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The ab initio potential energy curves of atom pairs
and transport properties of high-temperature
vapors of Cu and Si and their mixtures with He,
Ar, and Xe gases†

Kevin W. Kayang,a Alexey N. Volkov, *a Petr A. Zhilyaevb and Felix Sharipov c

The potential energy curves (PECs) for the homonuclear He–He, Ar–Ar, Cu–Cu, and Si–Si dimers, as

well as heteronuclear Cu–He, Cu–Ar, Cu–Xe, Si–He, Si–Ar, and Si–Xe dimers, are obtained in quantum

Monte Carlo (QMC) calculations. It is shown that the QMC method provides the PECs with an accuracy

comparable with that of the state-of-the-art coupled cluster singles and doubles with perturbative

triples corrections [CCSD(T)] calculations. The QMC data are approximated by the Morse long range

(MLR) and (12-6) Lennard-Jones (LJ) potentials. The MLR and LJ potentials are used to calculate the

deflection angles in binary collisions of corresponding atom pairs and transport coefficients of Cu and Si

vapors and their mixtures with He, Ar, and Xe gases in the range of temperature from 100 K to 10000 K.

It is shown that the use of the LJ potentials introduces significant errors in the transport coefficients of

high-temperature vapors and gas mixtures. The mixtures with heavy noble gases demonstrate

anomalous behavior when the viscosity and thermal conductivity can be larger than that of the

corresponding pure substances. In the mixtures with helium, the thermal diffusion factor is found to be

unusually large. The calculated viscosity and diffusivity are used to determine parameters of the variable

hard sphere and variable soft sphere molecular models as well as parameters of the power-law

approximations for the transport coefficients. The results obtained in the present work include all

information required for kinetic or continuum simulations of dilute Cu and Si vapors and their mixtures

with He, Ar, and Xe gases.

1. Introduction

The flows of high-temperature vapors of metals and semi-
conductors, as well as their mixtures with other gases are
ubiquitous in laser material processing applications, where
the laser heating induces material removal, formation of a
gaseous plume, and expansion of the plume into a vacuum or
background gas. These applications include laser cutting, drilling,
and patterning,1 laser powder-bed fusion additive manufacturing,2

deposition of functional thin films,3–5 fabrication of nanoclusters,6

laser-induced breakdown spectroscopy (LIBS),7 and studies of
photo-induced desorption of volatile species in the space
environment.8

The plume expansion processes are theoretically studied based
on continuum gas dynamics, e.g., ref. 9–13, and kinetic, e.g.,
ref. 14–21 models. The latter are usually formulated for numerical
simulations in the form of the direct simulation Monte Carlo
(DSMC) method.22 The need in the kinetic simulations is justified
by high degrees of translational non-equilibrium, when, e.g., a
plume expands into a low-density background gas or vacuum. The
numerical simulations of gas flows require multiple constitutive
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relations that describe the transport processes such as diffusion,
viscous drag, and heat conduction. For kinetic simulations of
dilute monatomic gases based on the Boltzmann kinetic equation
and its generalizations, the necessary constitutive relations include
the differential collision cross section as a function of the
deflection angle and relative velocity.23–25 The DSMC treatment
of collisions is usually based on molecular collision models,
such as the hard sphere (HS), variable hard sphere (VHS),26 and
variable soft sphere (VSS)27 models, which determine the differ-
ential collision cross section and contain only a few adjustable
parameters. For continuum simulations of dilute monatomic
gases based on the Navier–Stokes equations, the required relations
include diffusivity, shear viscosity, and thermal conductivity of
pure gas substances and gas mixtures as functions of gas
temperature, density, and molar fractions of species.23–25

The collisional and transport properties are currently well-
known for noble gases, components of the atmospheric air, and
some other species that exist in a gaseous form at room
temperature. The properties of high-temperature vapors of
metals and semiconductors, including the parameters of the
VHS and VSS molecular models, are currently known with
much less accuracy or not known at all.28,29 In particular, the
molecular model parameters remain unknown for multiple
cross-species collisions involving a vapor atom and atom of a
background gas.

The transport processes in dilute gases are ultimately defined
by the momentum and energy exchange during binary collisions
between gas particles. If the gas temperature is sufficiently high,
the quantum effects in interaction between atoms in the ground
state are small.24,25 For example, for argon, the quantum effects
in binary collisions change the viscosity in B0.15% at a tem-
perature of 50 K and in less than 0.1% when the temperature is
equal to or greater than 120 K.30 Then the solution of the classical
scattering problem, e.g., ref. 23–31, can be used to calculate the
deflection angle in binary collisions and, consequently, transport
coefficients of pure gas substances and gaseous mixtures using
the Chapman–Enskog method based on interatomic potentials
or potential energy curves (PECs) for corresponding atom
pairs.23–25 The VHS and VSS model parameters can be also
directly derived from the PECs using the Chapman–Enskog
method.22,32 The approach to sampling interatomic collisions
in the DSMCmethod can also be directly based on the solution of
the classical scattering problem that uses PECs as an input for
the calculation of the outcome of each binary collision in the
course of a DSMC simulation.33,34

The present paper is targeted at filling the gap in under-
standing of the collisional and transport properties of high-
temperature vapors and their mixtures with noble gases, which
are calculated here based on PECs for corresponding dimers or
atom pairs established in high-fidelity ab initio calculations
(hereinafter, when discussing PECs, the terms ‘‘dimer’’ and
‘‘atom pair’’ are used interchangeably since the ab initio PECs
for dimers in the ground state can be further used to calculate
collisions between corresponding pairs of atoms). For this
purpose, we first obtain the PECs for atom pairs of interest in
the quantumMonte Carlo (QMC) calculations for a broad range

of interatomic distances. Second, we investigate the collisional
and transport properties of high-temperature vapors of copper
and silicon, as well as their mixtures with helium, argon, and
xenon gases from first principles. Finally, we present the
obtained results in the approximate form of VHS and VSS
molecular models that can be readily used in kinetic and
continuum simulations of corresponding gas flows.

Copper and silicon are chosen for investigation due to the
tremendous practical importance of these materials and, corre-
spondingly, large amounts of experimental and computational
studies involving laser-, ion spattering-, and plasma etching-
induced flows of Cu or Si vapor plumes, e.g., ref. 35–38. The
simultaneous consideration of light-weight He, medium-weight
Ar, and heavy Xe gases is inspired by the results of recent
experimental39 and computational studies17,19 that report the
strong effect of the molecular weight of a noble background gas
on the plume or jet expansion processes in material processing
technologies. The transport properties of Cu and Si vapors are of
practical interest at elevated temperatures, e.g., roughly from
2000 K to 6000 K at atmospheric pressure. The condensation
processes limit the lower temperature, while the upper tempera-
ture is limited by ionization. The exact temperature range, where
the gas–vapor mixtures can exist in the form of mixtures of neutral
monatomic gases, depends on pressure and degree of flow non-
equilibrium. Under conditions of strongly non-equilibrium flows,
the neutral atoms can exist in a broader range of conditions
compared to equilibrium. Therefore, the transport properties are
considered in the present paper in the extended range of tempera-
ture from 102 K to 104 K.

Currently, the ab initio PECs are known with very high
accuracy for homonuclear and heteronuclear dimers of noble
gases, e.g., ref. 40–48. These PECs are often approximated by
the Tang & Toennies49,50 potential or its generalized versions,
e.g., by the universal potential recently suggested in ref. 51, and
are used for high-fidelity calculations of the collisional and
transport properties of corresponding gases and gaseous mix-
tures, e.g., ref. 30, 47 and 52–57. These calculations show a good
agreement between the predicted and experimentally measured
viscosities.58 In the literature, the ab initio or experimental
PECs can be also found for the Cu–Cu,20,59–61 Cu–He,62,63

Cu–Ar,62 Si–Si,64 and Si–Ar65 dimers (hereinafter, the notation
‘‘A–B’’ is used for the dimer formed by atoms A and B, pair of
atoms A and B whose binary collision is under consideration,
and gas mixture composed of monatomic gases A and B). These
data, however, are partially incomplete since the data points
often do not cover a sufficiently large range of interatomic
distance.

Most of the calculations of dimer PECs mentioned above are
performed based on the coupled cluster singles and doubles
with perturbative triples corrections [CCSD(T)] method,66 which
is considered as a state-of-the-art approach for high-fidelity
calculations of PECs. This method, however, is characterized by
high computational costs that scale as Ne

7 where Ne is the
number of electrons. The density functional theory (DFT)67 is
rarely used for calculations of dimer PECs, as the approximate
energy functionals used in the DFT calculations require
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additional corrections for van der Waals interactions and can
either underpredict or overpredict the potential energy well
depth.68 Moreover, the PECs obtained in the DFT calculations
have been reported to break down in the attraction parts with the
relative errors in the ground-state energy strongly increasing with
increasing interatomic distance.69,70 These limitations of DFT
are overcome in the QMC method,71–73 which uses stochastic
techniques to sample wave functions in the quantum many-
body problem. Compared to DFT, the QMC method does not
require further approximations to account for van der Waals
interactions.71,74 Providing the same level of accuracy as the
post-Hartree–Fock methods such as CCSD(T), the QMC method
is less computationally demanding, as its computational cost
scales as Ne

3. At the same time, as a stochastic approach, the
QMC method usually requires a generation of large-size statis-
tical samples.71

In the present work, the PECs for the homonuclear He–He,
Ar–Ar, Cu–Cu, and Si–Si dimers, as well as heteronuclear
Cu–He, Cu–Ar, Cu–Xe, Si–He, Si–Ar, and Si–Xe dimers, are
determined in the QMC calculations using the QMCPACK
package75,76 and then approximated by the Morse long range77,78

(MLR) and Lennard-Jones (LJ) potentials (Section 2). For the Xe–Xe
dimer, the MLR and LJ approximations are obtained based on the
results reported in ref. 48. Then the obtained MLR and LJ
potentials are used to calculate the deflection angle at binary
collisions of atoms in Section 3, as well as transport coefficients
of pure vapors of Cu and Si and their mixtures with He, Ar, and Xe
gases based on the ten-term approximations with respect to the
Sonine polynomials of the Chapman–Enskog theory (Sections 4–6).
The obtained values of viscosity and diffusivity are used to find
parameters of the VHS and VSS molecular models for kinetic
simulations and power-law approximations of the transport coeffi-
cients as functions of temperature for continuum simulations in
Section 7. Finally, the major results of this study are summarized
in Section 8. The raw results of calculations of the PECs, deflection
angles, transport collision integrals, and transport coefficients are
provided in the form of tables, plots, and text files in the Appendix
and ESI.†

2. Potential energy curves (PECs)
2.1. Quantum Monte Carlo (QMC) calculations of PECs

The QMC calculations of PECs were conducted with the
QMCPACK package.75,76 We used the trial wave functions of
the Slater–Jastrow type, WT = e JDmDk, where Dm and Dk are the
Slater determinants of the spin-up and spin-down electrons
respectively and J is the Jastrow factor. This form of the trial
wave functions was chosen because it has a general form and
was applied to many electronic systems ranging from single
atoms to many-atom solids.71 The Slater determinants are
constructed based on the Kohn–Sham (KS) DFT orbitals
obtained using the QUANTUM ESPRESSO package.79,80

In setting up the DFT calculations, the self-consistent field
(scf) calculations were performed in a sample periodic box of
20 Å � 20 Å � 20 Å which is large enough to make the

interactions of atoms through periodic boundaries negligible.
The local density approximation (LDA) was used to approximate
the exchange–correlation functional.81

The trial wave function constructed from the KS orbitals is
firstly optimized using the variational Monte Carlo (VMC)
scheme in the QMCPACK package. The statistical error esti-
mates of the VMC scheme are further minimized by adjusting
the trial wave functions. For this purpose, a large cut-off energy
and special QMC-type pseudo-potentials are applied. As such,
the plane-wave cut-off energy was set to 5440 eV (400 Ry) since
the preliminary calculations showed that increasing the plane-
wave cutoff energy did not significantly change the resulting
energy. The norm-conserving plane-wave pseudopotentials
parameterized by Burkatzki, Filippi, and Dolg were also used82,83

since these pseudopotentials were generated specifically for
subsequent QMC calculations and have been shown to produce
more accurate trial wave functions unlike other general
pseudopotentials which can produce time-step errors in the
diffusion Monte Carlo (DMC) scheme.84

The calculations are performed for isolated atoms and
dimers in the ground states (Table 1). The values of numerical
parameters, including the plane-wave cutoff energy in the DFT
calculations, number of samples and wavefunction optimization
cycles in VMC calculations, DMC timestep, and number of DMC
walkers, are chosen in a preliminary convergence study. This
convergence study ensures statistical convergence and good
computational accuracy of the QMC calculations, which is espe-
cially important for dimers characterized by small potential well
depth, such as the He–He dimer. Based on the results of the
convergence study, the number of statistical samples ranging
from 12800 to 51200 was used in the simulations. The number
of the VMC optimization cycle was equal to 9. The DMC calcula-
tions were performed using 128 to 256 random walkers, with the
DMC walkers being initialized from the VMC random walk, with
a time step of 0.005 a.u.85

The potential energy V was then computed as V = V12 �
(V1 + V2), where V12 is the dimer energy, and Vk are the energies
of isolated atoms (k = 1, 2). Overall, the QMC calculations were
performed for pairs of atoms with interatomic distances r
ranging from 0.4–1 Å to 10 Å. The smallest value of r was
chosen individually for each dimer to ensure that the investi-
gated range of r is sufficient for high-fidelity calculations of the
gas transport coefficients up to a temperature of 104 K.

The tabulated values of energy obtained in the QMC calcula-
tions for all dimers under consideration are provided in the
Appendix.85 For each dimer, the values of the potential well
depth (binding energy) De and equilibrium interatomic dis-
tance re are calculated by means of the three-point interpola-
tion of the PEC established in the QMC calculations. For this

Table 1 Valence electronic configurations and masses94 mk of atoms
considered in calculations

Element He Ar Xe Cu Si

Configuration 1s2 3s2 3p6 4d10 5s2 5p6 3d10 4s1 3s2 3p2

Mass mk (Da) 4.002602 39.948 131.293 63.546 28.0855
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purpose, three QMC data points with the minimum values of
energy are used.

To validate the QMC computational approach, the calculated
values of De and re are compared in Table 2 with the literature
data, obtained both in computations, using various simulation
techniques, and in the experiments reported in ref. 86–89.
Table 2 also contains De and re for the Xe–Xe dimer, whose
PEC was not calculated in the present work. The comparison
shows that the results of our calculations of De and re agree very
well with the most recent values obtained in the CCSD(T)
calculations and, in some cases, with the calculations based
on other ab initio approaches. With a few exclusions, the
values of De and re predicted by different computational
approaches or experimentally are consistent with each other.
The PECs for the He–He and Ar–Ar dimers obtained in various
works are compared with the results from the present cal-
culations in Fig. 1.85

2.2. PECs of the He–He, Ar–Ar, and Xe–Xe dimers

As the PECs for noble gases are well-known from the CCSD(T)
calculations, the corresponding PECs are calculated in the
present work to reveal the capability of the QMC method to
accurately predict PECs in a broad range of r as well as to
validate the approaches for the parameterization of PECs in a
functional form and calculation of the transport coefficients.

In Fig. 1, the calculated values of PECs for the noble gas
dimers He–He and Ar–Ar (squares) are compared with the
values obtained in ref. 44 and 45 (crosses). The comparison
shows close agreement between the results of the QMC and
CCSD(T) calculations in the whole ranges of r. The difference
between the values of De and re computed is less than 0.2% for
the He–He dimer and 0.06% for the Ar–Ar dimer.

Based on the good agreement between the results of our
QMC calculations and CCSD(T) calculations from the literature
for the He–He and Ar–Ar dimers, we decided not to perform the
QMC calculations for the Xe–Xe dimer and to use the PEC
suggested in ref. 48 in the functional form of the Tang &
Toennies potential,49 where the parameters are chosen to fit
the energy values obtained in the CCSD(T) calculations.85

2.3. PECs of the Cu–Cu, Cu–He, Cu–Ar, and Cu–Xe dimers

The energy values obtained in the QMC calculations for the
homonuclear Cu–Cu dimer are shown by symbols in Fig. 2(a). The
calculated values of De and re are consistent with the values obtained
based on other ab initio computational approaches20,59–61 with the
typical differences on the order of 1% to 10% (Table 2). In
particular, the present calculations provide De and re that are
less than 1.5% different from those that are found in the DFT
calculations,20 where the long-range van der Waals interactions
are accounted for based on the Grimme’s D2 correction.90

Table 2 Potential well depths De and equilibrium distances re for various dimers obtained in the present work and available from the literature

Dimer De (eV) re (Å) Ref a Method of calculation or ‘‘Exp.’’ for experimental values

He–He 9.461 � 10�4 2.969 This work QMCb

9.4514 � 10�4 2.9676 47 (51) Post-Hartree–Fock, CCSD(T)
9.4798 � 10�4 2.9634 44 Post-Hartree–Fock, CCSD(T)c

9.4428 � 10�4 2.9634 42 (50) QMC
Ar–Ar 0.01225 3.770 This work QMC

0.0127 3.754 20 DFT-vdWd

0.01233 3.762 45 Post-Hartree–Fock, CCSD(T)
0.0123 3.75 46 Post-Hartree–Fock, CCSD(T)
0.01235 3.7572 41 (50) Hartree–Fock, HFDID1e

0.0123 3.761 86 Exp.
0.0107 3.727 24 Exp., parameters of the LJ potential based on the viscosity data

Xe–Xe 0.02408 4.3779 48 (51) Post-Hartree–Fock CCSD(T)
0.02408 4.3779 48 Post-Hartree–Fock CCSD(T)
0.02438 4.3657 40 (50) Hartree–Fock, HFD-B f

Cu–Cu 2.192 2.2 This work QMC
2.166 2.175 20 DFT-vdW
2.22 1.9169 61 Post-Hartree–Fock CCSD(T)
2.021 2.214 60 Post-Hartree–Fock, CCSD(T)
2.203 2.274 59 Post-Hartree–Fock, APUMP4g

2.2 1.98408 87 Exp.
2.038 2.22 88,89 Exp.

Si–Si 3.257 2.278 This work QMC
3.2527 2.273 64 Post-Hartree–Fock, CCSD(T)

Cu–He 8.192 � 10�4 4.616 This work QMC
8.2123 � 10�4 4.662 63 Post-Hartree–Fock, CCSD(T)
7.728 � 10�4 4.56 62 Post-Hartree–Fock, CCSD(T)

Cu–Ar 0.01013 4.039 This work QMC
0.01009 4.032 63 Post-Hartree–Fock, CCSD(T)

Si–Ar 3.690 � 10�2 3.365 This work QMC
3.6672 � 10�2 3.386 65 Post-Hartree–Fock, RUCCSD(T)h

a In the secondary references given in parenthesis, the computational data from the corresponding primary references are used to develop
functional forms of PECs. b QMC – Quantum Monte Carlo. c CCSD(T) – Coupled cluster singles and doubles with perturbative triples corrections.
d DFT-vdW – Density functional theory with van der Waals corrections. e HFDID1 – Hartree–Fock dispersion individually damped potential.
f HFD-B – Hartree–Fock dispersion. g APUMP4 – Approximate projected unrestricted Møller–Plesset to 4th order. h RUCCSD(T) – Spin unrestricted
open-shell coupled cluster singles and doubles with perturbative triples corrections.
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The energy values obtained in the QMC calculations for
heteronuclear dimers that include a Cu atom and a noble gas
atom are shown by symbols in Fig. 2(b). The binding energies of
such dimers are strongly reduced compared to the Cu–Cu
dimer and have an order of magnitude of De for the corres-
ponding homonuclear noble gas dimers. This agrees with the
analysis of PECs of the Cu–He and Cu–Ar dimers obtained in
the CCSD(T) calculations and suggests a weak, van der Waals-
type bonding between the metal and noble gas atoms.62,63

The potential well depth monotonically increases while the
equilibrium distance monotonically decreases with an increas-
ing atomic number of the noble gas atom. The same trends
were found for a series of dimers of a Cu atom with He, Ne,
and Ar atoms.63 This was attributed to the difference in the
principal quantum number of noble gas atoms, which affect the

distributions of the wave functions of electrons in the outermost
shell such that, when a Cu atom and noble gas atom are at
an equilibrium distance, the overlapping portions of the wave
functions increase with the increasing number of electrons in the
noble gas atom.

2.4. PECs of the Si–Si, Si–He, Si–Ar, and Si–Xe dimers

The values of energy found in the QMC calculations for the
homonuclear Si–Si dimer are shown by symbols in Fig. 3(a). The
results obtained in the present work are in close quantitative
agreement with the results of CCSD(T) calculations both in terms
of De and re (Table 2) and the whole PEC.85

The calculated PECs for the heteronuclear Si–He, Si–Ar, and
Si–Xe dimers [Fig. 3(b)] demonstrate similar trends which
are revealed for heteronuclear dimers containing a Cu atom:

Fig. 2 Potential energy of the homonuclear Cu–Cu dimer (squares and red curves) (a) as well as heteronuclear Cu–He (triangles and green curves), Cu–
Ar (diamonds and blue curves), and Cu–Xe (circles and magenta curves) dimers (b). The symbols correspond to the values found in the QMC calculations,
while the solid and dashed curves are approximations of the QMC values by the MLR and LJ potentials, respectively.

Fig. 1 Potential energy of the homonuclear He–He (a) and Ar–Ar (b) dimers. The red squares show the calculated QMC values, the crosses represent the
values of energy for the He–He dimer taken from ref. 44 and Ar–Ar dimer from ref. 45 obtained in the CCSD(T) calculations, and the solid and dashed
curves are the approximations of the QMC values by the MLR and LJ potentials, respectively. The insets show various functional approximations of PECs
in the ranges of r corresponding to large repulsive energies: MLR (red solid curves) and LJ (green dashed curves) potentials obtained in the present work,
potentials from ref. 50 (blue dashed-dotted curves), ref. 44 [for He–He in (a)] and ref. 45 [for Ar–Ar in (b)] (magenta dashed-double-dotted curves), and
ref. 51 (cyan long-dashed curves). In both insets, the curves corresponding to the MLR potentials and potentials suggested in ref. 44 in (a) and ref. 45 in (b)
visually coincide with each other.
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The binding energies are small, which suggests dispersive
interaction between atoms in these dimers, and De monotoni-
cally increases with an increasing atomic number of the noble
gas atom. Contrary to the case of the Cu–A dimers, the variation
of re for the Si–A dimers is non-monotonous with respect to the
mass of atom A, as the re for the Si–He dimer is in between the
equilibrium distances for the Si–Ar and Si–Xe dimers. The
difference in re between the Si–He and Si–Ar dimers, however,
is onlyB1%. Interestingly, the slope of the repulsive part of the
Si–He PEC, when r is moderately different from re, is much
smaller than that for the Si–Ar and Si–Xe dimers, so that the
repulsive part of the Si–He interatomic potential is much softer
than its Si–Ar and Si–Xe counterparts. The computed values of
De and re for the Si–Ar dimer are only less than 0.5% different
from the corresponding values found in the calculations based
on the spin unrestricted open-shell coupled cluster singles and
doubles with perturbative triples corrections method.65

2.5. Morse long range (MLR) and Lennard-Jones (LJ)
approximations of PECs

Various functional forms of interatomic potentials are currently
available for approximation of ab initio PECs depending on the
bonding type and other factors, e.g., ref. 91. Here, we use the
Morse long-range (MLR) potential function77,78 as a convenient
model that allows us to accurately approximate the QMC data
points for dimers with different types of bonding, including van
der Waals, metallic, and covalent bonding.

The PECs obtained in the QMC calculations are approxi-
mated by the MLR potential in the form

V rð Þ ¼ De 1� u rð Þ
u reð Þe

�b rð Þy rð Þ
� �2

�De; (1)

where r is the interatomic distance and u(r) is a three-term
function describing the long-range behavior of the PEC:

u rð Þ ¼ C6

r6
þ C8

r8
þ C10

r10
; (2)

b rð Þ ¼ y rð Þb1 þ 1� y rð Þ½ �
X4
i¼0

biy rð Þi; (3)

y rð Þ ¼ r3 � re
3

r3 þ re3
; (4)

bN = ln(2De/u(re)). (5)

Besides De and re, this potential has eight interpolating
parameters C6, C8, C10, b0, b1, b2, b3, and b4. The values of De

and re are calculated as the parameters at the minimum of the
three-point interpolation of the PEC established in the QMC
calculations, as discussed in Section 2.1. The remaining para-
meters C6, C8, C10, b0, b1, b2, b3, and b4 are calculated by
multifactorial non-linear least-square fitting that minimizes the
relative root-mean-square (RMS) deviation

RMS ¼ 1

N

XN
i¼1

Di
2

 !1=2

; (6)

where Di = [V(ri) � VQMC(i)]/VQMC(i),VQMC(i) is the potential energy
found in the QMC calculations at r = ri, and all N data points
with r = ri belongs to a range rf,min r r r rf,max. The boundaries
of this range are chosen individually for each dimer to ensure
that the MLR potential has only one extremum at r = re and
rf,min is small enough to enable accurate calculations of trans-
port coefficients at temperatures T r Tmax = 104 K.85

The obtained parameters of the MLR potentials for all
dimers under consideration are presented in Table 3. The
values of the relative RMS deviation for most dimers span the
range from B0.5% to B3% but approach 5% for the Ar–Ar and
Cu–Cu dimers. The parameters of the MLR potential for the
Xe–Xe dimer are calculated by the least-square fitting of the
Tang & Toennies-type49 potential function obtained in ref. 48.85

The corresponding potentials are shown by solid curves in
Fig. 1–3. As seen in Fig. 1, the developed MLR potentials for
the He–He and Ar–Ar dimers agree well with the potential
functions developed in ref. 44, 45, and 51. The potential

Fig. 3 Potential energy of the homonuclear Si–Si dimer (squares and red curves) (a) as well as heteronuclear Si–He (triangles and green curves), Si–Ar
(diamonds and blue curves), and Si–Xe (circles and magenta curves) dimers (b). The symbols correspond to the values found in the QMC calculations,
while the solid and dashed curves are approximations of the QMC values by the MLR and LJ potentials, respectively.
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function for the noble gas dimers suggested in ref. 50 signifi-
cantly overestimates the potential energy at small interatomic
distances that correspond to strong repulsive interaction.

The (12-6) Lennard-Jones (LJ) potential in the form

V rð Þ ¼ De
re

r

� �12
�2

re

r

� �6� �
; (7)

is still a popular approximation for the calculation of the
collisional and transport properties of high-temperature gases
and vapors, especially under conditions when the exact PEC is
not available.29 For noble gases, this potential is known to
provide an approximation of PECs that is sufficient for kinetic
simulations of gas flows at moderate temperatures92 and
calculation of transport properties in agreement with experi-
mental viscosity data.24 Since the LJ potential is widely used, it
is important to quantify the errors in the transport coefficients
of high-temperature vapors and gaseous mixtures imposed by
the use of this potential function. Various generalizations of the
LJ potential, e.g., improved LJ (ILJ) potential,93 offer potentially
better accuracy compared to (12-6) LJ potential at the price of at
least one additional fitting parameter. Since these parameters
can be determined only based on known ab initio PECs or
spectroscopical measurements, these generalized LJ potentials
do not have a decisive advantage over more complex potential
functions, e.g., the MLR potential adopted in the present work.

To verify the applicability of the LJ potential for the homo-
nuclear Cu–Cu and Si–Si dimers as well as for the heteronuclear
dimers, the values of the LJ potentials with De and re from
Table 3 are plotted by dashed curves in Fig. 1–3. The relative
RMS deviations of the LJ potentials are 1–3 orders of magnitude
larger than that of the corresponding MLR potentials.85

As expected, the LJ potentials provide reasonably good
approximations of the actual PECs for the noble gas dimers
at r \ re. At interatomic distances that correspond to strong
repulsion, however, the LJ potentials strongly overestimate
both energy and force (insets in Fig. 1). As shown in
Sections 5.1, 5.2 and 6.3, this results in relatively large errors
in the values of the transport coefficients of noble gases and
their mixtures with Cu vapor at large temperatures. It makes
the LJ potential not a suitable approximation for high-fidelity
simulations of high-temperature flows of pure substances and
gas mixtures considered in the present work.

For the homonuclear Cu–Cu and Si–Si dimers, the LJ poten-
tials strongly overestimate the energy and interatomic interaction
force at both attraction and repulsion [Fig. 2(a) and 3(a)]. As
shown in ref. 20, a generalized (m-n) Lennard-Jones potential,
where the exponents m and n are chosen to exactly fit the zero
energy point and potential stiffness at r = re can substantially
improve the accuracy of the approximation of the Cu–Cu PEC
only in a small vicinity of r = re, in the range from B1.7 Å to
B2.7 Å, but still provides insufficient accuracy outside this range.

For the heteronuclear dimers, the LJ potentials, as a rule,
strongly overestimate the energy and force at r o re [Fig. 2(b)
and 3(b)]. For the Cu–He dimer, however, the LJ potential
underestimates the energy and force. This also suggests that
the LJ approximations of the PECs for all heteronuclear dimersT
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under consideration must not be used for calculations of the
collisional and transport properties of corresponding gas mix-
tures at high temperatures.

3. Effect of the PEC shape on particle
scattering in binary collisions

To solve the Boltzmann kinetic equation for monatomic gases,
the deflection angle w, i.e., the angle between the relative
velocity vectors of colliding particles before and after a binary
collision, must be determined based on V(r). Here, the solution
of the classical elastic scattering problem22–25,31 is used to find
w as a function of the magnitude of the relative particle velocity
before the collision Cr and geometrical collision parameter b in
the form:

w Cr; bð Þ ¼ p�
ð1
rmin

Lrdr

mr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hr � V rð Þ

2m
� Lr

2

2mrð Þ2

s ; (8)

where m = m1m2/(m1 + m2) is the reduced mass for interacting
particles with masses m1 and m2 (Table 1),94 V(r) is the PEC for
participating particle species, Hr = mCr

2/2, Lr = mCrb, and rmin is
the minimum distance between particles attained at a collision
which can be found as the largest root of the equation

Hr � V rminð Þ
2m

¼ Lr
2

2mrminð Þ2
: (9)

In the present work, the tables of values of wij = w(bj,Cri) (the
scattering matrices) are calculated for all atom pairs in the
ranges 0 r b r 20 Å and 0 o Cr r Cr*, where the values of Cr*

were chosen in preliminary calculations individually for each
pair of atoms to ensure the accuracy of further calculation of
the transport coefficients up to T = 104 K.85 The integral in
eqn (8) was calculated numerically, assuming that the atoms do
not interact with each other when r is greater than the cutoff
distance rcutoff = 40 Å. Then the range r Z rmin was divided into
3 sub-ranges: rmin + 10

�7 År rr 10�4 Å (range I), 10�4 År rr
rcutoff (range II), and r Z rcutoff (range III), where the lower
boundary in range I is shifted with respect to rmin to exclude the
singularity at r = rmin. The numerical integration in ranges I and
II is performed with the simple trapezoidal rule and spacings
Dr = 10�7 Å and Dr = 10�4 Å, respectively, while the contribution
of range III is calculated as DwIII = 2arcsin(b/rcutoff).

The tables of the deflection angle are calculated for all atom
pairs under consideration.95 The characteristic distributions of
the quantity W = 1 � cos w versus b2 for single-species collisions
in the Ar–Ar and Cu–Cu atom pairs as well as cross-species
collisions in the Cu–He atom pair, calculated based on the MLR
and LJ potentials are shown in Fig. 4–6 by solid and dashed
curves, respectively. The similar plots for all other atom pairs
under consideration are presented in the ESI.† At relatively
small Cr, the plots, e.g., in Fig. 4(a), show two characteristic
ranges of b, the first one for nearly head-on collisions, which
are primarily controlled by the interatomic repulsion, and the
second for quasi-orbiting collisions, which are strongly affected

by attraction. With increasing Cr, the contribution of quasi-
orbiting collisions becomes almost negligible and invisible on
the scale of Fig. 4–6.

For all atom pairs, the values of W calculated based on the LJ
potentials demonstrate the strongest deviation from the values
of W calculated based on the MLR potentials at the smallest
[20 m s�1, panels (a)] and largest [104 m s�1, panels (d)] Cr

considered, while at the intermediate Cr [10
3 m s�1, panels (c)],

the dependence of W on b2 is practically independent of the
shape of the potential function. The range of b corresponding
to quasi-orbiting collisions predicted by the LJ potential is
shifted towards larger b compared to the MLR potential. Since
the LJ potential usually overestimates the energy and force at
repulsion, the values of W calculated based on the LJ potential

Fig. 4 Quantity 1 � cos w, where w is the deflection angle defined by
eqn (8), versus b2 for two Ar atoms at a relative speed Cr of 20 m s�1 (a),
102 m s�1 (b), 103 m s�1 (c), and 104 m s�1 (d) calculated based on the MLR
(red solid curves) and LJ (greed dashed curves) potentials as well for the
PECs in the functional forms suggested in ref. 50 (blue dashed-dotted
curves), ref. 45 (magenta dashed-double-dotted curves), and ref. 51 (cyan
long-dashed curves).
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for oblique collisions are greater than the values predicted
based on the MLR potential for all atom pairs and Cr consid-
ered at small and large Cr. The only exclusion from this rule is
provided by the Cu–He atom pair at large Cr [Fig. 6(c) and (d)]. It
occurs since, for the Cu–He dimer, the LJ potential strongly
underestimates the potential energy at repulsion [Fig. 2(b)].

For Ar–Ar collisions, the scattering matrices were addition-
ally calculated based on the potential functions suggested in
ref. 45, 50 and 51 (Fig. 4). The shape of the potential function
has the most pronounced effect on the deflection angle at small
and large Cr. At small Cr [Fig. 4(a)], the differences in the
distributions of W appear due to different asymptotic behavior
of the potential functions at r-N. The MLR potential predicts
the smallest values of W for nearly head-on collisions among all
potentials considered, while the values of W calculated based on
the potential functions from ref. 45 and 50 practically coincide

with each other at small and moderate speeds. At large Cr

[Fig. 4(d)], the results obtained with different potential func-
tions deviate from each other since the fitting coefficients in
these functions do not allow to fit accurately the energy at
r { re,

51 and the quality of the approximation fast deteriorates
with reducing r at repulsion. The values of W calculated based
on the MLR potential practically coincide with the values based
on the potential function of ref. 45. At intermediate Cr [Fig. 4(c)],
the values of W calculated based on different potential functions
are close to each other.

A similar study of the effect of the PEC shape on the
deflection angle is performed for collisions in the He–He and
Xe–Xe atom pairs.85 This study shows that the values of W
predicted based on the MLR potentials and potential functions
developed in ref. 44 (for He–He) and ref. 48 (for Xe–Xe)

Fig. 6 Quantity 1 � cos w, where w is the deflection angle defined by
eqn (8), versus b2 for a pair of Cu and He atoms at a relative speed Cr of
20 ms�1 (a), 102 ms�1 (b), 103 ms�1 (c), and 104 ms�1 (d) calculated based
on the MLR (red solid curves) and LJ (green dashed curves) potentials.

Fig. 5 Quantity 1 � cos w, where w is the deflection angle defined by
eqn (8), versus b2 for two Cu atoms at a relative speed Cr of 20 m s�1 (a),
102 m s�1 (b), 103 ms�1 (c), and 104 ms�1 (d) calculated based on the MLR
(red solid curves) and LJ (green dashed curves) potentials.
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practically coincide with each other at Cr Z 100 m s�1. This
conclusion confirms a good agreement between the He–He
PECs obtained in the QMC and CCSD(T) calculations. The
disagreement between the asymptotic behaviors of different
potential functions and, correspondingly, values of the deflec-
tion angle at Cr r 100 m s�1, affects the predicted values of the
transport coefficients of noble gases only at T { 100 K.85 Thus,
this disagreement is not relevant to the case of high-
temperature gas mixtures considered in the present work.

4. Calculation of transport coefficients
4.1. Transport properties of binary mixtures

The obtained solutions of the classical scattering problem in
the form of dependencies w = w(b,Cr) are used to calculate the
transport coefficients based on the Chapman–Enskog method in
the form of the Sonine polynomial expansions.23–31 For pure
substances, the self-diffusivity D, shear viscosity m, and thermal
conductivity k are calculated as functions of the gas temperature
T. For binary gaseous mixtures, composed of Cu or Si vapor and a
noble gas, the binary diffusivity D, shear viscosity m, thermal
conductivity k, and thermal diffusion factor aT are calculated as
functions of temperature T andmolar fraction of the noble gas xg.

For pure substances and gas mixtures, the shear viscosity is
defined in the same way as a coefficient that appears in the
standard form of a Newtonian viscous tensor for monatomic
gases.23–25 The diffusion in a binary mixture, i.e., the local
difference between bulk velocities u1 and u2 of species 1 and 2,
is described by the generalized Maxwell–Stefan law

u1 � u2 ¼ �D
rx1

x1 1� x1ð Þ þ aTr logT

� �
; (10)

where x1 is the molar fraction of species 1. In the present work,
species 1 is always assumed to be a vapor and species 2 is
assumed to be a noble gas. The chemical composition in such a
mixture is described by the molar fraction of the noble gas
xg = x2 so that eqn (10) can be re-written as

uv � ug ¼ D
rxg

xg 1� xg
	 
� aTr logT

" #
; (11)

where uv and ug are the bulk velocities of the vapor and gas,
respectively. When both species are at rest (uv = ug), a stationary
chemical composition distribution is established in a non-
isothermal mixture given as

rxg = xg(1 � xg)aTr logT. (12)

The thermal diffusion leads to two kinds of thermal con-
ductivities for gas mixtures: Partial k0 and steady-state k thermal
conductivity coefficients.25 The quantity k0 characterizes con-
duction heat transfer in a mixture with a uniform chemical
composition. The coefficient k corresponds to the state when a
time-independent chemical composition is established accord-
ing to eqn (12). Henceforward, the steady state thermal con-
ductivity k is considered. It defines the heat flux q in the form25

q = �krT + nkBTxg(1 � xg)aT(uv � ug). (13)

The calculation of the transport coefficients using the Sonine
polynomial expansions is described in detail in ref. 96. In the
present work, the expressions for the transport coefficient are
used in the form obtained in ref. 53 and 54 in terms of the
transport collision O-integrals

O l;sð Þ Tð Þ ¼
ffiffiffiffiffiffiffiffiffi
kBT

2pm

r ð1
0

exp �x2
	 


x2sþ3Q lð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

m

r
x

 !
dx; (14)

where

Q lð Þ Crð Þ ¼ 2p
ð1
0

1� cosl wðCr; bÞ
� �

b db (15)

is the collision cross section and kB is the Boltzmann constant,
so that only a summary of these expressions is given below.

The diffusivity D, viscosity m, thermal conductivity k, and
thermal diffusion factor aT of a binary mixture are calculated as

D ¼ 3

2

1� xg
	 


xgkBTd0

nðmv þmgÞ
(16)

m ¼ 5

2
kBT 1� xg

	 

b1 þ xgb�1

� �
; (17)

k ¼ 75

8
kB

2T
1� xg
	 


a1ffiffiffiffiffiffi
mv

p þ xga�1ffiffiffiffiffiffi
mg

p

" #
; (18)

aT ¼ �5

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mv þmg

p

d0

d1

xg
ffiffiffiffiffiffi
mv

p þ d�1

1� xg
	 
 ffiffiffiffiffiffi

mg
p

" #
; (19)

where mv and mg are masses of vapor and noble gas atoms,
respectively, and the coefficients b1, b�1, a1, a�1, d1, d0, and d�1

are determined by systems of linear algebraic equations. The
details of calculations of these coefficients, which depend, in
particular, on the adopted number of terms N in the expansions
of the solution of the Boltzmann equation with respect to the
Sonine polynomials, are provided in ref. 53.

To simplify notation, the subscripts that are often used for
individual quantities in eqn (14)–(19) to denote participating
atomic species are dropped. The atomic species define the
value of the reduced mass m in eqn (14) and the potential
function used to calculate the deflection angle in eqn (15). This
simplified notation does not introduce any ambiguity in the
presentation of results since the further discussion of all
calculations based on eqn (14)–(19) is accompanied by explicit
specification of species under consideration.

The viscosity and thermal conductivity of pure substances
can be obtained from eqn (17) and (18) at xg = 0 or xg = 1. In this
case, the coefficientD becomes the gas self-diffusivity according
to the definition adopted, e.g., in ref. 2, if one uses eqn (16) at
xg = xv = 1/2 and mg = mv.

The values of D, m, and k can be represented in a reduced
form of Schmidt, Sc, and Prandtl, Pr, numbers

Sc ¼ m
rD

; (20)
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Pr ¼ cpm
k
; (21)

where r = nmx and cp = (5/2)kB/mx are the mass density and
mean isobaric specific heat of the gas mixture, n is the total
number density, and mx = mv(1 � xg) + mgxg is the average atom
mass. The Schmidt and Prandtl numbers can be used to
characterize the difference in the variation of D and k with
temperature with respect to m.

4.2. Numerical calculation of the X-integrals and transport
coefficients

The transport collision integrals and transport coefficients are
calculated in the range of temperature from 10 K to 104 K,
however, the transport coefficients for Cu and Si vapors and
their mixtures with noble gases are further discussed only at
T Z 100 K. At smaller temperatures, the values of the transport
coefficients can be sensitive to the peculiarities of the asymp-
totic behavior of the potential functions at r - N. The
low-temperature gas properties, however, are out of the scope
of the present paper.

The integrals in eqn (14) and (15) are calculated numerically
using the preliminarily determined scattering matrices
wij = w(Cri,bj), so that the numerical accuracy of calculations of
the O-integrals implicitly depends on the accuracy of numerical
calculation of individual deflection angles according to eqn (8).
The numerical accuracy of calculations of the O-integrals also
depends on the integration step sizes Db and DCr used for
numerical quadrature as well as on the cutoff values of the
impact parameter b* and relative speed Cr* that replace the top
integration limits in the improper integrals of eqn (14) and (15).
The accuracy of the transport coefficients also depends on the
number of terms N in the Sonine polynomial expansions.

In the present work, two independently developed codes for
calculations of the deflection angle and O-integrals were used.
The codes use different approaches for numerical quadrature
in eqn (8), but the maximum relative difference between
W = 1 � cos w predicted by both codes does not exceed 10�6

with exception of sliding collisions at large b, which do not
contribute to the O-integrals. The first code is based on the
numerical quadrature of eqn (14) and (15) on meshes with
equal spacings Db and DCr. The second code utilizes non-
homogeneous meshes for both b and Cr.

The comprehensive convergence studies were performed for
both codes. Based on the results of this study, the values of
b* = 20 Å, Db = 0.005 Å, and DCr = 2.5 m s�1 are chosen for
numerical integration in eqn (14) and (15) with the first code,
while the value of Cr* is chosen individually for different atom
pairs.85 In this case, the direct calculations showed that the
estimated error in the value of all transport coefficients for pure
substances does not exceed 0.04%. The numerical accuracy of
the second code was investigated in ref. 30, 53, and 54. For the
second code, the estimated relative error in the values of the
transport coefficients does not exceed 0.01% for both pure
substances and gaseous mixtures.

In the present work, the calculations are performed with
N = 1, 2, and 10. The results that are further presented and

discussed in Sections 5 and 6, however, are all obtained with
N = 10 with exception of Table 4, where the results are
calculated with N = 1 and N = 2.

4.3. Transport coefficients in the first approximation with
respect to the Sonine polynomial expansions

It is instructive to use the one-term expansions of the transport
coefficients. Such one-term expansions are simple and can be
easily presented in an algebraic form. These one-term expan-
sions are also usually used for the fitting of the HS, VHS, and
VSS molecular models.22

At N = 1, eqn (16) for xg = 1/2 and mg = mv reduces to

D ¼ 3

8

kBT

O 1;1ð ÞðTÞ
1

2mn
; (22)

while eqn (17) and (18) for xg = 0 or xg = 1 reduce to

m ¼ 5

8

kBT

O 2;2ð ÞðTÞ; (23)

k ¼ 15

16

kBT

O 2;2ð ÞðTÞ
�cp; (24)

where %cp = (5/2)kB/(2m). Eqn (22)–(24) represent the one-term
(first) approximations of the self-diffusivity, viscosity, and
thermal conductivity of pure substances with respect to the
Sonine polynomial expansions. These equations also define the
‘‘contributions’’ of collisions between corresponding atom
pairs to the one-term approximations of binary diffusivity,
viscosity, and thermal conductivity of gaseous mixtures.24

For pure substances, the second terms in the Sonine poly-
nomial expansions provide corrections to the first-order
approximations not greater than 0.8% for all cases considered
in the present work at temperatures between 102 K and 104 K
(Table 4). The total contributions of further terms from third to
tenth are found to be less than 0.1%.

In the first approximation, for a gas mixture composed of
species 1 and 2, the binary diffusivity is defined by eqn (22),
while the viscosity, thermal conductivity, and thermal diffusion
factor are determined algebraically by complex equations24 that
can be represented in the form

m ¼ m12 fm m1;m2;
m1
m12

;
m2
m12

;
Oð1;2Þ

12

Oð1;1Þ
12

;
Oð1;3Þ

12

Oð1;1Þ
12

;
Oð2;2Þ

12

Oð1;1Þ
12

; x2

 !
; (25)

k ¼ k12 fk m1;m2;
k1
k12

;
k2
k12

;
Oð1;2Þ

12

Oð1;1Þ
12

;
Oð1;3Þ

12

Oð1;1Þ
12

;
Oð2;2Þ

12

Oð1;1Þ
12

; x2

 !
; (26)

aT ¼ fa m1;m2;
k1
k12

;
k2
k12

;
Oð1;2Þ

12

Oð1;1Þ
12

;
Oð1;3Þ

12

Oð1;1Þ
12

;
Oð2;2Þ

12

Oð1;1Þ
12

; x2

 !
; (27)

where mk and kk are the viscosity and thermal conductivity of
pure substance k calculated based on eqn (23) and (24), while
m12 and k12 are quantities that are calculated based on the same
eqn (23) and (24) but using the reduced mass m and O-integrals
for cross-species collisions O(l,s)

12 (T). These equations show
that the viscosity and thermal conductivity of a gas mixture to
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a large extent depend on the ‘‘contributions’’ m12 and k12 of
cross-species collisions. The binary diffusion coefficient in the
second approximation is determined by an equation similar to
eqn (25), which will include the self-diffusivity Dk and binary
diffusivity D12 calculated in the first approximation based on
eqn (22).24 For a binary mixture with arbitrary chemical com-
position, the contributions of the second and further terms in
the Sonine polynomial expansions, as a rule, are larger than for
the corresponding pure substances.

4.4. Effect of the PEC shape on the values of the X-integrals

According to eqn (22)–(24), the effect of temperature on the
transport coefficients of pure substances is dominated by
integrals O(1,1)(T) and O(2,2)(T). Eqn (25)–(27) show that the
corresponding integrals for cross-species collisions also deter-
mine (together with O(1,2)

12 and O(1,3)
12 ) the first-order coefficients

of gas mixtures.
For collision pairs involving a Cu atom, the effect of the PEC

shape on the dependences of O(1,1) and O(2,2) on temperature is
illustrated in Fig. 7. The plots in this figure are obtained based
on the MLR and LJ potentials with the parameters from Table 3,
and the results are presented in the form of the reduced
O-integrals

O l;sð Þ� Tð Þ ¼ O l;sð Þ Tð Þ
O l;sð Þ

HS Tð Þ
; (28)

where

O l;sð Þ
HS Tð Þ ¼ C l;sð Þps2

ffiffiffiffiffiffiffiffiffi
kBT

2pm

r
(29)

is a corresponding integral for HS particles of diameter s and

Cðl;sÞ ¼ sþ 1ð Þ!
2

1� 1

2

1þ �1ð Þl

1þ l

" #
; (30)

as functions of the reduced temperature T* = kBT/De. Following
the approach adopted in ref. 24, where s corresponds to the
zero-energy distance of the LJ potential, the length scale s in

eqn (29) is used in the form s ¼ re=
ffiffiffi
26

p
. The calculated values

of O(1,1)* and O(2,2)* for other collision pairs are presented in
the ESI.† In all cases, the calculations are performed for a
temperature range from 10 K to 104 K.

All these calculations result in consistent conclusions
regarding the effect of the PEC shape. In general, in the
logarithmic scale, the plots of the O-integrals include three
quasi-linear parts, where the integrals roughly follow the power
scaling laws with temperature, at T* t 0.2, 0.2 t T* t 2, and
T* \ 2. This is realized, e.g., in the Cu–Ar case [Fig. 7(c)]. For
other atom pairs, due to the strong variability of De, the range
of temperature, 10 K r T r 104 K, may not contain all three
characteristic sub-ranges of T*. The values of the O-integrals
calculated based on the MLR and LJ potentials usually agree
with each other reasonably well in the mid-range 0.2 t T*t 2.
The degree of disagreement between the MLR- and LJ-based

Table 4 Difference D[m] = 100% � (m � mPF)/m between viscosities m of pure substances calculated based on the MLR potentials with the two-terms
expansions of the transport coefficients (N = 2) and viscosities mPF found based on other potential functions (PF) or with the one-term expansions (N = 1)
at various temperatures T. D[m]A is the RMS value of D[m] in the range of temperature from 102 K to 104 K

PF N D[m]A

T (K)

100 200 300 1000 2000 3000 10 000

Helium gas
MLR 1 0.298 0.650 0.664 0.643 0.516 0.397 0.312 0.0628
LJ 2 24.4 3.07 4.67 5.86 10.9 15.4 19.0 33.7
Ref. 50 2 11.9 3.06 3.77 4.18 5.63 7.22 8.77 17.0
Ref. 44 2 0.914 0.477 0.376 0.194 0.860 1.35 1.27 1.44
Ref. 51 2 2.61 1.18 1.31 1.28 0.832 0.765 1.11 4.40

Argon gas
MLR 1 0.592 0.00511 0.0324 0.290 0.623 0.673 0.658 0.530
LJ 2 9.05 3.21 1.10 0.851 1.85 3.16 4.20 8.97
Ref. 50 2 4.70 0.753 0.379 0.978 2.46 3.36 3.95 6.25
Ref. 45 2 0.286 0.733 0.209 0.0112 0.210 0.168 0.0709 0.523
Ref. 51 2 0.124 0.243 0.0949 0.0686 0.113 0.159 0.155 0.111

Xenon gas
MLR 1 0.573 0.178 0.00753 0.00876 0.407 0.609 0.641 0.551
LJ 2 5.11 8.98 4.28 2.35 1.25 2.22 3.15 7.77
Ref. 50 2 3.80 0.674 0.950 1.09 1.59 2.28 2.85 5.741
Ref. 48 2 0.219 0.0759 0.130 0.133 0.165 0.205 0.223 0.231
Ref. 51 2 1.64 3.41 1.67 0.965 0.519 0.802 1.07 2.42

Cu vapor
MLR 1 0.518 0.566 0.595 0.605 0.586 0.579 0.701 0.583
LJ 2 17.2 32.9 26.2 21.8 7.23 1.93 8.26 19.6

Si vapor
MLR 1 0.214 0.204 0.213 0.218 0.232 0.235 0.232 0.0929
LJ 2 6.88 1.28 0.198 0.553 3.22 5.01 6.14 7.58
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values of the O-integrals grows fast with both an increase and
decrease in T* outside this range. The maximum disagreement
is observed for the Cu–Cu and He–He pairs. In V–G atom pairs,
where V is a Cu or Si atom and G is a noble gas atom, the
maximum disagreement between the O-integrals calculated
based on the MLR and LJ potentials is observed in pairs
containing He atoms. This disagreement decreases with an
increasing mass of the noble gas atoms.

5. Transport properties of pure
substances
5.1. Noble gases

For helium, argon, and xenon gases, the transport coefficients
calculated based on the ab initio PECs are well-known.30,52,57 In
the present work, therefore, the transport coefficients of noble
gases are calculated to validate the numerical approach and
reveal the effect of the PEC shape.

For argon and xenon, the viscosities predicted based on the
MLR and LJ potentials closely agree at T* B 1. For helium, the
difference in viscosities calculated based on the MLR and LJ
potentials remains relatively large in the whole temperature

range considered. The average differences D[m]A between the
MLR- and LJ-based viscosities areB24%,B9%, and 5% for He,
Ar, and Xe gases, respectively (Table 4). The viscosity calculated
based on the MLR potentials agrees well with the viscosity
calculated based on the potential functions established in the
CCSD(T) calculations in ref. 44 for He (average disagreement
D[m]A B 1%), ref. 45 for Ar (D[m]A B 0.3%), and ref. 48 for Xe
(D[m]A B 0.3%) (Table 4). The universal potential function
for the noble gas dimers developed in ref. 51 provides the
viscosity data that agree well with the MLR potential for
Ar (D[m]A B 0.1%) but demonstrate worse agreement for He
and Xe. The viscosity obtained based on the potentials suggested
in ref. 50 strongly deviates from the viscosity based on the MLR
potential with the average differences that are only twice smaller
than the corresponding differences for the LJ potential.85

5.2. Cu and Si vapors

For Cu and Si vapors, the selected values of diffusivity, viscosity,
and thermal conductivity are given in the Appendix. The addi-
tional values of the transport coefficients are provided in the
form of individual text files as a part of the ESI.† The viscosity of
Cu vapor as a function of temperature shown in double
logarithmic scale is non-linear with the slope strongly changing

Fig. 7 Reduced integrals O(1.1)* (dashed curves) and O(2.2)* (solid curves) for the Cu–Cu (a), Cu–He (b), Cu–Ar (c), and Cu–Xe (c) atom pairs versus
reduced temperature T* = kBT/De calculated based on the LJ (red and green curves) and MLR (blue and magenta curves) potentials. The scale s ¼ re=

ffiffiffi
26

p

is used in eqn (29).
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at T B 5000 K [Fig. 8(a)]. This suggests that the viscosity
cannot be accurately approximated by a power law in the
whole range of temperature considered. The viscosity of Si
vapor, on the contrary, demonstrates power scaling with
temperature. The average differences D[m]A between the
MLR- and LJ-based viscosities are B17% and B7% for Cu
and Si vapors, respectively (Table 4). This makes the LJ
potential not suitable for high-fidelity calculations of the
transport coefficients. It also means that the parametrizations
of the LJ potential for Cu and Si vapors based on viscosity data
or other indirect experimental measurements may not pro-
vide accurate values of De and re.

The difference in the scaling behavior of diffusivity and
thermal conductivity with respect to viscosity can be character-
ized by the Schmidt and Prandtl numbers. For pure substances,
using the one-term expansions with respect to the Sonine
polynomials, eqn (20) and (21) reduce to

Sc ¼ 10

6

O 1;1ð ÞðTÞ
O 2;2ð ÞðTÞ; (31)

Pr ¼ 2

3
: (32)

It is well known that for noble gases both the Schmidt and
Prandtl numbers are weak functions of temperature, e.g., Sc
varies between 0.71 and 0.78.32 The computations for Cu and Si
vapors reveal somewhat stronger but still weak variability of Sc
and Pr with temperature [Fig. 8(b) and (c)], when Sc varies
between B0.73 and B0.85, while Pr varies between B0.6635
and B0.6662. This indicates a similar scaling behavior of all
transport coefficients of Cu and Si vapors with respect to T.

5.3. Cross-species collisional contributions

Fig. 9 shows the values of D and m calculated based on eqn (22)
and (23) for cross-species collisions. These quantities partially
describe the contributions of the cross-species collisions to the
viscosity of binary mixtures in the form of the one-term expan-
sion with respect to the Sonine polynomials according to eqn (25)
and binary diffusivity in the second approximation. In agreement
with the previous analysis of the O-integrals for the cross-species
collisions, these results reveal a strong difference between the
values of D and m calculated based on the MLR and LJ
potentials for collisions involving He and Ar atoms. In the
logarithmic scale, the temperature dependences of D and m are
practically linear for collision pairs involving He atoms. The
results of calculations of k based on eqn (24) are not shown but

Fig. 8 Viscosity m (a), Schmidt number Sc (b), and Prandtl number Pr (c) of copper (red solid curves) and silicon (green solid curves) vapors obtained
based on the MLR potentials. In panel (a), the red and green dashed curves correspond to the viscosity of copper and silicon vapors, respectively,
calculated based on the LJ potentials; the black dashed-dotted curves are obtained based on the VSS model for copper and silicon vapors with the
parameterizations marked with ‘‘*’’ in Table 6. The solid and dashed-dotted curves for silicon vapor visually coincide with each other in panel (a).
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they demonstrate the same qualitative trends that can be
observed for m.

6. Transport properties of binary
mixtures

The values of the transport coefficients of all binary mixtures,
which are considered as functions of temperature T and gas
molar fraction xg, are provided in the ESI,† in the form of

individual text files. In this section, only a selection of the
obtained results is described.

6.1. Cu–He, Cu–Ar, and Cu–Xe mixtures

The values of the transport coefficients calculated for the
Cu–He, Cu–Ar, and Cu–Xe binary mixtures based on the MLR
potentials are shown as functions of the noble gas molar
fraction xg in Fig. 10. As expected, at constant pressure, the
binary diffusivity D only marginally changes depending on the
chemical composition. It occurs since the binary diffusion is

Fig. 9 Contributions to diffusivity D [eqn (22) at a number density of n = 1019 cm�3, dashed curves] and viscosity m ([eqn (23)], solid curves) in gas
mixtures provided by collisions in the Cu–He (a), Cu–Ar (b), Cu–Xe (c), Si–He (d), Si–Ar (e), and Si–Xe (f) atom pairs versus temperature T calculated based
on the LJ (red and green curves) and MLR (blue and magenta curves) potentials.
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dominated by the first term given by eqn (22), which does not
depend onmolar fractions, while the dependence on xg appears
only in the higher approximations with respect to the Sonine
polynomials. The values of the binary mixture viscosity and
thermal conductivity strongly depend on xg as these dependencies
appear already in the first approximation.24

For light-weight helium, the mixture viscosity is practically
not affected by the presence of the noble gas and remains equal
to the viscosity of Cu vapor up to xg = 0.7. The thermal
conductivity of the mixture, on the contrary, strongly varies
even at small xg. For the Cu–He mixture, the variability of k with
xg is strongest among all mixtures considered in Fig. 10. It
occurs since the thermal conductivity in the first approximation
is inversely proportional to the reduced mass m [eqn (24)].

The variations of the transport coefficients with xg in the
mixtures of Cu vapor with heavier argon and xenon gases are
qualitatively similar to each other. The transport coefficients of
these mixtures demonstrate an abnormal behavior when the
mixture viscosity and thermal conductivity can be larger than
the coefficients of the corresponding pure substances. The
viscosity of such mixtures can non-monotonically vary with
xg, when the maximum viscosity is achieved at 0.6 o xg o 0.8.

The thermal diffusion factor in the Cu–He mixture has large
positive values at large molar fraction of He. According to
eqn (11), the positive sign of aT means that thermal diffusion
promotes diffusion of vapor atoms into a cooler region, while the
helium atoms move to a hotter region. Such a situation is
characteristic in a mixing layer at the edge of a laser-induced
vapor plume expanding into a background gas, e.g., ref. 21. In the
Cu–Ar mixture, aT is also positive, while in the Cu–Xemixture, the
sign of aT is negative at small and large temperatures.

Contrary to pure substances, where the Schmidt, Sc, and
Prandtl, Pr, numbers are known to be conservative parameters,
Sc and Pr of gas mixtures demonstrate much stronger varia-
bility as functions of temperature and molar fraction (Fig. 11).
It is found that Sc can vary within two orders of magnitude in a
mixture of heavy vapor and light noble gas, e.g., the Cu–He
mixture, due to the variation of mass density r in eqn (20). The
modified Schmidt number

Sc ¼ m
�rD

¼ Sc
r
�r
; (33)

which is based on the mean density �r = n(m1 + m2)/2 that is
independent of the chemical composition, is found to be a

Fig. 10 Binary diffusivity D (a), viscosity m (b), thermal conductivity k (c), and thermal diffusion factor aT (d) of the Cu–He (solid curves), Cu–Ar (dashed
curves), and Cu–Xe (dashed-dotted curves) mixtures versus molar fraction of noble gas xg at a temperature of T = 300 K (red curves), 1000 K (green
curves), and 5000 K (blue curves). The diffusivity is calculated at a pressure of 1 atm = 101 325 Pa. All calculations are performed based on the MLR
potentials and ten-term expansions with respect to the Sonine polynomials.
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more conservative parameter. For the Cu–He gas mixture, both

Sc and Pr vary within the range fromB0.3 toB0.7 in the whole
temperature range under consideration.

6.2. Si–He, Si–Ar, and Si–Xe mixtures

The calculated transport coefficients of mixtures of Si vapor
with noble gases are presented in Fig. 12. Qualitatively, the
transport properties of these mixtures demonstrate the same
trends as in the case of the corresponding Cu-noble gas
mixtures. The only exclusion from this rule is the viscosity of
the Si–He mixture, which almost linearly increases with the gas
molar fraction up to xg B 0.9 and then remains constant with
further increase of xg.

6.3. Effects of the PEC shape on the transport coefficients in
binary mixtures

The ratios of the transport coefficients calculated based on the
LJ and MLR potentials for the Cu–He mixture are presented in
Fig. 13. As one can see, the differences between the results
obtained with these two potentials can be as large as 50–60%
for all transport coefficients. The differences tend to increase
with increasing mixture temperature. It occurs because the LJ
potential, as a rule, strongly overestimates the magnitude of
interatomic forces at r o re. The differences between the
transport coefficients for this gas mixture are larger than the
typical differences between the transport coefficients predicted
based on the MLR and LJ potential for pure substances
(Table 4).

The calculations of the transport coefficients based on the LJ
potentials for other gas mixtures reveal the same trends and
similar levels of discrepancy with respect to the values pre-
dicted based on the MLR potentials. For instance, the calcula-
tions for the Cu–Ar mixture reveal the maximum discrepancies
ofB35% between the MLR- and LJ-based binary diffusivitiesD,
viscosities m, and thermal conductivities k, while the thermal
diffusion factor aT calculated based on the LJ potential can be,

depending on temperature, twice smaller or larger than aT
calculated based on the MLR potentials.85 These results
confirm that the LJ potentials may not be a good PEC approxi-
mation for high-fidelity calculations of the transport of proper-
ties of gas mixtures composed of such dissimilar components
as Cu or Si vapor and a noble gas.

7. Parameters of molecular models for
kinetic simulations of gas flows
7.1. Variable hard sphere (VHS) model

In the VHS molecular model,22,26 the gas molecules are con-
sidered as hard spheres with isotropic scattering at binary
collisions and variable diameter which is defined as

dVHS ¼ dVHS;ref
Cr;ref

Cr

� �o�1=2

; (34)

where

Cr;ref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTref=m

p
G1=ð2o�1Þð5=2� oÞ (35)

is the reference relative velocity, G(x) is the gamma function,
dVHS,ref is the reference diameter at a reference temperature
Tref, and o is the viscosity index. The parameters dVHS,ref and o
of the VHS model are usually determined by fitting the gas
viscosity data.22

In the VHS model, the deflection angle is equal to

wðCr; bÞ ¼ 2 arccos
b

dVHSðCrÞ

� �
: (36)

By using eqn (36) in eqn (15), one can obtain, in the first
approximation with respect to the Sonine polynomials, power
laws for self-diffusivity, viscosity, and thermal conductivity of a
pure substance:

DVHS ¼ DVHS;ref
nref

n

T

Tref

� �o

; (37)

Fig. 11 Schmidt number Sc (a) and Prandtl number Pr (b) of the Cu–He mixture versus temperature T at a noble gas molar fraction of xg = 0 (black
curves), 0.2 (red curves), 0.4 (green curves), 0.6 (blue curves), 0.8 (cyan curves), and 1 (magenta dashed curves). All calculations are performed based on
the MLR potentials and ten-term expansions with respect to the Sonine polynomials.
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mVHS ¼ mVHS;ref

T

Tref

� �o

; (38)

kVHS ¼ kVHS;ref
T

Tref

� �o

; (39)

where nref is the reference number density, and the reference
values of the transport coefficients at a reference temperature
Tref are equal to

DVHS;ref ¼
3
ffiffiffi
p

p

8Gð7=2� oÞpdVHS;ref
2nrefC

2o�1
r;ref

2kBTref

m

� �o

; (40)

mVHS;ref ¼
15m

5� 2oð Þ 7� 2oð ÞdVHS;ref
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTref

2pm
;

r
(41)

kVHS;ref ¼
�cpmVHS;ref

Pr
; (42)

where Pr ¼ 2=3

For binary mixtures, the transport coefficients in the form of
the one-term expansions with respect to the Sonine

polynomials are defined by eqn (22) and (25)–(27). All
O-integrals for the VHS (and VSS) molecular model vary with
temperature as O(l,s)

p T1 �o, so that the fractions O(l,s)/O(1,1) in
eqn (25)–(27) are independent of temperature. Then the tem-
perature dependences of the transport coefficients of a mixture are
determined by the dependences of the coefficients of the corres-
ponding pure substances, e.g., m1 and m2, and contributions of the
cross-species collisions, e.g., m12. This means that the parameters of
the VHS (and VSS) model for cross-species collisions, dVHS,12 and
o12, must be determined to fit the temperature dependence of m12
(and D12 for the VSS model, Section 7.2) using the same approach,
which is used to fit the model parameters for collisions between
particles of the same chemical sort.

The actual dependence of viscosity on temperature is not
described by the power law in eqn (38), and, thus, the para-
meters of the model, dVHS,ref and o, depend on the choice of the
range of temperature or a single temperature value, where the
viscosity data are used to parameterize the model. The values of
dVHS,ref and o can be found to fit exactly the values of m and
dm/dT at some temperature Tref. Here, we use another approach,
where the viscosity exponent o is first derived from the least

Fig. 12 Binary diffusivity D (a), viscosity m (b), thermal conductivity k (c), and thermal diffusion factor aT (d) of the Si–He (solid curves), Si–Ar (dashed
curves), and Si–Xe (dashed-dotted curves) mixtures versus molar fraction of noble gas xg at a temperature of T = 300 K (red curves), 1000 K (green
curves), and 5000 K (blue curves). The diffusivity is calculated at a pressure of 1 atm. All calculations are performed based on the MLR potentials and ten-
term expansions with respect to the Sonine polynomials.
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squares fit of eqn (38) to the viscosity data in some temperature
range Tf,min r T r Tf,max and then the value of dVHS,ref is
determined to exactly fit the viscosity at a reference tempera-
ture, mVHS,ref = mref (Tf,min r Tref r Tf,max), using eqn (41).
Then the value of the viscosity index can be calculated based
on the tabulated values of viscosity mi = m(Ti) (here Tf,min r Ti r
Tf,max; i = 1,. . .,M) as

o ¼
XM
i¼1

log
Ti

Tref

� �2
" #�1XM

i¼1

log
mi
mref

� �
log

Ti

Tref

� �� �
: (43)

To validate this approach, it was applied for noble gases in a
short temperature range at Tf,min = 270 K, Tf,max = 500 K, and Tref =
273 K. The obtained parameters of the VHS model are found to be
in close agreement with the parameters obtained in ref. 22 for the
same Tref. In particular, for argon gas, the present calculations
result in values of dVHS,ref = 4.195 Å and o = 0.81, which practically
coincide with the values of dVHS,ref = 4.19 Å and o = 0.81 in ref. 22.

The calculated values of viscosity for various atom pairs,
however, do not exactly follow the power laws in the whole
range of temperature under consideration. The range of tem-
perature from 10 K to 104 K can contain up to three sub-ranges,

where the best-fit o significantly changes. For instance,
for argon, the viscosity approximately follows power laws
m p T0.776 at 10 K r T r 70 K, m p T0.902 at 70 K r T r
500 K, and m p T0.683 at 500 K r T r 104 K. The same trend is
also characteristic, e.g., for viscosity contribution of Si–Ar
collisions [Fig. 9(e)]. For other atom pairs, it can be sufficient
to divide the range of temperature under consideration only in
two sub-ranges, e.g., for contributions of Cu–Cu collisions, or a
good power fit can be obtained in the whole temperature range,
e.g., for contributions of Si–Si collisions [Fig. 8(a)].

Taking into account the diversity in the variation of viscosity
with temperature for different atom pairs, we developed at least
two parametrizations of the VHS model for each pair, which are
different by the boundaries of Tf,min and Tf,max of the fitting
temperature range and by Tref. In the first parametrization,
o is obtained by fitting the viscosity data in the range from
Tf,min = 300 K to Tf,max = 104 K at Tref = 300 K, or, in some cases,
if the lower boundary can be reduced without sacrificing the
accuracy, from Tf,min = 100 K. In the second parametrization, o is
fitted in the range from Tf,min = 10

3 K to Tf,max = 10
4 K at Tref = 10

3 K.
The reference values of the transport coefficients that are

calculated based on the MLR potentials with the one-term

Fig. 13 Ratios of binary diffusivitiesDLJ=DMLR (a), viscosities mLJ/mMLR (b), thermal conductivities kLJ/kMLR (c), and thermal diffusion factors aT,LJ/aT,MLR (d)
calculated based on the LJ (subscripts ‘‘LJ’’) and MLR (subscripts ‘‘MLR’’) potentials for the Cu–He mixture versus gas molar fraction xg at a temperature of
T = 100 K (red solid curves), 300 K (green dashed curves), 1000 K (blue dashed-dotted curves), 3000 K (cyan dashed-double-dotted curves), and
10000 K (magenta long-dashed curves).
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expansions with respect to the Sonine polynomials at Tref =
300 K and Tref = 103 K are presented in Table 5. This table also
includes the values of the HS molecular diameter dHS,ref calcu-
lated at T = Tref using eqn (41) with o = 1/2.

The calculated values of the VHS model parameters are
given in Table 6 along with the quantities D[. . .]A and D[. . .]M
which are equal to the RMS and maximum relative differences
between the diffusivities (D½D�A and D½D�M) and viscosities
(D[m]A and D[m]M) calculated based on eqn (37) and (38) and
corresponding transport coefficients calculated based on the
MLR potentials. For cross-species collisions, the differences in
Table 6 characterize the differences between the contributions
of corresponding collisions calculated based on the VHS
model and MLR potentials using the one-term expansions with
respect to the Sonine polynomials and do not represent the
differences between the transport coefficients of corresponding
gas mixtures.

The VHS model cannot fit, however, the diffusion coefficient
with the same accuracy as the viscosity and thermal conductiv-
ity, since eqn (39) does not include any adjustable parameter
that can be changed to enforce the agreement between DVHS;ref

and Dref , while D and m are defined by different O-integrals in
eqn (22) and (23). This well-known deficiency of the VHS model
results in relatively large RMS deviations D½D�A of diffusivity,
which are on the order of 10–30% for all atom pairs (Table 6).

7.2. Variable soft sphere (VSS) model

The failure of the VHS model in predicting correct values
of diffusivity is one of the major flaws of this model. To solve
this problem, it was suggested27 to modify the VHS model by

introducing non-isotropic scattering of particles in binary
collisions, when the deflection angle is defined by the equation

wðCr; bÞ ¼ 2 arccos
b

dVSSðCrÞ

� �1=a
" #

; (44)

where the molecular diameter dVSS(Cr) is defined likewise the
VHS model as

dVSS ¼ dVSS;ref
Cr;ref

Cr

� �o�1=2

: (45)

In this VSS model, a is an additional parameter that is chosen
to fit the gas diffusivity.

By inserting eqn (44) into eqn (14), one can prove that, in the
VSS model, the dependences of diffusivity, viscosity, and ther-
mal conductivity are defined by the power laws in the form of
eqn (37)–(39), but the reference values depend on a:

DVSS;ref ¼
ðaþ 1Þ

2

3
ffiffiffi
p

p

8Gð7=2� oÞpdVHS;ref
2nrefC

2o�1
r;ref

2kBTref

m

� �o

;

(46)

mVSS;ref ¼
ðaþ 1Þðaþ 2Þ

6a
15m

5� 2oð Þ 7� 2oð ÞdVSS;ref 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTref

2pm
;

r

(47)

kVSS;ref ¼
�cpmVSS;ref

Pr
: (48)

Then the calculation of the VSS model parameters can be
implemented as follows. First, likewise the VHS model, the
viscosity index can be calculated based on eqn (43), assuming
that mVSS,ref = mref. This results in the same o for the VHS and
VSS models if the same viscosity data are used in both
cases. Then dVSS,ref and a can be found from the conditions
mVSS,ref = mref and DVSS;ref ¼ Dref . These conditions reduce to

a ¼ 10

3ð7=2� oÞScref � 5
; (49)

where Scref ¼ mref= Drefnrefmð Þ. Once a is determined from
eqn (49), the molecular diameter can be found from eqn (47).

The calculated values of the VSS model parameters are given in
Table 6. The viscosities of Cu and Si vapor calculated based on the
VSS [dashed-dotted curves in Fig. 8(a)] deviate from the viscosities
predicted based on the MLR potentials within 1–7% and 1%,
respectively. These relatively small differences are realized because
the viscosity index o is defined by eqn (43) to provide the least
squares fit of viscosity in a broad range of temperature. As one can
see, the VSS model compared to the VHS model allows one to
reduce the RMS error in diffusivity from 10–30% to 0.5–5%.

The ratios of the transport coefficients calculated with the
one-term Sonine polynomial expansions based on the VSS
model and MLR potentials are compared in Fig. 14 for Cu–He
mixture. In this case study, the differences between the results
based on the VSS model and MLR potential do not exceed 8%.
With exception of large temperatures, T \ 7000 K, the largest
differences are observed at large molar fractions of helium.

Table 5 Self (for single-species atom pairs) or binary (for mixed-species
pairs A–B composed of different atoms A and B) diffusivity Dref (at a
number density of n = 1019 cm�3), viscosity mref, thermal conductivity kref,
and HS diameter dHS,ref [eqn (41) at o = 1/2] at the reference temperature
Tref calculated based on the one-term expansions with respect to the
Sonine polynomials, and MLR potentials

Atomic
pair Tref (K)

Dref

ðmm2 s�1Þ
mref
(mPa s)

kref
(mW m�1 K�1)

dHS,ref

(Å)

He–He 3 � 102 412.9 19.79 154.2 2.162
103 980.8 45.71 356.1 1.922

Ar–Ar 3 � 102 45.22 22.65 17.68 3.592
103 11.24 55.30 43.16 3.106

Xe–Xe 3 � 102 14.25 23.22 5.515 4.776
103 39.66 64.78 15.38 3.864

Cu–Cu 3 � 102 18.65 14.74 72.32 5.001
103 40.37 33.86 16.61 4.448

Cu–He 3 � 102 88.27 85.43 35.37 3.854
103 179.9 17.31 71.69 3.658

Cu–Ar 3 � 102 43.44 25.98 16.51 3.531
103 114.9 67.30 42.77 2.964

Cu–Xe 3 � 102 14.75 16.77 6.107 5.051
103 53.10 55.52 20.21 3.751

Si–Si 3 � 102 16.00 6.216 6.901 6.279
103 41.73 16.50 18.31 5.208

Si–He 3 � 102 193.4 16.44 73.16 2.728
103 482.9 39.98 177.9 2.364

Si–Ar 3 � 102 39.13 15.79 14.93 4.101
103 130.4 52.95 50.05 3.026

Si–Xe 3 � 102 18.27 11.26 7.588 5.285
103 61.60 35.50 23.92 4.022
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It occurs because the VSS model parameterization used to obtain
results in Fig. 14 provides relatively large errors with respect
to the MLR potential even in the case of pure helium gas.
At T \ 7000 K, the VSS model parametrization for Cu vapor also
becomes relatively inaccurate. Interestingly, the comparison of
results in Fig. 13 and 14 shows that the use of the LJ potentials,
on average, results in order-of-magnitude higher errors in the
transport properties of the Cu–He mixture compared to the VSS
molecular model.

The calculations of the transport coefficients based on the
VSS model for other gas mixtures reveal the same trends and a
similar average level of discrepancy on the order of B10% with

respect to the values predicted based on the MLR potential.
The magnitude of error, however, ultimately depends on the
accuracy of the approximation of the O-integrals by power
functions of temperature over the whole temperature range
considered. The accuracies of such approximations in a broad
temperature range strongly vary for different atom pairs (Fig. 7).
As a result, the transport coefficients of some mixtures, when
calculated based on the VSS model, can exhibit relatively large
magnitudes of error in certain temperature ranges. For instance,
the calculations for the Cu–Ar mixture indicate the maximum
errors in D, m, and k of B8% at T Z 300 K, while the errors can
rise to B30% at T = 100 K.85 At this temperature, the thermal

Table 6 Parameters of the VHS and VSS molecular models [diameter dMM,ref at the reference temperature Tref, viscosity index o, and parameter a in
eqn (34), (44) and (45); MM = VHS or VSS ]. The values of o are calculated based on the least-square fitting of the viscosity calculated based on the
one-term expansions with respect to the Sonine polynomials in the temperature range Tf,min r T r Tf,max. The quantities D[. . .]A and D[. . .]M are the
RMS and maximum relative differences between the diffusivity D½D�A and D½D�M and viscosity D[m]A and D[m]M values predicted by the molecular
models and the values calculated with the one-term expansions with respect to the Sonine polynomials. For mixed-species atom pairs A–B
composed of different atoms A and B, the differences are calculated for contributions of corresponding cross-species collisions based on eqn (22)
and (23). The star ‘‘*’’ marks the parametrizations of the VSS model, which are used to obtain the results presented in Fig. 8 and 14 and in the ESI

Atomic pair Model Tref (K) dMM,ref (Å) o a Tf,min (K) Tf,max (K) D½D�A ð%Þ D½D�M ð%Þ D[m]A % D[m]M %

He–He VHS 3 � 102 2.403 0.7400 — 3 � 102 104 25.1 31.5 4.08 6.61
103 2.171 0.7740 — 103 104 26.4 30.6 2.37 4.27

VSS* 3 � 102 2.368 0.7400 1.4402 3 � 102 104 7.62 13.9 4.08 6.61
103 2.141 0.7740 1.5457 103 104 4.84 9.27 2.37 4.27

Ar–Ar VHS 3 � 102 3.929 0.7055 — 3 � 102 104 20.1 20.8 1.68 4.67
103 3.358 0.6796 — 103 104 19.2 21.3 0.43 0.87

VSS* 3 � 102 3.876 0.7055 1.3055 3 � 102 104 5.30 6.09 1.68 4.67
103 3.311 0.6796 1.3235 103 104 3.72 6.00 0.43 0.87

Xe–Xe VHS 3 � 102 5.360 0.7607 — 3 � 102 104 21.8 26.5 4.74 10.5
103 4.204 0.6938 — 103 104 19.2 20.5 0.44 1.07

VSS 3 � 102 5.283 0.7607 1.3717 3 � 102 104 5.27 10.2 4.74 10.5
103 4.140 0.6949 1.3136 103 104 3.98 5.46 0.44 1.07

Cu–Cu VHS 3 � 102 5.427 0.6881 — 102 7 � 103 9.52 16.6 0.67 1.27
3 � 102 5.446 0.6958 — 102 104 12.4 23.6 2.67 7.42
103 4.833 0.6857 — 102 7 � 103 9.36 15.8 0.64 1.45

VSS* 3 � 102 5.352 0.6881 1.3100 102 7 � 103 8.86 12.2 0.67 1.27
3 � 102 5.371 0.6958 1.3159 102 104 9.31 14.3 2.67 7.42
103 4.781 0.6857 1.1873 102 7 � 103 3.91 5.94 0.64 1.45

Cu–He VHS 3 � 102 4.003 0.5891 — 102 104 10.8 11.4 0.20 0.37
103 3.802 0.5908 — 102 104 10.9 11.3 0.15 0.68

VSS* 3 � 102 3.962 0.5891 1.1742 102 104 1.06 1.62 0.20 0.37
103 3.761 0.5908 1.1855 102 104 0.57 0.99 0.15 0.68

Cu–Ar VHS 3 � 102 3.955 0.7566 — 3 � 102 104 22.0 24.3 1.83 4.28
103 3.282 0.7317 — 103 104 21.0 21.3 0.14 0.30

VSS* 3 � 102 3.898 0.7566 1.4116 3 � 102 104 3.55 5.99 1.83 4.28
103 3.235 0.7317 1.4406 103 104 0.84 1.20 0.14 0.30

Cu–Xe VHS 3 � 102 6.322 0.9832 — 3 � 102 104 27.0 33.1 7.00 12.0
103 4.672 0.9706 — 103 104 27.4 32.6 6.68 10.3

VSS 3 � 102 6.241 0.9832 1.4131 3 � 102 104 10.6 16.9 7.00 12.0
103 4.615 0.9706 1.6238 103 104 5.95 9.40 6.68 10.3

Si–Si VHS 3 � 102 7.211 0.8093 — 102 104 11.3 17.4 0.35 1.28
103 5.979 0.8085 102 104 11.2 17.4 0.37 1.30

VSS* 3 � 102 7.134 0.8093 1.1831 102 104 3.16 7.90 0.35 1.28
103 5.923 0.8085 1.1511 102 104 3.84 9.46 0.37 1.30

Si–He VHS 3 � 102 3.071 0.7292 — 3 � 102 104 19.0 22.3 1.79 3.17
103 2.605 0.7217 — 103 104 18.7 21.6 1.53 2.50

VSS 3 � 102 2.974 0.7292 1.3991 3 � 102 104 3.12 5.67 1.79 3.17
103 2.568 0.7230 1.4572 103 104 4.08 7.80 1.53 2.50

Si–Ar VHS 3 � 102 4.834 0.8628 — 3 � 102 104 25.2 34.2 8.22 15.8
103 3.391 0.7577 — 103 104 20.7 22.5 2.08 3.64

VSS 3 � 102 4.767 0.8628 1.5018 3 � 102 104 7.90 15.3 8.22 15.8
103 3.342 0.7577 1.3894 103 104 2.89 4.65 2.08 3.64

Si–Xe VHS 3 � 102 6.555 0.9627 — 3 � 102 104 25.6 29.3 4.26 8.31
103 4.997 0.9661 — 103 104 26.4 29.9 4.62 8.01

VSS 3 � 102 6.461 0.9627 1.3869 3 � 102 104 9.13 13.1 4.26 8.31
103 4.931 0.9661 1.5618 103 104 4.83 7.76 4.62 8.01
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diffusion factor predicted based on the VSS model is three-fold
different from aT calculated based on the MLR potentials and has
the opposite sign. This suggests that the prediction of the thermal
diffusion effects based on the VSS model can be qualitatively
wrong and any calculations of thermal diffusion based on the
VHS and VSS molecular models must be accompanied by a careful
analysis of the errors associated with a particular choice of the
model parameters.

For pure substances, eqn (37)–(39) with parameters in Tables 5
and 6 provide the first-order power-law approximations of all
transport coefficients. For gas mixtures, eqn (37) can be used
directly for binary diffusivity, while the power-law approximations
in eqn (38) and (39) for single- and cross-species contributions
should be used together with eqn (25)–(27). The final algebraic
form of eqn (25)–(27) is given, e.g., in ref. 24.

8. Conclusions

The quantum Monte Carlo (QMC) calculations of the potential
energy curves (PECs) are performed in a broad range of
interatomic (internuclear) distances for the He–He, Ar–Ar,

Cu–Cu, Cu–He, Cu–Ar, Cu–Xe, Si–Si, Si–He, Si–Ar, and Si–Xe
dimers. The QMC method is found to be a robust and reliable
tool for ab initio prediction of interaction in dimers with van der
Waals, covalent, and metallic bonding. The results obtained in the
QMC calculations are found to be in close quantitative agreement
with the results of the state-of-the-art CCSD(T) calculations and
spectroscopicmeasurements. The ab initio PECs are used to obtain
fitting parameters for the Morse long range (MLR) potential
function for all dimers considered. The calculated potential well
depth and equilibrium interatomic distance can be also used to
approximate the ab initio PECs by semi-empirical (12-6)
Lennard-Jones (LJ) potentials. It is found that the LJ potential,
as a rule, strongly overestimates the magnitude of the intera-
tomic force at repulsion. The case of the Cu–He dimer, where
the LJ potential underestimates the force at the repulsive PEC
branch, is an exception to this rule. The LJ potential also
strongly overestimates the attractive forces in the homonuc-
lear Cu–Cu and Si–Si dimers.

The obtained MLR potentials are used to study the scatter-
ing of particles in binary collisions. This study showed that the
shape and parameters of the PECs strongly affect the deflection
angle in binary collisions at small collision speeds, when the

Fig. 14 Ratios of binary diffusivities DVSS=DMLR (a), viscosities mVSS/mMLR (b), thermal conductivities kVSS/kMLR (c), and thermal diffusion factors aT,VSS/
aT,MLR (d) calculated based on the VSS molecular model with the parameterizations marked with ‘‘*’’ in Table 6 (subscripts ‘‘VSS’’) and MLR potential
(subscripts ‘‘MLR’’) for the Cu–He mixture versus gas molar fraction xg at a temperature of T = 100 K (red solid curves), 300 K (green dashed curves),
1000 K (blue dashed-dotted curves), 3000 K (cyan dashed-double-dotted curves), and 10000 K (magenta long-dashed curves). All transport coefficients
are calculated based on the one-term expansions with respect to the Sonine polynomials.
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outcomes of collisions depend on details of the asymptotic behavior
of PECs at large interatomic distances. At moderate and large
collision speeds, the values of the deflection angle predicted by
different ab initio PECs for noble gases agree well with each other.
The values of the deflection angle predicted based on the LJ
potentials agree with MLR-based calculations only at moderate
speeds and strongly disagree at both small and high speeds.

The obtained MLR and LJ potentials are used to calculate
diffusivity, viscosity, thermal conductivity, and thermal diffu-
sion factor (for mixtures) of helium, argon, and xenon gases, copper
and silicon vapors, as well as corresponding mixtures of vapors with
the noble gases in the form of one-, two-, and ten-term expansions
with respect to the Sonine polynomials in the framework of the
Chapman–Enskog method. For pure substances, the PEC shape is
found to strongly affect the contributions of corresponding binary
collisions, measured either in terms of the transport collision
integrals or transport coefficients in the formof one-term expansions
with respect to the Sonine polynomials, at small and large (com-
pared to the room temperature) temperatures. For the Cu–Cu and
Cu–He atom pairs, the values of the transport collisions integrals
and transport coefficients calculated based on the LJ and MLR
potentials are strongly different practically in the whole tempera-
ture range from 100 K to 10000 K. For high-temperature binary
mixtures, the errors in the values of the transport coefficients
calculated based on the LJ potentials can be as high as 30–60%.
This suggests that the LJ approximation is not suitable for
predicting the transport properties of high-temperature gases
and gaseous mixtures considered in the present work.

The present study also reveals some intriguing and abnor-
mal behavior of the transport coefficients in the mixtures of
copper or silicon vapors with noble gases. In particular, it was
found that the mixture viscosity and thermal conductivity can be
larger than the viscosity and thermal conductivity of corres-
ponding pure substances at the same temperature. The simula-
tions also reveal a large magnitude of the thermal diffusion factor
in Cu–He and Si–He mixtures, which can be up to 300% larger
than the magnitude of the thermal diffusion factor in binary
mixtures containing heavier noble gases. This finding implies
that the thermal diffusion, which is often assumed to be negli-
gible, can affect, e.g., the structure of mixing layers between high-
temperature vapor plumes and cold helium background gas.

Finally, the transport coefficients calculated with the one-
term expansions with respect to the Sonine polynomials were
used to find parameters of the variable hard sphere (VHS) and
variable soft sphere (VSS) molecular models, which are routi-
nely used in the direct simulation Monte Carlo (DSMC) simula-
tions of rarefied gas flows. The errors in the transport
coefficients, when the VSS model parametrizations developed
in the present work are used, are smaller than 10% at room and
higher temperatures for pure substances and gaseous mixtures.

The comprehensive results obtained in the present work on
the collisional properties, transport coefficients, and VHS/VSS
molecular model parameters contain all necessary information
that is required for sampling binary collisions in kinetic,
including DSMC, simulations and calculations of the transport
coefficients in continuum simulations of high-temperature

flows of copper and silicon vapors, as well as their mixtures
with helium, argon, and xenon gases.
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Appendices

Appendix. Tabulated PECs and transport
coefficients of Cu and Si vapors

The selected values of energy found in the QMC calculations
performed in the present work are presented in Table 7 for the

Table 7 Energy (eV) of the homonuclear and heteronuclear dimers
involving Cu and Si atoms found in the QMC calculations

Distance Dimer

r (Å) Cu–Cu Cu–He Cu–Ar Cu–Xe

0.6 5.145 � 102 — — —
1.4 1.128 � 101 — 4.225 � 102 2.927 � 101

1.8 �5.171 � 10�1 — 9.613 5.513
2.4 �2.038 1.999 � 102 4.437 � 10�1 2.094 � 10�1

3 �1.145 4.396 4.597 � 10�2 �1.175 � 10�1

3.6 �4.078 � 10�1 9.234 � 10�2 �5.470 � 10�3 �8.301 � 10�2

4.2 �1.092 � 10�1 7.341 � 10�4 �9.802 � 10�3 �4.273 � 10�2

4.8 �2.768 � 10�2 �7.418 � 10�4 �6.357 � 10�3 �2.006 � 10�2

5.4 �7.079 � 10�3 �4.429 � 10�4 �3.379 � 10�3 �9.324 � 10�3

6 �1.733 � 10�3 �2.860 � 10�4 �1.626 � 10�3 �4.518 � 10�3

7 �7.091 � 10�4 �1.302 � 10�4 �3.853 � 10�4 �1.557 � 10�3

Si–Si Si–He Si–Ar Si–Xe

0.6 1.762 � 102 — — —
1.3 1.464 � 101 3.012 � 102 7.222 � 102 4.874 � 101

1.8 �1.320 1.166 9.510 7.865
2.4 �3.163 5.655 � 10�2 3.624 � 10�1 4.490 � 10�1

3 �1.611 �3.216 � 10�3 �1.783 � 10�2 �1.811 � 10�1

3.6 �5.795 � 10�1 �4.831 � 10�3 �3.328 � 10�2 �9.721 � 10�2

4.2 �2.145 � 10�1 �2.740 � 10�3 �1.751 � 10�2 �4.346 � 10�2

4.8 �8.892 � 10�2 �1.292 � 10�3 �8.207 � 10�3 �2.342 � 10�2

5.4 �4.117 � 10�2 �5.571 � 10�4 �3.921 � 10�3 �1.383 � 10�2

6 �2.082 � 10�2 �2.368 � 10�4 �1.884 � 10�3 �7.922 � 10�3

7 �7.854 � 10�3 �6.264 � 10�5 �4.669 � 10�4 �2.056 � 10�3
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homonuclear and heteronuclear dimers involving Cu and Si
atoms. For Cu and Si vapors, the selected values of self-
diffusivity, viscosity, and thermal conductivity calculated based
on the MLR potentials with the ten-term expansions with
respect to the Sonine polynomials are presented in Table 8.
The corresponding tables, containing all values obtained in
calculations, are provided in the ESI.†
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52 E. Vogel, B. Jäger, R. Hellmann and E. Bich, Ab initio pair
potential energy curve for the argon atom pair and thermo-
physical properties for the dilute argon gas. II. Thermophy-
sical properties for low-density argon, Mol. Phys., 2010,
108(24), 3335–3352.

53 F. Sharipov and V. J. Benites, Transport coefficients of helium-
argon mixture based on ab initio potential, J. Chem. Phys.,
2015, 143, 154104.

54 F. Sharipov and V. J. Benites, Transport coefficients of
helium-neon mixtures at low density computed from ab
initio potentials, J. Chem. Phys., 2017, 147, 224302.

55 F. Sharipov and V. J. Benites, Transport coefficients of
multi-component mixtures of noble gases based on ab initio
potentials: Viscosity and thermal conductivity, Phys. Fluids,
2020, 32, 077104.

56 F. Sharipov and V. J. Benites, Transport coefficients of
multicomponent mixtures of noble gases based on ab initio
potentials: Diffusion coefficients and thermal diffusion
factors, Phys. Fluids, 2020, 32, 097110.

57 F. Sharipov and V. J. Benites, Transport coefficients of
isotopic mixtures of noble gases based on ab initio poten-
tials, Phys. Chem. Chem. Phys., 2021, 23, 16664–161674.

58 R. F. Berg and W. C. Burton, Noble gas viscosities at 25 1C,
Mol. Phys., 2013, 111(2), 195–199.

59 Y. Takahara, K. Yamaguchi and T. Fueno, Potential energy
curves for transition metal dimers and complexes calcu-
lated by the approximately projected unrestricted Hartree-
Fock and Møller-Plesset perturbation (APUMP) methods,
Chem. Phys. Lett., 1989, 158(1–2), 95–101.

60 K. A. Peterson and C. Puzzarini, Systematically convergent
basis sets for transition metals. II. Pseudopotential-based
correlation consistent basis sets for the group 11 (Cu, Ag,
Au) and 12 (Zn, Cd, Hg) elements, Theor. Chem. Acc., 2005,
114(4–5), 283–296.

61 A. W. Hauser, A. Volk, P. Thaler and W. E. Ernst, Atomic
collisions in suprafluid helium-nanodroplets: timescales for
metal-cluster formation derived from He-density functional
theory, Phys. Chem. Chem. Phys., 2015, 17, 10805.
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