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A B S T R A C T

Damage in structures can cause local anomalies in a guided wavefield due to reflection of guided
waves in neighborhoods of damage. These local anomalies can be used for baseline-free damage
identification if the structures are geometrically smooth and made of materials that have no
stiffness and mass discontinuities. Recently, guided wavefield-based methods have been studied
for damage identification by extracting and localizing local anomalies in guided wavefields in
the time- and frequency–wavenumber domains. Meanwhile, proper orthogonal modes (POMs)
obtained by the proper orthogonal decomposition have been studied for vibration-based damage
identification. In this paper, the effectiveness of POMs of guided wavefields for damage
identification in beam-like structures is studied. Since local anomalies in the POMs can be
covered by global trends of the POMs, the continuous wavelet transform is used to suppress
the global trends and intensify the local anomalies. The fundamental mechanism of how the
continuous wavelet transform with Gaussian wavelet functions of a proper order can suppress
the global trends of POMs and intensify local anomalies of POMs is explained. Significant
POMs used for damage identification are determined by an adaptive truncation technique. The
proper orders of the Gaussian wavelet functions, i.e., their number of vanishing moments, are
determined based on the modal assurance criterion and a statistical criterion. The continuous
wavelet transform of the significant POMs with Gaussian wavelet functions of the proper orders
is used to yield an accumulative damage index. Numerical and experimental investigations of
the proposed method are conducted on damaged beam-like structures. Their results verified
that the proposed method is accurate and noise-robust for identifying the location and extent
of damage in beam-like structures.

1. Introduction

Engineering structures in service bear operational loads and long-term environmental effects, which cause unwanted structural
ailures and casualties. The necessities of lowering the possibility of failures and extending the useful lives of the structures motivate
o develop accurate and noise-robust damage identification methods, which can lead to efficient early maintenance operations.
ecently, guided wavefield-based methods for damage identification have been studied widely thanks to the availability of scanning

aser Doppler vibrometers (SLDVs), which can measure vibrational velocities of points on a predefined grid assigned to a structure.
econstructing time-domain SLDV measurements allows the visualization and post-processing of a guided wavefield [1]. A guided

wavefield can show features of guided waves propagating along a structure and their interactions with discontinuities associated
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with damage. The interactions can be referred to as local anomalies, which can be intensified to identify the location and extent of
the damage by advanced signal processing techniques [2].

The use of guided wavefields measured by an SLDV for damage identification was first introduced in Ref. [3], where the
aximum amplitudes of guided waves were used for damage identification. To further exploit a guided wavefield, root mean

quare values of the time–history of each measurement point on an assigned grid measured by an SLDV were used for damage
dentification [2]. However, incident waves generated at excitation points can cause a large interference for damage identification.

trend removal algorithm based on the location of a source transducer was then developed to alleviate the adverse effects of
uch interference [4]. Besides, an energy-based time window was used in Refs. [5,6], where guided waves were not used in the
eriod of excitation to alleviate the adverse effects of such interference. These two techniques are removing incident waves in the
ime-domain, but the interaction between incident waves and reflected waves cannot be considered. Incident waves can be isolated
rom propagating waves in the frequency wavenumber-domain, as reflections caused by the existence of damage are propagating
n opposite directions to that of incident waves in this domain [7]. A frequency wavenumber filtering was proposed for removing

incident waves and improving visualization in guided wavefield-based methods [1]. Further, two techniques, a two-dimensional
Fourier transform deployed in polar coordinates and a three-dimensional Fourier transform deployed in Cartesian coordinates, were
studied as frequency wavenumber filtering [8]. Local wavenumber techniques were introduced, where the size and depth of damage
were quantified by matching wavenumber estimates to theoretical dispersion curves in Refs. [9,10]. Besides, a short-space frequency
wavenumber technique was introduced simultaneously, which yielded a frequency wavenumber spectrum at various spatial locations
for damage identification [11].

Proper orthogonal decomposition (POD) is a multi-variate statistical method that aims at obtaining an approximate representation
of high-dimensional data [12]. The approximate representation is achieved by extracting proper orthogonal modes (POMs) and
Galerkin projecting the POMs into a lower-dimensional model [13]. The POMs is a set of optimal orthogonal modes of analyzed
data and they can capture features of the data. The effectiveness of damage identification based on POMs has been widely studied
in vibration-based methods [13–17]. The difference between POMs at damaged and pristine states of a structure was exploited for
a damage index in Refs. [14,15]. In Ref. [13], a POMs-based method was developed for damage identification: POMs were used to
filter out the changes corresponding to different loading conditions on a structure and reserve only those caused by damage [13].
Baseline data of a pristine state of a structure are required in Refs. [13–15], which is, however, difficult to obtain in practice.
Baseline-free damage identification methods have been explored based on POMs. POM energy curvature obtained from the frequency
response function data was used to develop a damage index in Ref. [16]. Besides, mode shape curvature of the first POM denoised
by continuous wavelet transform (CWT) was used for damage identification in connections of steel moment resisting frames [17].
To date, the two categories of damage identification methods, i.e., the ones based on guided wavefields and those based on POMs
of vibrational responses, are separately studied and the effectiveness of their combination has not been investigated.

To study the effectiveness of damage identification by POMs of guided wavefields, a baseline-free and noise-robust damage
identification method is proposed for beam-like structures in this paper. It identifies the location and extent of damage based
on POMs of guided wavefields. The novel damage identification technique is introduced by combining the POD and the CWT.
The fundamental mechanism of how the CWT can suppress the global trends of the POMs and intensify local anomalies of the
POMs is investigated and explained. An adaptive truncation technique based on an empirical threshold is developed to determine
significant POMs for damage identification. The modal assurance criterion and a statistical criterion are used to determine the proper
orders of Gaussian wavelet functions, i.e., their number of vanishing moments. The CWT of the significant POMs with the proper
orders of Gaussian wavelet functions is used to yield an accumulative damage index. The accuracy and noise-robustness of the
proposed method are investigated in a numerical example of a damaged beam-like structure with different noise levels and guided
wavefields with different excitation scenarios. An experimental investigation was conducted on a damaged aluminum beam-like
structure undergoing different excitation scenarios.

The rest of the paper is arranged as follows. In Section 2, the proposed damage identification method based on POMs of guided
wavefields is presented. In Sections 3 and 4, the numerical and experimental investigations are described, respectively. Conclusions
of this work are presented in Section 5.

2. Methodology

In this section, the formulation of POD for a guided wavefield of a beam-like structure is provided, based on which the
singular value decomposition (SVD) is shown. The mechanism of CWT for suppressing global trends of POMs and isolating their
local anomalies is studied. The proposed damage identification method is described with: (1) truncation for significant POMs, (2)
determination of the proper order of Gaussian wavelet functions for the CWT, and (3) formulation of the accumulative damage
index.

2.1. POMs of guided wavefields

Let 𝑤 (𝑥, 𝑡) be a zero-mean spatial–temporal guided wavefield of a beam-like structure, in which 𝑥 ∈ [0, 𝐿] and 𝑡 ∈ [0, 𝑇 ] denote
the space and time, respectively, with 𝐿 and 𝑇 being the spatial and temporal lengths of 𝑤 (𝑥, 𝑡), respectively. The POD is capable
f decomposing 𝑤 (𝑥, 𝑡) as [18]

𝑤 (𝑥, 𝑡) =
∞
∑

𝜙𝑖 (𝑥) 𝑎𝑖 (𝑡) (1)
2

𝑖=1
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where 𝑎𝑖 (𝑡) and 𝜙𝑖 (𝑥) are the 𝑖th time- and spatial-functions, respectively, and 𝜙𝑖 (𝑥) is often referred to as the 𝑖th POM of 𝑤 (𝑥, 𝑡).
Let 𝐀 be the matrix containing 𝑤 (𝑥, 𝑡) that is uniformly sampled in a spatially, temporally uniform manner:

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑤
(

𝑥1, 𝑡1
)

𝑤
(

𝑥1, 𝑡2
)

⋯ 𝑤
(

𝑥1, 𝑡𝑁
)

𝑤
(

𝑥2, 𝑡1
)

𝑤
(

𝑥2, 𝑡2
)

⋯ 𝑤
(

𝑥2, 𝑡𝑁
)

⋮ ⋮ ⋱ ⋮
𝑤
(

𝑥𝑀 , 𝑡1
)

𝑤
(

𝑥𝑀 , 𝑡2
)

⋯ 𝑤
(

𝑥𝑀 , 𝑡𝑁
)

⎤

⎥

⎥

⎥

⎥

⎦

(2)

here 𝑥1 = 0, 𝑥𝑀 = 𝐿, 𝑡1 = 0, 𝑡𝑁 = 𝑇 , 𝑀 is the number of measurement points, and 𝑁 is the total number of snapshots of 𝑤 (𝑥, 𝑡)
n the sampling process; a snapshot of 𝑤 (𝑥, 𝑡) corresponds to a column of 𝐀. The SVD of 𝐀 can be expressed by [12]

𝐀 = 𝐔𝐒𝐕T (3)

here the subscript T denotes a transpose operator; 𝐔 is an 𝑀 ×𝑀 orthogonal matrix containing all the left singular vectors of unit
orms and 𝐕 is an 𝑁 × 𝑁 orthogonal matrix containing all the right singular vectors of unit norms, and 𝐒 is an 𝑀 × 𝑁 diagonal

matrix containing all the singular values; the 𝑖th left and right singular vectors are denoted by 𝐮𝑖 and 𝐯𝑖, respectively.
Let 𝜆𝑖 denote the 𝑖th singular values of 𝐀, and all 𝜆𝑖 in 𝐒 are numbered in a descending order such that 𝜆1 ⩾ 𝜆2 ⩾ ⋯ ⩾ 𝜆𝑀 . The

SVD in Eq. (3) aligns well with the POD in Eq. (1) by rewriting Eq. (3) as

𝐀 =
𝑀
∑

𝑖=1
𝐮𝑖

(

𝜆𝑖𝐯T𝑖
)

(4)

and 𝐮𝑖 and 𝜆𝑖𝐯T𝑖 can be considered as discrete 𝜙𝑖 (𝑥) and 𝑎𝑖 (𝑡), respectively. The 𝑖th POM, i.e., 𝐮𝑖, is an 𝑀-dimensional column vector
of a unit norm and corresponds to the spatial characteristics of 𝐀. The term 𝜆𝑖𝐯T𝑖 is an 𝑁-dimensional row vector and is directly
related to the contribution of 𝐮𝑖 to the formation of 𝐀 at different instants. Further, the contribution of 𝐮𝑖 can be quantified by 𝜆𝑖
since 𝐯𝑖 has a unit norm and

‖

‖

‖

𝜆𝑖𝐯T𝑖
‖

‖

‖2
= 𝜆𝑖

‖

‖

‖

𝐯T𝑖
‖

‖

‖2
= 𝜆𝑖 (5)

where ‖⋅‖2 calculate the 𝐿2-norm of a vector. Hence 𝐮𝑖 associated with a larger value of 𝜆𝑖 has a higher contribution to the formation
of 𝐀. When small-extent damage occurs to the structure, local anomalies will exist in 𝐀 in the neighborhood of the damage, and
they derive from 𝐮𝑖 associated with 𝐀.

2.2. Intensified local anomalies by CWT

The CWT with Gaussian wavelet functions is used to suppress global trends and intensify local anomalies in POMs of the guided
wavefield, i.e., 𝜙 (𝑥). The 𝑝th-order Gaussian wavelet function is derived from the Gaussian function, denoted by 𝑔 (𝑥), with a unit
𝐿2-norm and it can be expressed by [19]

𝑔(𝑝) (𝑥) = 𝐶𝑝
d𝑝(𝑔 (𝑥))

d𝑥𝑝
(6)

where the superscript (𝑝) denotes the 𝑝th-order spatial differentiation, 𝐶𝑝 is a constant with which 𝑔(𝑝) (𝑥) has a unit 𝐿2-norm. The
aussian function is expressed by

𝑔 (𝑥) = 4

√

2
𝜋
e−𝑥

2 (7)

The value of 𝑝 can be defined as the number of vanishing moments of 𝑔(𝑝) (𝑥), and one has [20]

∫

∞

−∞
𝑥𝑛𝑔(𝑝) (𝑥)d𝑥 = 0, 𝑛 = 0, 1,… , 𝑝 − 1 (8)

Further, the concept can be extended to a (𝑝 − 1)th-order polynomial, i.e., ∑𝑝−1
𝑘=0 𝑐𝑘𝑥

𝑘, such that

∫

∞

−∞

𝑝−1
∑

𝑘=0
𝑐𝑘𝑥

𝑘𝑔(𝑝) (𝑥)d𝑥 = 0 (9)

where 𝑐𝑘 is the 𝑘th coefficient of the polynomial. A family of Gaussian wavelet functions associated with 𝑔(𝑝) (𝑥) can be defined and
expressed by

𝑔(𝑝)𝑢,𝑠 (𝑥) =
1
√

𝑠
𝑔(𝑝)

(𝑥 − 𝑢
𝑠

)

(10)

where 𝑠 > 0 is termed as a scale parameter and 𝑢 ∈ R a translation parameter. The Gaussian wavelet functions in Eq. (10) with a
certain value of 𝑠 have a finite interval, denoted by [−𝜖 + 𝑢, 𝜖 + 𝑢], and one has 𝑔(𝑝)𝑢,𝑠 (𝑥) ≈ 0 outside the interval. The interval can be
termed as the non-zero interval of 𝑔(𝑝)𝑢,𝑠 (𝑥) and its width is defined to be equal to 2𝜖 and the value of 𝜖 is directly related to that of
𝑠. Note when discrete data are processed, 𝑔𝑝𝑢,𝑠 (𝑥) is generated on a discrete grid, and the number of points in the non-zero interval
3

can be approximated as ⌈(6𝑠 + 3)⌉, where ⌈⋅⌉ rounds a number up to the nearest integer.



Mechanical Systems and Signal Processing 189 (2023) 110052W. Zhou and Y.F. Xu

I

B
𝜙

w
a
w

Fig. 1. Schematic of the piecewise form of 𝑊𝑖 (𝑢, 𝑠) in Eq. (13). The function 𝑔(𝑝)𝑢,𝑠 (𝑥) has a finite non-zero interval 2𝜖 and zero is padded to 𝜙𝑖 (𝑥) for 𝑥 ∈ [−𝜖, 0]
and 𝑥 ∈ [𝐿,𝐿 + 𝜖].

By substituting 𝑔(𝑝)𝑢,𝑠 (𝑥) for 𝑔(𝑝) (𝑥) in Eq. (9) and considering the existence of the non-zero interval of 𝑔(𝑝)𝑢,𝑠 (𝑥), one has

∫

∞

−∞

𝑝−1
∑

𝑘=0
𝑐𝑘𝑥

𝑘𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥 = ∫

𝜖+𝑢

−𝜖+𝑢

𝑝−1
∑

𝑘=0
𝑐𝑘𝑥

𝑘𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥 = 0 (11)

A CWT coefficient of 𝜙𝑖 (𝑥) with 𝑔(𝑝) (𝑥) being the wavelet function can be defined and expressed by

𝑊𝑖 (𝑢, 𝑠) = ∫

∞

−∞
𝜙𝑖 (𝑥) 𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥 = ∫

𝐿

0
𝜙𝑖 (𝑥) 𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥 (12)

with 𝑢 ∈ [0, 𝐿], and 𝑊𝑖 (𝑢, 𝑠) can be rewritten in a piecewise form:

𝑊𝑖 (𝑢, 𝑠) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ 𝜖+𝑢
0 𝜙𝑖 (𝑥) 𝑔

(𝑝)
𝑢,𝑠 (𝑥)d𝑥, 𝑢 ∈ [0, 𝜖)

∫ 𝜖+𝑢
−𝜖+𝑢 𝜙𝑖 (𝑥) 𝑔

(𝑝)
𝑢,𝑠 (𝑥)d𝑥, 𝑢 ∈ [𝜖, 𝐿 − 𝜖]

∫ 𝐿
−𝜖+𝑢 𝜙𝑖 (𝑥) 𝑔

(𝑝)
𝑢,𝑠 (𝑥)d𝑥, 𝑢 ∈ (𝐿 − 𝜖, 𝐿]

(13)

The piecewise form is depicted in Fig. 1.
In the piecewise form, when 𝑢 ∈ [𝜖, 𝐿 − 𝜖], 𝜙𝑖 (𝑥) with 𝑥 ∈ [−𝜖 + 𝑢, 𝜖 + 𝑢] can be written as a sum of three components, including

the global trend 𝜙̂𝑖 (𝑥), local anomalies 𝜙̃𝑖 (𝑥), if existing, and white noise 𝜙̄𝑖 (𝑥), if existing, and 𝜙𝑖 (𝑥) can be expressed by

𝜙𝑖 (𝑥) = 𝜙̂𝑖 (𝑥) + 𝜙̃𝑖 (𝑥) + 𝜙̄𝑖 (𝑥) (14)

Assume that 𝜙̂𝑖 (𝑥) be well approximated by a 𝑑th-order polynomial such that

𝜙̂𝑖 (𝑥) =
𝑑
∑

𝑘=0
𝑐𝑘𝑥

𝑘 (15)

Substituting Eqs. (14) and (15) into Eq. (13), 𝑊𝑖 (𝑢, 𝑠) with 𝑢 ∈ [𝜖, 𝐿 − 𝜖] can be rewritten as

𝑊𝑖 (𝑢, 𝑠) = ∫

𝜖+𝑢

−𝜖+𝑢

𝑑
∑

𝑘=0
𝑐𝑘𝑥

𝑘𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥 + ∫

𝜖+𝑢

−𝜖+𝑢
𝜙̃𝑖 (𝑥) 𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥 + ∫

𝜖+𝑢

−𝜖+𝑢
𝜙̄𝑖 (𝑥) 𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥 (16)

f 𝑑 ⩽ 𝑝 − 1, the first term in Eq. (16), i.e., ∫ 𝜖+𝑢
−𝜖+𝑢

∑𝑑
𝑘=0 𝑐𝑘𝑥

𝑘𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥, vanishes based on Eq. (11) and one has

𝑊𝑖 (𝑢, 𝑠) = ∫

𝜖+𝑢

−𝜖+𝑢
𝜙̃𝑖 (𝑥) 𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥 + ∫

𝜖+𝑢

−𝜖+𝑢
𝜙̄𝑖 (𝑥) 𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥 (17)

y the application of the CWT to 𝜙𝑖 (𝑥) with 𝑔(𝑑+1)𝑢,𝑠 (𝑥), the effects of 𝜙̂𝑖 (𝑥) on 𝑊𝑖 (𝑢, 𝑠) can be suppressed while those of 𝜙̃𝑖 (𝑥) and
̄𝑖 (𝑥) are retained.

The modulus of 𝑊𝑖 (𝑢, 𝑠) is expressed by

|

|

𝑊𝑖 (𝑢, 𝑠)|| = |

|

|

∫ 𝜖+𝑢
−𝜖+𝑢 𝜙̃𝑖 (𝑥) 𝑔

(𝑝)
𝑢,𝑠 (𝑥)d𝑥 + ∫ 𝜖+𝑢

−𝜖+𝑢 𝜙̄𝑖 (𝑥) 𝑔
(𝑝)
𝑢,𝑠 (𝑥)d𝑥||

|

⩽ |

|

|

∫ 𝜖+𝑢
−𝜖+𝑢 𝜙̃𝑖 (𝑥) 𝑔

(𝑝)
𝑢,𝑠 (𝑥)d𝑥||

|

+ |

|

|

∫ 𝜖+𝑢
−𝜖+𝑢 𝜙̄𝑖 (𝑥) 𝑔

(𝑝)
𝑢,𝑠 (𝑥)d𝑥||

|

(18)

here |⋅| denotes an absolute value. Singularities exist in 𝜙̃𝑖 (𝑥) at damage areas of a structure and the value of 𝜙̃𝑖 (𝑥) vanishes
t otherwise intact areas of the structure. The modulus of wavelet coefficient of 𝜙̃𝑖 (𝑥), i.e., |

|

|

∫ 𝜖+𝑢
−𝜖+𝑢 𝜙̃𝑖 (𝑥) 𝑔

(𝑝)
𝑢,𝑠 (𝑥)d𝑥||

|

, increases
4

ith the value of 𝑠 in the neighborhoods of the damage [21]. However, the modulus of wavelet coefficient of white noise,



Mechanical Systems and Signal Processing 189 (2023) 110052W. Zhou and Y.F. Xu

c

t
e
e

2

2

d
d
s
s
i
t
n

d

a

T
f

2

b

i.e., ||
|

∫ 𝜖+𝑢
−𝜖+𝑢 𝜙̄𝑖 (𝑥) 𝑔

(𝑝)
𝑢,𝑠 (𝑥)d𝑥||

|

, decreases as the value of 𝑠 increases [21]. Therefore, there exists a threshold scale parameter denoted
by 𝑠0 such that

|

|

|

|

|

∫

𝜖+𝑢

−𝜖+𝑢
𝜙̄𝑖 (𝑥) 𝑔(𝑝)𝑢,𝑠0

(𝑥)d𝑥
|

|

|

|

|

≪ 1 (19)

and when 𝑠 ⩾ 𝑠0, one has

|

|

𝑊𝑖 (𝑢, 𝑠)|| ≈
|

|

|

|

|

∫

𝜖+𝑢

−𝜖+𝑢
𝜙̃𝑖 (𝑥) 𝑔(𝑝)𝑢,𝑠 (𝑥)d𝑥

|

|

|

|

|

(20)

Note that adverse effects of 𝜙̄𝑖 (𝑥) on |

|

𝑊𝑖 (𝑢, 𝑠)|| with 𝑢 ∈ [𝜖, 𝐿 − 𝜖] for damage identification are suppressed when 𝑠 ⩾ 𝑠0, and more
importantly, the existence of 𝜙̃𝑖 (𝑥) is localized and amplified.

While the integral interval of 𝑊𝑖 (𝑢, 𝑠) in Eq. (12) is equal to 2𝜖, this condition cannot be directly satisfied when 𝑢 ∈ [0, 𝜖) as the
available 𝜙𝑖 (𝑥) has a length of 𝜖 + 𝑢. Hence, zero with a length of 𝜖 − 𝑢 is padded to the low end 𝜙𝑖 (𝑥) so that the width of the
associated integral interval of 𝑊𝑖 (𝑢, 𝑠) becomes 2𝜖. In Eq. (13), when 𝑢 ∈ [0, 𝜖), 𝜙𝑖 (𝑥) with 𝑥 ∈ [−𝜖 + 𝑢, 𝜖 + 𝑢] also consists of three
omponents, including 𝜙̂𝑖 (𝑥), 𝜙̃𝑖 (𝑥) and 𝜙̄𝑖 (𝑥). However, the order of a polynomial that well approximates the zero-padded 𝜙̂𝑖 (𝑥)

will be greatly larger than those for 𝜙̂𝑖 (𝑥) with 𝑢 ∈ [𝜖, 𝐿 − 𝜖]. If the value of 𝑝 is determined based on 𝜙̂𝑖 (𝑥) with 𝑢 ∈ [𝜖, 𝐿 − 𝜖],
he effects of the zero-padded 𝜙̂𝑖 (𝑥) on 𝑊𝑖 (𝑢, 𝑠) cannot be well suppressed with 𝑢 ∈ [0, 𝜖), which leads to large |

|

𝑊𝑖 (𝑢, 𝑠)|| values
ven when a structure is intact in 𝑢 ∈ [0, 𝜖). This phenomenon is termed the edge-effect of wavelet transforms [22]. Similarly, the
dge-effects occur to 𝑊𝑖 (𝑢, 𝑠) with 𝑢 ∈ (𝐿 − 𝜖, 𝐿] due to the zero-padding to the high end of 𝜙𝑖 (𝑥) with 𝑥 ∈ [𝐿,𝐿 + 𝜖].

.3. Damage identification process

.3.1. Truncation for significant POMs
Damage sensitivity of structural characteristic deflection shapes, such as mode shapes and operational deflection shapes [23],

epends on locations and extent of damage [24]. Hence, one structural characteristic deflection shape can be insensitive to certain
amage or it cannot fully indicate the extent of the damage, which is analogous to POMs of guided wavefields. In practice, one
hould not use all available POMs of a guided wavefield for damage identification. The reason is that noise dominates small
ingular values [25], and their associated POMs have a small signal-to-noise ratio (SNR), which can lead to false-positive damage
dentification results. Hence, it is desirable to truncate the POMs such that significant POMs are used for damage identification
o reveal the local anomalies with higher confidence. Hence an adaptive truncation technique is developed here to determine the
umber of POMs to be used for damage identification.

In the truncation technique, an empirical threshold is defined to identify the significant POMs. The empirical threshold is
etermined to be

𝜏𝑒 = 𝜆1 × 5% (21)

nd the number of significant POMs is determined to be

𝑟 = argmin
𝑖

(

𝜆𝑖 − 𝜏𝑒
)

, 𝜆𝑖 ⩾ 𝜏𝑒 (22)

he empirical threshold assumes that POMs with 𝜆𝑖 less than 5% of 𝜆1 can be related to measurement noise and should be excluded
or damage identification.

.3.2. Determining proper orders of Gaussian wavelet functions
Similar to Ref. [26], the modal assurance criterion value is used to construct 𝜙̂𝑖 (𝑥) from 𝜙𝑖 (𝑥) with 𝑥 ∈ [−𝜖 + 𝑢, 𝜖 + 𝑢], which can

e calculated by [27]

MAC
(

𝜙𝑖 (𝑥) , 𝜙̂𝑖 (𝑥)
)

=

(

𝜙̂𝑖 (𝑥)T 𝜙𝑖 (𝑥)
)2

(

𝜙̂𝑖 (𝑥)T 𝜙̂𝑖 (𝑥)
) (

𝜙𝑖 (𝑥)T 𝜙𝑖 (𝑥)
)
× 100% (23)

and 𝜙̂𝑖 (𝑥) is determined by a polynomial in Eq. (15) with the minimum order 𝑑 with which MAC is greater than 90%. When all
𝜙̂𝑖 (𝑥) in 𝜙𝑖 (𝑥) with 𝑥 ∈ [−𝜖 + 𝑢, 𝜖 + 𝑢] are determined, where 𝑢 ∈ [𝜖, 𝐿 − 𝜖] and 𝑖 ∈ {1, 2,… , 𝑟}, the orders of the polynomials for all
𝜙̂𝑖 (𝑥), i.e., all obtained 𝑑, can be constructed as a two-dimensional matrix 𝐝. If a structure is subject to an excitation force that has
finite frequency components, the spatial frequency of measured guided waves will have finite frequency components such that a
majority of 𝜙̂𝑖 (𝑥) for significant 𝜙𝑖 (𝑥) with 𝑥 ∈ [−𝜖 + 𝑢, 𝜖 + 𝑢] can be well fitted by polynomials with similar orders. In other words,
the majority of entries of 𝐝 will be smaller than a certain threshold value. Meanwhile, there exist outliers of entries of 𝐝 that are
larger than the threshold value possibly due to the existence of local anomalies and noise as 𝜙̂𝑖 (𝑥) are constructed based on 𝜙𝑖 (𝑥).

Assuming that the entries of 𝐝 are well spread in a normal distribution, a statistical criterion is applied to assist determination
of the proper value of 𝑝. In the criterion, the upper bound in two standard deviations of the mean of the distribution is used and it
is calculated by
5

𝜏𝑝 = 𝜇 + 2𝜎 (24)
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Fig. 2. Flowchart of the proposed damage identification method.

where 𝜇 and 𝜎 denote the mean and standard deviation of all the entries of 𝐝, respectively. Note that 97.7% of entries of 𝐝 are
not greater than 𝜏𝑝 [28]. The criterion is capable of effectively ruling out the outliers in 𝐝 when determining the proper value of 𝑝.
When 𝑝 =

⌈

𝜏𝑝
⌉

+1, the effects of the majority of 𝜙̂𝑖 (𝑥) on 𝑊𝑖 (𝑢, 𝑠) can be suppressed. However, when 𝑝 is equal to an odd value and
an even one, the resulting 𝑊𝑖 (𝑢, 𝑠) displays zero-crossings and local extrema at the locations of structural damage, respectively. To
intensify the existence of damage as large values in the damage index to be formulated based on 𝑊𝑖 (𝑢, 𝑠), it is proposed that the
proper value of 𝑝 be an even value that is calculated by

𝑝 = 2
⌈ 𝜏𝑝 + 1

2

⌉

(25)

.3.3. Accumulative damage index
After determining the proper values of 𝑟 and 𝑝 using Eqs. (22) and (25), respectively, an accumulative damage index can be

constructed for damage identification. It is defined based on |

|

𝑊𝑖 (𝑢, 𝑠)|| with the 𝑝th order Gaussian functions associated with 𝑟
significant POMs:

𝛿 (𝑢, 𝑠) =
∑𝑟

𝑖=1
|

|

𝑊𝑖 (𝑢, 𝑠)||
2

max
∑𝑟

𝑖=1
|

|

𝑊𝑖 (𝑢, 𝑠)||
2

(26)

where |

|

𝑊𝑖 (𝑢, 𝑠)||
2 is used for further suppressing the effects of global trends and intensifying those of local anomalies. Note that

𝛿 (𝑢, 𝑠) ∈ [0, 1] and damage can be identified in neighborhoods with relatively high values of 𝛿 (𝑢, 𝑠) when 𝑠 > 𝑠0. However, there
is no universally proper value of 𝑠0 due to the fact that it depends on the unknown noise level of 𝑤 (𝑥, 𝑡). A feasible practice is to
present 𝛿 (𝑢, 𝑠) with a monotonically increasing value of 𝑠. An appropriate 𝑠 is the one beyond which consistent damage identification
results are observed. Besides, 𝑤 (𝑥, 𝑡) is obtained with 𝑀 measurement points in 𝑥 ∈ [0, 𝐿]. As 𝑔𝑝𝑢,𝑠 (𝑥) is generated on the discrete
grid, 𝑤 (𝑥, 𝑡) needs to be mapped to the discrete grid in the spatial domain. In other words, 𝑤 (𝑥, 𝑡) is obtained by uniform sampling
t unit intervals in the spatial domain. Hence, 𝑊𝑖 (𝑢, 𝑠) are calculated at scales 𝑠 ∈ (1,𝑀) [29]. In this study, the values of 𝛿 (𝑢, 𝑠)
re calculated in 𝑠 ∈ [2, 20] for the numerical and experimental investigations. A flowchart summarizing the proposed damage
dentification method is shown in Fig. 2.

. Numerical investigation

In this section, guided wavefields obtained from numerical simulations of an aluminum cantilever beam with damage in the
orms of two thickness reduction areas are studied by applying the proposed damage identification method. The effectiveness and
oise-robustness of the method is investigated and discussed.

.1. Numerical model of a damaged aluminum cantilever beam

The aluminum cantilever beam has a length of 300 mm, a width of 3 mm, and a height of 6 mm and its numerical model is
onstructed using the finite element modeling software ABAQUS. Two one-sided through-width thickness reduction areas with a
epth of 0.3 mm are introduced to the specimen as damage. Dimensions of the beam and the locations of the damage are shown
n Fig. 3. The damaged beam is made of aluminum with a mass density of 2700 kg/m3, Young’s modulus of 68.9 GPa, Poisson’s
atio of 0.33, and zero damping. The model of the damaged beam is built with the linear eight-node brick (C3D8R) elements. The
amaged beam is under zero initial conditions and subject to an 𝑁𝑐 -count wave packet force applied to the damaged side of the
ree end of the beam. The force can be analytically expressed by

ℎ (𝑡) = 𝐴
(

𝐻 (𝑡) −𝐻
(

𝑡 −
𝑁𝑐

))(

1 − cos
(

2𝜋𝑓𝑐 𝑡
))

sin
(

2𝜋𝑓𝑐 𝑡
)

(27)
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Fig. 3. Dimensions of the simulated damaged aluminum beam with two thickness reduction areas.

here 𝐴 defines the magnitude of the force, 𝐻 is the Heaviside function expressed by

𝐻 (𝑡) =

{

1, 𝑡 ⩾ 0
0, 𝑡 < 0

(28)

nd 𝑓𝑐 is the central frequency of the force. The values of 𝐴 and 𝑁𝑐 are chosen to be 0.5 N and 5, respectively, and four force
scenarios with different 𝑓𝑐 values, including 30 kHz, 50 kHz, 70 kHz, and 90 kHz, are selected in this investigation.

A guided wavefield of the damaged beam is obtained on a grid with 1001 measurement points that are evenly distributed along
the length of the intact side of the beam with a sampling frequency of 1.25 MHz. The measurement lasts for 2 ms after the excitation
force is applied. A total of 2501 snapshots are obtained in each excitation scenario. Guided wavefields in the first 0.5 ms with 𝑓𝑐 = 30
kHz, 50 kHz, 70 kHz, and 90 kHz are shown in Figs. 4(a) through (d), respectively. Fig. 4(a) shows the guided wavefield consists
of a guided wave generated from the free end, propagating toward the fixed end, and reflecting back and forth at the ends of the
beam. Reflections cannot be directly observed near the edges of the two damage areas, possibly due to their magnitudes being too
small. In Figs. 4(b) through (d), similar observations can be made regarding the three guided wavefields.

3.2. Numerical damage identification results

The effectiveness of the proposed damage identification method is investigated numerically based on the four guided wavefields
of the damaged beam. The use of snapshots in the whole sampling period can lead to false-positive identification results that local
anomalies exist near an excitation point [2]. To exclude the false-positive results by the proposed method, only snapshots after [26]

𝑡1 = 𝑡𝑒 + 𝑡𝑝 (29)

are used for POD, where 𝑡𝑒 and 𝑡𝑝 denote the ending instant and duration of ℎ (𝑡) in Eq. (27) , respectively. Values of 𝑡1 associated
with the four wavefields are listed in Table 1. Singular values of the wavefield associated with 𝑓𝑐 = 30 kHz are plotted in Fig. 5(a).
It can be seen that only the first ten singular values are larger than 𝜏𝑒 in Eq. (21), and the number of significant 𝜙𝑖 (𝑥), i.e., 𝑟, for
he wavefield is ten. The value of 𝑟 for the other three guided wavefields is determined and listed in Table 1. The matrix 𝐝 for
he ten significant 𝜙𝑖 (𝑥) is estimated and its entries for 𝑠 = 8 are shown in Fig. 5(b). It can be seen that the value of 𝑑 is equal
o either one or two, indicating that 𝜙̂𝑖 (𝑥) for the significant 𝜙𝑖 (𝑥) with 𝑥 ∈ [−𝜖 + 𝑢, 𝜖 + 𝑢] are well fitted by first- or second-orders
olynomials. The proper orders of Gaussian wavelet functions, i.e., 𝑝, with integer 𝑠 ∈ [2, 20] are determined and plotted in Fig. 5(c).
hen 𝑓𝑐 = 30 kHz, the values of 𝑝 are equal to 4, 6 and 8 when 𝑠 ∈ [2, 10], [11, 17] and [18, 20], respectively, and two boundaries

xist at 𝑠 = 10 and 17, as shown in Fig. 5(c). When, 𝑓𝑐 = 50 kHz, a similar observation can be made: the values of 𝑝 are equal to
ifferent values when 𝑠 fall in different ranges and three boundaries exist 𝑠 = 8, 13 and 19; such similar observations can be made
hen 𝑓𝑐 = 70 and 90 kHz, where 𝑠 ranges and boundaries differ from the other two scenarios. The observations verify that the value
f 𝑝 might increase with 𝑠 and 𝑓𝑐 , since an increase of 𝑠 will increase the length of 𝜙̂𝑖 (𝑥), i.e., 2𝜖, and that of 𝑓𝑐 will increase the
patial frequency of 𝜙̂𝑖 (𝑥). Increasing either of 2𝜖 or the spatial frequency of 𝜙̂𝑖 (𝑥) might require a polynomial with a higher order
o well approximate 𝜙̂𝑖 (𝑥).

Damage indexes based on Eq. (26) are obtained and shown in Fig. 6. In Fig. 6(a), consistently high 𝛿 (𝑢, 𝑠) values can be observed,
where the locations and extent of the damage are identified. Besides, a part of 𝛿 (𝑢, 𝑠) values beyond damage areas increase with 𝑠
and it is interesting to notice that the increasing trend of 𝛿 (𝑢, 𝑠) exists in three different 𝑠 ranges and they are the same as those
observed in Fig. 5(c), where 𝑝 values increases in different 𝑠 ranges. This is because increasing the value of 𝑠 can increase the length
of 𝜙̂𝑖 (𝑥), i.e., 2𝜖, and the effect of 𝜙̂𝑖 (𝑥) on 𝑊𝑖 (𝑢, 𝑠) cannot be suppressed completely by the same 𝑝 value in 𝑔(𝑝)𝑢,𝑠 (𝑥). In Figs. 6(b)
through (d), similar damage identification results are obtained, where consistently high 𝛿 (𝑢, 𝑠) are observed in damage areas, and
the increasing trend of 𝛿 (𝑢, 𝑠) exists in different 𝑠 ranges. The zoomed-in views of 𝛿 (𝑢, 𝑠) obtained from the guided wavefield with
𝑓𝑐 = 50 kHz nearby two damage areas are shown in Figs. 6(e) and (f). It can be seen that high 𝛿 (𝑢, 𝑠) values mainly exist in the two
amage areas so that the consistently high 𝛿 𝑢, 𝑠 values can accurately identify the locations and extent of the damage.
7
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Fig. 4. Guided wavefields of the damaged beam in the first 0.5 ms with 𝑓𝑐 being (a) 30 kHz, (b) 50 kHz, (c) 70 kHz and (d) 90 kHz. Edges of the two damage
areas are depicted by vertical dotted lines. For better comparison, the amplitudes of the guided wavefield shown in each figure are normalized so that its
maximum value is equal to one.

Table 1
The determined values of 𝑡1 and number of significant 𝜙𝑖 (𝑥), i.e., 𝑟 for the numerical
investigation and experimental validation.
𝑓𝑐 (kHz) Numerical investigation Experimental validation

𝑡1 (ms) 𝑟 𝑡1 (ms) 𝑟

30 0.3344 10 0.6560 25
50 0.2000 13 0.5128 53
70 0.1440 16 0.4536 56
90 0.1120 18 0.4200 61

To investigate the noise robustness of the proposed method, white Gaussian noise is added to the guided wavefield with 𝑓𝑐 = 50
kHz at four noise levels such that the resulting four noise-contaminated guided wavefields have SNRs of 50 dB, 45 dB, 40 dB and 35
B. Fig. 7 shows 𝛿 (𝑢, 𝑠) obtained from the noise-contaminated guided wavefields. In Fig. 7(a) and its zoomed-in views Figs. 7(e) and
f), when 𝑠 < 3 consistently high 𝛿 (𝑢, 𝑠) values are observed on the damaged and intact areas of the beam, and the damage cannot
e identified based on 𝛿 (𝑢, 𝑠). However, when 𝑠 ⩾ 3 consistently high 𝛿 (𝑢, 𝑠) values can be observed solely in the neighborhoods of
he damage, and the locations and extent of the damage can be identified. It is verified that the effects of 𝜙̄𝑖 can be well suppressed
y increasing the value of 𝑠 and the value of 𝑠0 in Eq. (19) is close to 3 for the guided wavefield with the SNR of 50 dB. In Figs. 7(b)
hrough (d), damage can also be identified based on consistently high 𝛿 𝑢, 𝑠 values. Besides, it can be seen that the value of 𝑠 is
8
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Fig. 5. (a) Singular values of the guided wavefield with 𝑓𝑐 = 30 kHz, (b) the value of 𝑑 for significant 𝜙𝑖 (𝑥) of the guided wavefield with 𝑓𝑐 = 30 kHz when
= 8 and (c) 𝑝 for suppressing 𝜙̂𝑖 (𝑥) for the four guided wavefields in the numerical investigation. The empirical threshold for determining significant 𝜙𝑖 (𝑥) is
epicted by the horizontal dotted line in (a).

lose to 4, 5, and 6 for the guided wavefield with the SNR of 45 dB, 40 dB and 35 dB respectively, which increases with the noise
level.

4. Experimental validation

In this section, experimental investigations on the effectiveness of the proposed method were conducted on a damaged aluminum
cantilever beam with damage in the form of a one-sided thickness reduction area.

4.1. Experimental test specimen and its guided wavefield

The damaged aluminum cantilever beam had a length of 868 mm, a width of 25.6 mm, and a thickness of 3.5 mm. A one-sided
hickness reduction area with a length of 40 mm was introduced to a side of the beam between 𝑥 = 408 mm and 448 mm. Dimensions

of the beam and the damage area are depicted in Fig. 8(a). A schematic of the experimental setup is shown in Fig. 8(b). A STEMiNC
SMD07T02R412WL circular lead-zirconate-titanate (PZT) actuator was glued on the damaged side of the free end of the beam
to generate excitation forces in the form of a five-count wave packet as described in Eq. (27). The excitation forces had four 𝑓𝑐 ,
ncluding 30 kHz, 50 kHz, 70 kHz and 90 kHz. A Tektronix AFG3022C function generator was used to generate the excitation forces.

Krohn-Hite 7500 amplifier was used to amplify the excitation forces to the peak-to-peak amplitude of 150 V and the amplified
xcitation force signals were monitored by a Tektronix TBS2104 oscilloscope. A Polytec PSV-500-HV SLDV was employed to measure
uided waves on a scan line assigned to the middle of the intact side along the length of the damaged aluminum cantilever beam. A
9

otal of 3010 measurement points were evenly distributed along the scan line. The guided waves were measured with a pre-trigger of
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Fig. 6. Numerical damage identification results obtained from the guided wavefields with 𝑓𝑐 being (a) 30 kHz, (b) 50 kHz, (c) 70 kHz, (d) 90 kHz, (e) a
oomed-in view of the damage area in (b) near 𝑢 = 100 mm and (f) a zoomed-in view of the damage area in (b) near 𝑢 = 200 mm. The boundaries of layers of
alues of 𝑝 are depicted by the horizontal dotted lines. Edges of the two damage areas are depicted by vertical dotted lines in (e) and (f).
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Fig. 7. Numerical damage identification results obtained from the noise-contaminated guided wavefields with SNR being (a) 50 dB, (b) 45 dB, (c) 40 dB, (d)
35 dB, (e) a zoomed-in view of the damage area in (a) near 𝑢 = 100 mm and (f) a zoomed-in view of the damage area in (a) near 𝑢 = 200 mm. The boundaries
of layers of values of 𝑝 are depicted by the horizontal dotted lines. Edges of the two damage areas are depicted by vertical dotted lines in (e) and (f).
11
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Fig. 8. (a) Dimensions of the damaged aluminum beam with a thickness reduction area in the experimental validation and (b) the schematic of the experimental
setup to measure guided wavefields of the damaged aluminum beam.

0.3 ms, a sampling frequency of 1.25 MHz, a measurement period of 10 ms, and 50 averages were conducted for each measurement
point. The pre-trigger was added to ensure that the guided waves of each measurement point was synchronized such that guided
wavefields of the beam could be correctly presented. The averaged guided waves of all measurement points were reconstructed as a
one-dimensional guided wavefield at each measurement snapshot. Two denoising techniques were used for the guided wavefields.
One was a high-pass finite impulse response filter with 10 kHz cutoff frequency. The other was the numerical smoothing with
weighted quadratic least squares and a first-order polynomial model, which is calculated at the measurement point within an interval
that consists of 0.5% of all measurement points, i.e., 15 measurement points.

Guided wavefields of the damaged beam in the first 1.5 ms with 𝑓𝑐 = 30 kHz, 50 kHz, 70 kHz and 90 kHz are shown in Figs. 9(a)
through (d), respectively. Fig. 9(a) shows the guided wavefield consisted of a guided wave generated from the free end, propagating
toward the fixed end, reflecting back and forth, and attenuating with 𝑡 due to the existence of damping. Besides, reflections could
ot be easily observed near the edges of the damage area, possibly due to the amplitudes of the reflections caused by the damage
eing too low to be observed. However, local anomalies caused by the superposition of propagating waves and reflected waves can
e observed in the damage area. In Figs. 9(b) through (d), similar observations can be made regarding the respective wavefields,
ut local anomalies are not obvious as those in the wavefield with 𝑓𝑐 = 30 kHz.

.2. Experimental damage identification results

The effectiveness of the proposed damage identification method was investigated experimentally based on four guided wavefields
12

f the damaged beam, which contain snapshots after 𝑡1 listed in Table 1. The POD was performed based on snapshots of the four
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Fig. 9. Guided wavefields of the damaged beam in the first 1.5 ms with 𝑓𝑐 being (a) 30 kHz, (b) 50 kHz, (c) 70 kHz and (d) 90 kHz. Edges of the damage
area are depicted by two vertical dotted lines. For better comparison, the amplitudes of the guided wavefield shown in each figure are normalized so that its
maximum value is equal to one.

guided wavefields. Fig. 10(a) shows singular values of the guided wavefield with 𝑓𝑐 = 30 kHz. It can be seen that only 25 singular
alues were larger than 𝜏𝑒 in Eq. (21) so that the number of significant 𝜙𝑖 (𝑥), i.e., 𝑟, for the wavefield was determined to be 25.

The values of 𝑟 for the other three guided wavefields were determined and listed in Table 1. The values of 𝑝 with integer 𝑠 ∈ [2, 20]
were determined from the 𝑟 significant 𝜙𝑖 (𝑥) of the four guided wavefields, as shown in Fig. 10(b). When 𝑓𝑐 = 30 kHz, the values
of 𝑝 were equal to 4, 6 and 8 when 𝑠 ∈ [2, 10], [11, 18] and [19, 20], respectively, and two boundaries existed at 𝑠 = 10 and 18, as
shown in Fig. 10(c). When, 𝑓𝑐 = 50 kHz, a similar observation could be made: the values of 𝑝 were equal to different values when
𝑠 fell in different three ranges and two boundaries existed 𝑠 = 8 and 15; such similar observations could be made when 𝑓𝑐 = 70 and
90 kHz, where the 𝑠 ranges and boundaries differed from the other two scenarios.

Damage indexes were then calculated and shown in Fig. 11. In Figs. 11(a), consistently high 𝛿 (𝑢, 𝑠) values could be observed
when nearly 𝑠 ⩾ 5, where the location and extent of the damage could be identified. The effects of noise were mainly suppressed
when 𝑠 ⩾ 5, but a part of effects even existed with a higher value of 𝑠. In Figs. 11(b) through (d), consistently high 𝛿 (𝑢, 𝑠) were
also observed in the neighborhoods of the damage area when nearly 𝑠 ⩾ 5. Besides, a part of 𝛿 (𝑢, 𝑠) values beyond damage areas
increased with 𝑠 and it is interesting to notice that the trend of increasing 𝛿 (𝑢, 𝑠) existed in different 𝑠 ranges and they were the
same as those observed in Fig. 10(c), where 𝑝 values increased in different 𝑠 ranges. The zoomed-in views of 𝛿 (𝑢, 𝑠) associated with
the guided wavefields with 𝑓𝑐 = 30 and 50 kHz centered at the damage area were shown in Figs. 11(e) and (f), respectively. It can
be seen that high 𝛿 (𝑢, 𝑠) values mainly existed in the damage area, and the consistently high 𝛿 (𝑢, 𝑠) values could accurately identify
13
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Fig. 10. (a) Singular values of the guided wavefield with 𝑓𝑐 = 30 kHz and (b) 𝑝 for suppressing 𝜙̂𝑖 (𝑥) for the four guided wavefields in the experimental
alidation. The empirical threshold for determining significant 𝜙𝑖 (𝑥) is depicted by the horizontal dotted line in (a).

. Concluding remarks

In this paper, a baseline-free structural damage identification method is developed for beam-like structures based on POMs
f guided wavefields. The number of significant POMs is determined by an adaptive truncation technique, and it is shown local
nomalies caused by the existence of damage exist in the significant POMs. Effects of global trends and noise of the significant POMs
an be suppressed by the CWT with Gaussian wavelet functions of a proper order and scale parameters larger than a threshold scale
arameter, respectively, and local anomalies of the significant POMs can be intensified by the CWT. The proper orders of Gaussian
avelet functions are successfully determined based on the modal assurance criterion and statistical criterion. The threshold scale
arameter depends on noise levels, and its value can be obtained by observing damage identification results associated with different
cale parameters. The effectiveness of the proposed method is investigated with different scenarios of damage and excitation forces.
t was found that (1) the proposed method can accurately identify the location and extent of damage, and (2) the proposed method
s robust for different scenarios of damage, excitation forces and measurement noise. In future works, it is worthwhile to conduct
nvestigations on the location of damage at the end of beam-like structures by using POMs of guided wavefields.
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Fig. 11. Experimental damage identification results obtained from the guided wavefields with 𝑓𝑐 being (a) 30 kHz, (b) 50 kHz, (c) 70 kHz, (d) 90 kHz, (e) a
zoomed-in view of the damage area in (a) and (f) a zoomed-in view of the damage area in (b). The boundaries of layers of values of 𝑝 are depicted by the
horizontal dotted lines. Edges of the damage area are depicted by two vertical dotted lines in (e) and (f).
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