
Partially Replicated Causally Consistent Shared Memory:
Lower Bounds and An Algorithm ∗

Zhuolun Xiang

University of Illinois at Urbana-Champaign

xiangzl@illinois.edu

Nitin H. Vaidya

Georgetown University

nitin.vaidya@georgetown.edu

ABSTRACT
The focus of this paper is on causal consistency in a partially repli-
cated distributed shared memory (DSM) system that provides the

abstraction of shared read/write registers. Maintaining causal con-

sistency in distributed shared memory systems has received sig-

nificant attention in the past, mostly on full replication wherein

each replica stores a copy of all the registers in the shared memory.

To ensure causal consistency, all causally preceding updates must

be performed before an update is performed at any given replica.

Therefore, some mechanism for tracking causal dependencies is

required, such as vector timestamps with the number of vector

elements being equal to the number of replicas in the context of

full replication. In this paper, we investigate causal consistency in

partially replicated systems, wherein each replica may store only a

subset of the shared registers. Building on the past work, this paper

makes three key contributions:

• We present a necessary condition on the metadata (which

we refer as a timestamp) that must be maintained by each

replica to be able to track causality accurately. The necessary

condition identifies a set of directed edges in a share graph
that a replica’s timestamp must keep track of.

• We present an algorithm for achieving causal consistency us-

ing a timestamp that matches the above necessary condition,

thus showing that the condition is necessary and sufficient.

• Wedefine ameasurement of timestamp space size and present

a lower bound (in bits) on the size of the timestamps. The

lower bound matches our algorithm in several special cases.

CCS CONCEPTS
• Theory of computation → Shared memory algorithms.

KEYWORDS
distributed shared memory; causal consistency; tight conditions;

lower bounds

∗
A brief announcement summarizing the results appeared at PODC 2018 [38]. This re-

search is supported in part by National Science Foundation award 1409416, and Toyota

InfoTechnology Center. Any opinions, findings, and conclusions or recommendations

expressed here are those of the authors and do not necessarily reflect the views of the

funding agencies or the U.S. government.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6217-7/19/07. . . $15.00

https://doi.org/10.1145/3293611.3331600

ACM Reference Format:
Zhuolun Xiang and Nitin H. Vaidya. 2019. Partially Replicated Causally

Consistent Shared Memory: Lower Bounds and An Algorithm . In 2019
ACM Symposium on Principles of Distributed Computing (PODC ’19), July
29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3293611.3331600

1 INTRODUCTION
Distributed shared memory systems maintain multiple replicas of

the shared memory locations, which we refer to as shared registers.

In recent years, the causal consistencymodel for the shared memory

has received significant attention due to its emerging applications,

such as social networking. Intuitively, causal consistency ensures

that before an update is applied to a shared register, all the causally

preceding updates must be applied at the same replica. This paper

mainly focuses on the architecture illustrated in Figure 1a, which

we refer to as the peer-to-peer architecture. Each peer has a client
that issues read/write operations to the sharedmemory and a replica
that helps implement the shared memory abstraction. We focus

on the case when each replica is partial and may store a copy of

just a subset of the shared registers. Full replication is obtained as a

special case when each replica stores a copy of each shared register.

(a) Peer-to-peer architecture (b) Client-server architecture

We primarily present the results for the peer-to-peer architecture.

The results can be extended to the client-server architecture in

Figure 1b where each client may be accessing replicas stored at an

arbitrary subset of the servers, as briefly discussed in Section 5.

In the context of full replication, several causally consistent

shared memory systems have been designed, including Lazy Repli-

cation [22], COPS [24], GentleRain [12], Orbe [11], SwiftCloud [39],

Occult [27], and Causalspartan [35]. Recently, there is also growing

interest in partial replication due to the potential storage efficien-

cies that can be attained [2, 4, 6, 7, 9, 16, 17, 19, 25, 27]. For full
replication, it suffices to use a vector timestamp [8, 14, 26] of length

equal to the number of replicas [22] to achieve causal consistency.

Several researchers have observed that partial replication re-

quires larger amount of metadata to track causal dependencies

[2, 9, 16, 24]. For partial replication, in general, the timestamp (or

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

425

https://doi.org/10.1145/3293611.3331600
https://doi.org/10.1145/3293611.3331600

metadata) overhead is expected to be larger than that for full replica-

tion in order to avoid false dependencies as will be explained below.

One straightforward method to implement partial replication is by

adding “virtual registers” at each replica to simulate full replication.

The virtual registers do not store actual data and cannot be accessed

by clients. Then solutions for full replication such as vector clocks

can be easily adapted for partial replication. However, there are

several issues: (1) Every update message with metadata will be sent

to all replicas in full replication, which is not necessary for partial

replication. This may result in high bandwidth usage. (2) Simulating

full replication introduces unnecessary dependencies (which we

call false dependencies) among the update messages. For instance,

if update ux on register x depends on update uy on register y, i.e.
ux can only be applied after uy is applied, then on any replica who

received ux first will wait for the receipt of uy , even if register y is

virtual and not stored locally. However, there is no reason for such

delay, since the virtual register y will not be accessed by any client

from this replica, and thus ux can be applied without the receipt of

uy . Therefore this simulation approach may result in stale versions.

Partial replication yields a trade-off between the flexibility of

replication, number of false dependencies on update messages, and

overhead of the metadata for tracking causality. A goal of our work

is to characterize this trade-off. Intuitively, in our solution, each

replica maintains an edge-indexed vector timestamp which keeps

counters for a subset of edges in a “share graph” that characterizes
how registers are shared among the replicas. We show that our

timestamp is optimal in the sense that the subset of share graph

edges tracked is necessary for correctness (Theorem 1). Also, there

is no false dependency introduced in our solution. Our main contri-

butions are as follows:

• We present a necessary condition on the metadata that must

be maintained by each replica to be able to track causality ac-

curately. The necessary condition identifies a set of directed

edges in a share graph that a replica’s timestamp must keep

track of.

In deriving the necessary condition, we make improvements

over results presented in prior work of Hélary and Milani

[16, 30].

• We present an algorithm for achieving causal consistency us-

ing a timestamp that matches the above necessary condition,

thus showing that the condition is necessary and sufficient.

• Wedefine ameasurement of timestamp space size and present

a lower bound (in bits) on the size of the timestamps. The

lower bound matches our algorithm in several special cases.

2 PRELIMINARIES
We assume an asynchronous system, and the replicas communicate

using reliable point-to-point message-passing channels. The com-

munication channels are not necessarily FIFO. In Sections 2 through

4, we assume the peer-to-peer architecture in Figure 1a. Each peer

contains a client and a replica. There are R peers, and hence there

are R replicas. The replicas are numbered 1 through R. Replica i
stores copies of a subset of shared registers named Xi . With full

replication, Xi = X j for all replicas i, j. With partial replication, it

is possible that Xi , X j for i , j. We define Xi j = Xi ∩ X j , the set

of registers stored at replicas i and j both. For instance,in partial

replication with four replicas, we may have X1 = {x}, X2 = {x ,y},
X3 = {y, z}, and X4 = {z}, where x ,y, z are registers. In this case,

X23 = {y} and X14 = ∅. In practice, set Xr for replica r may change

dynamically, however, we consider the static case in this paper and

leave the dynamic case for future work.
Hélary and Milani [16] introduced the notion of a share graph to

represent a partially replicated system. Similar notions of graph of
groups are introduced in causal multicast literature as well [5]. We

will use the share graph when obtaining results for the peer-to-peer
architecture in Section 3 and 4. To extend these results to the client-
server architecture, in Section 5, we will introduce an augmented
version of the share graph.

Definition 1 (Share Graph [16]). We denote ei j as a directed
edge from i to j . Share graph is defined as a directed graphG = (V ,E),
where V = {1, 2, · · · ,R}, and vertex i ∈ V represents replica i . There
exist directed edges ei j and eji in E if and only if Xi j , ∅.

As such, if ei j ∈ E then eji ∈ E, and G may be defined as an

undirected graph as originally defined in [16]. However, as seen

later, it is convenient to represent the sharing using directed edges.

Xi j will be referred to as the label of edges ei j and eji . In this

paper, we assume that each replica has the knowledge of the share
graph including the labels on each edge.

Figure 2: Illustration

Recall that each peer

contains a client and a

replica, and the client can

issue read or write oper-
ations on a shared reg-

ister stored at the local

replica. Define read(x) to
be a read operation on

register x , andwrite(x ,v) to be a write operation on register x that

writes value v . When performing read(x) orwrite(x ,v) operation
on register x ∈ Xi , client i sends a request to replica i , and awaits

the replica’s response. The response to a write operation is an ac-

knowledgement, and the response to a read operation is a returned

value. Define update to be a tuple of the form update(i,T ,x ,v),
where i is the sender of the update, T is the timestamp attached

with the update, x is the register being updated and v is the value.

As illustrated in Figure 2, upon receiving write operations from
the client, the replica will issue updates to some other replicas, i.e.,

sending update(i,T ,x ,v) to other replicas who also replicate x in

order to update their registers. Upon receiving update(i,T ,x ,v)
from other replica, the replica can decide when to apply the up-
date, i.e., write the new value v into the register x . An execution is

defined to be a sequence of clients’ read/write operations and repli-

cas’ operations in issuing/applying updates. With our definition

of replica-centric causal consistency in the next section, we will

often construct executions by declaring the replicas’ operations on

updates without explicitly mentioning the clients’ operations.

2.1 Replica-centric Causal Consistency
In this section, we will use the notions of issuing an update and
applying an updatementioned above. A client i may only read/write

registers in Xi . Thus, replica i may only issue updates to registers

in Xi . For convenience, each write operation on a given register is

assumed to write a unique value.

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

426

Cadambe, Viveck Ramesh

In past work, several variations of causal consistency have been

explored. One of the commonly used definitions of causal con-

sistency is defined from clients’ viewpoint, which we refer to as

client-centric causal consistency below.

Definition 2 (Happened-before relation→ for operations

[23]). Let o1,o2 be two operations of the client. o1 happened-before o2,
denoted as o1 → o2, if and only if at least one the following conditions
is true: (1) Both o1 and o2 are performed by the same client, and o1
occurs before o2. (2) o1 is a write operation, and o2 is a read operation
that returns the value written by o1. (3) There exists an operation o3
such that o1 → o3 and o3 → o2.

Client-centric causal consistency is defined based on the relation

→ for operations above.

Definition 3 (Client-centric Causal Consistency). Client-
centric causal consistency is achieved if the following two properties
are satisfied:

• Safety: If a read operation o3 on some register x returns the
value written by write operation o1 on register x , then there
must not exist another write operation o2 on register x such
that o1 → o2 → o3.

• Liveness: For a write operation o1 by some client that writes
value v in register x , all replicas that store copies of register x
should be updated with the value v within a finite time.

The causal consistency model addressed in our work is inspired

by replicated shared memory systems such as Lazy Replication

[22]. We refer to this model as the replica-centric causal consistency
model. We define the happened-before relation [23] between updates
as follows.

Definition 4 (Happened-before relation ↪→ for updates).

Given updates u1 and u2, u1 ↪→ u2 if and only if at least one of the
following conditions is true:

(1) u1 is applied at a replica on any of its register sometime before
the same replica issues u2 on any of its register.

(2) There exists an update u3 such that u1 ↪→ u3 and u3 ↪→ u2.

Figure 3: Relation ↪→

Intuitively, relation ↪→

is analogous to the happened-

before relation between

events in the context of

causal multicast. That is,

an update issued by replica

i is considered causally de-

pendent on any updates

that were previously applied at that replica, regardless of whether

the previously updated registers were read by the client or not.

We give an example of relation ↪→ in Figure 3. In this example,

there are 3 replicas r1, r2, r3, where r1 issues updates u1 and u2, r2
issues update u3 and r3 issues update u4. u1 is applied at r1, u2 is
applied at r1, r2, u3 is applied at r2, r3 and u4 is applied at r3. In the

figure, the send event of arrow with labelu2 depicts when updateu2
is issued at r1, and the receive event of that arrow depicts the time

when r2 applies update u2. By condition (1) of the ↪→ definition, we

haveu1 ↪→ u2 andu2 ↪→ u3, and by condition (2) we haveu1 ↪→ u3.
Also,u1 andu4 are concurrent, i.e.u1 ↪̸→ u4 andu4 ↪̸→ u1. Similarly,

u2 and u4 are concurrent.

Definition 5 (Replica-centric Causal consistency). Replica-
centric causal consistency is achieved if the following two properties
are satisfied:

• Safety: If an update u1 for register x ∈ Xi has been applied
at a replica i , then there must not exist update u2 for some
register in Xi such that (i) u2 ↪→ u1, and (ii) replica i has not
yet applied u2.

• Liveness:1 Any updateu issued by a replica i for a register x ∈

Xi should be applied at each replica j such that x ∈ X j within
a finite time after all dependencies of u have been applied at
j, i.e., all u ′ for some register y ∈ X j such that u ′ ↪→ u have
been applied.

For three reasons, we consider the replica-centric causal con-

sistency in this paper. (i) First, the necessary conditions presented

in Section 3.1 and 4 for the replica-centric causal consistency also

applies to the client-centric causal consistency, because the proof

construction in this paper can be adapted for client-centric causal

consistency by the client reading all registers in its replica before

issuing any write operation. (ii) Second, the algorithms for replica-

centric causal consistency also implement the client-centric causal

consistency, but with possible false dependencies. (iii) Third, in

practice, maintaining the replica-centric causal consistency is ef-

ficient in metadata size, since it only uses a single timestamp per

replica (as compared to, for instance, a timestamp per register per

replica for the client-centric causal consistency). Many practical

systems, including Lazy Replication [22], ChainReaction [1] and

SwiftCloud [39], in fact, conform to the replica-centric view.

Relation with Causal Group Multicast. As we mentioned earlier,

the definition of replica-centric causal consistency is analogous to

the requirement for causal group multicast [5], where the messages

need to be delivered to the processes in a causal order. The following

correspondence can be obtained. Replicas sharing the same register

x correspond to processes belonging to the same multicast group

Gx . Any update to register x by replica i results in a multicast

to group Gx by replica i . In the case of partial replication, our

algorithm later in section 3.2 can essentially be viewed as causal

group multicast with overlapping groups [5, 20, 32], where each

process may belong to multiple groups (determined by how they

share registers) and the multicast within a group is only received

by members in that group. Hence our results below in Section 3.1

and 3.2 also apply to causal multicast with overlapping groups. For

the sake of the consistency of presentation, we state our results in

the context of distributed shared memory. Related work on causal

group multicast and the comparison with our work are discussed

in Section 6.

In this paper, we consider algorithms that implement causal

consistency by storing and attaching metadata (times-

tamps) with update messages, where the metadata is some

encoding of the information about the execution history.

When to apply a received update at a replica is determined

only using the replica’s local metadata and the metadata

attached with the update.

1
Note that our definition of Liveness implies no false dependencies.

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

427

3 TIMESTAMPS FOR REPLICA-CENTRIC
CAUSAL CONSISTENCY

In this section, we consider partially replicated shared memory

systems, which satisfy the replica-centric causal consistency model

in Section 2.1 using an algorithm under the assumptions mentioned

in Section 2. In particular, we identify a necessary and sufficient

condition on the timestamp τi maintained by each replica i . Intu-
itively, our condition identifies a subset of directed edges in the

share graph that are necessary and sufficient to “keep track” of for

each replica in order to achieve replica-centric causal consistency.

Figure 4: (i, ejk)-loop

For a replica i , and directed

edge ejk (from j to k) in the

share graph, Definition 6 defines

an (i, ejk)-loop as illustrated in

Figure 4. We will use − to denote

the set difference, i.e., A − B =
{x ∈ A | x < B}. After intro-
ducing the definition below, we

provide intuition behind the def-

inition.

Definition 6 ((i, ejk)-loop).
Given replica i and edge ejk (j ,
i , k) in share graph G, consider a simple loop of the form
(i, l1, l2, · · · , ls = k, j = r1, r2, · · · , rt , i), where s ≥ 1 and t ≥ 1.
Define i = rt+1. The simple loop is said to be an (i, ejk)-loop provided
that:

(i) X jk −

(
∪1≤p≤s−1 Xlp

)
, ∅,

(ii) X jr2 −
(
∪1≤p≤s−1 Xlp

)
, ∅, and

(iii) for 2 ≤ q ≤ t , Xrqrq+1 −
(
∪1≤p≤s Xlp

)
, ∅.

As shown later, when there exists an (i, ejk)-loop, replica i needs
to keep information regarding updates on edge ejk in order to

achieve causal consistency.

Intuition: This discussion refers to Figure 4. The definition of

(i, ejk)-loop will be used to characterize the timestamp used by

replica i in our algorithm. As we will show later in the proof of

Theorem 1, the timestamp at replica i must reflect information

regarding updates on edge ejk if an (i, ejk)-loop exists. Consider

the following execution. Let u be an update issued by replica j
which is sent to replica k (i.e., an update on edge ejk) since replica
k stores the register that u is updating. Also suppose that there is a

sequence of causally dependent updates propagated along the path

(j, r2, · · · , i, · · · , ls−1,k). Denote the update from ls−1 to k as u ′, so
that we haveu ↪→ u ′. Then the timestamps attached withu ′ should
contain enough information about the u ↪→ u ′ relation for replica

k to apply these two updates in the correct order, or postpone the

application of u ′ if u ′ is received before u. Thus, it is necessary
for replicas such as replica i to “keep track of” causally preceding

updates that have taken place on edge ejk . This allows replica i
to propagate the dependency information to other replicas in the

above loop that need it (particularly, replica l1 to ls). If condition
(i) is not true, update u will also be sent to some replica lp where

1 ≤ p ≤ s − 1, since all registers shared by j,k are also shared by

j and some replica lp . Similarly, if condition (ii) or (iii) is not true,

the updates along the path (j, r2, ..., i) will also be sent to some

replica lp . Since the timestamps of these updates sent to some lp
may contain the information about u ↪→ u ′, it is not necessary for

replica i to “keep track of” the causality for updates on edge ejk . On
the other hand, when all three conditions are true, replica i has to
maintain such information to ensure causal consistency. For more

details, the reader may refer to the proofs for the necessary and

sufficient condition in later sections.

Example: Figure 5a shows a share graph for a system of 4 repli-

cas. Suppose that X1 = {a,y,w}, X2 = {b,x ,y}, X3 = {c,x , z}
and X4 = {d,y, z,w}. The label on edges between replicas i and
j in Figure 5a corresponds to the registers in Xi j . For instance,
X34 = {z}. By Definition 6, (1, 4, 3, 2) is not a (1, e34)-loop since

X21 − X4 = ∅ which violates condition (iii). Similarly, (1, 4, 3, 2)

is not a (1, e23)-loop due to a similar reason. On the other hand,

(1, 2, 3, 4) is a (1, e43)-loop. Due to the existence of register w in

X14, X14 − X2 , ∅, and the reader can easily check that all three

conditions in Definition 6 are satisfied. Similarly, (1, 2, 3, 4) is a

(1, e32)-loop.
To help present the necessary condition in Section 3.1, we now

define a timestamp graph. Intuitively, timestamp graph Gi consists

of directed edges that are necessary and sufficient for replica i to
keep track of in its timestamp, as we will show later in Section 3.1

and 3.2.

Definition 7 (Timestamp graphGi of replica i). Given share
graphG = (V ,E), timestamp graph of replica i is defined as a directed
graph Gi = (Vi ,Ei), where

Ei ={ei j | ei j ∈ E} ∪ {eji | eji ∈ E}

∪ {ejk | ∃ (i, ejk)-loop in G, j , i , k, ejk ∈ E}

Vi ={u,v | euv ∈ Ei }

(a) G (b) G1

Figure 5

Thus, Ei con-

sists of all directed

edges incident at

i , and each edge

ejk ∈ E such that

an (i, ejk)-loop ex-
ists. Consider the

share graph exam-

ple in Figure 5(a)

again. Figure 5(b)

shows the timestamp graph for replica 1. Observe that the edge

e43 is in G1 but e34 is not in G1, due to the fact that (1, 2, 3, 4) is

a (1, e43)-loop but (1, 4, 3, 2) is not a (1, e34)-loop, as we explained
earlier for the example of (i, ejk)-loop. By the example above and

the definition of timestamp graph, we make the following three

observations:

1. Timestamp graphs may be different from the share graph. 2.
Different replicas may have different timestamp graphs. 3. Edges in
the timestamp graph are not necessarily bidirectional.

3.1 A Necessary Condition for Timestamps
As briefly stated in Section 2, each replica maintains a timestamp.

To achieve replica-centric causal consistency, the timestamp must

contain enough information. In this section, we obtain a necessary

condition on the timestamps. In particular, Theorem 1 below shows

that, if ejk is in the timestamp graph of replica i , then it is necessary

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

428

for replica i to “keep track of” updates performed by replica j to
registers in X jk . To present the result formally, we introduce some

additional terminology.

Definition 8 (Causal past and Causal dependency graph
[29]). Causal dependency graph R of a replica that has applied
updates in setU consists of vertices in S = U ∪ {u ′ | u ∈ U , u ′ ↪→ u}
and directed edges in {(u1,u2) | u1 ↪→ u2 and u1,u2 ∈ S}. Set S is
referred as the causal past of the replica [29].

Theorem 1 will use the following terminology:

• We define relation for causal dependency graph R0,R1 of

replica i as follows: R0 < R1 if there exists an execution

in which replica i’s causal dependency graph equals R0 at

some point of time, and R1 subsequently.

• Two causal dependency graphs with vertex sets S1 and S2
are said to differ only in updates on ejk if and only if (i) all

the updates in (S1 − S2) ∪ (S2 − S1) are issued by replica j for
registers in X jk and (ii) the edges between any vertices in

S1 ∩ S2 are identical in both the causal dependency graphs.

• We will say that replica i with causal dependency graph R0

is oblivious to updates on ejk , if the replica’s timestamp is

identical for every pair of causal dependency graphs R1 and

R2 such that (i) R0 < R1 and R0 < R2, and (ii) R1 and R2

differ only in updates to X jk .

Intuitively, a replica that is oblivious to updates on ejk does not

keep track of updates to registers in X jk by replica j.

Theorem 1. Consider a partially replicated sharedmemory system
that implements replica-centric causal consistency. Any replica i must
not be oblivious to update on any edge e ∈ Ei , where Ei is the edge
set in the timestamp graph of replica i .

The proof of Theorem 1 is provided in Appendix A. Intuitively,

the theorem states that replica i’s timestamp needs to be depen-

dent on the updates performed on edge ejk for each ejk ∈ Ei . For
instance, a vector timestamp whose elements are indexed by edges

in Ei , and count updates performed on the corresponding edges,

satisfies the requirements in Theorem 1. Indeed, in Section 3.2 we

present an algorithm that uses precisely such a timestamp, proving

that the necessary condition in Theorem 1 is sufficient as well. Later

in Section 4 we obtain a lower bound on the size of the timestamps

in the unit of bits. The necessary condition of Theorem 1 does not

provide a measure of the size of the timestamps, whereas Theorem

2 provides lower bound on the size.

3.2 Sufficiency of Tracking Edges in
Timestamp Graph

We propose an algorithm for implementing causally consistent

shared memory in this section. The algorithm is for peer-to-peer

architecture where each client only issues operations to one corre-

sponding replica. Recall that Gi = (Vi ,Ei) is the timestamp graph

of replica i .
Timestamps: Each replica i maintains an edge-indexed vector

timestamp τi that is indexed by the edges in Ei . For edge ejk ∈ Ei ,
τi [ejk] is an integer, initialized to 0.

Client’s Algorithm:
(1) Upon read operation on register x : send read(x)

to the replica, wait for the value returned by the

replica.

(2) Upon write operation on register x with value v:
sendwrite(x ,v) to the replica, wait for the acknowl-
edgement from the replica.

Replica’s Algorithm:
(1) Upon receiving a read(x) request from the client:

replica i responds with the value of the local copy

of register x .
(2) Upon receiving awrite(x ,v) request from the client:

replica i performs the following operations atomi-

cally:

(a) write v into the local copy of register x ,
(b) for each ejk ∈ Ei , update timestamp τi as

τi [ejk] :=

{
τi [ejk] + 1, if j = i and x ∈ Xik ,
τi [ejk], otherwise

(c) send update(i,τi ,x ,v) message to each other

replica k ∈ V such that x ∈ Xk ,
(d) return ack to the client.

(3) Upon receiving a message update(k,τk ,x ,v) from
replica k :
replica i addsupdate(k,τk ,x ,v) to a local data struc-
ture named pendinдi .

(4) For any update(k,τk ,x ,v) ∈ pendinдi , when

τi [eki] = τk [eki] − 1 and τi [eji] ≥ τk [eji] for each
eji ∈ Ei ∩ Ek , i , j , k , replica i performs the

following operations atomically:

(a) writes value v to its local copy of register x ,
(b) for each e ∈ Ei , updates timestamp τi as

τi [e] :=

{
max (τi [e],τk [e]) , for each e ∈ Ei ∩ Ek ,
τi [e], for each edge e ∈ Ei − Ek

(c) removes update(k,τk ,x ,v) from pendinдi .

The proof for the correctness of the algorithm is provided in the

full version [37]. Note that the timestamp used by the algorithm

implies replica i is not oblivious to update on any edge ejk ∈ Ei ,
indicating the necessary condition in Theorem 1 is also sufficient.

Intuition for correctness:Our algorithm is similar to standard

causal multicast algorithms [5]. The novelty of our algorithm lies

in the edge-indexed vector timestamp, which contains a counter

for each edge in the timestamp graph of the replica. Intuitively,

keeping track of edges incident at i ensures FIFO delivery of update

messages to/from i , and keeping track of the other edges in Ei
guarantees that causal dependencies are carried when a chain of

causally dependent update messages are propagated along a cycle.

Although maintaining counters for all the edges in cycles for the

second part is sufficient, it is not always necessary – our (i, ejk)-
loop characterizes precisely which subset of edges in the cycle is

necessary and sufficient for maintaining causal consistency.

Optimizations: We briefly discuss some mechanisms to reduce

the timestamp size (details in the full version [37]). (1) Timestamp
Compression:We observe that, in our algorithm, the different ele-

ments of the vector τi at replica i are not necessarily independent.

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

429

For instance, suppose that ej1, ej2, ej3, ej4 ∈ Ei for some j , i , with
X j1 = {x}, X j2 = {y}, X j3 = {z} and X j4 = {x ,y, z}. Observe
that the number of updates performed to registers corresponding

to these four edges is not independent. Thus, it is possible to com-

press the timestamp to reduce its space requirement. (2) Allowing
False Dependencies: A false dependency occurs when the applica-

tion of an update u1 is delayed at some replica, waiting for some

update u2 to be applied, even though u2 ↪̸→ u1. We can introduce

a “dummy” copy of some register at replicas to change the share

graph and thus reduce the timestamp size possibly, but at the cost

of extra update messages. (3) Restricting Inter-Replica Communica-
tion Patterns: It is known that restricted communication graphs can

allow dependency tracking with a lower overhead [7, 21, 28] in the

message-passing context. A similar observation applies in the case

of partial replication too.

3.3 Relation to previous results
Our results make an improvement over previous results [16] regard-

ing the timestamp size. Hélary and Milani [16] identify a larger set

of edges (compared to Ei) that replica i needs to “track”, however

their result, although sufficient, does not always yield the neces-

sary set of edges to track. Note that Hélary and Milani’s results

[16] consider the client-centric causal consistency. As mentioned

when introducing the replica-centric causal consistency, our nec-

essary conditions presented in Section 3.1 and 4 applies to their

settings. The definition of the minimal x-hoop in [16, 30] states the

following.

Definition 9 (Hoop [16, 30]). Given a register x and two replicas
ra and rb in C(x) where C(x) is the set of the replicas that stores x ,
we say that there is a x-hoop between ra and rb , if there exists a path
(ra = r0, r1, ..., rk = rb) in the share graph G such that: i) rh < C(x)
(1 ≤ h ≤ k − 1) and ii) each consecutive pair (rh−1, rh) shares a
register xh such that xh , x (1 ≤ h ≤ k)

Definition 10 (Minimal Hoop [16, 30]). An x-hoop
(ra = r0, r1, ..., rk = rb) is said to be minimal, if and only if i) each
edge of the hoop can be labelled with a different register and ii) none
of the edge label is shared by replica ra and rb .

The following result in [16, 30] intended to be a tight condition

for achieving causal consistency.

Lemma 1 ([16, 30]). A replica has to transmit some information
about a register x if and only if the replica stores x or belongs to a
“minimal x-hoop”

As we show with an example now, the condition in Lemma 1

from [16, 30] is not, in fact, tight [31].

Consider the share graph in Figure 6 (we omit the direction

of each edge in the figure for brevity). In the figure, the label on

edges euv , evu shows set Xuv . The share graph consists of repli-

cas i,a1,a2,k, j,b1,b2. Replicas j and k share register x , replicas
b1,b2,a1 share register y, and replicas b2,a1,a2 share register z.
Labels on other edges are unique and distinct from x ,y, z.

The loop (j,b1,b2, i,a1,a2,k) is considered a “minimal x-hoop”
by Definition 10 from [16, 30] because (i) the label on each edge in

the loop is distinct, (ii) none of the edge labels is shared by replica

j and replica k . The result in Hélary and Milani [16, 30] implies

that replica i must transmit (or keep) information about updates to

register x by replicas j,k . However, it can be shown that presence of
the two edges labeled y (and the manner they are situated) makes it

unnecessary for replica i to be aware of updates to register x issued

by replica j.

Figure 6: Example

For instance, consider the ex-

ecution where there is an up-

date by replica j on x and then a

sequence of causally dependent

updates propagating along the

hoop j,b1,b2, i,a1,a2,k on reg-

isters t ,y,q,p, z, s respectively.

Since the update by replica i on
register p is also causally depen-

dent on the update issued by

replica b1 on register y, replica
a1 will apply the update on y be-

fore the update on p. Since the update on y already record the

dependency of the update on x , there is no need for replica i to be

aware of updates to x issued by replica j . More details can be found

in the correctness proof of the algorithm. Similarly, replica i does
not need to transmit information regarding updates to x issued by

replica k . Our necessary condition (Theorem 1) does not require

replica i to keep track of these updates.

In general, our definition of the timestamp graph (Definition 7)

identifies a necessary and sufficient set of edges for each replica

which is a subset of the edge set identified in [16].

4 LOWER BOUND ON TIMESTAMP SIZE
Section 3.1 obtained a necessary condition on the timestamps as-

signed to the replica. In this section, we obtain a lower bound (in

bits) on the size of the timestamps. From the definition of the causal

dependency graph it should be apparent that two different causal

dependency graphs may possibly correspond to the same causal
past (i.e., set S in Definition 8). In order to derive the lower bound,

we impose the following constraint
2
.

Constraint 1. For any replica i , its timestamp at any given time
is a function of its causal past at that time.

Definition 11. Timestamp space size σ i (m) of replica i un-
der Constraint 1: Consider the set of executions E in which each
replica issues up tom updates. The timestamp space size of replica
i under Constraint 1, denoted as σ i (m), is the minimum number of
distinct timestamps that replica i must assign over all the executions
in E.

Note that replica i may not use all the distinct σ i (m) timestamps

in the same execution. However, over all possible executions, replica

i will need to use at least σ i (m) distinct timestamps.

Let S be a causal past, which is a set of updates as per Definition

8. Recall that G = (V ,E) denotes the share graph. For ejk ∈ E, let
S |ejk denote the set of updates in S that are issued by replica j on
registers in X jk . For ejk < E, define S |ejk = ∅ for convenience.

Definition 12 (Conflict). Given share graph G = (V ,E), and
two possible causal pasts S1, S2 of replica i from executions in E, we
say that S1 and S2 conflict if following conditions hold:
2
Note that our proposed algorithm in Section 3.2 actually satisfies this constraint.

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

430

(1) ∀e ∈ E, S1 |e , ∅ , S2 |e , and
(2) ∃e ∈ E such that S1 |e ⊂ S2 |e , where

(a) e = ei j or
(b) e = eji or
(c) ∃ a simple loop (i, l1, · · · , ls , r1, · · · , rt , i = rt+1) ∈ G
where e = er1ls such that
(1) S1 |erp lq = S2 |erp lq for 1 ≤ p ≤ t + 1, 1 ≤ q ≤ s and
erp lq , er1ls , and

(2) Sx |erp rp+1 −
⋃

1≤q≤s Sx |erp lq , ∅ for 1 ≤ p ≤ t and
x = 1, 2

Explanation: Condition (1) means that both causal pasts S1, S2
have at least one update on every edge in the share graph, which

allows us to construct executions where some replica i’s causal
past can equal to S1 or S2. More specifically, using this property

we can construct executions where the updates in S1 (or S2) are
issued and propagated via a spanning tree rooted at replica i in
the share graph, thus leading to causal past S1 (or S2) in replica i .

Figure 7: Condition 2 of Definition 12

Condition (2)means

that the set of

updates in S1 on

some edge is a

strict subset of those

in S2 on the same

edge. As we will

show in the proof,

the set difference

above ensures that

replica must dis-

tinguish S1 from

S2, otherwise causal consistency may be violated. Three kinds of

edges are listed in the definition (see Figure 7), (a) outgoing edges

of replica i , (b) incoming edges of replica i , and (c) edges er1ls that
are in a loop which satisfies two conditions stated in the definition:

(1) the set of updates on any “chord edges” in the loop except er1ls
are identical for S1 and S2, and (2) for both causal pasts S1 and S2,
for replica rp in r1, ..., rt , there exists some update sent to rp+1 that
is not sent to any of l1, ..., ls . All conditions above will be used in

the proof of Lemma 2.

Lemma 2. Consider two possible causal pasts S1, S2 of replica i . If
S1 and S2 conflict, then distinct timestamps must be assigned to them
for ensuring the safety and liveness properties in Definition 5.

Proof Sketch. The proof is presented in the full version [37].

Here we give some intuition of the proof. First we create two exe-

cutions E1 and E2, after which replica i has causal past S1 and S2
respectively. The executions need to be created carefully such that

they can be extended later to derive a contradiction as follows. If

S1 and S2 conflict, but are assigned with the same timestamp, then

replica i cannot distinguish whether it has causal past S1 in E1 or

S2 in E2. Note that S1 and S2 differs in updates on some edge e .
Suppose the difference is the update set U and e = ejk . Then we

can carefully extended the executions E1 and E2 such that replica

k with identical local timestampsTk receives an update u also with

identical timestamps tu in both extensions, and in one extensionu is

causally dependent on updates inU while in another it is not. Then

replica k cannot distinguish between the two executions, and hence

may violate either safety or liveness for causal consistency. �

Once we know all the pairs of conflicting causal pasts of a replica,

we can easily derive the lower bound for the timestamp space size

of that replica. For replica i , we define a conflict graph Hi with

vertex set equal to the set of all possible causal pasts of replica i . An
edge is added between any two causal pasts of replica i that conflict.
Then, the chromatic number for the conflict graph is a lower bound

on timestamp space size. Therefore, we have the following theorem.

Theorem 2. Consider a partially replicated sharedmemory system
that implements replica-centric causal consistency using an algorithm
under Constraint 1. Let χ (Hi) denote the chromatic number of conflict
graph Hi . Then, σ i (m) ≥ χ (Hi) for any replica i .

Implication: Although our result does not explicitly imply a

closed-form lower bound for the timestamp sizes, it can be shown

that in several cases the lower bound has closed form and is tight.

• For instance, if the share graph is a tree, the timestamp lower

bound is 2Ni logm bits for replica i , where Ni is the number

of i’s neighbors in the share graph andm is the maximum

number of updates that i will issue in the execution.

• When the share graph is a cycle of n replicas, the timestamp

size for each replica has lower bound 2n logm bits. Note that

the timestamp sizes are tight in the above examples, since

our algorithm will use timestamps of these sizes.

• In the case of full replication where the share graph is a

clique and each edge shares identical set of registers, the

above theorem implies the lower bound of the timestamp

space size to bemR
where R is the total number of replicas.

This lower bound is also tight, because the traditional vector

timestamps satisfy this bound (similar to the timestamps

used by Lazy Replication [22] when applied to the peer-to-
peer architecture in Figure 1a).

One may relate themR
lower bound for full replication to the classic

lower bound on the vector clock size obtained by Charron-Bost

[8] for determining happened-before relation in a message passing

system. Although two bounds equal for full replication, however, it

is not true in general for partial replication. Timestamps for decid-
ing happened-before relation between events cannot be directly used
for maintaining causal consistency and vice versa. One reason is

that to achieve causal consistency, the timestamps should reflect

information about whether there is any causally dependent update

missing, but not false dependencies. Another reason is that the

happened-before relation may have to be determined between any

two events, while to achieve causal consistency, only for updates

received by the same replica we need to determine the happened-

before relation. As a result, our previous necessary and sufficient

condition on the timestamps from Section 3.1 and 3.2 implies that

the vector clock should have size equal to the number of edges

in the timestamp graph (Definition 7), which may be larger than,

smaller than or equal to n depending on the share graph.

5 EXTENDING RESULTS TO THE
CLIENT-SERVER ARCHITECTURE

The results presented for the peer-to-peer architecture in Section 3

can be extended to the client-server architecture. The system model

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

431

of client-server architecture is illustrated in Figure 1b. There are

C clients numbered 1 through C . Each client i is associated with

an arbitrary subset of replicas Ri . Client i is restricted to perform

read/write operations on registers in ∪r ∈RiXr .
Several natural extensions of the previous definitions are intro-

duced in the full version [37] to obtain the results for the client-

server architecture: (a) The algorithm is extended by taking into

account the fact that a client may propagate dependencies across

two replicas. In particular, in the client-server architecture, a client

also needs to maintain a timestamp locally, and the timestamp will

be included with the request to the replicas. (b) The share graph

is augmented as shown below with additional edges that capture

the causal dependencies propagation across the replicas due to the

client accessing multiple replicas. (c) The definitions of (i, ejk)-loop
and timestamp graph can then be suitably modified to apply to the

client-server architecture.

Below we only present the definition of augmented share graph.

Full details of the modifications for the client-server architecture

can be found in the full version [37]. Recall that E is the set of edges

in the share graph defined previously in Section 2.

Definition 13 (Augmented Share Graph). Augmented share
graph Ĝ consists of vertices in V = {1, · · · ,R} and directed edges in
Ê = E ∪ {ejk | ∃ client c such that j,k ∈ Rc }.

For replica j,k such thatX jk = ∅, there is no edge in E. However,
if there exists client c such that j,k ∈ Rc , then directed edges

between j and k exist in Ê.
Using the augmented share graph, we can obtain a necessary

condition similar to Theorem 1, and an algorithm similar to that

in Section 3.2, showing that the condition is also sufficient for

achieving causal consistency in the client-server architecture.

6 RELATEDWORK
Some of the relevant work is already discussed in Section 1, there-

fore, it is not included here.

Causal group communication: Several protocols [5, 20, 32]
have been proposed for implementing causal group multicast with

overlapping groups, and a simulation-based evaluation on causal

group multicast is presented in [18]. Kshemkalyani [20] studied a

causal group multicast protocol wherein each message M is pig-

gybacked with metadata consisting of the list of messages that

happened-before M and their corresponding destinations. They

investigated the necessary and sufficient conditions on the destina-

tion information tracked in this piggybacked metadata. As a result,

their algorithm can remove redundant information in the metadata

at run-time. However, compared to our work, their result assumes

a particular structure of the metadata, and the conditions do not

express how the overlapping groups (or how replicas share registers

in the context of shared memory) affect the size of the metadata.

To the best of our knowledge, lower bound for metadata size re-

quired for causality tracking with overlapping multicast groups is

not previously obtained.

Algorithms for message passing: The prior work on times-

tamps for capturing causality in message-passing is relevant here,

in particular, several approaches for reducing timestamp size by ex-

ploiting communication topology information [21, 28, 34]. Charron-

Bost proved the minimum size of the vector clock is the number

of the processes in the message passing system in order to cap-

ture causality [8]. Lower bounds on non-structured timestamps for

capturing causal dependencies between events have been studied

previously [29], but the results do not directly apply to our problem

setting. First, the events that satisfy happened-before relation in the

message passing system may be false dependencies in our partial

replication setting, if the event (or update) is sent to some different

replica. Second, maintaining causal consistency only concerns the

causality of the updates received by the same replica, not any pair

of events as in message passing system in the previous works.

Algorithms for causal consistency: Hélary and Milani iden-

tified the difficulty of efficient implementation under causal con-

sistency for partial replication [16, 30]. As discussed earlier, our

work improves on the results of Hélary and Milani. Milani has sys-

tematically studied mechanisms to implement causal consistency,

and presented a propagation-based protocol for partial replication

[3]. Raynal [33] and Birman [5] studied protocols for implementing

partially replicated causal objects, with an architecture similar to

that in Figure 1a, but the size of the metadata is O(mn) in general,

where n is the number of replicas andm is the number of objects.

Shen et al. [36] proposed two algorithms, Full-Track and Opt-Track,
to achieve causal consistency for partial replication under relation

→co proposed by Milani [3]. Based on the previous work [20], their

algorithm Full-Track carries metadata of size O(n2) and Opt-Track
carries metadata of optimal size assuming a particular metadata

structure. Kshemkalyani and Hsu’s work on approximate causal

consistency sacrifices accuracy of causal consistencies to reduce

the meta-data [17, 19].

In a somewhat different line of research, concurrent timestamp

systems for shared memory, which enable processes to order oper-

ations using bounded timestamps have been explored [10, 13, 15];

the problem addressed in our work is distinct from this prior work.

7 SUMMARY
This paper investigates partially replicated causally consistent shared

memory systems. We present a tight necessary and sufficient condi-

tion on the replica timestamp and a lower bound on the size of the

timestamps for implementing replica-centric causal consistency in

a partially replicated system.

REFERENCES
[1] Sérgio Almeida, João Leitão, and Luís Rodrigues. 2013. ChainReaction: a causal+

consistent datastore based on chain replication. In Proceedings of the 8th ACM
European Conference on Computer Systems. ACM, 85–98.

[2] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. 2012.

The potential dangers of causal consistency and an explicit solution. In Proceed-
ings of the Third ACM Symposium on Cloud Computing. ACM, 22.

[3] R. Baldoni, A. Milani, and S. T. Piergiovanni. 2006. Optimal propagation-based

protocols implementing causal memories. Distributed Computing 18 (2006), 461–

474.

[4] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani,

Praveen Yalagandula, and Jiandan Zheng. 2006. PRACTI replication. In Proceed-
ings of the 3rd conference on Networked Systems Design & Implementation-Volume
3. USENIX Association, 5–5.

[5] K. Birman, A. Schiper, and P. Stephenson. 1991. Lightweight causal and atomic

group multicast. ACM Transactions on Computer Systems (TOCS) 9, 3 (1991),

272–314.

[6] Manuel Bravo, Luís Rodrigues, and Peter Van Roy. 2015. Towards a scalable,

distributed metadata service for causal consistency under partial geo-replication.

In Proceedings of the Doctoral Symposium of the 16th International Middleware
Conference. ACM, 5.

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

432

[7] Manuel Bravo, Luís Rodrigues, and Peter Van Roy. 2017. Saturn: a distributed

metadata service for causal consistency. In Proceedings of the Twelfth European
Conference on Computer Systems. ACM, 111–126.

[8] Bernadette Charron-Bost. 1991. Concerning the size of logical clocks in dis-

tributed systems. Inform. Process. Lett. 39, 1 (1991), 11–16.
[9] Tyler Crain and Marc Shapiro. 2015. Designing a causally consistent protocol

for geo-distributed partial replication. In Proceedings of the First Workshop on
Principles and Practice of Consistency for Distributed Data. ACM, 6.

[10] Danny Dolev and Nir Shavit. 1997. Bounded concurrent time-stamping. SIAM J.
Comput. 26, 2 (1997), 418–455.

[11] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. 2013. Orbe:

Scalable causal consistency using dependency matrices and physical clocks. In

Proceedings of the 4th annual Symposium on Cloud Computing. ACM, 11.

[12] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014. Gen-

tlerain: Cheap and scalable causal consistency with physical clocks. In Proceedings
of the ACM Symposium on Cloud Computing. ACM, 1–13.

[13] Cynthia Dwork and Orli Waarts. 1992. Simple and efficient bounded concurrent

timestamping or bounded concurrent timestamp systems are comprehensible!. In

Proceedings of the twenty-fourth annual ACM symposium on Theory of computing.
ACM, 655–666.

[14] C. J. Fidge. 1987. Timestamps in message-passing systems that preserve the

partial ordering. In 11th Australian Computer Science Conference.
[15] S. Haldar and P. Vitányi. 2002. Bounded concurrent timestamp systems using

vector clocks. Journal of the ACM (JACM) 49, 1 (2002), 101–126.
[16] Jean-Michel Hélary and Alessia Milani. 2006. About the efficiency of partial repli-

cation to implement distributed shared memory. In 2006 International Conference
on Parallel Processing (ICPP’06). IEEE, 263–270.

[17] T. Hsu and A. Kshemkalyani. 2016. Performance of Approximate Causal Consis-

tency for Partially Replicated Systems. In Proceedings of the Third International
Workshop on Adaptive Resource Management and Scheduling for Cloud Computing.
ACM, 7–13.

[18] Michael H Kalantar and Kenneth P Birman. 1999. Causally ordered multicast:

the conservative approach. In Proceedings. 19th IEEE International Conference on
Distributed Computing Systems (Cat. No. 99CB37003). IEEE, 36–44.

[19] Ajay D Kshemkalyani and Ta-yuan Hsu. 2015. Approximate causal consistency

for partially replicated geo-replicated cloud storage. In Proceedings of the Fifth
International Workshop on Network-Aware Data Management. ACM, 3.

[20] Ajay D Kshemkalyani and Mukesh Singhal. 1998. Necessary and sufficient

conditions on information for causal message ordering and their optimal imple-

mentation. Distributed Computing 11, 2 (1998), 91–111.

[21] Sandeep S Kulkarni and Nitin H Vaidya. 2017. Effectiveness of Delaying Times-

tamp Computation. In Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing. ACM, 263–272.

[22] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. 1992. Providing High Availability

Using Lazy Replication. ACM Trans. Comput. Syst. 10 (1992), 360–391.
[23] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (1978), 558–565.

[24] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.

2011. Don’t settle for eventual: scalable causal consistency for wide-area storage

with COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. ACM, 401–416.

[25] Tariq Mahmood, Shankaranarayanan Puzhavakath Narayanan, Sanjay Rao, TN

Vijaykumar, and Mithuna Thottethodi. 2016. Achieving causal consistency under

partial replication for geo-distributed cloud storage. (2016).

[26] F. Mattern. 1988. Virtual Time and Global States of Distributed Systems. In

Workshop on Parallel and Distributed Algorithms.
[27] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi, Nathan Bron-

son, and Wyatt Lloyd. 2017. I can’t believe it’s not causal! scalable causal consis-

tency with no slowdown cascades. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation. USENIX Association, 453–468.

[28] Sigurd Meldal, Sriram Sankar, and James Vera. 1991. Exploiting locality in main-

taining potential causality. In Proceedings of the tenth annual ACM symposium on
Principles of distributed computing. ACM, 231–239.

[29] G. Melideo. 2001. Tracking Causality in Distributed Computations. Ph.D. Disserta-
tion.

[30] A. Milani. 2006. Causal Consistency in Static and Dynamic Distributed Systems.
Ph.D. Dissertation. Università di Roma.

[31] Alessia Milani. 2019. personal communication.

[32] Achour Mostefaoui and Michel Raynal. 1993. Causal multicasts in overlapping

groups: Towards a low cost approach. In Distributed Computing Systems, 1993.,
Proceedings of the Fourth Workshop on Future Trends of. IEEE, 136–142.

[33] Michel Raynal and Mustaque Ahamad. 1998. Exploiting write semantics in imple-

menting partially replicated causal objects. In Proceedings of the Sixth Euromicro
Workshop on Parallel and Distributed Processing-PDP’98-. IEEE, 157–163.

[34] Luis ET Rodrigues and Paulo Verissimo. 1995. Causal separators for large-scale

multicast communication. In Proceedings of 15th International Conference on
Distributed Computing Systems. IEEE, 83–91.

[35] Mohammad Roohitavaf, Murat Demirbas, and Sandeep Kulkarni. 2017.

Causalspartan: Causal consistency for distributed data stores using hybrid logical

clocks. In 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS). IEEE,
184–193.

[36] Min Shen, Ajay D Kshemkalyani, and Ta-Yuan Hsu. 2015. Causal consistency for

geo-replicated cloud storage under partial replication. In 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop. IEEE, 509–518.

[37] Zhuolun Xiang and Nitin H Vaidya. 2017. Lower bounds and algorithm

for partially replicated causally consistent shared memory. arXiv preprint
arXiv:1703.05424 (2017).

[38] Zhuolun Xiang and Nitin H Vaidya. 2018. Brief Announcement: Partially Repli-

cated Causally Consistent Shared Memory. In Proceedings of the 2018 ACM Sym-
posium on Principles of Distributed Computing. ACM, 273–275.

[39] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Balegas,

and Marc Shapiro. 2015. Write fast, read in the past: Causal consistency for

client-side applications. In Proceedings of the 16th Annual Middleware Conference.
ACM, 75–87.

ACKNOWLEDGEMENTS
The authors thank Alessia Milani for her feedback. The authors

also thank the anonymous reviewers for the in-depth review and

helpful suggestions.

Appendix

A PROOF OF THEOREM 1
We prove Theorem 1 by showing that either safety or liveness

property in Definition 5 will be violated if replica i is oblivious to
update on any edge ejk ∈ Ei . Consider an execution E in which

all issued updates have been applied at the relevant replicas, and

replica i’s causal dependency graph is R. This can happen since

the system satisfies liveness property of the replica-centric causal

consistency and all updates are applied within a finite time. We will

now extend the execution to show contradictions. In the following
extended executions, suppose any other message that is not explicitly
mentioned is delayed indefinitely. This is possible since the system
is asynchronous. From Definition 7 of edge set Ei , there are three
possible types of edges in Ei , as in the following three cases.

Case 1: e = ei j ∈ Ei :
Let E1 be an extended execution where replica i issues update u1

on edge ei j (i.e., for a register inXi j) after E. Suppose that the causal
dependency graph of i after issuing u1 is R1. Let E2 be an extended

execution where replica i issues update u2 on edge ei j after E1, and

let R2 be the causal dependency graph of i after issuing u2.
Since R1 and R2 only differ in update u2 on edge e = ei j , and

replica i is oblivious to update on ei j , the timestamp attached to

u1,u2 that sent to j will be identical. Thus, replica j cannot deter-
mine the correct order in which to these two updates were sent

(recall that the channel is not FIFO). Thus, causal consistency cannot

be assured.

Case 2: e = eji ∈ Ei :
Let E1 be an extended execution where replica j issues update

u1 on edge eji (i.e., for a register in Xi j) after E, but u1 is not yet
applied at replica i . Let the causal dependency graph of i before
applying u1 be R1. Let E2 be an extended execution where replica j
issues updateu2 on edge eji after E1, and suppose thatu1 is applied
at replica i but not u2. Let the new causal dependency graph of i be
R2.

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

433

Since R1 and R2 only differ in updates on edge e = eji , and
replica i is oblivious to update on eji , replica i has identical times-

tamps after applying u1 and before. Thus, when replica i receives
update u2, it cannot differentiate between the following two cases:

(i) i has already received and applied update u1, and thus, it can

now apply update u2. (ii) i has not yet received update u1, so it

must wait for that update message before applying u2. If replica i
applies u2 when u2 arrives (i.e., without waiting for another update
message), but the situation is as in (ii), then safety requirement of

causal consistency is violated. On the other hand, if replica i decides
to wait, but the situation is as in (i), then another update may never

be received from j, and liveness requirement of causal consistency

is violated.

Case 3: e = ejk ∈ Ei and there exists an (i, ejk)-loop (i, l1, · · · , ls =
k, j = r1, · · · , rt , i):

By the definition of the (i, ejk)-loop, we have

(i) X jk −

(
∪1≤p≤s−1 Xlp

)
, ∅,

(ii) X jr2 −
(
∪1≤p≤s−1 Xlp

)
, ∅, and

(iii) for 2 ≤ q ≤ t , Xrqrq+1 −
(
∪1≤p≤s Xlp

)
, ∅.

(a) Illustration for Case 3.1 (b) Illustration for Case 3.2

Figure 8: Examples of Timestamp Graphs

Case 3.1: X jr2 −
(
∪1≤p≤s Xlp

)
, ∅, that is, X jr2 has a register

w1 that is not shared by any of replicas in l1, · · · , ls .
Consider the following extension of E as the execution E1, as

illustrated in Figure 8a.

• Initially, replica r1 = j issues an update u0 on edge ejk

on register w0, where w0 ∈ X jk −

(
∪1≤p≤s−1 Xlp

)
, i.e. not

shared by any replicas in l1, · · · , ls−1. Such w0 exists since

X jk −
(
∪1≤p≤s−1 Xlp

)
, ∅. Thus, u0 is sent to ls but not any

of l1, · · · , ls−1.
• Replica r1 = j then issues update u1 on edge er1r2 on register

w1 ∈ X jr2 −
(
∪1≤p≤s Xlp

)
, i.e.w1 is not shared by any repli-

cas in l1, · · · , ls . Thus,u1 is sent to r2 but not any of l1, · · · , ls .
The corresponding update message is next received by r2.

• For p = 2 to t : rp receives an update message from rp−1 and
applies the update. The update can be applied since all its

causal dependencies have been applied. Then rp issues an

update on edge erp rp+1 on a register wp that is not shared

by any of l1, · · · ls . Such wp exists since for 2 ≤ q ≤ t ,

Xrqrq+1 −
(
∪1≤p≤s Xlp

)
, ∅. Let us call this updateup . Thus,

we have constructed a sequence of updates so far such that

u0 ↪→ u1 ↪→ u2 ↪→ · · · ↪→ ut , where rt+1 = i .
• Subsequently, i issues an update u ′

0
on edge eil1 . l1 receives

the update message, applies the update, and then issues an

update u ′
1
on edge el1l2 . The update can be applied since

all its causal dependencies have been applied. Continuing

in this manner, we build a sequence of updates such that

u ′
0
↪→ u ′

1
↪→ · · · ↪→ u ′s−1, where update u

′
p in this chain is

issued by replica lp on edge elp lp+1 .

• Combining the two sequences of updates, we obtain the

following sequence, u0 ↪→ u1 ↪→ u2 ↪→ · · · ↪→ ut ↪→
u ′
0
↪→ u ′

1
↪→ u ′

2
↪→ · · · ↪→ u ′s−1.

Now consider an alternate extension of E as the execution E2 in

which replica j does not initially perform update u0, but the remain-

ing sequence of updates above are performed. The timestamp of

replica i when issuing updateu ′
0
will be identical in both executions,

because the causal dependency graphs at i when issuing update u ′
0

only differ by updates on edge ejk .
By induction, we can easily show that the timestamp attached

to the update u ′s−1 received by ls from ls−1 will be identical in

both executions. In performing the induction, we make use of the

assumption that any other message that is not explicitly mentioned

in the above executions is delayed indefinitely, including those on

edges in {erx ly |rx ly , r1ls }. In the first execution u0 ↪→ u ′s−1, but

this is not the case in the second execution. If the update message

from r1 to ls is not delivered before ls receives the update from

ls−1, then replica ls cannot determine whether it should wait for

an update from r1 or not, and either safety or liveness condition

may be violated.

Case 3.2:X jr2−
(
∪1≤p≤s Xlp

)
= ∅. Since by condition (ii),X jr2−(

∪1≤p≤s−1 Xlp

)
, ∅, ∃w1 ∈ X jr2 ∩X jls −

(
∪1≤p≤s−1 Xlp

)
, that is,

X jr2 has a registerw1 that is shared by ls but not any of replicas in

l1, · · · , ls−1.
We build two extensions of E, similar to Case 3.1. Figure 8b

illustrates this case.

For the first execution, replica r1 = j issues an update u0 on the

registerw1. Sincew1 is also shared by r2, u0 will be also sent and
delivered to r2. Also, note that u0 is sent to k, r2 but not any of

l1, · · · , ls−1. Unlike Case 3.1, no other update is performed on edge

er1r2 . The remaining sequence of updates is identical to Case 3.1.

This results in the following happened-before relation.

u0 ↪→ u2 ↪→ u3 ↪→ · · · ↪→ ut ↪→ u ′
0
↪→ u ′

1
↪→ · · · ↪→ u ′s−1

For the second execution, replica r1 does not issue update u0, but
the remaining sequence of updates are performed.

By similar argument as in Case 3.1, the timestamp attached to

the update u ′s−1 will be identical in both executions, and replica ls
cannot determine whether it should wait for an update from r1 or
not, and either safety or liveness condition may be violated.

Session 10 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

434

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Replica-centric Causal Consistency

	3 Timestamps for Replica-Centric Causal Consistency
	3.1 A Necessary Condition for Timestamps
	3.2 Sufficiency of Tracking Edges in Timestamp Graph
	3.3 Relation to previous results

	4 Lower bound on Timestamp Size
	5 Extending Results to the Client-server Architecture
	6 Related Work
	7 Summary
	References
	A Proof of Theorem 1

