o 3 &N A

Investigating the role of snow water equivalent on streamflow predictability

during drought

Parthkumar A. Modi,? Eric E. Small.® Joseph Kasprzyk,2 Ben Livneh,2¢

2 Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder,

Colorado, USA
b Department of Geological Sciences, Boulder, Colorado, USA

¢ Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado Boulder,

Boulder, Colorado, USA

Corresponding author: Parthkumar Modi, parthkumar.modi@colorado.edu

File generated with AMS Word template 2.0



10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33
34
35
36
37
38
39
40
41

ABSTRACT

Snowpack provides the majority of predictive information for water supply forecasts
(WSFs) in snow-dominated basins across the western US. Drought conditions typically
accompany decreased snowpack and lowered runoff efficiency, negatively impacting WSFs.
Here, we mvestigate the relationship between snow water equivalent (SWE) and April-July
streamflow volume (AMJJ-V) during drought in small headwater catchments, using
observations from 31 USGS streamflow gages and 54 SNOTEL stations. A linear regression
approach 1s used to evaluate forecast skill under different historical climatologies used for
model fitting, as well as with different forecast dates. Experiments are constructed in which
extreme hydrological drought years are withheld from model training, i.e., years with AMJJ-
V below the 15% percentile. Subsets of the remaining years are used for model fitting to
understand how the climatology of different training subsets impacts forecasts of extreme
drought years. We generally report overprediction in drought years. However, training the
forecast model on drier years, 1.e., below-median years (P1s, Ps7.s]), minimizes residuals by an
average of 10% in drought year forecasts, relative to a baseline case, with the highest median
skill obtained in mid to late April for colder regions. We report similar findings using a
modified NRCS standard procedure in nine large UCRB basins, highlighting the importance
of the snowpack-streamflow relationship in streamflow predictability. We propose an
‘adaptive sampling” approach of dynamically selecting training years based on antecedent
SWE conditions, showing error reductions of up to 20% in historical drought and wet years
relative to the period of record. These alternate training protocols provide opportunities for

addressing the challenges of future drought risk to water supply planning.

SIGNIFICANCE STATEMENT

Seasonal water supply forecasts based on the relationship between peak snowpack and
water supply exhibit unique errors in drought years due to low snow and streamflow
variability, presenting a major challenge for water supply prediction. Here, we assess the
reliability of snow-based streamflow predictability in drought years using a fixed forecast
date or fixed model training period. We critically evaluate different training protocols that
evaluate predictive performance and identify sources of error during historical drought years.
We also propose and test an ‘adaptive sampling” application that dynamically selects training
years based on antecedent SWE conditions providing to overcome persistent errors and

provide new insights and strategies for snow-guided forecasts.
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1. Introduction

In mountainous regions of the western US, the majority of annual runoff originates as
snowmelt, despite only an estimated 37% of precipitation falling as snow (Palmer 1988;
Doesken and Judson 1996; Daly et al. 2000; L1 et al. 2017). Water supply forecasts (WSFs;
Garen, 1992) predict seasonal streamflow volume to support a broad array of natural
resource decisions (Pagano et al., 2004). The recurring cycle of snowpack accumulating in
colder months and subsequent snowmelt producing streamflow has been one of the
fundamental relationships facilitating WSFs. However, in recent decades, warmer climate
across the western US has been accompanied by declines in mountain snowpack (Barnett et
al. 2005; Mote et al. 2018) and increased interannual streamflow variability (Pagano and
Garen 2005; Abatzoglou et al. 2014). These changes have exacerbated forecast errors and
have challenged assumptions of stationarity that underpin contemporary operational WSFs
(Sturtevant and Harpold 2019). While it has been established that climate warming will
impact WSFs in general (He et al. 2016) and categorical drought prediction in particular
(Livneh and Badger 2020), quantifying the sensitivity of historic forecast skill at different
forecast dates is arguably most valuable for water management during drought years when
allocation shortfalls may occur. This assessment is crucial given the elevated need for reliable
water supply information during drought to support municipal, agricultural, industrial water
supply planning, trade, and power generation (NRCS 2010). The goal of this paper is to
critically evaluate snow-based seasonal water supply prediction during drought, to identify
persistent sources of errors and opportunities to improve predictions using alternative training

protocols during the forecast season.

Increased interannual variability in the classic snowpack-streamflow relationship is
expected to continue during current and future drought years due to recently documented
changes in the underlying physical mechanisms. Declines in the mountain snowpack (Barnett
et al. 2005; Mote et al. 2005, 2018), resulting from increasing snow-to-rain transitions (Lute
et al. 2015) and shifts in the timing of snow ablation (Kapnick and Hall 2012), have caused
slower snowmelt rates (Musselman et al. 2017, 2021) and earlier snowmelt (Dettinger and
Cayan 1995; Stewart et al. 2004) for at least the past five decades. These changes, attributable
to widespread changes in temperature and precipitation (Cubasch et al. 2001; Hamlet et al.
2005; Serreze et al. 1999), are expected to continue impacting water supplies across the

western US. Further, persistent dry states partially attributable to climate warming have
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already manifested during the early years of the 21% century (MacDonald et al. 2008;
Williams et al. 2020). Overall declines in seasonal streamflow volume have been
accompanied by lowered runoff efficiency (Nowak et al. 2012; Woodhouse et al. 2016) and
increased winter snowmelt (Pagano et al., 2004). All these factors combined present a major
challenge ahead for the WSF forecast skill for current and future drought prediction (He et al.
2016; Livneh and Badger 2020).

WSFs can be broadly classified into three categories: statistical, dynamical, and hybrid.
Statistical WSFs include regression-based and data-driven models that rely on empirical
relationships. Dynamical WSFs encompass process-based models which represent the
underlying physics. Hybrid WSFs consist of multi-model combinations such as coupling of
statistical and dynamical techniques. All WSFs ultimately rely on two sources of
predictability: initial hydrologic conditions (IHCs) obtained from a range of in-situ
observations or remote sensing data products like that of snow, meteorological conditions;
and gaged streamflow, and seasonal climate forecasts that provide the estimates of seasonal
conditions ahead of time. In regions across the west, most predictive information is still
derived from knowledge of snowpack conditions (Fleming and Goodbody 2019; Koster et al.
2010; Pagano 2010; Wood et al. 2016) and hence snow water equivalent (SWE), around the
date of peak SWE, is considered to be a skillful predictor for WSFs (Pagano et al. 2004).
Statistical WSFs have conventionally relied on IHCs that include SWE and accumulated
precipitation as well as the occasional use of additional predictors like antecedent streamflow
and soil moisture. However, recent use of climate indices (Robertson and Wang 2012) and
seasonal climate forecast information (Lehner et al. 2017; Slater and Villarini 2018) have
helped to mitigate the impacts of climate nonstationarity on streamflow predictability by
accounting for ongoing influences of ocean-atmosphere oscillations. They are typically
issued by National Resources Conservation Services (NRCS) and are well established using
linear (Garen 1992) and multivariate regression approaches (Koster et al. 2010; Lehner et al.
2017). Commonly used advanced statistical (or machine learning) WSFs like artificial neural
networks (Kisi 2007) or support vector machines (Asefa et al. 2006; Guo et al. 2011) have
thus far seen application primarily within research-based contexts (Fleming and Goodbody
2019). Nevertheless, recent demonstrations of improved physical interpretability (Fleming et
al. 2021b; McGovern et al. 2019; Reichstein et al. 2019), increasingly better performance
(Kratzert et al. 2019; Nearing et al. 2021), and the development of the NRCS next-generation
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WSF system (M4 — multi-model machine-learning metasystem; Fleming and Goodbody
2019:; Fleming et al. 2021a), make advanced statistical frameworks a viable contender to
contemporary WSFs within the near future. Major strengths of statistical WSFs are data-
driven modeling, straightforward interpretability, and low computational requirements
(Pagano et al., 2009). However, they pose drawbacks including limitations in observational
data availability for certain regions and time periods, lack of explicit physical consideration,

and an 1nability to account for water inputs after the forecast date.

Dynamical and hybrid approaches involve the use of physics-based models (Day 1985)
and rely on both IHCs and seasonal climate forecast for predictive skill (Wood et al. 2016).
Both dynamical (Day 1985; Werner et al. 2004; Wood and Schaake 2008) and hybrid
approaches (Robertson et al. 2013 Slater and Villarini 2018) have been developed to address
the regression-based limitations posing different degrees of algorithmic complexity and data
requirements. Major strengths of these approaches include a continuous generation of
plausible future streamflow states and in principle a more physically consistent sensitivity to
non-stationary conditions on the basis of model representations of physical process.
However, these approaches can present considerable complexity in identifying model
parameters and may further necessitate computationally-intensive and potentially poorly
constrained calibration. In cases where physics-based models perform poorly, embedding
machine learning or advanced statistical techniques may allow for better predictions than
purely process-driven approaches (Fisher and Koven 2020). Overall, skill from seasonal
climate forecast information is currently limited compared to that obtained from IHCs,
particularly in snow-dominated settings, such as those presented in his study (Wood et al.

2016).

Regardless of the approach used, the IHCs play a substantial role in the forecast skill of
the WSFs (Shukla and Lettenmaier 2011; Wood et al. 2016), particularly across the snow-
dominated regions in the west where they provide the majority of predictive information. For
example, the NRCS snow-based statistical WSFs have been a widely used tool for
streamflow forecast information. They are based on a variety of regression approaches (Z-
Score regression, Principal Component Regression (PCR)) that isolate the contribution of
IHCs and minimize the influence of overfitting from predictor’s collinearity (Pagano et al.
2009). The dependency of such WSFs on IHCs raises two questions. First is whether using

common fixed-date forecasts, for example, initialized on April 1, provides the maximum
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predictive skill, and second, is whether overall forecast performance in drought years is
comparable to normal, non-drought years. Historically, April 1 has been associated with peak
SWE conditions and has been considered to provide maximum predictive information
(Pagano et al., 2004). Despite the contemporary forecast skill of April 1 SWE, peak SWE has
been projected to occur closer to March 1% for 62% of snow-dominated regions by the end of
the century, driven largely by climate warming (Livneh and Badger 2020). In addition, long-
term historical trends indicate higher geographical variability in peak SWE around April 1
and a substantial increase in snowmelt before April 1 at 42% of stations across the western
US (Musselman et al. 2021). Hence, reductions in April 1 snowpack conditions during
drought would portend lower predictive skill of seasonal streamflow volume. As a result, the
addition of ancillary non-snow predictors like precipitation and soil moisture and an earlier
surrogate for peak SWE, such as March 1 SWE, are anticipated to mitigate the reduction in
SWE-based predictability in future drought years (Koster et al. 2010; Livneh and Badger
2020; Pagano et al. 2009).

Recent studies (He et al. 2016; Livneh and Badger 2020; Sturtevant and Harpold 2019)
have largely attributed reduced predictability in drought years from snowpack to the
interannual variability in the snowpack-streamflow relationship (Lehner et al., 2017).
Drought years are typically accompanied by below-average snowpack conditions and
lowered runoff efficiency. Hence, assessing the reliability of snow-based statistical WSFs on
a fixed forecast date or training models on predetermined historical years may be insufficient
to capture the full potential predictability in drought years. Instead, evaluation of predictive
skill at different forecast dates as well as quantifying the influence of training on different
historical years (i.e., climatological stratification) is warranted to tackle potential issues of
statistical WSFs. Although climatological stratification is not a complex concept, studies such
as Mclnerney et al. (2021), have shown that climatological stratification (based on flow)
improves the reliability of sub-seasonal forecasts of high and low flows. Nevertheless, to our
knowledge, no systematic analysis into the impact of climatological stratification on
streamflow predictability has been published, at least across the snow-dominated basins in
the western US, possibly due to data availability for training forecast models (e.g., Llewellyn
et al. 2018).

Given the above challenges, we conduct a critical evaluation of the snowpack-streamflow
relationship during historical drought years to understand changes in predictive performance
6
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as a result of both the forecast date, as well as the historical training years selected.
Improvements to WSFs have been documented through key methodological developments.
For example, Sturtevant and Harpold (2019 show that systematic overprediction of seasonal
streamflow volumes from statistical WSFs in drought years can be partially addressed using a
non-linear transformation of predictor variables. Other studies have reported improvements to
statistical forecasts through the addition of non-snow predictors (He et al. 2016; Lehner et al.
2017; Livneh and Badger 2020), hybrid statistical-dynamical approaches (Robertson and
Wang 2012; Slater and Villarini 2018), and the development of modular frameworks
(Fleming et al. 2021a). As a point of departure from these developments in statistical WSFs,
the novelty of this study 1s first an assessment of the influence of different historical IHCs in
training models to make predictions in drought years and second in investigating the
evolution of predictive skill at different forecast dates. Motivated by operational methods
used by the NRCS, we use a linear regression approach to model the relationship between
snow water equivalent (SWE) and April-July streamflow volume in small headwater
catchments, seeking a simple model structure with the least number of parameters. We
organize past years’ April-July streamflow volumes on the basis of their historical percentiles
in order to create different subsets of historical IHCs for training the model. The primary
drought forecast experiments are designed akin to an imposed non-stationarity, where the
most extreme historical drought years, i.e., where the April-July streamflow volume is below
the 15 percentile (P1s) of the historical record, are withheld from the training period. This is
done in order to evaluate the utility of different snowpack-streamflow training approaches to
capture “unprecedented drought” conditions. Each forecast experiment evaluates predictive
skill throughout the entire forecast season beginning on January 1, allowing us to quantify the
sensitivity of skill to different forecast dates. We also explore these forecast experiments in
large UCRB (Upper Colorado River Basin) basins using a modified NRCS standard
procedure as an independent case study. Finally, we explore the potential for a guided
stratification of training years based on antecedent SWE conditions to make predictions in

drought years, while exploring the implications of this approach for normal and wet years.
2. Methods

We first introduce the statistical model that predicts streamflow based upon snowpack
information in small headwater catchments (Section 2.1). Percentile thresholds of April-July

streamflow are used to create different subsets of training years (Sec. 2.1.1), from which a set
7
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of forecast experiments are developed to evaluate the impact of different training years on
forecast skill in small headwater catchments (Sec. 2.1.2). These forecast experiments are also
assessed over case study’s large basins whose streamflow forecasting procedure is separately
detailed in section 2.1.3. In section 2.2, an ‘adaptive sampling’ application is described,
which explores the potential improved forecast skill through a guided stratification of training
years based on antecedent SWE conditions. A description of all skill metrics and the
statistical test is provided in section 2.3, while data sources and screening procedures are

detailed 1n section 2.4.

2.1 Experimental Design

Given the significant contribution of snowmelt to total runoff in snow-dominated basins
(Liet al. 2017), we conduct a series of forecast experiments (Sec. 2.1.2) for selected
SNOTEL stations and their corresponding USGS stream gages (Fig. 1), in which snowpack is
exclusively used to predict streamflow in order to isolate snowpack predictive skill directly.
We fit a simple linear model with SWE as a predictor and April-July streamflow volume

(AMJJ-V) as a predictand and is given in Eq.1 as:
Q=aSWE, + b, 1)

Where Q 1s the warm season streamflow volume (AMJJ-V), 1 represents the SWE at a
given date (for instance, April 1), and a and b are the model coefficients. The linear model
uses ordinary least squares (OLS) regression rather than the similar approaches (principal
component regression or z-score regression) employed by the National Resources
Conservation Service [NRCS; (Garen 1992)] due to the use of a single explanatory
variable—SWE, providing deterministic predictions for a given forecast date. We chose a
simple linear regression model, in particular, to isolate the predictive value of snowpack and
minimize the influence of model parametrization on the forecast errors. Though such a model
1s easily interpretable and requires minimal computing requirements, it is not ideal when
there are data limitations or an emergent physical process that modifies the relationship
between predictors and predictand. These cases may necessitate the addition of new
observational data as predictors, predictor/predictand transformation, or leveraging
information from physically-based dynamical models—all of which require careful

consideration before operational implementation (Pagano et al. 2009).
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Fig. 1. (a) A map of the study domain, comprising 31 drainage basins and 54 SNOTEL
stations across the western US colored by the ratio of April 1 SWE to water-year to date
cumulative precipitation ratio (SWE/P), (b) SWE/P plotted against elevation illustrating an
overall increase in the fraction of snow with elevation (c¢) Histogram of the SWE/P and (d)
basin size from selected SNOTEL stations and USGS stream gages respectively. A
description for the data is provided in Section 2.4.

2.1.1 FLOW-BASED CLIMATOLOGICAL STRATIFICATION

Transforming meteorological and hydrological conditions such as precipitation,
streamflow, soil moisture, reservoir storage, and groundwater levels into percentiles can be a
useful, non-parametric way to categorize drought conditions (Stemnemann et al. 2015). The
U.S. Drought Monitor (USDM) classifies hydrological drought into five major categories
using streamflow percentile thresholds, 1.e., streamflow below these thresholds, including
abnormally dry (DO — P30), moderate drought (D1 — P2o), severe drought (D2 — P10), extreme
drought (D3 — Ps) and exceptional drought (D4 — P2), from the least intense to the most
intense (Svoboda et al. 2002). Here, we analyze hydrological drought where the AMIJJ-V 1s
below the 15% percentile (Pis) of the historical record. We withhold drought years [Po, Pis]
from the historical record, 1.e., years available between 1985-2020 water years (WY), of
AMIJ-V observations and create a subset of years with the rest [i.e., non-drought years; (P15,
P10o]] to evaluate the impact of different subsets of training years on the forecast skill during
withheld drought years. By withholding drought years, we are effectively assessing predictive

skill in unprecedented drought conditions, akin to an imposed non-stationarity.
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Fig. 2. Example of the experimental design: (a) Time-series of April 1| SWE (dotted line with

“x” markers) and AMIJJ streamflow volume (AMIJJ-V; solid circles) for 36 historical years.

(b) Percentiles based on AMIJ-V are calculated from which three subsets are shown —
drought years [Po, P1s]; below-median years (P1s, Ps7s], and above-median years (Ps7.s, P1oo].
Below-median and above-median are collectively known as non-drought years (P1s, P1oo].
Data are plotted from SNOTEL Butte, CO (380) and USGS East River at Almont, CO

(09112500) from 1985-2020 water years. Historical data features and screening procedures

are described in section 2.4.

The historical years are stratified into three categories using percentile thresholds of

historical AMJJ-V observations (Fig. 2b): “Drought” [Po, P1s] — years withheld for evaluation

representing a set of extremely dry years, “Below-median” (P1s, Ps75] — years with

percentiles lower than the new shifted median (i.e., Ps7.5%) of the remaining non-drought

years, and “Above-median” (Ps7.s, P10oo] — years with percentiles above the new shifted

median. These subsets were independently derived for each selected basin using their

corresponding stream gage observations. Fig. 3 indicates locally chosen withheld drought
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Fig. 3. Annual matrix showing locally chosen drought [Po, P1s], non-extreme (P15, Pss), and
wet [Pss, P1oo] years for each SNOTEL station. The orange rectangular boxes on the left
indicate the state locations of the SNOTEL sites. The grey matrix elements refer to the
unavailability of either the SNOTEL SWE or the corresponding stream gage observations for
the marked year.

2.1.2 FORECAST EXPERIMENTS

A set of four forecast experiments were designed to evaluate the impact of different
training subsets on the forecast skill and in particular, to evaluate the robustness of WSFs in
drought years when trained on different sets of historical years. Four forecast experiments,

with different training and evaluation subsets (Fig. 4a), were performed separately for each of
11
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the selected 54 SNOTEL observation sites and their corresponding 31 USGS streamflow
gages (full details regarding the observational data and screening procedure is provided in
section 2.4). We pair SWE at each SNOTEL site with total basin AMJJ-V in order to evaluate
the unique relationship that governs snowpack evolution with water supply. In sum, forecast
experiments were performed both in a one-on-one fashion as well as using the NRCS
approach that averages SWE from all sites within and adjacent to the basin. We perform daily
forecasts starting from January 1 through May 15 for each of the experiments using daily
SWE and AMIJJ-V observations. We choose this time horizon to accommodate the regional
differences in the timing of peak SWE (Musselman et al. 2021) and commensurate with the
NRCS procedure of issuing forecasts beginning in January (Pagano et al. 2009).

a
) b) 160 Legend ®
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Fig. 4. Design of forecast experiments: (a) Training and evaluation subsets for four forecast
experiments where ‘Conventional’ and ‘Selective’ are evaluated on withheld drought years
and trained on non-drought and below-median years respectively and ‘Overfit” and ‘Underfit’
are evaluated on non-drought years and trained on non-drought and below-median
respectively (b) Representative site illustrating the snowpack-streamflow relationship
showing the training and evaluation subsets, relative to the withheld drought years. Data are
plotted from SNOTEL Indian Creek, WY (544), and USGS Hams Fork Below Pole Creek,
near Frontier, WY (09223000).

The ‘Conventional’ experiment in Fig. 4a follows the practice of training forecast models
on long-term historical conditions (usually period of record). Here, the model is trained on

the full set of non-drought years and evaluated on withheld drought years. Instead of using
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the long-term historical conditions predeterminedly, we design a climate state-based
experiment, known as ‘Selective’, where the model is trained on below-median years, i.e.,
years exhibiting relatively dry conditions and evaluated on withheld drought years. To
investigate the sensitivity of the ‘Selective’ experiment to the range of chosen years, we
conduct a separate experiment using four different training subsets: (P30, Pes2.5], (P25, Ps7.5],
(P20, Ps25], and (P1s, P475], spanning wetter to drier conditions with respect to withheld

drought years.

The statistical model, when both trained and evaluated on the same set of years 1.e., non-
drought years (P1s, P1oo], 1s expected to reflect the maximum predictive ability of the
observations themselves and is referred to as an ‘Overfit’ experiment. As a result, it creates a
benchmark of forecast skill for all designed experiments. Finally, with the ‘Underfit’
experiment, a tradeoff scenario is portrayed where the forecast skill in non-drought years 1s
evaluated from the model trained on below-median years. The forecast experiments are
illustrated for a representative site along with its corresponding snowpack-streamflow
relationship (Fig. 4b). In Fig. 4b, we also illustrate slope in withheld drought years, based on
a linear fit between SWE and AMIJJ-V. We acknowledge that a linear fit on small sample size
(here n=6) is not ideal and may produce biased regression estimates. The sequence of steps

associated with the forecast experiments is demonstrated in the top workflow (Fig. 5).

Years in training and evaluation set are chosen independently, 1.e., we assume a stateless
case and therefore are not examining the impact of sequential dependent events, for example,
a multi-year drought event on the forecast skill. As a result, forecast skill generated from
these experiments can be attributed to the time-independent snowpack-streamflow
relationship alone. In a separate experiment, we also compare these forecast experiments by
easing the restriction of withheld drought years in training; to represent a de facto scenario
assuming that such drought events have occurred in the past. The two training subsets, in this
case, include the period of record and actual below-median years [Po, Pso] instead of non-

drought and shifted below-median years, respectively.

13
File generated with AMS Word template 2.0



For xperimen
Flow-based orecast experiments
climatological pu——
stratification
Below-median (P 5, Ps; 5] 522! ===F*Non-drought (P 5, Pyg0]
Drought [Py, P 5] Selecthe . ot
Below -median (P 5, Ps; <] Non-drought (P s, Pyg0] .F'_—. ‘.‘-‘-{»h Drought [Py, P 5]
. Non-drought (P 5, P ! !
Data collection gl l Conventional
SNOTEL (SWE)
USGS (Streamflow) D Adaptive sampling
Percentile estimation
IF [SWE perc. (P <=P P P >=P,
Obtain SWE at the forecast [ P Pswell 10 ®10- Poo) %
date and compute the THEN [Training*] <=P,, (Pypyg-10, Pyypt10) >=Py
climatological SWE percentile - : =
3 3 3 *Flow-based climatological stratification

334  Fig 5: Workflow demonstrating the sequence of steps in the forecast experiments (top) and
335 adaptive sampling (bottom).

336  2.1.3 CASE STUDY ON NINE LARGE UCRB BASINS: STREAMFLOW FORECASTING PROCEDURE

337  For greater relevance and to draw more generalizable findings of our work, we perform a
338 case study focusing on nine large UCRB (Upper Colorado River Basin) basins where we
339  employ a modified NRCS standard WSF procedure. We compare the forecast skill from the
340  “Conventional’ and ‘Selective’ forecast experiments in the withheld drought years by

341 mimicking the operational NRCS forecast procedure of using a Principal Component

342  Regression (PCR). We train PCR on predictors from SNOTEL and naturalized streamflow
343  data from the U.S. Bureau of Reclamation. SNOTEL predictors of SWE and accumulated
344  precipitation are transformed into standardized anomalies (i.e., subtraction of mean and

345  division by standard deviation based on the training years), and AMJJ streamflow volume is
346  seminormalized via a square root transformation (Lehner et al. 2017; Garen 1992). However,
347  amodification to the NRCS procedure is undertaken relating to the process of retaining

348  principal components. While the NRCS procedure (now as NRCS PCR) uses a significance
349  and sign test on regression coefficients to retain the number of principal components via an
350 iterative process, due to the design of the forecast experiments in our study, a cross-validation
351  approach is used here to retain the principal components (now as CV PCR). Specifically, a
352  10-fold cross-validation, 1.e., a ‘test’ of model on ten different samples, calculates the model
353  skill score using the mean squared error, with the addition of the principal component one at
354  atime. The number of principal component/s corresponding to the best model skill score are
355 retained. To evaluate whether the modified method, i.e., CV PCR, is consistent with the

356 NRCS PCR, we conduct an additional analysis that compares leave-one-out (or jackknife
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resampling) errors between the NRCS PCR and CV PCR trained on period of record as well
as CV PCR trained on ‘Conventional’ (P1s, Pioo] and “Selective’ [Po, P1s] years.

2.2 Adaptive sampling — selection of training years using antecedent SWE conditions

As an application of the above experiments, we explore the potential for a guided sampling of
training years based on antecedent SWE conditions. For a given forecast date, we obtain the
SWE conditions on that date and compute the percentile based on the historical SWE record
at the calendar date. We create training subsets by selecting years that fall within a range of
+/-10 percentile points around the computed percentile. A range of +/-10 was chosen to
maximize the representativeness of SWE states on the sampling of years and satisfy enough
data points for training the model. For instance, if the estimated SWE percentile on a given
forecast date is 25, then years between the 15% and 35% percentile of AMJJ-V are chosen for
training. In the case when the estimated percentile is below 10 or above 90, the years below
20™ and above 80® percentile are selected for training. All available years except the
evaluation year are included in training the model at a given forecast date. The sequence of

steps associated with the adaptive sampling is demonstrated in the bottom workflow (Fig. 5).
2.3 Metrics and statistical testing

Residuals are estimated to determine the model's predictive ability that can be examined
through their magnitude and direction. Residuals (e) are expressed as a percentage of the
observed median in Eq. (2) as:

( sim i obs !.)

@

e =————
' median( obs)

Where sim and obs represent model simulations and observations, respectively, and =1,
2, 3, ..., n, with n being the total number of years in evaluation. We use the Normalized
Root-Mean-Square Error (NRMSE, 1n %) to analyze the predictive skill from the forecast
experiments against the corresponding streamflow observations. The normalization of root-
mean-square error facilitates comparison across different forecast models and 1s useful for
benchmarking (Hyndman and Koehler 2006). It is expressed as a percentage and shown in
Eq. (3) as:
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obs obs

384 NRMSE = x 100 ( %) (3)

385 Where obs represents mean of observations. A one-sided Wilcoxon signed-rank test is
386  also conducted to determine whether two training models, when evaluated on a similar set of
387  years, have a comparable forecast skill (NRMSE). The non-parametric hypothesis test was
388  chosen over a parametric Student’s paired t-test as it performs well with non-normally

389  distributed data. Statistical significance was reported at the 95% confidence level (0=0.05).

390 In an exploratory analysis, we also assess the relative spread of April 1 SWE and

391  AMIJJ-V i historical drought years [Po, P1s] as compared to non-drought years (P1s, P1oo]
392  using the robust relative dispersion metric, the Coefficient of Median Absolute Deviation
393 (CMAD). CMAD is resistant to outliers and compares variability reasonably well among
394  different categories of non-normal distributions (Arachchige et al. 2020). The CMAD here is
395  defined in Eq. (4) and 1s represented as:

med |xr. —-m ‘

396 CMAD = (4)

m

397 where ‘med’ denotes the median, m is the median estimate of sample, x, and =1, 2, 3, ...,

398 n with n being the total number of years.

399 2.4 Observational datasets and screening procedure

400 Daily SWE observations from the Natural Resource Conservation Service’s SNOTEL
401  (SNOwpack TELemetry) network and the cumulative seasonal streamflow volume (Apr-Jul)
402  estimates from daily U.S. Geological Survey’s National Water Information System (USGS
403  NWIS) data were obtained for SNOTEL sites marked with pins and USGS streamflow gages
404  corresponding to basins rendered as orange polygons respectively (Fig. 1a). The water year
405 1985 is chosen as a starting point as most of the SNOTEL and streamflow observations are
406  continuously available thereafter until 2020. A similar set of years are maintained across each
407  SNOTEL station and corresponding USGS stream gage to preserve the analysis between
408 SWE and AMJJ-V. The mean annual ratio of April 1 SWE, used here as a proxy for peak
409 SWE (Pagano et al., 2004), to water-year to date cumulative precipitation (SWE/P) is

410  calculated over the water years 1985-2020 (Fig. 1a; continuous precipitation measurements
411  are available at most SNOTEL sites starting from the water year 1985) to ensure and

412  incorporate varying snowpack characteristics across the western US. A weaker correlation is

16
File generated with AMS Word template 2.0



413
414
415
416
417
418

419
420
421
422
423

424

425
426
427
428
429

430
431
432
433
434
435
436
437
438
439
440
441
442

observed between the SWE/P ratio and elevation at SNOTEL sites, which broadly states that
the SWE/P ratio usually increases with elevation (Fig. 1b). It should be noted that a few
SNOTEL sites demonstrate inconsistency in the relationship between the snow and
precipitation, 1.e., SWE/P>1, which 1s due to windy conditions that cause the precipitation

gages to undercatch precipitation and propagate snowdrifts on the measuring snow pillow

(Meyer et al. 2012).

For the case study, daily SWE and accumulated precipitation were obtained from
SNOTEL, whereas the natural streamflow estimates from the Bureau of Reclamation (Bureau

of Reclamation, accessed February 2022,

https://www .usbr.gov/lc/region/g4000/NaturalFlow/). Due to data availability, we constrained
our analysis in the case study from 1986-2019 WY.

2.4.1 SCREENING PROCEDURE

A diverse set of SWE observation sites and their corresponding drainage basins were
selected across the western US, exhibiting a range of hydro-climatological characteristics and
different snow regimes (maritime, continental and intermountain; Trujillo & Molotch, 2014).
The following screening procedure was followed to identify basins and snow observations

suitable for this analysis:

1) Drainage basin areas were constrained between 350 km? to 2500 km? in size to avoid
major over/under-representation of basin-wide snowpack on streamflow.

2) Drainage basins required at least one SWE station inside the basin boundary or within
a 10 km radius for a proximal representation of basin-wide snowpack conditions and to
serve as a predictor in the statistical model.

3) Atleast 30 years of SWE and streamflow observations available to support the model
training and evaluation.

4) Drainage basins were required to fall within snow-dominated ecoregions [i.e., North
American terrestrial level III ecoregions; Barnhart et al., 2016; Wiken et al., 2011]
with exceptions to a few basins in Nevada, Arizona, and New Mexico that receive less
snowfall in general (Fig. 1a). The basins in these ecoregions have appreciable snow
accumulation and they generate snowmelt-driven runoff for downstream communities

(Bales et al., 2006).
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5) A requirement of minimal anthropogenic influence on streamflow observations from
upstream reservoirs, impoundments, and other man-made structures in order for
observations to represent a clear connection between snowmelt and streamflow. The
identification of such basins was performed by analyzing the geospatial attributes from
USGS Geospatial Attributes of Gages for Evaluating Streamflow (GAGES II; Falcone,
2011; Falcone et al., 2010) and Hydro-Climatic Data Network (HCDN; Slack &
Landwehr, 1992b, 1992a) datasets, which otherwise also recognizes the gages

providing natural streamflow observations.

For the case study, nine large UCRB basins with areas greater than 4000 km? (up to
21000 km?) were identified based on their availability in Bureau of Reclamation records and
being present in the GAGES II dataset. These basins are usually regulated with reservoirs or
inter-basin transfers, and estimation of natural flows is performed by using observed
streamflow data and removing the human impacts such as effects of irrigation withdrawals or
reservoir operations (Bureau of Reclamation, accessed February 2022,
https://www.usbr.gov/lc/region/g4000/NaturalFlow/). SNOTEL stations, inside the basin
boundary or within a 10 km radius, with continuous data availability of SWE and

accumulated precipitation for at least 30 years were selected for consistency.
3. Results

3.1 Comparison of forecast skill on April 1

The model residuals when trained on below-median (‘Selective’) and non-drought
(‘Conventional’) years are shown for all SNOTEL sites in Fig. 6. Both models show
overprediction in drought years. However, consistent with our expectation, the model
overprediction is less (smaller residuals, Fig 6b) with training on below-median years as
compared to non-drought years (Fig. 6a). This i1s evident from NRMSE shown for all
SNOTEL sites where overall mean NRMSE dropped, for sites greater than SWE/P of 0.5, by
10% for below-median years (Fig. 6b). This is a consequence of differences in training
approaches where, in general, the model slopes are relatively lower for below-median years
and similar to the slope in withheld drought years (‘Drought’ slope) as compared to non-
drought years (Fig. 4b & 6¢). We observe a general pattern of decreasing model residuals
with an increasing SWE/P 1n both cases, likely due to a greater influence of snowpack on the
relationship between snowpack and streamflow.
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With non-drought years in training (Fig. 6a), the Conventional forecasts show a high
degree of variation in residuals across the zero residual line, signaling neither consistent
overprediction nor underprediction of AMJJ-V. On the contrary, smaller magnitude and more
consistently negative residuals are obtained with the Selective forecasts, indicating a
systematic overprediction of AMIJ-V. Due to lower SWE values in drought years, high
residual errors (>100%) are also observed at a few SNOTEL sites for both training subsets.
The regression statistics, including slope, intercept, R?, and residual standard error, are

reported in Supplementary Table S1 for all SNOTEL sites.
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Fig. 6. (a) Model residuals and (b) NRMSE (%) shown for all SNOTEL sites for ‘Selective’
and ‘Conventional’ forecast experiments in withheld drought years, and (¢) training model
slopes from ‘Conventional’ and ‘Selective’ forecast experiments compared to the slope in
withheld drought years. Residuals in (a) are expressed as a median percentage of the
observed AMJJ-V from withheld drought years. All model slopes in (¢) are estimated based
on a linear fit between SWE and AMJJ-V.
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The impact of different training subsets on April 1 forecast skill during drought and non-
drought years is examined further and shown in Fig. 7. Similar to the above-described
behavior of model residuals, higher forecast skill is obtained in drought years when the model
1s trained on below-median years (‘Selective’), relative to non-drought years (‘Conventional’)
(Fig. 7a.) A consistent gain in skill is observed across all categories of the SWE/P ratio, with
a maximum of 20% overall for the SWE/P 0.50-0.75 category. Roughly 74% of locations
show better overall performance relative to non-drought training years (Fig. 7b) due to
improved fitting of model slopes and lower residuals. Contrary to forecast skill in drought
years, we observe the opposite skill pattern in non-drought years (Fig. 7c&d), indicating a
tradeoff, reduced skill when training on below-median years (“Underfit’) relative to non-
drought years (‘Overfit’). The drier set of training years lack sampling of non-drought years,
and therefore the model cannot reliably capture the relationship between snowpack and
streamflow, resulting in high bias. Spatially, streamflow forecasts are considerably more
skillful in maritime and intermountain regions (California, Montana, and Idaho) than the
continental regions (Colorado and Utah) with below-median years, as shown in Fig. 7b. We
remind the reader that the case described above is overly conservative since it assumes that
drought years have never occurred before and are not included in the training. However, in a
separate experiment, we also find that by including the withheld drought years in training, the
gains in forecast skill with below-median years are comparable, albeit slightly better than the

above case (Fig. S1).
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Fig. 7. (a) Forecast skill (NRMSE) evaluated in drought years from the ‘Conventional’ and
‘Selective’ forecast experiments and (b) Forecast skill evaluated in non-drought years from
the ‘Overfit” and ‘Underfit’ forecast experiments over the range of SWE/P. (¢) Change in
NRMSE (%) between the ‘Conventional’ and ‘Selective’ forecast experiments and (d)
Change in NRMSE between the ‘Overfit’ and ‘Underfit’ forecast experiments across the
selected SNOTEL stations. The boxplots (a) and (c) represent a 90% confidence interval and
the curly braces (on the x-axis) indicate the number of SNOTEL stations in each SWE/P ratio
category.

We further investigate the potential for alternative training subsets to improve skill in
drought years. Fig. 8a shows the change in NRMSE for different training subsets relative to
non-drought training years across the study domain, with the biggest gains for the driest (P1s,
Pa475] and losses for the least dry (Pso, Pe2.5] training subset, respectively. The two driest
training subsets (P1s, P47.5] and (P20, Ps25] show significantly better skill (p-value<=0.05) than
non-drought training years (P1s, P1oo] based on a one-sided Wilcoxon signed-rank test.
Furthermore, roughly 82% of locations showed better overall performance for the driest
training subset relative to non-drought years (not shown). We also assess the change in

forecast skill across the SWE/P ratio categories and similarly observe consistent gains and

lowest uncertainty for the driest training subset (Fig. 8b).
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Fig. 8. (a) Change in NRMSE (%) evaluated in drought years across the entire study
domain between four different sets of training years and non-drought years (P1s, P1oo] and (b)
The same change in NRMSE (%) as (a) but binned by SWE/P. The median is plotted as solid
lines and the interquartile range as a color ribbon. The curly braces in (b) indicate the number
of SNOTEL stations in each SWE/P category.

3.2 Comparison of forecast skill across the forecast season

Given the interest in water supply predictions throughout the forecasting season (Jan-
May), we assess the impact of different training subsets on the daily forecast skill for each
forecast experiment. This comparison is shown for 29 stations with SWE/P ranging from 0.75
to 1.00, representing the largest group of SNOTEL stations and those with high contributions
of snowmelt to AMJJ-V. Forecast skill is evaluated for drought (Fig. 9a) and non-drought
(Fig. 9b) years for a continuous set of forecast dates spanning January 1 to May 15. As shown
in Fig. 9a, significant error reductions ranging up to 40% are obtained early in the season
(Jan-Feb) for below-median years (“Selective’) as compared to non-drought years
(‘Conventional’). On the contrary, poor performance is observed for below-median years
(‘Underfit’) relative to non-drought years (‘Overfit’) resulting from the lack of information in
the context of non-drought years (Fig. 9b). We also identify the calendar dates corresponding
to the lowest median NRMSE and find better overall performance after April 1 for all
forecast experiments. This 1s because these stations are mostly in colder regions like

Colorado, Utah, Montana, and Wyoming that, on average, receive snow until mid to late
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April and tend to provide robust skill around peak SWE. Similar comparisons are also
performed for two other SWE/P ratio categories (0.50-0.75; 1.00-1.25) in drought years and
are included in the Supplementary material (Fig. S2), showing similar, consistent gains in
forecast skill with below-median years. Due to reduced snowmelt contribution to runoff,
higher uncertainty and poor performance is observed across the forecast season for low
SWE/P categories (<0.5). The use of snow as a sole predictor in these cases is likely to
become problematic, particularly in low snow and drought years, hence we focus our

presentation on results for SWE/P >0.5 categories.
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Fig. 9. Forecast skill (NRMSE) during (a) drought and (b) non-drought years across stations
with SWE/P ranging from 0.75 to 1.00 from the four forecast experiments. The color ribbons
represent the interquartile range with a black line denoting April 1. The colored lines (red &
blue) indicate the calendar date corresponding to the lowest median NRMSE for the four
forecast experiments (‘Conventional” — 29® April; ‘Selective’ — 7% April; ‘Overfit’ — 18®
April; “Underfit’ — 29 April).

3.3 Case study. Comparison of forecast skill in large basins
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We compare the forecast skill from the ‘Conventional’ and ‘Selective’ forecasts, using a
modified NRCS’s PCR procedure (CV PCR), for nine large UCRB basins to understand the
degree of influence of snowpack-streamflow relationship on streamflow generation,
particularly in drought years. Prior to our implementation of CV PCR-based forecast
experiments, we compare the leave-one-out errors from NRCS PCR and CV PCR and
observe similar performance when each are trained on the period of record (Fig. S5). We also
find similar performance when training CV PCR on non-drought years (‘Conventional’).
However, when training on below-median years (‘Selective’), large leave-one-out errors at
longer lead times (i.e., in January and February) are observed, perhaps attributable to smaller
sample sizes (i.e., [P1s, Ps7s] years) and in turn, a larger impact of outliers (Fig. S5). Fig. 10a
shows the model residuals in withheld drought years for the ‘Conventional’ and ‘Selective’
PCR-based forecasts across different lead times. Commensurate with our earlier findings, we
see overprediction in drought years (Fig. 10a — upper subplots) and generally smaller model
residuals with ‘Selective’ forecast as compared to ‘Conventional’ forecasts for most basins
and across most lead times (see, the NRMSE estimates in Fig. 10a — lower subplots). The
performance of ‘Conventional’ and ‘Selective’ forecasts in withheld drought years can be
largely explained by the similarity of model slopes, 1.e., the slope between AMIJ streamflow
and SWE, with respect to the slope in the withheld drought years (Fig. 10b). This underscores
the importance of the snowpack-streamflow relationship even across larger basins that can

aid in improving the understanding of snow-based streamflow predictability.
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3.4 Improved forecast skill in drought years with adaptive sampling

Fig. 10. (a) Model residuals in withheld drought years for the nine large UCRB basins from
‘Selective’ and ‘Conventional’ forecasts. (b) Training model slopes from ‘Conventional’ and
‘Selective’ forecast experiments compared to slopes in withheld drought years. Residuals in
(a) are expressed as a median percentage of the observed AMIJJ-V from withheld drought
years. All model slopes in (¢) are estimated based on a linear fit between SWE and AMJJ-V.

The halo text in the spatial map within each basin represents the drainage area in units of
km?.

We evaluate an ‘adaptive sampling’ application that dynamically selects training years
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based on the SWE percentile at every forecast date. We compare the adaptively sampled

forecast skill against two alternative training subsets, one using no assumption of a climate
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state 1.e., uses the period of record, excluding the forecast year, and one that trains a dry
climate state using below-median years. As shown in Fig. 11a, below-median and adaptively
sampled years show skillful forecast in drought years when compared to a model trained on
the period of record for stations with SWE/P ranging from 0.75 to 1. Consistent error
reductions of up to 40%, particularly early in the season, are observed for both, with the
largest in below-median years. This is because training on below-median years is geared
solely towards drought, whereas, in the case of adaptive sampling, the years are dynamically
selected based on antecedent SWE conditions. However, this drought assumption faces
considerable uncertainty year-to-year and at longer lead times (Hao et al., 2018), illustrated in
Fig. 11c where an incorrect assumption of drought in wet years [Pss, P1oo] can lead to
significant forecast errors throughout the forecast season. This is not an issue with adaptively
sampled years that rely on antecedent SWE conditions for its assumption of the climate state.
Despite moderate error reductions of up to 20% earlier in the season, the skill from adaptively
sampled years improves throughout the forecast season in drought years and indeed slightly
outperforms the below-median years later in the season (Fig. 11a). With adaptive sampling, a
tradeoff is seen in ‘normal years’ (Fig. 11b) likely due to training the model on a narrower
range of years—spanning only 20 percentile points—relative to training the model on the

period of record, which spans nearly 100 percentile points.

26
File generated with AMS Word template 2.0



615

616
617
618
619
620

b)

Normalized RMSE (%)

200
175
1501
125+
100+
751
50
251

100

80

60

401

20

70
60 1
50
40
301
20
101

Evaluation: Drought years [P, P ]

Training years

[0 Period of record
[ Below-median
Il Adaptively sampled

1RE

Evaluation: Normal years [P, 5, Ps; 5]

(1]

Month

. . é ? . % ? s s .
Evaluation: Wet years [Pgs, P,o0]
[ ] L[]
E . . . .
I = 2
[ ] ™ .
Jan 1 Feb 1 Mar 1 Apr 1

Fig. 11. Forecast skill on the first day of the month for three different training subsets
across stations with SWE/P ranging from 0.75-1.00 in (a) drought years [Po, P1s], (b) normal
years [Pazs, Ps7s], and (c) wet years [Pss, Pioo]. The three training subsets include the period
of record, below-median years, and adaptively sampled years. The boxplots represent a 90%
confidence interval. Note: the vertical axis range differs for each panel.
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This skill improvement of adaptive sampling in drought and wet years is attributable to

the evolving relationships and moderate narrowing of SWE and AMJJ-V conditions

throughout the forecast season. An example of forecast skill and the time-evolving

relationships 1s shown in Fig. 12a&d for drought and Fig. 12c&f for wet years at one

SNOTEL station. Drawbacks in adaptive sampling can be seen in normal years [P4z2s, Ps7:5]

(Fig. 12b) where it underperforms, in particular, early in the forecast season when the spread

among SWE conditions is greatest, becoming narrower by April 1 (Fig. 12e).
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Fig. 12. (a)-(c) Forecast skill (NRMSE) on the first day of each month and (d)-(f) associated
SWE (lines) and AMJJ-V (solid circles) percentiles for drought years [Po, P15], normal years
[P47.5, Ps75], and wet years [Pss, P1oo], respectively. Representation of forecast skill and SWE-
AMIIJ-V relationship is based on single SNOTEL station 601 (Lost-wood Divide, ID) and its
corresponding USGS stream gage 13120000 (NF Big Lost River at Wild Horse Nr Chilly,
ID). Note the vertical axis ranges differ by the panel.
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4. Discussion

A retrospective analysis was conducted to investigate the snowpack-streamflow
relationship and its impact on water supply forecast skill under imposed non-stationary
scenar1os. This work was motivated by reduced snow-based streamflow predictability in
drought years owing to the change in snowpack conditions and lowered runoff efficiency.
This analysis into historic forecast skill and training approaches sought to quantify the
reliability of snow-based streamflow predictability in the most sensitive management periods,

1.e., during drought.

Streamflow was overpredicted during drought years, but we found smaller residuals
when the model was trained on below-median years as compared to all non-drought years
(Fig. 6). Model residuals from training on non-drought years pose high variability across the
zero residual line and is the manifestation of the increased April 1 SWE variability in drought
years. The distribution of April 1 SWE indicated higher variability in drought years relative
to non-drought years, as evident from the CMAD measures (Fig. S3). This is particularly
important for cooler continental regions across the western US where snowfall accumulation
variability has been projected to increase towards the end of the 21 century (Lute et al.,
2015).

Smaller model slopes (shown for a representative site in Fig. 4b) were consistently
seen when training the forecast model on below-median years, leading to consistent negative
residuals. In these cases, less snowmelt water was reaching the stream gage, instead
contributing more to soil moisture recharge and evapotranspiration losses to the atmosphere.
This lowered runoff efficiency (e.g., Livneh and Badger, 2020; Nowak et al., 2012;
Woodhouse et al., 2016) means that a model with a lower slope would provide better
predictions in drought years due to similarity in slopes between training and evaluation years.
However, drawbacks with below-median years can occur, in particular at sites with lower
SWE/P in drought years (Fig. 6). Importantly, predictions during extreme drought years, 1.e.,
when SWE = 0, solely rely on the model intercepts (see Eq. 1). In the case of flatter slopes
produced from training on either below-median or non-drought years, these model intercepts
sometimes exceed the median of observed streamflow from drought years. This leads to high
residual errors, even exceeding 100%, particularly for locations with low SWE/P and where
the frequency of zero peak SWE is projected to become increasingly common towards the

end of the 21% century (Lute et al., 2015; Livneh and Badger, 2020). Similar behavior is
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observed for model residuals at basin-scale that uses the NRCS approach of averaging SWE
from SNOTEL sites within and adjacent to the basin (Fig. S4a). This is evident from the
NRMSE shown for all basins where overall mean NRMSE dropped by 4% for below-median
years (Fig. S4b). The regression statistics, including slope, intercept, R> and residual standard

error, are reported in Supplementary Table S2 for all basins.

Consistent with the above, we observed improvements in seasonal forecast skill
derived from April 1 SWE in drought years when training on below-median years. We found
that the seasonal forecast skill improved overall at 74% of selected SNOTEL sites with
below-median years as compared to non-drought years (Fig. 7). An improvement in skill is
further shown with an even drier training subset (P1s, P47.5] where 82% of SNOTEL sites
perform better (Fig. 8). Overall, these results confirm that forecast skill in drought years can
be mitigated by selectively training on a subset of years with drier conditions as compared to
using non-drought years. The implications of below-median years in training are examined
further across the forecast season, where the biggest improvements are seen early in the
forecast season (Jan-Feb), becoming more comparable later in the season (Mar-Apr) relative
to training on non-drought years (Fig. 9). This feature could be useful for agricultural,
municipal, and industrial sectors that rely on the early season forecast for water transfers and
availability estimates. Best predictions are seen after April 1 from all forecast experiments
across the stations in colder regions (high SWE/P), hinting towards the potential drawbacks
of using April 1 as a proxy to peak SWE (Fig. 9). However, with reductions in future snow,
the utility of an earlier date like March 1 has been evaluated and shown to perform better
towards the end of the century than April 1 (Livneh and Badger 2020).

This forecast experiments in small headwater catchments carries several key
limitations. Perhaps most notable is the use of snow as the sole predictor and relying on a
simple linear regression approach. We fit a linear model between SWE and AMJJ-V due to
its easy interpretation and associated retrospective performance, but such a model clearly
neglects the representation of many critical surface processes. Presumably, using additional
non-snow predictors (Koster et al. 2010; Lehner et al. 2017) and more sophisticated
forecasting techniques (Sharma and Machiwal 2021) could boost the skill levels achieved.
Another limitation is the use of a one-to-one SWE-AMJJ-V relationship throughout the study
that captures unique relationships between snowpack evolution and water supply. To evaluate

the impact of using one-to-one relationships, we repeated our analysis following the NRCS’s
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approach that combines SWE from all sites within and adjacent to the basin and generally
observed a similar skill behavior. Despite this, using a single or multiple SNOTEL stations
still lacks the spatial representativeness of snow conditions across the entire basin. SNOTEL
placement, often within local areas of relatively higher snow accumulation regions (Broxton
et al. 2019), may not serve as the best proxy for basin-wide snowpack conditions overall. We
constrained our analysis to those stations with at least 30 years of SWE and AMJJ-V

observations, but we acknowledge the limitations in our relatively short historical period.

We attempt to resolve some of the above limitations by incorporating an approach similar
in complexity to the NRCS forecasting approach in a separate case study. The impact of
different training approaches on forecast performance can be largely reconciled by the
characteristics of the snowpack-streamflow relationship (Figs. 6 and 7). However, this
relationship does not directly account for impacts like longer lag times, spatial heterogeneity,
anthropogenic disturbances, as well as meteorological factors (temperature, wind, humidity,
etc.) and physical characteristics (land use, soil type, vegetation, etc.) on streamflow
generation in the large basins. Through using larger basins and a different regression
approach in our case study (similar to NRCS’s PCR procedure), we confirm that the
performance of ‘Conventional’ and ‘Selective’ experiments is closely associated with
similarity of SWE-streamflow slopes between training and evaluation years (Fig. 10). These

slopes are reflective of changing runoff efficiencies between drought and non-drought years.

Nevertheless, an important caveat with these improvements in drought years is they rely
on a priori knowledge of a year being in drought or not, which would not be available in a
true forecast. Although there have been developments in drought prediction techniques, the
anticipation of drought in any forecast year still poses challenges, especially for longer lead
times (~3-6 months), due to the inherent unpredictable variability in the atmosphere as well
as complex interactions between natural and anthropogenic factors that combine to limit
anticipation of future droughts (Hao et al., 2018). In this context, we proposed an ‘adaptive
sampling’ application that dynamically selects training years based on antecedent SWE
conditions. We evaluated forecast skill using adaptively sampled training sets relative to
training on the entire period of record or using only below-median years. Both the adaptively-
sampled and below-median training subsets perform better than the period of record in
drought and wet years attributable to synchronous relationships between SWE and AMJJ-V
(Fig. 11). We believe our exposition into ‘adaptive sampling’ to be novel mainly in its
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climatological stratification using initial hydrologic conditions (i.e., antecedent SWE) and its
application within a statistical framework. There have been applications analogous to
“adaptive sampling” in the streamflow forecasting literature. For example, conditioning the
climatology in an Ensemble Streamflow Prediction (ESP) framework with either precipitation
or climate indices (Hamlet and Lettenmaier 1999; Werner et al. 2004) or via the selection of
hydrologic model parameters based on the climate state (Hay et al. 2009). Regardless, flow-
based climatological stratification dependent on the initial hydrologic state within a statistical
framework has not been explored yet in a publication to our knowledge. Limitations of
adaptive sampling are highlighted in the case of normal years due primarily to the wide
spread in SWE conditions relative to AMJJ-V, particularly for forecasts issued early in the
forecast season, i.e., January and February (Fig. 12), perhaps attributable to training on
narrower range of years. The adaptive sampling application is built on a simple model
structure and a single predictor that guides a climate state in a given forecast year. Exploring
the value of this application with ancillary predictive information from non-snow predictors
like soil moisture and climate indices could provide future opportunities for improved
predictions from statistical WSFs. Overall, this work demonstrated that better streamflow
predictions with alternate model fitting protocols may offer a useful perspective for decision

makers to consider in snow-based forecasting approaches.

5. Conclusions

We analyzed the skill of seasonal streamflow volume predictions in historical drought
years across the western US and evaluated the impact of different training years on drought
forecast skill via designed forecast experiments in small headwater catchments as well as in
nine large UCRB basins. The bulk of our analysis withheld severe drought years from the
training period, as a way to evaluate the prediction of “unprecedented drought’, through a
kind of imposed non-stationarity. Our analysis showed that predictability in withheld drought
years could be improved by excluding wet years (or above-median years) from the training
period. For example, in small headwater catchments, the exclusion of wet years from training
period led to forecasts issued on April 1 that showed an overall decrease of 10% in model
residuals relative to those forecasts trained on all historical years. This type of improvement
was seen in roughly 74% of locations, mostly in colder maritime and intercontinental regions.
The best predictions were generally obtained in mid to late April for the majority of stations,

in particular for colder regions. Through our case study over large UCRB basins, we further
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confirm the importance of the fundamental snowpack-streamflow relationship on streamflow

predictability using training protocols more consistent with operations.

We also developed and presented an adaptive sampling application that used the
percentile of antecedent SWE conditions on each day of the forecast season to select a set of
training years. The adaptively sampled training years produced more skillful forecasts
throughout the forecast season in drought years as compared to training on the period of
record that poses no assumption of a climate state. Improvements in forecast skill of up to
20% were seen, particularly in drought and extremely wet years due to the strong-coupling
between SWE and AMJJ-V conditions earlier in the forecast season. However, these
variables did were not as tightly coupled when conditions were near the median. The result
was that adaptively-sampled forecasts performed poorer than those trained on the period of
record during “normal years”, suggesting that the span of 20 percentile points in adaptive
sampling training being too narrow to reflect the snowpack-streamflow relationship during
near-median conditions. Overall, the alternate training protocols presented here have the
potential to improve the reliability of snow-based forecasting approaches, providing
opportunities for addressing the challenges during drought years where water supply

information is critical.
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