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Summary

Cells are complex biochemical systems whose behavior emerges from interactions among
myriad molecular components. Computation is often invoked as a general framework for
navigating this cellular complexity. However, it is unclear how cells might embody
computational processes such that theories of computation, including finite state machine
models, could be productively applied. Here, we demonstrate finite state machine-like processing
embodied in cells using the walking behavior of Euplotes eurystomus, a ciliate that walks across
surfaces using fourteen motile appendages (cirri). We found that cellular walking entails
regulated transitions between a discrete set of gait states. The set of observed transitions
decomposes into a small group of high-probability, temporally irreversible transitions and a large
group of low-probability time-symmetric transitions, thus revealing stereotypy in sequential
patterns of state transitions. Simulations and experiments suggest that the sequential logic of the
gait is functionally important. Taken together, these findings implicate a finite state machine-like
process. Cirri are connected by microtubule bundles (fibers), and we found that the dynamics of
cirri involved in different state transitions are associated with the structure of the fiber system.
Perturbative experiments revealed that the fibers mediate gait coordination, suggesting a

mechanical basis of gait control.

Introduction

Cells are complex physical systems controlled by networks of signaling molecules.
Single cells can display sophisticated, animal-like behaviors', orchestrating active processes far
from thermodynamic equilibrium in order to properly carry out biological functions*>. Indeed,
single cells can make decisions®, execute coordinated, directed movements’, solve mazes®®, and

learn'®!!, Such behaviors in animals arise from neural activity , but we know comparatively little
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about the mechanisms of cellular behavior, which emerge from a combination of chemical

13,14

reactions'?, cellular architecture?, physical constraints '*!'4, and interactions with the

environment'>. The involvement of information processing in cell state transitions suggest

16,17

cellular behavior can be understood as an embodied computation'®'’. The theory of computation

has often been invoked as a general framework for understanding cellular dynamics!'®!%19,

18,19 "and has been used to

environmental sensing by bacteria being a deeply studied example
engineer programmable cell states?. Ciliates display some of the most striking examples of
unicellular behavior, including hunting?, sensorimotor navigation?!, and predator avoidance??.

Spirotrichous ciliates of the genus Euplotes are notable for their complex locomotion?*=23

, using
bundles of specialized cilia (cirri) to walk across surfaces®>** (Figure 1A, Videos S1 and S2).
Depending on the species, these cells generally have 14 to 15 ventral cirri arranged in a
consistent pattern used for walking locomotion?®. Euplotes live in aquatic environments, and in
addition to walking, use their cirri for swimming and rapid escape responses?’ (Video S2). Oral
membranelles (Figure 1B) are also used for swimming and to generate feeding currents for
capturing bacterial and protistan prey. Early 20" century protistologists were so impressed by the
apparent coordination of cirri that they proposed the existence of a rudimentary nervous system,
the neuromotor apparatus, to account for their observations?. This theory was motivated by the
presence of tubulin-based?® intracellular fibers emanating from the bases of cirri (Figure 1C).
How can a single cell coordinate a walking gait without a nervous system? Coordination,
to the extent that it exists in the gait of Euplotes, requires dynamical coupling among cirri or
between cirri and some shared external influence. Although the walking movements of Euplotes
appear superficially similar to those of animals such as insects, the existence of stereotyped

sequences of appendage movements that define a gait is unclear. Recently, analytical techniques

from statistical physics have been used to understand mesoscale dynamics in biological systems,
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including cellular behavior*32%3°, by coarse-graining the complexity of biological dynamics into
states and analyzing the transitions among states. State representation allows us to ask whether
forward and reverse transitions among states are equal, a condition known as detailed balance*3!.
Systems that violate detailed balance operate in a non-equilibrium mode, display net probability
flows, and can produce directed cycles in state space*. Broken detailed balance has been
observed in the motility dynamics of cultured mammalian cells as well as the motility dynamics
of a freely behaving flagellate protist>?° and implies that non-equilibrium models are most
applicable to such systems?®’. Identification of broken detailed balance, therefore, highlights
dynamical stereotypy in terms of temporal irreversibility and can indicate active control of
biological dynamics.

When information processing drives patterns of state transitions, such a system can be
analyzed using automata theory, a fundamental level in the theory of computation®?33, We
hypothesized that walking cells might be governed by finite state automata with directed,
processive movement arising from reproducible, stereotyped patterns of state transitions. We
chose to focus on the relatively simple case of spontaneous linear walking, which might require
some form of information processing to coordinate the movements of cirri.

Here, we use time-lapse microscopy and quantitative analyses to show that Euplotes
eurystomus walks with a cyclic stochastic gait displaying broken detailed balance and exhibiting
elements of stereotypy and variability, in accord with a finite state automaton representation.

Results

A reduced state space is sufficient to describe walking dynamics

We analyzed the walking behavior of Euplotes eurystomus cells?’, during uninterrupted,
linear walking trajectories (Figure 2A,B, Video S1). Cells were observed by video microscopy at
33 frames/s in a focal plane at the cirrus-coverslip interface to clearly observe cirral dynamics

4
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(Figure 2A). The consistency of cirral position across cells allowed us to give each of the 14 cirri
an alphabetic label from a-n (Figure 2C). During walking, cirri move in a manner analogous to
the recovery stroke-power stroke cycle executed by many eukaryotic flagella, first lifting off the
substrate and sweeping close to the cell body before extending in roughly the direction of cell
orientation before sweeping downward to reestablish contact with the substrate?*** (Figure 2B,
Video S1). In each video frame, walking state was encoded as a 14-element binary vector, with
each element corresponding to a cirrus and receiving a value of “0” if the cirrus was in contact
with the coverslip and stationary and a “1” if the cirrus was in motion or had moved in the
preceding interval between frames (instances of stationary cirri held above the coverslip for a
sustained period of time were not observed). The trajectories of 13 cells were manually tracked
and annotated for a total of 2343 time points. This quantitative analysis revealed stepping-like
cirral dynamics: cirri tend to undergo rapid movements followed by longer periods of quiescence
(Figure 2D). Cirral dynamics seemed to lack any obvious patterns such as periodicity or
repeating sequences (e.g. Figure 2D), implying that the movements are generated either by
stochastic processes or complex deterministic mechanisms. This lack of periodicity (confirmed
by autocorrelation analysis, Figure S1) or fixed phase relationships between appendage
movements differs markedly from those of various unicellular organisms and the gaits of most
animals>-,

Despite the apparent complexity of cirral dynamics, we wondered whether there might be
some underlying pattern. We first sought to obtain a reduced state space that could accurately
describe the dynamics, as has proven successful in behavioral analysis of diverse living

2930.37.38 Because our ultimate goal was to identify motifs among the patterns of cirral

systems
activity, which entail strictly nonnegative values, we performed dimensionality reduction by

non-negative matrix factorization (NMF), a technique used to identify patterns in a wide range of
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other contexts*. NMF revealed the cirral states to be well-described by a three-dimensional
space (Figure 2E-G, see Method Details and Figure S1 for more details). Factors of the NMF
(H1, H2, H3) constitute the basis of the NMF space and correspond to non-overlapping, spatially
distinct groups of cirri (Figure 2H). These factors indicate features of cirral activity that in
various weighted combinations can be used to compactly represent all of the cirral activity
measurements. This dimensionality reduction of the gait state space arises in part from shared
pairwise mutual information among cirri (Figure 2I). Here, mutual information quantifies the
amount of information about the activity of one cirrus gained by measuring the activity of
another, and acts like a generalized measurement of correlation. Therefore, dimensionality
reduction by NMF reflects correlations in cirral activity.

Noting the apparent structure in the NMF space in the form of clusters of points (Figure
2E-G), we identified gait states by applying the density-based spatial clustering of applications
with noise (DBSCAN) algorithm*® to group the output of NMF into clusters with members of a
given cluster sharing similar patterns of cirral activity (see Method Details and Figure S1).
Although NMF can itself be used to define clusters, by clustering in two steps, NMF followed by
DBSCAN, we could use the visual observation of clustering in the NMF output to confirm
performance of the subsequent clustering step. Visual inspection in conjunction with silhouette
coefficient (a metric of cluster cohesion and separation) analysis revealed that 32 clusters
accurately captured the visible structure in the reduced state space without overfitting (Figure
2E-G, Method Details and Figure S1). These reduced gait states correspond to distinct patterns of
cirral activity (Figure 2J).

Euplotes walks with a cyclic stochastic gait
In order to relate the gait states identified in our cluster analysis to cell motility, we asked

how changes in the number of active cirri may relate to cell movement. Naively, one might
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expect that the force associated with locomotion is roughly proportional to the number of moving
appendages. Alternatively, velocity might inversely correlate with the net change in cirral
activity, which would be expected if stationary cirri were generating a pushing traction force as
in crawling animals. Our data supported neither expectation: cell velocity was only weakly
correlated with number of active cirri (R?>=0.03). Instead, the largest cell velocities corresponded
to small-to-moderate changes in the number of active cirri (Figure 3A). We hypothesized that
transitions between gait states must be important to driving the forward progression of walking
cells, and thus looked for active coordination in the observed gait dynamics.

To detect active coordination dictating gait state transitions, we calculated the forward
and reverse transition rates between states from the 1423 pairwise transitions in our dataset as
N;i/T where Nj; is the total number of transitions observed between states i and j, and 7 is the total
observation time (Figure 3B, see Method Details). Transition rate defined here is proportional to
the probability current J;; = Pikj; where P; is the probability of state i and kij is the conditional
transition probability analogous to a chemical reaction rate. The presence of strongly unbalanced
transitions such as from gait state 3 to 17 versus 17 to 3 suggested broken detailed balance, and
indeed, a number of forward and reverse transitions were found to be significantly unbalanced by
the binomial test (see Method Details). Unbalanced transitions can also arise in equilibrium
systems that have not yet reached steady state, in which case transition rates may change in time.
To test whether the gait operates at steady state, we checked whether the total number of
transitions into each state were balanced by total transitions out of that state: },; N;; = X.; Nj;.
Consistent with steady state dynamics, we found that this condition held to within a difference of
at most a single transition. Although there are cases where non-equilibrium state transitions can
nevertheless be balanced, or appear that way due to limited sampling, the presence of unbalanced

transitions existing as part of loops in state space unambiguously indicated non-equilibrium
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dynamics (see Method Details). To further understand the degree to which detailed balance was
broken, or, similarly, the distance from equilibrium, we calculated the entropy production rate®.
Following the procedure from Wan and Goldstein®, we obtained a lower bound estimate for an
entropy production rate of 0.4 nats, similar to the value reported for strongly non-equilibrium
gait transitions observed in a flagellate®. Walking Euplotes cells, therefore, have a non-
equilibrium gait, displaying temporal order in sequences of appendage movement, despite a lack
of standard gait periodicity.

We next sought to better understand the organization and sequential logic of this unusual
gait. First, we noted that gait state transitions appear constrained: only 322 of the 1024 possible
types of transitions were observed to occur at least once, and within this restricted set, only 173
occurred more than once (Figure 3C). We then grouped transitions into two categories: balanced
transitions, which satisfy detailed balance, and unbalanced transitions, which do not (see Method
Details). This partitioning allowed us to separately investigate unbalanced, non-equilibrium-like
and balanced, equilibrium-like transitions (Method Details, Figure 3D,E). We found that
unbalanced transitions occur at relatively high frequency but involve a small number of states
(Figure 3D). Only six of the 32 gait states are associated with unbalanced transitions (Figure 3F),
and among these states, three form a directed cycle following 2->3->17->2. We had expected
that unbalanced transitions might be associated with a “power stroke” (in the sense of occurring
simultaneously with cell movement) but found instead that high cellular velocities tend to be
associated with balanced transitions (Figure 3D,E) and that relatively few transitions
corresponded to substantial cell movement (Figure 3C).

Despite the presence of high frequency unbalanced transitions, the gait of Euplotes
involves highly variable trajectories through gait state space. The picture of walking trajectories

that emerges is one of stochastic excursions from gait state 1, a unique “rest state,” which
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involves no cirral movement (Figure 2J), into non-determinate paths through state space
involving a mix of balanced and unbalanced transitions. The majority of cell movement occurs
during infrequent, equilibrium-like (balanced) transitions leading both toward and away from
unbalanced transitions. We note here that although our coarse-graining procedure to identify gait
states does not constitute a unique representation of gait structure, we can be confident that our
analysis captures structure in gait dynamics, the presence of broken detailed balance in
particular. In general, coarse-graining of the state space of a system can obscure broken detailed
balance, but the net flux of transitions in the state space of a system should not arise in an
illusory fashion based on a coarse-graining procedure or partial observation of a system*!.
Additionally, we have chosen a coarse-graining procedure based on the properties of our
particular data and demonstrate its performance on simulated cirral dynamics with varying noise
and for the case of unpatterned, random cirral fluctuations (Figure S1, Method Details).

A natural question is whether gait state transitions are a "memoryless" or first-order
Markov process, such that transition probabilities are determined completely by the present state
with previous history contributing no additional predictive information*>*3. Several analyses (see
Method Details and Figure S1) suggested that Euplotes retains some memory of the prior
sequence of cirral movements during locomotion such that the gait may not conform to a
continuous- or discrete-time first-order Markov process.

Taken together, our analysis revealed a mixture of unbalanced transitions driving cycles
and balanced transitions arranged as networks, for which we propose to apply the term “cyclic
stochastic gait”. It has been argued that physical systems exhibiting such a mix of stereotypy and
variability can be viewed as performing computations®>#44 in the sense that the time-evolution
of the system is most compactly described as the result of a computational process involving

state transitions, memory, and decision rules.
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To better understand the sequential logic of the gait, we focused on the dominant
structure of gait transitions in terms of transition probabilities (Figure 3G, Method Details)
allowing us to derive a simplified representation of stereotypy in gait dynamics (Figure 3H). We
found that few states were the recipients of the majority of the highest probability transitions and
that many received no high probability transitions (Figure 3G). Additionally, we found a “cloud”
of states linked by low-probability balanced, equilibrium-like fluctuations. Nearly all of the
states receiving high probability transitions were either the three “cycle states” or else fed cycle
states with their highest probability transitions, with the majority feeding gait state 17. Although
gait state 1 is not the recipient of any individual highest probability transitions, we identified it as
the unique “start” state from which cells initiate walking. Beginning with this start state, cells
transition with high probability to gait state 2, also one of the highest frequency transitions and
the first state in the 2->3->17->2 cycle of unbalanced transitions. The sequence from the start
state through the cycle states corresponds to increasing amounts of cirral activity. Although the
highest probability transitions from the third cycle state to any single gait state tend to return to
the first or second cycle state with equal probability, cells in fact transition to the equilibrium
“cloud” of motility-associated states with overall higher probability. Return to the cycle states
tend to occur through various moderately high probability transitions from the motility state
cloud or through a restricted set of intermediate states. In conjunction with this set of transitions,
we also noted unbalanced transitions stemming from the cycle states to the motility state as well
as the presence of intermediate states from a given cycle state that subsequently feed the next
cycle state.

Altogether, the picture of stereotypical gait dynamics that emerges is of biased transitions
involving cycle states preceding relatively low probability, unbiased transitions associated with

substantial cell movement before returning to the start or cycle states and beginning the sequence
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again. We hypothesized that sequences involving the cycle states serve to establish
configurations of cirri necessary for cells to later transition between states from which substantial
forward progress of the cell is generated.

To better understand the functional significance of the sequential logic of the gait in
driving processive cell movement, we developed a simple model based on a coarse-grained
physical picture of cellular walking (Figure 3I). Briefly, we consider a 2D system where a cell
walks using its 14 cirri, which can exist in two states: moving or not moving. We modeled cirri
as producing constant force in the direction of cell orientation while moving, and resisting
displacement by acting as linear springs when not moving. Cell position and orientation is
defined in terms of the equilibrium positions of the cirri. For simulations, we used relative
positions of cirri taken from stationary cell measurements (Figure 3J). In each timestep of the
simulation, we calculated a cell displacement based on the sum of forces due to the cirri and
changes in cell orientation from the sum of torques (see Method Details). This simple model was
sufficient to reproduce the linear trajectories of walking cells when using the actual patterns of
cirral activity from walking cells (Figure 3K, Figure S2). When we ran simulations with either
the same gait states as those from actual cells but in a shuffled order or random cirral activity
with the same average cirral activity as actual cells, we found that path straightness significantly
decreased in the case of shuffled transitions (p=0.04 by Wilcoxon rank sum test) and scaled cell
velocity significantly decreased in the case of random activity (p=0.003 by Wilcoxon rank sum,
Figure 3K-0). Note that in both the case of shuffled transitions and random cirral activity, gait
state transitions satisfy detailed balance (Figure S2). These results suggest that the sequential
logic of the gait does indeed matter for producing linear walking.

The microtubule-based fiber system mediates gait coordination

11
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The complex yet sequentially structured gait patterns in conjunction with our simulation
results are consistent with the existence of some form of nontrivial gait coordination. What
physical machinery could embody the information processing required to generate the stochastic
cyclic state transitions seen during Euplotes’ walking? Since the early 1900s , the role of the
system of cytoskeletal fibers associated with cirri as conduits of information between cirri during
cellular locomotion, supported by microsurgical experiments, has been a dominant yet
contentious hypothesized mechanism of gait coordination*®47,

We reconstructed in 3D the microtubule-based fiber system of Euplotes associated with
cirri and lying just beneath the cell cortex?>2%. Upon inspection of our confocal reconstructions
of SiR-tubulin labeled cells (Figure 4A, Figure S3), we noted the presence of two
morphologically distinct classes of fibers, one thicker and linear and the other thinner, splayed,
and less linear, consistent with previous observations®>?® (Figure 1C). Fibers emanate from the
bases of all cirri, appear to intersect one another, and also intersect the cell cortex at various
points. Some cirri were found to be associated with only thick fibers, while others have both or
only thin fibers. Based on apparent fiber-fiber intersections and convergences, we found the fiber
system forms a continuous network between all cirri (Figure 4A,B).

Contrary to the long-standing standing hypothesis from the literature*, the functional
modules (groups of co-varying cirri) identified in our dynamical analysis were not exclusively
linked by dense fiber intersections (Figure 4A,B)?>>?%46_ In fact, connections between cirri are not
generally associated with any statistically significant difference in mutual information compared
to unlinked pairs of cirri (p=0.14 by Wilcoxon rank sum test, Figure 4C). However, information
flow became apparent when fiber-fiber links were grouped by type (i.e. thick to thick fiber, thick
to thin fiber, or thin to thin fiber). Under this grouping, we found that pairs of cirri associated

with only thick to thick fiber and only thin to thin fiber links have greater mutual information
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compared to those without links (Figure S3). Interestingly, we found that cirri nearby one
another and connected by fibers to similar regions of the cell cortex shared the most mutual
information (Figure 2C,G, 4D,E), suggesting that if the fibers play a role in cirral coordination,
coupling may also be mediated by mechanisms involving the cirrus and fiber-cortex interface.
Indeed, distances between pairs of cirri and cross nearest-neighbor distance between paired sets
of cirrus-cortex contact points both show significant Spearman correlations (-0.49, p<0.001 and -
0.62, p<0.001 respectively) to mutual information (Figure 4D,E). These correlations indicate that
mutual information between pairs of cirri tends to increase with proximity and also tends to
increase with similarity between fiber-cortex contact locations. Thus, the cirri with the highest
mutual information are those that are close together with similar fiber-cortex connections (Figure
4D-F).

Together, these observations suggest a mechanism of mechanical coordination in which
microtubule bundles allow groups of cirri to influence successive behavior of other groups of
cirri. When we perturbed the fiber system using nocodazole, a drug that affects polymerization of
microtubules, we found that treated cells walked along curved rather than straight trajectories
(Figure 5A,B, Video S3). In contrast to the effect of nocodazole, we found that the microtubule
stabilizer paclitaxel caused cells to walk along less convoluted trajectories compared to controls
(Figure 5C). Quantifying these effect in terms of a scaled path length (integrated path length
divided by the maximum radial distance traversed) we found that nocodazole significantly
decreased and that paclitaxel significantly increased the scaled path length of cells compared to
controls (Figure 5D). Nocodazole acted in a dose dependent and reversible manner (Figure 5D
and Figure S4). Actin inhibitors had no effect on motility (Figure S4). Next, we checked
whether nocodazole treatment had an observable effect on the fiber system. We found that fiber

length significantly decreased compared to controls in cells where microtubule polymerization
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was disrupted by nocodazole (Figure SE-G). Further, we were unable to detect the presence of
any thin fibers in four out of seven nocodazole treated cells used for fiber analysis. Of the three
cells with detectable thin fibers, we never observed connections between fibers associated with
cirri a, b, and ¢ and any other fibers. Additionally, we did not observe any thin fibers making
distal cortical contacts. When thin fibers were visible, connections appeared to be the same as
those in Figure 4A,B.

We then investigated how cirral dynamics were affected when microtubules were
perturbed. Following the gait annotation procedure detailed previously, we characterized the
walking dynamics of 6 nocodazole treated cells for a total of 1133 timepoints. Of those
timepoints, 681 corresponded to cirral configurations never observed in untreated cells with a
total of 391 new unique configurations. Projecting these new configurations onto the NMF space
we obtained previously, however, revealed that most of the cirral configurations in nocodazole
treated cells were near or within the clusters corresponding to the gait states we obtained from
untreated cells (Figure S4). This allowed us to map new cirral configurations onto the gait states
(see Method Details). New cirral configurations tended to skew towards more active cirri, and
we also noted the presence of a new cluster involving movement in all or nearly all cirri, to
which we assigned a new gait state (Figure S4). Mutual information between cirri was higher in
general, with many pairs of cirri sharing higher mutual information than the highest values
obtain in untreated cells (Figure SH, Figure S4). This increase in cirral activity and correlations
is consistent with the fibers playing a role in conveying inhibitory information during
unperturbed walking. In further support of this inhibitory role, we found that paclitaxel treatment
also caused an overall increase in mutual information of pairs of cirri (Figure SH).

Next, we investigated how the dynamics of gait state transitions were affected. Following

our previous analysis, we found that the structure of state transitions differed greatly from that of
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323 unperturbed cells. Gait state transitions of cells with perturbed fiber systems exhibited less

324 broken detailed balance and closer to equilibrium-like dynamics as indicated by an entropy

325 production rate of 0.1 nats (compared to 0.4 nats in the unperturbed case), including the loss of
326 the unbalanced, cyclic transitions (Figure S4). Figure 5I summarizes the change in the structure
327 of gait state transitions including changes in broken detailed balance, reduction in transitions

328 toward the states previously involved in cyclic transitions, and the reduction in the occupancy of
329 states associated with the cloud of states involved in substantial cell movement, with only 10 of
330 the original 21 cloud states sampled. Many of the new highest probability transitions feed gait
331 state 18 (Figure 51, Figure S4), which involves nearly exclusive activity in cirri f and g located
332 close to one another at the edge of the cell. A persistent bias toward activation of these cirri,

333 farthest from the central axis of the cell, may in part explain the increase in turning in

334 trajectories. These results, together with the fact that cell velocities were indistinguishable from
335 control conditions (Figure S4) are consistent with predictions from simulations in which

336 shuffling the order of gait state transitions reduced processivity without affecting speed (Figure
337 3N,0).

338 The increase in mutual information between cirri under disrupted gait coordination is due
339 to more frequent joint activation or synchronous movements among cirri, and thus stems from
340 reduced complexity of gait dynamics. For a complementary perspective linking these changes in
341 gait dynamics to an underlying computational process, we applied the Causal State Splitting

342 Reconstruction (CSSR) algorithm to construct e-machines corresponding to walking cells*?#. e-
343 machines are automaton models consisting of a set of causal states with transitions between them
344 and represent the minimal model consistent with accurate prediction of a stochastic process??.
345 The causal states of an e-machine indicate how the process from which it is constructed stores
346 information, and state transitions indicate how the process transforms information®2. We found

15



347 that e-machines constructed from the cirral activity of untreated cells tended to be similar to one

348 another and were more complex in terms of having more causal states and transitions than those
349 constructed from nocodazole treated cells, which also tended to be similar to one another (Figure
350 S5, Method Details). This reduction in complexity may reflect reduced computational capacity of
351 the nocodazole treated cells.

352 As a final additional test of the role of the fibers in mediating gait coordination, we

353 revisited historical microdissection experiments. Although Taylor's 1921 microdissection

354 experiments indicated a role of the fiber system gait coordination*®, a subsequent study failed to
355 observe disrupted coordination among cirri upon bisection of cells*’. Importantly, neither of
356 these reports involved analysis of walking behavior. We performed microdissections on cells
357 using pulled quartz microneedles, severing cells transversely just in front of cirrus h, ensuring
358 that we had severed all fibers associated with cirri j-n (Figure 5J,K). Similar to previous reports,
359 we found that cell fragments regained spontaneous cirral activity after a brief recovery period.
360 After 24 hr, we found that anterior portions of cells began to exhibit spontaneous walking

361 activity (Figure SK,L, Video S4), which persisted for up to 72 hrs. Although these fragments
362 could walk, they followed circular trajectories reminiscent of nocodazole treated cells except in
363 the reverse direction (Figure 5L, Video S4). We found significantly higher mutual information
364 shared between cirri indicating more synchronous cirral activity compared to merely wounded
365 cells, which displayed apparently normal motility (Video S5) or unperturbed cells (p<0.001 in
366 both cases by Wilcoxon rank sum test), which displayed values consistent with one another

367 (Figure SM). As with the microtubule inhibitor experiments, these results are consistent the

368 fibers playing an inhibitory role in gait coordination.

369 Discussion
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Traditionally, studies of computational processes in cells have focused on combinatorial
logic, where a molecular network generates an output that depends only on the current input
16,1819 We have focused on sequential logic, where outputs depend on the system state as well
4950 " Automata theory, using finite state machine models based on sequential logic, provides
tools for understanding structure and stereotypy in transitions between dynamical states,
increasingly appreciated as features of the behavior of eukaryotic cells. Related approaches for
coarse-graining complex dynamics have revealed simplicity and stereotypy in the behavior
patterns of various organisms>>-37-3831 Although there are examples of locomotor coordination
reminiscent of the stochastic, non-equilibrium gait dynamics of Euplotes in other cells and

animals>2%-32

most appendage-based locomotor systems employ stereotyped, determinate patterns
of activity”-33-3%, In the run-and-tumble motility in E. coli** or analogous behaviors observed in
protists>*3 motility can be described by equilibrium processes’, in contrast to the non-
equilibrium character of the gait of Euplotes.

We propose that in Euplotes, biased, actively controlled cyclic transitions store stress, in
certain cirri, and the spontaneous release of these cirri from the substrate, during a series of
unbiased gait state transitions, allows the cell to move forward. Return to the cycle states reset
this process by winding up the system for continued, proper cell movement. Disruption in this
resetting may lead to defects in walking as shown by simulations (Figure 3K-O, 5) and
experiments (Figure 5B,D,I, Video S3). Our proposed mechanism is consistent with previous
observations of cyclic velocity fluctuations in the trajectories of walking Euplotes®.

The results of experiments perturbing the tubulin-based cytoskeletal fiber system are
consistent with its role in mechanically mediating communication both among cirri and between

cirri and the cell cortex (Figure 4,5). We conjecture that movement of cirri relative to one

another can establish tension in the fiber system and that the tension state of fibers associated
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with each cirrus may then modulate cirral activity in a manner reminiscent of basal coupling in
flagellates'®. Microtubules can respond directly to mechanical forces inside cells®®, and may be
involved in more complex signal transduction pathways>’*%. Our results show that perturbation
of the microtubule fiber system shift the gait of Euplotes from a regime of asynchronous yet
coordinated movement to a dysregulated regime with synchronous yet improperly coordinated
movement. Our work lays a foundation for studying sensorimotor behavior in Euplotes, which
will shed light on principles of cellular behavior. Because biological function often emerges from
the productive management of stochastic fluctuations, we expect our conceptual and analytical
approaches may apply to the behavior of other living systems that produce directed or sequential

behavior from random molecular processes.
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Figures

Figure 1. Euplotes cell architecture. (A) Euplotes eurystomus cell in profile showing
ventral cirri, used for walking locomotion (arrowhead indicates a single cirrus ). Scale bar 10
um. (B) Euplotes cell, viewed from the ventral surface, highlighting the complex, asymmetric
structure . Notable features include the cirri (ci) and the membranellar band (m), wrapping from
the top of the cell to the center, which is used to generate a feeding current to draw in prey items.
Drawing adapted from*>® via Wikimedia Commons. (C) A drawing of a Euplotes cell,

highlighting the fiber system associated with the cirri. Adapted from .

Figure 2. Euplotes walking described in a discrete, reduced state space with gait
states corresponding to patterns of cirral activity. (A-A’"), Movements of cirri during walking
locomotion visualized by brightfield microscopy. Three snapshots depict time points during a
walking trajectory, white arrowheads indicate cirri. In the panels from left to right, the cirrus
indicated by the left arrowhead is stationary, stationary, and then moving, and the cirrus
indicated by the right arrowhead is stationary, moving, and then stationary. Scale bar 15 um. (B)
Trajectory of a cell walking across a coverslip. (C) Scheme for encoding cirral dynamics during
walking as a 14-bit binary vector. Each entry is either O if the cirrus is not moving and in contact
with the coverslip or 1 if the cirrus is moving. Scale bar 15 pm. (D) Representative visualization
of encoded cirral dynamics for a single trajectory, corresponding to trajectory in panel E. White
denotes 1 and black 0. (E-G) Three roughly orthogonal views of cirral dynamics, encoded as in
panel E using NMF, from 13 cells over 2343 timepoints . Axes correspond to the components of
the NMF (H1, H2, H3), each point is one timepoint. Randomized colors highlight the 32 clusters
identified using DBSCAN “°, These clusters constitute gait states corresponding to unique
configurations of cirral activity. (H) Magnitudes associated with each cirrus for distinct
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components of the NMF . The depiction of a cell including the positions of cirri has the same
color map as the plot above and shows the grouping of the cirri corresponding to each NMF
component. (I) Heatmap of mutual information between all pairs of cirri showing correlations in
cirral activity corresponding to the NMF components displayed in panel H. (J) Heatmap
representation of cirral activity associated with each gait state. Values for each cirrus are the

mean over all instances of the gait state. See also Figure S1, Video S1, and Video S2.

Figure 3. Cyclic stochastic gait exhibiting broken detailed balance, stereotypy, and
state machine-like dynamics. (A) Mean net change in cirral activity versus the net scaled cell
velocity associated with all transitions between the 32 gait states identified in Figure 2 shows
that the change in number of active cirri is not strongly correlated with cell velocity (R?>=0.03). .
(B) Transition matrix of gait state transitions, with rows representing the starting state and
columns indicating the ending state, exhibits broken detailed balance. (C) Directed graph
representation of gait state transitions. Nodes correspond to the 32 gait states, with node sizes
scaled by proportion of total time cells spent in each state. Arrows between nodes (directed
edges) signify state transitions. Arrow size is scaled by transition rates as in panel b. Edge color
represents scaled cell velocity, as in panel A, according to the indicated color scale. (D) A subset
of transitions visualized as in panel C shows restricted and relatively high frequency of
unbalanced, non-equilibrium-like transitions. Only transitions that were observed to happen more
than one time and exhibiting a significant difference between forward and reverse transitions
(p<0.05 by binomial test, see Method Details) are displayed. (E) A subset of transitions,
similarly to panel D, except that only the balanced transitions, lacking a significant difference
between forward and reverse transitions (p<0.05 by binomial test) are displayed, also show a

complex and widespread structure, this time of balanced, equilibrium transitions. (F) Examples
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illustrating spatial organization of cirral activity corresponding to gait states. These gait states
are involved in unbalanced transitions. (G) Heatmap of transition probabilities between states,
showing only the most probable transitions from a given state with all others set to zero. In cases
where multiple state transitions from a state were tied for the highest probability, all of these
transitions are displayed. (H) A representation of functional states and transitions between them
highlights the state machine-like nature of the gait of Euplotes. Gait states are represented as
colored circles with numerical labels. Blue represents states that are both recipients and sources
of unbalanced transitions as identified in panel D and constitute the three cycle states. Red
represents states that are recipients but not sources of unbalanced transitions as identified in
panel D. Black corresponds to gait states that are associated only with balanced transitions as in
panel E. Arrows represent the highest probability transitions between the states, including
compound functional states composed of multiple gait states (dark gray blob and blue
background) as well as unbalanced transitions with size scaled by their proportional probability
compared to all other transitions emanating from the source functional state. Diagrams depict
walking cell in profile with cirri in a configuration corresponding to the functional state. (I)
Diagram summarizing of our model of a walking cell. (J) A plot of the relative average resting
cirral-surface contact positions measured from the 13 cells used for gait analysis, which were
used for all simulations and define simulated cell position and orientation. (K) Simulated
trajectory of walking cell using experimentally recorded cirral activity. (L) Simulated trajectory
using experimentally recorded cirral activity but in shuffled order. (M) Simulated trajectory
using random patterns of cirral activity with the same average level of cirral activity and the
same number of timesteps as in panels K and L. (N) Path straightness measured from simulations
using experimentally measured cirral activity (Actual), this activity in a randomly shuffled order

(Shuffle), and randomly generated cirral activity with the same average cirral activity as actual
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patterns (Random). Asterisk indicates p=0.04 by the Wilcoxon rank sum test. (O) Scaled cell
velocity for the simulations described for panel k predicts that the gait states are responsible for
generating cell velocities as indicated by decreased scaled cell velocity for random patterns of
cirral activity. Scaled velocities were averaged over each cell trajectory. Three asterisks indicates

p<0.001 by the Wilcoxon rank sum test. See also Figure S1 and Figure S2.

Figure 4. Fiber system structure correlates with dynamical associations between
cirri. (A) SiR-tubulin labeled cell (faint, dark blue) imaged by confocal microscopy . Two
morphologically distinct classes of fibers, one thick and linear and the other thin and curving are
indicated by cyan and magenta respectively (see Figure S3 for more image data). The base of
each cirrus is indicated by corresponding letters (as in Figure 2C). Gray shading indicates
dynamical groups identified by dimensionality reduction and follows the same color scheme as
in Figure 2H. Scale bar 10 um. (B) A graph representation of fiber-fiber connections . Nodes
correspond to the cirri to which each fiber system is associated, and edges indicate connections
between fiber systems. Colors of nodes and colors of edges indicate the same groupings as panel
A. (C) Mutual information between all pairs of cirri grouped by the absence (Not linked) or
presence (Linked) of associated fiber-fiber connections. Statistical significance was evaluated by
the Wilcoxon rank sum test. Note that when pairs of cirri were grouped by fiber-fiber connection
type, we did observe a significant increase in mutual information (see Figure S3). (D) Mutual
information as a function of inter-cirrus distance displays negative correlation, with a Spearman
correlation coefficient of -0.49 (p<0.001). Plotted values are defined with respect to pairs of cirri.
(E) Mutual information as a function of fiber-cortex contact distance grouped by fiber type
similarity and lack thereof displays negative correlation, with a Spearman correlation coefficient

of -0.62 (p<0.001) for pairs of cirri with similar fiber types and no significant correlation for
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those with dissimilar fiber types. Fiber-cortex contact difference imeasured by the mean cross

nearest neighbor distance (see Method Details) for all fiber-cortex contact points associated with
each cirrus. (F) Fiber-cortex contact difference versus inter-cirrus difference (as in panels D and
E) illustrating that nearby cirri tend to have similar associated fiber-cortex contacts, highlighting

that nearby cirri with similar fiber-cortex contacts share the most mutual information.

Figure 5. The microtubule fiber system of Euplotes mediates gait coordination. (A-
C) Representative cell motility trajectories in control (A), nocodazole treated (B), and paclitaxel
treated (C) cells highlight the curved and curled trajectories of cells treated with the microtubule
polymerization inhibitor nocodazole and smoother, less convoluted trajectories in cells treated
with the microtubule stabilizer paclitaxel. Different colors represent the trajectories of different
cells. Scale bar is 500 um. (D) Nocodazole affects motility in a dose dependent and specific
manner. Scaled path length decreased with increased nocodazole concentration. Paclitaxel,
which stabilizes microtubules, increased scaled path length compared to the control. Trajectories
of at least 20 cells were analyzed for each condition. The black bars are median values. A single
asterisk indicates p<0.05, and a double asterisk indicates p<0.005, as computed by a Wilcoxon
rank-sum test. (E,F) Representative images illustrating effect of nocodazole on the fiber system.
Images are maximum intensity projections of confocal z-stack images of cells labeled by SiR-
tubulin. Scale bar 20 um. (G) Nocodazole treatment shortens fibers compared to controls. Nine
cells analyzed for each condition. Black bars are median values. A single asterisk indicates
p<0.05 as computed by a Wilcoxon rank-sum test. (H) A plot of mutual information of all pairs
of cirri shows that nocodazole and paclitaxel change the distribution of mutual information
compared to untreated cells. The data for untreated cells is from Figures 2 and 3. Nocodazole

treatment was 0.2 uM, and 6 cells over 1133 timepoints were analyzed. Paclitaxel treatment was
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0.02 uM, and 6 cells over 441 timepoints were analyzed. Three asterisks indicate p<0.001 as
computed by a two sample Kolmogorov-Smirnov test. (I) A representation of the changes in the
nature and organization of functional states as well as transitions between them highlights the
effects of nocodazole treatment. This panel is partially adapted from Figure 3H and was
produced by following the same analysis procedure. Any functional state and transition depicted
in Figure 3H no longer observed under nocodazole treatment appear faded. Dark arrows
represent new highest probability transitions associated with the states. Outer colors of nodes
denote the type or absence of broken detailed balance associated with the gait state for untreated
cells while the core color represents that for the treated cells. Node colors follow those in Figure
3H. The reduction in size of the black blob indicates a reduction in gait states associated with this
functional state. (J) Diagram illustrating location of microsurgical cuts (dashed gray line). (K)
Representative image showing a recovered bisected cell and a fully intact, unperturbed cell for
reference. Scale bar 50 um. (L) Manually tracked trajectory of a walking, bisected cell
illustrating unsteady, curving cell movement. (M) Mutual information of all pairs of cirri h-n for
unperturbed, wounded, and bisected cells . Three asterisks indicate p<0.001 from two sample
Kolmogorov-Smirnov test. Data for unperturbed cells are from Figure 2, data for wounded and
bisected conditions involved 10 cells over 1308 timepoints in the case of the wounded cells and

1815 timepoints for bisected cells. See also Figure S4, Figure S5, and Videos S3-S5.
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STAR Methods

Resource Availability

Lead contact

Further information and requests for resources, data, and code should be directed to and will be
fulfilled by the lead contact, Wallace F. Marshall (wallace.ucsf@gmail.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data reported in this paper will be shared by the lead contact upon request.

All original code has been deposited at GitHub and is publicly available as of the date of
publication. DOIs are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.

Experimental Model and Subject Details

Cell lines

Cultures of Euplotes eurystomus were obtained from Carolina Biological Supply Company (Item
#131480) and were kept at room temperature under ambient light conditions.

Cell husbandry

Individual cells were isolated from cultures, which contained other protists and
meiofauna, by pipetting and placed in non-treated 6-well plates (Thermo Fischer Scientific 08-
772-49) containing spring water taken from cultures. Cells were kept in wells for no longer than
five days before imaging, and if cells were to be kept for longer than 48 hours, wells containing
cells were supplemented with 1% Cereal Grass Medium®! (Thermo Fisher Scientific S25242) to
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prevent depletion of prey bacteria and otherwise maintain Euplotes under constant growth

conditions.

Method Details

Live cell brightfield microscopy

Cells were concentrated by centrifugation (500xg for 5 min) and resuspended either in
0.5 mL of spring water in coverglass bottomed FluoroDishes (World Precision Instruments
FD35-100) or in 0.2 mL spring water on a coverslip (FisherScientific, 12-545-D) for imaging.
No more than three cells were kept in 0.5 mL imaging samples and only one cell was ever kept
in 0.2 mL imaging samples in order to minimize cell-cell interactions. Cells were observed to
exhibit spontaneous walking activity on coverglass. Walking cells in FluoroDishes were imaged
under brightfield illumination using a Zeiss Z.1 Observer and Hamamatsu Orca Flash 4.0 V2
CMOS camera (C11440-22CU) with a 20x, 0.8 NA Plan-Apochromat (Zeiss) objective. Cells on
coverslips were imaged under brightfield illumination with coverslips inverted over a well
containing a small amount of distilled water to reduce evaporation using a Zeiss Axio Zoom.V16
and a PCO pco.dimax S1 camera. Importantly, in both imaging systems, the focal plane was set
at the interface between cirri of walking cells and the glass surface upon which they were
walking. Images were acquired at 0.033 seconds per frame with a 0.005 second exposure in order

to capture all cirral dynamics during walking with minimal blur.

Quantification of walking dynamics

Movies of walking cells were viewed using FIJI®2, Movement of cirri, or lack thereof was
clearly visible in each movie frame (see Figure 2A and Video S1). The dynamical state of each

cirrus in each movie frame was manually annotated. For each frame, each cirrus received a label
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of “1” if the cirrus was in motion and “0” if the cirrus was not moving and in contact with the
coverslip. Motion of cirri was evident in terms of a change in cirrus shape or tip position often in
addition to blur due to motion during image acquisition or position out of the focal plane (see
Figure 2A and Video S1). While only slowly walking cells were recorded, sometimes cells
nevertheless exhibit brief, spontaneous departures from slow walking during the course of movie
acquisition. Any frame in which the movement of the cell and/or cirri were too fast to be
resolved, such as during spontaneous escape responses?’ (Video S2), was excluded from analysis
such that some videos were split into a number of separate continuous sequences. Thus, each
movie frame associated with a particular time point in the walking trajectory, with the exception
of those excluded from analysis as described, yielded a corresponding 14-element binary vector
encoding the motility state of the cell in terms of the movement of cirri. Cell movement was
tracked using the manual tracking feature of the TrackMate plugin in FIJI®*. The center of each
cell was used as the reference feature for tracking. We analyzed the walking dynamics of 13

different cells.

Dimensionality reduction

Dimensionality reduction was performed by non-negative matrix factorization (NMF)
implemented in MATLARB release 2019b (Mathworks, Natick). NMF was chosen as a
dimensionality reduction technique to allow us to obtain a reduced, sparse, and interpretable
representation of walking dynamics. Because NMF derives non-negative factors, the basis
vectors in NMF space correspond straightforwardly to patterns of cirral activity. NMF involves
factoring data, 4, an n by m matrix, into non-negative factors W, an n by k matrix, and H, a k by
m matrix where the product W*H approximates 4. To determine the appropriate number of

dimensions or rank, k, that are necessary to accurately represent the data without overfitting, we
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performed cross-validation by imputation with random holdouts®*, also implemented in
MATLAB. We randomly held out 15% of our walking dynamics data, performed NMF for a
given k, and then used the NMF reconstruction W*H, to update the missing data entries. This
process of updating is known as imputation, and we repeated the imputation process 50 times, by
which point the imputed values had stabilized, to obtain a final NMF reconstruction. We then
computed the root mean squared residual (RMSR) between the final NMF reconstruction, W*H,
and our dataset, A. We performed this entire process 100 times for each value of k. As is
generally the case for NMF, we observed a monotonic decrease in reconstruction error with
increasing k without performing the imputation procedure (Figure S1). In contrast to this trend,
we observed an increase in RMSR of imputed values with increasing & indicating overfitting
(Figure S1). We chose £=3 because this value was the highest value before a notable increase in
imputation error (Figure S1), which would indicate overfitting®*. Thus, our choice of rank 3
selects the lowest rank approximation that captures structure of the dataset without overfitting
that structure. Further, our choice facilitated the visual inspection of the structure of data in the
reduced dimensional reconstruction.

Finally, we noted that for our chosen value of %, due to the stochastic nature of the NMF
algorithm, which involves a random initialization step, we obtained slightly different solutions
for different iterations®®. In order to choose the best reduced dimensional approximation,
therefore, we performed NMF 500 times and chose the particular solution corresponding to the

lowest RMSR compared to our dataset.

Clustering

Clustering on the dataset obtained using NMF was performed by density-based spatial

clustering of applications with noise (DBSCAN) algorithm *° implemented in MATLAB release
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2019b (Mathworks, Natick). Structure in NMF space was clearly visible (Figure 2E-G), and
DBSCAN using a Euclidean distance metric, was initially chosen as a clustering method because
it yielded qualitatively good partitioning of the data. The DBSCAN algorithm involves stochastic
search within neighborhoods of a given radius € around datapoints, and points with a minimum
number of neighbors, n, within their neighborhood are grouped as belonging to the same cluster,
leaving two free parameters to determine. We set € by first using the
clusterDBSCAN.estimateEpsilon function in MATLAB (release 2020b, Phased Array System
Toolbox), which yielded a value of 0.15. We next set about determining the minimum neighbor
number, n. To do so, we computed the average Silhouette coefficient, a commonly used measure
of clustering quality that indicates how well-separated clusters are, for various values of n. The
results of this analysis are plotted in Figure S1. Higher Silhouette coefficients indicate better
clustering, and we found that a value of n=8 maximized the mean Silhouette coefficient (Figure
S1). We also noted, however, that for this value, many datapoints were found to be outliers, not
belonging to any cluster due to having too few points within a distance of €. Figure S1 displays
percentage of datapoints found to be outliers as a function of n. In order to avoid categorizing
more than 5% of datapoints as outliers, we chose to settle on n=4, which does not have a
significantly different mean Silhouette coefficient compared to any of the others in the range
n=2-7. This choice was further supported by the fact that major clusters involving more than 5
datapoints identified with n=8 were also identified with n=4.

Although this set of parameters gave qualitatively and quantitatively reasonable
clustering results, we sought to further refine our clusters and to further reduce the outlier
datapoints. We noted the obvious partitioning of the NMF dataset into three groups along the H2
axis (Figure 2E). We found the previously determined parameter values to yield good clustering

for the top and middle partitions (H2>1.1 and 0.2<H2<1.1), with no outliers. For the lower
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partition (H2<0.2), however, we found that we were able to improve clustering by using
€=0.1182. With this updated value, we found no statistically significant change in Silhouette
coefficient and reduced outliers to 0%. The clusters obtained by this process constituted the
identification of the 32 gait states. We note here that the problem of determining the true or
optimal number of clusters is an unresolved problem®, and we note that we have followed
standard methods to determine cluster number, and we found that our key results do not depend
sensitively on the precise number of clusters identified (see following section and Figure S1 for

more details).

State transition analysis

Following dimensionality reduction and clustering to identify gait states, we proceeded to
characterize state transition dynamics. For each cell trajectory, we identified all unique gait state
transitions for a total of 1423 unique pairwise transitions over the cumulative 2343 video frames
for 77.14 s of recording. We computed empirical transition rates between states as the total
number of observed transitions divided by the total time of observation. In order to determine
which transitions were balanced and which were unbalanced, we followed Chang and Marshall*,
and performed binomial tests of statistical significance. Assuming a system at equilibrium, with
all transitions obeying detailed balance, we expect to observe some deviation from exactly
reciprocal transitions and can calculate the probability of observing a given set of ratios given
underlying probabilities of forward and reverse transitions. The binomial probability of

observing a set of transitions with known forward and reverse probabilities is given by

n -
P(X = f) = (f) p/[orwardp;levferse
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where ( f) =7 (:;f)' is the number of combinations, fis the number of forward transitions, 7 is

the total number of transitions (such that n-fis the number of reverse transitions), and the
probabilities prorwara and Preperse are the forward and reverse probabilities. Considering only
the set of transitions involving a specific pair of states, and calculating the probability that a
transition between those states is either in the forward or reverse direction, the values of forward
and reverse probabilities in the balanced case must be equal such that psorwara = Dreverse = 0.5.
With an a level of 0.05, we then considered reciprocal transition pairs with binomial
probabilities less than 0.05 to be significantly unbalanced. Figure S1 displays the binomial
probabilities associated with all transitions.

To further illustrate the non-equilibrium or temporally irreversible character of gait state
transitions, we apply the Kolmogorov criterion, which specifies the necessary and sufficient
condition for reversibility that the product of transition probabilities traversing any closed loop in
state space must equal the product of the transition probabilities in the reverse direction™®. Due
to the presence of unbalanced transitions, the gait of Euplotes clearly violates this condition; for
example, k12k23k3,17k17,1 = 0.003 # k1,17k17,3k3,2k2,1 = 0.0005, where each £;; is the conditional
probability of transitioning from state i to state j estimated as N;/N; with N; the total number of
transitions from state i.

In order to calculate the estimated entropy production rate, we followed Wan and
Goldstein®, where the entropy production rate is defined as

o1
S=3 Z JijAij
i%)

with conjugate fluxes J;; = p;k;; — pjk;; and forces 4;; = In (Zlﬁ) where the p; are the
Jht

probabilities of being in state / at steady state and the k;; are the transition probabilities from
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states 7 to j. We estimate the state occupancy probabilities p; as , where T; is the amount of

Total

time spent in state / over all trajectories and Tr,¢4; 1s the total recorded time, and the transition

probabilities k;; as TU’ where Nj; is the total number of observed transitions from state i to state ;
i

and N; is the total number of transitions emanating from state i. To avoid k;; = 0 for pairs of

. . .. . . 1
states for which we did not observe any transitions during our experiments, we let kj; = 0T
jimax

where Ty,q, = 238 is the maximum number of observed transitions for any single recorded
walking trajectory.

In the course of our state transition analysis, we also checked whether the waiting times
between instances of each state might be non-exponentially distributed, with exponential
distributions indicative of an embedded Markov process or possibly self-organized criticality®’.
Using the Lilliefors test implemented in MATLAB, we found that in general, waiting times were
not exponentially distributed, although states 2, 3, 6, 16, 17, 18, 25, 27, 28, 32 were found to
have waiting times consistent with exponential distributions with Benjamini-Hochburg corrected
p-values of 0.046, 0.046, 0.022, 0.008, 0.046, 0.017, 0.046, 0.0081, 0.0046, 0.0046 respectively.
Interestingly, none of the waiting times between the movements of individual cirri were found to
be consistent with exponential distributions. These results are consistent with mechanisms
constraining the temporal dynamics of cirri and state transitions.

In order to begin evaluating whether state transitions obeyed the Markov property for a
discrete-time, first-order Markov process, where the transition probabilities from one state to the
next are completely determined by current state*?, we estimated the transition matrix for walking

dynamics, consisting of the transition probabilities between all states. We estimate the transition

2k Nik

probability from state i to state j as k;; = such that }’; k;; = 1. The entries of the transition

matrix, P, are these transition probabilities with indices i for rows and j for columns. If gait state
33



750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

transitions obeyed the Markov property, we expect that the product of the transition matrix with
itself, P2, would be equivalent to the two-step transition matrix where transition probabilities are
computed as before except that state j is the state to which i has transitioned after an intervening
transition. Figure S1 displays the results of this analysis showing that the two matrices show
some quantitative and qualitative differences. Although these results strongly suggest violation
of the Markov property, we applied the Billingsley test for a more statistically rigorous
evaluation®®%®, This test was implemented and performed in MATLAB. The Billingsley test

gives a y? metric with M?-2M degrees of freedom given by

2
M
(Nij-RyZH Ny)
M B
RijXj=1 Nij

M M
i=1 Zj=1

where R;;, the independent trials probability matrix, is given by

s
Rij = Yi=1 N/ (Ch=1 X1%1 Nni — Yk=1 Nix). Applying this test to our gait state transition data,
we found that the null hypothesis that the gait conforms to a first-order discrete time Markov
process was rejected (p=0.005).

Importantly, we also noted that the key qualitative results of our state transition analysis
are robust to the details of clustering results. In particular, we find that strongly unbalanced
transitions and violation of the Markov property exist for a range of clustering parameters.
Figure S1 displays the transition matrices for different clustering results.

To arrive at the simplified, state machine representation of the gait, we focused on the
highest probability transitions emanating from each state. Transition probabilities were estimated
as ki (as defined above). This allowed us to prune away rare transitions in order to reveal the
dominant structure of gait state transitions. Figure 3G displays the pruned transition matrix as a

heatmap. We found that relatively few states were the recipients of the majority of high

probability transitions, and many states received none. To more clearly visualize the structure of
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transitions, we grouped together all gait states receiving no more than one unique high
probability transition based on the idea that state transitions into this group show little bias in
terms of source state, and within the group, transitions between states exhibit low probability,

time unbiased, equilibrium-like fluctuations.

Biophysical model and simulations

For our simple biophysical model, we consider a 2D system in which a Euplotes cell is
walking across a surface in a low Reynolds number environment’. The cell has 14 cirri, which
exist in one of two states: actively moving or not actively moving, following our quantitative gait
characterization. Cell position and orientation is defined in terms of equilibrium position of the
cirri. Cirri can generate a motive force to drive cell motility when moving and resist
displacement when not moving and in contact with the surface. For our model, we remain
agnostic to the details by which cirri produce generate force noting only that in our experiments,
no cell displacement was observed when cirri were not moving and in contact with the coverslip.
We therefore let cirri generate a constant force in the direction dictated by cell orientation when
moving. We conceptualize the resistance to displacement of unmoving cirri as stemming from
the adhesive interaction between the cirrus and the substrate on which the cell is walking and the
energy required to bend or deflect a cirrus. Consistent with experimental observations, we do not
allow for translation of a cirrus-substrate contact point while a cirrus is not actively moving.

For a particle moving through a fluid at low Reynolds number, such as our cell, velocity

v will be given by

12

- X
V="
14
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where ) F is the sum of the external forces acting on the particle, and y is constant related to the
geometry of the particle and the viscosity of the fluid’! accounting for drag. In our model, cirri
are responsible for the forces involved in motility, so Y, F= Fa + Fl with the motive force ?a =
nF,0 where n is the number of active cirri, F, is the magnitude of the constant force generated by
active cirri, and 0 is the unit vector in the direction of cell orientation, and the resistive force E =
i kdi is a sum over the inactive cirri where k is a constant controlling the resistance of a cirrus
to deformation and E is the displacement vector of inactive cirrus i. We note that the forces
driving cell motility in Euplotes stem from complex mechanical interactions, but for our model,
we have chosen simple, first order expression to capture very basic features.

Similar to the expression for velocity above, angular velocity of a walking cell in our

model is given by

where [ is a constant related to the geometry of the cell and viscosity of the fluid, E is the force

due to cirrus i (F,6 for active cirri and kd for inactive cirri), and 7; is the vector pointing from
the center of the cell to cirrus i.

In addition to the relative positions of the cirri and patterns of cirral activity, the four
parameters y, B, F, and k govern cell motility in our model. From these four parameters, we
obtain three related dimensionless parameters:a = 8 /yl where [ is the maximum distance
between cirri, which can be thought of as characterizing the unsteadiness of the cell the intrinsic
susceptibility of the cell to turning due to cell geometry; M = F, /kl, which can be thought of as
characterizing degree to which cirral activity will tend to induce cell movement in opposition to

inactive cirri; and F = F,t/yl where t is the duration of a timestep in simulations, which can be
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thought of as the strength of the cirral motive force relative to the viscous drag experienced by
the cell due to its fluid environment.

For all simulations, relative equilibrium cirral positions calculated from the average cirral
positions in a video frame with no cirral activity over the 13 cells used for gait analysis (Figure
2) were used. In each simulation timestep, defined by the timestep used for recording videos for
gait analysis, velocity and angular velocity are calculated based on the positions and activity of
cirri, and the positions of all cirri are updated accordingly before proceeding. To calibrate the
parameters of the model, we used the cirral patterns recorded from the cells used for gait
analysis. We swept parameter space and found that simulations qualitatively and semi-
quantitatively recapitulated experimentally measured cell motility with « = 0.001, M = 0.26,
and F = 0.008 (Figure 3K, Figure S1). These parameter values were subsequently used for all
simulations.

For simulations with shuffled gait state transitions, we used MATLAB’s shuffle
command on the cirral dynamics of actual cells to obtain sequences of gait state transitions of the
same length as those that were experimentally obtained except in a random order. To obtain
random patterns of cirral activity similar to those measured experimentally, we generated cirral
activity according to a process defined by two probabilities: p,, the probability of transitioning
from inactive to active at each timestep and p;, the probability of transitioning from inactive to
active at each timestep. We initialized sequences with no cirral activity and then updated cirral
activity according to these probabilities for each timestep in the sequence. We found that setting
pa=0.3 and p;=0.1 yielded the same average cirral activity as that recorded experimentally, 0.23 +
0.42 per frame and 0.24 + 0.43 per frame respectively where the values are mean + standard

deviation. All simulations were performed in MATLAB.
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Confocal microscopy

Cells were prepared for imaging and placed into a FluoroDish as described in the Live
Cell Brightfield Microscopy section. Cells were then labeled with SiR-tubulin (Spirochrome
provided by Cytoskeleton, Inc, CY-SC002) at 1 uM concentration. Cells were imaged using a
Zeiss LSM 880 AxioExaminer and a 40x, 1.2 NA C-Apochromat water immersion objective
(Zeiss) and excitation provided by a 633 nm laser (Zeiss). Only one full confocal z-stack of a

complete cell was obtained during imaging to avoid effects of photodamage.

Fiber reconstruction and analysis

The image stack resulting from confocal imaging was first aligned in FIJI using the
StackReg plugin®?. Next, fibers were manually segmented in each of the aligned z-stack images
using the TrakEM2 plugin in FIJI’>73, Thick and thin fibers (Figure 4A) were morphologically
distinguished, with thick fibers having a diameter of no less than 5 um at the thinnest point.
Fibers were traced from their distal termini to their convergences at the base of the cirri with
which they were associated. Following segmentation, 3D surfaces were reconstructed in
TrakEM2. Inter-fiber contacts were then found by inspection of 3D reconstructions and verified

by examining individual z-stack frames to confirm intersections between fibers.

Drug treatment experiments and analysis

For all cytoskeleton inhibitor treatment experiments, 1 mL of cells in culture were placed
in wells of 12-well plates (Thermo-Scientific, 12-565-321). Nocodazole (Sigma-Aldrich,
M1404) as a stock solution of 6.64 mM in DMSO diluted further in distilled water, was added to
achieve appropriate concentrations, with no more than 1 pL of additional volume added, and 1

pL of distilled water with equivalent DMSO concentration to nocodazole treatments added to
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866 controls. Cells were incubated for 1 hr before initiating experiments. No cell death was observed

867 at any concentration of nocodazole in the 6 hours following nocodazole treatment. Paclitaxel

868 (Sigma-Aldrich, T7191) as a stock solution of 2.23 mM in DMSO diluted further to 20 uM in
869 distilled water, was added to achieve a final concentration of 20 nM to cells in solution.

870 Latrunculin B (Thomas Scientific, C834E37) as a stock solution of 1.1 mM in ethanol was

871 further diluted in distilled water and added to achieve a final concentration of 10 uM with cells
872 in solution. Cytochalasin B (Fisher Scientific 1493-96-2) as a stock solution of 2.1 mM in

873 ethanol was further diluted in distilled water was added to achieve a final concentration of 50
874 uM with cells in solution. Jasplakinolide (Fisher Scientific 42-012-750UQG) as a stock solution of
875 I mM in DMSO was further diluted in distilled water to achieve a final concentration of 10 uM
876 with cells in solution. No cell death was observed in the 6 hours following treatment with any of
877 the actin inhibitors. For the control condition for actin inhibitor experiments, both DMSO and
878 ethanol was added to match the concentrations added in the cytochalasin B and jasplakinolide
879 conditions.

880 Washout experiments

881 For nocodazole washout experiments, motility assays (described below) were also

882 performed after placement of cells into well plates and before nocodazole treatment. Following
883 0.2 uM nocodazole treatment and another motility analysis, cells were picked in 5 uLL of media
884 and placed into wells of 6 well plates (Corning, CLS3736) each containing 2mL of fresh media.
885 No more than 20 pL of nocodazole treatment media was added to any well so that the resultant
886 nocodazole concentration in the washed condition was no more than 2 nM. Cells were allowed to
887 recover in this condition for 4 hr, and then a final motility assay was performed.

888 Motility analysis
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For motility analysis, cells were picked from well-plates and placed onto well-slides
created by using a paper hole punch tool to punch a hole in 0.25 mm thick silicone spacer
material (CultureWell, 664475), and adhering the spacer material to a glass slide (Corning, 2947-
75X25). A total volume of 20 uL including up to 4 cells was added to well slides. A glass
coverslip (FisherScientific, 12-545-D) was placed atop the well slide, sealing the well and
creating an imaging chamber. After creating the imaging chamber, cells were allowed to
acclimate to their new environment for 10 min. Cells were then imaged on a Zeiss Axio
Zoom.V16 microscope under darkfield illumination with a Canon EOS T51 DSLR camera
recording at 30 fps for 2 min. Videos were then processed using FIJI 62, First, images were
cropped to remove extraneous parts of the field of view that did not contain the imaging
chamber, and then background subtraction was performed by creating an image composed of
mean pixel intensity values over all frames of the video and subtracting this mean image from all
frames of the video. A mean filter with a four-pixel radius was then applied to each frame of the
video for the purpose of smoothing. After processing, tracking was performed using the
TrackMate FIJI plugin®®. For detection of objects (cells), a Laplacian of Gaussian filter was
applied with an estimated blob diameter of 25 pixels and threshold of 0.1. A quality threshold
was set manually when necessary to filter out any detected objects that were not cells. The
Linear Assignment Tracker with a linking max distance of 15 pixels, gap-closing max distance
of 150 pixels, and a gap-closing max frame gap of 200 frames was then used to generate linked
tracks (trajectories) of detected cells. Trajectories were analyzed in MATLAB. Scaled path
length for each tracked cell was calculated by summing the length of all segments of the track
and dividing by the maximum distance the cell traveled from its starting point.

Fiber length analysis
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Just prior to confocal imaging, cells were washed by picking up to five cells in 10 pL.
volume each and placing into 1 mL fresh media in a 12-well plate (Thermo-Scientific, 12-565-
321). Cells were then prepared for imaging as described in the Confocal Imaging section of
Method Details. Confocal z-stacks were then loaded into FIJI and aligned using the StackReg
plugin®. Cell lengths were determined by finding the maximal distance between two points on
the front and rear ends of the cell. Because of variability in the detectable fibers in nocodazole
treated cells, only fibers associated with the rear cirri (j-n), which were visible in all cells, were
used for analysis. All of these rear fibers were measured, and the reported scaled fiber length was
obtained by dividing the length of the longest fiber by the corresponding cell length. In all cases,
the fiber associated with cirrus m was the longest fiber.

Analysis of cirral dynamics in nocodazole and paclitaxel treated cells

Cells were prepared for imaging and imaged as described in the Live Cell Brightfield
Microscopy section of the Method Details with the exception that a Canon EOS T5i DSLR
mounted on a Zeiss Axio Zoom.V16 microscope was used to record movements. Additionally,
video was recorded at 0.066 seconds per frame to avoid blurring and then videos were
downsampled to 0.033 seconds per frame for analysis. Cirral dynamics were quantified as
described in the Quantification of Walking Dynamics section of the Method Details.

To assign cirral configurations of nocodazole treated cells to previously identified gait
states, we first matched any cirral configurations with known gait state identity. Next, due to
proximity of new cirral configurations not observed in untreated cells (Figure S1), we were able
to map the new cirral configurations onto the clusters defining the gait states by determining the
nearest cluster to the new cirral configuration. Distance between new cirral configurations and
clusters were determined by finding the shortest distances to points defining convex hulls of each

cluster. The shortest of all these distances then indicated the nearest cluster and corresponding
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gait state to which the new cirral configuration was assigned. We noted an obvious dense cluster
of points corresponding to activation of nearly all cirri, and we identified a new cluster and
corresponding gait state by applying the DBSCAN algorithm as described in the Clustering
section of the Method Details. Evaluation of transition dynamics was performed as described in
the State Transition Analysis section of the Method Details. This analysis was all performed in

MATLAB.

€e-machine construction

Our representation of the Euplotes at timestep t takes the form of a length 14
binary string x* = [x}, x5,. .. , x},] where x} € {0, 1}. For reducing dimensions,
we found that bigrams of the 14-dimensional strings, yielded more consistent, interpretable
results than unigrams, so x't = [xf, x&,. .., xb,, ¥, x5t 000, xEF1] € {0, 1328,
In order to learn latent states, we used Variational AutoEncoders (VAEs) ™ to reduce each
fourteen dimensional timestep to three dimensions. VAEs in particular are used for their ability
to learn an interpolatable latent space where high-dimensional training data points are mapped to
points in low-dimensional space that mimic a normal distribution centered around the origin.
This processes yields a smooth latent space with dimensions that represent core aspects of the
data. We used a very minimal VAE with an Adam optimizer’>, consisting of one dense layer for
the generating encoder means and one dense layer for generating encoder variance. This creates
a 3-dimensional normal-like distribution, which we sample from and decode with a one layer

decoder.

VariationalEncoder(x't) - z¢ € R3
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After reducing the dimensionality of our data, we perform spectral clustering 7° using
scikit-learn 77 with 100 k-means runs and 4 clusters, where the cluster count was decided by
inspection of the resulting classes.
SpectralClustering(zt) — ¢t € {1, 2, 3, 4}
Applying this procedure to the data from the cells used for gait analysis (the same as used for
Figure 2) with bigram training parameters 1r=0.0011, weight decay=0.000727, k=3,
hidden_dim=5, betal=0.5, and beta2=0.900, we found the following four clusters corresponding
to particular patterns of cirral ativity: 1) Front cirral activity 2) High overall cirral activity 3)
Rear cirral activity and 4) Little cirral activity (Figure S5). When we applied this procedure to
the data from cells treated with 0.2 uM nocodazole (the same data used for Figure 5) with
bigram training parameters 1r=0.0026, weight decay=0.000106, k=3, hidden dim=3, betal=0.5,
and beta2=0.999, we obtained only three distinct clusters with similar cirral activity patterns to
those of untreated cells except that the rear cirral activity cluster (3 above) disappeared (Figure
S5). These clusters represent an independent, alternative coarse-graining of patterns of cirral
activity into gait states to that presented in Figure 2. Although independent, this procedure
identified the same underlying structure in the data. In particular, the alternative gait states here
involve similar patterns of cirral activity to those defining the NMF components depicted in
Figure 2H. Whereas the spatially distinct groups of cirri sharing the most mutual information
define the space of gait states under the NMF-based approach, under this alternative, activity or
complete lack thereof in those same groups of cirri defines the gait states. Furthermore, the loss
of cluster 4 under nocodazole treatment is consistent with the loss of gait states as depicted in
Figure 51.

To construct e-machines*, characterized by a set of causal-states and transitions between

them, we feed a stream of behavioral symbols ¢y, ¢4,. . ., ¢ into a Causal-State Splitting
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Reconstruction (CSSR) 4378 algorithm. Due to the nature of the CSSR algorithm, we can only
construct e-machines from unbroken data streams, so we constructed e-machines for each cell
from a given dataset. Performing this process over gait state data streams derived from cirral
activity recordings as described above for each cell from the untreated and nocodazole datasets
yielded a set of € machines. Representative examples of e-machines obtained from each dataset

are depicted in Figure S5.

Microsurgery experiments

All microsurgeries were performed by hand under observation with a Zeiss Axio
Zoom.V16 using quartz microneedles pulled from quarts rods (Sutter Instrument, QR100-10)
using a Sutter Instrument P-2000 Laser-based micropipette puller. Individual cells were picked
and placed in a 5 pL droplet at the center of an imaging chamber as described in the Motility
Analysis section of the Method Details. For bisections, microneedles were quickly and firmly
pressed onto cells just anterior to cirrus h, cleanly severing the cell including the fibers
associated with cirri j-n and sealing the cell membrane. Cells were allowed to recover for at least
5 minutes until some motility resumed, and then 15 pL of fresh culture media was added to the
imaging chamber, which was subsequently sealed with a glass coverslip (FisherScientific, 12-
545-D) to minimize evaporation. After 24 hr, once cell fragments resumed walking motility, gait
analysis was performed as described in the quantification of walking dynamics section of the
Method Details, except that cell fragments only had 7 cirri (j-n) instead of the full 14.
Experiments with wounded cells were conducted in the same fashion as described for bisections
except that instead of cutting cells in half, wounding was performed by stabbing with a
microneedle a portion of the cell that does not have any fibers and was confirmed visually by the

loss of some amount of cytoplasm.
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Quantifications and statistical analysis

Statistical details of the experiments can be found in the figure legends, the main text, or the
Method Details section. Statistical details include exact value of n, what n represents (generally
the number of cells measured), definitions of center, and dispersion and precision measures.
Statistical tests and fits were performed as described in the Method Details section using

MATLAB release 2019b or 2020b (Mathworks, Natick).
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Supplemental Video Captions

Video S1. A walking cell. Related to Figures 1 and 2. A representative example of a single
Euplotes eurystomus cell walking across a coverslip using motile cirri illustrates the walking
gait. Note that the movement of cirri, or lack thereof is clearly visible in each frame of the
movie. This cell was imaged using a Zeiss Axio Zoom.V 16 microscope under brightfield
illumination. The video is slowed down by a factor of 4 from real time to show that the

movements of cirri are clearly visible.

Video S2. Walking motility including escape responses. Related to Figure 2. A representative
example of a single Euplotes eurystomus cell walking across a coverslip using motile cirri
including escape responses, which were excluded from gait analysis. Escape responses occur at
t=18s, 20s, and 25s. This cell was imaged under brightfield illumination using a Zeiss Z.1
Observer with a 20x, 0.8 NA Plan-Apochromat (Zeiss) objective. The video is slowed down by a

factor of 4 from real time so that the movements are clearly perceivable.

Video S3. Cell tracking for motility analysis. Related to Figure 5. Left (Control), a
representative example of the trajectories of cells imaged at low magnification under darkfield
illumination using a Zeiss Axio Zoom.V 16 microscope. Cells appear as bright objects with
magenta circles around them. Different colored lines correspond to the tracks of different cells
tracked using the FIJI plugin TrackMate. Center (Nocodazole), a representative example of the
trajectories of cells treated with 200 nM nocodazole imaged at low magnification under darkfield
illumination. Cells appear as bright objects with magenta circles around them. Different colored
lines correspond to the tracks of different cells tracked using the FIJI plugin TrackMate. Note the
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confined movements of cells due to a decrease in long, linear runs compared to the control
condition. Right (Paclitaxel), a representative example of the trajectories of cells treated with 20
nM paclitaxel imaged at low magnification under darkfield illumination. Cells appear as bright
objects with magenta circles around them. Different colored lines correspond to the tracks of
different cells tracked using the F1JI plugin TrackMate. Note the increase in long, linear runs and

decrease in abrupt changes in direction and tight turns compared to the control condition.

Video S4. A walking, bisected cell. Related to Figure 5. A representative example of a
bisected cell analyzed in microsurgery experiments displaying the characteristic backwards,
spiral walking motility defect. This cell fragment was imaged using a Zeiss Axio Zoom.V16
microscope under brightfield illumination. The video is slowed down by a factor of 4 from real

time to clearly show the movements of cirri.

Video S5. A walking, wounded cell. Related to Figure 5. A representative example of a
wounded cell analyzed in microsurgery experiments. This cell was imaged using a Zeiss Axio
Zoom.V16 microscope under brightfield illumination. The video is slowed down by a factor of 4

from real time to clearly show the movements of cirri.
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