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Abstract

A well-known shortcoming of single-spacecraft spectral analysis is that only the 1D wavenumber spectrum can be
observed, assuming the characteristic wave propagation speed is much smaller than the solar wind flow speed. This
limitation has motivated an extended debate about whether fluctuations observed in the solar wind are waves or
structures. Multispacecraft analysis techniques can be used to calculate the wavevector independent of the
observed frequency, thus allowing one to study the frequency–wavenumber spectrum of turbulence directly. The
dispersion relation for waves can be identified, which distinguishes them from nonpropagating structures. We use
magnetic field data from the four Magnetospheric Multiscale (MMS) spacecraft to measure the frequency–
wavenumber spectrum of solar wind turbulence based on the k-filtering and phase differencing techniques. Both
techniques have been used successfully in the past for the Earth’s magnetosphere, although applications to solar
wind turbulence have been limited. We conclude that the solar wind turbulence intervals observed by MMS show
features of nonpropagating structures that are associated with frequencies close to zero in the plasma rest frame.
However, there is no clear evidence of propagating Alfvén waves that have a nonzero rest-frame frequency. The
lack of waves may be due to instrument noise and spacecraft separation. Our results support the idea of turbulence
dominated by quasi-2D structures.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830)

1. Introduction

Whether solar wind turbulence is composed of propagating
waves or nonlinear structures has been debated extensively. It
is well known that the linearized magnetohydrodynamic
(MHD) equations yield Alfvén, fast magnetosonic, and slow
magnetosonic modes. In the solar wind, turbulence is weakly
compressible and typically possesses Alfvénic signatures in the
form of highly correlated (or anticorrelated) velocity and
magnetic fluctuations (Belcher & Davis 1971). However,
because of the limitation of single-spacecraft observations, it
cannot be determined unambiguously whether turbulence is
indeed composed of propagating waves. Solar wind observa-
tions typically assume that Taylor’s hypothesis holds, meaning
that temporal variations are interpreted as spatial structures so
that the wave dispersion relations cannot be verified (e.g.,
Matthaeus et al. 2016). Nevertheless, many previous works
have investigated the properties of turbulence based on the
linear wave assumption both theoretically and observationally.
The linear wave eigenmodes of MHD have been used as the
basis set to decompose any observed velocity, magnetic field,
and density fluctuations into linear waves (Glassmeier et al.
1995; Cho & Lazarian 2003). This approach has been widely
used in many recent observations in an attempt to identify
constituent MHD waves in the solar wind (Chaston et al. 2020;
Zhu et al. 2020; Zhao et al. 2021, 2022).
While multispacecraft methods have been developed for

decades, their application to the spectral analysis of solar wind
turbulence has been rare. Most observations using multiple

spacecraft address turbulence and waves in the terrestrial
magnetosheath (e.g., Narita et al. 2016; Roberts et al. 2019; He
et al. 2020; Lin et al. 2022). In studying solar wind turbulence,
Sahraoui et al. (2010b) used Cluster spacecraft data to construct
3D dispersion relations, from which they concluded that the
turbulence cascade at the subproton scale is due to kinetic
Alfvén waves propagating perpendicularly to the mean
magnetic field. Recently, Zhao et al. (2022) provided evidence
of propagating MHD-scale Alfvén waves using MMS space-
craft. Frequency–wavenumber spectra were obtained using a
multispacecraft timing analysis and the incompressible comp-
onent of the magnetic fluctuations is shown to be consistent
with the linear Alfvén wave dispersion relation. However, it
should be noted that Zhao et al. (2022) consider the frequency–
wavenumber spectrum subject to the assumption that the
perpendicular wavevector k⊥= 0. This raises the possibility
that even if Alfvén waves are present, the region in k-space
near k⊥= 0 might also contain a significant amount of power,
in the form of quasi-2D fluctuations (e.g., Matthaeus et al.
1990; Zank & Matthaeus 1993; Bieber et al. 1996; Zank et al.
2017). Therefore, an analysis that considers both the Alfvénic
and quasi-2D regions is needed. In this paper, we revisit the
solar wind burst mode intervals observed by the MMS mission
(Roberts et al. 2020) using both k-filtering and phase
differencing methods. We present the frequency–wavenumber
power spectra of the magnetic field fluctuations. The goal is to
address the zero-frequency part of the solar wind turbulence
spectrum that has usually been neglected in previous studies.

2. Methodology

We use two multispacecraft spectral analysis methods in this
paper, namely k-filtering and phase differencing. The deriva-
tion and detailed procedure of k-filtering can be found in
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Pincon & Lefeuvre (1988), Motschmann et al. (1996), Pincon
& Motschmann (1998) and is not repeated here. A discussion
of the applicability and uncertainties of the method is discussed
in Sahraoui et al. (2010a). The product of k-filtering is an
estimate of the 4D frequency–wavenumber spectrum P(ω, k),
assuming time stationarity and spatial homogeneity. For
magnetic field data measured with four spacecraft B(ri),
i= 1,K,4, the result is given by

( ) {[ ( ) ( ) ( )] } ( )†w w= - -k k kP Tr H M H, . 11 1

Here, † represents the conjugate transpose. The matrix H is
constructed as a 12× 3 matrix
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which is an average over N subintervals. The 12× 1 matrix A
for each subinterval is constructed from the Fourier transform
of the magnetic field measured by the four spacecraft,
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The k-filtering method has been used frequently with Cluster
spacecraft in the magnetosheath and near discontinuities (e.g.,
Sahraoui et al. 2006; Efthymiadis et al. 2007; Narita et al.
2010).

Phase differencing is another method, which is based on the
phase difference of waves at different spacecraft locations
(Balikhin et al. 2003). It is useful when there is a dominant
mode at each observed frequency. The wavevector at a certain
frequency is related to the phase difference between two
spacecraft by

· ( )fD = Dk r , 5

which gives the projection of the wavevector along the
direction of spacecraft separation. Given four spacecraft
measurements, the full wavevector can be determined by
solving
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with r and k being column vectors. The power P(ω, k) can then
be calculated as the average Fourier power among four
spacecraft. Walker et al. (2004) compare the phase differencing
and k-filtering methods, and the basic results from the two
methods are consistent with each other. The k-filtering method
is slightly more advantageous because it can identify the
dispersion of more than one mode. For example, Walker et al.
(2004) show that both the nonpropagating mirror mode and

Alfvén-like cyclotron waves can be identified by the k-filtering
method. It is critical to consider the range of wavevectors for
which these two techniques are applicable. In general, the
maximum wavenumber kmax applicable to both methods is
given by π/dav, where dav is the average separation of the
spacecraft. This is because fluctuations in k-space separated by
2nπ/dav cannot be distinguished due to aliasing effects (Lin
et al. 2022). For the determination of kmin, we use the empirical
estimate provided by Sahraoui et al. (2010a), which shows that
the uncertainty increases significantly when the wavenumber is
close to or less than ~k k0.01min max.
In this study, we use mean-field coordinates where the mean

magnetic field B0 is along the z-axis; the y-axis is perpendicular
to both the mean magnetic field and the mean flow velocity,
i.e., y∝ B0× Vsw; and the x-direction completes a right-handed
triad. The four MMS spacecraft magnetic field measurements
and the location separation Δr are transformed into the mean-
field coordinates. For the k-filtering method, we use all three
magnetic field components to maximize the available informa-
tion (Tjulin et al. 2005). For the phase differencing method, we
use only the By component in the mean-field coordinates, which
is the component perpendicular to the mean magnetic field and
the mean flow speed, corresponding to incompressible Alfvén
waves and quasi-2D structures.
For the mean-field B0 calculation, we use the global mean

field averaged over the entire interval, which is both scale (or
frequency) and time independent. We do not think this greatly
affects our results. The use of a scale-dependent mean field
(e.g., Podesta 2009) affects the more subtle analysis of the
anisotropic scaling of the power spectrum or structure function,
which is beyond the scope of our current analysis. Our present
work simply focuses on the identification of waves and
advected structures through dispersion relations. The calcul-
ation of the mean magnetic field is expected to have little effect
on the results presented below.

3. Data Overview and Results

For data selection, we use MMS solar wind burst mode
intervals as in Roberts et al. (2020). We consider two intervals
in this study, 21:09:43–21:48:47 on 2017 November 26 and
14:40:03–15:08:24 on 2017 December 18. As shown in
Figure 1, the MMS spacecraft (red dot) is located beyond the
Earth’s magnetopause (yellow curve) and bow shock (blue
curve) during both intervals. Specifically, the first interval (left
panel) is located at approximately [17.3, 16.8, 6.3]RE, and the
second interval is about [16.3, 2.0, 3.4]RE in the geocentric
solar ecliptic (GSE) coordinates. Both intervals can be used to
study fluctuations in the solar wind plasma. We note that the
bow shock could have some influence on the observation
because the data intervals may not be in the pristine solar wind.
For the first interval shown on the left panel, we find that the
spacecraft are relatively far away from the shock, and the solar
wind magnetic field is close to perpendicular to the shock
normal at the nose, indicating that the data are likely not highly
influenced by the bow shock. On the other hand, the second
interval shown on the right panel is more likely to be affected
by the bow shock since the magnetic field is oblique and the
spacecraft are close to the nose. Nevertheless, the basic results
presented below are similar for both intervals, and we do not
quantify the influence of bow shock in this study.
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Figure 2 provides an overview of the magnetic field and
solar wind plasma measured by MMS1 during the selected
intervals on 2017 November 26 (left panel) and 2017
December 18 (right panel), respectively. We use the magnetic
field measurements in burst mode with a sampling rate of
128 Hz from the fluxgate magnetometers (FGMs; Russell et al.
2016) onboard the four MMS spacecraft. The proton plasma
measurements, including speed and density with a sampling
rate of 6.6 Hz, are obtained from the Fast Plasma Investigation
(FPI; Pollock et al. 2016) onboard MMS1. Due to the
limitations of FPI in the solar wind plasma (Bandyopadhyay
et al. 2018), we use the proton temperature data time-shifted to

the nose of the Earth’s bow shock provided by OMNI (King &
Papitashvili 2005) when calculating the proton plasma beta.
As shown in Figure 2, Interval 1 on 2017 November 26 is

characterized by a slow solar wind stream with an average
velocity vector Vsw of [−334, −11, 22] km s−1 in GSE
coordinates. The relative magnetic field fluctuation amplitude
δB/B0 observed by MMS1 is about 0.25, and is simply
calculated from the standard deviation of the magnetic field
(which includes fluctuations at all scales) divided by the mean
magnetic field magnitude of the interval. We do not consider its
scale dependence in this analysis. The angle θBV is close to 90°,
indicating that the magnetic field and velocity field are
approximately perpendicular to each other in this interval.

Figure 1. Projection of the location of the MMS (red dot) in the selected intervals onto the X-Y plane of the GSE coordinate system. The blue and yellow curves
represent experimental models of the Earth’s bow shock (Farris & Russell 1994) and magnetopause (Shue et al. 1998), respectively, and are calculated using OMNI
solar wind measurements in each interval. The black arrow indicates the direction of the background mean magnetic field in each interval.

Figure 2. An overview of the solar wind parameters observed by MMS1. The left panel is for the selected solar wind interval during 21:09–21:48 on 2017 November
26. The right panel shows another solar wind interval during 14:40–15:08 on 2017 December 18. The panels from top to bottom show the magnetic field magnitude |B|
and its components, plasma radial speed Vx, the angle between the magnetic field and velocity field θBV, proton density Np, and the proton plasma beta βp. Proton
temperature measurements from OMNI are used in the calculation of βp.
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Interval 2, on 2017 December 18, features a relatively fast
solar wind speed Vsw of around 616 km s−1 and a more
oblique angle θBV. The mean velocity field during this
interval is around [−615, 36, −13] km s−1, and the magnetic
field fluctuation amplitude δB/B0 is about 0.46. The average
values of other solar wind parameters during each interval are
listed in Table 1. Here, the proton temperature Tp obtained
from OMNI is used to calculate the thermal proton
gyroradius ρi and plasma beta βp. As described in
Section 2, the solar wind plasma parameters in this study
are only required for calculating the average velocity vector
and the averaged plasma density. They are used for the mean-

field coordinate construction and the calculation of the
Alfvén speed, and thus the comparison to the theoretical
dispersion relations.
We first show the results from both the phase differencing

and k-filtering methods for Interval 1 on 2017 November 26 in
Figure 3. The top two panels show the frequency–wavenumber
spectrum from the phase differencing method, and the bottom
two panels show results from the k-filtering method. We use k∥
to denote the wavevector along the z-axis in the mean-field
coordinate system, while k⊥1 and k⊥2 denote the wavevector
along the x-axis and y-axis of the mean-field coordinate,
respectively.

Figure 3. Frequency–wavenumber (ω–k) power spectrum density (PSD) for the solar wind interval on 2017 November 26 using the phase differencing method (top
two panels) and k-filtering method (bottom two panels) for perpendicular k⊥1 or kx (left panels) and parallel k∥ (right panels) wavenumbers, respectively. The dashed
lines in the left and right panels illustrate the dispersion relations for the nonpropagating advected structures and propagating Alfvén waves, respectively.

Table 1
List of Parameters in the MMS Solar Wind Intervals

Date Start Time End Time |B| |Vsw| Np Tp VA di ρi βp
UT UT nT km s−1 cm−3 105 K km s−1 km km

2017/11/26 21:09:43 21:48:47 7.7 335 9.4 0.45 54 74 26 0.25
2017/12/18 14:40:03 15:08:24 3.4 616 2.8 2.0 44 136 126 1.77

Note. Tp is the proton temperature measured by OMNI, VA is the Alfvén speed, di is the ion inertial length, and ρi is the thermal proton gyroradius.
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To present the fluctuating magnetic field frequency–
wavenumber (ω-k) power spectrum density (PSD), we show
two cross-sectional cuts of ω-k space, the first with
k∥= k⊥2= 0 representing the spectrum for the incompressible
⊥1 fluctuations (left panels), and the second with
k⊥1= k⊥2= 0 representing the PSD in the parallel direction
(right panels). The vertical axes of the figure are the Fourier
frequencies observed in the spacecraft frame fsc, related to the
circular frequency ω as ω= 2πfsc. In all four panels, we see the
fluctuation power tends to decrease with increasing frequency.
The left panels show that most of the spectral power follows
the dispersion relation ω= k · Vsw, as demonstrated by the
dashed lines. We note that the PSD in the ⊥2 direction has the
same features (not shown here). This suggests that the
fluctuations with perpendicular wavenumbers are dominated
by nonpropagating structures advected with the solar wind
flow. This is similar to what has been found previously in the
Earth’s magnetosheath (Chisham et al. 1998; Balikhin et al.
2003; Walker et al. 2004), where it is interpreted as the
nonpropagating mirror mode. Since we are considering the
incompressible component, and the plasma beta in the solar
wind is lower than that of the magnetosheath, we interpret our
results as consistent with 2D magnetic island-like structures.

The right panels of Figure 3 show the spectral power in ω-k∥
space. The two dashed lines in each panel represent the Alfvén
wave dispersion relation for wave propagation in two opposite
directions. The dispersion relations for counterpropagating
Alfvén waves is ω= k · Vsw± k∥VA, respectively. The Figure 3
right panels show no clear evidence of either propagating
waves or advected structures. We note that since the mean
magnetic field B0 is approximately aligned with the ⊥1 (or x-
axis in the mean-field coordinate) direction during the interval,
the Doppler shift for the observed frequency is small for
parallel wavevectors. Our results here are distinctly different
from those obtained by Zhao et al. (2022), in which strong
signatures of the Alfvén wave dispersion relation were found.
We note that the Alfvén speed in the interval is ∼50 km s−1,

which is much smaller than the solar wind bulk speed of ∼330
km s−1. Therefore, the detection of Alfvén waves may need a
very fine resolution in frequency to be clearly distinguished
from advected structures. The figures suggest that most of the
power is concentrated in a region with small k∥ and large fsc
( fsc? |k · Vsw± k∥VA|), which seems unphysical. We show
later that instrument noise may play a significant role in the
parallel spectrum.
The results from the k-filtering method for Interval 1 are

shown in the bottom two panels of Figure 3. Overall, the results
from the two methods are similar. The perpendicular ω-k⊥1

spectrum follows the dispersion relation ω= k · Vsw, which is
again consistent with nonpropagating advected structures, and
the parallel wavevector spectrum does not show clear evidence
of propagating Alfvén waves as most of the spectral power lies
outside the dispersion relations defined by two counter-
propagating Alfvén waves.
Figure 4 shows the wavenumber power spectra of the By

component in the mean-field coordinates during Interval 1. The
left panel shows the spectrum converted from the Fourier
frequency spectrum using Taylor’s hypothesis (k= 2πω/|Vsw|),
where the frequency spectrum is calculated by the standard
Welch method. The right panel is reduced from the phase
differencing method by P(k⊥1)= ∫P(ω, k)dωdk∥dk⊥2. The two
spectra are consistent with each other and exhibit a broken
power-law shape. The inertial-range and dissipation-range
spectra are consistent with k−5/3 and k−2.85, which are shown
in the figure as references. The spectral break appears to be at a
larger scale (or smaller wavenumber) than the ion inertial
length di, indicating that dissipation occurs at a larger scale than
that defined by di.
Consider now Interval 2 on 2017 December 18, which has a

less perpendicular flow velocity and a faster solar wind stream.
Figure 5 shows the frequency–wavenumber ω-k spectra after
using the phase differencing method for Interval 2. The k-
filtering results are similar and not shown here. The top two
panels show the PSD for larger wavenumbers and frequencies,

Figure 4. Wavenumber spectra of the magnetic field By component for Interval 1 calculated with Taylor’s hypothesis (left panel) and the phase differencing method
(right panel).
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while in the bottom two panels we choose smaller wavenum-
bers and frequencies to check if propagating Alfvén waves can
be seen at smaller wavenumbers, as suggested by Zhao et al.
(2022). The results for larger wavenumbers are similar to those
from the other interval shown in Figure 3. The fluctuation
power in the ω-k⊥1 spectrum shown in the left panel primarily
follows the dispersion relation for nonpropagating modes
ω= k · Vsw. The top right panel shows again that the power in
the ω-k∥ spectrum does not follow the Alfvén wave dispersion
relation, illustrated by the white and red dashed lines. Since the
parallel flow velocity is larger than the Alfvén speed (i.e.,
Vsw,z> VA) in this interval, both forward and backward
propagating Alfvén waves should correspond to the same sign
of k∥. At smaller wavenumbers and frequencies shown in the
bottom two panels, the perpendicular ω-k⊥1 spectrum still
shows significant evidence of nonpropagating advected
structures. In the spectrum of parallel wavenumbers, some
fluctuations appear to be present in the region enclosed by the
two dispersion relation lines. These may exhibit the character-
istics of propagating Alfvén waves. However, this feature is not
very prominent compared to the perpendicular wavevector k⊥1

spectrum. The absence of any significant presence of
propagating waves during this interval suggests that the

conclusion does not depend on the dominant perpendicular
flow velocity observed in Interval 1.
For completeness, we provide a rough estimate of the

uncertainty of the dispersion relation lines (dashed line in each
ω-k spectrum). Based on the dispersion relation ω= k∥Vsw,z±
k∥VA, the uncertainty in frequency for the Alfvén waves comes
from the parallel flow velocity Vsw,z and VA (provided k∥ is
fixed), and can be crudely estimated as dw w ~0

( )d d+ á + ñV V V Vz zsw,
2

A
2

sw, A . Here, we use the plus sign in
the dispersion relation. The error is larger if the minus sign is
used since Vsw,z and VA have the same sign in both intervals.
δVsw,z and δVA represent the fluctuation amplitude (calculated
by the standard deviation) of the parallel flow speed and the
Alfvén speed, respectively. The angle-bracket á ñ... denotes an
ensemble time average over the interval. The resulting
uncertainties in frequency for the Alfvén wave dispersion
relation lines are about 50% and 30% for Intervals 1 and 2,
respectively. Similarly, for nonpropagating structures, we
estimate the uncertainty in frequency as dw w ~0
d á ñ^ ^V Vsw, sw, according to its dispersion relation ω=
k⊥Vsw,⊥, where Vsw,⊥ is the perpendicular flow velocity and
δVsw,⊥ represents its fluctuation amplitude. The resulting

Figure 5. Frequency–wavenumber (ω-k) power spectrum for the solar wind interval on 2017 December 18 using the phase differencing method for perpendicular k⊥1

(left panels) and parallel k∥ (right panels) wavenumbers, respectively. The top two panels show the ω–k spectra at larger wavenumbers and frequencies. The bottom
two panels show the results for the smaller wavenumbers. The dashed lines in the left and right panels denote the dispersion relations for nonpropagating structures
and propagating Alfvén waves during this interval.
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uncertainties in frequency for nonpropagating structure disper-
sion relation lines are around 1.6% and 9.4% for Intervals 1 and
2, respectively.

4. Synthetic Data Test

To ensure the correctness of our results, we test the analysis
technique by using a set of superimposed 100 random 2D
nonpropagating modes with k∥= 0, ω= 0 and 100 Alfvén
modes with k⊥= 0, ω=± k∥VA. The mean magnetic field,
velocity vector, Alfvén speed, and the location of the four
spacecraft are taken from the original MMS measurements in
Interval 1. The magnetic fluctuation amplitude of each injected
mode is chosen randomly, as is the wavevector and phase of
each mode. The propagation direction (determined by the sign
of k∥) of each Alfvén mode is also random. The magnitude of
each wavevector component is smaller than 0.1. Figure 6
shows an example of the first 2000 points of the synthetic
magnetic field data (from a total of 300,000 points) at each
spacecraft location. Two cases with lower and higher noise
levels are tested, as shown in the left and right panels, and the
differences will be discussed.

The frequency–wavenumber power spectra for the synthetic
data with a lower noise level are shown in Figure 7. The top
two panels show the frequency–wavenumber spectra using the
phase differencing method, and the bottom two panels show
the spectra using the k-filtering method. It can be seen that the
spectral power follows the expected dispersion curves as
indicated by the red dashed lines in each panel. For example, in
the fsc− k⊥1 spectra (left panels), the red dashed lines represent
2πfsc= k⊥V⊥1 with V⊥1 being the solar wind speed along the x-
direction in the mean-field coordinates. In the fsc− k∥ spectra
(right panels), the red dashed lines represent 2πfsc=
k∥(V∥± VA) with V∥ being the solar wind speed along the
mean-field z direction.

We note in particular that counterpropagating Alfvén waves
are clearly visible in the right panels for both methods,

suggesting that the absence of Alfvén waves in the observa-
tions shown in Figures 3 and 5 is not due to defects of the
methodology. On the other hand, the observed k⊥1-spectrum is
consistent with the one constructed here from 2D nonpropagat-
ing modes.
In fact, the features near k∥= 0 in Figures 3 and 5 may be

explained by instrument noise. Random noise leads to
fluctuations observed at all frequencies. This is demonstrated in
Figure 8 where we inject higher amplitude uncorrelated
Gaussian random numbers into the test data for all four
spacecraft as shown in the right panel of Figure 6 and use the
phase differencing method. Figure 8 shows that the k⊥
spectrum still follows the expected dispersion relation for 2D
nonpropagating modes, although somewhat broadened in
wavenumber. Interestingly, here the k∥ spectrum shows similar
features to the observed results. Therefore, our results suggest
that if Alfvén waves do exist in the observation intervals, their
amplitude must be smaller than the noise level indicating that
they cannot be observed. We note that the average amplitude of
the injected Alfvén modes here is about 1% of that of the
injected 2D advected modes. The exact nature of the noise is
beyond the scope of this work, but it may be due to instrument
uncertainties in spacecraft locations and timing.

5. Conclusions

In this paper, we present an analysis of the magnetic
fluctuation frequency–wavenumber spectrum based on MMS
measurements using both k-filtering and phase differencing
methods. Two solar wind intervals with different speeds and
angles between the solar wind velocity and the mean magnetic
field are selected for the analysis. The three main conclusions
are as follows.

1. The ω-k⊥ spectrum shows the presence of quasi-2D
structures that are advected and nonpropagating. This is

Figure 6. Magnetic field vector synthesized from test waves at four MMS spacecraft locations. The left panel shows synthetic data with lower noise levels, and the
right panel shows synthetic data with higher noise levels.

7

The Astrophysical Journal, 944:98 (9pp), 2023 February 10 Zhao et al.



Figure 7. Frequency–wavenumber spectrum with test waves and low noise level using the phase differencing method (top panels) and the k-filtering method (bottom
panels), respectively. The red dashed lines indicate the expected dispersion relation in the plasma rest frame for the synthetic nonpropagating modes (left panels) and
the Alfvén modes (right panels).

Figure 8. Frequency–wavenumber spectrum of high noise synthetic data using the phase differencing method to show the effects of noise on perpendicular (left panel)
and parallel (right panel) fluctuations, respectively.
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demonstrated by the fluctuation power that follows
ω= k · Vsw associated with k∥= 0.

2. The ^
-k 5 3 Kolmogorov-like scaling in the inertial range is

consistent with magnetized turbulence that is dominated
by nonlinear interactions of the advected 2D structures,
and therefore, the nonlinear timescale rather than the
Alfvén timescale dominates and determines the nature of
the cascade process, as suggested by Zank et al.
(2017, 2020).

3. There is no clear evidence from the ω-k∥ spectrum that
shows Alfvén waves (or any other waves) propagating
parallel to the mean magnetic field. Furthermore, we
show that the observed spectrum is similar to that of
noise, suggesting that if parallel propagating waves exist,
their amplitudes are smaller than the noise level.

The length scales that we consider are mainly at the small-
scale end of the MHD inertial range, and part of the ion kinetic
range is also included. The identification of nonpropagating
structures appears to be consistent with some recent simula-
tions, such as that by Gan et al. (2022). Nonpropagating
structures are also consistent with the view of solar wind
turbulence that is dominated by quasi-2D nonlinear structures
(e.g., Zank & Matthaeus 1993; Zank et al. 2017). The view has
been supported by single-spacecraft evidence (Bieber et al.
1996), but has not explicitly shown with direct measurements
by multiple spacecraft. The lack of Alfvén or other parallel
propagating waves from MMS measurements at 1 au suggests
that linear waves may play a relatively minor role in solar wind
turbulence. Our conclusions are in contrast to the recent work
by Zhao et al. (2022), which shows the presence of Alfvén
waves in the k⊥= 0 dispersion relation. We note that the
wavenumbers reported in Zhao et al. (2022) are much smaller
than those shown here, and lie in a region dominated by noise
in our analysis.

It is well known that the limit of the wavenumber for
reliable k-filtering depends on spacecraft separation. Specifi-
cally, the average separation of the spacecraft dav in the two
intervals considered here is about 16 km and 24 km,
respectively. The corresponding limit of the wavenumber is

p= -k d 0.2 kmmax av
1 for Interval 1 and 0.13 km−1 for

Interval 2. The range of wavenumber k considered in our
analysis falls mostly between the empirical kmin (which is
about k0.01 max) and kmax. Since we focus on the inertial range
of turbulence, the lower limit of the wavenumber used in this
work is smaller than k0.01 max. As suggested by Sahraoui et al.
(2010b), the error increases significantly for wavenumbers
near and below k0.01 max, so our analysis presented here is
pushing the limit of the technique. However, Figure 4 provides
some reassurance that the analysis is likely valid even below

k0.01 max. In any case, the very small k could be a possible
source for the noise that is present in the k∥ spectrum, and we
do not rule out the possibility that propagating waves can exist
in the small-k∥ regime. Nevertheless, our analysis reveals
clearly that nonpropagating (i.e., k∥; 0) fluctuations are a
major component in solar wind turbulence. Similar results are
also seen by Sahraoui et al. (2010b), where kinetic Alfvén
waves are found in the solar wind at the subproton scale using
the ω–k⊥ dispersion relation, and the rest-frame frequency, in
this case, is also close to zero at scales larger than the proton
gyroradius.
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