A Life Cycle Greenhouse Gas Model of a Yellow Poplar Forest Residue Reductive Catalytic Fractionation Biorefinery

Yuqing Luo¹, Robert M. O'Dea¹, Yagya Gupta^{1,3}, Jeffrey Chang², Sunitha Sadula³, Li Pei Soh¹, Allison M. Robbins¹, Delphis F. Levia^{2,4*}, Dionisios G. Vlachos^{1,3}, Thomas H. Epps, III^{1,5,6}, Marianthi lerapetritou^{1*}

¹Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA

²Department of Geography and Spatial Sciences, University of Delaware, Newark, Delaware, USA

⁶Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware, USA

Abstract

The incentive to reduce greenhouse gas (GHG) emissions has motivated the development of lignocellulosic biomass conversion technologies, especially those associated with the carbohydrate fraction. However, improving the overall biomass valorization necessitates using lignin and understanding the impact of different tree parts (foliage, bark, twigs/branchlets) on the deconstruction of lignin, cellulose, and hemicellulose towards value-added products. In this work, we explore the production of chemicals from a yellow poplar-based integrated biorefinery. Yellow poplar (*Liriodendron tulipifera* L.) is an ideal candidate as a second-generation biomass feedstock, given that it is relatively widespread in the eastern United States. Herein, we evaluate and compare how the different proportions of cellulose, hemicellulose (xylan), and lignin among foliage, bark, and twigs/branchlets of yellow poplar, both individually and as a composite mix, influence the life cycle GHG model of a yellow poplar biorefinery. For example, the processing GHG emissions were reduced by 1110 kg CO₂-eq, 654 kg CO₂-eq, and 849 kg CO₂-eq, respectively per metric ton of twigs/branchlets, foliage, and bark, respectively. Finally, a sensitivity analysis illustrates the robustness of this biorefinery to uncertainties of the feedstock xylan/glucan ratio and carbon content.

Keywords: Life Cycle Assessment, Reductive Catalytic Fractionation, Biomass Hydrolysis, Biorefinery, Liriodendron tulipifera L.

Introduction

With increasing awareness on reducing emissions from chemical production, chemical companies have set ambitious goals to cut their carbon dioxide emissions, possibly even

³Catalysis Center for Energy Innovation, 221 Academy St., Newark, Delaware, USA

⁴Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA

⁵Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA

achieving carbon neutrality by 2050 (Bettenhausen 2021). Consequently, the idea of using biomass instead of petroleum feedstocks in chemical production has been viewed as an increasingly attractive approach (Bozell and Petersen 2010). However, the use of biomass feedstocks alone does not guarantee lower emissions (Uihlein and Schebek 2009), and land-use change (LUC) and cultivation of monocultural forest plantations, for lignocellulosic biomass biorefineries or other purposes, can lead to substantial environmental impacts (Fargione *et al.* 2008, Havlík *et al.* 2011, El Akkari *et al.* 2018, Levia *et al.* 2020). Given the benefits of moving beyond monocultural plantations and the inherent variability in the lignocellulosic biomass among tree species (Cardinale *et al.* 2007, Vangeel *et al.* 2021), it is important to identify tree species that may be suitable feedstock for biorefineries. With considerable effort being spent on technology research and development, it is necessary to simultaneously evaluate the environmental impacts of any given tree species that might be used in a biorefinery using life cycle assessment (LCA) to facilitate a more efficient biorefinery design process (Parajuli *et al.* 2017, Ögmundarson *et al.* 2020).

Numerous technologies, such as molten salt hydrate (MSH) hydrolysis, have been developed to convert cellulose and hemicellulose into sugars and further into value-added products (Urban and Bakshi 2009, Lin *et al.* 2015, Athaley *et al.* 2019). Improving these biomass conversion processes requires lignin valorization toward value-added chemicals and/or materials, such as high-performance thermoplastics, 3D-printing resins, and stimuli-responsive materials (Bass and Epps 2021). Catalytic fractionation is an established and promising route to generate phenolics from lignin with high yields and low utility requirements (Schutyser *et al.* 2018). Abdelaziz *et al.* (2020), for example, evaluated the economic performance of Kraft lignin oxidative catalytic fractionation. Recently, Wang *et al.* (2018) demonstrated that pressure-sensitive adhesives fabricated from lignin reductive catalytic fractionation (RCF) monomers had performance advantages over than their petroleum-based counterparts. The preliminary techno-economic analysis illustrated that this process is improved by using glycerin as the solvent for lignin valorization (O'Dea *et al.* 2022), which leads to an ambient-pressure deconstruction approach. These monomers could also be functionalized and utilized to produce many other high-performance polymer materials (Mahajan *et al.* 2020, O'Dea *et al.* 2020).

The complexity and variability of biomass compositions pose challenges to the design and operation of biomass-based chemical production processes (Fenila and Shastri 2020). The biorefinery concept has been proposed to reduce waste and generate an array of products from all input components for the efficient use of bio-derived raw materials (Uihlein and Schebek 2009). This biorefinery strategy has the potential to improve the environmental performance and economic viability of biomass conversion facilities. For instance, a small-scale integrated biorefinery was proposed to produce both valuable biochemicals and biogas with reduced costs, lower greenhouse gas (GHG) emissions, and fewer socio-economic impacts in comparison to petrochemical manufacturing processes (Lopes and Łukasik 2020). Bhosekar *et al.* (2021) demonstrated the trade-off of emissions and profits between different feedstock, technology, and product choices through a multi-objective optimization of an integrated biorefinery. Biorefineries can be classified as 'lignin-first' or 'cellulose-first' depending on whether the conversion of lignin or cellulose is prioritized (Huang *et al.* 2018). In 'cellulose-first' biorefineries,

the hydrolysis reaction invariably alters the structure of the lignin, rendering subsequent lignin valorization efforts less effective (Renders *et al.* 2017). Moreover, it has been illustrated that lignin can inhibit cellulose conversion (Vermaas *et al.* 2015). Thus, the 'lignin-first' biorefinery strategy has been recognized as a more promising route that keeps carbohydrates intact for downstream conversion (Renders *et al.* 2019, Yang *et al.* 2019, Rajak *et al.* 2021). For example, Bartling *et al.* (2021) evaluated the economic and environmental performance of a poplar conversion process with RCF, enzymatic hydrolysis, and fermentation to produce RCF oil and bioethanol, and Liao *et al.* (2020) integrated RCF, hydro-processing, and dealkylation of wood biomass for a low-carbon-footprint lignin-first biorefinery process.

The compositions of collected biomass, even from the same tree species and parts, may experience significant regional and temporal variations (Short 1975, Schmer et al. 2012). It is necessary for biorefineries to handle feedstock complexity and variability from different parts of the tree (Giuliano et al. 2016). Consequently, comprehensive knowledge of the feedstock compositions and their effects on the environmental impact is vital for such a robust biorefinery design. With regard to cellulose and hemicellulose content between bark and sapwood of yellow polar, Jin et al. (2013) found that the bark had cellulose and hemicellulose percentages of 31.5 wt.% and 16.7 wt.%, respectively, whereas the corresponding percentages for sapwood were 55.1 wt.% and 26.4 wt.%, respectively. Moreover, the lignin, cellulose, and hemicellulose contents (based on ash-free dry weight) of yellow poplar leaves were 11.4 wt.%, 20.1 wt.%, and 19.5 wt.%, respectively (Ward and Woods 1986). These data beg the question of how differences in the chemical composition of foliage, bark, and twigs/branchlets of yellow poplar may cascade through an LCA of a yellow poplar biorefinery. Accordingly, in this study, we focus our analysis on yellow poplar, which is only one of two species in the genus Liriodendron of the family Magnoliaceae, because it is a widespread deciduous tree species with a biogeographic range throughout the eastern and midwestern United States, growing from Vermont and New York, south to Florida, and west to Texas (Griffith 1991). In total, it grows in more than 25 U.S. states (Griffith 1991).

This preliminary study focuses on the analysis of lignin-first valorization of yellow poplar using the life cycle GHG model. Herein, we specifically focus on how the different proportions of cellulose, hemicellulose (specifically xylan), and lignin among foliage, bark, and twigs/branchlets of yellow poplar, both individually and as a composite mix, influence the life cycle GHG model of a yellow poplar biorefinery. Performing RCF and MSH in sequence in the proposed yellow poplar biorefinery effectively utilizes all components in the biomass feedstocks for chemical production. This paper is the first study to include different tree parts and their variable lignin chemistries in an LCA. As such, this work is an essential analysis for enhanced utilization of the lignin, cellulose, and hemicelluslose components and provides guidance on how to harness the full value of the yellow poplar foliage, bark, and twigs/branchlets.

Process Description

In this work, an integrated process of yellow poplar treatment and conversion was designed. After yellow poplar bark, twigs/branchlets, and foliage were collected from a forest or sawmill, they were transported by truck to the production facility. Wong *et al.* (2016) estimated the mean transportation distances for forest residual chips and agricultural residuals to the pyrolysis plant as 80.3 km and 53.2 km, respectively. In another study, the economical supply radius of biomass was set as 112 km as a criterion for a resource-rich region (Baral *et al.* 2019). Thus, 112 km was chosen as the supply radius for yellow poplar feedstocks.

The pretreatment started with drying the collected raw biomass feedstocks, the energy requirement of which (150 kWh/ton) was based on a technical report by Idaho National Laboratory (INL) (Kenney et al. 2014). This dyring process utilized a cross-flow dryer to treat highmoisture feedstock and was less energy-intensive than the commonly used kiln-drying method (Sahoo et al. 2021).

Then, RCF was performed prior to MSH hydrolysis (Renders *et al.* 2017). In Figure 1, methanol was loaded with 5 wt.% biomass feedstock, heated to 250 °C (H-1), and then fed into the deconstruction reactor (R-1) that contained Ru/C (5 wt.% Ru) catalyst. Hydrogen gas at 40 bar was introduced into the reactor, which operated at 80 bar pressure for 15 h. Upon completion, the product stream was fed to a flash drum (F-1) to separate and recycle the excess hydrogen gas and solvent from the product. The phenolics were cooled (COOL-1) and extracted with hexane, and the unreacted waste, which contained cellulose and hemicellulose, was filtered (FIL-1). Finally, a distillation column (C-1) isolated the phenolic mixture and recycled the hexane.

In the next stage, the MSH process was utilized to selectively convert cellulose and hemicellulose into *p*-xylene and furfural, respectively (Athaley *et al.* 2019). This process was heat integrated to reduce utility usage at the expense of more heat exchangers. The MSH process shown in Figure 1 used lithium bromide (LiBr) MSH to break down the cellulose and hemicellulose in R-2. Next, glucose was converted to hydroxymethylfurfural (HMF) and xylose to furfural in a biphasic reactor (R-3). Humins also were produced and removed in this step. Furfural was separated in distillation column C-3 and sold as a byproduct, whereas HMF underwent a hydrodeoxygenation (HDO) reaction with compressed hydrogen gas in the reactor R-4 to generate 2,5-dimethylfuran (DMF). Then, DMF was reacted with ethylene to produce *p*-xylene *via* a cyclo-addition reaction in reactor R-5. Finally, two columns in series (C-4 and C-5) separated *p*-xylene from the byproducts. Unreacted lignin and humins byproducts were burned in the power-and-steam section to generate the electricity and steam used in the plant, reducing overall external utility requirements (Athaley *et al.* 2019).

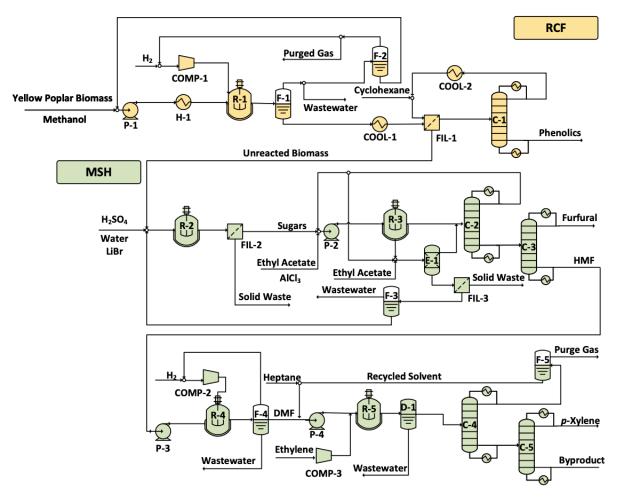


Figure 1. Process flowsheet of the RCF (top) and MSH (bottom) processes. Yellow poplar feedstock first undergoes RCF to convert lignin to phenolics, and the cellulosic fraction of the biomass then is valorized *via* the MSH process to generate furfural and *p*-xylene.

Methodology

Yellow poplar composition measurements

Biomass samples from yellow poplar were acquired in summer from mixed species forests within and near the Fair Hill Natural Resources Management Area in northeastern Maryland, USA. The samples were dried at 40 °C for 48 h and milled to a particle-size range of 0.42 mm to 2 mm prior to analysis (Hames *et al.* 2008). Moisture content was measured in triplicate using a Sartorius moisture content analyzer that operates thermogravimetrically using infrared heating. Approximately 1 g of sample was heated to 105 °C for 5 min. Then, extractives were quantified by sonicating biomass samples in 80 vol.% ethanol (~50 mL/g of biomass) 5 times and measuring the change in weight after drying at 40 °C under vacuum (Theander 1991).

Next, extractive-free biomass was subjected to a two-step acid hydrolysis to break down the cellulose and hemicellulose into their constituent sugars (Sluiter et al. 2012). First, samples were treated with 72 wt.% sulfuric acid (~1 mL acid / 100 mg sample) for 1 h, followed by dilution to 4 wt.% sulfuric acid with deionized water and heating to 100 – 120 °C for 1.5 h. Then, the solutions were filtered into glass filtering crucibles. The undiluted filtrate was reserved for highperformance liquid chromatography (HPLC) analysis, and the solid residue was washed with water to remove any remaining acid. The residue was dried at 100 °C under vacuum overnight and weighed to determine the amount of acid-insoluble components (i.e., acid-insoluble lignin and insoluble acid ash). Finally, the residue was heated to 550 °C in a furnace (Thomas Scientific benchtop muffle furnace) for at least 2 h. Upon cooling, the residue was weighed to quantify the acid insoluble ash content and determine the amount of acid-insoluble lignin. The acid soluble lignin was quantified by ultraviolet-visible (UV-vis) spectroscopy (Agilent Cary 300 UV-vis spectrophotometer with a quartz cell) by measuring absorbance at 205 nm (Sluiter et al. 2012). Note that this method has been extensively validated for wood samples (e.g., twigs/branchlets) but not other plant components (e.g., leaves and bark). It is expected to provide reasonable composition values for these other plant parts; however, the error is likely higher for leaves and bark than would be expected for other wood samples (Abu-Omar et al. 2021).

Hydrolysate samples were analyzed on a Waters HPLC instrument (model e2695) equipped with a photodiode array (PDA) detector (Waters 2998) as well as a refractive index (RI) detector (Waters 2414). A Bio-rad Aminex HPX-87H column was used at an operating oven temperature of 55 °C. The mobile phase was an aqueous solution of H_2SO_4 (0.005 M) with a flow rate of 0.6 mL min⁻¹. The RI detector was used for quantification of glucose (9.52 min), xylose (10.14 min), and acetic acid (15.48 min). HMF (30.22 min) and furfural (45.58 min) were quantified with the PDA detector (254 nm). The number in parenthesis refers to the retention time of each species. The characteristic peaks for the sugars were identified from the retention times of the standards. Each peak was integrated, and the actual concentrations of each product were calculated from their respective pre-calibrated plots of peak areas vs. concentrations. The total glucan and xylan contents were determined following the procedures in the National Renewable Energy Laboratory (NREL) method (Sluiter *et al.* 2008). As indicated in the NREL procedure, these data have \pm 5% uncertainty. Note that xylan is expected to be the major hemicellulose component of yellow poplar, but other sugars were not quantified by HPLC, so only xylan content is listed in the compositional analysis results.

Yellow poplar RCF experiments

1 g of yellow poplar biomass was added into a 250-mL high-pressure Parr reactor with 100 mg Ru/C, 20 mL of methanol, and a magnetic stirrer. After being sealed, the reactor was purged three times with N_2 and then pressurized to 40 bar with H_2 . The reactor was heated with a high-temperature heating jacket connected to a variable power supply, which was monitored by a proportional-integral-derivative (PID) temperature controller. A K-type thermocouple was used to measure the reaction temperature through a thermowell. The reactor was heated to 250 °C for 15 h while stirring. Afterward, the reactor was cooled to room temperature, and the gas phase

was released. The reaction products were filtered (Whatman®, $0.2~\mu m$) for monomer identification and quantification, and cellulose/hemicellulose residues and catalyst were discarded. Product yields and distributions were quantified using gas chromatography using the effective carbon number approach (Wang et al. 2018).

Process simulation

The chemical and utility usage were extracted from the Aspen Plus (Aspen Technology, Burlington, MA) simulation. The physical property method of choice was the universal quasi-chemical activity coefficient (UNIQUAC) model, which captured the liquid-vapor and liquid-liquid phase equilibrium very well in this system (Abrams and Prausnitz 1975). Most of the compounds were selected directly from the Aspen database. The chemicals not found in the database, such as phenolics, were defined by their structures, and their physical properties were estimated using the Aspen Plus Property Constant Estimation System (PCES) (O'Dea et al. 2022). Lignin was defined using the physical properties reported by NREL (Wooley and Putsche 1996). The whole MSH process was heat integrated to reduce utility usage. Furthermore, the steam and power generation unit utilized the unreacted solid waste and humins byproduct to produce steam and electricity. The amounts of steam and electricity generated also were calculated from the Aspen Plus flowsheet simulation (Athaley et al. 2019). Terpenes were chosen as the surrogate for extractives because they were reported to be the typical extractive compounds (Ranzi et al. 2017). The heating values of extractives reported in White 1987 were used for energy calculations. Ash and other minor biomass components were treated as inert components not participating in the reactions. This assumption seems reasonable because the ash contents of the biomass samples are all less than 2 wt.% in our compositional measurement (See Table 1). The potential uncertainties of heat generated from extractives combustion were also considered in the sensitivity analysis.

Life Cycle Assessment

This paper aims to conduct the 'cradle-to-gate' LCA of a biorefinery that uses yellow poplar twigs/branchlets, foliage, and bark to produce phenolics and byproducts such as *p*-xylene and furfural. The system is illustrated in Figure 2, which contains the tree growth, forest management, other upstream raw material production, pretreatment of biomass, RCF process, and MSH hydrolysis (*p*-xylene and furfural production) activities. The functional unit was chosen to be one metric ton of yellow poplar biomass feedstock (bark, twigs/branchlets, foliage) processed by the proposed biorefinery. This choice of function unit was similar to the analysis of a duckweed biorefinery (Calicioglu *et al.* 2021). This study followed an attributional LCA that only focuses on comparing existing and stable technologies, as opposed to the consequential LCA that analyzed future scenarios involving decision-making (Yang 2016, Yang 2017). The background data were taken from the Ecoinvent 3.3 database that included comprehensive and regional data (Steubing

et al. 2016, Wernet et al. 2016). The data associated with the U.S. were preferred, while global data were used when the relevant U.S. information was not readily available.

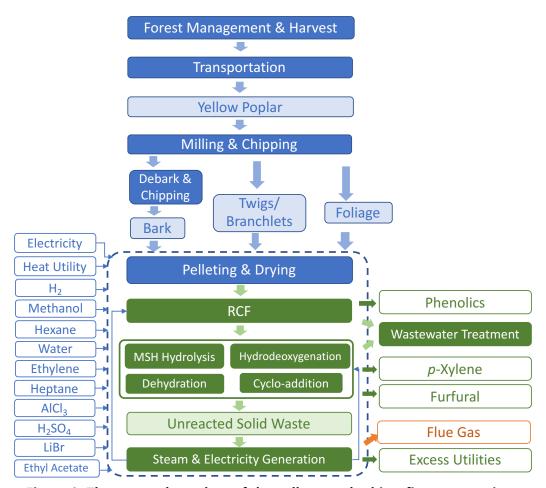


Figure 2. The system boundary of the yellow poplar biorefinery operations

Because multiple coproducts were manufactured in the integrated biorefinery, it was not appropriate to assign all the emissions to phenolics. Mass and economic allocation methods are commonly used in LCA to assign emissions based on the flow rate or economic values (Svanes *et al.* 2011). However, the product's weight sometimes does not reflect the driving force of product demand, while the economic allocation suffers from price fluctuations (González-García *et al.* 2011, Steubing *et al.* 2016). Therefore, the 'avoided burden' method was adapted to give credit for making byproducts (Anastasopoulou *et al.* 2020). More specifically, stand-alone production processes of U.S. electricity generation, oil-based *p*-xylene, phenol, and furfural production (See Table S1) were chosen from the literature or the Ecoinvent LCA database and added to the biorefinery system (Win 2005, Raman and Gnansounou 2015, Schöppe *et al.* 2020).

The activities and environmental impacts associated with upstream yellow poplar feedstock were based on literature and commercial LCA databases. The Ecoinvent database (Wernet et al. 2016) has comprehensive upstream data on the resource usage and emissions of bark production (Barjoveanu et al. 2020). Because there was no information on the twig/branchlet and leaf

collection in the background LCA databases, the woodchip production process in Ecoinvent was used as a surrogate. This process covered the upstream activities, including the sawing and chipping operations that removed unwanted parts of the wood material from the sawn timber (Svanes *et al.* 2011).

This study utilized the Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI) 2.1 method for impact assessment (Bare 2011). As one of the most discussed LCA indicators, the global warming potential (GWP) was selected as the environmental impact of interest in this work (Guest *et al.* 2013).

Additional important assumptions for LCA include:

- 1. Most of the cooling water in the biorefinery could be recycled, and only 1% is lost during the operation (Athaley *et al.* 2019).
- 2. Because the buildings could be used for other purposes (Athaley *et al.* 2019) and catalysts are relatively stable during their life cycle (Benavides *et al.* 2017), their contributions to GWP are not included in the LCA.
- 3. Complete combustion is achieved in the steam and power section so that only CO₂ and water are produced in the flue gas (Athaley *et al.* 2019).
- 4. Heat integration of the process is utilized in Aspen Energy Analyzer (AspenTechnology 2019) to reduce utility usage.
- 5. Atmospheric CO₂ is captured during yellow poplar's growth through carbon sequestration (Calicioglu *et al.* 2021), and carbon storage was quantified based on the carbon content of yellow poplar components (Sahoo *et al.* 2021).
- 6. Moreover, collecting bark, twigs/branchlets, and leaves from yellow poplar trees or sawmills does not involve the displacement of existing agricultural land or forest for other land uses (Havlík *et al.* 2011). Consequently, the effects of land-use change on the soil carbon content are not considered (Wong *et al.* 2016).

Results and Discussion

Yellow poplar compositions and RCF yields

The compositions of yellow poplar twigs/branchlets, leaves, and bark were assessed to elucidate the impact of composition on biorefinery economics. As expected, leaves contained the most extractives (31.6 wt.%), followed by twigs/branchlets (10.2 wt.%) and bark (4.3 wt.%). Lignin content followed the opposite trend, increasing from leaves (25.7 wt.%) to twigs/branchlets (28.6 wt.%) to bark (57.8 wt.%). Glucan content ranged from 23.8 wt.% for the bark to 53.9 wt.% for twigs/branchlets. In addition to the major biomass components, carbon content is essential for estimating the carbon sequestration associated with plant growth, a prominent benefit of biomass valorization. The carbon contents for yellow poplar twigs/branchlets, leaves, and bark reported in the literature are 46.0 wt.%, 45.9 wt.%, and 48.2 wt.%, respectively (Wullschleger *et al.* 1997, Jin *et al.* 2013). A summary of the yellow poplar feedstock compositions is listed in Table 1 and Figure S1. Another critical parameter for a lignin-first biorefinery is the lignin valorization yield. The RCF phenolic yield was highest for yellow poplar twigs/branchlets at 28.1 wt.% (on a

lignin basis), and the leaves and bark exhibited comparable yields at 9.6 wt.% and 10.2 wt.%, respectively (See Tables S2-S4). It is important to note that older yellow poplar trees have very thick bark, and the bark analyzed likely has a much higher proportion of outer bark (as opposed to inner bark), which tends to have higher lignin content (Rowell *et al.* 2012). Secondly, fractions of various chemical constituents in woody materials can change with tree age (Lachowicz *et al.* 2019). As a point of reference, the Klason lignin content of bark of ~40-year-old blackwood acacia trees (*Acacia melanoxylon*) was reported (albeit cautiously) to be > 50 wt.% dry basis (Neiva *et al.* 2020).

Table 1. Compositions and RCF yields of yellow poplar twigs/branchlets, foliage, and bark used for simulation

	Twigs/Branchlets	Foliage	Bark
Moisture (wt.%)	7.5%	8.4%	10.7%
Extractives (wt.%)	10.2%	31.6%	4.3%
Lignin (wt.%)	28.6%	25.7%	57.8%
Glucan (wt.%)	31.4%	23.2%	16.2%
Xylan (wt.%)	20.3%	10.5%	10.6%
Ash (wt.%)	1.9%	0.6%	0.4%
Carbon content (% dry weight)	46.0% ^a	45.9% ^a	48.2% ^b
RCF yield (% dry weight)	7.8%	2.1%	5.9%
RCF yield (% lignin)	27.3%	8.0%	10.2%

^a From Wullschleger et al. (1997); ^b From Jin et al. (2013)

Process simulation results

Table 2 lists the inputs and outputs of each production stage in the yellow poplar twig/branchlet biorefinery, while other samples' inventories are shown in the supplementary information (See Tables S5-S7). Biomass pretreatment included the upstream activities before feedstocks were fed into the RCF reactors, including harvesting, transportation, milling, pelleting, and drying (See Figure 2). Based on the process simulation, 1 metric ton of yellow poplar twigs/branchlets led to 73.5 kg phenols, 160 kg *p*-xylene, 112 kg furfural, 484 kWh electricity, and 12.9 GJ steam. Similarly, every 1 metric ton of yellow poplar bark feedstock yielded 53.6 kg phenols, 82 kg *p*-xylene, 58.2 kg furfural, 733 kWh electricity, and 19.6 GJ steam. However, due to the lower lignin/glucan/xylan contents and RCF yields, 1 metric ton yellow poplar foliage could only generate 19.7 kg phenols, 118 kg *p*-xylene, and 57.9 kg furfural. At the same time, 817 kWh electricity and 21.8 GJ steam were produced because extractives have higher calorific value than lignin or sugars. The quantities of products and byproducts manufactured in each case were closely related to feedstock compositions and RCF yields. Higher RCF yields and glucan and xylan contents naturally led to higher production of chemicals. In contrast, more unreacted lignin and extractives gave rise to higher utility generation rates.

Table 2. LCA inputs and outputs of biorefinery operations using yellow poplar twigs/branchlets

Process	Input/Output		Amount	Unit
RCF	Input	Pretreated biomass	1000	kg
		Methanol	4.86	kg
		Hydrogen	0.82	kg
		Cyclohexane	0.47	kg
		Tap water	50.4	kg
		Steam	4.89	GJ
		Hot oil	8.20	GJ
		Electricity	89.4	kWh
	Output	Wastewater	0.08	m ³
		Phenolics	73.5	kg
MSH	Input	Sulfuric acid	0.07	kg
		Lithium bromide	30.0	kg
		Ethyl acetate	0.36	kg
		AICI ₃	2.90	kg
		Hydrogen	9.48	kg
		Heptane	1.48	kg
		Ethylene	45.1	kg
		Tap water	102	kg
		Hot oil	0.23	GJ
		Steam	12.6	GJ
		Electricity	45.1	kWh
	Output	Furfural	112	kg
		Wastewater	0.19	m³
		<i>p</i> -Xylene	160	kg
Electricity & Steam	Input	Tap water	349	kg
	Output	Electricity	484	kWh
		Steam	12.9	GJ
		Combustion CO ₂	1010	kg
Growth	Input	CO ₂ sequestration	-1560	kg

Because the market for renewable phenolics produced by RCF is still developing, it is difficult to obtain accurate price estimations for all products, and hence, the proposed biorefinery as a whole. However, the preliminary techno-economic analysis (TEA) of an MSH process that used red oak wood to produce *p*-xylene and furfural demonstrated a much lower production cost than the oil-based *p*-xylene process (Athaley *et al.* 2019). The biorefinery presented in our work utilized lignin for valuable chemical production, rather than as a heating source, which was suggested by NREL's bioethanol reports to further improve biorefinery profitability (Davis *et al.* 2013). For example, methoxyphenols from the lignin fraction of biomass are high-value products that could be sold at \$4.3/kg to \$20/kg (Mante 2020), depending on the specific chemical composition and application. Moreover, yellow poplar forest residues have lower feedstock

prices than purpose-grown wood. Consequently, the proposed yellow poplar waste biorefinery is expected to have good economic feasibility.

Life cycle assessment and sensitivity analysis

LCA was first performed based on biorefineries that only use twigs/branchlets, bark, or foliage to study the effects of individual feedstocks. Figure 3 includes the breakdown of GHG emissions of the different production stages. The results indicated that bark and twigs/branchlets as a feedstock for chemical products had a clear advantage over traditional oil-based feedstocks. Every metric ton of yellow poplar bark and twigs/branchlets used as feedstock led to a GWP reduction of 849 kg $\rm CO_2$ -eq/metric ton and 1110 kg $\rm CO_2$ -eq/metric ton, respectively. The main advantage of using twigs/branchlets came from the large quantities of phenol, furfural, and *p*-xylene produced. The current industrial practice of furfural production is energy-intensive (Schöppe *et al.* 2020) and is outperformed by the proposed heat-integrated biorefinery. On the other hand, the bark generated more electricity and steam from burning the unreacted lignin left from the RCF due to its high, unreacted lignin content. Utility usage was one of the most carbonintensive activities in the biorefinery operation, and buring the remaining biomass significantly reduced the net utility usage. The bark biorefinery was also more self-sustained in terms of the required utilities and was less dependent on external heat supply, which could be beneficial when constructing distributed biorefineries in remote areas or at small scales.

The biorefinery that used yellow poplar leaves exhibits the lowest GHG emission reduction among the three feedstock options at just 654 kg CO_2 -eq/metric ton because of its lower chemical production rate compared to the twig/branchlet and bark cases. It has been reported that the extractives, especially terpenes and resin, have high heating values (White 1987), which increases the electricity and steam production in a foliage biorefinery. However, the variable nature of the different extractives' sources and properties adds to the uncertainty of the feedstock's heating value.

Moreover, the most carbon-intensitive activities of all three processes were the direct utility usage and the flue gas emissions after burning unreacted solid waste to provide electricity and steam. Therefore, promising approaches to cut GHG emissions include more energy-efficient separations, lower solvent loadings, and potential carbon capture and sequestration technologies (Sullivan *et al.* 2019). On the other hand, the reduction of GHG emissions primarily came from the CO₂ sequestration during yellow poplar growth and the credit for producing heat from the combustion of waste. In all cases, the GHG emission in the combustion unit was less than the GHG reduction of the utility generated, which showed the benefit of including the steam and electricity generation unit.

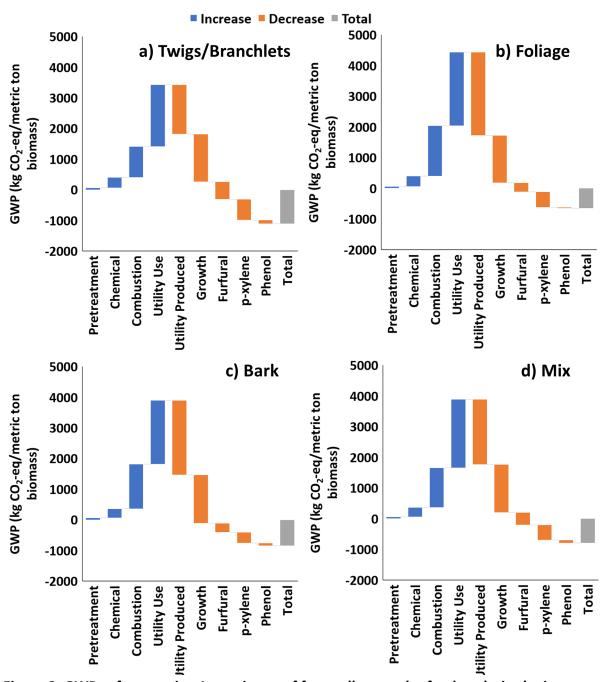


Figure 3. GWPs of processing 1 metric ton of four yellow poplar feedstocks in the integrated biorefinery: (a) twigs/branchlets, (b) foliage, and (c) bark, along with (d) mix of three tree parts (kg bark: branches: foliage = 44.3: 30.2: 3.9). GWPs are negative for all four cases and using twigs/branchlets as the feedstock leads to the lowest GWP.

To maximize the utilization of all possible raw materials, biorefineries often have to deal with mixtures of different tree parts rather than a single source. It has been reported that sawmill operations typically generate considerable amounts of branches, foliage, and bark from the harvested trees (Gordon-Pullar 1990). In the past, detailed allometric equations (Fonseca G *et al.* 2009) have been developed for various tree species, including the yellow poplar (Wang 2014).

Using these models, a yellow poplar tree with a diameter of 10 inch. typically has 44.3 kg bark biomass, 30.2 kg branch biomass, and the total dry foliage is around 3.9 kg (Jenkins *et al.* 2004). A mixed feedstock case was thus considered with the abovementioned ratio. Furthermore, it was assumed that yellow poplar branches had a composition and RCF yield similar to twigs/branchlets. The average carbon content of the feedstock was 47.2 wt.%. Because bark and branches constitute most of the weight, this new biorefinery's performance was between the twig/branchlet and bark scenarios (Figure 3, part d). The resulting biorefinery operation still demonstrated lower GWP than the analogous oil-based production process, as shown by the negative GWP (-793 kg CO₂-eq/metric ton).

Biomass samples often show high variabilities in different locations, seasons, and even different sunlight exposure (Kitajima *et al.* 2016). Therefore, it is essential to use sensitivity analysis and account for such uncertainties. Based on the GWP breakdown of different production stages, main contributors of GHG emission were identified. Our preliminary analysis showed that carbon content, waste solid heating value, and glucan/xylan ratio were more likely to affect environmental performance. The fraction of sugars in biomass feedstocks exhibits temporal and spatial differences (Short 1975). Thus, a 5 wt.% variability in glucan and xylan contents was introduced to account for the variations in individual tree samples and the experimental error in measurement. The carbon content of plant biomass generally lies between 45 and 50 wt.% (Thomas and Martin 2012, Ma *et al.* 2018), leading to a ±2.5 wt.% perturbation for our sensitivity analysis. The feedstock heating values could vary significantly due to the heterogeneous and complex nature of extractives. Consequently, the uncertainty in the heating values was ±20% of the heat generated in solid waste combustion. Figure 4 contains the results of the sensitivity analysis when considering the abovementioned factors.

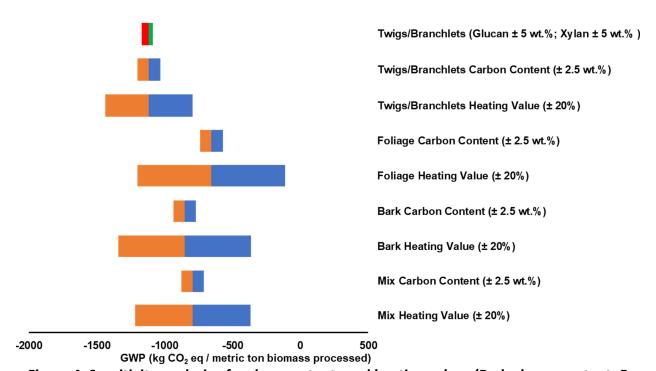


Figure 4. Sensitivity analysis of carbon contents and heating values (Red: glucan content -5 wt.% and xylan content +5 wt.%; Green: glucan content +5 wt.% and xylan content -5 wt.%; Orange: carbon content +2.5 wt.% or heating value +20%; Blue: carbon content -2.5 wt.% or heating value -20%)

Figure 4 demonstrated slightly higher GWP from the simultaneous increase of glucan content and decrease of xylan content in the twig/branchlet feedstock because more *p*-xylene was produced at the expense of furfural. Because the oil-based furfural process has more GHG emissions than the ____-based *p*-xylene, feedstocks with higher xylan content were preferred. Nonetheless, the GWP changes stemming from the glucan/xylan ratio and carbon content were relatively small, underscoring the robustness of the biorefinery performance under compositional uncertainties.

Even with relatively large variations (20%) in solid waste heating values, biorefineries using yellow poplar mixed forest residual feedstocks still had less GHG emissions than the traditional oil-based chemical plants. Yellow poplar leaves were more susceptible to changes from the heat released by combustion due to a large portion of the feedstock not converted after RCF and MSH reactions. When the combustion of extractives was not incorporated in the process model, the GWPs for processing one metric ton of twigs/branchlets, foliage, bark, and mixed feedstock were -929 kg CO₂ eq, 10 kg CO₂ eq, -771 kg CO₂ eq, and -655 kg CO₂ eq, all of which were close to the upper bounds provided by the sensitivity analysis. Although the traditional production outperforms the yellow poplar foliage biorefinery in the worst case (10 kg CO₂ eq/metric ton foliage processed), the latter was consistently better in non-extreme scenarios.

The various feedstock and product choices available for biorefinery technologies lead to different functional units among similar LCA work of RCF processes. For example, Bartling *et al.* (2021) and Liao *et al.* (2020) performed LCA on 1 kg of the lignin fraction of RCF oil and 1 kg phenol production from RCF, respectively. Moreover, multiple methodologies, such as mass or economic allocation and avoided-burden approach (Luo and Ierapetritou 2020), could be applied to account for co-products in a biorefinery. Hence, the direct comparison between the current and existing works is difficult. As an example, it is noted that a related biorefinery concept proposed by Bartling *et al.* (2021) utilized purpose-grown poplar wood as its feedstock, as opposed to the yellow poplar biorefinery examined this work that makes use of forestry residues such as bark, twigs/branchlets, foliage, and a mixture of the three. Additionally, the biorefinery configuration herein aims to produce valuable chemicals through catalytic routes instead of bioethanol fuel from enzymatic pathways. Despite the differences in the feedstocks and target products, our LCA results agreed with similar RCF analysis papers in that the biorefinery operations benefit primarily through the carbon sequestration of the biomass feedstock (Liao *et al.* 2020, Bartling *et al.* 2021).

From a methodological point of view, our life cycle greenhouse gas framework of biorefinery used detailed process simulation to compile the life cycle inventory. This simulation-based approach could be easily applied to other feedstock types to provide more reliable process data than solely relying on assumptions and data from the literature (Cherubini and Jungmeier 2010, González-García *et al.* 2011). However, the development of RCF and MSH hydrolysis is at an early stage. Opportunities for future work and model improvement include:

- (1) The land-use change effects were not considered herein because collecting the aforementioned biomass residues from forests or sawmills does not change the use of agriculture or forest land. However, removing forest residues could affect subsequent plant activity, causing long-term environmental impacts, including disturbances in the soil carbon pool and the need for nutrient compensation (Ranius *et al.* 2018, Sahoo *et al.* 2021). Further study of the impacts of removing forest residues is needed to comprehensively evaluate the land-use change effects.
- (2) The electricity and steam generation were assumed to emit flue gas directly into the air. Scenario analysis of using different carbon capture and sequestration (CCS) technologies could be conducted to demonstrate more pronounced emission-reduction effects (Geissler and Maravelias 2021).
- (3) The scope of this analysis was limited to an attributional cradle-to-gate LCA because of the complexities in specifying the downstream usage and end-of-life scenarios for biorefinery chemical products. When the end-of-life treatment is incorporated, the temporal effects of emission should be considered by dynamic LCA (Levasseur et al. 2010). Moreover, consequential LCA methods could be applied to integrate market dynamics and provide insight into the impacts of adopting biorefinery technologies on a large scale (Tian and You 2021).
- (4) The simulation-based framework could be extended to explore the economic feasibility and other environmental impacts, such as ecotoxicity and fuel depletion. Superstructure-based optimization framework also could help select the optimal feedstock, product, and route combination and compare different RCF technologies in the literature (Gebreslassie *et al.* 2013, Bhosekar *et al.* 2021).

Conclusions

An integrated biorefinery has been proposed that utilizes three abundant, low-cost feedstocks, namely the twigs/branchlets, bark, and foliage of yellow poplar biomass. The LCA showed that all feedstocks reduced GHG emissions in comparison to petrochemical-based production routes for p-xylene, furfural, and phenol. The yellow poplar twigs/branchlets reduced the GWP more than bark because of the higher RCF yield and sugar content; more chemicals were produced for a given amount of feedstock. The foliage, albeit less promising than twigs/branchlets and bark, still outperformed a traditional petroleum-based production process. Although utility usage was the leading factor in GHG emissions, carbon sequestration during yellow poplar growth reduced the GWP significantly. Furthermore, heat integration in addition to steam and electricity generation by solid waste combustion remarkably decreased the net utility usage, further reducing the environmental impact. As an additional consideration, a forest residue biorefinery likely would need to accept mixed feedstocks, and a mixed yellow poplar forest residue feedstock still led to significant reductions in GWP relative to the status quo. In all cases, sensitivity analysis suggested that the integrated biorefinery using yellow poplar forest residues had consistently better environmental performance (i.e., lower GWP) than petrochemical production processes despite many sources of uncertainty. Overall, this work emphasizes the need to systematically study the interaction between biomass composition and reaction yields for a more informed choice of biorefinery feedstocks.

Author Disclosure Statement

No competing financial interests exist.

Funding Information

This study is financially supported by the National Science Foundation Growing Convergence Research program (NSF GCR CMMI 1934887) in Materials Life-Cycle Management to T.H.E., D.F.L, D.G.V. and M.I.

Abbreviations

CCS: Carbon capture and sequestration

DMF: 2,5-dimethylfuran GHG: Greenhouse gas

GWP: Global warming potential HDO: Hydrodeoxygenation HMF: Hydroxymethylfurfural

HPLC: high-performance liquid chromatography

INL: Idaho National Lab LCA: Life cycle assessment LUC: Land-use change MSH: Molten salt hydrate NREL: National Renewable Energy Laboratory PCES: Property Constant Estimation System

PDA: Photodiode array

PID: Proportional-integral-derivative RCF: Reductive catalytic fractionation

RI: Refractive index

Ru/C: Ruthenium on carbon TEA: Techno-economic analysis

TRACI: Tool for reduction and assessment of chemicals and other environmental impacts

UNIQUAC: Universal quasi-chemical activity coefficient

UV-vis: Ultraviolet-visible

References

Abdelaziz, O. Y., Al-Rabiah, A. A., El-Halwagi, M. M. and Hulteberg, C. P. (2020). Conceptual design of a Kraft lignin biorefinery for the production of valuable chemicals via oxidative depolymerization. *ACS Sustainable Chem. Eng.* 8, 8823-8829.

Abrams, D. S. and Prausnitz, J. M. (1975). Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. *AIChE J.* 21, 116-128.

Abu-Omar, M. M., Barta, K., Beckham, G. T., Luterbacher, J. S., Ralph, J., Rinaldi, R., Román-Leshkov, Y., Samec, J. S. M., Sels, B. F. and Wang, F. (2021). Guidelines for performing lignin-first biorefining. *Energy Environ. Sci.* 14, 262-292.

Anastasopoulou, A., Keijzer, R., Patil, B., Lang, J., van Rooij, G. and Hessel, V. (2020). Environmental impact assessment of plasma-assisted and conventional ammonia synthesis routes. *J. Ind. Ecol.* 24, 1171–1185.

AspenTechnology (2019). Aspen Energy Analyzer.

Athaley, A., Annam, P., Saha, B. and Ierapetritou, M. (2019). Techno-economic and life cycle analysis of different types of hydrolysis process for the production of p-Xylene. *Comput. Chem. Eng.* 121, 685-695.

Athaley, A., Saha, B. and Ierapetritou, M. (2019). Biomass-based chemical production using technoeconomic and life cycle analysis. *AIChE J.* 65, e16660.

Baral, N. R., Davis, R. and Bradley, T. H. (2019). Supply and value chain analysis of mixed biomass feedstock supply system for lignocellulosic sugar production. *Biofuels, Bioprod. Bioref.* 13, 635-659.

Bare, J. (2011). TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. *Clean Technol. Environ. Policy* 13, 687-696.

Barjoveanu, G., Pătrăuțanu, O.-A., Teodosiu, C. and Volf, I. (2020). Life cycle assessment of polyphenols extraction processes from waste biomass. *Sci. Rep.* 10, 13632.

Bartling, A. W., Stone, M. L., Hanes, R. J., Bhatt, A., Zhang, Y., Biddy, M. J., Davis, R., Kruger, J. S., Thornburg, N. E., Luterbacher, J. S., Rinaldi, R., Samec, J. S. M., Sels, B. F., Román-Leshkov, Y. and Beckham, G. T. (2021). Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation. *Energy Environ. Sci.* 14, 4147-4168.

Bass, G. F. and Epps, T. H., III (2021). Recent developments towards performance-enhancing lignin-based polymers. *Polym. Chem.* 12, 4130-4158.

Benavides, P. T., Cronauer, D. C., Adom, F., Wang, Z. and Dunn, J. B. (2017). The influence of catalysts on biofuel life cycle analysis (LCA). *Sustain. Mater. Technol.* 11, 53-59.

Bettenhausen, C. (2021). Chemical firms aim for more ambitious climate goals. *C&EN Global Enterprise* 99, 33-33.

- Bhosekar, A., Athaley, A. and Ierapetritou, M. (2021). Multiobjective modular biorefinery configuration under uncertainty. *Ind. Eng. Chem. Res.* 60, 12956-12969.
- Bozell, J. J. and Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's "Top 10" revisited. *Green Chem.* 12, 539-554.
- Calicioglu, O., Femeena, P. V., Mutel, C. L., Sills, D. L., Richard, T. L. and Brennan, R. A. (2021). Technoeconomic analysis and life cycle assessment of an integrated wastewater-derived duckweed biorefinery. *ACS Sustainable Chem. Eng.* 9, 9395–9408.
- Cardinale, B. J., Wright, J. P., Cadotte, M. W., Carroll, I. T., Hector, A., Srivastava, D. S., Loreau, M. and Weis, J. J. (2007). Impacts of plant diversity on biomass production increase through time because of species complementarity. *Proc. Natl. Acad. Sci. U. S. A.* 104, 18123.
- Cherubini, F. and Jungmeier, G. (2010). LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. *Int. J. Life Cycle Assess.* 15, 53-66.
- Davis, R., Tao, L., Tan, E. C. D., Biddy, M. J., Beckham, G. T., Scarlata, C., Jacobson, J., Cafferty, K., Ross, J. and Lukas, J. (2013). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons, National Renewable Energy Lab, Golden, CO, USA.
- El Akkari, M., Réchauchère, O., Bispo, A., Gabrielle, B. and Makowski, D. (2018). A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes. *Sci. Rep.* 8, 8563.
- Fargione, J., Hill, J., Tilman, D., Polasky, S. and Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. *Science* 319, 1235-1238.
- Fenila, F. and Shastri, Y. (2020). Stochastic optimization of enzymatic hydrolysis of lignocelluosic biomass. *Comput. Chem. Eng.* 135, 106776.
- Fonseca G, W., Alice G, F. and Rey B, J. J. B. (2009). Models for biomass estimation in native forest tree plantations and secondary forests in the Costa Rican Caribbean Region. 30, 36-47.
- Gebreslassie, B. H., Slivinsky, M., Wang, B. and You, F. (2013). Life cycle optimization for sustainable design and operations of hydrocarbon biorefinery via fast pyrolysis, hydrotreating and hydrocracking. *Comput. Chem. Eng.* 50, 71-91.
- Geissler, C. H. and Maravelias, C. T. (2021). Economic, energetic, and environmental analysis of lignocellulosic biorefineries with carbon capture. *Appl. Energy* 302, 117539.
- Giuliano, A., Poletto, M. and Barletta, D. (2016). Process optimization of a multi-product biorefinery: The effect of biomass seasonality. *Chem. Eng. Res. Des.* 107, 236-252.
- González-García, S., Hospido, A., Agnemo, R., Svensson, P., Selling, E., Moreira, M. T. and Feijoo, G. (2011). Environmental life cycle assessment of a Swedish dissolving pulp mill integrated biorefinery. *J. Ind. Ecol.* 15, 568-583.
- Gordon-Pullar, T. (1990). The potential use of wood residues for energy generation. Energy conservation in the mechanical forest industries.
- Griffith, R. S. (1991). Liriodendron tulipifera.In: Fire Effects Information System. Retrieved September 25, 2021, from https://www.fs.fed.us/database/feis/plants/tree/lirtul/all.html.
- Guest, G., Cherubini, F. and Strømman, A. H. (2013). Global warming potential of carbon dioxide emissions from biomass stored in the Anthroposphere and used for bioenergy at end of life. *J. Ind. Ecol.* 17, 20-30.
- Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J. and Templeton, D. (2008). Preparation of samples for compositional analysis, National Renewable Energy Laboratory, Golden, CO, USA.
- Havlík, P., Schneider, U. A., Schmid, E., Böttcher, H., Fritz, S., Skalský, R., Aoki, K., Cara, S. D., Kindermann, G., Kraxner, F., Leduc, S., McCallum, I., Mosnier, A., Sauer, T. and Obersteiner, M. (2011). Global land-use implications of first and second generation biofuel targets. *Energy Policy* 39, 5690-5702.

- Huang, Y., Duan, Y., Qiu, S., Wang, M., Ju, C., Cao, H., Fang, Y. and Tan, T. (2018). Lignin-first biorefinery: a reusable catalyst for lignin depolymerization and application of lignin oil to jet fuel aromatics and polyurethane feedstock. *Sustainable Energy & Fuels* 2, 637-647.
- Jenkins, J. C., Chojnacky, D. C., Heath, L. S. and Birdsey, R. A. (2004). Comprehensive Database of Diameter-based Biomass Regressions for North American Tree Species. U. S. D. o. Agriculture. Newtown Square, PA.
- Jin, W., Singh, K. and Zondlo, J. (2013). Pyrolysis kinetics of physical components of wood and wood-Polymers using isoconversion method. *Agriculture* 3, 12-32.
- Kenney, K. L., Cafferty, K. G., Jacobson, J. J., Bonner, I. J., Gresham, G. L., Hess, J. R., Smith, W. A., Thompson, D. N., Thompson, V. S., Tumuluru, J. S. and Yancey, N. (2014). Feedstock supply system design and economics for conversion of lignocellulosic biomass to hydrocarbon fuels conversion pathway: fast pyrolysis and hydrotreating bio-oilpPathway "The 2017 Design Case", Idaho National Lab, Idaho Falls, ID, USA.
- Kitajima, K., Wright, S. J. and Westbrook, J. W. (2016). Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest. *Interface Focus* 6, 20150100.
- Lachowicz, H., Wróblewska, H., Wojtan, R. and Sajdak, M. (2019). The effect of tree age on the chemical composition of the wood of silver birch (Betula pendula Roth.) in Poland. *Wood Sci. Technol.* 53, 1135-1155.
- Levasseur, A., Lesage, P., Margni, M., Deschênes, L. and Samson, R. (2010). Considering time in LCA: dynamic LCA and its application to global warming impact assessments. *Environ. Sci. Technol.* 44, 3169-3174.
- Levia, D. F., Creed, I. F., Hannah, D. M., Nanko, K., Boyer, E. W., Carlyle-Moses, D. E., van de Giesen, N., Grasso, D., Guswa, A. J., Hudson, J. E., Hudson, S. A., Iida, S. i., Jackson, R. B., Katul, G. G., Kumagai, T. o., Llorens, P., Ribeiro, F. L., Pataki, D. E., Peters, C. A., Carretero, D. S., Selker, J. S., Tetzlaff, D., Zalewski, M. and Bruen, M. (2020). Homogenization of the terrestrial water cycle. *Nat. Geosci.* 13, 656-658.
- Liao, Y., Koelewijn, S.-F., Van den Bossche, G., Van Aelst, J., Van den Bosch, S., Renders, T., Navare, K., Nicolaï, T., Van Aelst, K., Maesen, M., Matsushima, H., Thevelein, J., Van Acker, K., Lagrain, B., Verboekend, D. and Sels, B. F. (2020). A sustainable wood biorefinery for low–carbon footprint chemicals production. *Science* 367, 1385-1390.
- Lin, Z., Nikolakis, V. and Ierapetritou, M. (2015). Life cycle assessment of biobased p-xylene production. *Ind. Eng. Chem. Res.* 54, 2366-2378.
- Lopes, T. F. and Łukasik, R. M. (2020). Economic, social and environmental impacts attained by the use of the effluents generated within a small-scale biorefinery concept. *Acta Innov* 36, 57-63.
- Luo, Y. and Ierapetritou, M. (2020). Comparison between different hybrid life cycle assessment methodologies: a review and case study of biomass-based p-xylene production. *Ind. Eng. Chem. Res.* 59, 22313-22329.
- Ma, S., He, F., Tian, D., Zou, D., Yan, Z., Yang, Y., Zhou, T., Huang, K., Shen, H. and Fang, J. (2018). Variations and determinants of carbon content in plants: a global synthesis. *Biogeosciences* 15, 693-702.
- Mahajan, J. S., O'Dea, R. M., Norris, J. B., Korley, L. T. J. and Epps, T. H., III (2020). Aromatics from Lignocellulosic Biomass: A Platform for High-Performance Thermosets. *ACS Sustainable Chem. Eng.* 8, 15072-15096.
- Mante, O. D. (2020). Building blocks from biocrude: high-value methoxyphenols, RTI International. Neiva, D. M., Rencoret, J., Marques, G., Gutiérrez, A., Gominho, J., Pereira, H. and del Río, J. C. (2020). Lignin from tree barks: chemical structure and valorization. *ChemSusChem* 13, 4537-4547.

- O'Dea, R. M., Pranda, P. A., Luo, Y., Amitrano, A., Ebikade Elvis, O., Gottlieb Eric, R., Ajao, O., Benali, M., Vlachos Dionisios, G., Ierapetritou, M. and Epps, T. H., III (2022). Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. *Sci. Adv.* 8, eabj7523.
- O'Dea, R. M., Willie, J. A. and Epps, T. H., III (2020). 100th Anniversary of macromolecular science viewpoint: polymers from lignocellulosic biomass. Current challenges and future opportunities. *ACS Macro Letters* 9, 476-493.
- Ögmundarson, Ó., Herrgård, M. J., Forster, J., Hauschild, M. Z. and Fantke, P. (2020). Addressing environmental sustainability of biochemicals. *Nat. Sustainability* 3, 167-174.
- Parajuli, R., Knudsen, M. T., Djomo, S. N., Corona, A., Birkved, M. and Dalgaard, T. (2017). Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. *Sci. Total Environ.* 586, 226-240.
- Rajak, R. C., Saha, P., Singhvi, M. S., Kwak, D., Kim, D., Lee, H., Deshmukh, A. R., Bu, Y. and Kim, B. S. (2021). An eco-friendly biomass pretreatment strategy utilizing reusable enzyme mimicking nanoparticles for lignin depolymerization and biofuel production. *Green Chem.* 5584-5599.
- Raman, J. K. and Gnansounou, E. (2015). LCA of bioethanol and furfural production from vetiver. *Bioresour. Technol.* 185, 202-210.
- Ranius, T., Hämäläinen, A., Egnell, G., Olsson, B., Eklöf, K., Stendahl, J., Rudolphi, J., Sténs, A. and Felton, A. (2018). The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis. *J. Environ. Manage.* 209, 409-425.
- Ranzi, E., Debiagi, P. E. A. and Frassoldati, A. (2017). Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note I: kinetic mechanism of biomass pyrolysis. *ACS Sustainable Chem. Eng.* 5, 2867-2881.
- Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W. and Sels, B. F. (2017). Lignin-first biomass fractionation: the advent of active stabilisation strategies. *Energy Environ. Sci.* 10, 1551-1557.
- Renders, T., Van den Bossche, G., Vangeel, T., Van Aelst, K. and Sels, B. (2019). Reductive catalytic fractionation: state of the art of the lignin-first biorefinery. *Curr. Opin. Biotechnol.* 56, 193-201.
- Rowell, R. M., Pettersen, R., Han, J. S., Rowell, J. S. and Tshabalala, M. A. (2012). Cell wall chemistry. Handbook of wood chemistry and wood composites. 3.
- Sahoo, K., Bergman, R. and Runge, T. (2021). Life-cycle assessment of redwood lumber products in the US. *Int. J. Life Cycle Assess.* 26, 1702–1720.
- Schmer, M. R., Vogel, K. P., Mitchell, R. B., Dien, B. S., Jung, H. G. and Casler, M. D. (2012). Temporal and spatial variation in switchgrass biomass composition and theoretical ethanol yield. *Agron. J.* 104, 54-64.
- Schöppe, H., Kleine-Möllhoff, P. and Epple, R. (2020). Energy and material flows and carbon footprint assessment concerning the production of HMF and furfural from a cellulosic biomass. *Processes* 8, 119.
- Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S. F., Beckham, G. T. and Sels, B. F. (2018). Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. *Chem. Soc. Rev.* 47, 852-908.
- Short, H. L. (1975). Composition and digestibility of deer browse in southern forests, Southern Forest Experiment Station, Forest Service, US Department of Agriculture.
- Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. (2008).

 Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure,
 National Renewable Energy Laboratory, Golden, CO, USA: 1-16.
- Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. (2012). Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure, National Renewable Energy Laboratory, Golden, CO, USA: 1-16.

- Steubing, B., Wernet, G., Reinhard, J., Bauer, C. and Moreno-Ruiz, E. (2016). The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2. *Int. J. Life Cycle Assess.* 21, 1269-1281.
- Sullivan, M., Rodosta, T., Mahajan, K. and Damiani, D. (2019). An overview of the Department of Energy's CarbonSAFE Initiative: Moving CCUS toward commercialization. *AlChE J.* 66, e16855.
- Svanes, E., Vold, M. and Hanssen, O. J. (2011). Effect of different allocation methods on LCA results of products from wild-caught fish and on the use of such results. *Int. J. Life Cycle Assess.* 16, 512-521.
- Theander, O. (1991). Chemical analysis of lignocellulose materials. Anim. Feed Sci. Technol. 32, 35-44.
- Thomas, S. C. and Martin, A. R. (2012). Carbon content of tree tissues: a synthesis. Forests 3, 332-352.
- Tian, X. and You, F. (2021). Energy and environmental sustainability assessment of photovoltaics transition toward perovskite–perovskite tandems from the attributional and consequential perspectives. *ACS Sustainable Chem. Eng.* 9, 11247–11257.
- Uihlein, A. and Schebek, L. (2009). Environmental impacts of a lignocellulose feedstock biorefinery system: An assessment. *Biomass Bioenergy* 33, 793-802.
- Urban, R. A. and Bakshi, B. R. (2009). 1,3-Propanediol from Fossils versus Biomass: A Life Cycle Evaluation of Emissions and Ecological Resources. *Ind. Eng. Chem. Res.* 48, 8068-8082.
- Vangeel, T., Neiva, D. M., Quilhó, T., Costa, R. A., Sousa, V., Sels, B. F. and Pereira, H. (2021). Tree bark characterization envisioning an integrated use in a biorefinery. *Biomass Conv. Bioref.*
- Vermaas, J. V., Petridis, L., Qi, X., Schulz, R., Lindner, B. and Smith, J. C. (2015). Mechanism of lignin inhibition of enzymatic biomass deconstruction. *Biotechnol. Biofuels* 8, 217.
- Wang, S., Shuai, L., Saha, B., Vlachos, D. G. and Epps, T. H., III (2018). From tree to tape: direct synthesis of pressure sensitive adhesives from depolymerized raw lignocellulosic biomass. *ACS Cent. Sci.* 4, 701-708.
- Wang, Y. (2014). National Biomass Estimator Library (NBEL). Forest Management Service Center: Fort Collins, CO, USA.
- Ward, G. and Woods, D. (1986). Lignin and fiber content of FPOM generated by the shredders Tipula abdominalis (Diptera: Tipulidae) and Tallaperla cornelia (Needham and Smith)(Plecoptera: Peltoperlidae). *Archiv für Hydrobiologie* 107, 545-562.
- Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E. and Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. *Int. J. Life Cycle Assess.* 21, 1218-1230.
- White, R. H. (1987). Effect of lignin content and extractives on the higher heating value of wood. *Wood Fiber Sci.* 19, 446-452.
- Win, D. T. (2005). Furfural-gold from garbage. Au J. Technol 8, 185-190.
- Wong, A., Zhang, H. and Kumar, A. (2016). Life cycle assessment of renewable diesel production from lignocellulosic biomass. *Int. J. Life Cycle Assess.* 21, 1404-1424.
- Wooley, R. J. and Putsche, V. (1996). Development of an ASPEN PLUS physical property database for biofuels components, National Renewable Energy Lab., Golden, CO (United States).
- Wullschleger, S. D., Norby, R. J., Love, J. C. and Runck, C. (1997). Energetic costs of tissue construction in yellow-poplar and white oak trees exposed to long-term CO2 enrichment. *Ann. Bot.* 80, 289-297.
- Yang, H., Zhang, X., Luo, H., Liu, B., Shiga, T. M., Li, X., Kim, J. I., Rubinelli, P., Overton, J. C., Subramanyam, V., Cooper, B. R., Mo, H., Abu-Omar, M. M., Chapple, C., Donohoe, B. S., Makowski, L., Mosier, N. S., McCann, M. C., Carpita, N. C. and Meilan, R. (2019). Overcoming cellulose recalcitrance in woody biomass for the lignin-first biorefinery. *Biotechnol. Biofuels* 12, 171.
- Yang, Y. (2016). Two sides of the same coin: consequential life cycle assessment based on the attributional framework. *J. Cleaner Prod.* 127, 274-281.
- Yang, Y. (2017). Does hybrid LCA with a complete system boundary yield adequate results for product promotion? *Int. J. Life Cycle Assess.* 22, 456-460.