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Abstract Sections

Growthinsatellite observations and modelling capabilities has Introduction
transformed drought monitoring, offering near-real-time information. | gxisting drought indicators
However, current monitoring efforts focus on hazards rather

Drought-related cascading

thanimpacts, and are further disconnected from drought-related hazards
compound or cascading hazards such as heatwaves, wildfires, floods Impact-based drought
and debris flows. In this Perspective, we advocate for impact-based monitoring
drought monitoring and integration with broader drought-related Summary and future
hazards. Impact-based monitoring will go beyond top-down hazard perspectives

information, linking drought to physical or societal impacts such as
cropyield, food availability, energy generation or unemployment.
This approach, specifically forecasts of drought event impacts,

would accordingly benefit multiple stakeholders involved in drought
planning, and risk and response management, with clear benefits for
food and water security. Yet adoption and implementation is hindered
by the absence of consistent drought impact data, limited information
onlocalfactors affecting water availability (including water demand,
transfer and withdrawal), and impact assessment models being
disconnected from drought monitoring tools. Implementation of
impact-based drought monitoring thus requires the use of newly
available remote sensors, the availability of large volumes of
standardized data across drought-related fields, and the adoption

of artificial intelligence to extract and synthesize physical and societal
droughtimpacts.
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Introduction

Drought defines an extended moisture deficit. They are often broadly
classified into three types': meteorological drought, typically describing
adeficitin precipitation; agricultural drought, typically describing asoil
moisture deficit; and hydrological drought, typically describing runoff,
groundwater level, stream flow and total water storage deficits. Individu-
ally and collectively, these droughts have substantial socioeconomic
and environmental impact, as evidenced by several severe droughts
observed over the past century. For example, the1928-1930 droughtin
Chinaled towidespread famine and millions of deaths®. Moreover, the
Dust Bowl drought of the United States in the 1930s eroded farmland
anddisplaced an estimated 3.5 million people®. The Millennium drought
in Australia further led to severely reduced winter crop yields and, as
aresult, economic crisis for farmers*. Given these impacts, especially
inlight of observed and projected increases in drought frequency and
intensity®, there is a strong need for drought monitoring” .

Drought monitoring has evolved considerably (Fig. 1). It histori-
cally relied on ground-based precipitation observations'®”, but the
lack of consistently available, dense observational networks limited
spatial analysis. Indeed, observations have been particularly rare in
agricultural areas, where the need for drought monitoringis acute. The
emergence and evolution of remote sensing revolutionized drought
monitoring, providing global, consistent drought-related variables™.
Modelling advances are also key in improving drought monitoring.
Models offer ameans of filling datagapsin cases where relevant drought
variables are difficult to measure directly (for example, root-zone soil
moisture, which cannot be measured directly via satellite'*). In addi-
tion, models that link hydroclimatic variables to impacts (for instance
linking snow drought or soil moisture deficit to expected crop loss or
water shortage) advance capabilities for simulating ‘what-if” drought
scenarios and their societalimpacts, improving drought preparedness
and planning efforts®.

Coincident with the emergence of new datasets and techno-
logies has also been an expansion of drought monitoring indicators
(Fig. 1), incorporating meteorological, hydrological and biophysi-
cal variables depending on the intended purpose and application'*.
Yet drought-related variables often interact with each other, result-
ing in nonlinear relationships between drought drivers and drought
types”. As aresult, defining a drought event in a robust and coherent
manner with a single variable is challenging. For example, the 2003
European extreme drought'®"’ propagated from meteorological to
hydrological, and then to agricultural drought, each with different
time frames (Fig. 2). Effective monitoring must therefore contend with
the multivariate nature of drought through multi-index methods***.

Yet traditional, top-down, hazard-focus droughtindicators leave
key gaps in effective drought monitoring by failing to include the
many complicating factors that can add to the functional severity
and impacts of a drought. Contrastingly, a bottom-up, impact-based
approach would fill many of these gaps, providing relevant informa-
tion for drought-related planning in real time. For example, drought
monitoring methods that include information on the compound and
cascading hazards thataccompany drought (such as heatwaves, wild-
fires, floods and debris flows?*) would offer a clearer picture of the
risks associated with drought than monitoring based on traditional
hazard-focused indicators alone, benefiting stakeholdersinvolved in
drought planning and response decisions.

Inthis Perspective, we frame animpact-based approach to drought
monitoring as a key research direction that can advance operational
drought monitoring more effectively than traditional approaches.

We first discuss existing drought indicators and their limitations. We
follow with discussion of drought-related cascading hazards, before
considering the need to move toward impact-based monitoring of
drought. We end with recommendations to move the field forward
over the coming years.

Existing drought indicators

Before discussing the need for changes in drought monitoring, it is
important to take stock of current approaches to highlight their effec-
tiveness and inadequacies. Owing to the complexity and variation of
events, more than 70 indicators have been developed for monitoring
and characterizing different types of drought'?***-¢ (Fig. 1; Supple-
mentary Table 1). These drought indices can be broadly categorized
asthose derived fromasingle variable to create a single droughtindex
(Fig.1); from multiple variables to create multivariate drought indices;
and from multiple indicators and/or variables to create a composite
droughtindex (Fig. 1), each of which is now discussed®.

Single droughtindices

Asingle droughtindex is defined as anindicator that relies onasingle
climatic or hydrological variable (for example, precipitation deficit or
surplus as ameasure of meteorological drought). These single drought
indices are widely used inresearch and operational applications owing
to their simplicity. However, these indicators primarily focus on haz-
ards, offering ‘upstream’ or ‘top-down’ information only, and do not
provide insights into the impacts of drought.

Precipitation indicators. Precipitation is typically used as an indica-
tor of meteorological drought, withcommonindicatorsincluding the
Standardized Precipitation Index (SPI*>*°) and the Palmer Drought
Severity Index (PDSI*') and its variants’. Standardized Relative Humid-
ity Index (SRHI??), Percent of Normal Precipitation (PNP**) and other
percentile-based methods are also used, butless commonly. Drought
monitoring with these indicatorsacross spatiotemporal scales hasbeen
possible, given arange of ground-based and satellite-derived precipita-
tion datasets®*. However, indicators based solely on precipitation have
limitations in capturing drought persistence owing to rainfall high
variability”. Additionally, in snow-dominated regions, precipitation
indices might fail to capture intricate snow dynamics such as rapid
snowmelt and low flow conditions during the dry season™.

Soil moisture indicators. Soil moisture is typically used as an indi-
cator of agricultural drought®®, with a common indicator being the
Standardized Soil Moisture Index (SSI*). Other soil moisture indica-
torsinclude the Soil Moisture Percentile (SMP), Soil Moisture Deficit
Index (SMDI), and Normalized Soil Moisture (NSM)*. Continental- to
global-scale soil moisture monitoring for drought analysis has often
relied on model simulations®*™*?, but satellite-borne instruments
(such as ASCAT*, SMOS** and SMAP*®) are increasingly providing
opportunities for soil moisture assessment*®*’, These data are lim-
ited in that satellite products such as SMAP are too short to provide
long-term anomalies for drought analysis; composite multisensor
soil moisture datasets*® do not offer root-zone moisture information;
and satellite products only provide moisture information for the top
few centimetres of soil***,

Evapotranspiration indicators. Evapotranspiration is typically
used as an indicator of meteorological and hydrological drought
(as a partial measure of water balance anomalies), and agricultural
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Fig.1|Drought monitoring timeline. A non-comprehensive timeline of major
drought datasets (purple), indicators (red), model developments (blue), and
technological developments (yellow). The drought type measured by the index
isrepresented by agr (agricultural drought), eco (ecological drought), hyd
(hydrological drought), met (meteorological drought) and soc (Socioeconomic
drought). AVHRR, Advanced Very High Resolution Radiometer; GPM, Global
Precipitation Measurement; SMAP, Soil Moisture Active Passive*’; GRACE-FO,
Gravity Recovery and Climate Experiment Follow-on; SWOT, Surface Water

and Ocean Topography; CMIP, Coupled Model Intercomparison Project”?;
USDM, The United States Drought Monitor®*; SMOS, Soil Moisture and

Ocean Salinity** mission. PDSI, Palmer Drought Severity Index*; NDVI,
Normalized Difference Vegetation Index"?; VCI, Vegetation Condition Index'”;
SPI, Standardized Precipitation Index®’; VegDRI, Vegetation Drought Response
Index”*; SRI, Standardized RunoffIndex**’; SPEI, Standardized Precipitation
Evapotranspiration Index*%;JDI, Joint Drought Index®3; ESI, Evaporative

Stress Index'”’; RCI, Rapid Change Index’®; MSDI, Multivariate Standardized
Drought Index?; MIDI, Microwave Integrated Drought Index®; SSI, Standardized
Soil Moisture Index?; SRHI, Standardized Relative Humidity Index*’; MSRRI,
Multivariate Standardized Reliability and Resilience Index*’; EDDI, Evaporative
Demand Drought Index'°%; QuickDRI, Quick Drought Response Index'*;

SWEI, Snow Water Equivalent Index®. The unprecedented growth in satellite
observations, modelling capabilities and development of drought indicators
have allowed near-real-time drought information.

drought (as a partial measure of the moisture available for crops)**.
Common evapotranspiration-based indicatorsinclude Standardized
Precipitation-Evapotranspiration Index (SPEI)**** and Climatic Water
Balance (CWB)**. Evapotranspirationis particularlyimportant for flash
droughts, characterized by their rapid intensification and/or onset
(ontimescales of 2-4 weeks), hypothesized to be driven partly by high
atmospheric evaporative demand>~%,

Althoughit was traditionally measured using ground-based tech-
niques, evapotranspiration is increasingly measured with remote

sensing, including products based on Moderate Resolution Imaging
Spectroradiometer (MODIS), Landsat, Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER), and the Geostationary
Operational Environmental Satellite (GOES)®° % Land-surface models
can further make use of the infrared bands of these remote sensing
products to derive evapotranspiration fromthe residual of the surface
energy balance®®****, Empirical models are also widely used, but often
require local calibration forimproved accuracy. Each of these estima-
tion methods is subject to high uncertainties depending on weather
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Fig.2 | The European drought of 2003. Onset, propagation and termination of
the 2003 European drought event, decomposed into the standardized deficits
associated with the three drought types'’: meteorological drought, representing
precipitation deficit (dark blue); hydrological drought, representing

runoff deficit (light blue); and agricultural drought, representing soil moisture
deficit (brown). Potential evapotranspiration (PET) excess (red) is depicted

for comparison with the precipitation deficit. Drought can be defined from
different perspectives including meteorological drought, describing a deficit in
precipitation; agricultural drought, typically describing a soil moisture deficit;
and hydrological drought, describing runoff, groundwater level, stream flow or
total water storage deficits.

and local land-surface and vegetation conditions®**>*®, but they are
collectively enabling large-scale drought assessment®*%,

Snow indicators. Most drought indicators do not separate snow and
rainfall. Accordingly, drought assessments might be biased, especially
given the importance of the snowpack as a storage reservoir, and its
influence on the timing and occurrence of deficits in other hydro-
logical variables®. As such, there is a need to quantifying snow-related
processes (for example, snow accumulation and snowmelt rate) for
drought monitoring and assessment purposes’® 2, asachieved by the
Standardized Snow Water Equivalent Index™ (Fig. 3). Such approaches
aididentification of a period of abnormally low snow for agivenregion
and time of year, referred to as asnow drought®>”>, which can be driven
by low accumulation or by elevated loss (for example, owing to rising
temperatures, or accelerated snowmelt driven by rain-on-snow)~.
Asthe temporal record of snow observations extends, snow indi-
cators for drought should use snow water equivalent (SWE). However,
SWEis difficult to estimate robustly across complex and rugged moun-
tainous terrain’ "%, Infact, larger-scale satellite remote-sensing-based

products (such as GlobSnow) only yield estimates of SWE across the
non-mountainous Northern Hemisphere”. Nevertheless, there have
been advances in deriving regional and more local- or basin-scale
SWE estimates with remote sensing information and sensors, and/or
data fusion and assimilation techniques’™ %%, The Airborne Snow
Observatory (ASO), for example, demonstrated that high-resolution
LiDAR-based observations of snow depth, when combined with snow
density measurements and models, could be used to infer SWE™.
Although important for attaining improved estimates of snowmelt
runoffat managementscales for water resources, the temporal record
from the ASO is generally insufficient for use in drought analysis and
limited to select basins®'. Additionally, high-spatial-resolution global
SWE informationisstillneeded, resultingin a primarily local to regional
focus so far®>5°,

Multivariate and composite droughtindices
Owingtothelimitations of single-variable droughtindicators, several
multivariate and composite drought frameworks have been devel-
oped to provide robust and comprehensive monitoring”**° (Fig. 1,
composite). Multivariate drought indicators typically account for the
relationship between variables used for drought monitoring, such as
therelationship between precipitation and soil moisture. In contrast,
composite droughtindicatorsintegrate multiple variables with or with-
out explicitly accounting for the relationship between drought-related
variables. Hereafter, the term composite indicators is used to reflect
bothtypes. They have evolved to include many of the aforementioned
variables, constructing a quantitative picture of the total environmental
moisture status'®” by considering different sources of water supply
and water demand. Key indicators include the Multivariate Standard-
ized Drought Index (MSDI, which uses precipitation and soil moisture
indices*??), the Vegetation Drought Response Index (VegDRI, which
incorporates precipitation, temperature and soil moisture, plus vari-
ous biophysical and vegetation indicators’***), and the Microwave
Integrated Drought Index (MIDI, which uses precipitation, soil moisture
and temperature®).

Composite indices have several uses beyond that offered by
single-metric indicators. For example, they are particularly impor-
tant for flash drought which are characterized by their rapid intensi-
fication and/or onset (on timescales of 2-4 weeks)**~*%. Conceptually,
although a flash drought onset usually involves precipitation deficit,
its development typically relies on how rapidly high evapotranspira-
tion rates deplete soil moisture’*°, shifting from an energy-limited
to a moisture-limited regime. Thus, robust flash drought indicators
must link changes in precipitation, temperature, vapour pressure
deficit and soil temperature, efficiently coupling the rapid soil mois-
turedepletion ratesin deeper layers with the changes in atmospheric
evaporative demand'’°. Composite indices useful for quantifying
flash droughts include the Evaporative Stress Index (ESI'™"), Rapid
Change Index (RCI*®), Evaporative Demand Drought Index (EDDI'%)
and Standardized Precipitation-Evapotranspiration Index (SPEI)*.

Composite indicators also have marked use in quantifying eco-
logical drought — water deficits that stress ecosystems or coupled
natural-human systems'®, driven by the total moisture available for
vegetation which is stressed by a combination of low soil moisture
and precipitation with high evapotranspiration. A wide range of indi-
ces quantify ecological drought based on vegetation condition'**",
including the Normalized Difference Vegetation Index (NDVI™?), the
Vegetation Condition Index (VCI'®) and the Quick Drought Response
Index (QuickDRI™).
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Operational drought monitoring systems are also moving toward
integration of a wide range of indicators. The United States Drought
Monitor (USDM)*, for example, includes various single and composite
indicators, producing weekly drought maps' based on in situ data,
remote sensing and modelled products, all validated using reports
fromover 450 local drought experts"'”, Similar integrative weekly or
monthly drought maps have been produced regionally or globally, but
mainly without any humaninputs"®'?°, Asuite of other integrative sys-
temsincludes the European Drought Observatory'; the United Nations
Food and Agriculture Organization (FAO) agricultural drought moni-
toring system based on the Agriculture Stress Index System (ASIS'?);

and the North American Drought Monitoring System'*.

Limitations
Drought monitoring models and tools remain disconnected from
impactassessment models''**'*, whichis amajor limitation as develop-
ing adaptation and response plans requires information on the poten-
tialimpacts of droughts. Furthermore, although considerable progress
has been made in multi-index drought monitoring, different hazards
(suchasdrought, heatwave and wildfire) are stillmonitored individually
and separately even when they are closely related. The need for inte-
grating drought and flood monitoring systems has been highlighted',
but this argument can be extended to all drought-related hazards.
Each of these previously discussed drought indicators has its
limitations”"*° (Supplementary Table 1), but those associated with
snow drought have not received much attention relative to other
drought-related variables and hence are discussed here. Standardized
snow drought indicators thatincorporate not only snow information
but also variables closely related to snowmelt (such as temperature)
are currently lacking. Furthermore, rather than tracking the snow-
packthroughout the season, the Standardized Snow Water Equivalent
Index® and other snow drought analysis methods have focused on the
peak SWE or SWE at a particular time of the year (1 April as the end of
the snow season). However, maximum SWE might inadequately char-
acterize the temporal evolution of snow drought, and thereby obscure
identification and understanding of droughtimpacts occurring before

a Western US — March 2015

orafter the time of peak SWE>. An early peak in SWE, followed by rapid
snowmelt and/or large sublimation and depletion of the accumulated
snowpack, canlead to snow drought conditions accompanied by warm-
ing temperatures and increased potential for alonger wildfire season,
even with above-average SWE conditions at the time of peak. In addi-
tion, when the peak value serves as a proxy for the whole season, the
snow drought classification for aseason that maintained low SWE until
anabruptincreasein SWE just before its peak value could be misrepre-
sented, despite earlier low SWE conditions®. These limitations high-
light the need to develop more comprehensive snow droughtindicators
that capture the temporal evolution (onset, persistence, recovery and
termination) of snow drought®"*°32 crucial to efficiently integrate
snow information into drought monitoring systems.

Drought-related cascading hazards

Although individual drought indicators are important, they omit
information pertaining to drought and drought-related cascad-
ing hazards — events that occur in a specific order, where one event
or hazard is typically caused or triggered by one or more preceding
events or hazards. Ultimately, the feedback loops created by cas-
cading hazards lead to substantial societal or economic damages
beyond the initial drought. For instance, the combination of drought
and heatwaves increases the likelihood of wildfires. Extreme rainfall
over burned areas, subsequently increases the chance of debris flows
inburned areas (Fig. 4). Drought monitoring and research must, there-
fore, move beyondindividual drivers and indicators toinclude the evalu-
ation of various potential cascading hazards, including heatwaves,
wildfires, floods and water quality, as now discussed.

Heatwaves

A pronounced example of a drought-related cascading hazard is the
connection between droughts and heatwaves. These events act to
intensify each other through land-atmosphere interactions™>"*,
Specifically, a soil moisture deficit causes a reduction in evapotran-
spiration, increasing sensible heat and decreasing latent heat rela-
tive to pre-drought conditions®* "%, intensifying surface warming,

b Himalayas — March 2001
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Fig. 3 | Snow drought examples. a, Snow drought in the western United
States during March 2015, as determined by the Standardized Snow Water
Equivalent Index®. b, Asina, but for the Himalaya region during March 2001.

In many regions around the world, snowpack serves as the largest natural water
reservoir, making the monitoring of snow drought critical for improving drought
monitoring.
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Fig. 4| Drought-related processes and cascading hazards. a, Select
hydrological processes during normal or wet years. b, Drought-related processes
during extreme drought years, including burned areas due to cascading
wildfires. ¢, Post-fire debris flows as an example of a cascading hazard. During

drought, soil moisture deficit reduces evapotranspiration, increases sensible
heat and decreases latent heat, and enhances surface warming, in turnincreasing
thelikelihood heatwave intensification, contributing to wildfire development
which can later cause cascading hazards.

and, inturn, enhancing the likelihood of a heatwave exacerbating the
droughtand itsimpacts (Fig.4). Owingtorising evaporative demand,
we can anticipate increased coupling and interactions between heat-
waves and (flash) droughts — and thereby increased intensity and fre-
quency of droughts — as the climate warms® %, as already reported at
regional™ and global*® scales.

Such tight coupling of these cascading hazards is evident across
many observed droughts. Compound drought and heatwave events
often affect socioecological systems™, which include massive
heat-related deaths°'*, loss of crop yield"*****, and wildfires'* that

further transform the landscape creating additional public health
crises. The 2003 drought and heatwave event™*, for example, resulted
inanestimated death toll surpassing 70,000. However, the impacts of
drought are increasingly recognized to result in globally networked
risks in which drought in one part of the world, especially major
food-producing countries, affects regional and local food security
elsewhere.

Several indicators incorporate temperature information, such
as the PDSI (Fig. 1). However, these indicators do not provide spe-
cificinformationabout the co-occurrence of drought and heatwaves,
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making them less suitable for linking cascading hazards to actual
impacts (such as mortality data).

Wildfires

Closely linked to drought and heatwaves are wildfires (Fig. 4). The
interactions between these phenomena are intricate and specific
to each location, influenced by factors such as climate, vegetation
type, topography, soil type and ignitions, amongst others. Drought
dries out vegetation, providing fuel for fires, which, in the case of pro-
longed hot drought, increases susceptibility to natural or anthropo-
genic ignition'****’; drought-related tree mortality exacerbates this
situation*®, The combustion of dried biomass during the hot and dry
summers in central Europe led to extreme wildfires across the Czech
Republic, Germany and Portugal'”’. Similarly, several years of drought
preceded the intense fire seasons witnessed in Australia and the west-
ern United States in 2020"°"', The changes following a wildfire (for
example, reduced soil moisture and lack of canopy) can also further
enhance land-surface interactions for drought intensification, and,
through impacts on water availability (reduced infiltration and more
overland flows), affect drought recovery™”.

Drought monitoring and prediction are invaluable resources for
wildfire prediction, monitoring and management>"**, Although all
droughtindicesare usefulin predicting wildfire activity, soil-moisture-
based indices are predictors of live fuel moisture and are excellent early
warning metrics, and evaporation-based indices are skilful predic-
tors of dead fuel moisture™. However, most current operational and
experimental drought and fire monitoring and management systems
remain disconnected. If addressed, this could minimize impacts on
humanl lives, livelihood and the environment.

Debris flows

Drought can trigger various processes that weaken soil and slopes™®.
The stability of slopes is primarily dependent on soil shear strength.
Drought conditions, characterized by elevated soil temperatures and
low soil moisture, can undermine both soil shear strength and ten-
sile strength'”’, ultimately leading to increased desiccation cracking.
Desiccation cracks commonly develop in fine-grained soils, such as
clay, and canextend several metres deep. The formation and propaga-
tion of these cracks have substantial implications for the mechanical
and hydraulic properties of soils"®. Desiccation cracks increase soil
hydraulic conductivity, establish preferential flow pathways for fluid
and contaminant movement, weaken soil shear strength, and acceler-
ate soil weathering, erosion and slope instability. These processes, in
turn, increase the susceptibility of burned environments to debris
flows when intense rainfall occurs.

Wildfires can further heighten the probability of debris flows and
rainfall-induced shallowlandslides. These processesinclude root weak-
ening, reduced evapotranspirationrates, alterations in vegetation cover-
age and canopy interception, and modifications to soil mechanical and
hydraulicproperties™. A prominentillustration of theimpact of wildfires
on debris flow events is the catastrophic debris flow that occurred in
Montecito, California, in 2018%. The region experienced a prolonged
drought from2012t02016, followed by afire in December 2017. Intense
rainfall over the previously burned area in January 2018 subsequently
triggered the debris flow, the deadliest in California’s history.

Floods
Although droughts and floods are two extremes of the same hydrologi-
cal cycle, droughts themselves contribute to changes in flood hazard'*

(Fig.4). Cascadingimpacts of drought on flood risk include increased
upstream erosion leading to debris flow and sedimentationinriversand
reservoirs, reducing storage capacity; compaction of soils, leading to
less suitable subsurface storage conditions; and populations moving
from drought-stricken regions into flood-prone areas, for example
alongriver floodplains'®.

Droughts can further increase the probability of levee and dyke
failure caused by soil desiccation cracking and slidings. Soil desiccation
cracksthatare formed duringa droughtincrease therisk ofinternal and
external soil erosion during and after heavy rain. Further, rapidinfiltra-
tion through the cracks substantially increases pore water pressure
inside the soil domain, decreasing the soil shear strength, potentially
leading to loss of stability and failures™°. Indeed, the 2003 dyke failure
at Wilnis, in the Netherlands, led to the inundation of 600 homes and
the evacuation of2000 people'*®. Other examples include the drought
in California from 2012 to 2016, which concluded with an onslaught
of extreme rain and flooding that caused substantial damage to the
Oroville Dam spillway™". Similarly, the Millennium drought in Australia
concluded in 2011 with widespread flooding®.

Although many existing indicators include information related
tofloods (SPI, SRI), none capture drought-flood interactions. In addi-
tion to hydrological information, measures such as wetting surfaces,
intensity of desiccation cracks, and other soil properties are neces-
sary to improve joint drought-flood monitoring and impact assess-
ment. Monitoring systems should be designed that provide actionable
information to decision makers involved across flood and drought
management, and should not operate in silos.

Water quality
Drought also has cascading impacts on water quality'®* (Fig. 4).
Drought-induced low stream flow increases water detention periods,
resulting in algal blooms owing to high nutrient concentrations (less
dilution)'”, Higher temperatures during extreme droughts further
affect stream temperatures, respiration and re-aeration rates in riv-
ers and streams'®, affecting fish populations and food supply. In arid
and semi-arid regions, the cascading impact of rapid transitions from
drought to flood regimes (wet cycles) can increase turbidity and dis-
solved oxygen, and decrease the magnitude of pH'®>. As an example,
the record-breaking hypoxia and massive dead zone in Lake Erie'®*
during 2012, which culminated inthe closure of the Toledo water sup-
plyin 2014 dueto highlevels of toxins from cyanobacteriain the city’s
water intake, was attributed to drought. Similarly, extended droughts
inconjunction with the bark beetle infestation of the Rocky Mountain
forestsinthe Cache laPoudre River watershed caused the massive High
Park wildfire that degraded the source water quality, subsequently
limiting its use for drinking water supply'®>'¢°.
Althoughthereareinsituand remotely sensed water quality indi-
cators, droughtindicators that establish aconnection between water
quantity and/or availability and water quality are currently lacking.

Impact-based drought monitoring

Much of the effort toimprove drought monitoring systems has focused
on either new top-down drought indicators (climatic, hydrological
or biophysical) or on the integration of indicators, data and models.
However, limitations of traditional drought indicators, particularly
with respect to capturing cascading hazards and their systemic risks
andimpacts, make acompelling argument for developing a consistent
global framework for multihazard drought monitoring and impact
assessment to inform early action'®’. Specifically, there is a need to
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link drought information to its potential impacts — that is, linking
monitoring tools to impact collection and assessment.

Connecting droughts and impacts

Current indicators (Fig. 1) and existing monitoring systems (such as
USDM) primarily focus on identifying droughts and assessing their
frequency and severity. However, for decision makers to make informed
choices, they require information not only about the location and
severity of droughts, but also about the expected impacts associated
with them. These impacts encompass a wide range of factors, such as
changes in crop yield, food exportation, forest health, water quality,
energy generation, greenhouse gas emissions, and unemployment
resulting from the effects on the agriculture sector.

To go beyond the realm of drought monitoring and effectively
quantify potential drought impacts, additional models are often
necessary. Currently, there exist numerous statistical and physically
based crop models designed to estimate crop yield under various cli-
mate conditions or crop-snowmelt dependence and their associated
risks'>?%1¢8-70 However, these models are not yet integrated into the
existing drought monitoring systems.

Providing real-time drought impact monitoring is expected to
bring substantial benefits, particularly with regard to food and water
security”""7?, Such assessments would enable authorities to antici-
pate potential drought impacts several months in advance, albeit
with variations in lead times depending on the affected sector or
ecosystem'*'”, For instance, linking snow drought information to
agricultural systems’> would provide critical information for under-
standing the consequences of extreme events (such as snow droughts)
for humanand agricultural systems (for example, irrigated agriculture
and food security) (Fig. 5). These benefits would be especially critical
in food-producing countries, where drought impacts can propagate

a Wheat

globally through trade networks, amplifying drought impacts such
asfoodinsecurity'”. Collectively, these strategies would enable fund-
ing and management procedures at an earlier stage than is currently
possible, linking to hotspots where adaptation strategies and policy
interventions are most vital.

The Drought Impact Reporter”’” and the Condition Monitoring
and Observation Reports on Drought are among such attempts, with
the latter including citizen science information and a bottom-up
approach to drought impact data collection. These systems allow
end-user, local decision makers and citizens to report drought-related
impacts through an online system. However, operational drought
monitoring models and tools largely remain disconnected from impact
assessment>'**'% preventing broader adoption.

177

Preventative factors

Several factors prevent the more widespread creation and use of
impact-based approaches, primarily alack of information about socio-
economicimpacts, water demand, local water storage and groundwater
resources. In many cases, drought indices based on climate variables
alone do not offer sufficient information about water deficit; they
neglect critical human factors at local and regional levels, and hence
consideration of water demand and management.

Although demand management is considered a major tool for
drought response, current drought monitoring systems do notincor-
porate demand information into the existing top-down indicators. For
example, in the United States, several federal and state agencies col-
lect and disseminate information about river discharge, groundwater
tables and reservoir levels at high spatial and temporal resolutions.
However, information on the water used by economic sectors is only
available from the US Geological Survey Water Use Data at the county
level at 5-year intervals. Information about the locations and amounts

C Maize

Fig. 5| Snow drought impacts on the agriculture sector. a, Historical
(1985-2015) dependence of wheat growth on snowmelt. Basin-level irrigated
agriculture is characterized as snowmelt-dependent along two dimensions:
relatively high amounts of irrigation water consumption (x-axis inkey) and a

Snow
consumption
ratio
N
o
N

0001 001 o1
Irrigation water consumption (mm yr")

large share of irrigation surface water demand met by snowmelt runoff (y-axis
inkey).b, Asina, butforrice. c, Asin a, but for maize. Snow drought can be linked
to major crops forimpact-based drought monitoring.
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of water withdrawals and diversions for various uses is largely lacking
across river basins globally, even within developed countries. Moreo-
ver, in many locations, knowledge of drought in one region requires
data on drought-related variables in another location. For instance,
monitoring of urban drought in Los Angeles, California needs to go
beyond meteorological drought in that location; it must account for
human activities within Los Angeles and its remote supply basins,
whichincludes hydroclimatic factorsin the source regions of northern
California and the Colorado River Basin.

Lack of information on the quality and accessibility of water and
water-use data is an additional limitation to impact-based drought
monitoring. Increased resolution data is needed to monitor and
quantify water shortages at scales appropriate for local and regional
water resources planning and management. The lack of real time and
consistent information on local water storage adds to this challenge,
particularly the absence of adequate in situ measurements of water
surface areaand elevationinmany parts of the world. Remote sensing
of water bodies has become increasingly important in this regard’*"”°,
particularly using a combination of active and passive sensors'°,
Similarly, spatially consistent groundwater information for drought
monitoring is not yet available for most regions; in situ groundwater
observations are limited and spatially irregular, and satellite-based
water storage observations are typically too coarse for local basin-scale
drought assessment.

Other challenges in the monitoring of water demand and use
include inconsistent methodology and procedures; spatial and tem-
poral discrepancy and inconsistency of data from various socioeco-
nomic sectors''*°, data privacy and sharing constraints; voluntary
laws and statutes for collecting and sharing water-use information;
lack of institutional capacity (staffing and financial resources); and
robust information technologies for integration of heterogeneous
dataand information from various sources™".

Therole of governance and local institutions canalso notbe easily
quantified, yetis vital in the context of vulnerability to drought, espe-
cially in urban settings®>'®, Increased efforts are needed to develop
frameworks for assessing local vulnerabilities and institutional capaci-
tiestoactively monitor and respond to droughts. An example of sucha
frameworkis a paired eventapproach; thatis, the collection of detailed
hazard, exposure, vulnerability, impact and management data from
events that have occurred consecutively in the same area. The analy-
sis of changes between events supports the attribution of changes in
impacts and enables detailed context-specific and location-specific

assessments'®*.

Opportunities

These preventative factors act to highlight the needs to make
impact-based drought monitoring a reality. However, it is crucial to
recognize that achieving effective impact-based monitoring requires
drought-related humanactivities to be takeninto account. The concept
of anthropogenic drought’*'? corresponds to acombined top-down/
bottom-up perspective for understanding drought, including feed-
backs between human activities and climate conditions with a focus
on the actual or potential impacts.

Moving toward impact-based drought monitoring requires a
bottom-up prospective that starts with actual or potential impacts
(cropyield, food prices and availability, accessible water, regional and
global food trades, drought-related cascading hazards). Consistent
long-term monitoring of droughtimpacts and their respective causes
and costs is essential for identifying global hotspots and developing

sustainable, efficient risk management strategies and policies™” 2.
Collecting drought impact data requires protocols to ensure data
consistency across space and time. Government agencies should invest
indata collection, long-term storage and dissemination.

Research and operational efforts should increasingly prioritize
the integration of impact assessment models and drought monitor-
ing tools. For example, crop yield models can be linked with real-time
drought severity maps, or energy generation models integrated with
hydrological drought conditions. One approach to achieving thisinte-
gration is by combining traditional drought indicators with indicators
thatrepresent local coping and management capacity.

For instance, leveraging data on water consumption and supply
canenablethe development of anindex for measuring vulnerability to
socioeconomic drought, such as the Multivariate Standardized Reli-
ability and Resilience Index (MSRRI*™). This index assesses the ability
of surface water supply to meet demand across all sectors, including
urban municipalities. Additionally, the use of the Water Resources
System Resilience Index offers an alternative approach toinvestigating
socioeconomic drought under growing populations and a chang-
ing climate, while also considering the resilience of water resource
systems?®®%, Various socioeconomic factors have also been integrated
to derive a socioeconomic Drought Vulnerability Index, generating
composite risk maps that help visualize the information flow within the
natural system responsible for the evolution of droughts®®®. Although
these existing methods enable the linkage of top-down hazard informa-
tion with drought impacts and local coping capacity, further efforts
should concentrate on the development of regionally relevant and
sector-specificimpact-based drought models.

Emerging data are also becoming available to make impact-based
monitoring more feasible. Specifically, an absence of data on local
water storage was identified as amajor challenge. The Surface Water
Ocean Topography (SWOT) mission***°®isawide-swath instrument
that offers area and altimetry information for water bodies at an
unprecedented scale and accuracy. In contrast to other remote sens-
ing data, SWOT coincidental readings of area and altimetry enable
estimation of the global inland large-body freshwater availability
and variability, offering a unique avenue for impact-based drought
assessment linking meteorological drought to local coping capacity
and local-scale water availability (for example, based on reservoir
dynamics). New insights, drought monitoring and impact-based
models are expected once the data become available to the science
community. Similarly, the exponential growth in data volumes across
diverse fields, including non-climate data (such as crop yield, impact
data and local infrastructure), contributes to these opportunities
in moving from traditional drought monitoring to near-real-time
impact assessment>”’,

Summary and future perspectives

Current top-down drought monitoring and prediction methods encom-
pass a wide range of approaches, ranging from single-variable indi-
ces (precipitation, soil moisture, evapotranspiration) to composite
indices (combining multiple single-variable indices) that emphasize
climate drivers and indicators of drought (Fig. 1). Although substan-
tialadvances have been achieved in multi-index drought monitoring,
various hazards (such as drought, heatwaves and wildfires) continue
to be monitored inisolation, despite their interconnectedness. The
importance of integrating drought and flood monitoring systems has
been underscored by experts, but this rationale can be extended to
encompass all drought-related hazards.
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Top-down drought monitoring models and tools are limited since
they remain disconnected from bottom-up, impact-based assess-
ment models™"**'*, Decision makers require information beyond the
physical drivers of drought in order to forecast the potential impacts
of drought events for developing effective adaptation and response
plans. Therefore, drought monitoring and prediction methods must
advance beyond their current drought-related variable focus and
move toward impact-based monitoring systems. To aid the develop-
ment of impact-based indices, consistent, long-term monitoring of
droughtimpacts (for example health, food security, humanmigration,
economic) and of their respective causes and costs is essential.

Many water-data-related challenges remain that must be
addressed toimprove drought monitoring metrics for both top-down
and bottom-up approaches, and combinations thereof. These chal-
lenges include establishing consistent methodology and procedures
for datacollection and sharing, standardization of data from various
socioeconomic sectors spatially and temporally for compatibility,
the establishment of laws and statutes for collecting and sharing
water-use information, building institutional capacity (staffing and
financial resources), and development of robust information tech-
nologies for integrating heterogeneous data and information from
various sources’® ™, Increased efforts and collaboration across
sectors are needed to develop frameworks for assessing local vulner-
abilities and institutional capacities to actively monitor and respond
to droughts.

Drought planning tools should allow models and data to work in
concert with each other to assess impacts at diverse timescales. Such
tools should facilitate exploration of hypothetical scenarios and allow
stakeholders to plan data-driven responses based on the expected
impacts. Examples include ‘what-if’ scenario tools for evaluating hypo-
thetical drought scenarios on hydropower energy generation or local
food production.

Given the growing data volumes, manual inspection quickly
becomes untenable. Drought monitoring and assessment tools should
be designed to learn from such big data. Artificial Intelligence (Al)
powered by deep neural network architectures offers considerable
promise’*®?'°, Deep networks leverage representational learning to
derive features from complex multi-dimensional data*??, Novel Al
methods underpin the ability to assess impacts at diverse timescales,
including the impact of cascading and co-occurring stresses.

Al models and rich data availability provide opportunities for
science-guided learning”*?*, and could be used to inform the design
of loss functions for training deep networks, enforce constraints on
expected drought impacts, and set drought thresholds on values/
deviations that attributes might possess with respect to each other.
Such science-guided deep networks have shown promise by out-
performing models that are either exclusively domain-theoretic or
machine-learning based”. For example, a domain-theoretic snow
drought model can be used to inform the spatial extent impacted by
variationsin snow drought. A deep network could then be usedtolearn
nonlinear relationships across attributes representing the impacted
regions for example, estimating the impact of snow drought on agri-
culture (Fig.5) in real time based on snow drought monitoring (Fig. 3)
and onlocal crop yield information.

Classes of deep networks enable the generation of embeddings or
latent-spacerepresentations (thatis, arepresentation of compressed
data) that attempt to understand and interpret large datasets®”. On
successful training and validation, predictive models based on these
deep networks®® allow experimentation with extreme hypothetical

scenarios that arerepresentative of the nonlinear interactions between
different drought drivers. Currently, data systems that reconcile and
harmonize dataencoding and representational formats across several
domainsare notavailable. Increased efforts should focus on develop-
ing not only data repositories but also smart systems that make it
easier to harness data across sectors, along with powerful learning
algorithms for drought monitoring and real-time impact assessment.
Moving toward real-time expected drought impacts and systems for
hypothetical scenario analysis will substantially advance the current
state-of-the-artin drought monitoring and planning capabilities. Given
the strong relationship between drought andits cascading hazards, an
idealimpact-based drought monitoring systemshouldincludeimpacts
caused by other relevant hazards. Therefore, amove toward multihaz-
ard monitoring systemsis necessary, integrating systems designed for
drought and other relevant and potentially cascading hazards.

Published online: 1 August 2023

References

1. Wilhite, D. A. Drought and Water Crises: Science, Technology, and Management Issues
(CRC Press, 2005).

2. Li, L. M. Fighting Famine in North China: State, Market, and Environmental Decline,
1690s-1990s (Stanford Univ. Press, 2007).

3. Worster, D. Dust Bowl: The Southern Plains in the 1930s (Oxford Univ. Press, 2004).

4.  VanDijk, A. I. et al. The Millennium drought in southeast Australia (2001-2009): natural
and human causes and implications for water resources, ecosystems, economy, and
society. Water Resour. Res. 49, 1040-1057 (2013).

5. Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on
global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021).

6.  Yuan, X. et al. Anthropogenic shift towards higher risk of flash drought over China.

Nat. Commun. 10, 4661 (2019).

7. Mishra, V., Aadhar, S. & Mahto, S. S. Anthropogenic warming and intraseasonal summer
monsoon variability amplify the risk of future flash droughts in India. npj Clim. Atmos. Sci.
4,1(2021).

8. Hoffmann, D., Gallant, A. J. & Hobbins, M. Flash drought in CMIP5 models. J. Hydrometeorol.
22,1439-1454 (2021).

. Mishra, A. K. & Singh, V. P. A review of drought concepts. J. Hydrol. 391, 202-216 (2010).

10. Heim, R. R. A review of twentieth-century drought indices used in the United States. Bull.
Am. Meteorol. Soc. 83, 1149-1165 (2002).

1. AghaKouchak, A. et al. Remote sensing of drought: progress, challenges and
opportunities. Rev. Geophys. 53, 452-480 (2015).

12.  Wardlow, B., Anderson, M. & Verdin, J. Remote Sensing of Drought (CRC Press, 2012).

13.  Wilhite, D. Drought: A Global Assessment (Routledge, 2000).

14.  Entekhabi, D., Reichle, R. H., Koster, R. D. & Crow, W. T. Performance metrics for soil
moisture retrievals and application requirements. J. Hydrometeorol. 11, 832-840
(2010).

15.  Bachmair, S., Kohn, I. & Stahl, K. Exploring the link between drought indicators and
impacts. Nat. Hazards Earth Syst. Sci. 15, 1381-1397 (2015).

16. Hao, Z. & Singh, V. P. Drought characterization from a multivariate perspective: a review.
J. Hydrol. 527, 668-678 (2015).

17.  Sheffield, J. & Wood, E. F. Drought: Past Problems and Future Scenarios (Routledge, 2012).

18. Rebetez, M. et al. Heat and drought 2003 in Europe: a climate synthesis. Ann. For. Sci.
63, 569-577 (2006).

19. Hanel, M. et al. Revisiting the recent European droughts from a long-term perspective.
Sci. Rep. 8,1-11(2018).

20. Peters-Lidard, C. D. et al. Advances in land surface models and indicators for drought
monitoring and prediction. Bull. Am. Meteorol. Soc. 102, E1099-E1122 (2021).

21.  Hao, Z. & AghaKouchak, A. Multivariate standardized drought index: a parametric
multi-index model. Adv. Water Resour. 57, 12-18 (2013).

22.  AghaKouchak, A. et al. Climate extremes and compound hazards in a warming world.
Annu. Rev. Earth Planet. Sci. 48, 519-548 (2020).

23. Zargar, A., Sadig, R., Naser, B. & Khan, F. |. A review of drought indices. Environ. Rev. 19,
333-349 (2011).

24. Mishra, A. K. & Singh, V. P. Drought modeling — a review. J. Hydrol. 403, 157-175 (2011).

25. Steinemann, A. C., Hayes, M. J. & Cavalcanti, L. in Drought and Water Crises: Science,
Technology, and Management Issues, 71-92 (2005).

26. Svoboda, M. D. et al. Handbook of Drought Indicators and Indices (World Meteorological
Organization, 2016).

27.  Parkash, V. & Singh, S. A review on potential plant-based water stress indicators for
vegetable crops. Sustainability 12, 3945 (2020).

28. Kchouk, S., Melsen, L. A., Walker, D. W. & van Oel, P. R. A review of drought indices:
predominance of drivers over impacts and the importance of local context. Preprint at
https://doi.org/10.5194/nhess-2021-152 (2021).

Nature Reviews Earth & Environment | Volume 4 | August 2023 | 582-595

591


http://www.nature.com/natrevearthenviron
https://doi.org/10.5194/nhess-2021-152

Perspective

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

56.

56.

57.

58.

59.

60.

61.

62.

McKee, T., Doesken, N. & Kleist, J. The relationship of drought frequency and duration
to time scales. In Proceedings of the 8th Conference of Applied Climatology, 179-184
(American Meteorological Society, 1993).

Hayes, M., Svoboda, M., Wilhite, D. & Vanyarkho, O. Monitoring the 1996 drought using
the Standardized Precipitation Index. Bull. Am. Meteor. Soc. 80, 429-438 (1999).
Palmer, W. Meteorological Drought. Technical Report, Weather Bureau Research Paper 45
(US Department of Commerce, 1965).

Farahmand, A., AghaKouchak, A. & Teixeira, J. A vantage from space can detect earlier
drought onset: an approach using relative humidity. Sci. Rep. 5, 8553 (2015).

Werick, W., Willeke, G., Guttman, N., Hosking, J. & Wallis, J. National drought atlas
developed. Eos Trans. Am. Geophys. Union 75, 89 (1994).

Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and
intercomparisons. Rev. Geophys. 56, 79-107 (2018).

Huning, L. S. & AghaKouchak, A. Global snow drought hot spots and characteristics.
Proc. Natl Acad. Sci. USA 117,19753-19759 (2020).

Martinez-Fernandez, J., Gonzalez-Zamora, A., Sanchez, N., Gumuzzio, A. &
Herrero-Jiménez, C. M. Satellite soil moisture for agricultural drought monitoring:
assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 177,
277-286 (2016).

Mullapudi, A., Vibhute, A. D., Mali, S. & Patil, C. H. A review of agricultural drought
assessment with remote sensing data: methods, issues, challenges and opportunities.
Appl. Geomat. 15, 1-13 (2022).

Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85,
381-394 (2004).

Kumar, S. V. et al. Land information system: an interoperable framework for high
resolution land surface modeling. Environ. Model. Softw. 21,1402-1415 (2006).
Rienecker, M. M. et al. Merra: NASA's modern-era retrospective analysis for research
and applications. J. Clim. 24, 3624-3648 (2011).

Xia, Y. et al. Continental-scale water and energy flux analysis and validation for the north
american land data assimilation system project phase 2 (NLDAS-2): 1. Intercomparison
and application of model products. J. Geophys. Res. Atmos. https://onlinelibrary.wiley.
com/doi/abs/10.1029/2011JD016048 (2012).

Aires, F., Weston, P., de Rosnay, P. & Fairbairn, D. Statistical approaches to assimilate ascat
soil moisture information-I. Methodologies and first assessment. Q. J. R. Meteorol. Soc.
147,1823-1852 (2021).

Gelsthorpe, R., Schied, E. & Wilson, J. ASCAT-METOP’s advanced scatterometer. ESA Bull.
102, 19-27 (2000).

Kerr, Y. et al. Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity
(SMOS) mission. IEEE Trans. Geosci. Remote Sens. 39, 1729-1735 (2001).

Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 98,
704-716 (2010).

Dorigo, W. et al. ESA CClI soil moisture for improved Earth system understanding:
state-of-the art and future directions. Remote Sens. Environ. 203, 185-215 (2017).

Fang, B. et al. A global 1-km downscaled SMAP soil moisture product based on thermal
inertia theory. Vadose Zone J. 21, €20182 (2022).

Abbaszadeh, P., Moradkhani, H. & Zhan, X. Downscaling SMAP radiometer soil moisture
over the conus using an ensemble learning method. Water Resour. Res. 55, 324-344
(2019).

Mishra, A., Vu, T., Veettil, A. V. & Entekhabi, D. Drought monitoring with Soil Moisture
Active Passive (SMAP) measurements. J. Hydrol. 552, 620-632 (2017).

Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 98,
704-716 (2010).

Entekhabi, D. et al. The Soil Moisture Active/Passive mission (SMAP). In Geoscience and
Remote Sensing Symposium, 2008. IGARSS 2008, vol. 3, IlI-1 (IEEE, 2008).
Vicente-Serrano, S. M., Begueria, S. & Lopez-Moreno, J. . A multiscalar drought index
sensitive to global warming: the Standardized Precipitation Evapotranspiration Index.
J. Clim. 23,1696-1718 (2010).

Vicente-Serrano, S. M. et al. Performance of drought indices for ecological, agricultural,
and hydrological applications. Earth Interact. 16, 1-27 (2012).

Stephenson, N. Actual evapotranspiration and deficit: biologically meaningful correlates
of vegetation distribution across spatial scales. J. Biogeogr. 25, 855-870 (1998).
Svoboda, M. et al. The drought monitor. Bull. Am. Meteorol. Soc. 83, 1181-1190 (2002).
Otkin, J. A. et al. Flash droughts: a review and assessment of the challenges imposed
by rapid-onset droughts in the United States. Bull. Am. Meteorol. Soc. 99, 911-919
(2018).

Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-
seasonal prediction. Nat. Clim. Change 10, 191-199 (2020).

Chen, L. G. et al. Flash drought characteristics based on US drought monitor. Atmosphere
10, 498 (2019).

Allen, R. G., Pereira, L. S., Howell, T. A. & Jensen, M. E. Evapotranspiration information
reporting: Il. Recommended documentation. Agric. Water Manag. 98, 921-929 (2011).
Glenn, E. P, Huete, A. R., Nagler, P. L., Hirschboeck, K. K. & Brown, P. Integrating remote
sensing and ground methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 26,
139-168 (2007).

Glenn, E. P., Nagler, P. L. & Huete, A. R. Vegetation index methods for estimating
evapotranspiration by remote sensing. Surv. Geophys. 31, 531-555 (2010).

Farahani, H. J., Howell, T. A., Shuttleworth, W. J. & Bausch, W. C. Evapotranspiration:
progress in measurement and modeling in agriculture. Trans. ASABE 50, 1627-1638
(2007).

63.

64.

65.

66.

67.

68.

69.

70.

7.

72.

73.

74.

75.

76.

77

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

.

92.

93.

94.

95.

96.

Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: observation,
modeling, climatology, and climatic variability. Rev. Geophys. https://doi.org/10.1029/
2011RG0O00373 (2012).

Yao, Y. et al. Satellite detection of increases in global land surface evapotranspiration
during 1984-2007. Int. J. Digit. Earth 5, 299-318 (2012).

Zhang, K., Kimball, J. S. & Running, S. W. A review of remote sensing based actual
evapotranspiration estimation. Wiley Interdiscip. Rev. Water 3, 834-853 (2016).

Pan, S. et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art
approaches in remote sensing, machine learning and land surface modeling. Hydrol.
Earth Syst. Sci. 24,1485-1509 (2020).

Anderson, W. et al. Towards an integrated soil moisture drought monitor for east Africa.
Hydrol. Earth Syst. Sci. 16, 2893-2913 (2012).

Andam-Akorful, S. A., Ferreira, V. G., Awange, J. L., Forootan, E. & He, X. F. Multi-model
and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa.

Int. J. Climatol. 35, 3132-3145 (2015).

Segura, C. Snow drought reduces water transit times in headwater streams. Hydrol. Proc.
https://doi.org/10.1002/hyp.14437 (2021).

Huning, L. S. & AghaKouchak, A. Mountain snowpack response to different levels

of warming. Proc. Natl Acad. Sci. USA 115, 10932-10937 (2018).

Milly, P. C. & Dunne, K. A. Colorado river flow dwindles as warming-driven loss of
reflective snow energizes evaporation. Science 367, 1252-1255 (2020).

Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Chang. 10, 459-465
(2020).

Harpold, A., Dettinger, M. & Rajagopal, S. Defining snow drought and why it matters. Eos
https://doi.org/10.1029/2017E0068775 (2017).

Dozier, J., Bair, E. H. & Davis, R. E. Estimating the spatial distribution of snow water
equivalent in the world’s mountains. WIREs Water 3, 461-474 (2016).

Lettenmaier, D. P. et al. Inroads of remote sensing into hydrologic science during the
WRR era. Water Resour. Res. 51, 7309-7342 (2015).

Wrzesien, M. L. et al. Comparison of methods to estimate snow water equivalent at the
mountain range scale: a case study of the California Sierra Nevada. J. Hydrometeorol. 18,
101-1119 (2017).

Wrzesien, M. L., Pavelsky, T. M., Durand, M. T., Dozier, J. & Lundquist, J. D. Characterizing
biases in mountain snow accumulation from global data sets. Water Resour. Res. 55,
9873-9891(2019).

Girotto, M., Musselman, K. N. & Essery, R. L. H. Data assimilation improves estimates of
climate-sensitive seasonal snow. Curr. Clim. Change Rep. 6, 81-94 (2020).

Takala, M. et al. Estimating northern hemisphere snow water equivalent for climate
research through assimilation of space-borne radiometer data and ground-based
measurements. Remote Sens. Environ. 115, 3517-3529 (2011).

Huning, L. S. & AghaKouchak, A. Approaching 80 years of snow water equivalent
information by merging different data streams. Sci. Data 7, 333 (2020).

Painter, T. H. et al. The airborne snow observatory: fusion of scanning LiDAR, imaging
spectrometer, and physically-based modeling for mapping snow water equivalent and
snow albedo. Remote Sens. Environ. 184, 139-152 (2016).

Dierauer, J. R., Allen, D. M. & Whitfield, P. H. Snow drought risk and susceptibility in the
western United States and southwestern Canada. Water Resour. Res. 55, 3076-3091(2019).
Hatchett, B. J. & McEvoy, D. J. Exploring the origins of snow drought in the northern Sierra
Nevada, California. Earth Interact. 22, 1-13 (2018).

Siirila-Woodburn, E. et al. A low-to-no snow future and its impacts on water resources in
the western United States. Nat. Rev. Earth Environ. 2, 800-819 (2021).

Tourian, M. et al. A spaceborne multisensor approach to monitor the desiccation of Lake
Urmia in Iran. Remote Sens. Environ. 156, 349-360 (2015).

Muhammad, A., Kumar Jha, S. & Rasmussen, P. F. Drought characterization for a
snow-dominated region of Afghanistan. J. Hydrol. Eng. 22, 05017014 (2017).

Keyantash, J. & Dracup, J. An aggregate drought index: assessing drought severity based
on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res. 40,
WO09304 (2004).

Kao, S. & Govindaraju, R. A copula-based joint deficit index for droughts. J. Hydrol. 380,
121-134 (2010).

AghaKouchak, A. A multivariate approach for persistence-based drought prediction:
application to the 2010-2011 east africa drought. J. Hydrol. 526, 127-135 (2015).
Markonis, Y. et al. The rise of compound warm-season droughts in Europe. Sci. Adv. 7,
eabb9668 (2021).

Wilhite, D. A. Drought. In Encyclopedia of world climatology (ed. Oliver, J. E.) 338
(Springer Science & Business Media).

Hao, Z. & AghaKouchak, A. A nonparametric multivariate multi-index drought monitoring
framework. J. Hydrometeorol. 15, 89-101(2014).

Tadesse, T., Brown, J. & Hayes, M. A new approach for predicting drought-related
vegetation stress: integrating satellite, climate, and biophysical data over the US central
plains. ISPRS J. Photogramm. Remote Sens. 59, 244-253 (2005).

Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, M. J. & Reed, B. C. The Vegetation Drought
Response Index (VegDRI): a new integrated approach for monitoring drought stress in
vegetation. Geosci. Remote Sens. 45, 16-46 (2008).

Zhang, A. & Jia, G. Monitoring meteorological drought in semiarid regions using
multi-sensor microwave remote sensing data. Remote Sens. Environ. 134, 12-23 (2013).
Otkin, J. A., Anderson, M. C., Hain, C. & Svoboda, M. Examining the relationship

between drought development and rapid changes in the evaporative stress index.

J. Hydrometeorol. 15, 938-956 (2014).

Nature Reviews Earth & Environment | Volume 4 | August 2023 | 582-595

592


http://www.nature.com/natrevearthenviron
https://onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016048
https://onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016048
https://doi.org/10.1029/2011RG000373
https://doi.org/10.1029/2011RG000373
https://doi.org/10.1002/hyp.14437
https://doi.org/10.1029/2017EO068775

Perspective

97.

98.

99.

100.

101

102.

103.

104.

105.

106.

107.

108.

109.

10.

m.

2.

13.

14.

15.

116.

7.
18.
9.

120.

121

122.

123.

124.

125.

126.

127.

128.
129.

130.

131.

132.

133.

Parker, T., Gallant, A., Hobbins, M. & Hoffmann, D. Flash drought in Australia and its
relationship to evaporative demand. Environ. Res. Lett. 16, 064033 (2021).

Nguyen, H. et al. Using the evaporative stress index to monitor flash drought in Australia.
Environ. Res. Lett. 14, 064016 (2019).

Chan, S. et al. Development and assessment of the smap enhanced passive soil moisture
product. Remote Sens. Environ. 204, 931-941 (2018).

Mukherijee, S. & Mishra, A. K. A multivariate flash drought indicator for identifying global
hotspots and associated climate controls. Geophys. Res. Lett. 49, e2021GL096804 (2022).
Anderson, M. C. et al. Evaluation of drought indices based on thermal remote sensing of
evapotranspiration over the continental United States. J. Clim. 24, 2025-2044 (2011).
Hobbins, M. T. et al. The evaporative demand drought index. Part I: Linking drought
evolution to variations in evaporative demand. J. Hydrometeorol. 17, 1745-1761 (2016).
Crausbay, S. D. et al. Defining ecological drought for the twenty-first century. Bull. Am.
Meteorol. Soc. 98, 2543-2550 (2017).

Tucker, C. J. & Choudhury, B. J. Satellite remote sensing of drought conditions. Remote
Sens. Environ. 23, 243-251(1987).

Singh, R. P., Roy, S. & Kogan, F. Vegetation and temperature condition indices from NOAA
AVHRR data for drought monitoring over India. Int. J. Remote Sens. 24, 4393-4402 (2003).
Donohue, R. J., McVICAR, T. & Roderick, M. L. Climate-related trends in australian
vegetation cover as inferred from satellite observations, 1981-2006. Glob. Change Biol.
15, 1025-1039 (2009).

McVicar, T. R. & Jupp, D. L. The current and potential operational uses of remote sensing
to aid decisions on drought exceptional circumstances in Australia: a review. Agric. Syst.
57, 399-468 (1998).

Silleos, N. G., Alexandridis, T. K., Gitas, I. Z. & Perakis, K. Vegetation indices: advances
made in biomass estimation and vegetation monitoring in the last 30years. Geocarto Int.
21, 21-28 (2006).

Wiegand, C., Richardson, A., Escobar, D. & Gerbermann, A. Vegetation indices in crop
assessments. Remote Sens. Environ. 35, 105-119 (1991).

Thiam, A. K. Geographic Information Systems and Remote Sensing Methods for Assessing
and Monitoring Land Degradation in the Sahel Region: The Case of Southern Mauritania.
PhD thesis, Clark Univ (1998).

Tucker, C. J. Red and photographic infrared linear combinations for monitoring
vegetation. Remote Sens. Environ. 8,127-150 (1979).

Rouse, J., Haas, R., Schell, J., Deering, D. & Harlan, J. Monitoring the Vernal Advancement
and Retrogradation (Greenwave Effect) of Natural Vegetation (Texas A & M Univ. Remote
Sensing Center, 1974).

Kogan, F. & Sullivan, J. Development of global drought-watch system using NOAA/
AVHRR data. Adv. Space Res. 13, 219-222 (1993).

Wardlow, B. D. et al. in Drought and Water Crises (eds Wilhite, D. & Pulwarty, R. S.)
225-258 (CRC Press, 2018).

Svoboda, M. D., Fuchs, B. A., Poulsen, C. C. & Nothwebhr, J. R. The drought risk atlas:
enhancing decision support for drought risk management in the United States. J. Hydrol.
526, 274-286 (2015).

Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim.
Change 9, 358-369 (2019).

US Drought Monitor Map Archive (National Drought Mitigation Center, 2022).

NOAA. Global Drought Information System. https://gdis-noaa.hub.arcgis.com/.

JRC European Commission. European Drought Observatory. https://edo.jrc.ec.europa.eu/
edov2/php/index.php?id=1000 (2021).

International Water Management Institute. IWMI Drought Monitoring System. http://
dms.iwmi.org/.

Cammalleri, C. et al. A revision of the combined drought indicator (CDI) used in the
European drought observatory (EDO). Nat. Hazards Earth Syst. Sci. 21, 481-495 (2021).
Rojas, O. Country-level ASIS: An Agricultural Drought Monitoring System, 8 (FAO, 2016).
Lawrimore, J., Heim Jr, R. R., Svoboda, M. D., Swail, V. & Englehart, P. J. Beginning a new
era of drought monitoring across North America. Bull. Am. Meteorol. Soc. 83, 1191-1192
(2002).

Stahl, K. et al. Impacts of European drought events: insights from an international
database of text-based reports. Nat. Hazards Earth Syst. Sci. 16, 801-819 (2016).

Blauhut, V., Gudmundsson, L. & Stahl, K. Towards pan-european drought risk maps:
quantifying the link between drought indices and reported drought impacts. Environ.
Res. Lett. 10, 014008 (2015).

Ward, P. J. et al. The need to integrate flood and drought disaster risk reduction
strategies. Water Secur. 11, 100070 (2020).

Monitoring Drought. Drought.gov https://www.drought.gov/what-is-drought/
monitoring-drought (2023).

Mishra, A. K. & Singh, V. P. A review of drought concepts. J. Hydrol. 391, 202-216 (2010).
AghaKouchak, A. et al. Remote sensing of drought: progress, challenges and
opportunities. Rev. Geophys. 53, 452-480 (2015).

Hatchett, B. J. & McEvoy, D. J. Exploring the origins of snow drought in the northern Sierra
Nevada, California. Earth Interact. 22, 1-13 (2018).

Siirila-Woodburn, E. R. et al. A low-to-no snow future and its impacts on water resources
in the western United States. Nat. Rev. Earth Environ. 2, 800-819 (2021).

Hatchett, B. J., Rhoades, A. M. & McEvoy, D. J. Monitoring the daily evolution and extent of
snow drought. Nat. Hazards Earth Syst. Sci. 22, 869-890 (2022).

Vautard, R. et al. Summertime European heat and drought waves induced by wintertime
Mediterranean rainfall deficit. Geophys. Res. Lett. https://doi.org/10.1029/2006gl028001
(2007).

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.
149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

Seneviratne, S. I., Luthi, D., Litschi, M. & Schér, C. Land-atmosphere coupling and climate
change in Europe. Nature 443, 205-209 (2006).

Fischer, E. M., Seneviratne, S. I., Lithi, D. & Schar, C. Contribution of land-atmosphere
coupling to recent European summer heat waves. Geophys. Res. Lett. https://doi.org/
10.1029/2006GL029068 (2007).

Su, H., Yang, Z.-L., Dickinson, R. E. & Wei, J. Spring soil moisture-precipitation feedback
in the southern Great Plains: how is it related to large-scale atmospheric conditions?
Geophys. Res. Lett. 41,1283-1289 (2014).

Shah, J. et al. Increasing footprint of climate warming on flash droughts occurrence in
Europe. Environ. Res. Lett. 17, 064017 (2022).

Christian, J. I. et al. Global distribution, trends, and drivers of flash drought occurrence.
Nat. Commun. 12, 6330 (2021).

Mukherijee, S. & Mishra, A. K. Increase in compound drought and heatwaves in a warming
world. Geophys. Res. Lett. 48, €2020GL090617 (2021).

D’lIppoliti, D. et al. The impact of heat waves on mortality in 9 European cities: results
from the Euroheat project. Environ. Health 9, 37 (2010).

Mitchell, D. et al. Attributing human mortality during extreme heat waves to
anthropogenic climate change. Environ. Res. Lett. 11, 074006 (2016).

Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves.

Sci. Adv. 3, 1700066 (2017).

Lu, Y., Hu, H., Li, C. &Tian, F. Increasing compound events of extreme hot and dry days
during growing seasons of wheat and maize in China. Sci. Rep. 8, 16700 (2018).
Zampieri, M., Ceglar, A., Dentener, F. & Toreti, A. Wheat yield loss attributable to heat
waves, drought and water excess at the global, national and subnational scales. Environ.
Res. Lett. 12, 064008 (2017).

Sutanto, S. J., Vitolo, C., Di Napoli, C., D'’Andrea, M. & Van Lanen, H. A. J. Heatwaves,
droughts, and fires: exploring compound and cascading dry hazards at the
pan-European scale. Environ. Int. 134, 105276 (2020).

Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier
spring increase western US forest wildfire activity. Science 313, 940-943 (2006).
Alizadeh, M. R. et al. Warming enabled upslope advance in western US forest fires.

Proc. Natl Acad. Sci. USA 118, e2009717118 (2021).

Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531-539 (2018).
Romano, N. & Ursino, N. Forest fire regime in a Mediterranean ecosystem: unraveling the
mutual interrelations between rainfall seasonality, soil moisture, drought persistence,
and biomass dynamics. Fire 3, 49 (2020).

Higuera, P. E. & Abatzoglou, J. T. Record-setting climate enabled the extraordinary 2020
fire season in the western United States. Glob. Change Biol. 27, 1-2 (2021).

Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an
unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).
Brando, P. M. et al. Droughts, wildfires, and forest carbon cycling: a pantropical synthesis.
Annu. Rev. Earth Planet. Sci.47 (2019).

Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area
burned in the western United States. Int. J. Wildland Fire 22,1003-1020 (2013).

Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area
burned in western US ecoprovinces, 1916-2003. Ecol. Appl. 19, 1003-1021(2009).
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y. & Luce, C. H. A review of the relationships
between drought and forest fire in the United States. Glob. Change Biol. 22, 2353-2369
(2016).

Vahedifard, F., Robinson, J. D. & AghaKouchak, A. Can protracted drought undermine
the structural integrity of California’s earthen levees? J. Geotech. Geoenviron. Eng. 142,
02516001 (2016).

Salimi, K., Cerato, A. B., Vahedifard, F. & Miller, G. A. Tensile strength of compacted
clays during desiccation under elevated temperatures. Geotech. Test. J. 44, 20200114
(2021).

Tang, C.-S. et al. Desiccation cracking of soils: a review of investigation approaches,
underlying mechanisms, and influencing factors. Earth Sci. Rev. 216, 103586 (2021).
Abdollahi, M., Vahedifard, F. & Tracy, F. T. Post-wildfire stability of unsaturated hillslopes
against rainfall-triggered landslides. Earth’s Future 11, e2022EF003213 (2023).

Van Baars, S. The horizontal failure mechanism of the Wilnis peat dyke. Géotechnique 55,
319-323 (2005).

Vahedifard, F. et al. Lessons from the Oroville dam. Science 355, 1139-1140 (2017).
Mishra, A., Alnahit, A. & Campbell, B. Impact of land uses, drought, flood, wildfire, and
cascading events on water quality and microbial communities: a review and analysis.

J. Hydrol. 596, 125707 (2021).

Mosley, L. M. Drought impacts on the water quality of freshwater systems; review and
integration. Earth-Sci. Rev. 140, 203-214 (2015).

Zhou, Y., Michalak, A. M., Beletsky, D., Rao, Y. R. & Richards, R. P. Record-breaking Lake
Erie hypoxia during 2012 drought. Environ. Sci. Technol. 49, 800-807 (2015).

Hohner, A. K., Cawley, K., Oropeza, J., Summers, R. S. & Rosario-Ortiz, F. L. Drinking water
treatment response following a Colorado wildfire. Water Res. 105, 187-198 (2016).
Hohner, A. K., Rhoades, C. C., Wilkerson, P. & Rosario-Ortiz, F. L. Wildfires alter

forest watersheds and threaten drinking water quality. Acc. Chem. Res. 52, 1234-1244
(2019).

Pulwarty, R., Erian, W. & Vogt, J. Drought: From Risk to Resilience. Tech. Rep., UNDRR GAR
Special Report on Drought, 120-161 (UN Press, 2020).

Kuwayama, Y., Thompson, A., Bernknopf, R., Zaitchik, B. & Vail, P. Estimating the impact
of drought on agriculture using the U.S. Drought Monitor. Am. J. Agric. Econ. 101, 193-210
(2019).

Nature Reviews Earth & Environment | Volume 4 | August 2023 | 582-595

593


http://www.nature.com/natrevearthenviron
https://gdis-noaa.hub.arcgis.com/
https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000
https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000
http://dms.iwmi.org/
http://dms.iwmi.org/
https://www.drought.gov/what-is-drought/monitoring-drought
https://www.drought.gov/what-is-drought/monitoring-drought
https://doi.org/10.1029/2006gl028001
https://doi.org/10.1029/2006GL029068
https://doi.org/10.1029/2006GL029068

Perspective

169.

170.

7.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191
192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

204.

Madadgar, S., AghaKouchak, A., Farahmand, A. & Davis, S. J. Probabilistic estimates of
drought impacts on agricultural production. Geophys. Res. Lett. 44, 7799-7807 (2017).
Anderson, M. C. et al. The evaporative stress index as an indicator of agricultural drought in
Brazil: an assessment based on crop yield impacts. Remote Sens. Environ. 174, 82-99 (2016).
Coughlan de Perez, E. et al. Forecast-based financing: an approach for catalyzing
humanitarian action based on extreme weather and climate forecasts. Nat. Hazards Earth
Syst. Sci. 15, 895-904 (2015).

Funk, C. et al. Recognizing the famine early warning systems network: over 30years

of drought early warning science advances and partnerships promoting global food
security. Bull. Am. Meteorol. Soc. 100, 1011-1027 (2019).

Merz, B. et al. Impact forecasting to support emergency management of natural hazards.
Rev. Geophys. 58, e2020RG000704 (2020).

Sutanto, S. J., van der Weert, M., Wanders, N., Blauhut, V. & Van Lanen, H. A. Moving from
drought hazard to impact forecasts. Nat. Commun. 10, 4945 (2019).

Stagge, J. H., Kohn, 1., Tallaksen, L. M. & Stahl, K. Modeling drought impact occurrence
based on meteorological drought indices in Europe. J. Hydrol. 530, 37-50 (2015).

Qin, Y. et al. Snowmelt risk telecouplings for irrigated agriculture. Nat. Clim. Change 12,
1007-1015 (2022).

Smith, K. H. et al. Local observers fill in the details on drought impact reporter maps. Bull.
Am. Meteorol. Soc. 95, 1659-1662 (2014).

Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313,
1068-1072 (20086).

Biswas, N. K., Hossain, F., Bonnema, M., Lee, H. & Chishtie, F. Towards a global reservoir
assessment tool for predicting hydrologic impacts and operating patterns of existing
and planned reservoirs. Environ. Model. Softw. 140, 105043 (2021).

Zhou, T., Nijssen, B., Gao, H. & Lettenmaier, D. P. The contribution of reservoirs to global
land surface water storage variations. J. Hydrometeorol. 17, 309 - 325 (2016).

Gao, H., Birkett, C. & Lettenmaier, D. P. Global monitoring of large reservoir storage from
satellite remote sensing. Water Resour. Res. https://doi.org/10.1029/2012WR012063
(2012).

Carroll, M., Townshend, J., DiMiceli, C., Noojipady, P. & Sohlberg, R. A new global raster
water mask at 250 m resolution. Int. J. Digit. Earth 2, 291-308 (2009).

Islam, A., Bala, S. & Haque, M. Flood inundation map of Bangladesh using MODIS
time-series images. J. Flood Risk Manag. 3, 210-222 (2010).

Wang, Y., Sun, G., Liao, M. & Gong, J. Using modis images to examine the surface
extents and variations derived from the dem and laser altimeter data in the Danjiangkou
reservoir, China. Int. J. Remote Sens. 29, 293-311(2008).

Bonnema, M. & Hossain, F. Inferring reservoir operating patterns across the Mekong
basin using only space observations. Water Resour. Res. 53, 3791-3810 (2017).

Gao, H. Satellite remote sensing of large lakes and reservoirs: from elevation and area to
storage. WIREs Water 2, 147-157 (2015).

Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global
surface water and its long-term changes. Nature 540, 418-422 (2016).

Zhao, G. & Gao, H. Automatic correction of contaminated images for assessment of
reservoir surface area dynamics. Geophys. Res. Lett. 45, 6092-6099 (2018).

Marston, L. T. et al. Water-use data in the United States: challenges and future directions.
JAWRA Journal of the American Water Resources Association (2022).

Chinnasamy, C. V. et al. Characterization of municipal water uses in the contiguous
United States. Water Resour. Res. 57, e2020WR028627 (2021).

Marston, L. Water use in a changing world. Nat. Clim. Change 12, 317-319 (2022).
Buurman, J., Mens, M. J. & Dahm, R. J. Strategies for urban drought risk management:

a comparison of 10 large cities. Int. J. Water Resour. Dev. 33, 31-50 (2017).

Chuah, C. J., Ho, B. H. & Chow, W. T. Trans-boundary variations of urban drought
vulnerability and its impact on water resource management in Singapore and Johor,
Malaysia. Environ. Res. Lett. 13, 074011 (2018).

Kreibich, H. et al. The challenge of unprecedented floods and droughts in risk
management. Nature 608, 80-86 (2022).

AghaKouchak, A. et al. Anthropogenic drought: definition, challenges, and
opportunities. Rev. Geophys. 59, e2019RG0O00683 (2021).

AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T. & Lund, J. Recognize anthropogenic
drought. Nature 524, 409-4011 (2015).

Bouwer, L. M. Have disaster losses increased due to anthropogenic climate change?
Bull. Am. Meteorol. Soc. 92, 39-46 (2011).

Kreibich, H. et al. How to improve attribution of changes in drought and flood impacts.
Hydrol. Sci. J. 64,1-18 (2019).

Kreibich, H. et al. Costing natural hazards. Nat. Clim. Change 4, 303-306 (2014).

Findlay, A. & Wake, B. 10 years of nature climate change. Nat. Clim. Change 11, 286-291
(2021).

Mehran, A., Mazdiyasni, O. & AghaKouchak, A. A hybrid framework for assessing
socioeconomic drought: linking climate variability, local resilience, and demand.

J. Geophys. Res. https://doi.org/10.1002/2015JD023147 (2015).

Liu, S., Shi, H. & Sivakumar, B. Socioeconomic drought under growing population and
changing climate: a new index considering the resilience of a regional water resources
system. J. Geophys. Res. Atmos. 125, e2020JD033005 (2020).

. Rajsekhar, D., Singh, V. P. & Mishra, A. K. Multivariate drought index: an information

theory based approach for integrated drought assessment. J. Hydrol. 526, 164-182
(2015).

Biancamaria, S. et al. Preliminary characterization of SWOT hydrology error budget and
global capabilities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3, 6-19 (2009).

205. Durand, M. et al. The Surface Water and Ocean Topography mission: observing
terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE 98, 766-779
(2010).

Lee, H. et al. Characterization of surface water storage changes in Arctic lakes using
simulated SWOT measurements. Int. J. Remote Sens. 31, 3931-3953 (2010).

207. Baru, C. in Encyclopedia of Big Data (eds Schintler, L. A. & McNeely, C. L) (Springer, 2017).
208. Deng, L., Hinton, G. & Kingsbury, B. New types of deep neural network learning for
speech recognition and related applications: an overview. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, 8599-8603 (IEEE, 2013).
Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition:

the shared views of four research groups. IEEE Signal Process. Mag. 29, 82-97
(2012).

Dahl, G. E., Sainath, T. N. & Hinton, G. E. Improving deep neural networks for LVCSR using
rectified linear units and dropout. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, 8609-8613 (IEEE, 2013).

211. Kasun, L. L. C. et al. Representational Learning with Extreme Learning Machine for Big
Data. IEEE Intell. Syst. 28, 31-34 (2013).

Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

Karpatne, A. et al. Theory-guided data science: a new paradigm for scientific discovery
from data. IEEE Trans. Knowl. Data Eng. 29, 2318-2331(2017).

Willard, J., Jia, X., Xu, S., Steinbach, M. & Kumar, V. Integrating scientific knowledge with
machine learning for engineering and environmental systems. ACM Comput. Surv. 55,
1-37 (2021).

Daw, A., Karpatne, A., Watkins, W. D., Read, J. S. & Kumar, V. in Knowledge-Guided
Machine Learning, 353-372 (Chapman and Hall/CRC, 2017).

Liu, L. et al. KGML-ag: a modeling framework of knowledge-guided machine learning

to simulate agroecosystems: a case study of estimating N,O emission using data from
mesocosm experiments. Geosci. Model Dev. 15, 2839-2858 (2022).

Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. Extracting and composing robust
features with denoising autoencoders. In Proc. of the 25th International Conference on
Machine Learning, 1096-1103 (Association for Computing Machinery, 2008).

Bruhwiler, K. et al. Lightweight, embeddings based storage and model construction over
satellite data collections. In 2020 IEEE International Conference on Big Data (Big Data),
246-255 (IEEE, 2020).

Meehl, G. A., Boer, G. J., Covey, C., Latif, M. & Stouffer, R. J. The Coupled Model
Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 81, 313-318 (2000).

Wood, A. & Lettenmaier, D. An ensemble approach for attribution of hydrologic
prediction uncertainty. Geophys. Res. Lett. https://doi.org/10.1029/2008GL034648
(2008).

206.

200.

210.

212
213.

214.

215.

216.

217.

218.

219.

220.

Acknowledgements

This work was supported by the National Oceanic and Atmospheric Administration grants
NA190AR4310294, National Science Foundation (NSF) grant OAC-1931335, NAS Agreement
2000013232 and NASA Award NNX15AC27G. A.G.P. was supported by the US Department of
Energy, Office of Science, Office of Biological & Environmental Research (BER), Regional and
Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling
Program under award number DE-SC0022070 and NSF |A 1947282 and by the National Center
for Atmospheric Research (NCAR), which is a major facility sponsored by the NSF under
Cooperative Agreement no. 1852977. P.J.W. received support from the MYRIAD-EU project,
which received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 101003276. A.M. was supported by the US National
Science Foundation (NSF) award # 1653841.

Author contributions

A.A. conceived and designed the article and prepared the first draft. M.Sadegh, A.G.P., A.M.,
L.S.H. and C.A.L. participated in initial discussions and provided feedback on the draft. L.H.,
M.Sadegh, A. Mehran, A. Mishra, Y.Q., Y.M., M.A., R.O., FV. and S.P. contributed materials

or figures for the first draft. C.A.L., Y.Z., S.J., A.H., S.J.D., HK., PJW., M.H., M.Svoboda, and
R.P. edited and/or offered comments and suggestions throughout the process.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s43017-023-00457-2.

Peer review information Nature Reviews Earth and Environment thanks Jianjun Wu, Vimal Mishra
and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author
self-archiving of the accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© Springer Nature Limited 2023

Nature Reviews Earth & Environment | Volume 4 | August 2023 | 582-595

594


http://www.nature.com/natrevearthenviron
https://doi.org/10.1029/2012WR012063
https://doi.org/10.1002/2015JD023147
https://doi.org/10.1029/2008GL034648
https://doi.org/10.1038/s43017-023-00457-2

Perspective

'Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA. 2Department of Earth System Science, University of
California, Irvine, CA, USA. ®Department of Civil Engineering and Construction Engineering Management, California State University, Long Beach,

CA, USA. “Department of Civil Engineering, Boise State University, Boise, ID, USA. *College of Environmental Science and Engineering, Peking University,
Beijing, China. SFaculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha - Suchdol, Czech Republic. 'Department of Civil
and Environmental Engineering, Tufts University, Medford, MA, USA. 8Glenn Department of Civil Engineering, Clemson University, Clemson, SC, USA.
°Department of Civil and Environmental Engineering, San Jose State University, San Jose, CA, USA. ®Department of Energy and Mineral Engineering,
Pennsylvania State University, University Park, PA, USA. "Department of Computer Science, Colorado State University, Fort Collins, CO, USA. “Earth and
Atmospheric Sciences, Cornell University, Ithaca, NY, USA. ®National Center for Atmospheric Research, Boulder, CO, USA. “Department of Civil

and Environmental Engineering, Colorado State University, Fort Collins, CO, USA. ®Institute for Environmental Studies, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands. "®Deltares, Delft, The Netherlands. "National Drought Mitigation Center, Lincoln, NE, USA. ®School of Natural Resources,
University of Nebraska-Lincoln, Lincoln, NE, USA. ®National Oceanic and Atmospheric Administration Physical Sciences Laboratory, Boulder, CO, USA.
235ection Hydrology, GFZ German Research Centre for Geosciences, Potsdam, Germany.

Nature Reviews Earth & Environment | Volume 4 | August 2023 | 582-595 595


http://www.nature.com/natrevearthenviron

	Toward impact-based monitoring of drought and its cascading hazards

	Introduction

	Existing drought indicators

	Single drought indices

	Precipitation indicators
	Soil moisture indicators
	Evapotranspiration indicators
	Snow indicators

	Multivariate and composite drought indices

	Limitations


	Drought-related cascading hazards

	Heatwaves

	Wildfires

	Debris flows

	Floods

	Water quality


	Impact-based drought monitoring

	Connecting droughts and impacts

	Preventative factors

	Opportunities


	Summary and future perspectives

	Acknowledgements

	Fig. 1 Drought monitoring timeline.
	Fig. 2 The European drought of 2003.
	Fig. 3 Snow drought examples.
	Fig. 4 Drought-related processes and cascading hazards.
	Fig. 5 Snow drought impacts on the agriculture sector.




