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Abstract—Faults on overhead power line infrastructures in elec-
tric power distribution systems (DSs) can potentially ignite catas-
trophic wildfires, especially in areas exposed to high wind regimes,
low humidity, and dense vegetation. The common practice adopted
by electric utilities to build resilience against such electrically-
induced wildfires is called public-safety power-shutoff (PSPS):
strategies to intentionally and proactively de-energize power line
infrastructures to prevent wildfire risks. Using a quasi second-
order stochastic dominance (Q-SSD) measure, this article proposes
an optimization model to generate an optimal PSPS plan which
mitigates the risk of costly wildfires while keeping the intentional
power outages minimal. This objective is achieved by the strategic
deployment of transportable energy backup technologies in the
DS, i.e., mobile power sources (MPSs). The proposed model is a
stochastic mixed-integer nonlinear programming (S-MINLP) cap-
turing the uncertainties in wildfire consequences under different
weather realizations. We derive a tractable linearization procedure
to reformulate the S-MINLP model as an equivalent mixed-integer
linear problem. Numerical studies on the IEEE 33-node test sys-
tem demonstrate the efficiency of the resulting PSPS actions in
balancing the wildfire risks and the power outage consequences,
and highlight the promising performance of the proposed mod-
eling approach compared to the state-of-the-art and benchmark
formulations.

Index Terms—Mobile power sources (MPS), proactive de-
energization, power outages, public-safety power-shutoff (PSPS),
quasi second-order stochastic dominance (Q-SSD), wildfire.

NOMENCLATURE
A. Sets
I Set of nodes in the distribution system (DS).
L Set of overhead lines in the DS.
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Set of periods in the decision-making horizon.

Set of wildfire scenarios.

Set of mobile power sources (MPSs).

Set of substations in the DS.

Subset of candidate nodes connected to MPSs.
Subset of nodes for MPSs initial positioning.
Subset of mobile energy generators (MEGs).
Subset of mobile energy storage systems (MESSs).
Subset of substations connected to node <.

B. Parameters and Constants
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Amount of real/reactive power demand at node ¢ at
period ¢ in DS [kW, kVar].

Price of undelivered energy from the electric utility
at period ¢ [$/kW].

Interrupted energy assessment rate for node i
[$/kW].

Operating cost coefficients of MPS m [$/kW].
Real/Reactive power capacity of overhead line [
[kW, kVar].

Constant denoting the maximum value of the differ-
ence in the squared voltage magnitudes.
Resistance/Reactance of overhead line [ [(2].
Minimum/Maximum squared voltage magnitude at
node i [kV?].

Minimum/Maximum real power capacity of substa-
tion n [kW].

Minimum/Maximum reactive power capacity of
substation n [kW].

Travel time from node ¢ to j with MPS m.
Maximum number of MPSs allowed to be connected
to node 1.

Minimum/Maximum real power output of MEG m
[kW].

Minimum/Maximum reactive power output of MEG
m [kVar].

Charging/Discharging efficiency of MESS m.
Minimum/Maximum state of charge of MESS m
[kWh].

Minimum/Maximum charging power of MESS m
[kW].
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J,%,E Minimum/Maximum discharging power of MESS
~ mI[kW]

WA WA Minimum/Maximum reactive power of MESS m
o [kVar].

C 55 Wildfire cost due to the ignition only on lines in set

L under scenario s.

C. Decision Variables

Ty Binary variable equal to 1 if overhead line [ is shut-
off intentionally at period ¢, O otherwise.

Binary variable equal to 1 when lines in set L

Tis
" are the only energized lines at the time of fault
in scenario s, 0 otherwise.
Mimt Binary variable equal to 1 if MPS m is connected
to node ¢ at time ¢, O otherwise.
kS, K& . Binary variable equal to 1 if MESS m is charg-
ing/dicharging at node ¢ at time ¢, O otherwise.
cr Wildfire cost under scenario s.
yh, uh Fraction of real/reactive power outage at node ¢ at
time ¢.
IL i Real/Reactive power flow in overhead line [ at time
t.
oA Real/Reactive power input on node ¢ at time ¢.
Vit Squared voltage magnitude at node ¢ at time ¢.
GL,,GA,  Real/Reactive power of substation n at time .
YL, ;’} Total real/reactive power injection (from all MPSs)

to node ¢ at time .

ob @i . Real/Reactive power output from MEG m to node

i at time .

wh . wh . Real/Reactive power output from MESS m to node
¢ at time {.

Lt State of charge of MESS m at time t.

Real charging/discharging power output from
MESS m to node ¢ at time ¢.

c d
Pimt> Pimt

1. INTRODUCTION

ILDFIRE incidents have been evidenced, in the past

decade, with an increased frequency and intensity,
threatening communities, disrupting social and organizational
ecosystems, harming natural resources, damaging homes and
structures, and taking lives [1]. In October 2017, a series of
wildfires started to burn across the Wine country of North-
ern California, which caused insured damages exceeding $9.4
billion and the death of 44 people [2]. According to a recent
report [3],1n 2020, 58,950 wildfire incidents burned 10.1 million
acres within the U.S., the second-most impacted acreage in a year
since 1960. While wildfires could be triggered by various means,
those resulting from disruptions in the electrical infrastructures
are recorded as the fifth highest cause at the rate of about 8% [4].
A number of such catastrophic electrically-induced wildfires has
been recorded in recent years in the Western United States [5],
majorly due to power line faults under precarious vegetation
conditions, poor line maintenance, and severe weather [6]. Most
electrically-induced wildfires are directly related to power dis-
tribution systems (DSs).
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Preventing wildfires is much less costly than mitigating them;
a variety of long-term planning solutions — e.g., network up-
grades, reinforcements and modernization, vegetation manage-
ment — against the risk of electrically-induced wildfires are
reviewed in [7]. The short-term (day-ahead or hours-ahead) op-
erational practice for wildfire prevention adopted by many elec-
tric utilities is referred to as public-safety power-shutoff (PSPS):
when dangerously-high winds arise, the electric utility antic-
ipatively and intentionally pursues power line de-energization
and black-outs the fire-prone areas that are home to millions of
people [8]. While it has been evidenced [9] that wildfire risk
could be effectively mitigated through proactive and selective
power shutoffs, power line de-energization could challenge the
electric power grid operation and jeopardize its performance
reliability [10]. The PSPS-resulted power outages would lead
to unfavorable consequences for the end-use customers. In Oc-
tober 2019, the intentional PSPS-caused blackouts turned off
power to almost a million customers served by PG&E electric
utility [11]. The economic and social impacts of a blackout on
this scale, lasting for several days, are enormous with significant
implications on people’s health and well-being (e.g., increased
mortality) [12]. The survey in [13] indicates that many Califor-
nians have experienced recent PSPS events and they—in par-
ticular health-vulnerable populations—are concerned about the
resulting power outages and the impact on their daily lives [14].

Electric utilities have been exploring planning and opera-
tion solutions to address this concern. Microgrids have been
found critical and effective to battle the PSPS-caused [15] and
wildfire-caused [16] power outages. An optimization approach
is introduced in [17] to balance PSPS consequences in power
transmission systems and wildfire risk with the aim to maintain
as much load delivery as possible. The authors in [18] propose
a rolling horizon framework to fairly and efficiently execute
PSPS decisions for mitigating wildfire ignition risk in power
transmission systems. A multi-period optimization formulation
is presented in [19] to optimize transmission infrastructure in-
vestments for reducing PSPS-caused power outages through the
installation of grid-scale batteries and solar panels. To limit
the size of PSPS-caused power outages, the authors in [20]
co-optimize power line shut-offs and service restoration, where
service restoration is primarily restricted to the re-energization
of PSPS-caused offline power lines. The wildfire risk-aware op-
eration planning problem in [21] aims to assist system operators
in managing wildfire risks in transmission systems via enabling
them to schedule an optimal PSPS action based on quantified
risk values while balancing service continuity. The parent-child
and iterative approaches for enforcing radiality constraints in
DS are introduced in [22] to increase the efficiency of solving
the PSPS problem for wildfire risk mitigation. In [23], the
authors dynamically optimize the PSPS schedules for multiple
days, taking into account weather uncertainties, to minimize the
expected costs imposed on the electric utility. Complementing
the previous studies focused on short-term PSPS operations and
decision-making, authors in [24] investigate a long-term expan-
sion planning scheme that aims to limit the wildfire ignition risk
in the electric network, capturing the long-term impacts of PSPS
decisions.
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Fig. 1. Proposed quasi second-order stochastic dominance (Q-SSD) framework for balancing wildfire risk and PSPS-caused power outages.

The state-of-the-art literature [17], [18], [19], [20], [21], [22],
[23] on models balancing electrically-induced wildfire risks
and power outages—via offering optimal PSPS actions—has
only investigated the decision-making process for selectively
de-energizing power lines in the power system. However, these
studies do not fully account for the simultaneous use of restora-
tion mechanisms and power line de-energization to minimize
wildfire risks while keeping the resulting power outages as
minimal as possible. To develop a risk-averse model for making
PSPS decisions, this article incorporates a mobility-as-a-service
framework utilizing mobile power sources (MPSs) for service
restoration in the DS, routing and dispatch decisions of which are
jointly optimized with those of PSPS actions. MPSs including
mobile emergency generators (MEGs) and mobile energy stor-
age systems (MESSs) can be effective resources in the DS for
spatio-temporal flexibility exchange during emergencies [25].
Spatio-temporal flexibility refers to the MPSs’ ability to travel
across space and time and deliver power to critical infrastructures
and customers in need [26]. In recent years, MPSs’ utilization
has been widely researched to take day-ahead energy man-
agement decisions [27], and define resilience policies against
emergencies [28], [29].

To the best of our knowledge, the literature lacks a frame-
work that co-optimizes power line de-energization and MPS
dispatch decisions for effective wildfire risk management in
wildfire-vulnerable geographical zones. Additionally, the po-
tential of risk-averse decision-making in the context of wildfires
is yet to be fully unlocked. To fill in this knowledge gap,
this article explores, for the first time, a risk-averse stochastic
optimization model based on the quasi second-order stochastic
dominance (Q-SSD) measure where decisions on the utiliza-
tion of MPSs and PSPS actions to balance the risk of wild-
fire and the PSPS-caused power outages are made jointly. In
particular,

e We present a new proactive risk-averse framework for
integrated PSPS planning and MPSs dispatching decisions
over a short-term horizon which accounts for undesir-
able weather conditions that raise the risk of electrically-
induced wildfires.

® We propose a stochastic mixed-integer nonlinear program-
ming (S-MINLP) model based on Q-SSD to mitigate the
risk of wildfires while keeping the PSPS-caused power
outages minimal. We develop a linearization approach to
obtain a tractable mixed-integer linear program (MILP)
equivalent to the S-MINLP model.

® We develop a method to generate representative wildfire

risk scenarios and empirically evaluate the performance
of the proposed optimization approach compared to a
set of benchmark models. We numerically demonstrate
the effective role of MPSs in mitigating the devastating
PSPS-caused power outages.

The remainder of this article is organized as follows. In Sec-
tion II, we describe the problem and the adequacy of the Q-SSD
measure. We present the S-MINLP model and its reformulation
method in Section III. We present the results of our experiments
in Section IV and conclusions in Section V.

II. PROBLEM DESCRIPTION
A. General Framework

The general idea of the proposed optimization framework is
depicted in Fig. 1. In Step 1, we gather information on the tar-
geted DS, weather conditions (in particular wind forecasts), the
geographical landscape, and the vegetation. PG&E electric util-
ity provides a 12-hour-ahead notification called “PSPS Warning”
informing customers of an upcoming PSPS [8]. Accordingly, the
proposed framework requires the prediction of wind direction
and speed at least 12 hours ahead. In this study, we consider that
different combinations of DS power lines provoking arc ignition
would lead to wildfires of different intensities and consequences.
The uncertain conditions of wind speed, humidity, and tem-
perature result in different wildfire ignition scenarios, thereby
featuring the uncertain cost of wildfires caused by different
power lines. In Step 2, we first evaluate the probability of faults
and fire ignition at each power line during the planning horizon
based on the information from Step 1, and then generate possible
scenarios of wildfire cost accordingly. An optimization problem
based on a Q-SSD risk measure for joint decisions on PSPS
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actions and the dispatch of MPSs is proposed in Step 3 to balance
wildfire risks and PSPS-caused power outages. Step 4 provides
DS operators with the optimal decisions obtained by solving
the proposed proactive public safety de-energization (PPSD)
problem.

B. Overview of the Q-SSD-Based Approach

Risk-averse optimization models permit to control and hedge
against unfavorable outcomes based on decision-makers’ risk
preferences. Modeling a decision-making problem under un-
certainty via second-order stochastic dominance (SSD) allows
decision-makers to manage risk by requiring their decisions
to yield a random outcome which stochastically dominates a
reference random outcome. Since SSD is a well-established
risk-averse and consistent risk measure, it has attracted sig-
nificant attention in various contexts, such as financial portfo-
lio selection [30], design of emergency medical service sys-
tems [31], optimal path problems [32], and operations of en-
ergy systems [33]. In order to mitigate the risk of extensive
wildfires through executing PSPS actions, this study proposes a
risk-averse approach based on the SSD concept. The SSD-based
approach allows taking optimal PSPS decisions such that the
uncertain cost of wildfires in the DS dominates a reference
(or benchmark) random cost of wildfires. In this article, the
dominated benchmark is designated as DS without any PSPS
actions.

Since an SSD constraint is equivalent to a continuum of condi-
tional value-at-risk (CVaR) constraints [34], we first review the
concept of CVaR before presenting the specifics of our SSD-
based approach. The CVaR measure [35], [36]—also known
as Mean Excess, Mean Shortfall, and Tail VaR—is defined as
the mean of the tail distribution exceeding the Value-at-Risk
(VaR) [37]. While VaR is a percentile of loss distribution (e.g.,
wildfire cost distribution in this study), CVaR quantifies the
expected loss exceeding a percentile.

Suppose that V' is a random variable representing the mag-
nitude (of the consequences) of wildfires. Let f(x, V') denote
a random loss function depending on V' and some controllable
vector x. In this study, the controllable vector includes decisions
that can be taken to prevent or alleviate the impact (i.e., costs) of
V (i.e., magnitude of wildfires). Let a € (0, 1] be a confidence
level and VaR, (f(x,V)) be the value-at-risk (VaR) at the «
level of the random cost function f(x,V): VaR, = inf{y :
P(f(x,V) <y) > a}. The CVaR of the loss function at the
confidence level o, denoted CVaR,,(f(x,V)), is the expected
value of f(z, V') exceeding VaR,(f(x,V)):

1
ey

where ()T = max{.,0}. It is known that if VaR,(f(x,V))
is finite, setting 7 equal to VaR,(f(x,V)) is optimal [35].
Therefore, in the optimal solution, we have:

CVaR, (f(x,V)) =VaR, (f(z,V))
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F B[S, V)~ VaRa (@ V)] @
The larger the confidence level, the more risk-averse the
decision-maker and the larger the CVaR.

Let f(x, V]z = 0) denote the random loss if no PSPS action
is taken (i.e., x = 0). The random loss f(x,V) stochasti-
cally dominates f(x,V|z = 0) in the second-order, denoted
as f(x,V) =@ f(x,V]x =0), if and only if the following
continuum of CVaR constraints holds [30], [34]:

CVaR, (f(x,V)) < CVaRy (f (z,V]|x =0)) Vo € (0,1].
(3)

The inequality (3) is called a CVaR-preferability constraint at
confidence level « [38]. It is shown in [38] that if the random
variable has a finite support, the continuum set of confidence
levels can be discretized to a set of size n — 1 with n < 2/,
Building upon this, we replace, in our SSD-based approach re-
ferred to as the Q-SSD-based approach, the continuum of CVaR
constraints in (3) with a finite number of CVaR constraints:

CVaR, (f(x,V)) <CVaR, (f (x,V]z=0)) Vac A,
“)

where A = {%, e "T’l} is a set of confidence levels (see [30]
for a similar approach) and n is an arbitrary integer number. The
larger n is, the closer the Q-SSD constraints (4) approximate
SSD. In our Q-SSD-based approach, the objective is to find
the least costly solution x*, with respect to the worst-case
CVaR,, differential taken over all considered confidence levels
« € A. Proceeding along that way, the random loss function
f(a*, V) associated with «* should have a right-skewed prob-
ability distribution with the probability masses concentrated on
the small possible loss values. To this end, we solve the following
min-max bi-level stochastic programming model for wildfire
risk mitigation:

Hleiér\,’lmeaﬁ{ (CVaR.(f(x,V)) — CVaR,(f(x,V]r =0))).
(5

In this study, we define the Q-SSD risk measure for any solution
x as follows:

Q'SSD(f(wa V))
= max (CVaRy(f (@, V) = CVaRa(f (@, V]z =0)). (©)

In the following two propositions, we show the relation between
CVaR-preferability constraints in (4) and the optimal value of
(5).

Proposition 1: If the optimal value of (5) is not positive, (4)
holds true.

Proof: Let x* denote an optimal solution for (5), and a* =
argmax, .o (CVaR.(f(x*,V)) — CVaR,(f(x,V]x = 0))).
Since CVaR,(f(x*,V)) — CVaR,(f(x,V|x =0)) <
CVaRy(f(x*,V)) — CVaRy(f(x,V]x =0)),Va € A
and  CVaR, (f(x*,V)) — CVaR, (f(x,V|x =0)) <0,
it follows that CVaR.(f(x*,V))— CVaR.(f(x,V|x =

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2024 at 04:39:52 UTC from IEEE Xplore. Restrictions apply.



2532

40 60 80 100
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VaRyo(F(x,V)) : 60 60
VaRyos(f(x, V) : 60 60
CVaRyo(f(x,V)) : 64 65
CVaRgos(f(x,V)) : 60 60
Q-SSD(f (x,V)): -15.6 224
Bx=0 x=1 x=2

Fig. 2. Conditional loss probabilities and values of risk measures considered
in Example 1.

0)) <0,Ya e A. This implies CVaR,(f(x*,V)) <
CVaRy(f(x,V]x = 0)) and proves the statement. O
Proposition 2: A positive value for (5) indicates that at least
one of the | A| constraints in (4) is violated.
Proof: Positive value of (5) for an optimal solution * means:

max (CVaR,(f(z",V)) — CVaR,(f(z,V|x =0))) > 0.

Accordingly, there exists at least one o € A for which
CVaR.(f(x*,V)) — CVaR,(f(x,V]z =0)) > 0 or equiv-
alently, CVaR,(f(x*,V)) > CVaR,(f(x,V]x = 0)). This
violates (4) and proves the statement. U

Before explaining in Section II-C how the formulation (5) can
be used to tackle the PPSD problem, we present here an example
that clarifies the meaning of (5) and that shows its potential
advantages over formulations which minimize CVaR or VaR in
risk mitigation problems.

Example 1: Consider a problem in which = () (i.e., there
is one decision variable x) and only two decisions (see set X' =
{1,2}) can be taken in order to minimize the risk of a high loss.
Assume that actions 1 and 2 are mutually exclusive.

Let f(z,V|z =) denote the conditional loss if x = i,i =
0,1, 2 with x = 0 corresponding to the case when no action is
taken and x = 1 (resp., 2) corresponding to the case when action
1 (resp., 2) is taken.

e When no action is taken, f(z, V|z = 0) can take values 0,
20, 40, 60, 80, and 100 with respective probabilities 0.15,
0.25,0.25,0.2,0.11, and 0.04;

e Whenz = 1, f(x,V|x = 1) can take values 0, 20, 40, 60,
and 80 with respective probabilities 0.41, 0.1, 0.35, 0.12,
and 0.02;

e When z = 2, f(x,V|x = 2) can take values 0, 20, 40, 60,
and 80 with respective probabilities 0.46, 0.3, 0.12, 0.095,
and 0.025.

The above conditional loss distributions are dis-

played in Fig. 2. We show now the effect of actions 1
and 2 under different risk measures, namely VaR, CVaR, and

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 39, NO. 2, MARCH 2024

Q-SSD. Suppose that the decision-maker is risk-averse and
considers high confidence levels, such as 0.9 or 0.95, for the
VaR and CVaR metrics. Using (2), we calculate the CVaR for
the conditional loss f(x,V]x = 1) at the o = 0.9 confidence
level as follows:
CvaRo,g(f(iL'7V|l' = 1))
=E[f(z,V]x=1)|f(z,V|x=1)>VaRyo(f(z,V|z =1))]
=VaRoo(f(z,V]z =1))
1
1-0.9
=60+ 10 x (0.41 x (0 —60)"

N VaRos(f(z, Vie = 1)))*]

E[(f(z,V]z =1) -

+0.1 x (20 — 60)"
+0.35 x (40 — 60)*"
+0.02 x (80 — 60)™) = 64.

+0.12 x (60 — 60)*

We obtain the VaRyg, VaRygs, CVaRyg, CVaRyos
associated with  f(z,V]x =0), f(z,V]jx=1), and
f(z,V]z =2) as shown at the top-four rows of the bottom
table in Fig. 2 from left to right. On one hand, we have
VaRyo(f(x,V]x=1)) =VaRoo(f(z,V]x =2)) =60,
VaR0,95(f(x, V|.13 = 1)) = VaR0,95(f(.13, V‘.T = 2)) = 60,
and CV&R0,95(f(CC, V|£E = 1)) = OVaR0_95(f(1‘, V|JC =
2)) = 60 meaning that VaRy9, VaRgygs, and CVaRg.gs5
risk measures are indifferent between actions 1 and 2. On
the other hand, C'VaRy ¢ risk measure selects action 1, given
CVaRyo(f(x,V]ix=1)) =64 < CVaRyo(f(z,V]x =
2)) = 65.

Next, we calculate the value of Q-SSD using (6) and consid-

ering A = {55, %, ..., 33 }. For the three cases f (z, V |z = 0),
f(z,V]z =1),and f(x,V|z = 2), we have:
Q-SSD(f(x, V]z = 0))

= I;?X (CV&Ra(f(xv V|l‘ = 0)))

— CVaR,(f(x,V]x =0))) =0,

Q-SSD(f(z,V]z = 1)) = max{—15.8, ~16.7, —17.6, —17.5,
—17.3,—17.1,—-16.9, —16.7, =16, —15.6, —16.9, — 19,
—21.7,-22,—22.4, 23, —24, —24, 36} = —15.6,

Q-SSD(f(z, V]z = 2)) = max{—22.4, —23.7, —25.1, —25.4,
—25.7,—-26.1,-26.6, —27.2, —26, —26.2, —26.9, —27.8,
— 8.9, 927, —24.4, —24.5, 26, —23, 36} = —22.4.

Clearly, the optimal solution based on the Q-SSD risk measure
is to take action 2.

Two observations stand out in this example. First, actions 1
and 2 are both optimal for all considered metrics except for
CVaRy.o (selecting only action 1) and Q-SSD (selecting only
action 2). Second, based on the top plotin Fig. 2, the loss function
associated with action 2 has a right-skewed loss distribution (i.e,
the mass of the distribution is concentrated on smaller values of
loss). While the probabilities of low loss values (i.e., 0 and 20)
are significantly higher with action 2 than with action 1, one can
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—b

Fig.3. Nested structure of the sets defined in the proposed PPSD formulation.

see that the probabilities of high loss values (i.e., 40, 60, and
100) are significantly lower with action 2 than with action 1.
These observations highlight that the Q-SSD-based formulation
(5) not only permits to differentiate the two solutions 1 and 2
(as opposed to most of the other metrics), but also defines a
right-skewed probability distribution (i.e., probability masses
concentrated on the small possible values) for the random loss
function f(x, V) associated with the selected solution = (i.e.,
action 2). This implies that the model tends to select a solution
that lowers CVaR,(f(z,V)) forall o € A.

C. Wildfire Risk Minimization

In this study, we consider uncertainty in the economic con-
sequences of electrically-induced wildfires at different periods
as wildfires may result in power outages of various magnitudes.
The scenarios in the set S reflect the possible wind speeds and
directions over time, the vulnerability of overhead power lines,
and whether a power line is surrounded by dense vegetation (see
Section IV-B). Let p, be the probability of scenario s € S, i.e,
> ses Ps = 1.Foreachscenario s, the cost of wildfires is defined
by the economic loss resulting from arc ignitions on different
overhead power lines.

Let LL be the set of all overhand lines in the DS. We denote the
subset of lines which ignite a fire under scenario s by L(s) C L
and the period of fault on line [ € L(s) under scenario s by
7(ls) € T. Suppose one decides to select a subset of power
lines L C L(s) to be kept energized at their fault periods in
scenario s (i.e., Trs) = 0 for all I € ﬁ), and de-energize the

lines in the complementary subset L¢ = L(s)\ L at their fault
periods inscenario s (i.e., 7, (1) = 1foralll € ﬁc). Inthe PPSD
problem, we assume that the decision-maker has an estimate of
the wildfire cost under scenario s given any subset L (i.e., the
only energized lines in L(s)), and we denote it by C’F Fig. 3
illustrates the relationship between the sets mennoned above.

Now, given the PSPS actions (x;; foralll € Landt € T), we
find the selected subset L for each scenario s using:

Tie = H(l — Tir(is)) H Tir(ls)- (7
leL leLe
and the wildfire cost under this scenario as:
> Cfomy, (8)
LCL(s)

To provide a better understanding of (8), we illustrate how to
calculate the value of Cf" using this equation in Appendix A.
For any scenario s and the subset of power lines L C L(s), the
polynomial term defined in the right-hand-side of (7) can take
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value O or 1. If, forevery line [ € L, the corresponding term (1 —
xlT(lS)) is equal to 1 (i.e., z;r(15) = 0), wildfire ignitions occur
at every line | € L at period 7(1s). Similarly, if for every line
[ € L¢, the term 7, () is equal to 1, there is no ignition at any
line [ € L¢. We show in Proposition 3 that the two polynomial
terms can both be equal to 1 for only one set L C L(s). When
this occurs, we have L C L(s).
Proposition 3: For any s € S, the equality

[[0

lel

— Tir(1s)) H Tiras) = 1 )

lele

holds true for one and only one subset L C L(s).

Proof: Consider an arbitrary feasible solution x;;,1 € L, t €
T for the PPSD problem. Define the index set W = {(I,1) :
iy =1,l€L,t € T}.Forany s € S and L C L(s), (9) holds
if (1, 7(Is)) ¢ WVl € Land (I, 7(I's)) € W,VI' € L.

First, we show — by contradiction — that for each feasible solu-
tion of problem PPSD and each s € S, the conditions mentioned
above hold for at most one subset L C L(s). Suppose that there
exists anotherset Ly C L(s)and L # L fors € S, such that we
have: (I, 7(ls)) ¢ W, VIl € Lo and (I',7(I's)) € W, V' € L§.
This means that (9) holds for both ﬁ, ﬁo C L(s). There are three
possible cases for the relation between L and Lo:

(1) L C Ly: There exists [ € L¢ while € Ly (e.,
(I,7(ls)) € W, x115) = 0), which implies Hl e Tirts) = 0.
(2) Lo C L. Thereexists [ € L whilel € L (i.e., (I,7(ls)) €

W, 21715y = 1), which implies HleL( — Tyr1s)) = 0.

(3) neither Lc Lo nor Lo C L: There exists a line [ € L
(.e., (I,7(ls)) € W, z1rqs) = 1) while | ¢ Lo, which implies
Hleﬁ(l - xl‘r(ls)) =0

We have proven in each of the three cases the invalidity of the
initial assumption according to which (9) holds if I:o #* L.

What is left to prove is that such a set L always exists for each
s € S. Two cases can occur for each s € S:

1) (I,7(ls)) € W, Vi € L(s): we have L = (). Since §) C L,

the set L exists.

2) 3l € L(s), such that (I, 7(Is)) ¢ W: there is a set L that
includesevery ! € L(s)andsuchthat (I, 7(ls)) ¢ W.This
means that the set L exists in this case as well. (]

Using the definition (8) of the wildfire cost under a certain
scenario s, we rewrite the two following CVaRs as:

CVaR,(f(x,V))= gﬁnﬂ#-igpg —77
(10)
R
CVaR,(f(x,V]e=0))= ggmn+sezsps( - 77)
(11)

where C' F denotes the cost of wildfires without taking any PSPS
action and is calculated by fixing x;;, = 0,1 € L,t € T in (7).
We can calculate ex-ante the value of CVaR, (f(V)) for every
o € A which becomes a known parameter in the optimization
model. The next step is to rewrite the bi-level min-max problem
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(5) as:
min W (12)
with W
= max (CVaR,(f(x,V)) — CVaRy(f(x,V]x =0))).

13)

D. PSPS-Caused Power Outage Cost Minimization

De-energizing power lines through PSPS actions leads to
electricity outages across the DS. The proposed PPSD aims at
balancing the risk of wildfires and the undesirable consequences
of the associated power outages. To alleviate the PSPS-caused
power outages, we consider MPSs as a backup source of energy
and we account for their operating cost in the formulation of
the cost function for PSPS-caused power outages. The expected
total cost of PSPS actions is then

0= Z Z ( ﬂt + 'Yz ,fyzt + Z 5m307,mt

teT iel meM9

+ > 6;(p§mt+p;’m)> (14)

meMe

where the first term is the cost of power outages including the loss
of revenue for the electric ut111ty (B:DEyl,) and the 1nterrupt10n
cost for customers (v; D%, y1,). The decision variable y}, € [0, 1]
defines the partial outage in real power demand DY, in node i at
period ¢. The second term reflects the generation cost associated
with the output power of MEGs (3, cngs 02 ©5e). The third
term is the cost related to battery degradation due to the MESS
charge and discharge actions.

III. MATHEMATICAL MODEL AND REFORMULATION METHOD

In this section, we first present in detail the proposed S-
MINLP formulation (15) for the PPSD problem before deriving
an MILP reformulation.

A. Model Formulation

We propose a Q-SSD-based risk-averse optimization model
PPSD to hedge against the uncertain consequences of wildfires
driven by various weather conditions. To ease the notations, we
introduce o € {T", A} with T" and A referring to real and reactive
power, respectively. The PPSD problem is formulated as an S-
MINLP problem:

min O + W (15a)
s.t. (7), (8), (10), (13), (14)
Z [+ D51 —yf) = Z fi+ 05
leLsi(l)=i leL;j()=i
VieLteT,oe {T,A} (15b)
- (1 - fL‘lt)FlQ < fﬁ < (1 - xlt)Flg

VieL,teT,oe {I,A} (I50)
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—a M+ 2(Ri fiy + Xifi})
VleL,teT (15d)

viye — Vi < weMC 4+ 2(Rufl + Xoffy)

Vie L,t € T (15e)

Vit — Vi)t =

Viel,t e T,pe {I',A} (15f)

zt*ZG Q

nelN;

Pjm(t+r) < 1= Hime
Vi,j eI meMr<T,

Z Himt S 1

mt<|T|—7 (158

VYm € M,t € T (15h)

ielm
> ime < i VieLteT (15)
meM
o __ @ @
it — Z Pimt T Z Wimt
meM?;ielm meMe;iclm

VieIl,t € T,pc{l,A} (15))
%,Ufimt S Spfmt é E,Ufzmt
VieI™, meM teT,pec {I',A} (15k)

Z (gfr:npzcmt - pflmt/ggz)

iel™

Z771,(t+1) — Lt =

Ym e Mt € T\{|T|} (15D

Kfmt + ’%zc'lmt < Pime V(Z, m, t) €V (15m)

JC kS

“m™imt

<pz¢mt<‘] /i

m'vimt

Y(i,m,t) € V (15n)

d d d
Jm mt < Pimt = < Jd

m zmt

Y(i,m,t) € V (150)
Wit = Pt — Pt v(i,m,t) € V (15p)
Wkttimt < Wiy < Whiime — V(i,m,t) €V (15q)

Vie IN\I™,m e M,t € T (15r)

VieI',meM (15s)

Himt =0
Him1 = 1
Zp < Zypt < Zn, VmeM,teT (15t
v; S vip S U; Viel,teT (15u)
G2 <G <GS WneNteTgoe{I,A} (15v)
Tty Kt Ko Mimt € {0,1} (15w)
fits 05 s Wiy € Ry Gy iy € Ry €10,1]

Vo e {I',A} (15x)

Vits Zmt Pimts Pt € Ry (15y)

The objective function minimizes the sum of the costs due to
wildfires W defined by (7), (8), (10), (13) and the PSPS-caused
power outage costs O defined by (14), wherein, the ex-ante
known values of CVaR,(f(z,V|x = 0)) forevery a € A are
obtained through fixing x;; = 0,Vl € L, ¢ € T based on (11).
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Several properties of the objective function are presented in
Appendix B. Constraint (15b) describes the real and reactive
power balance conditions at each node in the DS, stipulating
that the total incoming and outgoing power flows must be equal.
The notations i(l) and j() represent the source and terminal
nodes of overhead power line [, respectively. The real and
reactive power flows in overhead power lines are bounded by
their real and reactive power capacities in (15c). Constraints
(15d) and (15e) represent the power flow equation considering
the status of the overhead power lines based on the DistFlow
model [39]. The real and reactive power generation at each
node consist of the generated power from the substation and the
energy supply by MPSs, which is denoted by constraint (15f).
The set of constraints (15g) defines the dispatch scheduling of
MPSs. In a DS, candidate nodes are nodes equipped with specific
electrical facilities that allow MPSs to be connected to the DS.
For example, if MPS m is at candidate node ¢ at time ¢ = 1 (i.e.,
im1 = 1) and needs 2 time periods to travel from candidate
node ¢ to node j (i.e., T,’;1 = 2)—meaning that MPS m is on
its way from nodes i to j at t = 2 and ¢ = 3, then MPS m
will arrive at candidate node j at ¢t = 4 (i.e., ftj;m4 = 1), which
implies fijm1 = 0, ftjm2 = 0, and (1,3 = 0. Constraint (15h)
enforces that each MPS m can stay in at most one node at any
period. Constraint (151) ensures that the total number of MPSs
located at candidate node ¢ at any period does not exceed the
maximum number of vehicles that node 7 can host. Constraint
(15j) reflects that the real and reactive power injections from
MPS m to candidate node ¢ involve real and reactive power
supplied by MEGs and MESSs. Constraint (15k) determines the
range of real and reactive output power of MEGs. Constraint
(151) represents the variations in the state of charge of MESS
m over time, which are determined by MESSs’ charging and
discharging behaviors. To ease the notations, we define the
index set V.= {(i,m,t) : i € I"",m € M¢, ¢ € T}. Constraint
(15m) ensures that MESS m can neither charge nor discharge
at candidate node i if it is not connected (f;,¢ = 0) to the
node, and expresses that the charging and discharging states are
mutually exclusive: any MESS m connected to candidate node
1 cannot be in charging and discharging state at the same time.
Constraints (15n) and (150) restrict the range of the MESSs’
charging and discharging power, respectively. The real power
output of MESSs is bounded by constraint (15p). Constraint
(15q) specifies the bound on the reactive power output of MPSs.
Constraint (15r) ensures that an MPS cannot be dispatched to a
non-candidate node in the DS while constraint (15s) defines the
initial positioning of each MPS. The notation I’ denotes the set of
nodes where MPSs can be initially pre-positioned. Constraints
(15t)—(15v) represents the limits on the state of charge of the
MESS m at time t (Z,,;), the squared voltage magnitudes of
node i attime ¢ (v;;), and the generation of real (G, ) and reactive
power (G,) in the substation. The nonlinearities in model (15)
are due to the polynomial terms in the equality constraints
(8), to the max operand term (CI —nf)* = max{CF —
n*",0}) in constraint (10), and to the inner maximization in
constraint (13).

Lemma 4: The continuous relaxation of the S-MINLP model
(15) is nonconvex.
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Proof: Model (15) includes several nonlinear equality con-
straints (7), (10), and (13), and has thus a nonconvex feasible
area regardless of the binary restrictions on some variables. []

B. Reformulation

We now derive an MILP reformulation equivalent to problem
(15). Proposition 5 shows how to linearize the nonlinear terms
in the S-MINLP model by exploiting its structure.

Proposition 5: Let ¢ € Ry and 7r; . € {0,1} be the auxil-
iary decision variables. The MILP reformulation problem

min O + W
s.t. (8), (14), (15b)—(15y)

¢f>cf —n VseS (16a)
Ths 2 7|L(S)| +1+ Z(l - IlT(ls)) + Z Lir(ls)
lel lele

VL CL(s), s€ S (16b)

1 R
> i P
W>n+ I sgespsés CVaR.(f(V)) VYae A

(16¢)
¢FeRy,s€8, m;, €{0,1} VL C L(s),s € S (16d)

is equivalent to (15).

Proof: (i): We first reformulate the nonlinear constraint (7).
This relationship can be enforced via (16b).

It is immediate to see that:

110 = zr00) T #ir0s =1 (17
lel leLe

< Tir(ls) = 0, vVl e [: and Tir(ls) = 1, Vi e ZA;C

Ang Z(l - xl‘r(ls)) = |i’| and Z Lir(1s) = ‘f/c|
lel lele

& =L+ 14> (1= 2rq0) + D Tirs =1 (18)

lel lele

with the validity of the last relationship due to |L| + |L¢| =
|L(s)|. Therefore, if (18) holds, then 7; . must take value 1.
On the other hand, if [],_; (1 — 2i-as) [, ;e Ziras) =0,
we show that 7; . can take value O or 1.
Next, we show that it is possible for 7; _ to take O for some

s € Sand L C L(s). From Proposition 3, we know that for any
s € S, the equality

H(l - ml‘r(ls)) H Tir(ls) = 1
lel leLe

holds true for one and only one subset L, C L(s). This means that
for any s € S, the expression [[,_; (1 — 2i-as)) [, Ziras)

is equal to O for all Lc L(s), except for one. Then, we have:

H(l - xlT(lS)) H Lir(1s) = 0

lel lele
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< Tir(ls) = 1,dl e i/a Or Zjr(is) = 0,4l € [A’C

& > (=) <Ll or > @p0qs) < L]
lel leLe

—L(s)| + 1+ Z(l — Tyr(is)) + Z Tir1s) <0
lel lele

with the validity of the last relationship due to always having
Zlei(l — Zyr(15)) < |L|and Zlei“ Ty (s) < |L€|. This proves
thatit is possible for 7; _ to take 0 as long as we have [ ], _; (1
Il‘r(ls)) Hleﬁc Tir(ls) = 0.

In the optimal solution, if free to take value O or 1, 7;  will
take value O since the objective value (to be minimized) is an
increasing function of the overall wildfire costs Cf which is
itself monotone increasing with 7; _. This shows that constraint
(16b) along with the binary restriction on 7; . provide an exact
linearization of the nonlinear constraint (8).

(ii): To reformulate each term (C¥ — nf')* for any s € S
in (10), we introduce a nonnegative auxiliary decision variable
¢F e Ry, substitute ¢ for (CF — )+, and add constraint
(16a), which allows rewriting (10) as

CVaRa (f(,V)) = minn+ 1— SEZSPSEF (19)
and (13) as
W = max | min |7+ LZ:pséf
acA \ neRy 1l -« =
—CVaR, (f (z,V|x =0))) (20)

(iii) Lastly, we linearize (20). Using the epigraphic approach,
we replace (20) with the inequalities

W > min
neR 4

n+ ﬁ > pl

s€eS

—CVaRy (f (z,V]x=0)) Vace A (21

which is equivalent to (16¢) due to the sign on the inequality and
the minimization term on the right side of (20).

The objective function and all the constraints are now linear,
which provides the result that we set out to prove. g

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Test System Characteristics and Assumptions

In this section, we test the proposed model (16) on the IEEE
33-node test system (see Fig. 4), which consists of 33 nodes, 32
overhead power lines, and 1 substation. The detailed information
on each node and line in the system is provided in [39]. As
shown in Fig. 4, the system has six critical load nodes and
ten candidate nodes to which an MPS can be connected for
charging and power delivery (discharging). Node 1 is an MPS
depot owning two MEGs (i.e., M1 and M2) with 800 kW/600
kVar capacity and one MESS (i.e., M3) with 500 kW/1000 kWh
capacity. Algorithm 1 (see next Section IV-B) returns 760 unique
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Fig. 4. Optimal decisions on PSPS action and MPS dispatch in the wind-
exposed wildfire-prone IEEE 33-node test system.

representative wildfire scenarios (|S| = 760), and related param-
eters (i.e., ps, 7(ls)). Inspired by the existing practice [8], the
PSPS decisions are made 12 hours ahead by solving the PPSD
problem in which the planning horizon includes 48 15-minute
periods. The optimization problem (16) is coded with the AMPL
algebraic modeling language and solved with the optimization
solver Gurobi 9.0.2.

B. Wildfire Scenarios

An electrically-induced wildfire is consecutive to the com-
bination of two independent events: a fault on an overhead
power line and subsequent arc-ignition of nearby vegetation
around the power line. Let ¢;}" and /%" respectively denote the
probability of line fault and arc—igniiion for every [ € L and
t € T. We implement the model presented in [6], [40] to find
g4 and q%’t“ forevery ! € Landt € T in our experiments using
weather information (e.g., wind speed, ambient temperature,
relative humidity, etc.) captured in the vicinity of Paradise,

California [41]. Given the likelihood of fault and arc-ignition for
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Algorithm 1: Generation of Representative Scenario Set S.
1: Initialize s = 1, ps = 1, L(s) = 0,
O =1, VieL, t € T,B(s) =0.
2:forallt € T, [ € Ldo

3: S48
4: forall s’ € {1,...,5} do
5. ifl ¢ B(s) then
6: if quj“ > ¢ then
7: Find set L([) including line [’s outgoing
branches
8: Sets(—s+1,ps<—ps/xqﬁ"}f“xq;i",
®lst — 0,
L(s) « L(s") U {l}, B(s) « B(s') UL(l)
9: Sets(—s+1,ps<—ps/xqﬁi“x(l—q}‘?:),
O5¢ < 0, L(s) + L(s'), B(s) + B(s')U i(l)
10: Set py < py X (1 —q/2")
11: end if '
12: end if
13:  end for
14: end for

15: Initialize S = ()
16:forall ' € {1,...,s} do
17: if 398” eS: L(S/) = L(sﬂ),@ls’t = O, €
L(s'),t € T then
18:  SetS=SU{s'}
19: end if
20: end for
21:for all s’ € S do
22: pg <0
23: foralls” € {1,...,s}do
24:  ifL(s') = L(s") and
Ot = Ougrt, L € L(S/),t € T then

25: Ds < Ds' + Dsr
26: end if
27: end for

28: Setpy < Py
29: 7(ls) + min{t € T : O = 0} forall [ € L(s)
30: end for

every [ € L and ¢ € T, we aim to generate a set S of plausible
wildfire scenarios and derive the probability ps, expressed as
the product of probabilities ¢;5" and . We provide below
the pseudo-code of Algorithm 1 which is used to generate the
scenario set S, and we explain next its modalities. The notation
O, refers to a binary indicator for the status of overhead power
line [ at time ¢ in scenario s, and takes value O if there is a fault
and 1 otherwise. Additionally, we define a set B(s) for each
scenario s representing the set of lines that do not ignite a fire
in this scenario. The detailed pseudo-code of Algorithm 1 is
provided in Appendix C.

C. Joint PSPS & MPS Dispatch Decisions

We first evaluate the efficiency of our proposed model in
reducing the expected cost of wildfires (i.e., >, g psCL). With
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joint decisions on PSPS actions and MPS dispatch, the expected
cost of wildfire decreases from $11,466,492 (original DS with
no PSPS in action) to $2,473,985 (using the proposed Q-SSD
model), i.e., a cost reduction of 78%. Meanwhile, the extent of
PSPS-caused power outages is found 4,299.16 kW when em-
ploying MPSs, accounting for nearly 2.8% of the total electrical
demand during the 12-hour planning horizon. This corresponds
to a 73% reduction in PSPS-caused electricity outages when
using the proposed Q-SSD model compared to the case where
no MPS is employed. We next present the optimal PSPS actions
and MPS allocations resulting from the proposed Q-SSD model
by separating the entire 48 time periods into 3 time period groups
(TPG) TPG1 (tl - t4, tog — If32, t37 — t48), TPG2 (t5 - tgg), and
TPG3 (t33 — tsg). Fig. 4 illustrates the optimal decisions during
all temporal groups.

e TPG1: During these time periods, neither PSPS actions
nor MPS allocations are implemented.

e TPG2: The overhead power lines 10 (PSPS1), 25 (PSPS2),
and 30 (PSPS3) are shut-off at periods to5 —tog, tg — 20, and
ts —ts, respectively. With these PSPS actions implemented,
several DS nodes are disconnected from the main substa-
tion and are therefore in outage for some time periods.
In order to mitigate the PSPS-caused power outages, the
MPSs are allocated to candidate nodes at different islands
to deliver backup power. The nodal power demand would
vary with time, which also affects the MPSs allocation.
MPS M1 is sent to Node 28 to supply power during periods
tg to tog, and is then moved to Node 12 to discharge power
from ¢95 to tog. During periods tg — 12 and t14 — t17, M2
resides at Node 32 to provide power to the isolated area.
Later, M2 is assigned to get connected to Node 12 from
periods to5 to tog. The MESS M3 is required to charge from
the system when it runs out of stored energy. M3 is first
sent to Node 32 to discharge power from ¢5 to ¢3, and then
goes back to the depot (i.e., Node 1) to get charged during
t15 to t16. Next, it is allocated to Node 32 again from ¢1g to
too. Eventually, M3 re-charges from %93 to tog. The results
indicate that the energy supplied by MPSs would serve first
the critical load nodes. During periods 5 to tg (PSPS3 in
action), the residential area at Node 32 and from periods ¢35
to tog (PSPS1 in action), communities connected to Nodes
11, 12, 15, 16, and 17 would experience a power outage.

e TPG3: Overhead power lines 5, 6, 18, and 25 are shut-off
(PSPS4) from t33 to t36, during which M1, M2, and M3 are
assigned to Nodes 28, 20, and 9 for power delivery, while
some non-critical load nodes will remain in outage.

D. Sensitivity Analysis and Benchmark Comparison

We here compare the solution of the problem PPSD using the
proposed Q-SSD-based model with that of several benchmark
measures (i.e., expected value, VaR, and CVaR) which are
commonly used in decision-making under uncertainty:

e The first benchmark solution is the one obtained by includ-

ing the expected cost of wildfire and is given by:

min O+ E[f(z,V)] =0+ p.CL.

seS

(22)
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Fig. 5.

We refer to the benchmark problem (22) as Exp-B.
® The second benchmark solution is obtained by (23) in
which the wildfire cost is measured by VaR:

(O+VaRy(f(z,V))).

We evaluate the benchmark solution given different values
of the confidence level @ = 0.8 and 0.9. For a given o, we
refer to this benchmark as VaR-B-a.

e The third benchmark solution is obtained by (24) in which
the wildfire cost is measured by CVaR [36]:

min (O + CVaR,(f(x,V))).

min

(23)

(24)

Similarly, given o« = 0.8 and 0.9, we refer to benchmark
(24) as CVaR-B-a.

® We also compare the optimal solution of the PPSD problem
with the one obtained when no PSPS action is taken,
referred to as OrgDS-B.

Recall the earlier discussion on constraint (4): the larger n, the
tighter the approximation of the Q-SSD measure. To evaluate
the tightness of our Q-SSD model, we pursue a sensitivity
analysis by considering four different values of n (i.e., n =
10, 20, 25, and 50), referred to as Q-SSD-n. Fig. 5 illustrates
the probability distribution of the random variable C'¥" using
different benchmarks. An example to derive the probability dis-
tribution of wildfire costs is provided in Appendix A. Compared
to OrgDS-B, all (proposed and benchmark) models increase the
probabilities of the cases exhibiting low wildfire costs. Within a
wildfire cost range between $3M and $9M, this probability is the
highest when using the VaR-B-a measure. Both Q-SSD-n and
CVaR-B-a models reveal higher probabilities than VaR-B-a,
when the wildfire cost is lower than $3M. This indicates that
the Q-SSD and CVaR risk measures offer more effective risk
mitigation than VaR. According to Fig. 5(a) to (d), an increase
in n results in higher probabilities when the wildfire cost is
less than $3M (i.e., 48% for n = 10, 56% for n = 20, 60%
for n = 25, and 66% for n = 50), highlighting that a tighter ap-
proximation of the Q-SSD measure offers a better performance
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$0-3M >S$12M

$OM-12M

$6M-9M $6M-9M
+Q-SSD-n+OrgDS-B+Exp-B = CVaR-B-a+VaR-B-«  +Q-SSD-n+OrgDS-B~Exp-B+ CVaR-B-0+VaR-B-o

() a=08,n=25 (d) a=0.8,n =50

>$12M >$12M $0-3M

$OM-12M $3M-6M

$6M-9M
+Q-SSD-n+OrgDS-B+Exp-B = CVaR-B-o~VaR-B-o. ~Q-SSD-n-+OrgDS-B~Exp-B = CVaR-B-¢+VaR-B-o

$6M-9M

(® a=09,n=25 (h) a = 0.9,n = 50

Probability distribution of the wildfire cost using different risk measure benchmarks.

TABLE I
EXPECTED WILDFIRE COSTS, POWER OUTAGE COSTS, AND TOTAL COSTS
WITH DIFFERENT BENCHMARK RISK MEASURES

n Exp. Wildfire Power Outage Total
Costs ($) Costs ($) Costs ($)
10 4,288,702 3,256,928 7,545,630
20 3,429,951 3,921,452 7,351,403
Q-SSD 25 N/A 3,098,408 4,119,458 7,217,866
50 2,473,985 4,646,512 7,120,497
0.8 3,098,408 4,119,458 7,217,866
CVaR — N/A 0.9 2,780,541 4,412,652 7,193,193
0.8 5,094,272 4,803,560 9,897,832
VaR N/A 0.9 4,902,293 4,946,512 9,848,805

in risk alleviation. One can observe in Fig. 5(d) and (f) that the
tightest approximation of the Q-SSD measure performs better
than CVaR.

Table I presents the expected wildfire costs, power outage
costs, and total costs resulting by Q-SSD-n, CVaR-B-«, and
VaR-B-« approaches for different n and «. One can observe
that using the VaR-B-a approach results in the largest expected
wildfire and power outage costs compared to the costs associated
with Q-SSD-n, CVaR-B-« for the given n and ov. Compared to
CVaR-B-0.9, we can see that Q-SSD-50 decreases the expected
wildfire costby 11% ($2,473,985 vs. $2,780,541), while increas-
ing the power outage cost by 5% ($4,646,512 vs. $4,412,652).
Moreover, the total cost obtained with model Q-SSD-50 is found
lower than that with the benchmark model CVaR-B-0.9. Upon
analyzing the values of n in the Q-SSD model, one can observe
that the proposed Q-SSD model with tighter approximation
results in minimal wildfire risk while keeping the severity of
PSPS-caused power outages as low as possible.
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Fig. 6. Probability distribution of different wildfire cost ranges when using
the proposed Q-SSD model with and without MPS utilization and dispatch.

E. Quantification of MPS Benefits

Fig. 6 illustrates the probability distribution of the random
variable C'' by solving Q-SSD-50 with and without MPS utiliza-
tion and dispatch. One can observe that when MPSs are utilized,
the higher likelihoods are attributed to the lower range of wildfire
costs (e.g., 50% for $0-3M). In the absence of MPSs, however,
higher probabilities are associated with a higher range of wildfire
cost (e.g., 54% for >$12M). Therefore, MPSs provide local
energy backup, enabling DS operators to make PSPS decisions
more flexibly to reduce the risk of wildfire catastrophes.

V. CONCLUSION

This article proposed a Q-SSD-based optimization problem
to mitigate the risk of electrically-induced wildfires through
optimal decisions on proactive power line de-energization and
MPSs dispatch. We consider the trade-off between wildfire risk
mitigation and minimization of PSPS-caused power outage costs
including the revenue loss imposed on the electric utility, the
interruption costs imposed to the affected customers, and the
operating cost of MPSs which are utilized as backup sources
of energy during the PSPS planning horizon. The proposed
problem takes the form of an S-MINLP optimization model
and captures the uncertainty of wildfire consequences driven by
different weather realizations. An efficient linearization method
was designed to reformulate the stochastic model into an equiv-
alent MILP formulation. The numerical tests based on the IEEE
33-node test system and the comparison with state-of-the-art
benchmark models clearly demonstrate the promising perfor-
mance of the proposed Q-SSD approach designed for wildfire
risk mitigation while keeping the cost of PSPS-caused power
outages minimal.

APPENDIX A
EXAMPLE FOR CALCULATION OF C" AND THE PROBABILITY
DISTRIBUTION OF THE WILDFIRE COSTS

We provide an example to illustrate how to calculate the value
of C’f based on (8). Consider the DS shown in the center of
Fig. Al with I={1,...,7}, L={1,...,6}, T ={1,2,3},
and S = {1, 2, 3,4}. We consider the following four scenarios:

1) Scenario 1: no fault occurs, we directly have C’f =0.
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Scenario 1 Scenario 2

L(2) = {4}

L)=g (42) =2

L@4) = {4,5}
T(44) = 1
(45) =1

LB = {5}
7(53) =1

2

Scenario 3

Scenario 4

Fig. 7. A simplified DS under different wildfire scenarios.

2) Scenario 2: fault and fire ignition only happen at line 4 at
period 2 (i.e., 7(42) = 2):
e SetL(2) ={4};
e Sets L = {4}, and L¢ = 0;
° 0{4}’2 = $400.
3) Scenario 3: fault and fire ignition only happen at line 5 at
period 1 (i.e., 7(53) = 1):
e Set L(3) = {5};
e Sets [ = {5}, and Le =0,
° C{g,}’g = $100.
4) Scenario 4: fault and fire ignition happen at both lines 4
and 5 at period 1 (i.e., 7(44) = 7(54) = 1), we have:
e SetL(4) ={4,5};
e Sets (i) L ={4}, and L® = {5}; (ii) L = {5}, and
Le = {6}; (iii) L = {4,5}, and L = 0,
° 0{4}’4 = $300, 0{5},4 = $200, and 0{4)5})4 = $800.
Assume now that we have two cases for different PSPS
actions: (i) Case 1: no PSPS action is taken; (ii) Case 2: the only
PSPS action taken is to shut off line 5 at period 1 (i.e., x5; = 1).
Below, we show the calculation of CI" for every s € S in both
cases.
1) In Case 1:

ch=o,
C3 = Cly o(1 — 243) = 400 x (1 — 0) = $400,
C3 = Oy 5(1 = x51) = 100 x (1 — 0) = $100,
cl = CQ}A(I — x41)x51 + C’{;}A(l — T51)Ta1
+ Cfysy (1 —2a)(1 — 251)
=300 x (1—0) x 04200 x (1 —0) x 0
4800 x (1 —0) x (1 —0) = $800;
2) In Case 2:
o =0,
C3 = Cf}y 5(1 — wa3) = 400 x (1 — 0) = $400,
Cy = Cly 5(1—15) =100 x (1 -1) =0,
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Fig. 8. Probability distribution of the wildfire costs in Case / and Case 2.

Ci = 051},4(1 — T41)T51 + Cg},4(1 — T51)Z41
+Claspal —2a)(1 = a51)
=300 % (1-0) x 1+200x (1—-1)x0
+800 x (1 —0) x (1 - 1) = $300.

Next, we depict the calculation of the probability distribution
of the wildfire costs under the same setting as in Fig. A1. Assume
that the probabilities of the various scenarios are p; = 0.1,
p2 = 0.3, ps = 0.5, and py = 0.1, respectively. Based on the
calculated values of C’f , the probabilities of wildfire costs in
Case 1 can be obtained:

P(0) = 0.1, P($400) = 0.3, P($100) = 0.5, P($800) = 0.1,
while the probabilities of wildfire costs in Case 2 are:
P(0) = 0.6, P($400) = 0.3, P($300) = 0.1.

Fig. A2 shows the probability distribution of the wildfire costs
obtained in both cases.

APPENDIX B
OBIJECTIVE FUNCTION OF PROBLEM PPSD: PROPERTIES

Proposition 6: The optimal value of the objective function
(15a) is always nonpositive.

Proof: We show that there always exists a feasible solution
for which the value of the objective function is zero. The first
term O in the objective function (15a) is equal to 0 when
r; = 0,1 € Landt € T,i.e., when no PSPS action is taken. In

this case, CVaR,(f(x,V)) = CVaR.(f(V)),a € A which
implies that max e o (CVaR, (f(x,V)) — CVaRa(f(V))) =
0. This provides the result that we set out to prove since not taking
any PSPS action is a feasible solution. 0

We now propose an alternative formulation

minmax (O + CVaRe(f(z,V)) = CVaRa(f(V))),
(25)
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for the min-max bi-level objective problem (15a) and show their
equivalence in Proposition 7.

Proposition 7: The objective function (15a) can be reformu-
lated as (25).

Proof: Any optimal solutions for problem PPSD minimizes
O+W = O+maxaeca (CVaR,(f(x,V))—CVaR.(f(V))).
To prove our statement, we show that for any = € X, we
have O + maxaeca(CVaR,(f(x,V)) — CVaRa(f(V))) =
maxaea (O + CVaRo(f(z,V)) — CVaR(f(V))).

Since, O does not depend on «, we have max,ea (O

+ CVaRy(f(z,V)) = CVaR,(f(V))) = O + max,eca
(CVaRa(f(x,V)) — CVaR4(f(V))), and the statement
holds. O

We show next in Proposition 8§ that one cannot switch the opti-
mization order in (25). In other words, for a given feasible set, the
optimization problems min ey maxa,eca and max,eca mingey
do not necessarily have the same optimal solution and objective
value.

Proposition 8: The optimization problem

max min (0 + CVaRa(f(z,V)) — CVaRa( f(V))) (26)
acA xeX
is not equivalent to problem PPSD.

Proof: Suppose by contradiction that the optimal solution
for (26) is optimal for PPSD. Let O(x) be the value of O
associated withany x € X'. Consider the following example with
A ={og, 0}, X = {2',2%}, O(z!) =150, O(z?) = 100,
CVaR,, (f(z',V)) = 140, CVaRe, (f(z2,V)) = 200,
CVaR,,(f(x',V)) = 400, CVaRe,(f(z?,V)) = 350,
CVaRg, (f(V)) =500, CVaR,(f(V)) = 700. While 22 is
optimal for (15a), it is not the case for (26) for which z! is
optimal. This proves our statement given that the optimal values
of 2! and 2 differ. O

While Proposition 8 shows that problems (26) and PPSD do
not necessarily have the same optimal value, we notice in our
numerical tests that both problems have nonetheless the same
optimal value for a number of problem instances.

APPENDIX C
THE PSEUDO-CODE DESCRIPTION OF ALGORITHM 1

In this Appendix, we present a description of the pseudo-code
for Algorithm 1. We use the vocable “Alg-line” to refer to a
(numbered) line of the pseudo-code of Algorithm 1. We first
initialize some of the sets and indices (Alg-line 1). Next (Alg-
lines 2—15), we check one-by-one every pair (¢,1) € T x L,
and create scenarios depending on how likely it is for line [ € L
to ignite fire during period ¢. The for-loop for this operation
is initiated in Alg-line 2. We first define the extra notation §
(Alg-line 3) to refer to the last-generated scenario. Next, for any
pair (¢,1), we go over each scenario s’ € {1,...,§} to update
their probability py and to create new scenarios by slightly
modifying scenario s’ in terms of the status of line [ at period
t. This is done within the for-loop initiated in Alg-line 4. In
Alg-line 5, we check whether line [ belongs to set B(s’) which
includes the lines with fault at period ¢ or earlier under scenario
s Ifl ¢ B(s'), we generate two new scenarios from scenario s’
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by changing O, from 1 to O for those new scenarios (i.e., line [
experiencing fault at period ¢ in both new scenarios), and also we
update the probability p, for scenario s’ itself. The overhead line
[ would be considered with a fault at period ¢ if the probability

quf;” is greater than a given threshold e. In Alg-line 6, we test

whether q}i"}“ is greater than e. In Alg-line 7, we find all lines

in L outgoing from line [/, and denote this subset of lines by
I~/(l ). We generate the two new scenarios in Alg-lines 8 and 9, in
which faulton line [ is taken into account. The generated scenario
in Alg-line 8 has the exact same setting as scenario s, except
line [ is with fault and ignites fire at period ¢. The generated
scenario in Alg-line 9 is similar to scenario s’, except line [ is
with fault at period ¢, but does not ignite a fire. In Alg-line 10,

we update the probability of scenario s’, reducing from py to

ps X (1 — qf a), considering that line [ experiences a fault at pe-

riod ¢ in the two newly-generated scenarios. We have generated
|S| scenarios up to Alg-line 14. There are some scenarios for
which the exact same set of lines ignite a fire at the exact same
periods; e.g., suppose for two arbitrary s',s” € {1,..., s}, we
have L(s") = L(s") and ©;5+ = O+, VI € L(s')t € T. Based
on our definition of set S, each scenario s € S must be unique
in terms of L(s) and Oy, for all [ € L(s)t € T. In Alg-lines
15-20, we create a set S using only such uniquely-generated
scenarios. We calculate py for every scenario s € S, 7(ls), and
l € L in Alg-lines 21-30.
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