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A B S T R A C T

Metamaterials have garnered significant research interest over the past few decades, primarily due to their

unique properties not found in naturally occurring materials. However, when integrated into operational

engineering structures, metamaterials can sustain damage, compromising their extraordinary attributes and

potentially leading to structural failure. This work marks a novel advancement in the field of metamaterials

research, providing an in-depth analysis into the impact of damage on the structural dynamic properties

of finite acoustic metamaterials (AMMs) consisting of periodic locally resonant mass-in-mass units. A modal

sensitivity analysis is formulated based on equations of motion of a damaged AMM, along side with associated

eigenvalue problem and frequency response functions. The critical role of the internal spring is analytically

revealed in determining the effective mass of a damaged unit. To evaluate the effects of damage on AMMs, an

extensive numerical investigation is conducted on a finite AMM; an damage index is proposed for measuring

the modal deformation of each spring. It is unequivocally demonstrated that frequency response functions,

eigenvalues, and mode shapes of damaged AMMs undergo substantial changes at frequencies near bandgaps

and these changes diminish as frequencies move away from the bandgaps. This behavior directly corresponds

to the frequency-dependent changes in the effective mass of a mass-in-mass unit due to damage. Hence, this

work constitutes a leap forward in our understanding of the structural dynamics of damaged metamaterials and

offers valuable insights that could facilitate the development of more effective damage identification techniques

and the realization of resilient metamaterial-based structures.
1. Introduction

Acoustic metamaterials (AMMs) are engineered structures designed

to exhibit effective material properties not found in naturally existing

materials [1–5]. Similar to phononic crystals [6,7], AMMs typically

onsist of small-sized unit cells arranged in a periodic pattern, resulting

n frequency ranges within which acoustic/elastic waves are blocked

rom propagating. These frequency ranges are commonly referred to

s bandgaps. AMMs offer potential for various applications for ma-

ipulating sound waves and suppressing vibrations [8–11]. In recent

ears, there has been growing interest in developing locally resonant

MMs, which are designed with explicit resonant mechanisms [12–15].

ocally resonant AMMs are particularly interesting due to their ability

o generate bandgaps for waves with wavelengths much larger than

he characteristic size of the corresponding carrier structures, enabling

ow-frequency vibration and sound attenuation. A locally resonant

MM typically includes resonator mechanisms, as first demonstrated

n Ref. [1], where hard metal spheres embedded in soft rubber created
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such a mechanism, and in-depth analytical modeling and discussion

of the mechanism can be found in Refs. [16–19]. Since then, novel

designs of locally resonant AMMs have rapidly evolved, including

two-dimensional phononic stubbed plates [20], internally resonating

lattices [21], metamaterial plates [22], and periodic architected lat-

tices [23]. These innovative designs continue to expand the potential

applications and versatility of locally resonant AMMs in various fields.

Although AMMs have shown remarkable properties that can lead

to various potential applications, current research often assumes that

AMMs are free from damage through manufacturing, installation, and

operation. In reality, damage occurrences cannot be ignored, as they

significantly shorten the service life of the structure, increase safety

risks, and incur maintenance costs [24–26]. For instance, the emer-

gence of additive manufacturing has expanded the capability for realiz-

ing various AMM designs [27–29]. However, microscopic and mesoscale

defects [30,31], such as porosity, can occur in additively manufactured

AMMs and are undesirable, as they contribute to the failure of the
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materials. Additionally, wear and cracks during operation could arise
due to factors like workpiece falls, operator inexperience [32], and
fatigue [33,34]. Hence, it is essential to develop methods for detecting
damage in AMMs at an early stage to guarantee timely maintenance
and repairs. Research on AMMs and their potential applications has
been ongoing for decades, and there is still much to learn about these
materials. By integrating the awareness of damage occurrence into the
development of AMMs, the design and manufacturing of more resilient
and reliable metamaterial-based structures can be achieved.

Meanwhile, extensive research has been conducted on damage de-
tection for engineering structures and components, investigating both
transient and steady-state structural dynamic features. Transient fea-
tures include acoustic emission (AE) [35,36] and guided waves [37,
38]. AE is an instantaneous result of damage occurrence, referring
to the release of sound waves [35,39]. These sound waves typically
carry high-frequency energy, and abrupt increases in sound pressure
levels can indicate damage in various forms, such as fatigue [40]
and cracks [41]. Guided wave damage detection is a well-developed
nondestructive evaluation technique based on irregularities in wave
propagation due to damage [42–44]. These methods have proved sen-
sitive to small and internal damage, such as delamination [45,46]
and debonding [47,48]. However, AE methods often require real-time
monitoring, and guided wave methods may need fine-tuned excitation,
which in return limit their feasibility. Steady-state features, such as
modal strains [49,50] and modal parameters [51], offer more ro-
bust damage detection. Strain sensors can detect changes in modal
strains, which are effective for localizing damage. One type of such
sensor is fiber optic sensor, and they have been applied for structural
health monitoring for large-scale infrastructures [52,53]. Vibration-
based methods involve changes in frequency response functions and
modal parameters of structures [51,54]. Natural frequencies are consid-
ered global properties, while mode shapes and their changes are local
properties. Both have proven effective for damage location, but each
has its limitations. Recent developments in computer vision and com-
putational power have improved vibration-based damage detection,
proving efficient for online monitoring of visible surface damage, such
as cracks [55] and scratches [56]. The effectiveness of these methods
depends on the resolution and frame rates of the cameras. Effective
damage detection methods have been developed for various structures,
ranging from simple components to complex structures [57].

When applying damage detection to AMMs, an immediate challenge
is addressing production uncertainties [58,59], which are particularly
relevant for additively manufactured AMMs. These uncertainties can
arise from variations in material properties [60,61] and manufactur-
ing tolerances [62,63]. They can lead to discrepancies between the
actual structure and the idealized model, resulting in false positives or
negatives in detection results [64]. Moreover, measurement errors can
introduce uncertainties in the identification of irregularities and abnor-
malities in transient and steady-state responses of AMMs, further com-
plicating damage detection and localization. To address the challenges
posed by production uncertainties and measurement errors, researchers
are exploring advanced signal processing techniques, improved sensor
technologies, and robust statistical methods to enhance the sensitivity
and specificity of vibration-based damage detection approaches. How-
ever, there is limited understanding of how damage-sensitive modal
parameters and unique structural parameters of acoustic metamaterials
can be used for damage detection. Investigating the sensitivity of these
parameters in locally resonant AMMs is crucial for developing more
resilient and reliable metamaterial-based structures.

This work focuses on the modal sensitivity of finite locally resonant
AMMs. The influence of damage on the structural dynamic properties of
the AMMs is examined. Equations of motion are presented for damaged
finite AMMs. The effective mass of a damaged mass-in-mass unit is for-
mulated. Effects of stiffness changes of the external and internal springs
on the effective mass are discussed. The sensitivity of the eigenvalues of
2

the AMMs to damage is derived, and the mode shape changes caused by
damage are considered. Changes in effective mass and eigenvalues due
to damage are quantified. The modal assurance criterion is employed
to quantify mode shape changes caused by damage. A damage index
is proposed for theoretical studies of the local effects of damage on
modal deformations of internal and external springs of the AMMs. A
comprehensive numerical investigation is conducted on a finite locally
resonant AMM to quantitatively demonstrate the effects of a damaged
mass-in-mass unit on the effective mass, frequency response functions,
eigenvalues, mode shapes, and modal deformations.

The remaining part of this paper is outlined as follows. The equa-
tions of motion for the damaged finite locally resonant AMM is formu-
lated in Section 2. Formulations to quantify the influence of damage
on the effective mass and to conduct modal sensitivity analysis for
AMMs are proposed in Sections 3.1 and 3.2, respectively. The numerical
investigation is described and discussed in Section 4. Conclusions of this
work are presented in Section 5.

2. Structural dynamics of damaged finite locally resonant AMMs

In the following section, equations of motion are derived for ex-
amining the structural dynamic properties of a damaged finite locally
resonant AMM.

A one-dimensional locally resonant mass-in-mass unit consists of
an internal rigid mass and an external one, and the two masses are
connected by an internal linear spring . A finite locally resonant AMM is
formed by 𝑁 such mass-in-mass units that are connected by 𝑁−1 iden-
tical external linear springs and placed periodically with a spacing 𝐿.
The AMM is shown in Fig. 1, and it has free-free boundary conditions.

The equation of motion for the 𝑗th external mass, which is neither
the 1st nor 𝑁th one, can be expressed by

𝑚(𝑗)
1 𝑢̈(𝑗)1 −𝑘(𝑗−1)1 𝑢(𝑗−1)1 +

(

𝑘(𝑗−1)1 + 𝑘(𝑗)1 + 𝑘(𝑗)2

)

𝑢(𝑗)1 −𝑘(𝑗)2 𝑢(𝑗)2 −𝑘(𝑗)1 𝑢(𝑗+1)1 = 𝑓 (𝑗)
1 ,

(1)

where an overdot denotes differentiation with respect to time 𝑡, 𝑚(𝑗)
1

is 𝑗th external mass, 𝑘(𝑗)1 and 𝑘(𝑗)2 are the stiffness of the 𝑗th external
and internal springs, respectively, 𝑢(𝑗)1 and 𝑢(𝑗)2 are the displacements of
the 𝑗th external and internal masses, respectively, and 𝑓 (𝑗)

1 is the force
applied to 𝑚(𝑗)

1 . The equations of motion of the 1st and 𝑁th external
masses are

𝑚(1)
1 𝑢̈(1)1 +

(

𝑘(1)1 + 𝑘(1)2

)

𝑢(1)1 − 𝑘(1)1 𝑢(2)1 − 𝑘(1)2 𝑢(1)2 = 𝑓 (1)
1 (2)

and

𝑚(𝑁)
1 𝑢̈(𝑁)

1 − 𝑘(𝑁−1)
1 𝑢(𝑁−1)

1 +
(

𝑘(𝑁−1)
1 + 𝑘(𝑁)

2

)

𝑢(𝑁)
1 − 𝑘(𝑁)

2 𝑢(𝑁)
2 = 𝑓 (𝑁)

1 , (3)

respectively. The equation of motion of the 𝑗th inner mass is

𝑚(𝑗)
2 𝑢̈(𝑗)2 − 𝑘(𝑗)2 𝑢(𝑗)1 + 𝑘(𝑗)2 𝑢(𝑗)2 = 𝑓 (𝑗)

2 , (4)

where 𝑚(𝑗)
2 is 𝑗th internal mass with 𝑗 being an integer ranging between

1 and 𝑁 , and 𝑓 (𝑗)
2 is the force applied to 𝑚(𝑗)

2 . Based on Eqs. (1) through
(4), the equations of motions of the entire AMM can be written in a
matrix form:

𝐌𝐱̈ +𝐊𝐱 = 𝐟 , (5)

where

𝐌 =
[

𝐌1 𝟎
𝟎 𝐌2

]

(6)

denotes the mass matrix, in which

𝐌1 = diag
(

𝑚(1)
1 𝑚(2)

1 … 𝑚(𝑗)
1 …𝑚(𝑁)

1

)

(7)

is an 𝑁 ×𝑁 diagonal matrix,

𝐌 = diag
(

𝑚(1) 𝑚(2) … 𝑚(𝑗) …𝑚(𝑁)
)

(8)
2 2 2 2 2
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Fig. 1. Finite locally resonant AMM with 𝑁 one-dimensional mass-in-mass units. The structural components of each unit, including the internal and external masses and springs,

can be modified to simulate various damage scenarios.
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is an 𝑁 ×𝑁 diagonal matrix and 𝟎 denotes an 𝑁 ×𝑁 zero matrix,

=
[
𝑥
(1)
1 𝑥

(2)
1 … 𝑥

(𝑁)
1 𝑥

(1)
2 𝑥

(2)
2 … 𝑥

(𝑁)
2

]T
(9)

denotes a 2𝑁-dimensional displacement vector, in which the super-

script T denotes matrix transpose,

𝐊 =
[

𝐊1 −𝐊2
−𝐊2 𝐊2

]
(10)

denotes the stiffness matrix, in which

𝐊1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘
(1)
1 + 𝑘(1)2 −𝑘(1)1 … 0 0

−𝑘(1)1 𝑘
(1)
1 + 𝑘(2)1 + 𝑘(2)2 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 𝑘
(𝑁−2)
1 + 𝑘(𝑁−1)

1 + 𝑘(𝑁−1)
2 −𝑘(𝑁−1)

1

0 0 … −𝑘(𝑁−1)
1 𝑘

(𝑁−1)
1 + 𝑘(𝑁)

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

s an 𝑁 ×𝑁 symmetric matrix and

2 = diag
(
𝑘
(1)
2 𝑘

(2)
2 … 𝑘

(𝑗)
2 … 𝑘

(𝑁)
2

)
(12)

s an 𝑁 ×𝑁 diagonal matrix and

=
[
𝑓
(1)
1 𝑓

(2)
1 … 𝑓

(𝑁)
1 𝑓

(1)
2 𝑓

(2)
2 … 𝑓

(𝑁)
2

]T
(13)

enotes a 2𝑁-dimensional force vector. The equations of motion in

q. (5) facilitate the manipulation of the structural parameters of the

MM and thereby the simulation of both its intact and damaged states.

The corresponding eigenvalue problem and frequency response

unctions are presented in Appendix A to facilitate comprehensive

nvestigation of the structural dynamic properties of a damaged AMM.

. Quantification of influence of structural damage on AMMs

In this section, the intact and damaged states of the AMM in Fig. 1

re defined. Formulations are provided for investigation of the influ-

nce of damage on the effective mass of a mass-in-mass unit, natural

requencies, mode shapes, and modal deformations of the AMM.

A typical intact AMM has all 𝑁 identical mass-in-mass units with

(𝑗)
1 = 𝑚1 , (14)

(𝑗) = 𝑚 , (15)
2 2
(𝑗)
1 = 𝑘1 , (16)

nd

(𝑗)
2 = 𝑘2 (17)

or all 𝑗, where 𝑚1 and 𝑚2 denote the mass of intact external and

nternal masses, respectively, and 𝑘1 and 𝑘2 denote the stiffness of

ntact external and internal springs, respectively. While decrease of

tiffness are often resulted by the occurrence of damage to a structure

n practice [51], the simultaneously resulted decrease of its mass are so

mall that they can be considered negligible. Hence it is assumed that

nly 𝑘
(𝑗)
𝜆
decreases and 𝑚

(𝑗)
𝜆
remains unchanged when damage occurs to

he AMM in this work. A damage scenario of the 𝑗th mass-in-mass unit

an be described by introducing non-dimensional structural integrity

arameters 𝜁
(𝑗)
1 and 𝜁

(𝑗)
2 such that

(𝑗)
1 = 𝜁 (𝑗)1 𝑘1 (18)

nd

(𝑗)
2 = 𝜁 (𝑗)2 𝑘2 . (19)

or the 𝑗th mass-in-mass unit, its external spring is considered in-

act and completely damaged when 𝜁
(𝑗)
1 is equal to 1 and 0, respec-

ively. Similarly, its internal spring is considered intact and completely

amaged when 𝜁
(𝑗)
2 is equal to 1 and 0, respectively.

.1. Effective mass of damaged mass-in-mass unit

A mass-in-mass unit can be represented by a single mass and the

oncept of effective mass is discussed in Ref. [18]. The effective mass

ssociated with a mass-in-mass unit when it is intact can be expressed

y a function of 𝜔:

eff (𝜔) = 𝑚1 +
𝑚2𝜔

2
0

𝜔2
0 − 𝜔

2
, (20)

where

𝜔0 =

√
𝑘2
𝑚2

(21)

calculates the intact local resonance frequency of 𝑚2. Based on Eq. (20),

𝑚eff is not related to the value of 𝑘1 but by those of 𝑚1, 𝑚2 and 𝑘2. By

non-dimensionalizing 𝜔 in Eq. (20) with 𝜔0, one has

𝑚 (𝜔̄) = 𝑚 +
𝑚2

, (22)
eff 1 1 − 𝜔̄2
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where

𝜔̄ = 𝜔
𝜔0

(23)

enotes the non-dimensional frequency. When 𝜔̄ approaches to 1, the
alue of 𝑚eff will become unbounded. Especially, when 𝜔̄ approaches
o 1 from below and above, 𝑚eff approaches to positive and negative
nfinite, respectively. In cases of 𝑚eff < 0 and 𝑚eff ≫ 1 for a mass-
n-mass unit, the vibration magnitude of its associated external mass
ill be reduced, and the reduction will become significant when 𝜔̄ ≈ 1.
ased on Eqs. (19) and (20), the effective mass of the 𝑗th mass-in-mass
nit, when damage occurs and causes changes to 𝑘(𝑗)2 , can be expressed
y

(𝑗)
ef f (𝜔) = 𝑚1 +

𝑚2𝜁
(𝑗)
2 𝜔2

0

𝜁 (𝑗)2 𝜔2
0 − 𝜔2

(24)

and its non-dimensionalized form is

𝑚(𝑗)
ef f (𝜔̄) = 𝑚1 +

𝑚2𝜁
(𝑗)
2

𝜁 (𝑗)2 − 𝜔̄2
. (25)

he effective mass in Eqs. (24) and (25) further demonstrates that while
the occurrence of damage can alter the values of 𝜁 (𝑗)1 and 𝜁 (𝑗)2 , it only
affects the effective mass when 𝜁 (𝑗)2 changes and remains unrelated to
𝜁 (𝑗)1 . A normalized effective mass is defined by

𝑚̄(𝑗)
ef f (𝜔̄) =

𝑚(𝑗)
ef f

𝑚total
, (26)

here

total = 𝑚1 + 𝑚2 (27)

alculates the total mass of the intact unit, and when 𝜔̄ = 0, 𝑚̄(𝑗)
ef f = 1

or all 𝜁 (𝑗)2 .
Based on Eq. (25), the significant vibration magnitude reduction

f 𝑚(𝑗)
1 will occur when 𝜔̄ ≈

√

𝜁 (𝑗)2 . Further, 𝑚(𝑗)
ef f and 𝑚̄(𝑗)

ef f can be
considered to be local properties of the 𝑗th unit as their values are only
determined by the internal structural parameters of the 𝑗th unit. To
quantify the effects of the damage-caused reduction of 𝑘(𝑗)2 on 𝑚̄(𝑗)

ef f , the
amage-caused change of 𝑚̄(𝑗)

ef f is defined by

𝑚̄(𝑗)
ef f (𝜔̄) = 𝑚̄(𝑗)

ef f (𝜔̄) − 𝑚̄eff (𝜔̄) , (28)

where

𝑚̄eff (𝜔̄) =
𝑚eff
𝑚total

(29)

alculates the intact normalized effective mass. The effective mass
hange 𝛥𝑚̄(𝑗)

ef f is a function of 𝜔̄, and a non-zero 𝛥𝑚̄(𝑗)
ef f can void the typi-

al definition of a bandgap for the AMM in its intact state, where mag-
itudes of elastic waves decrease with constant frequency-dependent
ecay rates. However, 𝛥𝑚̄(𝑗)

ef f is locally confined to the 𝑗th damaged
nit and its impact on the overall vibration reduction and elastic
ave suppression functionalities can be limited. However, it is worth

nvesting its effects on the vibration parameters of the AMM through
odal sensitivity analysis.

.2. Modal sensitivity analysis

.2.1. Sensitivity of natural frequencies
When damage occurs and cause decrease of stiffness of the springs of

he AMM, a non-zero variation 𝛿𝐊 is introduced to 𝐊 in the eigenvalue
roblem in Eq. (A.1) and it leads to variations of 𝜔2

𝑘 and 𝝓𝑘 that are
enoted by 𝛿𝜔2

𝑘 and 𝛿𝝓𝑘, respectively. The eigenvalue problem of such
damaged AMM can be expressed by [65]

𝐊 + 𝛿𝐊 −𝐌
(

𝜔2 + 𝛿𝜔2)] (𝝓 + 𝛿𝝓
)

= 𝟎 . (30)
4

𝑘 𝑘 𝑘 𝑘
xpanding and rearranging Eq. (30) yield

𝐊 − 𝜔2
𝑘𝐌

)

𝝓𝑘+𝛿𝐊
(

𝝓𝑘 + 𝛿𝝓𝑘
)

−𝛿𝜔2
𝑘𝐌

(

𝝓𝑘 + 𝛿𝝓𝑘
)

+
(

𝐊 − 𝜔2
𝑘𝐌

)

𝛿𝝓𝑘 = 𝟎 .

(31)

ased on Eq. (A.1) and
T
𝑘
(

𝐊 − 𝜔2
𝑘𝐌

)

𝛿𝝓𝑘 = 𝟎 , (32)

re-multiplying both sides of Eq. (31) by 𝝓T
𝑘 yields

T
𝑘𝛿𝐊

(

𝝓𝑘 + 𝛿𝝓𝑘
)

− 𝝓T
𝑘𝛿𝜔

2
𝑘𝐌

(

𝝓𝑘 + 𝛿𝝓𝑘
)

= 𝟎 . (33)

q. (33) can be written as
T
𝑘𝛿𝐊𝝓̃𝑘 = 𝛿𝜔2

𝑘𝝓
T
𝑘𝐌𝝓̃𝑘 , (34)

here

̃𝑘 = 𝝓𝑘 + 𝛿𝝓𝑘 (35)

enotes the 𝑘th damaged mode shape vector. The vector 𝝓̃𝑘 can be
ormalized such that
T
𝑘𝐌𝝓̃𝑘 = 1 (36)

nd Eq. (34) becomes
T
𝑘𝛿𝐊𝝓̃𝑘 = 𝛿𝜔2

𝑘 . (37)

n many current vibration-based damage identification works, it has
een a commonly accepted assumption that 𝛿𝝓𝑘 ≈ 𝟎, i.e., 𝝓̃𝑘 ≈ 𝝓𝑘,
hich is, however, false for the AMM. When an internal spring of a
nit is damaged, decreasing the value of 𝜁 (𝑗)2 , 𝛥𝑚̄(𝑗)

ef f in Eq. (28) can
e extremely large values at certain frequencies. Such large changes of
̄ eff can introduce abrupt non-negligible changes to mode shapes of the
MM associated with the frequencies aligning with those of 𝛥𝑚̄(𝑗)

ef f .
Based on Eqs. (37) and (A.3), the percentage relative change of the

th natural frequency [66,67] of the AMM due to damage is defined by

𝑘 =

√

𝜔2
𝑘 + 𝛿𝜔2

𝑘 − 𝜔𝑘

𝜔𝑘
× 100% =

⎛

⎜

⎜

⎝

√

√

√

√1 +
𝛿𝜔2

𝑘

𝜔2
𝑘

− 1
⎞

⎟

⎟

⎠

× 100% . (38)

The value of 𝑟𝑘 ranges between 0% and 100%, and it is capable of
indicating occurrence of damage and quantifying the influence of the
damage on 𝜔𝑘 in a relative sense. Further, when plotted as a function
of 𝜔̄, it inspects the relation between values of the natural frequency
changes and their closeness to bandgaps or other specific frequency
ranges. For the same damage severity at different spring elements, a
higher value of 𝑟𝑘 indicates that the 𝑘th mode is more sensitive to the
damage, while a smaller value of 𝑟𝑘 indicates the opposite.

3.2.2. Sensitivity of mode shapes and modal deformations of springs
The sensitivity of 𝜔𝑘 to damage at certain location is consistent with

that mode shapes. To quantify the overall effects of damage on the 𝑘th
mode shape, the modal assurance criterion (MAC) is used, which can
be expressed by [68]

MAC𝑘 =

(

𝝓H
𝑘 𝝓̃𝑘

)∗ (
𝝓H
𝑘 𝝓̃𝑘

)

(

𝝓H
𝑘𝝓𝑘

)

(

𝝓̃
H
𝑘 𝝓̃𝑘

) × 100% , (39)

where the superscripts ∗ and H denote complex conjugation and Her-
mitian transpose, respectively. The value of MAC𝑘 ranges from 0% to
100%, and MAC𝑘 quantifies the similarity between 𝝓𝑘 and 𝝓̃𝑘: the
higher the value of MAC𝑘 the more similar the two mode shapes are. Its
values 0% and 100% indicate that the two mode shapes are orthogonal
and completely correlated, respectively. Note that MAC𝑘 quantifies the
overall effects of damage on mode shapes rather than local effects of
the damage.
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Inspection of local effects of the damage on 𝝓𝑘 can be achieved
by point-by-point comparisons between modal deformations of the
springs associated with 𝝓𝑘 and 𝝓̃𝑘. When the AMM is intact, the modal
deformation of the 𝑗th intact external and internal springs associated
with the 𝑘th mode are defined as

𝛥𝜙(𝑗)𝑢
1,𝑘 = 𝜙(𝑗)

1,𝑘 − 𝜙(𝑗−1)
1,𝑘 (40)

nd

𝜙(𝑗)𝑢
2,𝑘 = 𝜙(𝑗)

2,𝑘 − 𝜙(𝑗)
1,𝑘 , (41)

espectively. A modal deformation damage index is defined based on
odal deformations of each spring, and it is expressed by

(𝑗)
𝜆,𝑘 =

|

|

|

𝛥𝜙(𝑗)𝑑
𝜆,𝑘 − 𝛥𝜙(𝑗)𝑢

𝜆,𝑘
|

|

|

max𝑗=1,2,…,𝑛,𝛾=1,2
|

|

|

𝛥𝜙(𝑗)𝑢
𝜆,𝑘

|

|

|

, (42)

where 𝛥𝜙(𝑗)𝑑
𝜆,𝑘 denotes the modal deformation of the 𝑗th damaged exter-

nal or internal spring associated with the 𝑘th mode, in which

𝛥𝜙(𝑗)𝑑
1,𝑘 = 𝜙(𝑗)

1,𝑘 − 𝜙(𝑗−1)
1,𝑘 (43)

and

𝛥𝜙(𝑗)𝑑
2,𝑘 = 𝜙(𝑗)

2,𝑘 − 𝜙(𝑗)
1,𝑘 , (44)

nd 𝑗 = 1, 2,… , 𝑛, 𝛾 = 1, 2max ||
|

𝛥𝜙(𝑗)𝑢
𝜆,𝑘

|

|

|

calculates the maximum absolute
entry of the 𝑘th modal deformation of the spring when the AMM is
intact. The value of 𝜂(𝑗)𝜆,𝑘 in Eq. (42) is non-negative and ranges from

to 1. It quantifies the influence of the damage on mode shapes in a
pring-by-spring manner and the sensitivity of the defamation of each
pring to the damage. While some AMM elements in a structure may
ot be accessible for displacement/deformation measurements, 𝜂(𝑗)𝜆,𝑘 is
ot suitable for damage identification but ideal for localizing effects of
amage on a mode shape for theoretical study purposes.

. Numerical investigation

In the following section, a comprehensive numerical investigation
s presented to elucidate the quantitative influence of damage on the
MM using the formulations provided in Section 3. An intact finite
MM with 𝑁 = 20 identical mass-in-mass units is simulated with
1 = 10 kg, 𝑚2 = 4 kg, 𝑘1 = 60 GN/m, 𝑘2 = 6 GN/m and 𝐿 = 0.1 m;

he local resonance frequency is calculated to be 𝜔0 = 3.87 × 104 rad/s
sing Eq. (21). Three damage scenarios are introduced to the AMM by
educing 𝜁 (7)2 to 98%, 90%, and 70%, simulating damage ranging from
inor to medium severities.

.1. Dispersion analysis and damage influence on effective mass

An infinitely long AMM consisting of the above described intact
ass-in-mass units is first considered for harmonic wave propagation

nd estimation of the bandgap of the finite AMM. As a major feature
f the infinite AMM, the bandgap exists within which harmonic waves
ith certain frequencies are blocked from propagation. The lower and
pper limits of the bandgap can be calculated by [69]

𝜔̄ = 1
√

2

√

√

√

√

(

1 +
𝑚2
𝑚1

+
4𝑚2𝑘1
𝑚1𝑘2

)

−

√

(

1 +
𝑚2
𝑚1

+
4𝑚2𝑘1
𝑚1𝑘2

)2
−

16𝑚2𝑘1
𝑚1𝑘2

(45)

and

𝜔̄ =
√

1 +
𝑚2
𝑚1

, (46)

espectively. The values of the lower and upper limits of the infinite
MM are calculated to be 𝜔̄ = 0.9869 and 𝜔̄ = 1.1832, respectively.
ote that at the upper limit of the bandgap one has 𝑚(𝑗) = 0 but at
5

eff
he lower limit of the bandgap 𝑚(𝑗)
ef f ≠ 0. The complete derivation for

he dispersion relation associated with an infinite AMM is provided
n Appendix B. The band structure of the infinite AMM is plotted in
ig. 2 as a complex-valued function of 𝜔̄:

𝐿 (𝜔̄) = 𝛼 + j𝛽 . (47)

t the lower and upper limits of the bandgap, the values of cosh (𝑞𝐿)
n Eq. (B.19) are equal to −1 and 1, respectively. Within the identified
andgap, one has|cosh (𝑞𝐿)| > 1 that gives 𝛼 > 0 and 𝛽 = 0 or 𝜋. With
> 0, a propagating harmonic wave of a frequency within the bandgap

s suppressed and eventually blocked from propagation in the AMM as
he absolute value of ℎ in Eqs. (B.3) and (B.4) increases.

When all the mass-in-mass units are intact, the rate of the elas-
ic wave suppression is constant and proportional to the value of 𝛼
hroughout the infinite AMM. The rate determines the distance by
hich a wave of a frequency within the bandgap can propagate before

ts magnitude becomes zero or negligibly small. When a unit is intact,
(𝑗)
ef f is calculated using Eq. (22) and plotted in Fig. 3(a). One mecha-

nism for the decay is the existence of negative 𝑚(𝑗)
ef f [18]. When 𝑚(𝑗)

ef f < 0
the acceleration of the effective single mass representing the 𝑗th unit
is in the opposite direction of its net applied force according to the
Newton’s second law of motion, and the magnitude of its displacement,
which can be represented by 𝑢(𝑗)1 , will be reduced; the higher the
value of |

|

|

𝑚(𝑗)
ef f

|

|

|

the larger the reduction of the magnitude. Unlike an
intact infinite AMM, a bandgap cannot be defined for a damaged finite
AMM based on the dispersion analysis of a unit, since damaged units
are different from an intact unit, which in effect breaks the assumed
periodicity of the units of the infinite AMM. This is consistent with the
discussion regarding 𝛥𝑚̄(𝑗)

ef f in Section 3.1.
When its 7th unit is damaged under the three scenarios, 𝑚̄(7)

ef f is
plotted in Fig. 3 and compared with that of the corresponding intact
unit. The three damaged 𝑚̄(7)

ef f have a pattern similar to the intact 𝑚̄(𝑗)
ef f .

Compared with the intact 𝑚̄(𝑗)
ef f , both the lower and upper bounds of

the ranges of 𝜔̄ within which the 𝑚̄(7)
ef f < 0 simultaneously change to

lower values, and the quantitative changes depend on the severity of
the damage, as shown in Fig. 3(b). Besides, significant increases of 𝑚(7)

ef f
can be identified within the neighborhood of the lower bound of the
bandgap associated with the intact AMM due to the occurrence of the
damage, as shown in Fig. 3(c). For the damaged unit, when 𝜔̄ is smaller
than the lower bound of 𝜔̄ for negative 𝑚̄(7)

ef f , the larger the value of 𝜔̄,
the larger increases of 𝑚(7)

ef f ; when 𝜔̄ is larger than the upper bound of 𝜔̄
for negative 𝑚̄(7)

ef f , the smaller the value of 𝜔̄, the larger decrease of 𝑚(7)
ef f .

A severer damage corresponds to a wider frequency range within which
non-negligible changes of 𝑚(7)

ef f exists. These damage-caused frequency-
dependent features of 𝑚(𝑗)

ef f , can introduce frequency-dependent changes
to vibration characteristics of the AMMs. More importantly, significant
changes of the characteristics can be expected in frequencies where the
value of 𝛥𝑚̄(𝑗)

ef f is large.

4.2. Influence on frequency response functions

When the finite AMM is intact and damaged in the three sce-
narios, associated end-to-end frequency response functions, denoted
by ℎ(20)1,(1)1, are calculated using Eq. (A.4) and plotted in Fig. 4(a).
The frequency response function ℎ(20)1,(1)1 corresponds to the dynamic
output-to-input relation between the external masses of the last and
first units. The magnitudes of the damaged ℎ(20)1,(1)1 drastically decrease
within the band gap associated with an intact unit, compared with
those of the intact ℎ(20)1,(1)1.

At frequencies beyond but close to the edges of bandgap, the
influence of the damage on ℎ(20)1,(1)1 is identified. An enlarged view
of ℎ(20)1,(1)1 at frequencies between 𝜔̄ = 0.975 and 𝜔̄ = 0.99 is shown in
Fig. 4(b). At frequencies other than those near the magnitude peaks, the
magnitude floor of ℎ(20)1,(1)1 of a damaged AMM is generally lower than

that of the intact AMM. Further, the magnitude peaks of ℎ(20)1,(1)1 are
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Fig. 2. Band structure of the mass-in-mass unit, showing the real (a) and imaginary (b) parts obtained from the dispersion relation given in Eq. (B.19). The bandgap is represented

y the frequency range in which a non-zero 𝛼 value exists, and it is highlighted as a shaded area.
Fig. 3. Effects of damage on the mass-in-mass unit in the AMM. (a) Normalized effective mass 𝑚̄(7)
ef f of the intact mass-in-mass unit and the 7th unit with damage corresponding

to 𝑘
(7)
2 = 𝜁

(7)
2 𝑘2, where 𝜁

(7)
2 = 0.98, 0.90, and 0.70. (b) Enlarged view of 𝑚̄

(𝑗)
ef f of the intact mass-in-mass unit and the 7th unit with damage shown in (a). (c) Changes of effective

ass 𝛥𝑚̄
(7)
ef f due to the structural damage, and (d) an enlarged view of 𝛥𝑚̄

(7)
ef f shown in (c). The bandgap associated with the intact unit is highlighted as a shaded area.
s

p

hifted to lower frequencies, which indicates the natural frequencies of

he acoustic modes are lowered due to the occurrence of the damage,

hich will be further discussed in Section 4.3.1. An enlarged view of

(20)1,(1)1 between 𝜔̄ = 0.5 and 𝜔̄ = 0.975 is shown in Fig. 4(c). The
ifferences among intact and damaged ℎ(20)1,(1)1 gradually diminish as
𝜔̄ approaches to 𝜔̄ = 0.5, and they become less noticeable when 𝜔̄

approaches to 0.
An enlarged view of ℎ(20)1,(1)1 between 𝜔̄ = 1.16 and 𝜔̄ = 1.26 is

hown in Fig. 4(d). When the AMM is damaged, the first magnitude

eak at the natural frequency that is higher than the higher edge of the
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Fig. 4. Effects of damage on the end-to-end frequency response function ℎ(20)1,(1)1 of the AMM. (a) Magnitudes of ℎ(20)1,(1)1 for both intact and damaged AMM. (b) Enlarged view

f (a) highlighting significant damage effects at frequencies near the lower edge of the bandgap, between 𝜔̄ = 0.975 and 0.99. (c) Enlarged view of (a) illustrating diminishing

amage effects at frequencies ranging from 𝜔̄ = 1 to 0.5. (d) Enlarged view of (a) displaying less significant damage effects at frequencies near the upper edge of the bandgap,

etween 𝜔̄ = 1.16 and 1.26. The bandgap associated with the intact unit is highlighted as a shaded area.
t

a

f

b

f

s

a

4

d

t

m

s

t

i

𝜙

d

𝜙

bandgap is shifted to lower frequencies and enters the bandgap. The

third magnitude peak at the natural frequency higher than the higher

edge of the bandgap is also shifted due to the damage. Though similar

shifts occurs to magnitude peaks corresponding to other magnitude

peaks, the frequency changes of the shifts become smaller and smaller

as 𝜔̄ increases.

The influences of damage on the frequency response functions

directly correspond to 𝛥𝑚̄
(7)
ef f in Fig. 3. This derives from the consistency

that the larger the value of 𝛥𝑚̄
(7)
ef f , the greater the impact on the

frequency response function in Fig. 4. Conversely, the smaller the value

of 𝛥𝑚̄
(7)
ef f , the less the changes in the frequency response function. The

latter is evident in ℎ(20)1,(1)1 with 𝜔̄ ≥ 2: nearly no changes in the

requency response functions can be seen, which aligns with 𝛥𝑚̄
(7)
ef f in

the same frequency range.

4.3. Influence on modal parameters

4.3.1. Influence on natural frequencies

Natural frequencies of the elastic modes of the intact and damaged

AMMs are calculated by solving the eigenvalue problem in Eq. (A.1),

based on which benchmark 𝛿𝜔2
𝑘
associated with 𝜁

(7)
2 = 0.98 and 𝜁 (7)2 =

.70 are obtained and plotted in Fig. 5(a) and (b), respectively. The
hanges of eigenvalues are then calculated as 𝝓H

𝑘
𝛿𝐊𝜙𝑘 using Eq. (37)

nd plotted in Fig. 5(a) and (b), and they compare well with the

enchmark ones, and this comparison verifies Eq. (37). In most existing

amage identification works, the assumption that 𝜙𝑘 = 𝜙𝑘 can be

proved false for the finite AMMs by calculating 𝝓H
𝑘
𝛿𝐊𝝓𝑘 and plotted

in Fig. 5(a) and (b). Certain 𝝓H𝛿𝐊𝝓 values do not compare well with

𝑘 𝑘
he benchmark 𝛿𝜔2
𝑘
and 𝝓H

𝑘
𝛿𝐊𝜙𝑘, indicating that 𝜙𝑘 does not well

pproximate 𝜙𝑘 at the certain modes.

The influence of the damage on the natural frequencies can be

urther understood by inspecting 𝑟𝑘, and it is calculated using Eq. (38)

and plotted as a function of 𝜔̄ in Fig. 5(c). For the same damage

scenario, relatively large 𝑟𝑘 values cluster in the neighborhoods of the

andgap of the intact AMM, and smaller 𝑟𝑘 values are found when 𝜔̄

is farther away from the bandgap. In addition, a severer damage yields

a larger 𝑟𝑘 value as indicated in Fig. 5(c) and (d). These observations

generally align with 𝛥𝑚̄
(7)
ef f : the closer to the bandgap, the larger the

changes, though some 𝑟𝑘 do not monotonically decrease as 𝜔̄ deviates

rom the bandgap. Such inconsistency derives from the fact that the

ensitivity of the elastic modes to the damage at a unit is inconsistent

nd the inconsistency depends on the location of the damage [70].

.3.2. Influence on mode shapes and modal deformations

Mode shapes associated with the elastic modes of the intact and

amaged finite AMMs are obtained from the solutions to their respec-

ive eigenvalue problems. The mode shapes of their 4th and 14th elastic
odes, denoted by 𝜙4 and 𝜙14, respectively, are shown in Fig. 6. Anti-

ymmetry of 𝜙4 and 𝜙14 can be observed for 𝑚
(𝑗)
1 and 𝑚

(𝑗)
2 with respect

o its middle point, and the anti-symmetry [71], for the mode shapes

n this work, can be expressed by

𝑘,(𝑗)𝜆 = −𝜙𝑘,(𝑁−𝑗+1)𝜆 (48)

with 𝑘 = 4 or 14 and 1 ≤ 𝑗 ≤
⌊
𝑁

2

⌋
;𝑁 = 20 for the finite AMM. When the

amage occurs, no noticeable difference can be identified by comparing

4 and the corresponding one of the damaged AMM, denoted by 𝜙4,

as shown in Fig. 6(a) and (c). However, significant differences can be
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Fig. 5. Effects of damage on eigenvalues and natural frequencies of the AMM. (a) Changes in eigenvalues of the AMM for 𝜁
(7)
2 = 0.98, and (b) changes in eigenvalues for 𝜁 (7)2 = 0.70.

c) Relative changes in natural frequencies of the damaged AMM as a function of 𝜔̄, highlighting that the impact of damage is most significant near the bandgap. (d) Enlarged

iew of (c), illustrating that the effects of damage increase with greater damage severity. The bandgap associated with the intact AMM is highlighted as a shaded area in (c) and

d).
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observed by comparing 𝜙14 in Fig. 6(b) and the corresponding one of

the damaged AMM, denoted by 𝜙14 in Fig. 6(d): the anti-symmetry is

voided, and more importantly, significant differences of 𝜙14 exist in

14,(𝑗)𝜆 with 𝑗 ∈ [1, 7]. The effects of the damage on 𝜙4 and 𝜙14 are

ifferent mainly because changes of 𝑚
(7)
ef f due to the damage depend

on 𝜔, since 𝜔4 and 𝜔14 are far beyond and close to the bandgap,

respectively. Similar observations can be made for some other mode

shapes: mode shapes associated with natural frequencies that are far

beyond and close to the bandgap display insignificant and significant

changes due to the damage, respectively.

MAC values between 𝜙𝑘 and 𝜙𝑘 corresponding to the intact and

damaged AMMs are calculated using Eq. (38) and plotted in Fig. 5. In

Fig. 7(a), it can be observed that the occurrence of the damage signifi-

cantly affects the mode shapes of the 6th through 20th elastic modes. As
shown in Fig. 7(b), the mode shapes associated with natural frequencies

lose to the lower bound of the bandgap are affected to a noticeable

xtent due to the damage. However, the mode shapes associated with

atural frequencies close to the higher bound of the bandgap are not

ignificantly affected. These observations are inconsistent with those

egarding the affects of the damage on the natural frequencies shown

n Fig. 5(c). By comparing 𝑟𝑘 in Fig. 5(c) and MAC in Fig. 7(b), it can

be observed that 𝑟𝑘 is less indicative to the occurrence of the damage

han MAC, as the former has significantly smaller values than those of

he latter. However, the latter usually requires extensive measurements

hat could be less feasible in practice.

The damage indexes 𝜂
(𝑗)
𝜆,𝑘

associated with 𝜙4 and 𝜙14 of the AMM

with 𝜁
(7)
2 = 0.90 are calculated using Eq. (42) and plotted in Fig. 8(a)

and (b), respectively. It can be seen that the location of the damage can

be directly identified based on 𝜂
(𝑗)
where the largest index value exists
𝜆,4 c
at the entry corresponding to 𝑘
(7)
2 while 𝜂

(𝑗)
𝜆,𝑘

corresponding to other

prings remain relatively small. However, the location of the damage

annot be easily identified based on 𝜂
(𝑗)
𝜆,14 though the damage has an

arger impact is observed on the MAC value corresponding to the mode

hape than that corresponding to the 14th mode shape. Though 𝜂(𝑗)
𝜆,14

cannot indicate the location of the damage, one can witness the local

effect of the damage by identifying the location where an abrupt change

of the 14th mode shape occurs, i.e., at 𝑚(7)
2 .

. Conclusions

This paper presents a thorough examination of the modal sensitivity

f finite acoustic metamaterials (AMMs) composed of periodic locally

esonant mass-in-mass units when subjected to damage. These findings

ormulate a unique perspective to understanding the dynamic structural

roperties of damaged AMMs. This work first derives the equations of

otion for damaged AMMs, and it introduces a novel framework for

uantitatively analyzing the damage effects on the effective mass of a

amaged mass-in-mass unit, considering changes in the stiffness of the

nternal and external springs. The effective mass is analytically shown

o be influenced by the changes in stiffness of the internal spring rather

han its external counterpart. This work inspects the sensitivity of the

igenvalues and mode shapes to damage using the modal assurance

riterion.

Additionally, this work presents a comprehensive numerical investi-

ation of a finite damaged AMM. It is demonstrated that the frequency

esponse functions, eigenvalues, and mode shapes of the AMM can

isplay significant changes at frequencies near its bandgap. As frequen-
ies deviate from the bandgap, these changes are shown to gradually
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Fig. 6. Effects of damage on mode shapes of the AMM. Normalized mode shapes of the 4th mode in the (a) intact and (b) damaged AMMs. Normalized mode shapes of the

14th mode in the (c) intact and (d) damaged AMMs. The 4th mode shapes appear similar in both intact and damaged AMMs, suggesting that this mode is insensitive to damage.

Conversely, the 14th mode shapes differ with the loss of anti-symmetry in the damaged mode shape, indicating a high sensitivity to damage.
Fig. 7. Effects of damage on MAC values between the mode shapes of the intact AMM and those of the damaged AMM. MAC values plotted as functions of (a) 𝑘 and (b) 𝜔̄. The

MAC values reveal that the effects of damage are more significant for modes in the range of the 10th to 20th modes in (a), and for modes with natural frequencies near the lower

edge of the bandgap in (b). The bandgap associated with the intact unit is highlighted as a shaded area in (b).
diminish, which reaffirms the role of the frequency-dependent effec-

tive mass of a damaged mass-in-mass unit. Moreover, it reveals that

significant disruptions can occur to the symmetry or anti-symmetry
inherent in a mode shape of an intact AMM due to damage. The

severity of this disruption is directly related to the proximity of the

natural frequency associated with the mode shape to the bandgap,
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Fig. 8. Effects of damage on modal deformation of the AMM. The modal deformation damage indexes associated with (a) 𝜙4 and (b) 𝜙14 are depicted for the AMM with 𝜁
(7)
2 = 0.90.

hile 𝜙4 exhibits less sensitivity to the damage, its modal deformation damage index better indicates the location of the damage compared to that of 𝜙14.
e

f

c

𝑚

t

2

ℎ

m

v

𝜙

𝑘

A

d

providing valuable insights into the dynamic effects of damage on

such AMMs. All these observations, along with the analysis framework,

establish a foundational understanding of the effects of damage on the

structural dynamic properties of AMMs and device the development of

effective damage identification techniques for structures incorporating

metamaterials. This work contributes to the field of structural dynamics

of damaged metamaterials and could lead to more resilient and reliable

metamaterial-based structures across a wide array of applications.
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Appendix A

Modal parameters, including natural frequencies and mode shapes,

of the AMM in Fig. 1 at its intact and damaged states can be esti-

ated by solving an eigenvalue problem formulated using 𝐌 and 𝐊
n Eq. (5) [72]:(
𝐊 −𝐌𝜔2)𝝓 = 𝟎, (A.1)
𝑘 𝑘
where 𝜔2
𝑘
and 𝝓𝑘 denote the 𝑘th eigenvalue and eigenvector, respec-

tively, and 𝜔𝑘 is termed as the 𝑘th circular natural frequency. An

ntry of 𝝓𝑘 corresponding to 𝑚
(𝑗)
𝜆
with 𝜆 being 1 or 2 is denoted by

𝜙
(𝑗)
𝑘,𝜆
. By mass-normalizing 𝝓𝑘 for all 𝑘, 𝝓𝑘 satisfies the orthonormality

conditions that are expressed by

𝝓T
𝑘
𝐌𝝓𝑘 = 1 (A.2)

and

𝝓T
𝑘
𝐊𝝓𝑘 = 𝜔2

𝑘
. (A.3)

In this work, all 𝝓𝑘 are mass-normalized using the orthogonality con-

ditions.

In experimental modal analysis, the modal parameters, including 𝜔𝑘
and 𝝓𝑘 are usually estimated based on measured frequency response

unctions. The frequency response function matrix of the AMM in Fig. 1

an be expressed using 𝐌 and 𝐊 in Eq. (5) [73]:

𝐇 (𝜔) =
(
𝐊 −𝐌𝜔2)−1 , (A.4)

where 𝜔 denote the circular frequency. An entry of 𝐇 is denoted by

ℎ(𝑗)𝜆,(𝑞)𝛾 , and ℎ(𝑗)𝜆,(𝑞)𝛾 quantifies the response-to-excitation relation with
(𝑗)
𝜆
and 𝑚

(𝑞)
𝛾 being the response and excitation points, respectively, in

he frequency domain, where 𝛾 is an integer being equal to either 1 or
and 𝑞 is an integer ranging between 1 and 𝑁 . The entry ℎ(𝑗)𝜆,(𝑞)𝛾 (𝜔)

can be expressed in a partial fraction form [74]:

(𝑗)𝜆,(𝑞)𝛾 (𝜔) =
𝑁∑
𝑘=1

⎛⎜⎜⎝
𝑄𝑘𝜙

(𝑗)
𝜆,𝑘
𝜙
(𝑞)
𝛾,𝑞

j𝜔𝑘 − j𝜔
+
𝑄∗
𝑘
𝜙
(𝑗)∗
𝜆,𝑘
𝜙
(𝑞)∗
𝛾,𝑞

−j𝜔𝑘 − j𝜔

⎞⎟⎟⎠ , (A.5)

where j =
√
−1, 𝑄𝑘 is the scaling factor associated with the 𝑘th

ode, and the subscript ∗ denotes complex conjugation. When 𝜔 = 𝜔𝑘,
the AMM undergoes resonance, where magnitudes of ℎ(𝑗)𝜆,(𝑞)𝛾 and 𝑢

(𝑗)
𝛾

become unbounded. With a measured ℎ(𝑗)𝜆,(𝑞)𝛾 , one can estimate the

alue of 𝜔𝑘 at peaks of the magnitude plot of ℎ(𝑗)𝜆,(𝑞)𝛾 if both 𝜙
(𝑞)
𝛾,𝑞 and

(𝑗)
𝜆,𝑘

are not equal to zero, i.e., both 𝑚
(𝑗)
𝜆
and 𝑚

(𝑞)
𝛾 are not nodes of the

th mode shape.

ppendix B

For an infinitely long AMM consisting of intact mass-in-mass units

escribed in Fig. 1, the governing equations of its 𝑗th unit can expressed
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𝑢

a

𝑢

w

W

d

b
p
E

𝑚

a

c

s
p

{

T

by
[

𝑚1 0
0 𝑚2

]

{

𝑢̈(𝑗)1

𝑢̈(𝑗)2

}

+
[

2𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2

]

×

{

𝑢(𝑗)1

𝑢(𝑗)2

}

+
[

−𝑘1 −𝑘1
0 0

]

{

𝑢(𝑗−1)1

𝑢(𝑗+1)1

}

=
{

0
0

}

. (B.1)

A harmonic wave solution to Eq. (B.1) can be expressed by

⎧

⎪

⎨

⎪

⎩

𝑢(𝑗)1 = 𝑢(𝑗)1,+𝑥 + 𝑢(𝑗)1,−𝑥

𝑢(𝑗)2 = 𝑢(𝑗)2,+𝑥 + 𝑢(𝑗)2,−𝑥

, (B.2)

where 𝑢(𝑗)𝛾,+𝑥 and 𝑢(𝑗)𝛾,−𝑥 are propagating components of the solution that
advance in the +𝑥 and −𝑥 directions, respectively. Denote the position
of the 𝑗th unit by 𝑥, for the (𝑗 + ℎ)th unit, the propagating components
can be expressed by

𝑢(𝑗+ℎ)𝛾,+𝑥 = 𝐵𝛾,+𝑥ej(𝜔𝑡−𝑞𝑥)e−ℎ𝑞𝐿 (B.3)

and

𝑢(𝑗+ℎ)𝛾,−𝑥 = 𝐵𝛾,−𝑥ej(𝜔𝑡+𝑞𝑥)eℎ𝑞𝐿 , (B.4)

where 𝐵𝛾,+𝑥 and 𝐵𝛾,−𝑥 are the complex wave amplitudes, j =
√

−1,
and 𝑞𝐿 is the dimensionless wave number. Based on Eq. (B.3), 𝑢(𝑗)𝛾,+𝑥
is expressed by

𝑢(𝑗)1,+𝑥 = 𝐵1,+𝑥ej(𝜔𝑡−𝑞𝑥) (B.5)

and

𝑢(𝑗)2,+𝑥 = 𝐵2,+𝑥ej(𝜔𝑡−𝑞𝑥) . (B.6)

For the (𝑗 − 1)th and (𝑗 + 1)th units, one has

𝑢(𝑗−1)1,+𝑥 = 𝐵1,+𝑥ej(𝜔𝑡−𝑞𝑥)e𝑞𝐿 = 𝑢(𝑗)1,+𝑥e
𝑞𝐿 (B.7)

and

𝑢(𝑗+1)1,+𝑥 = 𝐵1,+𝑥ej(𝜔𝑡−𝑞𝑥)e−𝑞𝐿 = 𝑢(𝑗)1,+𝑥e
−𝑞𝐿 , (B.8)

respectively.
When the harmonic solution contains only propagating components

that advance in the +𝑥 direction, one has

𝑢(𝑗)1 = 𝑢(𝑗)1,+𝑥 (B.9)

and

𝑢(𝑗)2 = 𝑢(𝑗)2,+𝑥 . (B.10)

Substituting Eqs. (B.5) through (B.10) into Eq. (B.1) and rearranging
the resulting equations yield
[

−𝜔2𝑚1 + 2𝑘1 − 𝑘1
(

e𝑞𝐿 + e−𝑞𝐿
)

+ 𝑘2 −𝑘2
−𝑘2 −𝜔2𝑚2 + 𝑘2

]

×
{

𝐵1,+𝑥
𝐵2,+𝑥

}

ej(𝜔𝑡−𝑞𝑥) =
{

0
0

}

. (B.11)

Applying

cosh (𝑞𝐿) = e𝑞𝐿 + e−𝑞𝐿
2

(B.12)

to Eq. (B.11) yields
[

−𝜔2𝑚1 + 2𝑘1 (1 − cosh (𝑞𝐿)) + 𝑘2 −𝑘2
−𝑘2 −𝜔2𝑚2 + 𝑘2

]

×
{

𝐵1,+𝑥
𝐵2,+𝑥

}

=
{

0
0

}

. (B.13)

A linear equation set similar to Eq. (B.13) can be obtained when
(𝑗) (𝑗)
11

1 = 𝑢1,−𝑥 (B.14)
nd
(𝑗)
2 = 𝑢(𝑗)2,−𝑥 , (B.15)

hich can be expressed by
[

−𝜔2𝑚1 + 2𝑘1 (1 − cosh (𝑞𝐿)) + 𝑘2 −𝑘2
−𝑘2 −𝜔2𝑚2 + 𝑘2

]

×
{

𝐵1,−𝑥
𝐵2,−𝑥

}

=
{

0
0

}

. (B.16)

hen

et
([

−𝜔2𝑚1 + 2𝑘1 (1 − cosh (𝑞𝐿)) + 𝑘2 −𝑘2
−𝑘2 −𝜔2𝑚2 + 𝑘2

])

= 0 (B.17)

oth Eqs. (B.13) and (B.16) have non-trivial solutions, and the dis-
ersion equation associated with the AMM can be obtained from
q. (B.17), which is expressed by

1𝑚2𝜔
4 −

((

𝑚1 + 𝑚2
)

𝑘2 + 2𝑚2𝑘1 (1 − cosh (𝑞𝐿))
)

𝜔2 +2𝑘1𝑘2 (1 − cosh (𝑞𝐿)) = 0

(B.18)

nd it can lead to

osh (𝑞𝐿) = 1 +
𝑚1𝑚2𝜔4 −

(

𝑚1 + 𝑚2
)

𝑘2𝜔2

2𝑘1
(

𝑘2 − 𝑚2𝜔2
) . (B.19)

Let

𝑞𝐿 = 𝛼 + j𝛽 (B.20)

denote the complex dimensionless wave number, where 𝛼 and 𝛽 are
referred to as the attenuation constant and phase constant, respectively.

For both 𝑢(𝑗+ℎ)𝛾,+𝑥 in Eq. (B.3) and 𝑢(𝑗+ℎ)𝛾,−𝑥 in Eq. (B.4) that propagate
to the next units in their respective directions, i.e., 𝑢(𝑗+𝐿)𝛾,+𝑥 and 𝑢(𝑗−𝐿)𝛾,−𝑥 ,
respectively, the complex term

e−ℎ𝑞𝐿 = e−ℎ𝛼e−jℎ𝛽 (B.21)

exists. When 𝛼 = 0, the magnitudes of 𝑢(𝑗+𝐿)𝛾,+𝑥 and 𝑢(𝑗−𝐿)𝛾,−𝑥 remain the
ame as ℎ varies; when 𝛼 > 0, they exponentially decay as the waves
ropagate in their respective directions.

A non-trivial solution to Eq. (B.13) can be expressed by

𝐵1,+𝑥 = −𝜔2𝑚2 + 𝑘2
𝐵2,−𝑥 = 𝑘2

. (B.22)

he ratio between 𝐵1,+𝑥 and 𝐵2,+𝑥 can be expressed by

𝐵1,+𝑥

𝐵2,+𝑥
= 1 − 𝜔2

𝜔2
0

= 1 − 𝜔̄2 . (B.23)

When 𝜔 < 𝜔0, i.e., 𝜔̄ < 1, the values of 𝐵1,+𝑥 and 𝐵2,+𝑥 in Eq. (B.22)
are of the same sign, and the associated solutions are considered to
be in the acoustical mode. When 𝜔 > 𝜔0, i.e., 𝜔̄ > 1, the values
of 𝐵1,+𝑥 and 𝐵2,+𝑥 in Eq. (B.22) are of the different signs, and the
associated solutions are considered to be in the optical mode. The same
observations apply to a non-trivial solution to Eq. (B.16), which can be
expressed by
{

𝐵1,−𝑥 = −𝜔2𝑚2 + 𝑘2
𝐵2,−𝑥 = 𝑘2

(B.24)

and
𝐵1,−𝑥

𝐵2,−𝑥
= 1 − 𝜔2

𝜔2
0

= 1 − 𝜔̄2 . (B.25)
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