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Abstract—Faults on overhead power line infrastructures in elec-
tric power distribution systems (DSs) can potentially ignite catas-
trophic wildfires, especially in areas exposed to high wind regimes,
low humidity, and dense vegetation. The common practice adopted
by electric utilities to build resilience against such electrically-
induced wildfires is called public-safety power-shutoff (PSPS):
strategies to intentionally and proactively de-energize power line
infrastructures to prevent wildfire risks. Using a quasi second-
order stochastic dominance (Q-SSD) measure, this article proposes
an optimization model to generate an optimal PSPS plan which
mitigates the risk of costly wildfires while keeping the intentional
power outages minimal. This objective is achieved by the strategic
deployment of transportable energy backup technologies in the
DS, i.e., mobile power sources (MPSs). The proposed model is a
stochastic mixed-integer nonlinear programming (S-MINLP) cap-
turing the uncertainties in wildfire consequences under different
weather realizations. We derive a tractable linearization procedure
to reformulate the S-MINLP model as an equivalent mixed-integer
linear problem. Numerical studies on the IEEE 33-node test sys-
tem demonstrate the efficiency of the resulting PSPS actions in
balancing the wildfire risks and the power outage consequences,
and highlight the promising performance of the proposed mod-
eling approach compared to the state-of-the-art and benchmark
formulations.

Index Terms—Mobile power sources (MPS), proactive de-
energization, power outages, public-safety power-shutoff (PSPS),
quasi second-order stochastic dominance (Q-SSD), wildfire.

NOMENCLATURE

A. Sets

I Set of nodes in the distribution system (DS).

L Set of overhead lines in the DS.
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T Set of periods in the decision-making horizon.

S Set of wildfire scenarios.

M Set of mobile power sources (MPSs).

N Set of substations in the DS.

I
m ⊆ I Subset of candidate nodes connected to MPSs.

I
′ ⊆ I Subset of nodes for MPSs initial positioning.

M
g ⊆ M Subset of mobile energy generators (MEGs).

M
e ⊆ M Subset of mobile energy storage systems (MESSs).

Ni ⊆ N Subset of substations connected to node i.

B. Parameters and Constants

DΓ
it, D

Λ
it Amount of real/reactive power demand at node i at

period t in DS [kW, kVar].

βt Price of undelivered energy from the electric utility

at period t [$/kW].

γi Interrupted energy assessment rate for node i
[$/kW].

δgm, δem Operating cost coefficients of MPS m [$/kW].

FΓ
l , F

Λ
l Real/Reactive power capacity of overhead line l

[kW, kVar].

Mv Constant denoting the maximum value of the differ-

ence in the squared voltage magnitudes.

Rl, Xl Resistance/Reactance of overhead line l [Ω].

vi, vi Minimum/Maximum squared voltage magnitude at

node i [kV2].

GΓ
n, G

Γ
n Minimum/Maximum real power capacity of substa-

tion n [kW].

GΛ
n , G

Λ
n Minimum/Maximum reactive power capacity of

substation n [kW].

Tm
ij Travel time from node i to j with MPS m.

ci Maximum number of MPSs allowed to be connected

to node i.
AΓ

m, AΓ
m Minimum/Maximum real power output of MEG m

[kW].

AΛ
m, AΛ

m Minimum/Maximum reactive power output of MEG

m [kVar].

εcm, εdm Charging/Discharging efficiency of MESS m.

Zm, Zm Minimum/Maximum state of charge of MESS m
[kWh].

Jc
m, Jc

m Minimum/Maximum charging power of MESS m
[kW].
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Jd
m, Jd

m Minimum/Maximum discharging power of MESS

m [kW].

WΛ
m,WΛ

m Minimum/Maximum reactive power of MESS m
[kVar].

CF

L̂s
Wildfire cost due to the ignition only on lines in set

L̂ under scenario s.

C. Decision Variables

xlt Binary variable equal to 1 if overhead line l is shut-

off intentionally at period t, 0 otherwise.

π
L̂s

Binary variable equal to 1 when lines in set L̂
are the only energized lines at the time of fault

in scenario s, 0 otherwise.

µimt Binary variable equal to 1 if MPS m is connected

to node i at time t, 0 otherwise.

κc
imt, κ

d
imt Binary variable equal to 1 if MESS m is charg-

ing/dicharging at node i at time t, 0 otherwise.

CF
s Wildfire cost under scenario s.

yΓit, y
Λ
it Fraction of real/reactive power outage at node i at

time t.
fΓ
lt , f

Λ
lt Real/Reactive power flow in overhead line l at time

t.
φΓ
it, φ

Λ
it Real/Reactive power input on node i at time t.

vit Squared voltage magnitude at node i at time t.
GΓ

nt, G
Λ
nt Real/Reactive power of substation n at time t.

ψΓ
it, ψ

Λ
it Total real/reactive power injection (from all MPSs)

to node i at time t.
ϕΓ
imt, ϕ

Λ
imt Real/Reactive power output from MEG m to node

i at time t.
ωΓ
imt, ω

Λ
imt Real/Reactive power output from MESSm to node

i at time t.
Zmt State of charge of MESS m at time t.
ρcimt, ρ

d
imt Real charging/discharging power output from

MESS m to node i at time t.

I. INTRODUCTION

W
ILDFIRE incidents have been evidenced, in the past

decade, with an increased frequency and intensity,

threatening communities, disrupting social and organizational

ecosystems, harming natural resources, damaging homes and

structures, and taking lives [1]. In October 2017, a series of

wildfires started to burn across the Wine country of North-

ern California, which caused insured damages exceeding $9.4

billion and the death of 44 people [2]. According to a recent

report [3], in 2020, 58,950 wildfire incidents burned 10.1 million

acres within the U.S., the second-most impacted acreage in a year

since 1960. While wildfires could be triggered by various means,

those resulting from disruptions in the electrical infrastructures

are recorded as the fifth highest cause at the rate of about 8% [4].

A number of such catastrophic electrically-induced wildfires has

been recorded in recent years in the Western United States [5],

majorly due to power line faults under precarious vegetation

conditions, poor line maintenance, and severe weather [6]. Most

electrically-induced wildfires are directly related to power dis-

tribution systems (DSs).

Preventing wildfires is much less costly than mitigating them;

a variety of long-term planning solutions — e.g., network up-

grades, reinforcements and modernization, vegetation manage-

ment — against the risk of electrically-induced wildfires are

reviewed in [7]. The short-term (day-ahead or hours-ahead) op-

erational practice for wildfire prevention adopted by many elec-

tric utilities is referred to as public-safety power-shutoff (PSPS):

when dangerously-high winds arise, the electric utility antic-

ipatively and intentionally pursues power line de-energization

and black-outs the fire-prone areas that are home to millions of

people [8]. While it has been evidenced [9] that wildfire risk

could be effectively mitigated through proactive and selective

power shutoffs, power line de-energization could challenge the

electric power grid operation and jeopardize its performance

reliability [10]. The PSPS-resulted power outages would lead

to unfavorable consequences for the end-use customers. In Oc-

tober 2019, the intentional PSPS-caused blackouts turned off

power to almost a million customers served by PG&E electric

utility [11]. The economic and social impacts of a blackout on

this scale, lasting for several days, are enormous with significant

implications on people’s health and well-being (e.g., increased

mortality) [12]. The survey in [13] indicates that many Califor-

nians have experienced recent PSPS events and they—in par-

ticular health-vulnerable populations—are concerned about the

resulting power outages and the impact on their daily lives [14].

Electric utilities have been exploring planning and opera-

tion solutions to address this concern. Microgrids have been

found critical and effective to battle the PSPS-caused [15] and

wildfire-caused [16] power outages. An optimization approach

is introduced in [17] to balance PSPS consequences in power

transmission systems and wildfire risk with the aim to maintain

as much load delivery as possible. The authors in [18] propose

a rolling horizon framework to fairly and efficiently execute

PSPS decisions for mitigating wildfire ignition risk in power

transmission systems. A multi-period optimization formulation

is presented in [19] to optimize transmission infrastructure in-

vestments for reducing PSPS-caused power outages through the

installation of grid-scale batteries and solar panels. To limit

the size of PSPS-caused power outages, the authors in [20]

co-optimize power line shut-offs and service restoration, where

service restoration is primarily restricted to the re-energization

of PSPS-caused offline power lines. The wildfire risk-aware op-

eration planning problem in [21] aims to assist system operators

in managing wildfire risks in transmission systems via enabling

them to schedule an optimal PSPS action based on quantified

risk values while balancing service continuity. The parent-child

and iterative approaches for enforcing radiality constraints in

DS are introduced in [22] to increase the efficiency of solving

the PSPS problem for wildfire risk mitigation. In [23], the

authors dynamically optimize the PSPS schedules for multiple

days, taking into account weather uncertainties, to minimize the

expected costs imposed on the electric utility. Complementing

the previous studies focused on short-term PSPS operations and

decision-making, authors in [24] investigate a long-term expan-

sion planning scheme that aims to limit the wildfire ignition risk

in the electric network, capturing the long-term impacts of PSPS

decisions.
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Fig. 1. Proposed quasi second-order stochastic dominance (Q-SSD) framework for balancing wildfire risk and PSPS-caused power outages.

The state-of-the-art literature [17], [18], [19], [20], [21], [22],

[23] on models balancing electrically-induced wildfire risks

and power outages—via offering optimal PSPS actions—has

only investigated the decision-making process for selectively

de-energizing power lines in the power system. However, these

studies do not fully account for the simultaneous use of restora-

tion mechanisms and power line de-energization to minimize

wildfire risks while keeping the resulting power outages as

minimal as possible. To develop a risk-averse model for making

PSPS decisions, this article incorporates a mobility-as-a-service

framework utilizing mobile power sources (MPSs) for service

restoration in the DS, routing and dispatch decisions of which are

jointly optimized with those of PSPS actions. MPSs including

mobile emergency generators (MEGs) and mobile energy stor-

age systems (MESSs) can be effective resources in the DS for

spatio-temporal flexibility exchange during emergencies [25].

Spatio-temporal flexibility refers to the MPSs’ ability to travel

across space and time and deliver power to critical infrastructures

and customers in need [26]. In recent years, MPSs’ utilization

has been widely researched to take day-ahead energy man-

agement decisions [27], and define resilience policies against

emergencies [28], [29].

To the best of our knowledge, the literature lacks a frame-

work that co-optimizes power line de-energization and MPS

dispatch decisions for effective wildfire risk management in

wildfire-vulnerable geographical zones. Additionally, the po-

tential of risk-averse decision-making in the context of wildfires

is yet to be fully unlocked. To fill in this knowledge gap,

this article explores, for the first time, a risk-averse stochastic

optimization model based on the quasi second-order stochastic

dominance (Q-SSD) measure where decisions on the utiliza-

tion of MPSs and PSPS actions to balance the risk of wild-

fire and the PSPS-caused power outages are made jointly. In

particular,
� We present a new proactive risk-averse framework for

integrated PSPS planning and MPSs dispatching decisions

over a short-term horizon which accounts for undesir-

able weather conditions that raise the risk of electrically-

induced wildfires.

� We propose a stochastic mixed-integer nonlinear program-

ming (S-MINLP) model based on Q-SSD to mitigate the

risk of wildfires while keeping the PSPS-caused power

outages minimal. We develop a linearization approach to

obtain a tractable mixed-integer linear program (MILP)

equivalent to the S-MINLP model.
� We develop a method to generate representative wildfire

risk scenarios and empirically evaluate the performance

of the proposed optimization approach compared to a

set of benchmark models. We numerically demonstrate

the effective role of MPSs in mitigating the devastating

PSPS-caused power outages.

The remainder of this article is organized as follows. In Sec-

tion II, we describe the problem and the adequacy of the Q-SSD

measure. We present the S-MINLP model and its reformulation

method in Section III. We present the results of our experiments

in Section IV and conclusions in Section V.

II. PROBLEM DESCRIPTION

A. General Framework

The general idea of the proposed optimization framework is

depicted in Fig. 1. In Step 1, we gather information on the tar-

geted DS, weather conditions (in particular wind forecasts), the

geographical landscape, and the vegetation. PG&E electric util-

ity provides a 12-hour-ahead notification called “PSPS Warning”

informing customers of an upcoming PSPS [8]. Accordingly, the

proposed framework requires the prediction of wind direction

and speed at least 12 hours ahead. In this study, we consider that

different combinations of DS power lines provoking arc ignition

would lead to wildfires of different intensities and consequences.

The uncertain conditions of wind speed, humidity, and tem-

perature result in different wildfire ignition scenarios, thereby

featuring the uncertain cost of wildfires caused by different

power lines. In Step 2, we first evaluate the probability of faults

and fire ignition at each power line during the planning horizon

based on the information from Step 1, and then generate possible

scenarios of wildfire cost accordingly. An optimization problem

based on a Q-SSD risk measure for joint decisions on PSPS
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actions and the dispatch of MPSs is proposed in Step 3 to balance

wildfire risks and PSPS-caused power outages. Step 4 provides

DS operators with the optimal decisions obtained by solving

the proposed proactive public safety de-energization (PPSD)

problem.

B. Overview of the Q-SSD-Based Approach

Risk-averse optimization models permit to control and hedge

against unfavorable outcomes based on decision-makers’ risk

preferences. Modeling a decision-making problem under un-

certainty via second-order stochastic dominance (SSD) allows

decision-makers to manage risk by requiring their decisions

to yield a random outcome which stochastically dominates a

reference random outcome. Since SSD is a well-established

risk-averse and consistent risk measure, it has attracted sig-

nificant attention in various contexts, such as financial portfo-

lio selection [30], design of emergency medical service sys-

tems [31], optimal path problems [32], and operations of en-

ergy systems [33]. In order to mitigate the risk of extensive

wildfires through executing PSPS actions, this study proposes a

risk-averse approach based on the SSD concept. The SSD-based

approach allows taking optimal PSPS decisions such that the

uncertain cost of wildfires in the DS dominates a reference

(or benchmark) random cost of wildfires. In this article, the

dominated benchmark is designated as DS without any PSPS

actions.

Since an SSD constraint is equivalent to a continuum of condi-

tional value-at-risk (CVaR) constraints [34], we first review the

concept of CVaR before presenting the specifics of our SSD-

based approach. The CVaR measure [35], [36]—also known

as Mean Excess, Mean Shortfall, and Tail VaR—is defined as

the mean of the tail distribution exceeding the Value-at-Risk

(VaR) [37]. While VaR is a percentile of loss distribution (e.g.,

wildfire cost distribution in this study), CVaR quantifies the

expected loss exceeding a percentile.

Suppose that V is a random variable representing the mag-

nitude (of the consequences) of wildfires. Let f(x, V ) denote

a random loss function depending on V and some controllable

vectorx. In this study, the controllable vector includes decisions

that can be taken to prevent or alleviate the impact (i.e., costs) of

V (i.e., magnitude of wildfires). Let α ∈ (0, 1] be a confidence

level and V aRα(f(x, V )) be the value-at-risk (VaR) at the α
level of the random cost function f(x, V ): V aRα = inf{y :
P(f(x, V ) ≤ y) ≥ α}. The CVaR of the loss function at the

confidence level α, denoted CV aRα(f(x, V )), is the expected

value of f(x, V ) exceeding V aRα(f(x, V )):

CV aRα (f(x, V )) = E [f(x, V )|f(x, V )≥V aRα(f(x, V ))]

= min
η∈R

η +
1

1− α
E
[

(f(x, V )− η)+
]

,

(1)

where (.)+ = max{., 0}. It is known that if V aRα(f(x, V ))
is finite, setting η equal to V aRα(f(x, V )) is optimal [35].

Therefore, in the optimal solution, we have:

CV aRα (f(x, V )) = V aRα (f(x, V ))

+
1

1− α
E
[

(f(x, V )− V aRα (f(x, V )))+
]

. (2)

The larger the confidence level, the more risk-averse the

decision-maker and the larger the CVaR.

Let f(x, V |x = 0) denote the random loss if no PSPS action

is taken (i.e., x = 0). The random loss f(x, V ) stochasti-

cally dominates f(x, V |x = 0) in the second-order, denoted

as f(x, V ) �(2) f(x, V |x = 0), if and only if the following

continuum of CVaR constraints holds [30], [34]:

CV aRα (f(x, V )) ≤ CV aRα (f (x, V |x = 0)) ∀α ∈ (0, 1].
(3)

The inequality (3) is called a CVaR-preferability constraint at

confidence level α [38]. It is shown in [38] that if the random

variable has a finite support, the continuum set of confidence

levels can be discretized to a set of size n− 1 with n < 2|Ω|.

Building upon this, we replace, in our SSD-based approach re-

ferred to as the Q-SSD-based approach, the continuum of CVaR

constraints in (3) with a finite number of CVaR constraints:

CV aRα (f(x, V )) ≤ CV aRα (f (x, V |x = 0)) ∀α ∈ A,
(4)

where A = { 1
n
, . . . , n−1

n
} is a set of confidence levels (see [30]

for a similar approach) and n is an arbitrary integer number. The

larger n is, the closer the Q-SSD constraints (4) approximate

SSD. In our Q-SSD-based approach, the objective is to find

the least costly solution x
∗, with respect to the worst-case

CV aRα differential taken over all considered confidence levels

α ∈ A. Proceeding along that way, the random loss function

f(x∗, V ) associated with x
∗ should have a right-skewed prob-

ability distribution with the probability masses concentrated on

the small possible loss values. To this end, we solve the following

min-max bi-level stochastic programming model for wildfire

risk mitigation:

min
x∈X

max
α∈A

(CV aRα(f(x, V ))− CV aRα(f(x, V |x = 0))) .

(5)

In this study, we define the Q-SSD risk measure for any solution

x as follows:

Q-SSD(f(x, V ))

= max
α∈A

(CV aRα(f(x, V ))− CV aRα(f(x, V |x = 0))) . (6)

In the following two propositions, we show the relation between

CVaR-preferability constraints in (4) and the optimal value of

(5).

Proposition 1: If the optimal value of (5) is not positive, (4)

holds true.

Proof: Let x∗ denote an optimal solution for (5), and α∗ =
argmaxα∈A(CV aRα(f(x

∗, V ))− CV aRα(f(x, V |x = 0))).
Since CV aRα(f(x

∗, V ))− CV aRα(f(x, V |x = 0)) ≤
CV aRα∗(f(x∗, V ))− CV aRα∗(f(x, V |x = 0)), ∀α ∈ A

and CV aRα∗(f(x∗, V ))− CV aRα∗(f(x, V |x = 0)) ≤ 0,

it follows that CV aRα(f(x
∗, V ))− CV aRα(f(x, V |x =
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Fig. 2. Conditional loss probabilities and values of risk measures considered
in Example 1.

0)) ≤ 0, ∀α ∈ A. This implies CV aRα(f(x
∗, V )) ≤

CV aRα(f(x, V |x = 0)) and proves the statement. �

Proposition 2: A positive value for (5) indicates that at least

one of the |A| constraints in (4) is violated.

Proof: Positive value of (5) for an optimal solutionx∗ means:

max
α∈A

(CV aRα(f(x
∗, V ))− CV aRα(f(x, V |x = 0))) > 0.

Accordingly, there exists at least one α ∈ A for which

CV aRα(f(x
∗, V ))− CV aRα(f(x, V |x = 0)) > 0 or equiv-

alently, CV aRα(f(x
∗, V )) > CV aRα(f(x, V |x = 0)). This

violates (4) and proves the statement. �

Before explaining in Section II-C how the formulation (5) can

be used to tackle the PPSD problem, we present here an example

that clarifies the meaning of (5) and that shows its potential

advantages over formulations which minimize CVaR or VaR in

risk mitigation problems.

Example 1: Consider a problem in which x = (x) (i.e., there

is one decision variable x) and only two decisions (see set X =
{1, 2}) can be taken in order to minimize the risk of a high loss.

Assume that actions 1 and 2 are mutually exclusive.

Let f(x, V |x = i) denote the conditional loss if x = i, i =
0, 1, 2 with x = 0 corresponding to the case when no action is

taken and x = 1 (resp., 2) corresponding to the case when action

1 (resp., 2) is taken.
� When no action is taken, f(x, V |x = 0) can take values 0,

20, 40, 60, 80, and 100 with respective probabilities 0.15,

0.25, 0.25, 0.2, 0.11, and 0.04;
� When x = 1, f(x, V |x = 1) can take values 0, 20, 40, 60,

and 80 with respective probabilities 0.41, 0.1, 0.35, 0.12,

and 0.02;
� When x = 2, f(x, V |x = 2) can take values 0, 20, 40, 60,

and 80 with respective probabilities 0.46, 0.3, 0.12, 0.095,

and 0.025.

The above conditional loss distributions are dis-

played in Fig. 2. We show now the effect of actions 1

and 2 under different risk measures, namely VaR, CVaR, and

Q-SSD. Suppose that the decision-maker is risk-averse and

considers high confidence levels, such as 0.9 or 0.95, for the

VaR and CVaR metrics. Using (2), we calculate the CVaR for

the conditional loss f(x, V |x = 1) at the α = 0.9 confidence

level as follows:

CV aR0.9(f(x, V |x = 1))

= E [f(x, V |x=1)|f(x, V |x=1)≥V aR0.9(f(x, V |x = 1))]

= V aR0.9(f(x, V |x = 1))

+
1

1− 0.9
E[(f(x, V |x = 1)− V aR0.9(f(x, V |x = 1)))+]

= 60 + 10× (0.41× (0− 60)+ + 0.1× (20− 60)+

+ 0.35× (40− 60)+ + 0.12× (60− 60)+

+ 0.02× (80− 60)+) = 64.

We obtain the V aR0.9, V aR0.95, CV aR0.9, CV aR0.95

associated with f(x, V |x = 0), f(x, V |x = 1), and

f(x, V |x = 2) as shown at the top-four rows of the bottom

table in Fig. 2 from left to right. On one hand, we have

V aR0.9(f(x, V |x = 1)) = V aR0.9(f(x, V |x = 2)) = 60,

V aR0.95(f(x, V |x = 1)) = V aR0.95(f(x, V |x = 2)) = 60,

and CV aR0.95(f(x, V |x = 1)) = CV aR0.95(f(x, V |x =
2)) = 60 meaning that V aR0.9, V aR0.95, and CV aR0.95

risk measures are indifferent between actions 1 and 2. On

the other hand, CV aR0.9 risk measure selects action 1, given

CV aR0.9(f(x, V |x = 1)) = 64 < CV aR0.9(f(x, V |x =
2)) = 65.

Next, we calculate the value of Q-SSD using (6) and consid-

eringA = { 1
20 ,

2
20 , . . . ,

19
20}. For the three cases f(x, V |x = 0),

f(x, V |x = 1), and f(x, V |x = 2), we have:

Q-SSD(f(x, V |x = 0))

= max
α∈A

(CV aRα(f(x, V |x = 0)))

− CV aRα(f(x, V |x = 0))) = 0,

Q-SSD(f(x, V |x = 1)) = max{−15.8,−16.7,−17.6,−17.5,

− 17.3,−17.1,−16.9,−16.7,−16,−15.6,−16.9,−19,

− 21.7,−22,−22.4,−23,−24,−24,−36} = −15.6,

Q-SSD(f(x, V |x = 2)) = max{−22.4,−23.7,−25.1,−25.4,

− 25.7,−26.1,−26.6,−27.2,−26,−26.2,−26.9,−27.8,

− 28.9,−27,−24.4,−24.5,−26,−23,−36} = −22.4.

Clearly, the optimal solution based on the Q-SSD risk measure

is to take action 2.

Two observations stand out in this example. First, actions 1

and 2 are both optimal for all considered metrics except for

CV aR0.9 (selecting only action 1) and Q-SSD (selecting only

action 2). Second, based on the top plot in Fig. 2, the loss function

associated with action 2 has a right-skewed loss distribution (i.e,

the mass of the distribution is concentrated on smaller values of

loss). While the probabilities of low loss values (i.e., 0 and 20)

are significantly higher with action 2 than with action 1, one can
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Fig. 3. Nested structure of the sets defined in the proposed PPSD formulation.

see that the probabilities of high loss values (i.e., 40, 60, and

100) are significantly lower with action 2 than with action 1.

These observations highlight that the Q-SSD-based formulation

(5) not only permits to differentiate the two solutions 1 and 2

(as opposed to most of the other metrics), but also defines a

right-skewed probability distribution (i.e., probability masses

concentrated on the small possible values) for the random loss

function f(x, V ) associated with the selected solution x (i.e.,

action 2). This implies that the model tends to select a solution

that lowers CV aRα(f(x, V )) for all α ∈ A.

C. Wildfire Risk Minimization

In this study, we consider uncertainty in the economic con-

sequences of electrically-induced wildfires at different periods

as wildfires may result in power outages of various magnitudes.

The scenarios in the set S reflect the possible wind speeds and

directions over time, the vulnerability of overhead power lines,

and whether a power line is surrounded by dense vegetation (see

Section IV-B). Let ps be the probability of scenario s ∈ S, i.e,
∑

s∈S ps = 1. For each scenario s, the cost of wildfires is defined

by the economic loss resulting from arc ignitions on different

overhead power lines.

Let L be the set of all overhand lines in the DS. We denote the

subset of lines which ignite a fire under scenario s by L(s) ⊆ L

and the period of fault on line l ∈ L(s) under scenario s by

τ(ls) ∈ T. Suppose one decides to select a subset of power

lines L̂ ⊆ L(s) to be kept energized at their fault periods in

scenario s (i.e., xlτ(ls) = 0 for all l ∈ L̂), and de-energize the

lines in the complementary subset L̂c = L(s)\L̂ at their fault

periods in scenario s (i.e.,xlτ(ls) = 1 for all l ∈ L̂c). In the PPSD

problem, we assume that the decision-maker has an estimate of

the wildfire cost under scenario s given any subset L̂ (i.e., the

only energized lines in L(s)), and we denote it by CF

L̂s
. Fig. 3

illustrates the relationship between the sets mentioned above.

Now, given the PSPS actions (xlt for all l ∈ L and t ∈ T), we

find the selected subset L̂ for each scenario s using:

π
L̂s

=
∏

l∈L̂

(1− xlτ(ls))
∏

l∈L̂c

xlτ(ls). (7)

and the wildfire cost under this scenario as:

CF
s =

∑

L̂⊆L(s)

CF

L̂s
π
L̂s
. (8)

To provide a better understanding of (8), we illustrate how to

calculate the value of CF
s using this equation in Appendix A.

For any scenario s and the subset of power lines L̂ ⊆ L(s), the

polynomial term defined in the right-hand-side of (7) can take

value 0 or 1. If, for every line l ∈ L̂, the corresponding term (1−
xlτ(ls)) is equal to 1 (i.e., xlτ(ls) = 0), wildfire ignitions occur

at every line l ∈ L̂ at period τ(ls). Similarly, if for every line

l ∈ L̂c, the term xlτ(sl) is equal to 1, there is no ignition at any

line l ∈ L̂c. We show in Proposition 3 that the two polynomial

terms can both be equal to 1 for only one set L̂ ⊆ L(s). When

this occurs, we have L̂ ⊆ L(s).
Proposition 3: For any s ∈ S, the equality

∏

l∈L̂

(1− xlτ(ls))
∏

l∈L̂c

xlτ(ls) = 1 (9)

holds true for one and only one subset L̂ ⊆ L(s).
Proof: Consider an arbitrary feasible solution x̃lt, l ∈ L, t ∈

T for the PPSD problem. Define the index set W = {(l, t) :
x̃lt = 1, l ∈ L, t ∈ T}. For any s ∈ S and L̂ ⊆ L(s), (9) holds

if (l, τ(ls)) /∈ W, ∀l ∈ L̂ and (l′, τ(l′s)) ∈ W, ∀l′ ∈ L̂c.

First, we show – by contradiction – that for each feasible solu-

tion of problem PPSD and each s ∈ S, the conditions mentioned

above hold for at most one subset L̂ ⊆ L(s). Suppose that there

exists another set L̂0 ⊆ L(s) and L̂ 	= L̂0 for s ∈ S, such that we

have: (l, τ(ls)) /∈ W, ∀l ∈ L̂0 and (l′, τ(l′s)) ∈ W, ∀l′ ∈ L̂c
0.

This means that (9) holds for both L̂, L̂0 ⊆ L(s). There are three

possible cases for the relation between L̂ and L̂0:

(1) L̂ ⊂ L̂0: There exists l ∈ L̂c while l ∈ L̂0 (i.e.,

(l, τ(ls)) /∈ W , xlτ(ls) = 0), which implies
∏

l∈L̂c xlτ(ls) = 0.

(2) L̂0 ⊂ L̂. There exists l ∈ L̂c
0 while l ∈ L̂ (i.e., (l, τ(ls)) ∈

W , xlτ(ls) = 1), which implies
∏

l∈L̂
(1− xlτ(ls)) = 0.

(3) neither L̂ ⊂ L̂0 nor L̂0 ⊂ L̂: There exists a line l ∈ L̂
(i.e., (l, τ(ls)) ∈ W , xlτ(ls) = 1) while l /∈ L̂0, which implies
∏

l∈L̂
(1− xlτ(ls)) = 0.

We have proven in each of the three cases the invalidity of the

initial assumption according to which (9) holds if L̂0 	= L̂.

What is left to prove is that such a set L̂ always exists for each

s ∈ S. Two cases can occur for each s ∈ S:

1) (l, τ(ls)) ∈ W, ∀l ∈ L(s): we have L̂ = ∅. Since ∅ ⊆ L̂,

the set L̂ exists.

2) ∃l ∈ L(s), such that (l, τ(ls)) /∈ W : there is a set L̂ that

includes every l ∈ L(s) and such that (l, τ(ls)) /∈ W . This

means that the set L̂ exists in this case as well. �

Using the definition (8) of the wildfire cost under a certain

scenario s, we rewrite the two following CVaRs as:

CV aRα(f(x, V ))= min
η∈R+

η +
1

1− α

∑

s∈S

ps
(

CF
s −η

)+

(10)

CV aRα(f(x, V |x = 0))= min
η̂∈R+

η̂ +
1

1− α

∑

s∈S

ps

(

ĈF
s −η̂

)+

(11)

where ĈF
s denotes the cost of wildfires without taking any PSPS

action and is calculated by fixing xl,t = 0, l ∈ L, t ∈ T in (7).

We can calculate ex-ante the value of CV aRα(f̂(V )) for every

α ∈ A which becomes a known parameter in the optimization

model. The next step is to rewrite the bi-level min-max problem
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(5) as:

min W (12)

with W

= max
α∈A

(CV aRα(f(x, V ))− CV aRα(f(x, V |x = 0))) .

(13)

D. PSPS-Caused Power Outage Cost Minimization

De-energizing power lines through PSPS actions leads to

electricity outages across the DS. The proposed PPSD aims at

balancing the risk of wildfires and the undesirable consequences

of the associated power outages. To alleviate the PSPS-caused

power outages, we consider MPSs as a backup source of energy

and we account for their operating cost in the formulation of

the cost function for PSPS-caused power outages. The expected

total cost of PSPS actions is then

O =
∑

t∈T

∑

i∈I

(

(βt + γi)D
p
ity

Γ
it +

∑

m∈Mg

δgmϕΓ
imt

+
∑

m∈Me

δem(ρcimt + ρdimt)

)

(14)

where the first term is the cost of power outages including the loss

of revenue for the electric utility (βtD
p
ity

Γ
it) and the interruption

cost for customers (γiD
p
ity

Γ
it). The decision variable yΓit ∈ [0, 1]

defines the partial outage in real power demand DΓ
it in node i at

period t. The second term reflects the generation cost associated

with the output power of MEGs (
∑

m∈Mg δgmϕΓ
imt). The third

term is the cost related to battery degradation due to the MESS

charge and discharge actions.

III. MATHEMATICAL MODEL AND REFORMULATION METHOD

In this section, we first present in detail the proposed S-

MINLP formulation (15) for the PPSD problem before deriving

an MILP reformulation.

A. Model Formulation

We propose a Q-SSD-based risk-averse optimization model

PPSD to hedge against the uncertain consequences of wildfires

driven by various weather conditions. To ease the notations, we

introduce � ∈ {Γ,Λ} with Γ and Λ referring to real and reactive

power, respectively. The PPSD problem is formulated as an S-

MINLP problem:

min O +W (15a)

s.t. (7), (8), (10), (13), (14)
∑

l∈L;i(l)=i

f�
lt +D�

it(1− y�it) =
∑

l∈L;j(l)=i

f�
lt + φ�

it

∀i ∈ I, t ∈ T, � ∈ {Γ,Λ} (15b)

− (1− xlt)F
�
l ≤ f�

lt ≤ (1− xlt)F
�
l

∀l ∈ L, t ∈ T, � ∈ {Γ,Λ} (15c)

vi(l)t − vj(l)t ≥ −xltM
v + 2(Rlf

Γ
lt +Xlf

Λ
lt )

∀l ∈ L, t ∈ T (15d)

vi(l)t − vj(l)t ≤ xltM
v + 2(Rlf

Γ
lt +Xlf

Λ
lt )

∀l ∈ L, t ∈ T (15e)

φ�
it=

∑

n∈Ni

G�
nt + ψ�

it ∀i ∈ I, t ∈ T, � ∈ {Γ,Λ} (15f)

µjm(t+τ) ≤ 1− µimt

∀i, j ∈ I
m,m ∈ M,τ≤ Tm

ij , t≤|T| − τ (15g)

∑

i∈Im

µimt ≤ 1 ∀m ∈ M, t ∈ T (15h)

∑

m∈M

µimt ≤ ci ∀i ∈ I, t ∈ T (15i)

ψ�
it =

∑

m∈Mg;i∈Im

ϕ�
imt +

∑

m∈Me;i∈Im

ω�
imt

∀i ∈ I, t ∈ T, � ∈ {Γ,Λ} (15j)

A�
mµimt ≤ ϕ�

imt ≤ A�
mµimt

∀i ∈ I
m,m∈M

g, t∈T, � ∈ {Γ,Λ} (15k)

Zm(t+1) − Zmt =
∑

i∈Im

(

εcmρcimt − ρdimt/ε
d
m

)

∀m ∈ M
e, t ∈ T\{|T|} (15l)

κc
imt + κd

imt ≤ µimt ∀(i,m, t) ∈ V (15m)

Jc
mκc

imt ≤ ρcimt ≤ Jc
mκc

imt ∀(i,m, t) ∈ V (15n)

Jd
mκd

imt ≤ ρdimt ≤ Jd
mκd

imt ∀(i,m, t) ∈ V (15o)

ωΓ
imt = ρdimt − ρcimt ∀(i,m, t) ∈ V (15p)

WΛ
mµimt ≤ ωΛ

imt ≤ WΛ
mµimt ∀(i,m, t) ∈ V (15q)

µimt = 0 ∀i ∈ I\Im,m ∈ M, t ∈ T (15r)

µim1 = 1 ∀i ∈ I
′,m ∈ M (15s)

Zm ≤ Zmt ≤ Zm ∀m ∈ M, t ∈ T (15t)

vi ≤ vit ≤ vi ∀i ∈ I, t ∈ T (15u)

G�
n ≤ G�

nt ≤ G�
n ∀n ∈ N, t ∈ T,� ∈ {Γ,Λ} (15v)

xlt, κ
c
imt, κ

d
imt, µimt ∈ {0, 1} (15w)

f�
lt, φ

�
it, ψ

�
it, ω

�
it ∈ R;G�

nt, ϕ
�
imt ∈ R+; y

�
it ∈ [0, 1]

∀� ∈ {Γ,Λ} (15x)

vit, Zmt, ρ
c
imt, ρ

d
imt ∈ R+ (15y)

The objective function minimizes the sum of the costs due to

wildfires W defined by (7), (8), (10), (13) and the PSPS-caused

power outage costs O defined by (14), wherein, the ex-ante

known values of CV aRα(f(x, V |x = 0)) for every α ∈ A are

obtained through fixing xl,t = 0, ∀l ∈ L, t ∈ T based on (11).
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Several properties of the objective function are presented in

Appendix B. Constraint (15b) describes the real and reactive

power balance conditions at each node in the DS, stipulating

that the total incoming and outgoing power flows must be equal.

The notations i(l) and j(l) represent the source and terminal

nodes of overhead power line l, respectively. The real and

reactive power flows in overhead power lines are bounded by

their real and reactive power capacities in (15c). Constraints

(15d) and (15e) represent the power flow equation considering

the status of the overhead power lines based on the DistFlow

model [39]. The real and reactive power generation at each

node consist of the generated power from the substation and the

energy supply by MPSs, which is denoted by constraint (15f).

The set of constraints (15g) defines the dispatch scheduling of

MPSs. In a DS, candidate nodes are nodes equipped with specific

electrical facilities that allow MPSs to be connected to the DS.

For example, if MPS m is at candidate node i at time t = 1 (i.e.,

µim1 = 1) and needs 2 time periods to travel from candidate

node i to node j (i.e., Tm
ij = 2)—meaning that MPS m is on

its way from nodes i to j at t = 2 and t = 3, then MPS m
will arrive at candidate node j at t = 4 (i.e., µjm4 = 1), which

implies µjm1 = 0, µjm2 = 0, and µjm3 = 0. Constraint (15h)

enforces that each MPS m can stay in at most one node at any

period. Constraint (15i) ensures that the total number of MPSs

located at candidate node i at any period does not exceed the

maximum number of vehicles that node i can host. Constraint

(15j) reflects that the real and reactive power injections from

MPS m to candidate node i involve real and reactive power

supplied by MEGs and MESSs. Constraint (15k) determines the

range of real and reactive output power of MEGs. Constraint

(15l) represents the variations in the state of charge of MESS

m over time, which are determined by MESSs’ charging and

discharging behaviors. To ease the notations, we define the

index set V = {(i,m, t) : i ∈ I
m,m ∈ M

e, t ∈ T}. Constraint

(15m) ensures that MESS m can neither charge nor discharge

at candidate node i if it is not connected (µimt = 0) to the

node, and expresses that the charging and discharging states are

mutually exclusive: any MESS m connected to candidate node

i cannot be in charging and discharging state at the same time.

Constraints (15n) and (15o) restrict the range of the MESSs’

charging and discharging power, respectively. The real power

output of MESSs is bounded by constraint (15p). Constraint

(15q) specifies the bound on the reactive power output of MPSs.

Constraint (15r) ensures that an MPS cannot be dispatched to a

non-candidate node in the DS while constraint (15s) defines the

initial positioning of each MPS. The notation I′ denotes the set of

nodes where MPSs can be initially pre-positioned. Constraints

(15t)–(15v) represents the limits on the state of charge of the

MESS m at time t (Zmt), the squared voltage magnitudes of

node i at time t (vit), and the generation of real (GΓ
nt) and reactive

power (GΛ
nt) in the substation. The nonlinearities in model (15)

are due to the polynomial terms in the equality constraints

(8), to the max operand term (CF
s − ηF )+ = max{CF

s −
ηF , 0}) in constraint (10), and to the inner maximization in

constraint (13).

Lemma 4: The continuous relaxation of the S-MINLP model

(15) is nonconvex.

Proof: Model (15) includes several nonlinear equality con-

straints (7), (10), and (13), and has thus a nonconvex feasible

area regardless of the binary restrictions on some variables. �

B. Reformulation

We now derive an MILP reformulation equivalent to problem

(15). Proposition 5 shows how to linearize the nonlinear terms

in the S-MINLP model by exploiting its structure.

Proposition 5: Let ξFs ∈ R+ and π
L̂s

∈ {0, 1} be the auxil-

iary decision variables. The MILP reformulation problem

min O +W

s.t. (8), (14), (15b)−(15y)

ξFs ≥ CF
s − η ∀s ∈ S (16a)

π
L̂s

≥ −|L(s)|+ 1 +
∑

l∈L̂

(1− xlτ(ls)) +
∑

l∈L̂c

xlτ(ls)

∀L̂ ⊆ L(s), s ∈ S (16b)

W ≥ η +
1

1− α

∑

s∈S

psξ
F
s − CV aRα(f̂(V )) ∀α ∈ A

(16c)

ξFs ∈ R+, s ∈ S, π
L̂s

∈ {0, 1} ∀L̂ ⊆ L(s), s ∈ S (16d)

is equivalent to (15).

Proof: (i): We first reformulate the nonlinear constraint (7).

This relationship can be enforced via (16b).

It is immediate to see that:
∏

l∈L̂

(1− xlτ(ls))
∏

l∈L̂c

xlτ(ls) = 1 (17)

⇔ xlτ(ls) = 0, ∀l ∈ L̂ and xlτ(ls) = 1, ∀l ∈ L̂c

⇔
∑

l∈L̂

(1− xlτ(ls)) = |L̂| and
∑

l∈L̂c

xlτ(ls) = |L̂c|

⇔ − |L(s)|+ 1 +
∑

l∈L̂

(1− xlτ(ls)) +
∑

l∈L̂c

xlτ(ls) = 1 (18)

with the validity of the last relationship due to |L̂|+ |L̂c| =
|L(s)|. Therefore, if (18) holds, then π

L̂s
must take value 1.

On the other hand, if
∏

l∈L̂
(1− xlτ(ls))

∏

l∈L̂c xlτ(ls) = 0,

we show that π
L̂s

can take value 0 or 1.

Next, we show that it is possible for π
L̂s

to take 0 for some

s ∈ S and L̂ ⊆ L(s). From Proposition 3, we know that for any

s ∈ S, the equality

∏

l∈L̂

(1− xlτ(ls))
∏

l∈L̂c

xlτ(ls) = 1

holds true for one and only one subset L̂ ⊆ L(s). This means that

for any s ∈ S, the expression
∏

l∈L̂
(1− xlτ(ls))

∏

l∈L̂c xlτ(ls)

is equal to 0 for all L̂ ⊆ L(s), except for one. Then, we have:

∏

l∈L̂

(1− xlτ(ls))
∏

l∈L̂c

xlτ(ls) = 0
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⇔ xlτ(ls) = 1, ∃l ∈ L̂, or xlτ(ls) = 0, ∃l ∈ L̂c

⇔
∑

l∈L̂

(1− xlτ(ls)) < |L̂|, or
∑

l∈L̂c

xlτ(ls) < |L̂c|

⇔ − |L(s)|+ 1 +
∑

l∈L̂

(1− xlτ(ls)) +
∑

l∈L̂c

xlτ(ls) ≤ 0

with the validity of the last relationship due to always having
∑

l∈L̂
(1− xlτ(ls)) ≤ |L̂| and

∑

l∈L̂c xlτ(ls) ≤ |L̂c|. This proves

that it is possible for π
L̂s

to take 0 as long as we have
∏

l∈L̂
(1−

xlτ(ls))
∏

l∈L̂c xlτ(ls) = 0.

In the optimal solution, if free to take value 0 or 1, π
L̂s

will

take value 0 since the objective value (to be minimized) is an

increasing function of the overall wildfire costs CF
s which is

itself monotone increasing with π
L̂s

. This shows that constraint

(16b) along with the binary restriction on π
L̂s

provide an exact

linearization of the nonlinear constraint (8).

(ii): To reformulate each term (CF
s − ηF )+ for any s ∈ S

in (10), we introduce a nonnegative auxiliary decision variable

ξFs ∈ R+, substitute ξFs for (CF
s − ηF )+, and add constraint

(16a), which allows rewriting (10) as

CV aRα (f(x, V )) = min
η∈R+

η +
1

1− α

∑

s∈S

psξ
F
s . (19)

and (13) as

W = max
α∈A

(

min
η∈R+

(

η +
1

1− α

∑

s∈S

psξ
F
s

)

−CV aRα (f (x, V |x = 0))) (20)

(iii) Lastly, we linearize (20). Using the epigraphic approach,

we replace (20) with the inequalities

W ≥ min
η∈R+

(

η +
1

1− α

∑

s∈S

psξ
F
s

)

− CV aRα (f (x, V |x = 0)) ∀α ∈ A (21)

which is equivalent to (16c) due to the sign on the inequality and

the minimization term on the right side of (20).

The objective function and all the constraints are now linear,

which provides the result that we set out to prove. �

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Test System Characteristics and Assumptions

In this section, we test the proposed model (16) on the IEEE

33-node test system (see Fig. 4), which consists of 33 nodes, 32

overhead power lines, and 1 substation. The detailed information

on each node and line in the system is provided in [39]. As

shown in Fig. 4, the system has six critical load nodes and

ten candidate nodes to which an MPS can be connected for

charging and power delivery (discharging). Node 1 is an MPS

depot owning two MEGs (i.e., M1 and M2) with 800 kW/600

kVar capacity and one MESS (i.e., M3) with 500 kW/1000 kWh

capacity. Algorithm 1 (see next Section IV-B) returns 760 unique

Fig. 4. Optimal decisions on PSPS action and MPS dispatch in the wind-
exposed wildfire-prone IEEE 33-node test system.

representative wildfire scenarios (|S| = 760), and related param-

eters (i.e., ps, τ(ls)). Inspired by the existing practice [8], the

PSPS decisions are made 12 hours ahead by solving the PPSD

problem in which the planning horizon includes 48 15-minute

periods. The optimization problem (16) is coded with the AMPL

algebraic modeling language and solved with the optimization

solver Gurobi 9.0.2.

B. Wildfire Scenarios

An electrically-induced wildfire is consecutive to the com-

bination of two independent events: a fault on an overhead

power line and subsequent arc-ignition of nearby vegetation

around the power line. Let qFau
l,t and qIgn

l,t respectively denote the

probability of line fault and arc-ignition for every l ∈ L and

t ∈ T. We implement the model presented in [6], [40] to find

qFau
l,t and qIgn

l,t for every l ∈ L and t ∈ T in our experiments using

weather information (e.g., wind speed, ambient temperature,

relative humidity, etc.) captured in the vicinity of Paradise,

California [41]. Given the likelihood of fault and arc-ignition for
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Algorithm 1: Generation of Representative Scenario Set S.

1: Initialize s = 1, ps = 1, L(s) = ∅,

Θlst = 1, ∀l ∈ L, t ∈ T, B(s) = ∅.

2: for all t ∈ T, l ∈ L do

3: ŝ ← s
4: for all s′ ∈ {1, . . . , ŝ} do

5: if l /∈ B(s′) then

6: if qFau
l,t > ε then

7: Find set L̃(l) including line l’s outgoing

branches

8: Set s ← s+ 1, ps ← ps′ × qFau
l,t × qIgn

l,t ,

Θlst ← 0,

L(s) ← L(s′) ∪ {l}, B(s) ← B(s′) ∪ L̃(l)

9: Set s ← s+ 1, ps ← ps′ × qFau
l,t × (1− qIgn

l,t ),

Θlst ← 0, L(s) ← L(s′), B(s) ← B(s′) ∪ L̃(l)
10: Set ps′ ← ps′ × (1− qFau

l,t )
11: end if

12: end if

13: end for

14: end for

15: Initialize S = ∅
16: for all s′ ∈ {1, . . . , s} do

17: if �s′′ ∈ S : L(s′) = L(s′′),Θls′t = Θls′′t, l ∈
L(s′), t ∈ T then

18: Set S = S ∪ {s′}
19: end if

20: end for

21: for all s′ ∈ S do

22: p̂s′ ← 0
23: for all s′′ ∈ {1, . . . , s} do

24: if L(s′) = L(s′′) and

Θls′t = Θls′′t, l ∈ L(s′), t ∈ T then

25: p̂s′ ← p̂s′ + ps′′

26: end if

27: end for

28: Set ps′ ← p̂s′

29: τ(ls) ← min{t ∈ T : Θlst = 0} for all l ∈ L(s)
30: end for

every l ∈ L and t ∈ T, we aim to generate a set S of plausible

wildfire scenarios and derive the probability ps, expressed as

the product of probabilities qFau
l,t and qIgn

l,t . We provide below

the pseudo-code of Algorithm 1 which is used to generate the

scenario set S, and we explain next its modalities. The notation

Θlst refers to a binary indicator for the status of overhead power

line l at time t in scenario s, and takes value 0 if there is a fault

and 1 otherwise. Additionally, we define a set B(s) for each

scenario s representing the set of lines that do not ignite a fire

in this scenario. The detailed pseudo-code of Algorithm 1 is

provided in Appendix C.

C. Joint PSPS & MPS Dispatch Decisions

We first evaluate the efficiency of our proposed model in

reducing the expected cost of wildfires (i.e.,
∑

s∈S psC
F
s ). With

joint decisions on PSPS actions and MPS dispatch, the expected

cost of wildfire decreases from $11,466,492 (original DS with

no PSPS in action) to $2,473,985 (using the proposed Q-SSD

model), i.e., a cost reduction of 78%. Meanwhile, the extent of

PSPS-caused power outages is found 4,299.16 kW when em-

ploying MPSs, accounting for nearly 2.8% of the total electrical

demand during the 12-hour planning horizon. This corresponds

to a 73% reduction in PSPS-caused electricity outages when

using the proposed Q-SSD model compared to the case where

no MPS is employed. We next present the optimal PSPS actions

and MPS allocations resulting from the proposed Q-SSD model

by separating the entire 48 time periods into 3 time period groups

(TPG): TPG1 (t1 – t4, t29 – t32, t37 – t48), TPG2 (t5 – t28), and

TPG3 (t33 – t36). Fig. 4 illustrates the optimal decisions during

all temporal groups.
� TPG1: During these time periods, neither PSPS actions

nor MPS allocations are implemented.
� TPG2: The overhead power lines 10 (PSPS1), 25 (PSPS2),

and 30 (PSPS3) are shut-off at periods t25 – t28, t9 – t20, and

t5 – t8, respectively. With these PSPS actions implemented,

several DS nodes are disconnected from the main substa-

tion and are therefore in outage for some time periods.

In order to mitigate the PSPS-caused power outages, the

MPSs are allocated to candidate nodes at different islands

to deliver backup power. The nodal power demand would

vary with time, which also affects the MPSs allocation.

MPS M1 is sent to Node 28 to supply power during periods

t9 to t20, and is then moved to Node 12 to discharge power

from t25 to t28. During periods t9 – t12 and t14 – t17, M2

resides at Node 32 to provide power to the isolated area.

Later, M2 is assigned to get connected to Node 12 from

periods t25 to t28. The MESS M3 is required to charge from

the system when it runs out of stored energy. M3 is first

sent to Node 32 to discharge power from t5 to t13, and then

goes back to the depot (i.e., Node 1) to get charged during

t15 to t16. Next, it is allocated to Node 32 again from t18 to

t20. Eventually, M3 re-charges from t23 to t28. The results

indicate that the energy supplied by MPSs would serve first

the critical load nodes. During periods t5 to t8 (PSPS3 in

action), the residential area at Node 32 and from periods t25
to t28 (PSPS1 in action), communities connected to Nodes

11, 12, 15, 16, and 17 would experience a power outage.
� TPG3: Overhead power lines 5, 6, 18, and 25 are shut-off

(PSPS4) from t33 to t36, during which M1, M2, and M3 are

assigned to Nodes 28, 20, and 9 for power delivery, while

some non-critical load nodes will remain in outage.

D. Sensitivity Analysis and Benchmark Comparison

We here compare the solution of the problem PPSD using the

proposed Q-SSD-based model with that of several benchmark

measures (i.e., expected value, VaR, and CVaR) which are

commonly used in decision-making under uncertainty:
� The first benchmark solution is the one obtained by includ-

ing the expected cost of wildfire and is given by:

min O + E[f(x, V )] = O +
∑

s∈S

psC
F
s . (22)
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Fig. 5. Probability distribution of the wildfire cost using different risk measure benchmarks.

We refer to the benchmark problem (22) as Exp-B.
� The second benchmark solution is obtained by (23) in

which the wildfire cost is measured by VaR:

min (O + V aRα(f(x, V ))) . (23)

We evaluate the benchmark solution given different values

of the confidence level α = 0.8 and 0.9. For a given α, we

refer to this benchmark as VaR-B-α.
� The third benchmark solution is obtained by (24) in which

the wildfire cost is measured by CVaR [36]:

min (O + CV aRα(f(x, V ))) . (24)

Similarly, given α = 0.8 and 0.9, we refer to benchmark

(24) as CVaR-B-α.
� We also compare the optimal solution of the PPSD problem

with the one obtained when no PSPS action is taken,

referred to as OrgDS-B.

Recall the earlier discussion on constraint (4): the largern, the

tighter the approximation of the Q-SSD measure. To evaluate

the tightness of our Q-SSD model, we pursue a sensitivity

analysis by considering four different values of n (i.e., n =
10, 20, 25, and 50), referred to as Q-SSD-n. Fig. 5 illustrates

the probability distribution of the random variable CF
s using

different benchmarks. An example to derive the probability dis-

tribution of wildfire costs is provided in Appendix A. Compared

to OrgDS-B, all (proposed and benchmark) models increase the

probabilities of the cases exhibiting low wildfire costs. Within a

wildfire cost range between $3M and $9M, this probability is the

highest when using the VaR-B-α measure. Both Q-SSD-n and

CVaR-B-α models reveal higher probabilities than VaR-B-α,

when the wildfire cost is lower than $3M. This indicates that

the Q-SSD and CVaR risk measures offer more effective risk

mitigation than VaR. According to Fig. 5(a) to (d), an increase

in n results in higher probabilities when the wildfire cost is

less than $3M (i.e., 48% for n = 10, 56% for n = 20, 60%

for n = 25, and 66% for n = 50), highlighting that a tighter ap-

proximation of the Q-SSD measure offers a better performance

TABLE I
EXPECTED WILDFIRE COSTS, POWER OUTAGE COSTS, AND TOTAL COSTS

WITH DIFFERENT BENCHMARK RISK MEASURES

in risk alleviation. One can observe in Fig. 5(d) and (f) that the

tightest approximation of the Q-SSD measure performs better

than CVaR.

Table I presents the expected wildfire costs, power outage

costs, and total costs resulting by Q-SSD-n, CVaR-B-α, and

VaR-B-α approaches for different n and α. One can observe

that using the VaR-B-α approach results in the largest expected

wildfire and power outage costs compared to the costs associated

with Q-SSD-n, CVaR-B-α for the given n and α. Compared to

CVaR-B-0.9, we can see that Q-SSD-50 decreases the expected

wildfire cost by 11% ($2,473,985 vs. $2,780,541), while increas-

ing the power outage cost by 5% ($4,646,512 vs. $4,412,652).

Moreover, the total cost obtained with model Q-SSD-50 is found

lower than that with the benchmark model CVaR-B-0.9. Upon

analyzing the values of n in the Q-SSD model, one can observe

that the proposed Q-SSD model with tighter approximation

results in minimal wildfire risk while keeping the severity of

PSPS-caused power outages as low as possible.
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Fig. 6. Probability distribution of different wildfire cost ranges when using
the proposed Q-SSD model with and without MPS utilization and dispatch.

E. Quantification of MPS Benefits

Fig. 6 illustrates the probability distribution of the random

variableCF
s by solving Q-SSD-50 with and without MPS utiliza-

tion and dispatch. One can observe that when MPSs are utilized,

the higher likelihoods are attributed to the lower range of wildfire

costs (e.g., 50% for $0–3M). In the absence of MPSs, however,

higher probabilities are associated with a higher range of wildfire

cost (e.g., 54% for >$12M). Therefore, MPSs provide local

energy backup, enabling DS operators to make PSPS decisions

more flexibly to reduce the risk of wildfire catastrophes.

V. CONCLUSION

This article proposed a Q-SSD-based optimization problem

to mitigate the risk of electrically-induced wildfires through

optimal decisions on proactive power line de-energization and

MPSs dispatch. We consider the trade-off between wildfire risk

mitigation and minimization of PSPS-caused power outage costs

including the revenue loss imposed on the electric utility, the

interruption costs imposed to the affected customers, and the

operating cost of MPSs which are utilized as backup sources

of energy during the PSPS planning horizon. The proposed

problem takes the form of an S-MINLP optimization model

and captures the uncertainty of wildfire consequences driven by

different weather realizations. An efficient linearization method

was designed to reformulate the stochastic model into an equiv-

alent MILP formulation. The numerical tests based on the IEEE

33-node test system and the comparison with state-of-the-art

benchmark models clearly demonstrate the promising perfor-

mance of the proposed Q-SSD approach designed for wildfire

risk mitigation while keeping the cost of PSPS-caused power

outages minimal.

APPENDIX A

EXAMPLE FOR CALCULATION OF CF
s AND THE PROBABILITY

DISTRIBUTION OF THE WILDFIRE COSTS

We provide an example to illustrate how to calculate the value

of CF
s based on (8). Consider the DS shown in the center of

Fig. A1 with I = {1, . . . , 7}, L = {1, . . . , 6}, T = {1, 2, 3},

and S = {1, 2, 3, 4}. We consider the following four scenarios:

1) Scenario 1: no fault occurs, we directly have CF
1 = 0.

Fig. 7. A simplified DS under different wildfire scenarios.

2) Scenario 2: fault and fire ignition only happen at line 4 at

period 2 (i.e., τ(42) = 2):
� Set L(2) = {4};
� Sets L̂ = {4}, and L̂c = ∅;
� C{4},2 = $400.

3) Scenario 3: fault and fire ignition only happen at line 5 at

period 1 (i.e., τ(53) = 1):
� Set L(3) = {5};
� Sets L̂ = {5}, and L̂c = ∅;
� C{5},3 = $100.

4) Scenario 4: fault and fire ignition happen at both lines 4

and 5 at period 1 (i.e., τ(44) = τ(54) = 1), we have:
� Set L(4) = {4, 5};
� Sets (i) L̂ = {4}, and L̂c = {5}; (ii) L̂ = {5}, and

L̂c = {6}; (iii) L̂ = {4, 5}, and L̂c = ∅;
� C{4},4 = $300, C{5},4 = $200, and C{4,5},4 = $800.

Assume now that we have two cases for different PSPS

actions: (i) Case 1: no PSPS action is taken; (ii) Case 2: the only

PSPS action taken is to shut off line 5 at period 1 (i.e., x51 = 1).

Below, we show the calculation of CF
s for every s ∈ S in both

cases.

1) In Case 1:

CF
1 = 0,

CF
2 = CF

{4},2(1− x42) = 400× (1− 0) = $400,

CF
3 = CF

{5},3(1− x51) = 100× (1− 0) = $100,

CF
4 = CF

{4},4(1− x41)x51 + CF
{5},4(1− x51)x41

+ CF
{4,5},4(1− x41)(1− x51)

= 300× (1− 0)× 0 + 200× (1− 0)× 0

+ 800× (1− 0)× (1− 0) = $800;

2) In Case 2:

CF
1 = 0,

CF
2 = CF

{4},2(1− x42) = 400× (1− 0) = $400,

CF
3 = CF

{5},3(1− x51) = 100× (1− 1) = 0,

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2024 at 04:39:52 UTC from IEEE Xplore.  Restrictions apply. 



2540 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 39, NO. 2, MARCH 2024

Fig. 8. Probability distribution of the wildfire costs in Case 1 and Case 2.

CF
4 = CF

{4},4(1− x41)x51 + CF
{5},4(1− x51)x41

+ CF
{4,5},4(1− x41)(1− x51)

= 300× (1− 0)× 1 + 200× (1− 1)× 0

+ 800× (1− 0)× (1− 1) = $300.

Next, we depict the calculation of the probability distribution

of the wildfire costs under the same setting as in Fig. A1. Assume

that the probabilities of the various scenarios are p1 = 0.1,

p2 = 0.3, p3 = 0.5, and p4 = 0.1, respectively. Based on the

calculated values of CF
s , the probabilities of wildfire costs in

Case 1 can be obtained:

P (0) = 0.1, P ($400) = 0.3, P ($100) = 0.5, P ($800) = 0.1,

while the probabilities of wildfire costs in Case 2 are:

P (0) = 0.6, P ($400) = 0.3, P ($300) = 0.1.

Fig. A2 shows the probability distribution of the wildfire costs

obtained in both cases.

APPENDIX B

OBJECTIVE FUNCTION OF PROBLEM PPSD: PROPERTIES

Proposition 6: The optimal value of the objective function

(15a) is always nonpositive.

Proof: We show that there always exists a feasible solution

for which the value of the objective function is zero. The first

term O in the objective function (15a) is equal to 0 when

xlt = 0, l ∈ L and t ∈ T, i.e., when no PSPS action is taken. In

this case, CV aRα(f(x, V )) = CV aRα(f̂(V )), α ∈ A which

implies thatmaxα∈A(CV aRα(f(x, V ))− CV aRα(f̂(V ))) =
0. This provides the result that we set out to prove since not taking

any PSPS action is a feasible solution. �

We now propose an alternative formulation

min
x∈X

max
α∈A

(

O + CV aRα(f(x, V ))− CV aRα(f̂(V ))
)

,

(25)

for the min-max bi-level objective problem (15a) and show their

equivalence in Proposition 7.

Proposition 7: The objective function (15a) can be reformu-

lated as (25).

Proof: Any optimal solutions for problem PPSD minimizes

O+W = O+maxα∈A(CV aRα(f(x, V ))−CV aRα(f̂(V ))).
To prove our statement, we show that for any x ∈ X , we

have O + maxα∈A(CV aRα(f(x, V ))− CV aRα(f̂(V ))) =

maxα∈A(O + CV aRα(f(x, V ))− CV aRα(f̂(V ))).
Since, O does not depend on α, we have maxα∈A(O

+ CV aRα(f(x, V ))− CV aRα(f̂(V ))) = O + maxα∈A

(CV aRα(f(x, V ))− CV aRα(f̂(V ))), and the statement

holds. �

We show next in Proposition 8 that one cannot switch the opti-

mization order in (25). In other words, for a given feasible set, the

optimization problems minx∈X maxα∈A and maxα∈A minx∈X
do not necessarily have the same optimal solution and objective

value.

Proposition 8: The optimization problem

max
α∈A

min
x∈X

(

O + CV aRα(f(x, V ))− CV aRα(f̂(V ))
)

(26)

is not equivalent to problem PPSD.

Proof: Suppose by contradiction that the optimal solution

for (26) is optimal for PPSD. Let O(x) be the value of O
associated with anyx ∈ X . Consider the following example with

A = {α1, α2}, X = {x1, x2}, O(x1) = 150, O(x2) = 100,

CV aRα1
(f(x1, V )) = 140, CV aRα1

(f(x2, V )) = 200,

CV aRα2
(f(x1, V )) = 400, CV aRα2

(f(x2, V )) = 350,

CV aRα1
(f̂(V )) = 500, CV aRα2

(f̂(V )) = 700. While x2 is

optimal for (15a), it is not the case for (26) for which x1 is

optimal. This proves our statement given that the optimal values

of x1 and x2 differ. �

While Proposition 8 shows that problems (26) and PPSD do

not necessarily have the same optimal value, we notice in our

numerical tests that both problems have nonetheless the same

optimal value for a number of problem instances.

APPENDIX C

THE PSEUDO-CODE DESCRIPTION OF ALGORITHM 1

In this Appendix, we present a description of the pseudo-code

for Algorithm 1. We use the vocable “Alg-line” to refer to a

(numbered) line of the pseudo-code of Algorithm 1. We first

initialize some of the sets and indices (Alg-line 1). Next (Alg-

lines 2–15), we check one-by-one every pair (t, l) ∈ T× L,

and create scenarios depending on how likely it is for line l ∈ L

to ignite fire during period t. The for-loop for this operation

is initiated in Alg-line 2. We first define the extra notation ŝ
(Alg-line 3) to refer to the last-generated scenario. Next, for any

pair (t, l), we go over each scenario s′ ∈ {1, . . . , ŝ} to update

their probability ps′ and to create new scenarios by slightly

modifying scenario s′ in terms of the status of line l at period

t. This is done within the for-loop initiated in Alg-line 4. In

Alg-line 5, we check whether line l belongs to set B(s′) which

includes the lines with fault at period t or earlier under scenario

s′. If l /∈ B(s′), we generate two new scenarios from scenario s′
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by changing Θls′t from 1 to 0 for those new scenarios (i.e., line l
experiencing fault at period t in both new scenarios), and also we

update the probability ps′ for scenario s′ itself. The overhead line

l would be considered with a fault at period t if the probability

qFau
l,t is greater than a given threshold ε. In Alg-line 6, we test

whether qFau
l,t is greater than ε. In Alg-line 7, we find all lines

in L outgoing from line l, and denote this subset of lines by

L̃(l). We generate the two new scenarios in Alg-lines 8 and 9, in

which fault on line l is taken into account. The generated scenario

in Alg-line 8 has the exact same setting as scenario s′, except

line l is with fault and ignites fire at period t. The generated

scenario in Alg-line 9 is similar to scenario s′, except line l is

with fault at period t, but does not ignite a fire. In Alg-line 10,

we update the probability of scenario s′, reducing from ps′ to

ps′ × (1− qFau
l,t ), considering that line l experiences a fault at pe-

riod t in the two newly-generated scenarios. We have generated

|S| scenarios up to Alg-line 14. There are some scenarios for

which the exact same set of lines ignite a fire at the exact same

periods; e.g., suppose for two arbitrary s′, s′′ ∈ {1, . . . , s}, we

have L(s′) = L(s′′) and Θls′t = Θls′′t, ∀l ∈ L(s′)t ∈ T. Based

on our definition of set S, each scenario s ∈ S must be unique

in terms of L(s) and Θlst for all l ∈ L(s)t ∈ T. In Alg-lines

15–20, we create a set S using only such uniquely-generated

scenarios. We calculate ps for every scenario s ∈ S, τ(ls), and

l ∈ L in Alg-lines 21–30.

REFERENCES

[1] J. M. Diaz, “Economic impacts of wildfire,” Southern Fire Exchange,
vol. 498, pp. 2012–2017, 2012.

[2] D. Jones, “October wildfire claims top 9.4 billion statewide,” 2017. [On-
line]. Available: http://www.insurance.ca.gov/0400-news/0100-press-
releases/archives/release135-17.cfm

[3] L. A. Hanson, “Wildfire statistics,” 2017. [Online]. Available: https://sgp.
fas.org/crs/misc/IF10244.pdf

[4] NIFC, “National interagency fire center,” 2021. [Online]. Available: https:
//www.nifc.gov/

[5] S. Jazebi, F. De Leon, and A. Nelson, “Review of wildfire manage-
ment techniques—Part I: Causes, prevention, detection, suppression, and
data analytics,” IEEE Trans. Power Deliv., vol. 35, no. 1, pp. 430–439,
Feb. 2020.

[6] M. Panteli, C. Pickering, S. Wilkinson, R. Dawson, and P. Mancarella,
“Power system resilience to extreme weather: Fragility modeling, proba-
bilistic impact assessment, and adaptation measures,” IEEE Trans. Power

Syst., vol. 32, no. 5, pp. 3747–3757, Sep. 2017.
[7] S. Jazebi, F. De Leon, and A. Nelson, “Review of wildfire management

techniques—Part II: Urgent call for investment in research and develop-
ment of preventative solutions,” IEEE Trans. Power Del., vol. 35, no. 1,
pp. 440–450, Feb. 2020.

[8] PG&E Company, “Public safety power shutoff policies and pro-
cedures,” 2021. [Online]. Available: https://www.pge.com/pge_global/
common/pdfs/safety/emergency-preparedness/natural-disaster/wildfires/
Public-Safety-Power-Shutoff-Policies-and-Procedures.pdf

[9] D. N. Trakas and N. D. Hatziargyriou, “Optimal distribution system
operation for enhancing resilience against wildfires,” IEEE Trans. Power

Syst., vol. 33, no. 2, pp. 2260–2271, Mar. 2018.
[10] R. Hanna, “Optimal investment in microgrids to mitigate power outages

from public safety power shutoffs,” in Proc. IEEE Power Energy Soc. Gen.

Meeting, 2021, pp. 1–5.
[11] PG&E Company, “Pacific gas and electric company amended 2019

wildfire safety plan,” 2019. [Online]. Available: https://www.pge.
com/pge_global/common/pdfs/safety/emergency-preparedness/natural-
disaster/wildfires/Wildfire-Safety-Plan.pdf

[12] G. B. Anderson and M. L. Bell, “Lights out: Impact of the August 2003
power outage on mortality in New York, NY,” Epidemiol. (Cambridge,

Mass.), vol. 23, no. 2, 2012, Art. no. 189.

[13] C. Zanocco, J. Flora, R. Rajagopal, and H. Boudet, “When the lights go
out: Californians’ experience with wildfire-related public safety power
shutoffs increases intention to adopt solar and storage,” Energy Res. Social

Sci., vol. 79, 2021, Art. no. 102183.
[14] G. Wong-Parodi, “When climate change adaptation becomes a “looming

threat” to society: Exploring views and responses to California wildfires
and public safety power shutoffs,” Energy Res. Social Sci., vol. 70, 2020,
Art. no. 101757.

[15] W. Yang, S. N. Sparrow, M. Ashtine, D. C. Wallom, and T. Morstyn,
“Resilient by design: Preventing wildfires and blackouts with microgrids,”
Appl. Energy, vol. 313, 2022, Art. no. 118793.

[16] K. Silverstein, “Microgrids are critical to battle outages caused by wild-
fires,” 2022. [Online]. Available: https://www.environmentalleader.com/
2022/02/microgrids-are-critical-to-battle-outages-caused-by-wildfires/

[17] N. Rhodes, L. Ntaimo, and L. Roald, “Balancing wildfire risk and power
outages through optimized power shut-offs,” IEEE Trans. Power Syst.,
vol. 36, no. 4, pp. 3118–3128, Jul. 2021.

[18] A. Kody, A. West, and D. K. Molzahn, “Sharing the load: Considering
fairness in de-energization scheduling to mitigate wildfire ignition risk
using rolling optimization,” in Proc. IEEE 61st Conf. on Decis. and

Control, 2022, pp. 5705–5712.
[19] A. Kody, R. Piansky, and D. K. Molzahn, “Optimizing transmission

infrastructure investments to support line de-energization for mitigating
wildfire ignition risk,” 2022, arXiv:2203.10176.

[20] N. Rhodes and L. Roald, “Co-optimization of power line shutoff and
restoration for electric grids under high wildfire ignition risk,” 2023,
arXiv:2204.02507.

[21] R. Bayani, M. Waseem, S. D. Manshadi, and H. Davani, “Quantifying the
risk of wildfire ignition by power lines under extreme weather conditions,”
IEEE Syst. J., vol. 17, no. 1, pp. 1024–1034, Mar. 2023.

[22] J. Gorka and L. Roald, “Efficient representations of radiality constraints
in optimization of islanding and de-energization in distribution grids,”
Electric Power Syst. Res., vol. 213, 2022, Art. no. 108578.

[23] A. Lesage-Landry, F. Pellerin, J. A. Taylor, and D. S. Callaway, “Optimally
scheduling public safety power shutoffs,” Stochastic Syst., early access,
Jun. 7, 2023, doi: 10.1287/stsy.2022.004.

[24] R. Bayani and S. D. Manshadi, “Resilient expansion planning of electricity
grid under prolonged wildfire risk,” IEEE Trans. Smart Grid, early access,
Jan. 31, 2023, doi: 10.1109/TSG.2023.3241103.

[25] D. Anokhin, P. Dehghanian, M. A. Lejeune, and J. Su, “Mobility-as-a-
service for resilience delivery in power distribution systems,” Prod. Oper.

Manage., vol. 30, no. 8, pp. 2492–2521, 2021.
[26] S. Lei, C. Chen, H. Zhou, and Y. Hou, “Routing and scheduling of

mobile power sources for distribution system resilience enhancement,”
IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5650–5662, Sep. 2019.

[27] J. Su, P. Dehghanian, B. Vergara, and M. H. Kapourchali, “An energy
management system for joint operation of small-scale wind turbines and
electric thermal storage in isolated microgrids,” in Proc. IEEE North Amer.

Power Symp., 2021, pp. 1–6.
[28] S. Lei, C. Chen, Y. Li, and Y. Hou, “Resilient disaster recovery logistics of

distribution systems: Co-optimize service restoration with repair crew and
mobile power source dispatch,” IEEE Trans. Smart Grid, vol. 10, no. 6,
pp. 6187–6202, Nov. 2019.

[29] J. Su, D. Anokhin, P. Dehghanian, and M. A. Lejeune, “On the use of
mobile power sources in distribution networks under endogenous uncer-
tainty,” IEEE Trans. Control. Netw. Syst., early access, Mar. 13, 2023,
doi: 10.1109/TCNS.2023.3256278.

[30] D. Roman, G. Mitra, and V. Zverovich, “Enhanced indexation based on
second-order stochastic dominance,” Eur. J. Oper. Res., vol. 228, no. 1,
pp. 273–281, 2013.

[31] N. Noyan, “Alternate risk measures for emergency medical service system
design,” Ann. Oper. Res., vol. 181, no. 1, pp. 559–589, 2010.

[32] Y. M. Nie, X. Wu, and T. Homem-de Mello, “Optimal path problems
with second-order stochastic dominance constraints,” Netw. Spatial Econ.,
vol. 12, no. 4, pp. 561–587, 2012.

[33] R. Gollmer, U. Gotzes, and R. Schultz, “A note on second-order stochastic
dominance constraints induced by mixed-integer linear recourse,” Math.

Program., vol. 126, no. 1, pp. 179–190, 2011.
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