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Summary 12 

Cells are complex biochemical systems whose behavior emerges from interactions among 13 

myriad molecular components. Computation is often invoked as a general framework for 14 

navigating this cellular complexity. However, it is unclear how cells might embody 15 

computational processes such that theories of computation, including finite state machine 16 

models, could be productively applied. Here, we demonstrate finite state machine-like processing 17 

embodied in cells using the walking behavior of Euplotes eurystomus, a ciliate that walks across 18 

surfaces using fourteen motile appendages (cirri). We found that cellular walking entails 19 

regulated transitions between a discrete set of gait states. The set of observed transitions 20 

decomposes into a small group of high-probability, temporally irreversible transitions and a large 21 

group of low-probability time-symmetric transitions, thus revealing stereotypy in sequential 22 

patterns of state transitions. Simulations and experiments suggest that the sequential logic of the 23 

gait is functionally important. Taken together, these findings implicate a finite state machine-like 24 

process. Cirri are connected by microtubule bundles (fibers), and we found that the dynamics of 25 

cirri involved in different state transitions are associated with the structure of the fiber system. 26 

Perturbative experiments revealed that the fibers mediate gait coordination, suggesting a 27 

mechanical basis of gait control. 28 

 29 

Introduction 30 

Cells are complex physical systems controlled by networks of signaling molecules. 31 

Single cells can display sophisticated, animal-like behaviors1–3, orchestrating active processes far 32 

from thermodynamic equilibrium in order to properly carry out biological functions4,5. Indeed, 33 

single cells can make decisions6, execute coordinated, directed movements7, solve mazes8,9, and 34 

learn10,11. Such behaviors in animals arise from neural activity , but we know comparatively little 35 
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about the mechanisms of cellular behavior, which emerge from a combination of chemical 36 

reactions12, cellular architecture3, physical constraints 13,14, and interactions with the 37 

environment15. The involvement of information processing in cell state transitions suggest 38 

cellular behavior can be understood as an embodied computation16,17. The theory of computation 39 

has often been invoked as a general framework for understanding cellular dynamics16,18,19, 40 

environmental sensing by bacteria being a deeply studied example18,19, and has been used to 41 

engineer programmable cell states20. Ciliates display some of the most striking examples of 42 

unicellular behavior, including hunting3, sensorimotor navigation21, and predator avoidance22. 43 

Spirotrichous ciliates of the genus Euplotes are notable for their complex locomotion23–25, using 44 

bundles of specialized cilia (cirri) to walk across surfaces23,24 (Figure 1A,  Videos S1 and S2). 45 

Depending on the species, these cells generally have 14 to 15 ventral cirri arranged in a  46 

consistent pattern used for walking locomotion26. Euplotes live in aquatic environments, and in 47 

addition to walking, use their cirri for swimming and rapid escape responses27 (Video S2). Oral 48 

membranelles (Figure 1B) are also used for swimming and to generate feeding currents for 49 

capturing bacterial and protistan prey. Early 20th century protistologists were so impressed by the 50 

apparent coordination of cirri that they proposed the existence of a rudimentary nervous system, 51 

the neuromotor apparatus, to account for their observations25. This theory was motivated by the 52 

presence of tubulin-based28 intracellular fibers emanating from the bases of cirri (Figure 1C). 53 

How can a single cell coordinate a walking gait without a nervous system? Coordination, 54 

to the extent that it exists in the gait of Euplotes, requires dynamical coupling among cirri or 55 

between cirri and some shared external influence. Although the walking movements of Euplotes 56 

appear superficially similar to those of animals such as insects, the existence of stereotyped 57 

sequences of appendage movements that define a gait is unclear. Recently, analytical techniques 58 

from statistical physics have been used to understand mesoscale dynamics in biological systems, 59 
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including cellular behavior4,5,29,30, by coarse-graining the complexity of biological dynamics into 60 

states and analyzing the transitions among states. State representation allows us to ask whether 61 

forward and reverse transitions among states are equal, a condition known as detailed balance4,31. 62 

Systems that violate detailed balance operate in a non-equilibrium mode, display net probability 63 

flows, and can produce directed cycles in state space4. Broken detailed balance has been 64 

observed in the motility dynamics of cultured mammalian cells as well as the motility dynamics 65 

of a freely behaving flagellate protist5,29 and implies that non-equilibrium models are most 66 

applicable to such systems30. Identification of broken detailed balance, therefore, highlights 67 

dynamical stereotypy in terms of temporal irreversibility and can indicate active control of 68 

biological dynamics. 69 

When information processing drives patterns of state transitions, such a system can be 70 

analyzed using automata theory, a fundamental level in the theory of computation32,33. We 71 

hypothesized that walking cells might be governed by finite state automata with directed, 72 

processive movement arising from reproducible, stereotyped patterns of state transitions. We 73 

chose to focus on the relatively simple case of spontaneous linear walking, which might require 74 

some form of information processing to coordinate the movements of cirri. 75 

Here, we use time-lapse microscopy and quantitative analyses to show that Euplotes 76 

eurystomus walks with a cyclic stochastic gait displaying broken detailed balance and exhibiting 77 

elements of stereotypy and variability, in accord with a finite state automaton representation.  78 

Results 79 

A reduced state space is sufficient to describe walking dynamics 80 

 We analyzed the walking behavior of Euplotes eurystomus cells27, during uninterrupted, 81 

linear walking trajectories (Figure 2A,B, Video S1). Cells were observed by video microscopy at 82 

33 frames/s in a focal plane at the cirrus-coverslip interface to clearly observe cirral dynamics 83 
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(Figure 2A). The consistency of cirral position across cells allowed us to give each of the 14 cirri 84 

an alphabetic label from a-n (Figure 2C). During walking, cirri move in a manner analogous to 85 

the recovery stroke-power stroke cycle executed by many eukaryotic flagella, first lifting off the 86 

substrate and sweeping close to the cell body before extending in roughly the direction of cell 87 

orientation before sweeping downward to reestablish contact with the substrate24,34 (Figure 2B, 88 

Video S1). In each video frame, walking state  was encoded as a 14-element binary vector, with 89 

each element corresponding to a cirrus and receiving a value of “0” if the cirrus was in contact 90 

with the coverslip and stationary and a “1” if the cirrus was in motion or had moved in the 91 

preceding interval between frames (instances of stationary cirri held above the coverslip for a 92 

sustained period of time were not observed). The trajectories of 13 cells were manually tracked 93 

and annotated for a total of 2343 time points. This quantitative analysis revealed stepping-like 94 

cirral dynamics: cirri tend to undergo rapid movements followed by longer periods of quiescence 95 

(Figure 2D). Cirral dynamics seemed to lack any obvious patterns such as periodicity or 96 

repeating sequences (e.g. Figure 2D), implying that the movements are generated either by 97 

stochastic processes or complex deterministic mechanisms. This lack of periodicity (confirmed 98 

by autocorrelation analysis, Figure S1) or fixed phase relationships between appendage 99 

movements differs markedly from those of various unicellular organisms and the gaits of most 100 

animals35,36. 101 

 Despite the apparent complexity of cirral dynamics, we wondered whether there might be 102 

some underlying pattern. We first sought to obtain a reduced state space that could accurately 103 

describe the dynamics, as has proven successful in behavioral analysis of diverse living 104 

systems29,30,37,38. Because our ultimate goal was to identify motifs among the patterns of cirral 105 

activity, which entail strictly nonnegative values, we performed dimensionality reduction by 106 

non-negative matrix factorization (NMF), a technique used to identify patterns in a wide range of 107 
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other contexts39. NMF revealed the cirral states to be well-described by a three-dimensional 108 

space (Figure 2E-G, see Method Details and Figure S1 for more details). Factors of the NMF 109 

(H1, H2, H3) constitute the basis of the NMF space and correspond to non-overlapping, spatially 110 

distinct groups of cirri (Figure 2H). These factors indicate features of cirral activity that in 111 

various weighted combinations can be used to compactly represent all of the cirral activity 112 

measurements. This dimensionality reduction of the gait state space arises in part from shared 113 

pairwise mutual information among cirri (Figure 2I). Here, mutual information quantifies the 114 

amount of information about the activity of one cirrus gained by measuring the activity of 115 

another, and acts like a generalized measurement of correlation. Therefore, dimensionality 116 

reduction by NMF reflects correlations in cirral activity. 117 

Noting the apparent structure in the NMF space in the form of clusters of points (Figure 118 

2E-G), we identified gait states by applying the density-based spatial clustering of applications 119 

with noise (DBSCAN) algorithm40 to group the output of NMF into clusters  with members of a 120 

given cluster sharing similar patterns of cirral activity (see Method Details and Figure S1). 121 

Although NMF can itself be used to define clusters, by clustering in two steps, NMF followed by 122 

DBSCAN, we could use the visual observation of clustering in the NMF output to confirm 123 

performance of the subsequent clustering step. Visual inspection in conjunction with silhouette 124 

coefficient (a metric of cluster cohesion and separation) analysis revealed that 32 clusters 125 

accurately captured the visible structure in the reduced state space without overfitting (Figure 126 

2E-G, Method Details and Figure S1). These reduced gait states correspond to distinct patterns of 127 

cirral activity (Figure 2J). 128 

Euplotes walks with a cyclic stochastic gait 129 

 In order to relate the gait states identified in our cluster analysis to cell motility, we asked 130 

how changes in the number of active cirri may relate to cell movement. Naively, one might 131 
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expect that the force associated with locomotion is roughly proportional to the number of moving 132 

appendages. Alternatively,  velocity might inversely correlate with the net change in cirral 133 

activity, which would be expected if stationary cirri were generating a pushing traction force as 134 

in crawling animals. Our data supported neither expectation: cell velocity was only weakly 135 

correlated with number of active cirri (R2=0.03). Instead, the largest cell velocities corresponded 136 

to small-to-moderate changes in the number of active cirri (Figure 3A). We hypothesized that 137 

transitions between gait states must be important to driving the forward progression of walking 138 

cells, and thus looked for active coordination in the observed gait dynamics. 139 

 To detect active coordination dictating gait state transitions, we calculated the forward 140 

and reverse transition rates between states from the 1423 pairwise transitions in our dataset as 141 

Nij/T where Nij is the total number of transitions observed between states i and j, and T is the total 142 

observation time (Figure 3B, see Method Details). Transition rate defined here is proportional to 143 

the probability current Jij = Pikij where Pi is the probability of state i and kij is the conditional 144 

transition probability analogous to a chemical reaction rate. The presence of strongly unbalanced 145 

transitions such as from gait state 3 to 17 versus 17 to 3 suggested broken detailed balance, and 146 

indeed, a number of forward and reverse transitions were found to be significantly unbalanced by 147 

the binomial test (see Method Details). Unbalanced transitions can also arise in equilibrium 148 

systems that have not yet reached steady state, in which case transition rates may change in time. 149 

To test whether the gait operates at steady state, we checked whether the total number of 150 

transitions into each state were balanced by total transitions out of that state: ∑ 𝑁!" = ∑ 𝑁"!!! . 151 

Consistent with steady state dynamics, we found that this condition held to within a difference of 152 

at most a single transition. Although there are cases where non-equilibrium state transitions can 153 

nevertheless be balanced, or appear that way due to limited sampling, the presence of unbalanced 154 

transitions existing as part of loops in state space unambiguously indicated non-equilibrium 155 
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dynamics (see Method Details). To further understand the degree to which detailed balance was 156 

broken, or, similarly, the distance from equilibrium, we calculated the entropy production rate5. 157 

Following the procedure from Wan and Goldstein5, we obtained a lower bound estimate for an 158 

entropy production rate of 0.4 nats, similar to the value reported for strongly non-equilibrium 159 

gait transitions observed in a flagellate5. Walking Euplotes cells, therefore, have a non-160 

equilibrium gait, displaying temporal order in sequences of appendage movement, despite a lack 161 

of standard gait periodicity. 162 

We next sought to better understand the organization and sequential logic of this unusual 163 

gait. First, we noted that gait state transitions appear constrained: only 322 of the 1024 possible 164 

types of transitions were observed to occur at least once, and within this restricted set, only 173 165 

occurred more than once (Figure 3C). We then grouped transitions into two categories: balanced 166 

transitions, which satisfy detailed balance, and unbalanced transitions, which do not (see Method 167 

Details). This partitioning allowed us to separately investigate unbalanced, non-equilibrium-like 168 

and balanced, equilibrium-like transitions (Method Details, Figure 3D,E). We found that 169 

unbalanced transitions occur at relatively high frequency but involve a small number of states 170 

(Figure 3D). Only six of the 32 gait states are associated with unbalanced transitions (Figure 3F), 171 

and among these states, three form a directed cycle following 2à3à17à2. We had expected 172 

that unbalanced transitions might be associated with a “power stroke” (in the sense of occurring 173 

simultaneously with cell movement) but found instead that high cellular velocities tend to be 174 

associated with balanced transitions (Figure 3D,E) and that relatively few transitions 175 

corresponded to substantial cell movement (Figure 3C).  176 

Despite the presence of high frequency unbalanced transitions, the gait of Euplotes 177 

involves highly variable trajectories through gait state space. The picture of walking trajectories 178 

that emerges is one of stochastic excursions from gait state 1, a unique “rest state,” which 179 
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involves no cirral movement (Figure 2J), into non-determinate paths through state space 180 

involving a mix of balanced and unbalanced transitions. The majority of cell movement occurs 181 

during infrequent, equilibrium-like (balanced) transitions leading both toward and away from 182 

unbalanced transitions. We note here that although our coarse-graining procedure to identify gait 183 

states does not constitute a unique representation of gait structure, we can be confident that our 184 

analysis captures structure in gait dynamics, the presence of broken detailed balance in 185 

particular. In general, coarse-graining of the state space of a system can obscure broken detailed 186 

balance, but the net flux of transitions in the state space of a system should not arise in an 187 

illusory fashion based on a coarse-graining procedure or partial observation of a system41. 188 

Additionally, we have chosen a coarse-graining procedure based on the properties of our 189 

particular data and demonstrate its performance on simulated cirral dynamics with varying noise 190 

and for the case of unpatterned, random cirral fluctuations (Figure S1, Method Details). 191 

A natural question is whether gait state transitions are a "memoryless" or first-order 192 

Markov process, such that transition probabilities are determined completely by the present state 193 

with previous history contributing no additional predictive information42,43. Several analyses (see 194 

Method Details and Figure S1) suggested that Euplotes retains some memory of the prior 195 

sequence of cirral movements during locomotion such that the gait may not conform to a 196 

continuous- or discrete-time first-order Markov process. 197 

Taken together, our analysis revealed a mixture of unbalanced transitions driving cycles 198 

and balanced transitions arranged as networks, for which we propose to apply the term “cyclic 199 

stochastic gait”. It has been argued that physical systems exhibiting such a mix of stereotypy and 200 

variability can be viewed as performing computations32,44,45 in the sense that the time-evolution 201 

of the system is most compactly described as the result of a computational process involving 202 

state transitions, memory, and decision rules. 203 
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 To better understand the sequential logic of the gait, we focused on the dominant 204 

structure of gait transitions in terms of transition probabilities (Figure 3G, Method Details) 205 

allowing us to derive a simplified representation of stereotypy in gait dynamics (Figure 3H). We 206 

found that few states were the recipients of the majority of the highest probability transitions and 207 

that many received no high probability transitions (Figure 3G). Additionally, we found a “cloud” 208 

of states linked by low-probability balanced, equilibrium-like fluctuations. Nearly all of the 209 

states receiving high probability transitions were either the three “cycle states” or else fed cycle 210 

states with their highest probability transitions, with the majority feeding gait state 17. Although 211 

gait state 1 is not the recipient of any individual highest probability transitions, we identified it as 212 

the unique “start” state from which cells initiate walking. Beginning with this start state, cells 213 

transition with high probability to gait state 2, also one of the highest frequency transitions and 214 

the first state in the 2à3à17à2 cycle of unbalanced transitions. The sequence from the start 215 

state through the cycle states corresponds to increasing amounts of cirral activity. Although the 216 

highest probability transitions from the third cycle state to any single gait state tend to return to 217 

the first or second cycle state with equal probability, cells in fact transition to the equilibrium 218 

“cloud” of motility-associated states with overall higher probability. Return to the cycle states 219 

tend to occur through various moderately high probability transitions from the motility state 220 

cloud or through a restricted set of intermediate states. In conjunction with this set of transitions, 221 

we also noted unbalanced transitions stemming from the cycle states to the motility state as well 222 

as the presence of intermediate states from a given cycle state that subsequently feed the next 223 

cycle state. 224 

Altogether, the picture of stereotypical gait dynamics that emerges is of biased transitions 225 

involving cycle states preceding relatively low probability, unbiased transitions associated with 226 

substantial cell movement before returning to the start or cycle states and beginning the sequence 227 
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again. We hypothesized that sequences involving the cycle states serve to establish 228 

configurations of cirri necessary for cells to later transition between states from which substantial 229 

forward progress of the cell is generated.  230 

To better understand the functional significance of the sequential logic of the gait in 231 

driving processive cell movement, we developed a simple model based on a coarse-grained 232 

physical picture of cellular walking (Figure 3I). Briefly, we consider a 2D system where a cell 233 

walks using its 14 cirri, which can exist in two states: moving or not moving. We modeled cirri 234 

as producing constant force in the direction of cell orientation while moving, and resisting 235 

displacement by acting as linear springs when not moving. Cell position and orientation is 236 

defined in terms of the equilibrium positions of the cirri. For simulations, we used relative 237 

positions of cirri taken from stationary cell measurements (Figure 3J). In each timestep of the 238 

simulation, we calculated a cell displacement based on the sum of forces due to the cirri and 239 

changes in cell orientation from the sum of torques (see Method Details). This simple model was 240 

sufficient to reproduce the linear trajectories of walking cells when using the actual patterns of 241 

cirral activity from walking cells (Figure 3K, Figure S2). When we ran simulations with either 242 

the same gait states as those from actual cells but in a shuffled order or random cirral activity 243 

with the same average cirral activity as actual cells, we found that path straightness significantly 244 

decreased in the case of shuffled transitions (p=0.04 by Wilcoxon rank sum test) and scaled cell 245 

velocity significantly decreased in the case of random activity (p=0.003 by Wilcoxon rank sum, 246 

Figure 3K-O). Note that in both the case of shuffled transitions and random cirral activity, gait 247 

state transitions satisfy detailed balance (Figure S2). These results suggest that the sequential 248 

logic of the gait does indeed matter for producing linear walking. 249 

The microtubule-based fiber system mediates gait coordination 250 
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The complex yet sequentially structured gait patterns in conjunction with our simulation 251 

results are consistent with the existence of some form of nontrivial gait coordination. What 252 

physical machinery could embody the information processing required to generate the stochastic 253 

cyclic state transitions seen during Euplotes’ walking? Since the early 1900s , the role of the 254 

system of cytoskeletal fibers associated with cirri as conduits of information between cirri during 255 

cellular locomotion, supported by microsurgical experiments, has been a dominant yet 256 

contentious hypothesized mechanism of gait coordination46,47.  257 

 We reconstructed in 3D the microtubule-based fiber system of Euplotes associated with 258 

cirri and lying just beneath the cell cortex25,28. Upon inspection of our confocal reconstructions 259 

of SiR-tubulin labeled cells (Figure 4A, Figure S3), we noted the presence of two 260 

morphologically distinct classes of fibers, one thicker and linear and the other thinner, splayed, 261 

and less linear, consistent with previous observations25,28 (Figure 1C). Fibers emanate from the 262 

bases of all cirri, appear to intersect one another, and also intersect the cell cortex at various 263 

points. Some cirri were found to be associated with only thick fibers, while others have both or 264 

only thin fibers. Based on apparent fiber-fiber intersections and convergences, we found the fiber 265 

system forms a continuous network between all cirri (Figure 4A,B).  266 

Contrary to the long-standing standing hypothesis from the literature46, the functional 267 

modules (groups of co-varying cirri) identified in our dynamical analysis were not exclusively 268 

linked by dense fiber intersections (Figure 4A,B)25,28,46. In fact, connections between cirri are not 269 

generally associated with any statistically significant difference in mutual information compared 270 

to unlinked pairs of cirri (p=0.14 by Wilcoxon rank sum test, Figure 4C). However, information 271 

flow became apparent when fiber-fiber links were grouped by type (i.e. thick to thick fiber, thick 272 

to thin fiber, or thin to thin fiber). Under this grouping, we found that pairs of cirri associated 273 

with only thick to thick fiber and only thin to thin fiber links have greater mutual information 274 
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compared to those without links (Figure S3). Interestingly, we found that cirri nearby one 275 

another and connected by fibers to similar regions of the cell cortex shared the most mutual 276 

information (Figure 2C,G, 4D,E), suggesting that if the fibers play a role in cirral coordination, 277 

coupling may also be mediated by mechanisms involving the cirrus and fiber-cortex interface. 278 

Indeed, distances between pairs of cirri and cross nearest-neighbor distance between paired sets 279 

of cirrus-cortex contact points both show significant Spearman correlations (-0.49, p<0.001 and -280 

0.62, p<0.001 respectively) to mutual information (Figure 4D,E). These correlations indicate that 281 

mutual information between pairs of cirri tends to increase with proximity and also tends to 282 

increase with similarity between fiber-cortex contact locations. Thus, the cirri with the highest 283 

mutual information are those that are close together with similar fiber-cortex connections (Figure 284 

4D-F).  285 

Together, these observations suggest a mechanism of mechanical coordination in which 286 

microtubule bundles allow groups of cirri to influence successive behavior of other groups of 287 

cirri. When we perturbed the fiber system using nocodazole, a drug that affects polymerization of 288 

microtubules, we found that treated cells walked along curved rather than straight trajectories 289 

(Figure 5A,B, Video S3). In contrast to the effect of nocodazole, we found that the microtubule 290 

stabilizer paclitaxel caused cells to walk along less convoluted trajectories compared to controls 291 

(Figure 5C). Quantifying these effect  in terms of a scaled path length  (integrated path length 292 

divided by the maximum radial distance traversed) we found that nocodazole significantly 293 

decreased and that paclitaxel significantly increased the scaled path length of cells compared to 294 

controls (Figure 5D). Nocodazole acted in a dose dependent and reversible manner (Figure 5D 295 

and Figure S4).  Actin inhibitors had no effect on motility (Figure S4). Next, we checked 296 

whether nocodazole treatment had an observable effect on the fiber system. We found that fiber 297 

length significantly decreased compared to controls in cells where microtubule polymerization 298 
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was disrupted by nocodazole (Figure 5E-G). Further, we were unable to detect the presence of 299 

any thin fibers in four out of seven nocodazole treated cells used for fiber analysis. Of the three 300 

cells with detectable thin fibers, we never observed connections between fibers associated with 301 

cirri a, b, and c and any other fibers. Additionally, we did not observe any thin fibers making 302 

distal cortical contacts. When thin fibers were visible, connections appeared to be the same as 303 

those in Figure 4A,B.  304 

We then investigated how cirral dynamics were affected when microtubules were 305 

perturbed. Following the gait annotation procedure detailed previously, we characterized the 306 

walking dynamics of 6 nocodazole treated cells for a total of 1133 timepoints. Of those 307 

timepoints, 681 corresponded to cirral configurations never observed in untreated cells with a 308 

total of 391 new unique configurations. Projecting these new configurations onto the NMF space 309 

we obtained previously, however, revealed that most of the cirral configurations in nocodazole 310 

treated cells were near or within the clusters corresponding to the gait states we obtained from 311 

untreated cells (Figure S4). This allowed us to map new cirral configurations onto the gait states 312 

(see Method Details). New cirral configurations tended to skew towards more active cirri, and 313 

we also noted the presence of a new cluster involving movement in all or nearly all cirri, to 314 

which we assigned a new gait state (Figure S4). Mutual information between cirri was higher in 315 

general, with many pairs of cirri sharing higher mutual information than the highest values 316 

obtain in untreated cells (Figure 5H, Figure S4). This increase in cirral activity and correlations 317 

is consistent with the fibers playing a role in conveying inhibitory information during 318 

unperturbed walking. In further support of this inhibitory role, we found that paclitaxel treatment 319 

also caused an overall increase in mutual information of pairs of cirri (Figure 5H). 320 

Next, we investigated how the dynamics of gait state transitions were affected. Following 321 

our previous analysis, we found that the structure of state transitions differed greatly from that of 322 
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unperturbed cells. Gait state transitions of cells with perturbed fiber systems exhibited less 323 

broken detailed balance and closer to equilibrium-like dynamics as indicated by an entropy 324 

production rate of 0.1 nats (compared to 0.4 nats in the unperturbed case), including the loss of 325 

the unbalanced, cyclic transitions (Figure S4). Figure 5I summarizes the change in the structure 326 

of gait state transitions including changes in broken detailed balance, reduction in transitions 327 

toward the states previously involved in cyclic transitions, and the reduction in the occupancy of 328 

states associated with the cloud of states involved in substantial cell movement, with only 10 of 329 

the original 21 cloud states sampled. Many of the new highest probability transitions feed gait 330 

state 18 (Figure 5I, Figure S4), which involves nearly exclusive activity in cirri f and g located 331 

close to one another at the edge of the cell. A persistent bias toward activation of these cirri, 332 

farthest from the central axis of the cell, may in part explain the increase in turning in 333 

trajectories. These results, together with the fact that cell velocities were indistinguishable from 334 

control conditions (Figure S4) are consistent with predictions from simulations in which 335 

shuffling the order of gait state transitions reduced processivity without affecting speed (Figure 336 

3N,O). 337 

The increase in mutual information between cirri under disrupted gait coordination is due 338 

to more frequent joint activation or synchronous movements among cirri, and thus stems from 339 

reduced complexity of gait dynamics. For a complementary perspective linking these changes in 340 

gait dynamics to an underlying computational process, we applied the Causal State Splitting 341 

Reconstruction (CSSR) algorithm to construct 𝜖-machines corresponding to walking cells32,48. 𝜖-342 

machines are automaton models consisting of a set of causal states with transitions between them 343 

and represent the minimal model consistent with accurate prediction of a stochastic process32. 344 

The causal states of an 𝜖-machine indicate how the process from which it is constructed stores 345 

information, and state transitions indicate how the process transforms information32. We found 346 
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that 𝜖-machines constructed from the cirral activity of untreated cells tended to be similar to one 347 

another and were more complex in terms of having more causal states and transitions than those 348 

constructed from nocodazole treated cells, which also tended to be similar to one another (Figure 349 

S5, Method Details). This reduction in complexity may reflect reduced computational capacity of 350 

the nocodazole treated cells.  351 

As a final additional test of the role of the fibers in mediating gait coordination, we 352 

revisited historical microdissection experiments. Although Taylor's 1921 microdissection 353 

experiments indicated a role of the fiber system gait coordination46, a subsequent study failed to 354 

observe disrupted coordination among cirri upon bisection of cells47. Importantly, neither of 355 

these reports involved analysis of walking behavior. We performed microdissections on cells 356 

using pulled quartz microneedles, severing cells transversely just in front of cirrus h, ensuring 357 

that we had severed all fibers associated with cirri j-n (Figure 5J,K). Similar to previous reports, 358 

we found that cell fragments regained spontaneous cirral activity after a brief recovery period. 359 

After 24 hr, we found that anterior portions of cells began to exhibit spontaneous walking 360 

activity (Figure 5K,L, Video S4), which persisted for up to 72 hrs. Although these fragments 361 

could walk, they followed circular trajectories reminiscent of nocodazole treated cells except in 362 

the reverse direction (Figure 5L, Video S4). We found significantly higher mutual information 363 

shared between cirri indicating more synchronous cirral activity compared to merely wounded 364 

cells, which displayed apparently normal motility (Video S5) or unperturbed cells (p<0.001 in 365 

both cases by Wilcoxon rank sum test), which displayed values consistent with one another 366 

(Figure 5M). As with the microtubule inhibitor experiments, these results are consistent the 367 

fibers playing an inhibitory role in gait coordination. 368 

Discussion 369 
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Traditionally, studies of computational processes in cells have focused on combinatorial 370 

logic, where a molecular network generates an output that depends only on the current input 371 

16,18,19. We have focused on sequential logic, where outputs depend on the system state as well 372 

49,50. Automata theory, using finite state machine models based on sequential logic, provides 373 

tools for understanding structure and stereotypy in transitions between dynamical states, 374 

increasingly appreciated as features of the behavior of eukaryotic cells. Related approaches for 375 

coarse-graining  complex dynamics have revealed simplicity and stereotypy in the behavior 376 

patterns of various organisms3,5,37,38,51. Although there are examples of locomotor coordination 377 

reminiscent of the stochastic, non-equilibrium gait dynamics of Euplotes in other cells and 378 

animals5,29,52 most appendage-based locomotor systems employ stereotyped, determinate patterns 379 

of activity7,35,36. In the run-and-tumble motility in E. coli53 or analogous behaviors observed in 380 

protists54,55, motility can be described by equilibrium processes5, in contrast to the non-381 

equilibrium character of the gait of Euplotes. 382 

We propose that in Euplotes, biased, actively controlled cyclic transitions store stress, in 383 

certain cirri, and the spontaneous release of these cirri from the substrate, during a series of 384 

unbiased gait state transitions, allows the cell to move forward. Return to the cycle states reset 385 

this process by winding up the system for continued, proper cell movement. Disruption in this 386 

resetting may lead to defects in walking as shown by simulations (Figure 3K-O, 5) and 387 

experiments (Figure 5B,D,I, Video S3). Our proposed mechanism is consistent with previous 388 

observations of cyclic velocity fluctuations in the trajectories of walking Euplotes23. 389 

The results of experiments perturbing the tubulin-based cytoskeletal fiber system are 390 

consistent with its role in mechanically mediating communication both among cirri and between 391 

cirri and the cell cortex (Figure 4,5). We conjecture that movement of cirri relative to one 392 

another can establish tension in the fiber system and that the tension state of fibers associated 393 
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with each cirrus may then modulate cirral activity in a manner reminiscent of basal coupling in 394 

flagellates13. Microtubules can respond directly to mechanical forces inside cells56, and may be 395 

involved in more complex signal transduction pathways57,58.  Our results show that perturbation 396 

of the microtubule fiber system shift the gait of Euplotes from a regime of asynchronous yet 397 

coordinated movement to a dysregulated regime with synchronous yet improperly coordinated 398 

movement. Our work lays a foundation for studying sensorimotor behavior in Euplotes, which 399 

will shed light on principles of cellular behavior. Because biological function often emerges from 400 

the productive management of stochastic fluctuations, we expect our conceptual and analytical 401 

approaches may apply to the behavior of other living systems that produce directed or sequential 402 

behavior from random molecular processes. 403 

404 
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Figures 425 

Figure 1. Euplotes cell architecture. (A) Euplotes eurystomus cell in profile showing 426 

ventral cirri, used for walking locomotion (arrowhead indicates a single cirrus ). Scale bar  10 427 

µm. (B) Euplotes cell, viewed from the ventral surface, highlighting the complex, asymmetric 428 

structure . Notable features include the cirri (ci) and the membranellar band (m), wrapping from 429 

the top of the cell to the center, which is used to generate a feeding current to draw in prey items. 430 

Drawing adapted from59 via Wikimedia Commons. (C) A drawing of a Euplotes cell, 431 

highlighting the fiber system associated with the cirri. Adapted from 60. 432 

 433 

Figure 2. Euplotes walking described in a discrete, reduced state space with gait 434 

states corresponding to patterns of cirral activity. (A-A’’), Movements of cirri during walking 435 

locomotion visualized by brightfield microscopy. Three snapshots depict time points during a 436 

walking trajectory,  white arrowheads indicate cirri. In the panels from left to right, the cirrus 437 

indicated by the left arrowhead is stationary, stationary, and then moving, and the cirrus 438 

indicated by the right arrowhead is stationary, moving, and then stationary. Scale bar 15 µm. (B) 439 

Trajectory of a cell walking across a coverslip. (C) Scheme for encoding cirral dynamics during 440 

walking as a 14-bit binary vector. Each entry is either 0 if the cirrus is not moving and in contact 441 

with the coverslip or 1 if the cirrus is moving. Scale bar  15 µm. (D) Representative visualization 442 

of encoded cirral dynamics for a single trajectory, corresponding to  trajectory in panel E. White 443 

denotes  1 and black 0. (E-G) Three roughly orthogonal views of cirral dynamics, encoded as in 444 

panel E using NMF, from 13 cells over 2343 timepoints . Axes correspond to the components of 445 

the NMF (H1, H2, H3), each point is one timepoint. Randomized colors highlight the 32 clusters 446 

identified using DBSCAN 40. These clusters constitute gait states corresponding to unique 447 

configurations of cirral activity. (H) Magnitudes associated with each cirrus for distinct 448 
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components of the NMF . The depiction of a cell including the positions of cirri has the same 449 

color map as the plot above and shows the grouping of the cirri corresponding to each NMF 450 

component. (I) Heatmap of mutual information between all pairs of cirri showing correlations in 451 

cirral activity corresponding to the NMF components displayed in panel H. (J) Heatmap 452 

representation of  cirral activity associated with each gait state. Values for each cirrus are the 453 

mean over all instances of the gait state. See also Figure S1, Video S1, and Video S2. 454 

 455 

Figure 3. Cyclic stochastic gait exhibiting broken detailed balance, stereotypy, and 456 

state machine-like dynamics. (A) Mean net change in cirral activity versus the net scaled cell 457 

velocity associated with all transitions between the 32 gait states identified in Figure 2 shows 458 

that the change in number of active cirri is not strongly correlated with cell velocity (R2=0.03). . 459 

(B) Transition matrix of gait state transitions, with rows representing the starting state and 460 

columns indicating the ending state, exhibits broken detailed balance. (C) Directed graph 461 

representation of gait state transitions. Nodes correspond to the 32 gait states, with node sizes 462 

scaled by proportion of total time cells spent in each state. Arrows between nodes (directed 463 

edges) signify state transitions. Arrow size is scaled by transition rates as in panel b. Edge color 464 

represents scaled cell velocity, as in panel A, according to the indicated color scale. (D) A subset 465 

of transitions visualized as in panel C shows  restricted and relatively high frequency  of 466 

unbalanced, non-equilibrium-like transitions. Only transitions that were observed to happen more 467 

than one time and exhibiting a significant difference between forward and reverse transitions 468 

(p<0.05 by binomial test, see Method Details) are displayed. (E) A subset of transitions, 469 

similarly to panel D, except that only the balanced transitions, lacking a significant difference 470 

between forward and reverse transitions (p<0.05 by binomial test) are displayed, also show a 471 

complex and widespread structure, this time of balanced, equilibrium transitions. (F) Examples 472 
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illustrating  spatial organization of cirral activity corresponding to gait states. These gait states 473 

are involved in unbalanced transitions. (G) Heatmap of transition probabilities between states, 474 

showing only the most probable transitions from a given state with all others set to zero. In cases 475 

where multiple state transitions from a state were tied for the highest probability, all of these 476 

transitions are displayed. (H) A representation of functional states and transitions between them 477 

highlights the state machine-like nature of the gait of Euplotes. Gait states are represented as 478 

colored circles with numerical labels. Blue represents states that are both recipients and sources 479 

of unbalanced transitions as identified in panel D and constitute the three cycle states. Red 480 

represents states that are recipients but not sources of unbalanced transitions as identified in 481 

panel D. Black corresponds to gait states that are associated only with balanced transitions as in 482 

panel E. Arrows represent the highest probability transitions between the states, including 483 

compound functional states composed of multiple gait states (dark gray blob and blue 484 

background) as well as unbalanced transitions with size scaled by their proportional probability 485 

compared to all other transitions emanating from the source functional state. Diagrams depict 486 

walking cell in profile with cirri in a configuration corresponding to the functional state. (I) 487 

Diagram summarizing of our model of a walking cell. (J) A plot of the relative average resting 488 

cirral-surface contact positions measured from the 13 cells used for gait analysis, which were 489 

used for all simulations and define simulated cell position and orientation. (K) Simulated 490 

trajectory of  walking cell using experimentally recorded cirral activity. (L) Simulated trajectory 491 

using experimentally recorded cirral activity but in  shuffled order. (M) Simulated trajectory 492 

using random patterns of cirral activity with the same average level of cirral activity and the 493 

same number of timesteps as in panels K and L. (N) Path straightness measured from simulations 494 

using experimentally measured cirral activity (Actual), this activity in a randomly shuffled order 495 

(Shuffle), and randomly generated cirral activity with the same average cirral activity as actual 496 
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patterns (Random). Asterisk indicates p=0.04 by the Wilcoxon rank sum test. (O) Scaled cell 497 

velocity for the simulations described for panel k predicts that the gait states are responsible for 498 

generating cell velocities as indicated by decreased scaled cell velocity for random patterns of 499 

cirral activity. Scaled velocities were averaged over each cell trajectory. Three asterisks indicates 500 

p<0.001 by the Wilcoxon rank sum test. See also Figure S1 and Figure S2. 501 

 502 

Figure 4. Fiber system structure correlates with dynamical associations between 503 

cirri. (A) SiR-tubulin labeled cell (faint, dark blue)  imaged by confocal microscopy . Two 504 

morphologically distinct classes of fibers, one thick and linear and the other thin and curving are 505 

indicated by cyan and magenta respectively (see Figure S3 for more image data). The base of 506 

each cirrus is indicated by corresponding letters (as in Figure 2C). Gray shading indicates  507 

dynamical groups identified by dimensionality reduction and follows the same color scheme as 508 

in Figure 2H. Scale bar 10 µm. (B) A graph representation of fiber-fiber connections . Nodes 509 

correspond to the cirri to which each fiber system is associated, and edges indicate connections 510 

between fiber systems. Colors of nodes and colors of edges indicate the same groupings as  panel 511 

A. (C) Mutual information between all pairs of cirri grouped by the absence (Not linked) or 512 

presence (Linked) of associated fiber-fiber connections. Statistical significance was evaluated by 513 

the Wilcoxon rank sum test. Note that when pairs of cirri were grouped by fiber-fiber connection 514 

type, we did observe a significant increase in mutual information (see Figure S3). (D) Mutual 515 

information as a function of inter-cirrus distance displays negative correlation, with a Spearman 516 

correlation coefficient of -0.49 (p<0.001). Plotted values are defined with respect to pairs of cirri. 517 

(E) Mutual information as a function of fiber-cortex contact distance grouped by fiber type 518 

similarity and lack thereof displays negative correlation, with a Spearman correlation coefficient 519 

of -0.62 (p<0.001) for pairs of cirri with similar fiber types and no significant correlation for 520 
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those with dissimilar fiber types. Fiber-cortex contact difference imeasured by the mean cross 521 

nearest neighbor distance (see Method Details) for all fiber-cortex contact points associated with 522 

each cirrus. (F) Fiber-cortex contact difference versus inter-cirrus difference (as in panels D and 523 

E) illustrating that nearby cirri tend to have similar associated fiber-cortex contacts, highlighting 524 

that nearby cirri with similar fiber-cortex contacts share the most mutual information. 525 

 526 

Figure 5. The microtubule fiber system of Euplotes mediates gait coordination. (A-527 

C) Representative cell motility trajectories in control (A), nocodazole treated (B), and paclitaxel 528 

treated (C) cells highlight the curved and curled trajectories of cells treated with the microtubule 529 

polymerization inhibitor nocodazole and smoother, less convoluted trajectories in cells treated 530 

with the microtubule stabilizer paclitaxel. Different colors represent the trajectories of different 531 

cells. Scale bar is 500 µm. (D) Nocodazole affects  motility in a dose dependent and specific 532 

manner. Scaled path length decreased with increased nocodazole concentration. Paclitaxel, 533 

which stabilizes microtubules, increased scaled path length compared to the control.  Trajectories 534 

of at least 20 cells were analyzed for each condition. The black bars are median values. A single 535 

asterisk indicates p<0.05, and a double asterisk indicates p<0.005, as computed by a Wilcoxon 536 

rank-sum test. (E,F) Representative images illustrating effect of  nocodazole on the fiber system. 537 

Images are maximum intensity projections of confocal z-stack images of cells labeled by SiR-538 

tubulin. Scale bar  20 µm. (G) Nocodazole treatment shortens fibers compared to controls. Nine 539 

cells  analyzed for each condition. Black bars are median values. A single asterisk indicates 540 

p<0.05 as computed by a Wilcoxon rank-sum test. (H) A plot of mutual information of all pairs 541 

of cirri shows that nocodazole and paclitaxel change the distribution of mutual information 542 

compared to untreated cells. The data for untreated cells is  from Figures 2 and 3. Nocodazole 543 

treatment was 0.2 µM, and 6 cells over 1133 timepoints were analyzed. Paclitaxel treatment was 544 
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0.02 µM, and 6 cells over 441 timepoints were analyzed. Three asterisks indicate p<0.001 as 545 

computed by a two sample Kolmogorov-Smirnov test. (I) A representation of the changes in the 546 

nature and organization of functional states as well as transitions between them highlights the 547 

effects of nocodazole treatment. This panel is partially adapted from Figure 3H and was 548 

produced by following the same analysis procedure. Any functional state and transition depicted 549 

in Figure 3H no longer observed under nocodazole treatment appear faded. Dark arrows 550 

represent  new highest probability transitions associated with the states. Outer colors of  nodes 551 

denote the type or absence of broken detailed balance associated with the gait state for untreated 552 

cells while the core color represents that for the treated cells. Node colors follow those in Figure 553 

3H. The reduction in size of the black blob indicates a reduction in gait states associated with this 554 

functional state. (J) Diagram illustrating location of microsurgical  cuts  (dashed gray line). (K) 555 

Representative image showing a recovered bisected cell and a fully intact, unperturbed cell for 556 

reference. Scale bar  50 µm. (L) Manually tracked trajectory of a walking, bisected cell 557 

illustrating  unsteady, curving cell movement. (M) Mutual information of all pairs of cirri h-n for 558 

unperturbed, wounded, and bisected cells . Three asterisks indicate p<0.001 from two sample 559 

Kolmogorov-Smirnov test. Data for unperturbed cells are from Figure 2, data for wounded and 560 

bisected conditions involved 10 cells over 1308 timepoints in the case of the wounded cells and 561 

1815 timepoints for bisected cells. See also Figure S4, Figure S5, and Videos S3-S5.  562 
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STAR Methods 563 

Resource Availability 564 

Lead contact 565 

Further information and requests for resources, data, and code should be directed to and will be 566 

fulfilled by the lead contact, Wallace F. Marshall (wallace.ucsf@gmail.com). 567 

Materials availability 568 

This study did not generate new unique reagents. 569 

Data and code availability 570 

All data reported in this paper will be shared by the lead contact upon request. 571 

All original code has been deposited at GitHub and is publicly available as of the date of 572 

publication. DOIs are listed in the key resources table. 573 

Any additional information required to reanalyze the data reported in this paper is available from 574 

the lead contact upon request. 575 

 576 

Experimental Model and Subject Details 577 

Cell lines 578 

Cultures of Euplotes eurystomus were obtained from Carolina Biological Supply Company (Item 579 

#131480) and were kept at room temperature under ambient light conditions. 580 

Cell husbandry 581 

Individual cells were isolated from cultures, which contained other protists and 582 

meiofauna, by pipetting and placed in non-treated 6-well plates (Thermo Fischer Scientific 08-583 

772-49) containing spring water taken from cultures. Cells were kept in wells for no longer than 584 

five days before imaging, and if cells were to be kept for longer than 48 hours, wells containing 585 

cells were supplemented with 1% Cereal Grass Medium61 (Thermo Fisher Scientific S25242) to 586 
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prevent depletion of prey bacteria and otherwise maintain Euplotes under constant growth 587 

conditions. 588 

 589 

Method Details 590 

Live cell brightfield microscopy 591 

Cells were concentrated by centrifugation (500×g for 5 min) and resuspended either in 592 

0.5 mL of spring water in coverglass bottomed FluoroDishes (World Precision Instruments 593 

FD35-100) or in 0.2 mL spring water on a coverslip (FisherScientific, 12-545-D) for imaging. 594 

No more than three cells were kept in 0.5 mL imaging samples and only one cell was ever kept 595 

in 0.2 mL imaging samples in order to minimize cell-cell interactions. Cells were observed to 596 

exhibit spontaneous walking activity on coverglass. Walking cells in FluoroDishes were imaged 597 

under brightfield illumination using a Zeiss Z.1 Observer and Hamamatsu Orca Flash 4.0 V2 598 

CMOS camera (C11440-22CU) with a 20x, 0.8 NA Plan-Apochromat (Zeiss) objective. Cells on 599 

coverslips were imaged under brightfield illumination with coverslips inverted over a well 600 

containing a small amount of distilled water to reduce evaporation using a Zeiss Axio Zoom.V16 601 

and a PCO pco.dimax S1 camera. Importantly, in both imaging systems, the focal plane was set 602 

at the interface between cirri of walking cells and the glass surface upon which they were 603 

walking. Images were acquired at 0.033 seconds per frame with a 0.005 second exposure in order 604 

to capture all cirral dynamics during walking with minimal blur. 605 

 606 

Quantification of walking dynamics 607 

 Movies of walking cells were viewed using FIJI62. Movement of cirri, or lack thereof was 608 

clearly visible in each movie frame (see Figure 2A and Video S1). The dynamical state of each 609 

cirrus in each movie frame was manually annotated. For each frame, each cirrus received a label 610 
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of “1” if the cirrus was in motion and “0” if the cirrus was not moving and in contact with the 611 

coverslip. Motion of cirri was evident in terms of a change in cirrus shape or tip position often in 612 

addition to blur due to motion during image acquisition or position out of the focal plane (see 613 

Figure 2A and Video S1). While only slowly walking cells were recorded, sometimes cells 614 

nevertheless exhibit brief, spontaneous departures from slow walking during the course of movie 615 

acquisition. Any frame in which the movement of the cell and/or cirri were too fast to be 616 

resolved, such as during spontaneous escape responses27 (Video S2), was excluded from analysis 617 

such that some videos were split into a number of separate continuous sequences. Thus, each 618 

movie frame associated with a particular time point in the walking trajectory, with the exception 619 

of those excluded from analysis as described, yielded a corresponding 14-element binary vector 620 

encoding the motility state of the cell in terms of the movement of cirri. Cell movement was 621 

tracked using the manual tracking feature of the TrackMate plugin in FIJI63. The center of each 622 

cell was used as the reference feature for tracking. We analyzed the walking dynamics of 13 623 

different cells. 624 

 625 

Dimensionality reduction 626 

 Dimensionality reduction was performed by non-negative matrix factorization (NMF) 627 

implemented in MATLAB release 2019b (Mathworks, Natick). NMF was chosen as a 628 

dimensionality reduction technique to allow us to obtain a reduced, sparse, and interpretable 629 

representation of walking dynamics. Because NMF derives non-negative factors, the basis 630 

vectors in NMF space correspond straightforwardly to patterns of cirral activity. NMF involves 631 

factoring data, A, an n by m matrix, into non-negative factors W, an n by k matrix, and H, a k by 632 

m matrix where the product W*H approximates A. To determine the appropriate number of 633 

dimensions or rank, k, that are necessary to accurately represent the data without overfitting, we 634 
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performed cross-validation by imputation with random holdouts64, also implemented in 635 

MATLAB. We randomly held out 15% of our walking dynamics data, performed NMF for a 636 

given k, and then used the NMF reconstruction W*H, to update the missing data entries. This 637 

process of updating is known as imputation, and we repeated the imputation process 50 times, by 638 

which point the imputed values had stabilized, to obtain a final NMF reconstruction. We then 639 

computed the root mean squared residual (RMSR) between the final NMF reconstruction, W*H, 640 

and our dataset, A. We performed this entire process 100 times for each value of k. As is 641 

generally the case for NMF, we observed a monotonic decrease in reconstruction error with 642 

increasing k without performing the imputation procedure (Figure S1). In contrast to this trend, 643 

we observed an increase in RMSR of imputed values with increasing k indicating overfitting 64 644 

(Figure S1). We chose k=3 because this value was the highest value before a notable increase in 645 

imputation error (Figure S1), which would indicate overfitting64. Thus, our choice of rank 3 646 

selects the lowest rank approximation that captures structure of the dataset without overfitting 647 

that structure. Further, our choice facilitated the visual inspection of the structure of data in the 648 

reduced dimensional reconstruction. 649 

Finally, we noted that for our chosen value of k, due to the stochastic nature of the NMF 650 

algorithm, which involves a random initialization step, we obtained slightly different solutions 651 

for different iterations64. In order to choose the best reduced dimensional approximation, 652 

therefore, we performed NMF 500 times and chose the particular solution corresponding to the 653 

lowest RMSR compared to our dataset. 654 

 655 

Clustering 656 

  Clustering on the dataset obtained using NMF was performed by density-based spatial 657 

clustering of applications with noise (DBSCAN) algorithm 40 implemented in MATLAB release 658 
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2019b (Mathworks, Natick). Structure in NMF space was clearly visible (Figure 2E-G), and 659 

DBSCAN using a Euclidean distance metric, was initially chosen as a clustering method because 660 

it yielded qualitatively good partitioning of the data. The DBSCAN algorithm involves stochastic 661 

search within neighborhoods of a given radius ε around datapoints, and points with a minimum 662 

number of neighbors, n, within their neighborhood are grouped as belonging to the same cluster, 663 

leaving two free parameters to determine. We set ε by first using the 664 

clusterDBSCAN.estimateEpsilon function in MATLAB (release 2020b, Phased Array System 665 

Toolbox), which yielded a value of 0.15. We next set about determining the minimum neighbor 666 

number, n. To do so, we computed the average Silhouette coefficient, a commonly used measure 667 

of clustering quality that indicates how well-separated clusters are, for various values of n. The 668 

results of this analysis are plotted in Figure S1. Higher Silhouette coefficients indicate better 669 

clustering, and we found that a value of n=8 maximized the mean Silhouette coefficient (Figure 670 

S1). We also noted, however, that for this value, many datapoints were found to be outliers, not 671 

belonging to any cluster due to having too few points within a distance of ε. Figure S1 displays 672 

percentage of datapoints found to be outliers as a function of n. In order to avoid categorizing 673 

more than 5% of datapoints as outliers, we chose to settle on n=4, which does not have a 674 

significantly different mean Silhouette coefficient compared to any of the others in the range 675 

n=2-7. This choice was further supported by the fact that major clusters involving more than 5 676 

datapoints identified with n=8 were also identified with n=4. 677 

 Although this set of parameters gave qualitatively and quantitatively reasonable 678 

clustering results, we sought to further refine our clusters and to further reduce the outlier 679 

datapoints. We noted the obvious partitioning of the NMF dataset into three groups along the H2 680 

axis (Figure 2E). We found the previously determined parameter values to yield good clustering 681 

for the top and middle partitions (H2≥1.1 and 0.2<H2<1.1), with no outliers. For the lower 682 
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partition (H2≤0.2), however, we found that we were able to improve clustering by using 683 

ε=0.1182. With this updated value, we found no statistically significant change in Silhouette 684 

coefficient and reduced outliers to 0%. The clusters obtained by this process constituted the 685 

identification of the 32 gait states. We note here that the problem of determining the true or 686 

optimal number of clusters is an unresolved problem65, and we note that we have followed 687 

standard methods to determine cluster number, and we found that our key results do not depend 688 

sensitively on the precise number of clusters identified (see following section and Figure S1 for 689 

more details). 690 

 691 

State transition analysis 692 

Following dimensionality reduction and clustering to identify gait states, we proceeded to 693 

characterize state transition dynamics. For each cell trajectory, we identified all unique gait state 694 

transitions for a total of 1423 unique pairwise transitions over the cumulative 2343 video frames 695 

for 77.14 s of recording. We computed empirical transition rates between states as the total 696 

number of observed transitions divided by the total time of observation. In order to determine 697 

which transitions were balanced and which were unbalanced, we followed Chang and Marshall30, 698 

and performed binomial tests of statistical significance. Assuming a system at equilibrium, with 699 

all transitions obeying detailed balance, we expect to observe some deviation from exactly 700 

reciprocal transitions and can calculate the probability of observing a given set of ratios given 701 

underlying probabilities of forward and reverse transitions. The binomial probability of 702 

observing a set of transitions with known forward and reverse probabilities is given by 703 

𝑃(𝑋 = 𝑓) = ,
𝑛
𝑓. 𝑝#$%&'%(

# 𝑝%)*)%+)
,-#  704 
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where ,
𝑛
𝑓. = 	

,!
#!(,-#)!

 is the number of combinations,  f is the number of forward transitions, n is 705 

the total number of transitions (such that n-f is the number of reverse transitions), and the 706 

probabilities 𝑝#$%&'%( and 𝑝%)*)%+) are the forward and reverse probabilities. Considering only 707 

the set of transitions involving a specific pair of states, and calculating the probability that a 708 

transition between those states is either in the forward or reverse direction, the values of forward 709 

and reverse probabilities in the balanced case must be equal such that 𝑝#$%&'%( = 𝑝%)*)%+) = 0.5. 710 

With an α level of 0.05, we then considered reciprocal transition pairs with binomial 711 

probabilities less than 0.05 to be significantly unbalanced. Figure S1 displays the binomial 712 

probabilities associated with all transitions. 713 

 To further illustrate the non-equilibrium or temporally irreversible character of gait state 714 

transitions, we apply the Kolmogorov criterion, which specifies the necessary and sufficient 715 

condition for reversibility that the product of transition probabilities traversing any closed loop in 716 

state space must equal the product of the transition probabilities in the reverse direction5,66. Due 717 

to the presence of unbalanced transitions, the gait of Euplotes clearly violates this condition; for 718 

example, k1,2k2,3k3,17k17,1 = 0.003 ≠ k1,17k17,3k3,2k2,1 = 0.0005, where each ki,j is the conditional 719 

probability of transitioning from state i to state j estimated as Nij/Ni with Ni the total number of 720 

transitions from state i. 721 

 In order to calculate the estimated entropy production rate, we followed Wan and 722 

Goldstein5, where the entropy production rate is defined as 723 

	𝑆̇ =
1
25𝐽!"𝐴!"
!1"

 724 

with conjugate fluxes 𝐽!" = 𝑝!𝑘!" − 𝑝"𝑘"! and forces 𝐴!" = ln	 <2!3!"
2"3"!

= where the 𝑝4 are the 725 

probabilities of being in state l at steady state and the  𝑘!" are the transition probabilities from 726 
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states i to j. We estimate the state occupancy probabilities 𝑝4 as 5#
5$%&'#

, where 𝑇4 is the amount of 727 

time spent in state l over all trajectories and 𝑇5$6'4 is the total recorded time, and the transition 728 

probabilities 𝑘!" as 7!"
7!

, where 𝑁!" is the total number of observed transitions from state i to state j 729 

and 𝑁! is the total number of transitions emanating from state i. To avoid 𝑘"! = 0 for pairs of 730 

states for which we did not observe any transitions during our experiments, we let 𝑘"! =
8

2"5(')
 731 

where 𝑇9': = 238 is the maximum number of observed transitions for any single recorded 732 

walking trajectory. 733 

 In the course of our state transition analysis, we also checked whether the waiting times 734 

between instances of each state might be non-exponentially distributed, with exponential 735 

distributions indicative of an embedded Markov process or possibly self-organized criticality67. 736 

Using the Lilliefors test implemented in MATLAB, we found that in general, waiting times were 737 

not exponentially distributed, although states  2, 3, 6, 16, 17, 18, 25, 27, 28, 32 were found to 738 

have waiting times consistent with exponential distributions with Benjamini-Hochburg corrected 739 

p-values of 0.046, 0.046, 0.022, 0.008, 0.046, 0.017, 0.046,  0.0081, 0.0046, 0.0046 respectively. 740 

Interestingly, none of the waiting times between the movements of individual cirri were found to 741 

be consistent with exponential distributions. These results are consistent with mechanisms 742 

constraining the temporal dynamics of cirri and state transitions. 743 

 In order to begin evaluating whether state transitions obeyed the Markov property for a 744 

discrete-time, first-order Markov process, where the transition probabilities from one state to the 745 

next are completely determined by current state42, we estimated the transition matrix for walking 746 

dynamics, consisting of the transition probabilities between all states. We estimate the transition 747 

probability from state i to state j as 𝑘!" =
7!"

∑ 7!**
 such that ∑ 𝑘!"! = 1. The entries of the transition 748 

matrix, P, are these transition probabilities with indices i for rows and j for columns. If gait state 749 
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transitions obeyed the Markov property, we expect that the product of the transition matrix with 750 

itself, P2, would be equivalent to the two-step transition matrix where transition probabilities are 751 

computed as before except that state j is the state to which i has transitioned after an intervening 752 

transition. Figure S1 displays the results of this analysis showing that the two matrices show 753 

some quantitative and qualitative differences. Although these results strongly suggest violation 754 

of the Markov property, we applied the Billingsley test for a more statistically rigorous 755 

evaluation68,69. This test was implemented and performed in MATLAB. The Billingsley test 756 

gives a χ2 metric with M2-2M degrees of freedom given by 757 

∑ ∑
<7!"-=!" ∑ 7!"+

",- >
.

=!" ∑ 7!"+
",-

?
"@8

?
!@8 , 758 

where 𝑅!", the independent trials probability matrix, is given by 759 

𝑅!" = ∑ 𝑁3"?
3@8 (∑ ∑ 𝑁A4?

4@8
?
A@8 − ∑ 𝑁!3?

3@8 )⁄ . Applying this test to our gait state transition data, 760 

we found that the null hypothesis that the gait conforms to a first-order discrete time Markov 761 

process was rejected (p=0.005). 762 

Importantly, we also noted that the key qualitative results of our state transition analysis 763 

are robust to the details of clustering results. In particular, we find that strongly unbalanced 764 

transitions and violation of the Markov property exist for a range of clustering parameters. 765 

Figure S1 displays the transition matrices for different clustering results. 766 

To arrive at the simplified, state machine representation of the gait, we focused on the 767 

highest probability transitions emanating from each state. Transition probabilities were estimated 768 

as kij (as defined above). This allowed us to prune away rare transitions in order to reveal the 769 

dominant structure of gait state transitions. Figure 3G displays the pruned transition matrix as a 770 

heatmap. We found that relatively few states were the recipients of the majority of high 771 

probability transitions, and many states received none. To more clearly visualize the structure of 772 
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transitions, we grouped together all gait states receiving no more than one unique high 773 

probability transition based on the idea that state transitions into this group show little bias in 774 

terms of source state, and within the group, transitions between states exhibit low probability, 775 

time unbiased, equilibrium-like fluctuations. 776 

 777 

Biophysical model and simulations 778 

 For our simple biophysical model, we consider a 2D system in which a Euplotes cell is 779 

walking across a surface in a low Reynolds number environment70. The cell has 14 cirri, which 780 

exist in one of two states: actively moving or not actively moving, following our quantitative gait 781 

characterization. Cell position and orientation is defined in terms of equilibrium position of the 782 

cirri. Cirri can generate a motive force to drive cell motility when moving and resist 783 

displacement when not moving and in contact with the surface. For our model, we remain 784 

agnostic to the details by which cirri produce generate force noting only that in our experiments, 785 

no cell displacement was observed when cirri were not moving and in contact with the coverslip. 786 

We therefore let cirri generate a constant force in the direction dictated by cell orientation when 787 

moving. We conceptualize the resistance to displacement of unmoving cirri as stemming from 788 

the adhesive interaction between the cirrus and the substrate on which the cell is walking and the 789 

energy required to bend or deflect a cirrus. Consistent with experimental observations, we do not 790 

allow for translation of a cirrus-substrate contact point while a cirrus is not actively moving. 791 

 For a particle moving through a fluid at low Reynolds number, such as our cell, velocity 792 

𝑣⃑ will be given by 793 

𝑣⃑ = ∑ B⃑
D

, 794 
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where ∑ 𝐹⃑ is the sum of the external forces acting on the particle, and 𝛾 is constant related to the 795 

geometry of the particle and the viscosity of the fluid71 accounting for drag.  In our model, cirri 796 

are responsible for the forces involved in motility, so ∑ 𝐹⃑ = 𝐹'HHH⃑ + 𝐹EHH⃑  with the motive force 𝐹'HHH⃑ =797 

𝑛𝐹'𝑜⃑ where n is the number of active cirri, 𝐹' is the magnitude of the constant force generated by 798 

active cirri, and 𝑜⃑ is the unit vector in the direction of cell orientation, and the resistive force 𝐹EHH⃑ =799 

∑ 𝑘𝑑EHHH⃑!  is a sum over the inactive cirri where k is a constant controlling the resistance of a cirrus 800 

to deformation and 𝑑EHHH⃑  is the displacement vector of inactive cirrus i. We note that the forces 801 

driving cell motility in Euplotes stem from complex mechanical interactions, but for our model, 802 

we have chosen simple, first order expression to capture very basic features.  803 

Similar to the expression for velocity above, angular velocity of a walking cell in our 804 

model is given by 805 

𝜔HH⃑ = ∑B	GGG⃑ ×%⃑
I

,  806 

where 𝛽	is a constant related to the geometry of the cell and viscosity of the fluid, 𝐹EHH⃑  is the force 807 

due to cirrus i (𝐹'𝑜⃑ for active cirri and 𝑘𝑑 for inactive cirri), and 𝑟! is the vector pointing from 808 

the center of the cell to cirrus i. 809 

 In addition to the relative positions of the cirri and patterns of cirral activity, the four 810 

parameters 𝛾, 𝛽, 𝐹' and 𝑘 govern cell motility in our model. From these four parameters, we 811 

obtain three related dimensionless parameters:𝛼 = 𝛽 𝛾𝑙⁄  where l is the maximum distance 812 

between cirri, which can be thought of as characterizing the unsteadiness of the cell the intrinsic 813 

susceptibility of the cell to turning due to cell geometry; Μ = 𝐹' 𝑘𝑙⁄ , which can be thought of as 814 

characterizing degree to which cirral activity will tend to induce cell movement in opposition to 815 

inactive cirri; and ℱ = 𝐹'𝑡 𝛾𝑙⁄  where t is the duration of a timestep in simulations, which can be 816 
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thought of as the strength of the cirral motive force relative to the viscous drag experienced by 817 

the cell due to its fluid environment. 818 

 For all simulations, relative equilibrium cirral positions calculated from the average cirral 819 

positions in a video frame with no cirral activity over the 13 cells used for gait analysis (Figure 820 

2) were used. In each simulation timestep, defined by the timestep used for recording videos for 821 

gait analysis, velocity and angular velocity are calculated based on the positions and activity of 822 

cirri, and the positions of all cirri are updated accordingly before proceeding. To calibrate the 823 

parameters of the model, we used the cirral patterns recorded from the cells used for gait 824 

analysis. We swept parameter space and found that simulations qualitatively and semi-825 

quantitatively recapitulated experimentally measured cell motility with 𝛼 = 0.001, Μ = 0.26, 826 

and ℱ = 0.008  (Figure 3K, Figure S1). These parameter values were subsequently used for all 827 

simulations. 828 

 For simulations with shuffled gait state transitions, we used MATLAB’s shuffle 829 

command on the cirral dynamics of actual cells to obtain sequences of gait state transitions of the 830 

same length as those that were experimentally obtained except in a random order. To obtain 831 

random patterns of cirral activity similar to those measured experimentally, we generated cirral 832 

activity according to a process defined by two probabilities: pa, the probability of transitioning 833 

from inactive to active at each timestep and pi, the probability of transitioning from inactive to 834 

active at each timestep. We initialized sequences with no cirral activity and then updated cirral 835 

activity according to these probabilities for each timestep in the sequence. We found that setting 836 

pa=0.3 and pi=0.1 yielded the same average cirral activity as that recorded experimentally, 0.23 ± 837 

0.42 per frame and 0.24 ± 0.43 per frame respectively where the values are mean ± standard 838 

deviation. All simulations were performed in MATLAB. 839 

 840 
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Confocal microscopy 841 

Cells were prepared for imaging and placed into a FluoroDish as described in the Live 842 

Cell Brightfield Microscopy section. Cells were then labeled with SiR-tubulin (Spirochrome 843 

provided by Cytoskeleton, Inc, CY-SC002) at 1 µM concentration. Cells were imaged using a 844 

Zeiss LSM 880 AxioExaminer and a 40x, 1.2 NA C-Apochromat water immersion objective 845 

(Zeiss) and excitation provided by a 633 nm laser (Zeiss). Only one full confocal z-stack of a 846 

complete cell was obtained during imaging to avoid effects of photodamage. 847 

 848 

Fiber reconstruction and analysis 849 

 The image stack resulting from confocal imaging was first aligned in FIJI using the 850 

StackReg plugin62. Next, fibers were manually segmented in each of the aligned z-stack images 851 

using the TrakEM2 plugin in FIJI72,73. Thick and thin fibers (Figure 4A) were morphologically 852 

distinguished, with thick fibers having a diameter of no less than 5 µm at the thinnest point. 853 

Fibers were traced from their distal termini to their convergences at the base of the cirri with 854 

which they were associated. Following segmentation, 3D surfaces were reconstructed in 855 

TrakEM2. Inter-fiber contacts were then found by inspection of 3D reconstructions and verified 856 

by examining individual z-stack frames to confirm intersections between fibers. 857 

 858 
 859 
Drug treatment experiments and analysis 860 

 For all cytoskeleton inhibitor treatment experiments, 1 mL of cells in culture were placed 861 

in wells of 12-well plates (Thermo-Scientific, 12-565-321). Nocodazole (Sigma-Aldrich, 862 

M1404) as a stock solution of 6.64 mM in DMSO diluted further in distilled water, was added to 863 

achieve appropriate concentrations, with no more than 1 µL of additional volume added, and 1 864 

µL of distilled water with equivalent DMSO concentration to nocodazole treatments added to 865 
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controls. Cells were incubated for 1 hr before initiating experiments. No cell death was observed 866 

at any concentration of nocodazole in the 6 hours following nocodazole treatment. Paclitaxel 867 

(Sigma-Aldrich, T7191) as a stock solution of 2.23 mM in DMSO diluted further to 20 µM in 868 

distilled water, was added to achieve a final concentration of 20 nM to cells in solution. 869 

Latrunculin B (Thomas Scientific, C834E37) as a stock solution of 1.1 mM in ethanol was 870 

further diluted in distilled water and added to achieve a final concentration of 10 µM with cells 871 

in solution. Cytochalasin B (Fisher Scientific 1493-96-2) as a stock solution of 2.1 mM in 872 

ethanol was further diluted in distilled water was added to achieve a final concentration of 50 873 

µM with cells in solution. Jasplakinolide (Fisher Scientific 42-012-750UG) as a stock solution of 874 

1 mM in DMSO was further diluted in distilled water to achieve a final concentration of 10 µM 875 

with cells in solution. No cell death was observed in the 6 hours following treatment with any of 876 

the actin inhibitors. For the control condition for actin inhibitor experiments, both DMSO and 877 

ethanol was added to match the concentrations added in the cytochalasin B and jasplakinolide 878 

conditions. 879 

Washout experiments 880 

For nocodazole washout experiments, motility assays (described below) were also 881 

performed after placement of cells into well plates and before nocodazole treatment. Following 882 

0.2 µM nocodazole treatment and another motility analysis, cells were picked in 5 µL of media 883 

and placed into wells of 6 well plates (Corning, CLS3736) each containing 2mL of fresh media. 884 

No more than 20 µL of nocodazole treatment media was added to any well so that the resultant 885 

nocodazole concentration in the washed condition was no more than 2 nM. Cells were allowed to 886 

recover in this condition for 4 hr, and then a final motility assay was performed. 887 

Motility analysis 888 
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 For motility analysis, cells were picked from well-plates and placed onto well-slides 889 

created by using a paper hole punch tool to punch a hole in 0.25 mm thick silicone spacer 890 

material (CultureWell, 664475), and adhering the spacer material to a glass slide (Corning, 2947-891 

75X25). A total volume of 20 µL including up to 4 cells was added to well slides. A glass 892 

coverslip (FisherScientific, 12-545-D) was placed atop the well slide, sealing the well and 893 

creating an imaging chamber. After creating the imaging chamber, cells were allowed to 894 

acclimate to their new environment for 10 min. Cells were then imaged on a Zeiss Axio 895 

Zoom.V16 microscope under darkfield illumination with a Canon EOS T5i DSLR camera 896 

recording at 30 fps for 2 min. Videos were then processed using FIJI 62. First, images were 897 

cropped to remove extraneous parts of the field of view that did not contain the imaging 898 

chamber, and then background subtraction was performed by creating an image composed of 899 

mean pixel intensity values over all frames of the video and subtracting this mean image from all 900 

frames of the video. A mean filter with a four-pixel radius was then applied to each frame of the 901 

video for the purpose of smoothing. After processing, tracking was performed using the 902 

TrackMate FIJI plugin63. For detection of objects (cells), a Laplacian of Gaussian filter was 903 

applied with an estimated blob diameter of 25 pixels and threshold of 0.1. A quality threshold 904 

was set manually when necessary to filter out any detected objects that were not cells. The 905 

Linear Assignment Tracker with a linking max distance of 15 pixels, gap-closing max distance 906 

of 150 pixels, and a gap-closing max frame gap of 200 frames was then used to generate linked 907 

tracks (trajectories) of detected cells. Trajectories were analyzed in MATLAB. Scaled path 908 

length for each tracked cell was calculated by summing the length of all segments of the track 909 

and dividing by the maximum distance the cell traveled from its starting point. 910 

Fiber length analysis 911 
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 Just prior to confocal imaging, cells were washed by picking up to five cells in 10 µL 912 

volume each and placing into 1 mL fresh media in a 12-well plate (Thermo-Scientific, 12-565-913 

321). Cells were then prepared for imaging as described in the Confocal Imaging section of 914 

Method Details. Confocal z-stacks were then loaded into FIJI and aligned using the StackReg 915 

plugin62. Cell lengths were determined by finding the maximal distance between two points on 916 

the front and rear ends of the cell. Because of variability in the detectable fibers in nocodazole 917 

treated cells, only fibers associated with the rear cirri (j-n), which were visible in all cells, were 918 

used for analysis. All of these rear fibers were measured, and the reported scaled fiber length was 919 

obtained by dividing the length of the longest fiber by the corresponding cell length. In all cases, 920 

the fiber associated with cirrus m was the longest fiber. 921 

Analysis of cirral dynamics in nocodazole and paclitaxel treated cells 922 

 Cells were prepared for imaging and imaged as described in the Live Cell Brightfield 923 

Microscopy section of the Method Details with the exception that a Canon EOS T5i DSLR 924 

mounted on a Zeiss Axio Zoom.V16 microscope was used to record movements. Additionally, 925 

video was recorded at 0.066 seconds per frame to avoid blurring and then videos were 926 

downsampled to 0.033 seconds per frame for analysis. Cirral dynamics were quantified as 927 

described in the Quantification of Walking Dynamics section of the Method Details. 928 

 To assign cirral configurations of nocodazole treated cells to previously identified gait 929 

states, we first matched any cirral configurations with known gait state identity. Next, due to 930 

proximity of new cirral configurations not observed in untreated cells (Figure S1), we were able 931 

to map the new cirral configurations onto the clusters defining the gait states by determining the 932 

nearest cluster to the new cirral configuration. Distance between new cirral configurations and 933 

clusters were determined by finding the shortest distances to points defining convex hulls of each 934 

cluster. The shortest of all these distances then indicated the nearest cluster and corresponding 935 
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gait state to which the new cirral configuration was assigned. We noted an obvious dense cluster 936 

of points corresponding to activation of nearly all cirri, and we identified a new cluster and 937 

corresponding gait state by applying the DBSCAN algorithm as described in the Clustering 938 

section of the Method Details. Evaluation of transition dynamics was performed as described in 939 

the State Transition Analysis section of the Method Details. This analysis was all performed in 940 

MATLAB. 941 

 942 

𝜖-machine construction 943 

Our representation of the Euplotes at timestep t takes the form of a length 14  944 

binary string 𝑥6 = [𝑥86 , 	𝑥J6 , .		.		.		 , 	𝑥8K6 ] where 	𝑥!6 ∈ {0, 1}. For reducing dimensions,  945 

we found that bigrams of the 14-dimensional strings, yielded more consistent, interpretable 946 

results than unigrams, so 𝑥L6 = [𝑥86 , 	𝑥J6 , .		.		.		 , 	𝑥8K6 , 	𝑥86M8, 	𝑥J6M8, .		.		.		 , 	𝑥8K6M8] ∈ {0, 1}JN. 947 

In order to learn latent states, we used Variational AutoEncoders (VAEs) 74 to reduce each 948 

fourteen dimensional timestep to three dimensions. VAEs in particular are used for their ability 949 

to learn an interpolatable latent space where high-dimensional training data points are mapped to 950 

points in low-dimensional space that mimic a normal distribution centered around the origin. 951 

This processes yields a smooth latent space with dimensions that represent core aspects of the 952 

data. We used a very minimal VAE with an Adam optimizer75, consisting of one dense layer for 953 

the generating encoder means and one dense layer for generating encoder variance. This creates 954 

a 3-dimensional normal-like distribution, which we sample from and decode with a one layer 955 

decoder.  956 

VariationalEncoder(𝑥L6) → 𝑧6 ∈ ℝO  957 
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After reducing the dimensionality of our data, we perform spectral clustering 76 using 958 

scikit-learn 77 with 100 k-means runs and 4 clusters, where the cluster count was decided by 959 

inspection of the resulting classes. 960 

SpectralClustering(𝑧6) → 𝑐6 ∈ {1, 2, 3, 4}  961 

 Applying this procedure to the data from the cells used for gait analysis (the same as used for 962 

Figure 2) with bigram training parameters lr=0.0011, weight_decay=0.000727, k=3, 963 

hidden_dim=5, beta1=0.5, and beta2=0.900, we found the following four clusters corresponding 964 

to particular patterns of cirral ativity: 1) Front cirral activity 2) High overall cirral activity 3) 965 

Rear cirral activity and 4) Little cirral activity (Figure S5). When we applied this procedure to 966 

the data from cells treated with 0.2 µM nocodazole (the same data used for Figure 5) with 967 

bigram training parameters lr=0.0026, weight_decay=0.000106, k=3, hidden_dim=3, beta1=0.5, 968 

and beta2=0.999, we obtained only three distinct clusters with similar cirral activity patterns to 969 

those of untreated cells except that the rear cirral activity cluster (3 above) disappeared (Figure 970 

S5). These clusters represent an independent, alternative coarse-graining of patterns of cirral 971 

activity into gait states to that presented in Figure 2. Although independent, this procedure 972 

identified the same underlying structure in the data. In particular, the alternative gait states here 973 

involve similar patterns of cirral activity to those defining the NMF components depicted in 974 

Figure 2H. Whereas the spatially distinct groups of cirri sharing the most mutual information 975 

define the space of gait states under the NMF-based approach, under this alternative, activity or 976 

complete lack thereof in those same groups of cirri defines the gait states. Furthermore, the loss 977 

of cluster 4 under nocodazole treatment is consistent with the loss of gait states as depicted in 978 

Figure 5I. 979 

To construct 𝜖-machines44, characterized by a set of causal-states and transitions between 980 

them, we feed a stream of behavioral symbols 𝑐P, 𝑐8, .		.		 . , 𝑐5 into a Causal-State Splitting 981 
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Reconstruction (CSSR) 48,78 algorithm. Due to the nature of the CSSR algorithm, we can only 982 

construct 𝜖-machines from unbroken data streams, so we constructed 𝜖-machines for each cell 983 

from a given dataset. Performing this process over gait state data streams derived from cirral 984 

activity recordings as described above for each cell from the untreated and nocodazole datasets 985 

yielded a set of 𝜖 machines. Representative examples of 𝜖-machines obtained from each dataset 986 

are depicted in Figure S5. 987 

 988 

Microsurgery experiments 989 

 All microsurgeries were performed by hand under observation with a Zeiss Axio 990 

Zoom.V16 using quartz microneedles pulled from quarts rods (Sutter Instrument, QR100-10) 991 

using a Sutter Instrument P-2000 Laser-based micropipette puller. Individual cells were picked 992 

and placed in a 5 µL droplet at the center of an imaging chamber as described in the Motility 993 

Analysis section of the Method Details. For bisections, microneedles were quickly and firmly 994 

pressed onto cells just anterior to cirrus h, cleanly severing the cell including the fibers 995 

associated with cirri j-n and sealing the cell membrane. Cells were allowed to recover for at least 996 

5 minutes until some motility resumed, and then 15 µL of fresh culture media was added to the 997 

imaging chamber, which was subsequently sealed with a glass coverslip (FisherScientific, 12-998 

545-D) to minimize evaporation. After 24 hr, once cell fragments resumed walking motility, gait 999 

analysis was performed as described in the quantification of walking dynamics section of the 1000 

Method Details, except that cell fragments only had 7 cirri (j-n) instead of the full 14. 1001 

Experiments with wounded cells were conducted in the same fashion as described for bisections 1002 

except that instead of cutting cells in half, wounding was performed by stabbing with a 1003 

microneedle a portion of the cell that does not have any fibers and was confirmed visually by the 1004 

loss of some amount of cytoplasm. 1005 
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 1006 

Quantifications and statistical analysis 1007 

Statistical details of the experiments can be found in the figure legends, the main text, or the 1008 

Method Details section. Statistical details include exact value of n, what n represents (generally 1009 

the number of cells measured), definitions of center, and dispersion and precision measures. 1010 

Statistical tests and fits were performed as described in the Method Details section using 1011 

MATLAB release 2019b or 2020b (Mathworks, Natick). 1012 

  1013 
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 1014 

Supplemental Video Captions 1015 

Video S1. A walking cell. Related to Figures 1 and 2. A representative example of a single 1016 

Euplotes eurystomus cell walking across a coverslip using motile cirri illustrates the walking 1017 

gait. Note that the movement of cirri, or lack thereof is clearly visible in each frame of the 1018 

movie. This cell was imaged using a Zeiss Axio Zoom.V16 microscope under brightfield 1019 

illumination. The video is slowed down by a factor of 4 from real time to show that the 1020 

movements of cirri are clearly visible. 1021 

 1022 

Video S2. Walking motility including escape responses. Related to Figure 2. A representative 1023 

example of a single Euplotes eurystomus cell walking across a coverslip using motile cirri 1024 

including escape responses, which were excluded from gait analysis. Escape responses occur at 1025 

t= 18s, 20s, and 25s. This cell was imaged under brightfield illumination using a Zeiss Z.1 1026 

Observer with a 20x, 0.8 NA Plan-Apochromat (Zeiss) objective. The video is slowed down by a 1027 

factor of 4 from real time so that the movements are clearly perceivable. 1028 

 1029 

Video S3. Cell tracking for motility analysis. Related to Figure 5. Left (Control), a 1030 

representative example of the trajectories of cells imaged at low magnification under darkfield 1031 

illumination using a Zeiss Axio Zoom.V16 microscope. Cells appear as bright objects with 1032 

magenta circles around them. Different colored lines correspond to the tracks of different cells 1033 

tracked using the FIJI plugin TrackMate. Center (Nocodazole), a representative example of the 1034 

trajectories of cells treated with 200 nM nocodazole imaged at low magnification under darkfield 1035 

illumination. Cells appear as bright objects with magenta circles around them. Different colored 1036 

lines correspond to the tracks of different cells tracked using the FIJI plugin TrackMate. Note the 1037 
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confined movements of cells due to a decrease in long, linear runs compared to the control 1038 

condition. Right (Paclitaxel), a representative example of the trajectories of cells treated with 20 1039 

nM paclitaxel imaged at low magnification under darkfield illumination. Cells appear as bright 1040 

objects with magenta circles around them. Different colored lines correspond to the tracks of 1041 

different cells tracked using the FIJI plugin TrackMate. Note the increase in long, linear runs and 1042 

decrease in abrupt changes in direction and tight turns compared to the control condition. 1043 

 1044 

Video S4. A walking, bisected cell. Related to Figure 5. A representative example of a 1045 

bisected cell analyzed in microsurgery experiments displaying the characteristic backwards, 1046 

spiral walking motility defect. This cell fragment was imaged using a Zeiss Axio Zoom.V16 1047 

microscope under brightfield illumination. The video is slowed down by a factor of 4 from real 1048 

time to clearly show the movements of cirri. 1049 

 1050 

Video S5. A walking, wounded cell. Related to Figure 5. A representative example of a 1051 

wounded cell analyzed in microsurgery experiments. This cell was imaged using a Zeiss Axio 1052 

Zoom.V16 microscope under brightfield illumination. The video is slowed down by a factor of 4 1053 

from real time to clearly show the movements of cirri. 1054 

  1055 
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