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A B S T R A C T

We investigate whether text-based physical or transition climate risks forecast the daily volume of gold trade
contracts. Given the count-valued nature of gold volume data, we employ a log-linear Poisson integer-valued
generalized autoregressive conditional heteroskedasticity (IN-GARCH) model with a climate-related covariate.
We detect that physical risks have a significant predictive power for gold volume at 5- and 22-day-ahead
horizons. Additionally, from a full-sample analysis, it emerges that physical risks positively relate with gold
volume. Combining these findings, we conclude that gold hedges physical risks at 1-week and 1-month
horizons. Similar results hold for platinum and palladium, but not for silver.
. Introduction

Climate change is associated with two types of risks, namely physi-
al and transition. Physical risk involves losses and costs due to factors
uch as rising temperatures, higher sea levels, storms, and floods or
ildfires. Transition risk, on the other hand, is associated with a costly

witchover to a low-carbon economy, usually prompted by climate
olicy changes, emergence of competitive green technologies, and shifts
n consumer preferences. Due to the uncertainty surrounding the future
ourse of climate change and its economic implications, every future
cenario includes climate-related financial risks. Climate-related risks
ave been shown to adversely affect a large number of asset classes,
ncluding currencies, equities, fixed-income securities, and real estate,
s well as financial institutions (Battiston et al., 2021; Giglio et al.,

2021; Bonato et al., 2022), generally raising the stress on the entire
financial system (Flori et al., 2021).

Due to heightened distress in the financial system arising from
climate risks, gold, given its well-established ‘‘safe haven’’ proper-
ties (Boubaker et al., 2020; Bouri et al., 2022), may play a key role.
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artially supported by National Science Foundation DMS, USA 2124222.
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(L. Rognone).

Gold, in fact, serves as an investment vehicle that offers portfolio diver-
sification and/or hedging benefits during periods of financial turmoil,
which can also arise from climate-related events. In such instances
of ‘‘bad news’’ and due to the information-seeking actions of traders,
gold returns and its volatility are therefore expected to increase due to
higher trading volumes, capturing information flows emanating from
its higher demand (Wang and Yau, 2000; Batten and Lucey, 2010;
Baur, 2012). As a support of this theory, recent studies show a posi-
tive relationship between gold returns, and its volatility, with climate
risks (Cepni et al., 2022; Gupta and Pierdzioch, 2022).

Specifically, on one hand Cepni et al. (2022) show, inter alia, using
an asymmetric dynamic conditional correlation-generalized autoregres-
sive conditional heteroskedasticity (ADCC-GARCH) model, that the
time-varying correlation between gold (and to some extent platinum
and silver) is generally positive relative to physical and transition
risks associated with climate change, possibly due to higher trading
activity in the gold market, though green bonds also tended to stand
vailable online 13 March 2023
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out in terms of acting as a hedge. On the other hand, Gupta and
Pierdzioch (2022) use variants of the Heterogeneous Autoregressive
Realized Volatility (HAR-RV) model to examine the out-of-sample pre-
dictive value of climate-risk factors for the realized volatility of gold
price returns (as well as the realized volatility of for other metal price
returns namely, copper, palladium, platinum, and silver). The authors
estimate the HAR-RV models using not only ordinary least squares,
but also three different popular shrinkage estimators. They find that
climate-risk factors improve the accuracy of out-of-sample forecasts
prices at a monthly and, in some cases, also at a weekly forecast
horizon, which is likely a result of the positive effect of climate risks
on trading volume, given gold’s safe haven characteristic.

In light of the underlying intuition that climate risks can be associ-
ated with higher returns and volatility of gold prices due to increased
trading volumes, this paper contributes to the broader green finance lit-
erature1 by documenting the direct effect of climate risks on the volume
of traded contracts of gold. This is in contrast to the two studies men-
tioned above, which focused on returns and volatility and indirectly
address the issue of trading volumes. In this regard, we resort to an
out-of-sample forecasting exercise over the daily period of 3rd January,
2005 to 29th October, 2021, rather than an in-sample predictability
analysis mainly for two reasons. First, under a statistical perspective,
forecasting is considered to be a more robust test of predictability
in terms of both models and predictors (Campbell, 2008). Second,
accurate real-time forecasting of volumes (based on the information
content of climate risks), which is known to lead returns and volatility,
should be of much more value to traders and investors in the gold
market, relative to in-sample evidence, in the timely pricing of related
derivative securities and for devising portfolio-allocation strategies.
Realizing the count-valued nature of the time series data on the trading
volume of gold, our econometric framework is a log-linear Poisson
integer-valued GARCH (INGARCH) model with predictors, which in
turn are textual analysis-based metrics of physical or transition risks
associated with climate. While the focus is on gold, given that recent
studies have also depicted the possible safe haven characteristic for
palladium, platinum, and silver (Lucey and Li, 2015; Salisu et al.,
2021), we also consider the role of climate risks as predictors of the
trading volumes of these three different precious metals, over the same
period as gold. Our main findings suggest that gold acts as a hedge for
physical risks at one-week and one-month-horizons, a result that we
detect also for platinum and, to a lesser extent, for palladium but not for
silver. In other words, we find that gold is best suited to hedge climate
risks, particularly the physical one, when compared to other precious
metals. To the best of our knowledge, this is the first paper using count
data-based models to forecast daily volumes of precious metals relying
on the information contained in physical and/or transition climate risks
to provide a direct test of the safe haven characteristic of this asset-
class. The remainder of the paper is organized as follows: Section 2
presents the methodology, Section 3 discusses the data, Section 4 is
devoted to the empirical findings, and Section 5 concludes the paper.

2. Methodology

Consider the following autoregressive model for count time-series
inspired from the GARCH model of Bollerslev (1986)
𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2,… ∼ 𝑃𝑜𝑖(𝜆𝑡) (2.1)
𝜆𝑡 = 𝛼0 + 𝛼1𝑦𝑡−1 + 𝛽1𝜆𝑡−1
where 𝑦1,… , 𝑦𝑡 is an observed general non-negative integer-valued
time-series, 𝜆𝑡 stands for the shape parameter of the Poisson distribu-
tion used to model the marginal distribution of 𝑦𝑡, and 𝛼0, 𝛼1, and 𝛽1
re attached coefficients used to model the intercept, autoregressive
nd the GARCH lag contributions, respectively. In the literature, such

1 See Giglio et al. (2021) and Hong et al. (2020) for an exhaustive review.
2

models are named INGARCH(1,1) and have become a state-of-the-
art framework for analysing count data (Davis et al., 2021). In the
forecasting exercises we carry out in this paper, we choose trading
volume as this count time-series. The parameter space for these basic
model in (2.1) models is restricted due to constraints of positivity, and
this gives rise to the following log-linear INGARCH model, making the
parameter space relatively more unrestricted:
𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2,… ∼ 𝑃𝑜𝑖(𝜆𝑡) (2.2)
𝑜𝑔(𝜆𝑡) = 𝛼0 + 𝛼1𝑙𝑜𝑔(1 + 𝑦𝑡−1) + 𝛽1𝑙𝑜𝑔(𝜆𝑡−1)
ringing in covariates or predictors, we obtain the following log-linear
oisson INGARCH(1,1) model:
𝑡|𝑦𝑡−1, 𝑦𝑡−2,… ∼ 𝑃𝑜𝑖(𝜆𝑡) (2.3)
og(𝜆𝑡) = 𝛼0 + 𝛼1 log(1 + 𝑦𝑡−1) + 𝛽1 log(𝜆𝑡−1) + 𝜼𝑇𝑋𝑡
here 𝑋𝑡 is the matrix of covariates and 𝜂 is a matrix of suitable di-
ensions corresponding to the coefficients attached to these covariates.
o ensure stationarity and stability of such univariate models, it is
ecessary to assume that: −1 < 𝛼1 + 𝛽1 < 1.

We use the prediction routine in the tscount package in R (Li-
oschik et al., 2017) to produce forecasts. In short, this method chooses
roll-over forecasting scheme such that, to predict 𝑦𝑛+1 based on

1,… , 𝑦𝑛, the simple conditional expectation is used, and to predict
𝑛+2 based on 𝑦1,… , 𝑦𝑛+1, the simple conditional expectation is still
sed, but the unknown 𝑦𝑛+1 is replaced by 𝑦̂𝑛+1 based on the previous
omputation, and so on for 𝑦𝑛+3,….

We judge the quality of future the ℎ−step aggregated forecast,
.e. 𝑦𝑛+1 + ⋯ + 𝑦𝑛+ℎ for different values of ℎ through a pseudo-out-of-
ample evaluation metric. More specifically, we follow the following
teps:

∙ Predict 𝐹𝑊 𝐶𝑖,ℎ = 𝑦̂𝑖+𝑚 + ⋯ + 𝑦̂𝑖+𝑚+ℎ−1 using the log-linear
INGARCH tsglm predict routine with covariate(s) based on
pairs (𝑦𝑗 , 𝑋𝑗 ) 𝑗 = 𝑖,… , 𝑖 + 𝑚 − 1;

∙ 𝐹𝑊 𝑂𝐶𝑖,ℎ = 𝑦̂𝑖+𝑚 + ⋯ + 𝑦̂𝑖+𝑚+ℎ−1 using the log-linear INGARCH
tsglm predict routine without covariates based on pairs (𝑦𝑗 )
𝑗 = 𝑖,… , 𝑖 + 𝑚 − 1;

∙ Next we compare the two forecasted series 𝐹𝑊 𝐶{},ℎ and
𝐹𝑊 𝑂𝐶{},ℎ by the means of Clark and West (2007a) test.

. Data

Our climate risks data are sourced from Bua et al. (2022) and
onsist of a daily Physical Risk Index (PRI) and Transition Risk Index
TRI). These two novel climate risk indicators are the result of a text-
ased approach which combines the term frequency-inverse document
requency and the cosine-similarity techniques expanding on the work
f Engle et al. (2020). Specifically, the authors first group various
cientific texts on climate change by topic, either involving physical
r transition risk, to obtain two documents that, if digested, provide
comprehensive understanding of the physical and transition climate

isks. The authors then use these climate risks-related documents to
eed their text-based algorithms, and search the same structured infor-
ation within a corpus of (European) news sourced by Reuters News.
s output, they obtain two distinct time series, so-called ‘‘concerns’’,
oughly representing the news media attention towards physical and
ransition risks, which we denote as CONCERNPR and CONCERNTR,
espectively. As a final step, the authors model the climate risks series,
RI and TRI, as autoregressive order one (AR(1)) residuals of the
oncerns series in order to capture shocks and innovations in physical
nd transition risks.

We use these measures of climate risks because the proposed mea-
ures, originated from advanced climate vocabularies, exhibit several
dvantages with respect to previous studies. They, for instance, embed
ultiple dimensions of these risks without discarding relevant aspects

esulting in complete climate risks indicators, which can enhance stud-
es on the financial implications of climate risks. The PRI includes
oth acute and chronic physical risks like floods, extreme weather
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Fig. 1. Time series plot of climate risk measures and count data variables.
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events, permafrost thawing, and sea level rise, as well as issues about
climate adaptation actions, and other physical risk-averse effects like
the loss in biodiversity. The TRI, on the other hand, includes news
on regulations and measures to curb greenhouse gas (GHG) emissions,
news concerning the costs associated with the transition to a greener
economy, and news discussing the advances of technological innova-
tion and renewable energies to reach, for example, net-zero emissions
targets. Bua et al. (2022) also perform commonality tests to assess the
actual degree of overlap of the two indicators and conclude that both
PRI and TRI carry relevant individual information.

Daily data on the volume of traded contracts of the top four precious
metals, namely gold, palladium, platinum and silver, are downloaded
from Bloomberg. Our analysis covers the period of 3rd January, 2005 to
29th October, 2021, i.e., 4245 daily observations. Note that, the start
and end dates of our samples are purely driven by the availability of
3

e

data on the climate risks predictors. All the variables of interest have
been plotted in Fig. 1 to provide a graphical summary of their evolution
over time for the sample period considered in this paper. Additionally,
Table 1 provides the summary statistics of the dataset utilized. The
alues of the trading volume of gold clearly provides evidence of its
mportance relative to the other precious metals. In fact, gold exhibits
lways higher trading volume values than those of palladium, platinum,
nd silver for each statistic (minimum, 1st, median, mean, 3rd, and
aximum). For what concerns the climate data, we observe that the
ews media attention towards physical (transition) climate risk issues
as ranged from a minimum of 1% of the daily news corpus to a
aximum of 20% (27%), during our sample period, with an average

overage of 7.9% (8.5%) and relatively low standard deviation. In other
ords, the 7.9% (8.5%) of the news is about physical (transition) risk,

very day on average. Also the physical risk and transition risk shocks
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Table 1
Summary statistics for the datasets.

Min 1st Qu. Median Mean 3rd Qu. Max. SD

Gold 1906 115846 172079 193588 251474 897219 113625.10
Palladium 74 1563 3332 3853 5066 26103 3089.505
Platinum 144 3165 9682 11152 16243 60162 9260.03
Silver 515 32001 51689 59891 78340 397177 39714.07
CONCERNPR 0.01002 0.06461 0.07684 0.07914 0.09122 0.1994 0.02183646
CONCERNTR 0.01346 0.06833 0.08168 0.08514 0.09915 0.27199 0.02558997
PRI −0.0559951 −0.0134595 −0.002206 0.0004774 0.0119388 0.1225069 0.02069075
TRI −0.0782058 −0.0140185 −0.0024852 0.0004997 0.0123734 0.1907316 0.02333305
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(PRI and TRI) are positive on average, indicating a general unexpected
discussion around climate change issues that has reached a maximum
of 12% for physical risk and 19% for transition risk.

4. Empirical results

4.1. Preliminary analysis of the relationship between trading volumes and
climate risks

Before we proceed to the formal forecasting exercise, we check if
indeed climate risks positively impact the trading volume of gold, as ex-
pected in light of the gold’s ‘‘safe haven’’ ability to hedge, e.g., climate
risks. For this purpose, we utilize a time-varying approach analogue
to that of Eq. (2.3).2 Fig. 2 shows the time-varying effect, 𝑡-statistics,
of CONCERNPR and CONCERNTR on the trading volume of gold (top
row), palladium (second row), platinum (third row), and silver (bottom
row). An overall positive (negative) sign would indicate that climate
risks indeed increase (decrease) the trading volume of precious metal
confirming (contrasting) the underlying hypothesis. Considering gold,
such effect is generally positive in a statistically significant manner
under physical risks, CONCERNPR, while this is not necessarily the
case under transition risks, CONCERNTR.3 Qualitatively similar results
re drawn for palladium and platinum, and, to a lesser extent, for
ilver. This finding is expected to a certain degree, given the underlying
ature of these two risks, with the effects of physical risks likely to be
elt immediately on the stress of the financial system. In light of this
vidence related to the sign of the effect of climate risks, we would
ant to put relatively more reliance on the forecasting accuracy of gold
olumes emanating from physical rather than transition risks in the
rocess of validating the safe haven nature of gold, and other precious
etals.

.2. Climate risks and forecasting results of trading volumes of precious
etals

Recall our INGARCH model (2.3) with the included predictors.
ote that, since our goal is to determine if the predictors are playing
significant role in improving the forecasts, we are in the premise

f comparing forecasts of two nested models, with the null model
tating that the absence of a predictor does a statistically comparable

2 The time-varying log-linear Poisson INGARCH(1,1) model can be de-
cribed as: 𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2,… ∼ 𝑃𝑜𝑖(𝜆𝑡), with log(𝜆𝑡) = 𝛼0(𝑡∕𝑛) + 𝛼1(𝑡∕𝑛) log(1 +
𝑦𝑡−1)+𝛽1(𝑡∕𝑛) log(𝜆𝑡−1)+𝜼(𝐭∕𝐧)𝑇𝑋𝑡. For the estimation of the parameter functions
(𝛼0(⋅), 𝛼1(⋅), 𝛽1(⋅), 𝜼), we employ a kernel-based technique padded on quasi-
maximum likelihood estimation as in Karmakar et al. (2022). In this regard,
we use the rectangular kernel 𝐾(𝑥) = 𝐼(−1 ≤ 𝑥 ≤ 1) and bandwidth 𝑏𝑛 =
𝑚∕𝑛 to remain consistent with our forecasting set-up, which in turn assumes
stationarity of the last 𝑚 observations.

3 Using PRI and TRI instead of CONCERNPR and CONCERNTR, yielded, not
surprisingly, similar observations, with the results available upon request from
4

the authors. r
Table 2
CW 𝑝-values for forecasts of trading volumes of precious metals based on metrics of
climate risks for 𝑚 = 500.

Gold Palladium Platinum Silver

ℎ = 1 day

CONCERNPR 0.1516 0.0338 0.5155 0.0185
CONCERNTR 0.7873 0.0080 0.9380 0.5576
PRI 0.3311 0.0115 0.4822 0.0054
TRI 0.3779 0.0977 0.5424 0.0860

ℎ = 5 days

CONCERNPR 0.0036 0.8603 0.0985 0.6815
CONCERNTR 0.3347 0.2218 0.5316 0.3738
PRI 0.0037 0.5924 0.0024 0.0078
TRI 0.0338 0.1357 0.0373 0.0000

ℎ = 22 days

CONCERNPR 0.0071 0.8689 0.0139 0.5256
CONCERNTR 0.8585 0.8147 0.3902 0.1232
PRI 0.0146 0.5540 0.0037 0.0062
TRI 0.5376 0.6736 0.2331 0.0001

forecasting job as the model with the covariate. We use the Clark and
West test (CW henceforth) (Clark and West, 2007b). In short, this test
does not directly compare the Mean Square Error (MSE) for the two
models, as the null model will always be beaten in such a situation.
Instead, we adjust for the additional covariate factor and then run the
comparison between the adjusted-MSE using the test.

In Table 2, we present the 𝑝-values of the CW test derived based on
rolling-window estimation of 𝑚 = 500, i.e., approximately two years

f data points, implying that the out-of-sample period starts from the
umultuous time associated with the beginning of the global financial
risis, with the models estimated on a rolling window-basis till the end
f the sample period. Fig. A.1 in the Appendix shows the estimated 𝛼1+
1 curve (see (2.3) for context) for the model involving the volume of
raded contracts of gold without covariates (No covariates), with both
ONCERNPR and CONCERNTR (Concern covariates), and with both PRI
nd TRI (Risk covariates) over the entire sample period. The time
arying estimates of 𝛼1 + 𝛽1 are consistently lower than one ensuring
hat the stationarity assumption is reasonable for each window, and
ence that our predictive model is a stable one to draw valid inferences
rom.

The forecasts are conducted for three horizons of ℎ=1, 5, and
2, corresponding to a one-day-, one-week-, and one-month-ahead.
e find that CONCERNPR produces statistically superior forecasting

ains relative to the benchmark model at ℎ=5 and 22 for the trading
olume of gold, which in turn are also reflected in the PRI results for
hese corresponding forecasting horizons. TRI is also found to produce
tatistical forecasting gains for gold trading volumes at ℎ=5, but the
orresponding PRI produces a much lower 𝑝-value, indicating that
hysical risk is therefore a better predictor. In sum, while we do not
ind evidence of forecastability of gold volume one-day-ahead, we do
o at one-week- and at one-month-ahead, and that too from the physical

isks component of climate change. Given the positive time-varying
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Fig. 2. Climate risks’ time-varying effect on the volume of contracts traded for precious metals.
Note: The dotted lines correspond to 𝑡-values at the significance levels of 1% (+∕−2.575), 5% (+∕−1.96) and 10% (+∕−1.645).
t
d

impact of such risks on the trading volume of gold (as shown in Fig. 2),
e can say that gold acts as a hedge against physical risks at one-week-
nd one-month-horizons.

To understand how the model performs over time in forecast-
ng the trading volume of gold based on the information content of
ONCERNPR and CONCERNTR, as well as of PRI and TRI, the squared
rediction errors at ℎ = 1, 5, and 22 over the entire out-of-sample
eriod are plotted in Fig. A.2 in Appendix. As it can be seen, the
redictive performance of climate risks is shown to be exceptionally
ood with low squared forecast errors, which, however, increases dur-
ng the COVID-19 outbreak period particularly at the one-month-ahead
orizon, suggesting lesser predictive influence of climate risks. This
hould not come as a surprise as the uncertainty and attention during
5

his extraordinary period were primarily related to health risks, with
eclines in climate-related risks also depicted in Fig. 1. Understandably,

the associated rise in gold trading activity and volumes during this
phase could be tied more to the pandemic rather than to issues of
climate change, hence making the prediction errors relatively larger,
which however tend to fall again post-2020. In other words, barring
exceptional episodes, gold can be considered to act as a hedge against
climate risks.

Turning now to the other three precious metals, we find that sta-
tistically superior forecasting gains for palladium emanating from both
physical and transition risks are obtained at ℎ = 1, while this holds
for both ℎ = 5 and ℎ = 22 for platinum. As far as silver is concerned,
accurate forecasting is derived from the climate risks-related metrics for
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all three horizons, with a stronger effect obtained under transition risks
compared to physical ones, especially when one compares the 𝑝-values
associated with TRI and PRI. In light of the underlying time-varying
relationship between the trading volumes of palladium, platinum, and
silver with climate risks, we tend to conclude that while the former two,
especially platinum, can hedge climate risks, silver, with its volume
being negatively impacted, is not necessarily well-suited to play the
role of a safe haven relative to physical and transition risks.

It is interesting to see that the shorter rolling window of 𝑚 = 125
leads to stronger forecasting performance for gold volume at ℎ = 1
compared to ℎ = 5, as reported in Table A.1 of the appendix. This

ay be due to the fact that the shorter window is more sensitive to
ecent changes and fluctuations in the market, which are reflected
n the increased predictability at the shorter horizon. However, it is
mportant to note that using a shorter window may come at a cost of
educed precision in the estimates. Nonetheless, the overall conclusion
f the importance of climate risks in predicting gold volume remains
onsistent across both rolling windows. The same pattern is observed
or platinum and silver as well.4

. Conclusions

In this paper, we forecast the daily volume of trade contracts
f gold based on the information contained in text-based metrics of
hysical or transition risks associated with climate change. In light
f the count-valued nature of the time series data of gold volume,
e use a log-linear Poisson integer-valued generalized autoregressive

onditional heteroskedasticity (INGARCH) model involving a specific-
ype of climate change-related predictor. Based on daily data covering
he period 3rd January, 2005 to 29th October, 2021, we detect sta-
istically superior forecasting gains for gold volume emanating from
hysical risks at one-week- and at one-month-ahead horizons, but not
or one-day-ahead. Given the underlying positively evolving impact of
uch risks on the trading volume of gold, obtained from a full-sample
nalysis using a time-varying INGARCH model, we conclude that gold
cts as a hedge against physical risks of climate change at one-week-
nd one-month-horizons. This finding is also documented for platinum
nd, to a lesser extent, for palladium, but not for silver.

Our findings suggest that gold, platinum, and palladium can be
ncluded in a multi-asset portfolio to hedge against the physical aspect
f climate risks. Climate risks are known to negatively impact the risk
f financial assets, and including these metals in a portfolio could help
educe that risk. However, the study finds that silver may not be as
ffective in this regard. It is important to note that these findings are
ased on the relationship between climate risks and trading volume,
nd further research would be needed to fully explore the implications
or portfolio design and risk management. Nonetheless, the results
rovide some guidance for investors looking to build portfolios that can
eather the impact of climate risks on financial markets. Additionally,

4 As part of additional analysis, we collected 5-minute interval intraday
rice data of these four precious metals from Bloomberg, and computed daily
ounts of positive and negative log-returns. The idea in this instance is that
f gold and the other three metals are indeed safe haven, then climate risks
hould be able to predict relatively more accurately the positive rather than the
egative counts, as an indication of being a hedge against such risks. For this
xercise, we consider the period of 1st May, 2018 to 29th October, 2021, with
he start date concentrated around the peak date (19th September, 2018) of
he physical risk metrics, with which gold trading volumes were shown to be,
n general, positively related. As shown in Table A.2 of the Appendix, gold is
he only case, compared to the three other precious metals, whereby not only
hysical, but also transition risks, tend to accurately forecast positive returns
nly at ℎ = 1- and 5-day ahead. Note that, in light of the small sample size of
73 observations, we use a rolling-window of 125 days to obtain our results.
hese findings, in turn, confirm that gold is indeed best-suited among precious
etals to hedge climate risks.
6

Table A.1
CW 𝑝-values for forecasts of trading volumes of precious metals based on metrics of
climate risks for 𝑚 = 125.

Gold Palladium Platinum Silver

ℎ = 1 day

CONCERNPR 0.0796 0.3033 0.7291 0.0053
CONCERNTR 0.0756 0.7169 0.7144 0.0204
PRI 0.0001 0.0045 0.0061 0.0053
TRI 0.0094 0.0048 0.0405 0.0716

ℎ = 5 days

CONCERNPR 0.4466 0.978 0.8103 0.0461
CONCERNTR 0.3661 0.7342 0.8445 0.0247
PRI 0.191 0.6689 0.0735 0.2382
TRI 0.0219 0.4338 0.046 0.005

ℎ = 22 days

CONCERNPR 0.0484 0.0121 0.0039 0.1656
CONCERNTR 0.0499 0.0354 0.2066 0.0269
PRI 0.1711 0.1775 0.2992 0.4842
TRI 0.074 0.2822 0.023 0.1029

Fig. A.1. Estimated 𝛼1+𝛽1 for the Gold data in three scenarios: (a) without covariates,
(b) Concern covariates together, (c) Risk covariates together.

future research can, e.g., further explore the climate risks forecasting
ability for the trading volume of other assets though to offer financial
hedge against the climate change, such as ‘‘green’’ or ‘‘environmental,
social, and governance (ESG)’’ assets.
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Table A.2
CW 𝑝-values for forecasts of count of negative and positive log-returns of precious metals based on metrics of climate risks.

Gold(-) Gold(+ ) Palla(-) Palla(+ ) Plati(-) Plati(+ ) Silv(-) Silv(+ )

ℎ = 1 day

CONCERNPR 0.5133 0.1752 0.4537 0.3530 0.2563 0.3806 0.5666 0.1382
CONCERNTR 0.5863 0.0974 0.0005 0.2325 0.3271 0.2477 0.1800 0.4095
PRI 0.5582 0.3376 0.0911 0.1454 0.5451 0.1769 0.4141 0.0584
TRI 0.2448 0.0101 0.0000 0.0001 0.0979 0.0295 0.0055 0.0599

ℎ = 5 days

CONCERNPR 0.8809 0.0614 0.6413 0.1020 0.8995 0.0616 0.6656 0.0231
CONCERNTR 0.8519 0.1150 0.6939 0.0674 0.5921 0.4680 0.9058 0.2494
PRI 0.4390 0.1400 0.4699 0.0724 0.8710 0.0501 0.3262 0.0173
TRI 0.6106 0.0978 0.1539 0.0061 0.4548 0.2239 0.7337 0.1364

ℎ = 22 days

CONCERNPR 0.9741 0.4987 0.3309 0.6267 0.7895 0.5719 0.9915 0.1660
CONCERNTR 0.8692 0.5397 0.8881 0.1097 0.7086 0.8413 0.9736 0.6213
PRI 0.8479 0.8827 0.8744 0.7016 0.9113 0.6123 0.8696 0.1650
TRI 0.8745 0.7585 0.8180 0.0985 0.6247 0.9366 0.9059 0.5890

Note: − or + corresponding to the name of a precious metal indicates the case of negative or positive count of log-returns;
Palla, Plati and Silv stand for Palladium, Platinum and Silver respectively.
Fig. A.2. Time-varying squared prediction error for gold series with climate concern covariates for different horizon lengths.
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