{C}^*(y_1) \cap [\mathcal{C}^*(y_2) \cup \mathcal{C}^*(y_2)] = \emptyset\}$ and then show ω has contradictory properties. We further decompose this event and break the proof into two cases.

Case 1: $\omega \in \mathcal{C}^*(y_1) = \mathcal{C}^*(y_2)$. We assume first that ω has the additional property that, in ω , the clusters $\mathcal{C}^*(y_1)$ and $\mathcal{C}^*(y_2)$ are identical. In this case, by definition we have that $\mathcal{C}^*(y_1) \cap \mathcal{C}^*(y_1) = \emptyset$, and therefore $\mathcal{C}^*(y_1) \cap \mathcal{C}^*(y_2) = \emptyset$. To show $\mathcal{C}^*(y_1) \cap \mathcal{C}^*(y_2) = \emptyset$, we suppose that $\mathcal{C}^*(y_1) \cap \mathcal{C}^*(y_2) = \emptyset$, which implies (again using $\mathcal{C}^*(y_1) = \mathcal{C}^*(y_2)$) that $\mathcal{C}^*(y_1) = \mathcal{C}^*(y_2)$. Let γ be the concatenation of a) an open path in $\mathcal{C}^*(y_2)$ from y_2 to z_1 , b) the edge $\{y_2, y_2\}$, and c) an open path in $\mathcal{C}^*(y_2)$ from y_2 to y_1 . By construction, the path γ avoids $\{y_1, y_1\}$. But since $\omega \in \mathcal{A}_1(y_1, z_1)$, the pivotal edge $\{y_1, y_1\}$ must be in γ , a contradiction.

Case 2: $\omega \in \mathcal{C}^*(y_1) = \mathcal{C}^*(y_2)$. We suppose instead that $\mathcal{C}^*(y_1)$ and $\mathcal{C}^*(y_2)$ are distinct (and hence $\mathcal{C}^*(y_1) \cap \mathcal{C}^*(y_2)$ may contain only vertices of \mathcal{C}) in outcome ω . We first show that $\mathcal{C}^*(y_1) \cap \mathcal{C}^*(y_2) = \emptyset$ by assuming these clusters instead had nonempty intersection and deriving a contradiction. Under this assumption, let γ be a path in $\mathcal{C}^*(y_1)$ from y_1 to a vertex $\tilde{w} \in \mathcal{C}^*(y_2)$.

We produce an open path by appending the segment of γ from y_1 to \tilde{w} to a path lying entirely in $\mathcal{C}^*(y_2) \cap A_j$ from \tilde{w} to a vertex adjacent to \mathcal{C} . This is a path in B_{j+1}^1 from y_1 to a vertex adjacent to B_j^1 . It avoids $\mathcal{C}^*(y_1)$ because γ avoids $\mathcal{C}^*(y_1)$ and because $\mathcal{C}^*(y_1) \cap \mathcal{C}^*(y_2) \cap A_j = \emptyset$. In particular, this path guarantees that $\mathcal{C}^*(y_1)$ contains a vertex adjacent to B_j^1 , a contradiction. This shows $\mathcal{C}^*(y_1) \cap \mathcal{C}^*(y_2) = \emptyset$ (and similarly $\mathcal{C}^*(y_2) \cap \mathcal{C}^*(y_1) = \emptyset$).

We again show $\mathcal{C}^*(y_1) \cap \mathcal{C}^*(y_2) = \emptyset$ by assuming the contrary and deriving a contradiction. Under our assumption, we choose a vertex $w \in \mathcal{C}^*(y_1) \cap \mathcal{C}^*(y_2)$ and let γ_i be a path in $\mathcal{C}^*(y_i)$ from y_i to w (for $i = 1, 2$). Appending y_1 to y_2 , we produce an open path which (by the previous paragraph) lies outside $\mathcal{C}^*(y_1) \cup \mathcal{C}^*(y_2)$ and connects y_1 to y_2 . Adjoining to this the open edge $\{y_2, y_2\}$ and a path in $\mathcal{C}^*(y_2)$ from y_2 to a neighbor of \mathcal{C} , we see again that $\mathcal{C}^*(y_1)$ contains a vertex adjacent to B_j^1 , a contradiction.

Proof of final claim. Finally, to show $\mathcal{A}(y_1, z) \cap \mathcal{A}(y_2, z) = \emptyset$, we note that on $\mathcal{A}(y_i, z)$, we have $z \in \mathcal{C}^*(y_i)$, then we apply (123).

220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.			

1885 As we have discussed, we wish to lower bound the size of $\mathcal{C}(0; B_{j+1}) \cap A_j$ on $\mathcal{X}(\mathcal{C})$.
 1886 In fact, it helps (see (146) below) to consider a portion of this cluster whose connections
 1887 in A_j “do not wander too far”, and which have a pivotal edge touching ∂B_j^2 for their
 1888 connection to \mathcal{C} :

$$1889 \quad Z_j := \{(\mathbf{y}, z) : y \in \partial B_j^2, z \in A_j \cap B(y; n/16\kappa), \text{and } \mathcal{A}(y, z) \text{ occurs}\}. \quad (124)$$

1890 Proposition 23 immediately implies the following corollary.

1891 **Corollary 24.** *On $\mathcal{X}(\mathcal{C})$, $\mathcal{C}(0; B_{j+1}) \cap A_j \geq |Z_j|$.*

1892 We will use Corollary 24 to show Theorem 4. As already discussed, in the next two
 1893 sections we use the second moment method to show that $|Z_j|$ is often of order $(n/\kappa)^4$
 1894 conditional on $\mathcal{X}(\mathcal{C})$. Using Corollary 24, we see that $\mathcal{C}(0; B_{j+1}^1) \cap A_j$ has uniformly
 1895 positive probability to be of order $(n/\kappa)^4$. In Sect. 7.4, we use this fact to show that in
 1896 fact with high probability $\mathcal{C}(0; B_{j+1}^1) \cap A_j$ is of order $(n/\kappa)^4$ simultaneously for at least
 1897 $c\kappa$ values of j and complete the proof of Theorem 4.

1898 **7.3. Bounding the first moment of $|Z_j|$.** We now have the following result allowing us
 1899 to extend connections from \mathcal{C} to points z in the annulus A_j^2 , which we will subsequently
 1900 use to lower bound the first moment of $|Z_j|$. The K_1 appearing here depends only on
 1901 the lattice \mathbb{Z}^d under consideration and the value of α as in Theorem 4.

1902 **Lemma 25.** *There is a $K_1 > K_0$ such that the following holds. For each $K > K_1$,
 1903 there exists a $c > 0$ such that, uniformly in n and κ satisfying the additional assumption
 1904 $n/\kappa \geq 32K$, for all j , all $\mathcal{C} \subseteq B_j^1$ such that (114) holds, all $y \in \partial B_j^2$, and all M
 1905 satisfying $2K \leq M \leq n/16\kappa$,*

$$1906 \quad \mathbb{P}(\{\mathbf{y}, y\} \text{ open, pivotal for } y \xleftrightarrow{B_{j+1}^1 \setminus \mathcal{C}} z \mid \mathcal{X}(\mathcal{C}), y \in \mathbb{y}_j^*) \geq cM^2. \quad (125)$$

$\mathbf{z} \in B(y; M) \cap A_j$

1907 *Proof.* The proof uses a variant of the Kozma–Nachmias cluster extension method [29,
 1908 Theorem 2], using the notion of regularity we have introduced for this particular case,
 1909 which poses somewhat different issues than the extension arguments of Proposition 8
 1910 above. We provide the details for the reader’s convenience.

1911 We define the events

$$1912 \quad \mathcal{E}_1(y) = \{\mathcal{X}(\mathcal{C}), y \in \mathbb{y}_j^*\},$$

$$1913 \quad \mathcal{E}_2(y, y^*, z) = \{\mathbf{y}^* \xleftrightarrow{B_{j+1}^1 \setminus [\mathcal{C} \cup \mathcal{C}^*(y)]} z\},$$

$$1914 \quad \mathcal{E}_3(y, y^*) = \{\mathcal{C}(y; B_{j+1}^1 \setminus \mathcal{C}) \cap \mathcal{C}(y^*; B_{j+1}^1 \setminus \mathcal{C}) = \emptyset\}.$$

1915 Defining

$$1916 \quad (\mathbf{y}) = B(y; K) \setminus (B_j^2 + B(0, K/2)),$$

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1917 we show that there is a $c > 0$ such that, for each K larger than some constant $K_3 > K_0$
 1918 (depending only on the lattice), given values of other parameters as in the statement of
 1919 the lemma, there is a $y^* \in (\cdot y)$ with

$$1920 \quad \mathbb{P}(\mathcal{E}_1(y) \cap \mathcal{E}_2(y, y^*, z) \cap \mathcal{E}_3(y, y^*)) \geq cM^2 \mathbb{P}(\mathcal{E}_1(y)). \quad (126)$$

$z \in B(y; M) \cap A_j$

1921 We first show the existence of a $K_2 > K_0$ and a constant c uniform in $K > K_2$ as
 1922 well as in n, K, C, j , and y as in the statement of the lemma, and in *all* $y^* \in (\cdot y)$ such
 1923 that

$$1924 \quad \mathbb{P}(\mathcal{E}_1(y) \cap \mathcal{E}_2(y, y^*, z)) \geq cM^2 \mathbb{P}(\mathcal{E}_1(y)). \quad (127)$$

$z \in B(y; M) \cap A_j$

1925 Summing over \mathcal{D} consistent with the event $\{\mathcal{C}^*(y) = \mathcal{D}, y \in \mathbb{A}_j^{*K}\}$, we have

$$1926 \quad \mathbb{P}(y^* \stackrel{B_{j+1}^1 \setminus [C \cup C^*(y)]}{\longleftrightarrow} z, \mathcal{X}(\mathcal{C}), y \in \mathbb{A}_j^{*K}) \\ = \mathbb{P}(y^* \stackrel{B_{j+1}^1 \setminus [C \cup C^*(y)]}{\longleftrightarrow} z \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}) \mathbb{P}(\mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}).$$

D

1928 For the conditional probability, we have the lower bound

$$1929 \quad \mathbb{P}(y^* \stackrel{B_{j+1}^1 \setminus [C \cup C^*(y)]}{\longleftrightarrow} z \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}) \\ \geq \mathbb{P}(y^* \stackrel{A_j \setminus D}{\longleftrightarrow} z) \\ \geq \mathbb{P}(y^* \stackrel{A_j}{\longleftrightarrow} z) - \mathbb{P}(\zeta \leftrightarrow y^* \circ \zeta \leftrightarrow z) \\ \zeta \oplus \\ \geq \mathbb{P}(y^* \stackrel{A_j}{\longleftrightarrow} z) - C \mathbb{P}(\zeta \leftrightarrow y^*) \zeta - z^{2-d}.$$

$\zeta \oplus$

1933 We have used the BK inequality and (13) in the last step. Summing over z using (15),
 1934 we obtain the lower bound

$$1935 \quad cM^2 - CM^2 \frac{\zeta - y^{*2-d}}{\zeta \oplus}. \quad (128)$$

1936 We note that if $\zeta \in B_j^2$, we have $\zeta - y^* \geq K/2$. So the sum appearing in the second
 1937 term is bounded by

$$1938 \quad C \sum_{k \geq \log_2(K/2)} |\mathcal{D} \cap B(y^*, 2^k)| 2^{(2-d)k} \\ \leq C \sum_{k \geq \log_2(K/2)} |\mathcal{D} \cap B(y, 2^{k+1})| 2^{(2-d)k}. \quad (129)$$

1940 For \mathcal{C}, \mathcal{D} consistent with $\{y \in \mathbb{A}_j^{*K}\}$, we have

$$1941 \quad |\mathcal{D} \cap B(y, 2^{k+1})| \leq C 2^{(5-\delta)k}.$$

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1942 Applying this estimate in (129), we obtain

$$1943 \quad \zeta - y^* \geq \sum_{k \geq \log(K/2)} 2^{(7-d-\delta)k} \\ 1944 \quad \leq C K^{7-d-\delta}.$$

1945 Since $d > 6$, we can make the second term of (128) negligible for each K larger than
1946 some uniform K_2 . We obtain (127).

1947 Next, we show the existence of a $K_1 > K_2$ and a $c > 0$ uniform in $n, \kappa, m, \mathcal{C}$,
1948 $K > K_1$, and y with

$$1949 \quad \frac{1}{|(-y)|} \sum_{y^* \in (-y) \cap B(y; M) \cap A_j^2} \mathbb{P}(\mathcal{E}_1(y) \cap \mathcal{E}_2(y, y^*, z) \setminus \mathcal{E}_3(y, y^*)) \\ (130) \quad \leq C M^2 K^{7-d-\delta} \mathbb{P}(\mathcal{E}_1(y)).$$

1950 Choosing the value of y^* which minimizes the inner sum of (130) and combining it with
1951 (127) clearly implies (126).

1952 The event on the left-hand side of (130) implies the existence of a vertex $\zeta \in B_{j+1}^1 \setminus \mathcal{C}$
1953 such that

$$1954 \quad \{\mathcal{E}_1(y), y \leftrightarrow \zeta\} \circ \{\zeta \leftrightarrow y^*\} \circ \{\zeta \leftrightarrow z\}.$$

1955 Using the BK inequality, we have the upper bound:

$$1956 \quad \frac{1}{|(-y)|} \sum_{y^* \in (-y) \cap B(y; M) \cap A_j} \mathbb{P}(\mathcal{E}_1(y), \mathcal{C}^*(y) \leftrightarrow \zeta) \mathbb{P}(y^* \leftrightarrow \zeta) \mathbb{P}(\zeta \leftrightarrow z) \\ 1957 \quad \leq \frac{C M^2}{|(-y)|} \sum_{y^* \in (-y) \cap \zeta} \mathbb{P}(\mathcal{E}_1(y), \mathcal{C}^*(y) \leftrightarrow \zeta) \zeta - y^* \geq 2^{-d}. \quad (131)$$

1958 We break up the sum according to the distance $\zeta - y^*$ and the value \mathcal{D} of $\mathcal{C}^*(y)$
1959 (consistent with the event $\mathcal{E}_1(y)$). Thus (131) is bounded by

$$1960 \quad \frac{C M^2}{|(-y)|} \sum_{y^* \in (-y) \cap \mathcal{D}} \mathbb{P}[\{\zeta \leftrightarrow \mathcal{D}\}, \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}] \zeta - y^* \geq 2^{-d}. \\ (132)$$

1961 We split the sum according to whether $k > k_0$ or $k \leq k_0$, where $k_0 = \log_2(K/2)$. We
1962 first bound the $k > k_0$ terms; the inner sums over k, \mathcal{D} , and ζ of (132) are bounded by

$$1963 \quad \leq C \sum_{k > k_0} \mathbb{E}[|\mathcal{B}_k(y^*)| \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}] \mathbb{P}(\mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}) 2^{(2-d)k}. \quad (133)$$

1964 Here we have introduced, for w an arbitrary vertex, the notation

$$1965 \quad \mathcal{B}_k(w) = \{\zeta \in B_{j+1}^1 \setminus \mathcal{C} \mid \zeta \in B(w; 2^k)\}.$$

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

1966 We estimate the conditional expectation

$$1967 \quad \mathbb{E}[|\mathcal{B}_k(y^*)| \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}]$$

1968 uniformly in y^* using the inclusion

$$1969 \quad \mathcal{B}_k(y^*) \subset \mathcal{B}_{k+1}(y),$$

1970 which is implied by $y^* \in (\cdot, y)$. If $y \in \mathbb{R}_j^{*K}$, the definition of K^* -regularity implies

$$1971 \quad \mathbb{E}[|\mathcal{B}_{k+1}(y)| \mathbf{1}_{\mathcal{T}_{k+1}^*(y)} \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}] \leq 2^{(k+2)d} e^{-2^{k/3}},$$

1972 and

$$1973 \quad \mathbb{E}[|\mathcal{B}_{k+1}(y)| \mathbf{1}_{\mathcal{T}_{k+1}^*(y)} \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}] \leq 2^{(5-\delta)k+5}.$$

1974 Thus, we find

$$1975 \quad \mathbb{E}[|\mathcal{B}_k(y^*)| \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}] \leq C 2^{(5-\delta)k}, \quad k > k_0. \quad (134)$$

1976 Applying this bound, we see that (133) is at most

$$1977 \quad C \sum_{k>k_0} 2^{(7-d-\delta)k} \leq C K_0^{7-d-\delta}. \quad (135)$$

1978 We now turn to the $k \leq k_0$ terms of (132), for which it is useful to first perform the
1979 y^* sum. Indeed, we have uniformly in ζ and y

$$1980 \quad \zeta - y^{*2-d} \leq C K^2.$$

$$y^* \in (\cdot, y)$$

1981 Applying this last display, we see the $k \leq k_0$ terms of (132) are bounded above by

$$1982 \quad C M^2 K^{2-d} \mathbb{E}[|\mathcal{B}_{K+2}(y)| \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y)]$$

$$1983 \quad D = \mathcal{D}] \mathbb{P}(\mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}) \leq C M^2 K^{7-d-\delta},$$

1984 where we have bounded the expectation as in the estimates producing (134). Pulling the
1985 last display together with (135), we have shown (130). Finally, combining (130) with
1986 (127) and assuming K is large, we see that (126) holds.

1987 To obtain (125) from (126), we use an edge modification argument inside a box of
1988 diameter order K , again similar to the one appearing in the proof of Lemma 14 or [29,
1989 Lemma 5.1]. The edge modification shows

$$1990 \quad \mathbb{P}(\{y, y^*\} \text{ open, pivotal for } \mathcal{C}^*(y) \xleftrightarrow{B_{j+1}^1 \setminus C} z \mid \mathcal{X}(\mathcal{C}), y \in \mathbb{R}_j^{*K})$$

$$1991 \quad \geq c(K) \mathbb{P}(\mathcal{E}_2(y, y^*, z) \cap \mathcal{E}_3(y, y^*) \mid \mathcal{E}_1(y)),$$

1992 and the proof of the lemma follows using (126).

1993 Our next goal is to slightly adapt the content of Lemma 25 to instead involve the
1994 events $\mathcal{A}(y, z)$, which can be used in the application of Corollary 24:

	2 2 0	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	Not Used <input type="checkbox"/>
				Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

1995 **Lemma 26.** For each $K > K_1$ (the constant from Lemma 25), the following holds. There
 1996 exists a $c > 0$ such that, for all n , all K , for all j , and for all \mathcal{C} such that (114) holds

$$1997 \quad \mathbb{E}[|Z_j| \mid \mathcal{X}(\mathcal{C})] = \sum_{\substack{y \in \partial B_j^2 \\ z \in A_j \cap B(y; n/16K)}} \mathbb{P}(\mathcal{A}(y, z) \mid \mathcal{X}(\mathcal{C})) \geq c(n/\kappa)^2 \mathbb{E}[X_j^{*K} \mid \mathcal{X}(\mathcal{C})].$$

1998 (136)

1999 *Proof.* We express the left-hand side of (136) in the form

$$2000 \quad \mathbb{P}(\mathcal{A}(y, z) \mid \mathcal{X}(\mathcal{C})) = \sum_{y, z} \mathbb{P}(\mathcal{A}(y, z) \mid \mathcal{X}(\mathcal{C}), y \in \mathbb{B}_j^{*K}) \mathbb{P}(y \in \mathbb{B}_j^{*K} \mid \mathcal{X}(\mathcal{C})).$$

2001 (137)

2002 We will lower bound the conditional probability of $\mathcal{A}(y, z)$ on the right-hand side using
 2003 Lemma 25—the missing ingredient is to show that the connection from y to z in the
 2004 event from (125) does not make a connection from y to neighbors of B_j^1 too likely. To do
 2005 this, we must restrict the sum over z somewhat—it will be easier to rule out such loops
 2006 back into B_j^1 for z comparatively near to y . Let us introduce a parameter $0 < a < 1/16$,
 2007 to be chosen small but fixed relative to n , λ , j , y , and \mathcal{C} . Indeed, the value of a will
 2008 be chosen based on the constant appearing in (125) and the constants in the one-arm
 2009 probability bound (13). On $\mathcal{X}(\mathcal{C})$, we define the random set

$$2010 \quad Y(a, y) := \{z \in B(y; an/\kappa) \cap A_j : \{y, z\} \text{ open, pivotal for } y \leftrightarrow z\} \subseteq \mathbb{B}_{j+1}^{*K} \setminus \mathcal{C}. \quad (138)$$

2011 Applying (125) with an playing the role of M , we find a $c = c(K) > 0$ such that,

$$2012 \quad \text{for each } n, \mathcal{C}, y, a, j, \kappa \text{ as in (125), } \mathbb{E}[|Y(a, y)| \mid \mathcal{X}(\mathcal{C}), y \in \mathbb{B}_j^{*K}] \geq ca^2 n^2. \quad (139)$$

2013 The event $\mathcal{X}(\mathcal{C}) \cap \{y \in \mathbb{B}_j^{*K}\} \cap \{z \in Y(a, y)\} \setminus \mathcal{A}(y, z)$ implies that one of the
 2014 following two events occurs:

$$2015 \quad \bullet \quad L_1 := \sum_{\zeta \in \mathbb{B}(y; n/8\kappa)} \{ \zeta \leftrightarrow_{\mathbb{B}(y; n/8\kappa) \setminus \mathcal{C}^*(y)} y \} \circ \{ \zeta \leftrightarrow_{\mathbb{B}(y; n/8\kappa) \setminus \mathcal{C}^*(y)} z \};$$

$$2016 \quad \bullet \quad L_2 := \sum_{\zeta \in \partial B(y; 3n/16\kappa)} \{ \zeta \leftrightarrow_{\mathbb{B}(y; n/8\kappa) \setminus \mathcal{C}^*(y)} y \} \circ \{ \zeta \leftrightarrow_{\mathbb{B}(y; n/8\kappa) \setminus \mathcal{C}^*(y)} z \} \circ \{ \zeta \leftrightarrow_{\mathbb{B}(y; n/8\kappa) \setminus \mathcal{C}^*(y)} \partial B(y; 3n/16\kappa) \}.$$

2017

2018 That is, either y is connected to z (off $\mathcal{C}^*(y)$) by a path exiting the box $B(y; n/8\kappa)$, or
 2019 y and z are connected within this box and are connected to the boundary of a slightly
 2020 larger box by a further open path. In particular, for each y, z :

$$2021 \quad \mathbb{P}(\mathcal{A}(y, z) \mid \mathcal{X}(\mathcal{C}), y \in \mathbb{B}_j^{*K})$$

$$2022 \quad \geq \mathbb{P}(z \in Y(a, y) \mid \mathcal{X}(\mathcal{C}), y \in \mathbb{B}_j^{*K}) - \mathbb{P}(L_1 \cup L_2 \mid \mathcal{X}(\mathcal{C}), y \in \mathbb{B}_j^{*K}). \quad (140)$$

2023 We can decompose the event $\mathcal{X}(\mathcal{C}) \cap \{z \in Y(a, y)\}$ into a union of events of the form
 2024 $\mathcal{X}(\mathcal{C}) \cap \{\zeta \in \mathbb{B}(y; n/8\kappa) \setminus \mathcal{C}^*(y) \setminus \mathcal{D}\}$; to upper-bound the probability of L_1 , we thus provide an upper

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

2025 bound on $\mathbb{P}(L_1 \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D})$ uniform in realizations \mathcal{D} of $\mathcal{C}^*(y)$ such that
 2026 $y \in \mathbb{A}_j^{*K}$. Using the half-space two-point function bound (21), we find

$$2027 \quad \mathbb{P}(L_1 \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}) \leq C |\partial B(y; n/8\kappa)| \kappa^{1-d} (n/\kappa)^{2-d} \leq C(n/\kappa)^{2-d},$$

2028 where the constant C is uniform in the same parameters as (139). Similarly, we bound the
 2029 probability of L_2 using the two-point function and the value of the (full-space) one-arm
 2030 exponent (13):

$$2031 \quad \mathbb{P}(L_2 \mid \mathcal{X}(\mathcal{C}), \mathcal{C}^*(y) = \mathcal{D}) \leq C(n/\kappa)^{-2}$$

$$2032 \quad \zeta - y^{2-d} \zeta - z^{2-d} = C(n/\kappa)^{2-d}.$$

$$2033 \quad \zeta \oplus (y; n/8\kappa)$$

Applying the last two displays in (140) and using (139), we see

$$2034 \quad \mathbb{P}(\mathcal{A}(y, z) \mid \mathcal{X}(\mathcal{C}), y \in \mathbb{A}_j^{*K}) \geq c a^2 (n/\kappa)^2 - C a^d (n/\kappa)^2.$$

$$z \in A_j \cap B(y; an/\kappa)$$

2035 Choosing a small relative to the uniform constants in the last display (but fixed relative
 2036 to all other parameters) and summing over $y \in \partial B_j^2$ in (137), the right-hand side is at
 2037 least $c(n/\kappa)^2 \mathbb{E}[X_n^{*K} \mid \mathcal{X}(\mathcal{C})]$ uniform in K large but fixed relative to n , in n , and in \mathcal{C} .
 2038 This completes the proof.

2039 **Corollary 27.** *There exists a $c > 0$ uniform in the same parameters as Lemma 25 such
 2040 that*

$$2041 \quad \mathbb{E}[|Z_n| \mid \mathcal{X}(\mathcal{C})] \geq c(n/\kappa)^4.$$

2042 *Proof.* By Lemma 26, it suffices to show

$$2043 \quad \mathbb{E}[X_j^{*K} \mid \mathcal{X}(\mathcal{C})] \geq c \mathbb{E}[X_j^* \mid \mathcal{X}(\mathcal{C})] \geq c(n/\kappa)^2 \quad (141)$$

2044 holds uniformly in the same parameters as Lemma 25. The second inequality follows
 2045 from (114); it remains to show the first.

2046 We write

$$2047 \quad \mathbb{E}[X_j^{*K} \mid \mathcal{X}(\mathcal{C})] = \mathbb{P}(y \in \mathbb{A}_j^{*K} \mid \mathcal{X}(\mathcal{C}))$$

$$2048 \quad + \mathbb{P}(y \in \mathbb{A}_j^{*K} \mid \mathcal{X}(\mathcal{C})) \mathbb{P}(y \in \mathbb{A}_j^{*K} \mid \mathcal{X}(\mathcal{C}))$$

$$2049 \quad \geq \frac{1}{2} \mathbb{P}(y \in \mathbb{A}_j^* \mid \mathcal{X}(\mathcal{C}))$$

$$2050 \quad \geq \frac{1}{2} \mathbb{P}(y \in \mathbb{A}_j^* \mid \mathcal{X}(\mathcal{C})) - \frac{C_1}{n} = \frac{1}{2} \mathbb{E}[X_j^* \mid \mathcal{X}(\mathcal{C})] - \frac{C_1}{n},$$

2051 where in the second line we have used Lemma 21. The corollary follows by applying
 2052 (114).

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

2053 7.4. *Bounding the second moment of $|Z_j|$.* We produce an upper bound on the second
 2054 moment of $|Z_j|$ complementing that of Corollary 27:

2055 **Proposition 28.** *There is a constant C such that the following holds uniformly in n , in
 2056 j , and in \mathcal{C} satisfying (114):*

$$2057 \mathbb{E}[|Z_j|^2 | \mathcal{X}(\mathcal{C})] \leq C \mathbb{E}[|Z_j| | \mathcal{X}(\mathcal{C})]^2.$$

2058 *Proof.* We write

$$2059 \mathbb{E}[|Z_j|^2 | \mathcal{X}(\mathcal{C})] = \mathbb{E}[|Z_j|^2 | \mathcal{X}(\mathcal{C})]_{y_1, y_2 \in A_j} \\ y_1, y_2 \in \partial B_j^1 \\ 2060 \mathbb{P}(\mathcal{A}(y_1, z_1) \cap \mathcal{A}(y_2, z_2) | \mathcal{X}(\mathcal{C}) \cap \{y_1, y_2 \in A_j\}). \quad (142)$$

$z_1 \in A_j \cap B(y_1; n/16\kappa)$
 $z_2 \in A_j \cap B(y_2; n/16\kappa)$

2061 We condition the inner sum further on the value of $\mathcal{C}^*(y_1)$ and $\mathcal{C}^*(y_2)$; an upper bound
 2062 for the inner sum will follow once we bound

$$2063 \mathbb{P}(\mathcal{A}(y_1, z_1) \cap \mathcal{A}(y_2, z_2) | \mathcal{X}(\mathcal{C}) \cap \{\mathcal{C}^*(y_1) = \mathcal{D}_1, \mathcal{C}^*(y_2) = \mathcal{D}_2\}) \quad (143)$$

2064 uniformly in realizations \mathcal{D}_1 and \mathcal{D}_2 such that $y_1, y_2 \in A_j$ when $\mathcal{C}^*(y_i) = \mathcal{D}_i$, $i = 1, 2$.

2065 The bounds on the inner sum appearing in (142) are similar but slightly different
 2066 depending on whether $y_1 = y_2$ or $y_1 \neq y_2$.

2067 In the case $y_1 = y_2$, we apply Proposition 23 to bound the conditional probability in
 2068 (143) by

$$2069 \mathbb{P}(\{y_1 \xleftrightarrow{B_{j+1}^1 \setminus (\mathcal{C} \cup \mathcal{D}_1)} z_1\} \circ \{y_2 \xleftrightarrow{B_{j+1}^1 \setminus (\mathcal{C} \cup \mathcal{D}_2)} z_2\}) \leq C |y_1 - z_1|^{2-d} |y_2 - z_2|^{2-d}. \quad (144)$$

2070 In case $y_1 \neq y_2$, we can instead upper bound the probability in (143) by

$$2071 \mathbb{P}(z_1, z_2 \in \mathcal{C}(y_1; B_{j+1}^1 \setminus (\mathcal{C} \cup \mathcal{D}_1)) \leq \mathbb{P}(z_1, z_2 \in \mathcal{C}(y_1)) \\ 2072 \leq \mathbb{P}(\{y_1 \leftrightarrow w\} \circ \{z_1 \leftrightarrow w\} \circ \{z_2 \leftrightarrow w\}). \quad (145)$$

2073 Applying the upper bounds of (144) and (145) to (143), we sum over z_1, z_2 in (142)
 2074 and then perform the outer sum over y_1, y_2 . We arrive at the upper bound

$$2075 \mathbb{E}[|Z_j|^2 | \mathcal{X}(\mathcal{C})] \leq C(n/\kappa)^4 \mathbb{E}[X_j | \mathcal{X}(\mathcal{C})]^2 \\ + C(n/\kappa)^6 \mathbb{E}[X_j | \mathcal{X}(\mathcal{C})] \\ \leq C \mathbb{E}[|Z_j| | \mathcal{X}(\mathcal{C})]^2. \quad (146)$$

2076 Here the constant C is uniform in n and \mathcal{C} satisfying (114); the final inequality of (146)
 2077 is furnished by (136) and (141).

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	
				Disk Received <input type="checkbox"/>	Not Used <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Corrupted <input type="checkbox"/>
					Mismatch <input type="checkbox"/>

2079 *Proof of Lemma 22.* We use Proposition 28 in the Paley–Zygmund inequality. This
 2080 yields $\mathbb{P}(|Z_n| \geq (1/2)\mathbb{E}[|Z_n| \mid \mathcal{X}(\mathcal{C})] \mid \mathcal{X}(\mathcal{C}) \geq c$ for a uniform c , and then the
 2081 uniform lower bound on $\mathbb{E}[Z_n \mid A(\mathcal{C})]$ from Corollary 27 translates this into the state-
 2082 ment of the lemma.

2083 We have now accomplished the goal of showing that $\mathfrak{C}_{B(n)}(0) \cap A_j$ is large, which
 2084 we began working towards in Sect. 7.2. In the next section, we extend this result to many
 2085 annuli at once and complete the proof of Theorem 4.

2086 *7.5. The main argument.* The main goal of the section is to complete the proof of
 2087 Theorem 4, with Lemma 22 as a main input.

2088 *Proof of the upper bound from Theorem 4.* We recall the constant \mathfrak{g} from (113) and the
 2089 constant c_V appearing in Lemma 22. For each $1 \leq j \leq \kappa$, we define the events

$$2090 \quad R_j = \{|\mathfrak{C}(0; B_{j+1}^1) \cap A_j| \geq c_V n^4/\kappa^4\}.$$

2091 We will prove estimates on the probabilities of these events which are uniform in n and
 2092 κ and which will suffice to establish the theorem.

2093 Recall that $\kappa = \lambda^{-1/3}!$. For each $\phi > 0$, we have

$$2094 \quad \mathbb{P}(|\mathfrak{C}_{B(n)}(0)| \leq \phi_V \lambda n^4 \mid 0 \leftrightarrow \partial B(n)) \leq \mathbb{P}(|\mathfrak{C}_{B(n)}(0)| \leq \phi_V \kappa (n/\kappa)^4 \mid 0 \leftrightarrow \partial B(n)) \\ 2095 \quad \leq \mathbb{P} \quad 1 \leq j \leq \kappa : R_j \text{ occurs} \quad \leq \phi \kappa \mid 0 \leftrightarrow \partial B(n) \mid. \quad (147)$$

2096 We will show

$$2097 \quad \text{there exist } c, \phi > 0 \text{ uniform in } n, \kappa \text{ such that (147)} \leq c^{-1}(1-c)^\kappa; \quad (148)$$

2098 The right side of (148) is of the same form as the probability considered in Theorem 4.
 2099 Thus, the theorem will be proved once (148) has been established.

2100 We define, for each $0 \leq j \leq \kappa - 1$,

$$2101 \quad \mathfrak{Z}_j = \mathbf{1}_{\{0 \leftrightarrow \partial B(n/2)\}} \prod_{k=1}^j \mathbf{1}_{\{0 \leftrightarrow \partial B_{k+1}^1\}} (1 + \mathbf{1}_{R_k^c}).$$

2102 We first show an upper bound for the expectation of \mathfrak{Z}_j , depending on ϕ and j but not
 2103 on n or κ . To do this, we use successive conditioning.

2104 Since R_j is in the sigma-algebra generated by $\mathfrak{C}_{B_{j+1}^1}(0)$, we can write $\mathfrak{Z}_j = \mathfrak{Z}_j(\mathfrak{C}_{B_{j+1}^1}(0))$.

2105 To shorten notation, we define $\mathcal{X}(\mathcal{C})$ as in Sect. 7.1, but with $j = \kappa - 1$:

$$2106 \quad \mathcal{X}(\mathcal{C}) = \mathfrak{C}(0; B_{\kappa-1}^1) = \mathcal{C}.$$

2107 Then, by conditioning, we see

$$2108 \quad \mathbb{E}[\mathfrak{Z}_{\kappa-1}] = \mathbb{P}(\mathcal{X}(\mathcal{C})) \mathbb{E}[\mathfrak{Z}_{\kappa-1} \mid \mathcal{X}(\mathcal{C})] \\ 2109 \quad = \mathbb{P}(\mathcal{X}(\mathcal{C})) \mathfrak{Z}_{\kappa-2}(\mathcal{C}) \mathbb{E}[(1 + \mathbf{1}_{R_{\kappa-1}^c}) \mathbf{1}_{\{0 \leftrightarrow \partial B_{\kappa}^1\}} \mid \mathcal{X}(\mathcal{C})]. \quad (149)$$

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

2110 We estimate the conditional expectation in (149) differently depending on whether \mathcal{C}
 2111 satisfies (114) or not. If $\mathbb{E}[X_{K-1}^* | \mathcal{X}(\mathcal{C})] \geq c_0(n/\kappa)^2$, then invoking Lemma 22, we
 2112 see

2113
$$\mathbb{E}[(1 + \mathbf{1}_{R_{K-1}^c}) \mathbf{1}_{\{0 \leftrightarrow \partial B_K^1\}} | \mathcal{X}(\mathcal{C})] \leq 1 + \mathbb{P}(R_{K-1}^c | \mathcal{X}(\mathcal{C})) \leq 2 - c, \quad (150)$$

2114 where the constant $c > 0$ is uniform in n, κ .

2115 On the other hand, if \mathcal{C} does not satisfy (114)—that is, if

2116
$$\mathbb{E}[X_K^* | \mathcal{X}(\mathcal{C})] < c_0(n/\kappa)^2 \quad (151)$$

2117 —then

2118
$$\mathbb{E}[(1 + \mathbf{1}_{R_{K-1}^c}) \mathbf{1}_{\{0 \leftrightarrow \partial B_K^1\}} | \mathcal{X}(\mathcal{C})] \leq 2\mathbb{P}(0 \leftrightarrow \partial B_K^1 | \mathcal{X}(\mathcal{C})) \quad (152)$$

2119
$$\leq 2\mathbb{P}(X_K^* \geq 2c_0(n/\kappa)^2 | \mathcal{X}(\mathcal{C}))$$

2120
$$+ 2\mathbb{P}(0 \leftrightarrow \partial B_K^1 | \mathcal{X}(\mathcal{C}) \cap \{X_j^* \leq 2c_0(n/\kappa)^2\}) \quad (153)$$

2121
$$\leq 2(1/2 + 1/4) = 3/2.$$

2122 Here the term $1/2$ comes from (151) and Markov's inequality, and the term $1/4$ comes
 2123 from (113). Pulling together (150) and (153) and then performing the sum over \mathcal{C} in
 2124 (149), we see that there exists a $c > 0$ uniform in n and κ such that

2125
$$\mathbb{E}[\mathfrak{Z}_{K-1}] \leq (2 - c)\mathbb{E}[\mathfrak{Z}_{K-2}]. \quad (154)$$

2126 We now apply the same argument on the expectation on the right-hand side of (154) to
 2127 show $\mathbb{E}[\mathfrak{Z}_{K-2}] \leq (2 - c)\mathbb{E}[\mathfrak{Z}_{K-3}]$. The constant c here is the same as in (154) because that
 2128 constant c originated in (114), (113), and Lemma 22 (and these gave bounds which were
 2129 uniform in the choice of annulus A_j). Inducting and then at last taking the expectation
 2130 over the $\mathbf{1}_{\{0 \leftrightarrow \partial B(n/2)\}}$ in the definition of \mathfrak{Z}_{K-1} , we find

2131 there is an $\phi > 0$ such that, uniformly in n, κ , $\mathbb{E}[\mathfrak{Z}_{K-1}]$
 2132
$$\leq \mathbb{P}(0 \leftrightarrow \partial B(n/2))(2 - 2\phi)^K, \quad (155)$$

2133 where we have renamed the constant to connect to the statements of (147) and (148).

2134 Indeed, choosing ϕ as in (155), if R_j^c occurs for more than $(1 - \phi)\kappa$ values of j , then
 2135 we have $\mathfrak{Z}_{K-1} \geq 2^{\kappa(1-\phi)}$. In particular, to show (148), we can write

2136
$$\mathbb{P}(|\{0 \leq j \leq \kappa - 1 : R_j^c \text{ occurs}\}| > (1 - \phi)\kappa, 0 \leftrightarrow \partial B(n))$$

 2137
$$\leq 2^{-\kappa(1-\phi)}\mathbb{E}[\mathfrak{Z}_{K-1}]$$

 2138 (by (155))
$$\leq 2^{-\kappa(1-\phi)}2^K 2^{\kappa \log_2(1-\phi)}\mathbb{P}(0 \leftrightarrow \partial B(n/2))$$

 2139
$$\leq 2^{-c\kappa}\mathbb{P}(0 \leftrightarrow \partial B(n/2)),$$

2140 where as usual c is uniform in n and κ . Dividing the last display by $\mathbb{P}(0 \leftrightarrow \partial B(n))$
 2141 and using (13) yields (148). As we noted just below (148), this completes the proof of
 2142 Theorem 4.

	220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.			Total pages: 71	
				Disk Received <input type="checkbox"/>	Not Used <input type="checkbox"/>
				Disk Used <input type="checkbox"/>	Corrupted <input type="checkbox"/>
					Mismatch <input type="checkbox"/>

8. The Number of Spanning Clusters

We denote by \mathcal{S}_n the set of spanning clusters of $B(n)$:

$$\mathcal{S}_n := \{\mathcal{C}(x), x \in B(n) : \exists y_1, y_2 \in \mathcal{C}(x) \text{ such that } y_1(1) = -n, y_2(1) = n\}.$$

This quantity was analyzed in [1], where it was shown that

$$\mathbb{P}(|\mathcal{S}_n| \geq o(1)n^{d-6}) \rightarrow 1,$$

along with a matching upper bound *provided* only clusters of size $\approx n^4$ are counted. Using Theorem 4, we remove the latter condition.

Theorem 7. *There is a $C > 0$ such that $\mathbb{E}[|\mathcal{S}_n|] \leq Cn^{d-6}$. In particular, the sequence of random variables $(n^{6-d}|\mathcal{S}_n|)_{n=1}^\infty$ is tight.*

Proof. We decompose based on the cardinality of spanning clusters; we then use Theorem 4 to control the contribution of abnormally sparse spanning clusters. We define

$$\mathcal{S}_{n,0} := \{\mathcal{C} \in \mathcal{S}_n : |\mathcal{C}| \geq n^4\} \cup \{\mathcal{C} \in \mathcal{S}_n : |\mathcal{C}| \leq n^2\}$$

and, for $1 \leq k \leq 2 \log_2 n$, we set

$$\mathcal{S}_{n,k} := \{\mathcal{C} \in \mathcal{S}_n : 2^{-k} \leq |\mathcal{C}|/n^4 < 2^{-k+1}\}.$$

We then have $\mathbb{E}[|\mathcal{S}_n|] \leq \sum_{k=0}^{2 \log_2 n} \mathbb{E}[|\mathcal{S}_{n,k}|]$, and it suffices to bound each term on the right-hand side of this inequality.

For $k = 0$, we write (using Theorem 4)

$$\begin{aligned} \mathbb{E}[|\mathcal{S}_{n,0}|] &\leq \frac{1}{n^4} \sum_{x \in B(n)} \mathbb{P}(x \leftrightarrow \partial B(x; n), |\mathcal{C}(x)| \geq n^4) \\ &\quad + \sum_{x \in B(n)} \mathbb{P}(x \leftrightarrow \partial B(x; n), |\mathcal{C}(x)| \leq n^2) \\ &\leq \frac{1}{n^4} \sum_{x \in B(n)} \pi(n) + Cn^d \pi(n) \exp(-cn^{2/3}) \leq Cn^{d-6}. \end{aligned}$$

For $k \geq 1$, we bound similarly

$$\begin{aligned} \mathbb{E}[|\mathcal{S}_{n,k}|] &\leq \frac{2^k}{n^4} \sum_{x \in B(n)} \mathbb{P}(\mathcal{C}(x) \in \mathcal{S}_{n,k}) \\ &\leq \frac{2^k}{n^4} \sum_{x \in B(n)} \pi(n) \mathbb{P}(|\mathcal{C}(x)| \\ &< 2^{-k+1} n^4 \mid x \leftrightarrow B(x; n)) \leq Cn^{d-6} 2^k \exp(-c2^{k/3}), \end{aligned}$$

where in the last inequality we again used Theorem 4. Summing these estimates over k completes the proof.

Acknowledgements. The authors thank Akira Sakai for helpful discussions about the problem addressed in Theorem 6. The authors also thank two anonymous referees for extensive and helpful comments on an earlier version of this manuscript.

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>

2172 **Data Availability** No data was generated in the course of the research described in this manuscript.

2173 **Declarations**

2174 **Conflict of interest** The authors have no conflicts of interest to declare that are relevant to the content of this
2175 article.

2176 **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and
2177 institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

2178 **References**

1. Aizenman, M.: On the number of incipient spanning clusters. *Nucl. Phys. B* **485**(3), 551–582 (1997)
2. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. *Commun. Math. Phys.* **108**(3), 489–526 (1987)
3. Aizenman, M., Burchard, A.: Hölder regularity and dimension bounds for random curves. *Duke Math. J.* **99**(3), 419–453 (1999)
4. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. *J. Stat. Phys.* **36**(1–2), 107–143 (1984)
5. Barsky, D.J., Aizenman, M.: Percolation critical exponents under the triangle condition. *Ann. Probab.* **15**(2), 1520–1536 (1991)
6. Ben Arous, G., Cabezas, M., Fribergh, A.: Scaling limit for the ant in high-dimensional labyrinths. *Commun. Pure Appl. Math.* **72**(4), 669–763 (2019)
7. Borgs, C., Chayes, J.T., Kesten, H., Spencer, J.: Uniform boundedness of critical crossing probabilities implies hyperscaling. *Random Struct. Algorithms* **15**(3–4), 368–413 (1999)
8. Chatterjee, S., Hanson, J.: Restricted percolation critical exponents in high dimensions. *Commun. Pure Appl. Math.* **73**(11), 2370–2429 (2020)
9. Damron, M., Hanson, J., Sosoe, P.: Strict inequality for the chemical distance exponent in two-dimensional critical percolation. *Commun. Pure Appl. Math.* **74**(4), 679–743 (2021)
10. Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. *Commun. Math. Phys.* **343**(2), 725–745 (2016)
11. Fitzner, R., van der Hofstad, R.: Mean-field behavior for nearest-neighbor percolation in \mathbb{Z}^d , $d \geq 10$. *Electron. J. Probab.* **22**, 1–65 (2017)
12. Garban, C., Pete, G., Schramm, O.: Pivotal, cluster, and interface measures for critical planar percolation. *J. Am. Math. Soc.* **26**(4), 939–1024 (2013)
13. Grimmett, G.: Percolation. Springer, Berlin (1999)
14. Hammersley, J.M.: Percolation processes: lower bounds for the critical probability. *Ann. Math. Stat.* **28**(3), 790–795 (1957)
15. Hara, T.: Mean-field critical behaviour for correlation length for percolation in high dimensions. *Probab. Theory Relat. Fields* **86**(3), 337–385 (1990)
16. Hara, T.: Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. *Ann. Probab.* **36**(2), 530–593 (2008)
17. Hara, T., Slade, G.: Mean-field critical behaviour for percolation in high dimensions. *Commun. Math. Phys.* **128**(2), 333–391 (1990)
18. Hara, T., van der Hofstad, R., Slade, G.: Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. *Ann. Probab.* **31**(1), 349–408 (2003)
19. Heydenreich, M., van der Hofstad, R.: Random graph asymptotics on high-dimensional tori. *Commun. Math. Phys.* **270**, 335–358 (2007)
20. Heydenreich, M., van der Hofstad, R.: Random graph asymptotics on high-dimensional tori II: volume, diameter and mixing time. *Probab. Theory Relat. Fields* **149**, 397–415 (2011)
21. Heydenreich, M., van der Hofstad, R.: Progress in High-Dimensional Percolation and Random Graphs. Springer, Berlin (2017)
22. Heydenreich, M., van der Hofstad, R., Hulshof, T.: High-dimensional incipient infinite clusters revisited. *J. Stat. Phys.* **155**(5), 966–1025 (2014)
23. Hutchcroft, T., Michta, E., Slade, G.: High-dimensional near-critical percolation and the torus plateau. [arXiv:2107.12971](https://arxiv.org/abs/2107.12971) (2021)

	220	4759	B	Dispatch: 23/7/2023 Total pages: 71 Disk Received <input type="checkbox"/> Disk Used <input type="checkbox"/>	Journal: Commun. Math. Phys. Not Used <input type="checkbox"/> Corrupted <input type="checkbox"/> Mismatch <input type="checkbox"/>
Jour. No	Ms. No.				

2223 24. Kesten, H.: A scaling relation at criticality for 2d-percolation. In: *Percolation Theory and Ergodic Theory*
 2224 of Infinite Particle Systems, pp. 203–212. Springer (1987)

2225 25. Kesten, H.: Scaling relations for 2d-percolation. *Commun. Math. Phys.* **109**(1), 109–156 (1987)

2226 26. Kesten, H., Zhang, Yu.: Strict inequalities for some critical exponents in two-dimensional percolation. *J.*
 2227 *Stat. Phys.* **46**(5–6), 1031–1055 (1987)

2228 27. Kesten, H., Zhang, Yu.: The tortuosity of occupied crossings of a box in critical percolation. *J. Stat. Phys.*
 2229 **70**(3–4), 599–611 (1993)

2230 28. Kiss, D.: Large deviation bounds for the volume of the largest cluster in 2d critical percolation. *Electron.*
 2231 *Commun. Probab.* **19**, 1–11 (2014)

2232 29. Kozma, G., Nachmias, A.: The Alexander–Orbach conjecture holds in high dimensions. *Invent. Math.*
 2233 **178**(3), 635 (2009)

2234 30. Kozma, G., Nachmias, A.: Arm exponents in high dimensional percolation. *J. Am. Math. Soc.* **24**(2),
 2235 375–409 (2011)

2236 31. Lawler, G., Schramm, O., Werner, W., et al.: One-arm exponent for critical 2d percolation. *Electron. J.*
 2237 *Probab.* **7**, 1–13 (2002)

2238 32. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents, I: half-plane expo-
 2239 nents. *Acta Math.* **187**(2), 237–273 (2001)

2240 33. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents. *Acta Math.* **187**(2),
 2241 275–308 (2001)

2242 34. Lyons, R., Peres, Y.: *Probability on Trees and Networks*, vol. 42. Cambridge University Press, Cambridge
 2243 (2017)

2244 35. Morrow, G.J., Zhang, Yu.: The sizes of the pioneering, lowest crossing and pivotal sites in critical perco-
 2245 lation on the triangular lattice. *Ann. Appl. Probab.* **15**(3), 1832–1886 (2005)

2246 36. Reeves, L., Sosoe, P.: An estimate for the radial chemical distance in 2d critical percolation clusters pp.
 2247 1–27. [arXiv:2001.07872](https://arxiv.org/abs/2001.07872) (2020)

2248 37. Sakai, A.: Mean-field behavior for the survival probability and the percolation point-to-surface connec-
 2249 tivity. *J. Stat. Phys.* **117**(1–2), 111–130 (2004)

2250 38. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. *Israel J. Math.*
 2251 **118**, 221–288 (2000)

2252 39. Schramm, O.: Conformally invariant scaling limits: an overview and a collection of problems. *Sel. Works*
 2253 Oded Schramm 1161–1191 (2011)

2254 40. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. *C.*
 2255 *R. Acad. Sci. Ser. I Math.* **333**(3), 239–244 (2001)

2256 41. van Batenburg, W.C.: The dimension of the incipient infinite cluster. *Electron. Commun. Probab.* **20**,
 2257 1–10 (2015)

2258 42. van den Berg, J., Conijn, R.: On the size of the largest cluster in 2d critical percolation. *Electron. Commun.*
 2259 *Probab.* **17** (2012)

2260 43. van der Hofstad, R., Járai, A.A.: The incipient infinite cluster for high-dimensional unoriented percolation.
 2261 *J. Stat. Phys.* **114**(3–4), 625–663 (2004)

2262 44. van der Hofstad, R., Sapozhnikov, A.: Cycle structure of percolation on high-dimensional tori. In: *Annales*
 2263 *de l’Institut Henri Poincaré, Probabilités et Statistiques*, vol. 50, pp. 999–1027. Institut Henri Poincaré
 2264 (2014)

2265 45. Werner, W.: Lectures on two-dimensional critical percolation. In: *IAS-Park City Mathematical Sciences*
 2266 **16**, pp. 297–360. Statistical Mechanics (2009)

Communicated by J. Ding

220	4759	B	Dispatch: 23/7/2023	Journal: Commun. Math. Phys.
Jour. No	Ms. No.		Total pages: 71	Not Used <input type="checkbox"/>
			Disk Received <input type="checkbox"/>	Corrupted <input type="checkbox"/>
			Disk Used <input type="checkbox"/>	Mismatch <input type="checkbox"/>