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Abstract

Growth in satellite observations and modelling capabilities has 
transformed drought monitoring, offering near-real-time information. 
However, current monitoring efforts focus on hazards rather 
than impacts, and are further disconnected from drought-related 
compound or cascading hazards such as heatwaves, wildfires, floods 
and debris flows. In this Perspective, we advocate for impact-based 
drought monitoring and integration with broader drought-related 
hazards. Impact-based monitoring will go beyond top-down hazard 
information, linking drought to physical or societal impacts such as 
crop yield, food availability, energy generation or unemployment. 
This approach, specifically forecasts of drought event impacts, 
would accordingly benefit multiple stakeholders involved in drought 
planning, and risk and response management, with clear benefits for 
food and water security. Yet adoption and implementation is hindered 
by the absence of consistent drought impact data, limited information 
on local factors affecting water availability (including water demand, 
transfer and withdrawal), and impact assessment models being 
disconnected from drought monitoring tools. Implementation of 
impact-based drought monitoring thus requires the use of newly 
available remote sensors, the availability of large volumes of 
standardized data across drought-related fields, and the adoption 
of artificial intelligence to extract and synthesize physical and societal 
drought impacts.
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We first discuss existing drought indicators and their limitations. We 
follow with discussion of drought-related cascading hazards, before 
considering the need to move toward impact-based monitoring of 
drought. We end with recommendations to move the field forward 
over the coming years.

Existing drought indicators
Before discussing the need for changes in drought monitoring, it is 
important to take stock of current approaches to highlight their effec-
tiveness and inadequacies. Owing to the complexity and variation of 
events, more than 70 indicators have been developed for monitoring 
and characterizing different types of drought11,20,23–28 (Fig. 1; Supple-
mentary Table 1). These drought indices can be broadly categorized 
as those derived from a single variable to create a single drought index 
(Fig. 1); from multiple variables to create multivariate drought indices; 
and from multiple indicators and/or variables to create a composite 
drought index (Fig. 1), each of which is now discussed26.

Single drought indices
A single drought index is defined as an indicator that relies on a single 
climatic or hydrological variable (for example, precipitation deficit or 
surplus as a measure of meteorological drought). These single drought 
indices are widely used in research and operational applications owing 
to their simplicity. However, these indicators primarily focus on haz-
ards, offering ‘upstream’ or ‘top-down’ information only, and do not 
provide insights into the impacts of drought.

Precipitation indicators. Precipitation is typically used as an indica-
tor of meteorological drought, with common indicators including the 
Standardized Precipitation Index (SPI29,30) and the Palmer Drought 
Severity Index (PDSI31) and its variants9. Standardized Relative Humid-
ity Index (SRHI32), Percent of Normal Precipitation (PNP33) and other 
percentile-based methods are also used, but less commonly. Drought 
monitoring with these indicators across spatiotemporal scales has been 
possible, given a range of ground-based and satellite-derived precipita-
tion datasets34. However, indicators based solely on precipitation have 
limitations in capturing drought persistence owing to rainfall high 
variability21. Additionally, in snow-dominated regions, precipitation 
indices might fail to capture intricate snow dynamics such as rapid 
snowmelt and low flow conditions during the dry season35.

Soil moisture indicators. Soil moisture is typically used as an indi-
cator of agricultural drought36, with a common indicator being the 
Standardized Soil Moisture Index (SSI21). Other soil moisture indica-
tors include the Soil Moisture Percentile (SMP), Soil Moisture Deficit 
Index (SMDI), and Normalized Soil Moisture (NSM)37. Continental- to 
global-scale soil moisture monitoring for drought analysis has often 
relied on model simulations38–42, but satellite-borne instruments 
(such as ASCAT43, SMOS44 and SMAP45) are increasingly providing 
opportunities for soil moisture assessment46–49. These data are lim-
ited in that satellite products such as SMAP are too short to provide 
long-term anomalies for drought analysis; composite multisensor 
soil moisture datasets46 do not offer root-zone moisture information; 
and satellite products only provide moisture information for the top 
few centimetres of soil50,51.

Evapotranspiration indicators. Evapotranspiration is typically 
used as an indicator of meteorological and hydrological drought 
(as a partial measure of water balance anomalies), and agricultural 

Introduction
Drought defines an extended moisture deficit. They are often broadly 
classified into three types1: meteorological drought, typically describing 
a deficit in precipitation; agricultural drought, typically describing a soil 
moisture deficit; and hydrological drought, typically describing runoff, 
groundwater level, stream flow and total water storage deficits. Individu-
ally and collectively, these droughts have substantial socioeconomic 
and environmental impact, as evidenced by several severe droughts 
observed over the past century. For example, the 1928–1930 drought in 
China led to widespread famine and millions of deaths2. Moreover, the 
Dust Bowl drought of the United States in the 1930s eroded farmland 
and displaced an estimated 3.5 million people3. The Millennium drought 
in Australia further led to severely reduced winter crop yields and, as 
a result, economic crisis for farmers4. Given these impacts, especially 
in light of observed and projected increases in drought frequency and 
intensity5–8, there is a strong need for drought monitoring9–13.

Drought monitoring has evolved considerably (Fig. 1). It histori-
cally relied on ground-based precipitation observations10,11, but the 
lack of consistently available, dense observational networks limited 
spatial analysis. Indeed, observations have been particularly rare in 
agricultural areas, where the need for drought monitoring is acute. The 
emergence and evolution of remote sensing revolutionized drought 
monitoring, providing global, consistent drought-related variables11. 
Modelling advances are also key in improving drought monitoring. 
Models offer a means of filling data gaps in cases where relevant drought 
variables are difficult to measure directly (for example, root-zone soil 
moisture, which cannot be measured directly via satellite14). In addi-
tion, models that link hydroclimatic variables to impacts (for instance 
linking snow drought or soil moisture deficit to expected crop loss or 
water shortage) advance capabilities for simulating ‘what-if’ drought 
scenarios and their societal impacts, improving drought preparedness 
and planning efforts15.

Coincident with the emergence of new datasets and techno
logies has also been an expansion of drought monitoring indicators 
(Fig. 1), incorporating meteorological, hydrological and biophysi-
cal variables depending on the intended purpose and application1,16. 
Yet drought-related variables often interact with each other, result-
ing in nonlinear relationships between drought drivers and drought 
types17. As a result, defining a drought event in a robust and coherent 
manner with a single variable is challenging. For example, the 2003 
European extreme drought18,19 propagated from meteorological to 
hydrological, and then to agricultural drought, each with different 
time frames (Fig. 2). Effective monitoring must therefore contend with 
the multivariate nature of drought through multi-index methods20,21.

Yet traditional, top-down, hazard-focus drought indicators leave 
key gaps in effective drought monitoring by failing to include the 
many complicating factors that can add to the functional severity 
and impacts of a drought. Contrastingly, a bottom-up, impact-based 
approach would fill many of these gaps, providing relevant informa-
tion for drought-related planning in real time. For example, drought 
monitoring methods that include information on the compound and 
cascading hazards that accompany drought (such as heatwaves, wild-
fires, floods and debris flows22) would offer a clearer picture of the 
risks associated with drought than monitoring based on traditional 
hazard-focused indicators alone, benefiting stakeholders involved in 
drought planning and response decisions.

In this Perspective, we frame an impact-based approach to drought 
monitoring as a key research direction that can advance operational 
drought monitoring more effectively than traditional approaches. 
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drought (as a partial measure of the moisture available for crops)34. 
Common evapotranspiration-based indicators include Standardized 
Precipitation-Evapotranspiration Index (SPEI)52,53 and Climatic Water 
Balance (CWB)54. Evapotranspiration is particularly important for flash 
droughts, characterized by their rapid intensification and/or onset 
(on timescales of 2–4 weeks), hypothesized to be driven partly by high 
atmospheric evaporative demand55–58.

Although it was traditionally measured using ground-based tech-
niques, evapotranspiration is increasingly measured with remote 

sensing59, including products based on Moderate Resolution Imaging 
Spectroradiometer (MODIS), Landsat, Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER), and the Geostationary 
Operational Environmental Satellite (GOES)60–62. Land-surface models 
can further make use of the infrared bands of these remote sensing 
products to derive evapotranspiration from the residual of the surface 
energy balance60,63,64. Empirical models are also widely used, but often 
require local calibration for improved accuracy. Each of these estima-
tion methods is subject to high uncertainties depending on weather 
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Fig. 1 | Drought monitoring timeline. A non-comprehensive timeline of major 
drought datasets (purple), indicators (red), model developments (blue), and 
technological developments (yellow). The drought type measured by the index 
is represented by agr (agricultural drought), eco (ecological drought), hyd 
(hydrological drought), met (meteorological drought) and soc (Socioeconomic 
drought). AVHRR, Advanced Very High Resolution Radiometer; GPM, Global 
Precipitation Measurement; SMAP, Soil Moisture Active Passive45; GRACE-FO,  
Gravity Recovery and Climate Experiment Follow-on; SWOT, Surface Water 
and Ocean Topography; CMIP, Coupled Model Intercomparison Project219; 
USDM, The United States Drought Monitor55; SMOS, Soil Moisture and 
Ocean Salinity44 mission. PDSI, Palmer Drought Severity Index31; NDVI, 
Normalized Difference Vegetation Index112; VCI, Vegetation Condition Index113; 
SPI, Standardized Precipitation Index29; VegDRI, Vegetation Drought Response 
Index93; SRI, Standardized Runoff Index220; SPEI, Standardized Precipitation 
Evapotranspiration Index52; JDI, Joint Drought Index88; ESI, Evaporative 
Stress Index101; RCI, Rapid Change Index96; MSDI, Multivariate Standardized 
Drought Index21; MIDI, Microwave Integrated Drought Index95; SSI, Standardized 
Soil Moisture Index21; SRHI, Standardized Relative Humidity Index32; MSRRI, 
Multivariate Standardized Reliability and Resilience Index201; EDDI, Evaporative 
Demand Drought Index102; QuickDRI, Quick Drought Response Index114; 
SWEI, Snow Water Equivalent Index35. The unprecedented growth in satellite 
observations, modelling capabilities and development of drought indicators 
have allowed near-real-time drought information.
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and local land-surface and vegetation conditions63,65,66, but they are 
collectively enabling large-scale drought assessment67,68.

Snow indicators. Most drought indicators do not separate snow and 
rainfall. Accordingly, drought assessments might be biased, especially 
given the importance of the snowpack as a storage reservoir, and its 
influence on the timing and occurrence of deficits in other hydro-
logical variables69. As such, there is a need to quantifying snow-related 
processes (for example, snow accumulation and snowmelt rate) for 
drought monitoring and assessment purposes70–72, as achieved by the 
Standardized Snow Water Equivalent Index35 (Fig. 3). Such approaches 
aid identification of a period of abnormally low snow for a given region 
and time of year, referred to as a snow drought35,73, which can be driven 
by low accumulation or by elevated loss (for example, owing to rising 
temperatures, or accelerated snowmelt driven by rain-on-snow)57.

As the temporal record of snow observations extends, snow indi-
cators for drought should use snow water equivalent (SWE). However, 
SWE is difficult to estimate robustly across complex and rugged moun-
tainous terrain74–78. In fact, larger-scale satellite remote-sensing-based 

products (such as GlobSnow) only yield estimates of SWE across the 
non-mountainous Northern Hemisphere79. Nevertheless, there have 
been advances in deriving regional and more local- or basin-scale 
SWE estimates with remote sensing information and sensors, and/or 
data fusion and assimilation techniques74,78,80. The Airborne Snow 
Observatory (ASO), for example, demonstrated that high-resolution 
LiDAR-based observations of snow depth, when combined with snow 
density measurements and models, could be used to infer SWE74. 
Although important for attaining improved estimates of snowmelt 
runoff at management scales for water resources, the temporal record 
from the ASO is generally insufficient for use in drought analysis and 
limited to select basins81. Additionally, high-spatial-resolution global 
SWE information is still needed, resulting in a primarily local to regional 
focus so far82–86.

Multivariate and composite drought indices
Owing to the limitations of single-variable drought indicators, several 
multivariate and composite drought frameworks have been devel-
oped to provide robust and comprehensive monitoring21,87–90 (Fig. 1, 
composite). Multivariate drought indicators typically account for the 
relationship between variables used for drought monitoring, such as 
the relationship between precipitation and soil moisture. In contrast, 
composite drought indicators integrate multiple variables with or with-
out explicitly accounting for the relationship between drought-related 
variables. Hereafter, the term composite indicators is used to reflect 
both types. They have evolved to include many of the aforementioned 
variables, constructing a quantitative picture of the total environmental 
moisture status10,91 by considering different sources of water supply 
and water demand. Key indicators include the Multivariate Standard-
ized Drought Index (MSDI, which uses precipitation and soil moisture 
indices21,92), the Vegetation Drought Response Index (VegDRI, which 
incorporates precipitation, temperature and soil moisture, plus vari-
ous biophysical and vegetation indicators93,94), and the Microwave 
Integrated Drought Index (MIDI, which uses precipitation, soil moisture 
and temperature95).

Composite indices have several uses beyond that offered by 
single-metric indicators. For example, they are particularly impor-
tant for flash drought which are characterized by their rapid intensi-
fication and/or onset (on timescales of 2–4 weeks)56–58. Conceptually, 
although a flash drought onset usually involves precipitation deficit, 
its development typically relies on how rapidly high evapotranspira-
tion rates deplete soil moisture96–99, shifting from an energy-limited 
to a moisture-limited regime. Thus, robust flash drought indicators 
must link changes in precipitation, temperature, vapour pressure 
deficit and soil temperature, efficiently coupling the rapid soil mois-
ture depletion rates in deeper layers with the changes in atmospheric 
evaporative demand100. Composite indices useful for quantifying 
flash droughts include the Evaporative Stress Index (ESI101), Rapid 
Change Index (RCI96), Evaporative Demand Drought Index (EDDI102) 
and Standardized Precipitation-Evapotranspiration Index (SPEI)56.

Composite indicators also have marked use in quantifying eco-
logical drought — water deficits that stress ecosystems or coupled 
natural–human systems103, driven by the total moisture available for 
vegetation which is stressed by a combination of low soil moisture 
and precipitation with high evapotranspiration. A wide range of indi-
ces quantify ecological drought based on vegetation condition104–111, 
including the Normalized Difference Vegetation Index (NDVI112), the 
Vegetation Condition Index (VCI113) and the Quick Drought Response 
Index (QuickDRI114).
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Fig. 2 | The European drought of 2003. Onset, propagation and termination of 
the 2003 European drought event, decomposed into the standardized deficits 
associated with the three drought types19: meteorological drought, representing 
precipitation deficit (dark blue); hydrological drought, representing 
runoff deficit (light blue); and agricultural drought, representing soil moisture 
deficit (brown). Potential evapotranspiration (PET) excess (red) is depicted 
for comparison with the precipitation deficit. Drought can be defined from 
different perspectives including meteorological drought, describing a deficit in 
precipitation; agricultural drought, typically describing a soil moisture deficit; 
and hydrological drought, describing runoff, groundwater level, stream flow or 
total water storage deficits.
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Operational drought monitoring systems are also moving toward 
integration of a wide range of indicators. The United States Drought 
Monitor (USDM)55, for example, includes various single and composite 
indicators, producing weekly drought maps115 based on in situ data, 
remote sensing and modelled products, all validated using reports 
from over 450 local drought experts116,117. Similar integrative weekly or 
monthly drought maps have been produced regionally or globally, but 
mainly without any human inputs118–120. A suite of other integrative sys-
tems includes the European Drought Observatory121; the United Nations 
Food and Agriculture Organization (FAO) agricultural drought moni-
toring system based on the Agriculture Stress Index System (ASIS122); 
and the North American Drought Monitoring System123.

Limitations
Drought monitoring models and tools remain disconnected from 
impact assessment models15,124,125, which is a major limitation as develop-
ing adaptation and response plans requires information on the poten-
tial impacts of droughts. Furthermore, although considerable progress 
has been made in multi-index drought monitoring, different hazards 
(such as drought, heatwave and wildfire) are still monitored individually 
and separately even when they are closely related. The need for inte-
grating drought and flood monitoring systems has been highlighted126, 
but this argument can be extended to all drought-related hazards.

Each of these previously discussed drought indicators has its 
limitations127–129 (Supplementary Table 1), but those associated with 
snow drought have not received much attention relative to other 
drought-related variables and hence are discussed here. Standardized 
snow drought indicators that incorporate not only snow information 
but also variables closely related to snowmelt (such as temperature) 
are currently lacking. Furthermore, rather than tracking the snow-
pack throughout the season, the Standardized Snow Water Equivalent 
Index35 and other snow drought analysis methods have focused on the 
peak SWE or SWE at a particular time of the year (1 April as the end of 
the snow season). However, maximum SWE might inadequately char-
acterize the temporal evolution of snow drought, and thereby obscure 
identification and understanding of drought impacts occurring before 

or after the time of peak SWE35. An early peak in SWE, followed by rapid 
snowmelt and/or large sublimation and depletion of the accumulated 
snowpack, can lead to snow drought conditions accompanied by warm-
ing temperatures and increased potential for a longer wildfire season, 
even with above-average SWE conditions at the time of peak. In addi-
tion, when the peak value serves as a proxy for the whole season, the 
snow drought classification for a season that maintained low SWE until 
an abrupt increase in SWE just before its peak value could be misrepre-
sented, despite earlier low SWE conditions35. These limitations high-
light the need to develop more comprehensive snow drought indicators 
that capture the temporal evolution (onset, persistence, recovery and 
termination) of snow drought35,130–132, crucial to efficiently integrate 
snow information into drought monitoring systems.

Drought-related cascading hazards
Although individual drought indicators are important, they omit 
information pertaining to drought and drought-related cascad-
ing hazards — events that occur in a specific order, where one event 
or hazard is typically caused or triggered by one or more preceding 
events or hazards. Ultimately, the feedback loops created by cas-
cading hazards lead to substantial societal or economic damages 
beyond the initial drought. For instance, the combination of drought 
and heatwaves increases the likelihood of wildfires. Extreme rainfall 
over burned areas, subsequently increases the chance of debris flows 
in burned areas (Fig. 4). Drought monitoring and research must, there-
fore, move beyond individual drivers and indicators to include the evalu-
ation of various potential cascading hazards, including heatwaves, 
wildfires, floods and water quality, as now discussed.

Heatwaves
A pronounced example of a drought-related cascading hazard is the 
connection between droughts and heatwaves. These events act to 
intensify each other through land–atmosphere interactions133,134. 
Specifically, a soil moisture deficit causes a reduction in evapotran-
spiration, increasing sensible heat and decreasing latent heat rela-
tive to pre-drought conditions134–136, intensifying surface warming, 
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Fig. 3 | Snow drought examples. a, Snow drought in the western United 
States during March 2015, as determined by the Standardized Snow Water 
Equivalent Index35. b, As in a, but for the Himalaya region during March 2001. 

In many regions around the world, snowpack serves as the largest natural water 
reservoir, making the monitoring of snow drought critical for improving drought 
monitoring.
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and, in turn, enhancing the likelihood of a heatwave exacerbating the 
drought and its impacts (Fig. 4). Owing to rising evaporative demand, 
we can anticipate increased coupling and interactions between heat-
waves and (flash) droughts — and thereby increased intensity and fre-
quency of droughts — as the climate warms6–8, as already reported at 
regional137 and global138 scales.

Such tight coupling of these cascading hazards is evident across 
many observed droughts. Compound drought and heatwave events 
often affect socioecological systems139, which include massive 
heat-related deaths140–142, loss of crop yield143,144, and wildfires145 that 

further transform the landscape creating additional public health 
crises. The 2003 drought and heatwave event134, for example, resulted 
in an estimated death toll surpassing 70,000. However, the impacts of 
drought are increasingly recognized to result in globally networked 
risks in which drought in one part of the world, especially major 
food-producing countries, affects regional and local food security 
elsewhere.

Several indicators incorporate temperature information, such 
as the PDSI (Fig. 1). However, these indicators do not provide spe-
cific information about the co-occurrence of drought and heatwaves, 
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Fig. 4 | Drought-related processes and cascading hazards. a, Select 
hydrological processes during normal or wet years. b, Drought-related processes 
during extreme drought years, including burned areas due to cascading 
wildfires. c, Post-fire debris flows as an example of a cascading hazard. During 

drought, soil moisture deficit reduces evapotranspiration, increases sensible 
heat and decreases latent heat, and enhances surface warming, in turn increasing 
the likelihood heatwave intensification, contributing to wildfire development 
which can later cause cascading hazards.
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making them less suitable for linking cascading hazards to actual 
impacts (such as mortality data).

Wildfires
Closely linked to drought and heatwaves are wildfires (Fig. 4). The 
interactions between these phenomena are intricate and specific 
to each location, influenced by factors such as climate, vegetation 
type, topography, soil type and ignitions, amongst others. Drought 
dries out vegetation, providing fuel for fires, which, in the case of pro-
longed hot drought, increases susceptibility to natural or anthropo-
genic ignition146,147; drought-related tree mortality exacerbates this 
situation148. The combustion of dried biomass during the hot and dry 
summers in central Europe led to extreme wildfires across the Czech 
Republic, Germany and Portugal149. Similarly, several years of drought 
preceded the intense fire seasons witnessed in Australia and the west-
ern United States in 2020150,151. The changes following a wildfire (for 
example, reduced soil moisture and lack of canopy) can also further 
enhance land-surface interactions for drought intensification, and, 
through impacts on water availability (reduced infiltration and more 
overland flows), affect drought recovery152.

Drought monitoring and prediction are invaluable resources for 
wildfire prediction, monitoring and management153,154. Although all 
drought indices are useful in predicting wildfire activity, soil-moisture-
based indices are predictors of live fuel moisture and are excellent early 
warning metrics, and evaporation-based indices are skilful predic-
tors of dead fuel moisture155. However, most current operational and 
experimental drought and fire monitoring and management systems 
remain disconnected. If addressed, this could minimize impacts on 
human lives, livelihood and the environment.

Debris flows
Drought can trigger various processes that weaken soil and slopes156.
The stability of slopes is primarily dependent on soil shear strength. 
Drought conditions, characterized by elevated soil temperatures and 
low soil moisture, can undermine both soil shear strength and ten-
sile strength157, ultimately leading to increased desiccation cracking. 
Desiccation cracks commonly develop in fine-grained soils, such as 
clay, and can extend several metres deep. The formation and propaga-
tion of these cracks have substantial implications for the mechanical 
and hydraulic properties of soils158. Desiccation cracks increase soil 
hydraulic conductivity, establish preferential flow pathways for fluid 
and contaminant movement, weaken soil shear strength, and acceler-
ate soil weathering, erosion and slope instability. These processes, in 
turn, increase the susceptibility of burned environments to debris 
flows when intense rainfall occurs.

Wildfires can further heighten the probability of debris flows and 
rainfall-induced shallow landslides. These processes include root weak-
ening, reduced evapotranspiration rates, alterations in vegetation cover-
age and canopy interception, and modifications to soil mechanical and 
hydraulic properties159. A prominent illustration of the impact of wildfires 
on debris flow events is the catastrophic debris flow that occurred in 
Montecito, California, in 201822. The region experienced a prolonged 
drought from 2012 to 2016, followed by a fire in December 2017. Intense 
rainfall over the previously burned area in January 2018 subsequently 
triggered the debris flow, the deadliest in California’s history.

Floods
Although droughts and floods are two extremes of the same hydrologi-
cal cycle, droughts themselves contribute to changes in flood hazard126 

(Fig. 4). Cascading impacts of drought on flood risk include increased 
upstream erosion leading to debris flow and sedimentation in rivers and 
reservoirs, reducing storage capacity; compaction of soils, leading to 
less suitable subsurface storage conditions; and populations moving 
from drought-stricken regions into flood-prone areas, for example 
along river floodplains126.

Droughts can further increase the probability of levee and dyke 
failure caused by soil desiccation cracking and slidings. Soil desiccation 
cracks that are formed during a drought increase the risk of internal and 
external soil erosion during and after heavy rain. Further, rapid infiltra-
tion through the cracks substantially increases pore water pressure 
inside the soil domain, decreasing the soil shear strength, potentially 
leading to loss of stability and failures156. Indeed, the 2003 dyke failure 
at Wilnis, in the Netherlands, led to the inundation of 600 homes and 
the evacuation of 2000 people160. Other examples include the drought 
in California from 2012 to 2016, which concluded with an onslaught 
of extreme rain and flooding that caused substantial damage to the 
Oroville Dam spillway161. Similarly, the Millennium drought in Australia 
concluded in 2011 with widespread flooding4.

Although many existing indicators include information related 
to floods (SPI, SRI), none capture drought–flood interactions. In addi-
tion to hydrological information, measures such as wetting surfaces, 
intensity of desiccation cracks, and other soil properties are neces-
sary to improve joint drought–flood monitoring and impact assess-
ment. Monitoring systems should be designed that provide actionable 
information to decision makers involved across flood and drought 
management, and should not operate in silos.

Water quality
Drought also has cascading impacts on water quality162 (Fig. 4). 
Drought-induced low stream flow increases water detention periods, 
resulting in algal blooms owing to high nutrient concentrations (less 
dilution)163. Higher temperatures during extreme droughts further 
affect stream temperatures, respiration and re-aeration rates in riv-
ers and streams163, affecting fish populations and food supply. In arid 
and semi-arid regions, the cascading impact of rapid transitions from 
drought to flood regimes (wet cycles) can increase turbidity and dis-
solved oxygen, and decrease the magnitude of pH162. As an example, 
the record-breaking hypoxia and massive dead zone in Lake Erie164 
during 2012, which culminated in the closure of the Toledo water sup-
ply in 2014 due to high levels of toxins from cyanobacteria in the city’s 
water intake, was attributed to drought. Similarly, extended droughts 
in conjunction with the bark beetle infestation of the Rocky Mountain 
forests in the Cache la Poudre River watershed caused the massive High 
Park wildfire that degraded the source water quality, subsequently 
limiting its use for drinking water supply165,166.

Although there are in situ and remotely sensed water quality indi-
cators, drought indicators that establish a connection between water 
quantity and/or availability and water quality are currently lacking.

Impact-based drought monitoring
Much of the effort to improve drought monitoring systems has focused 
on either new top-down drought indicators (climatic, hydrological 
or biophysical) or on the integration of indicators, data and models. 
However, limitations of traditional drought indicators, particularly 
with respect to capturing cascading hazards and their systemic risks 
and impacts, make a compelling argument for developing a consistent 
global framework for multihazard drought monitoring and impact 
assessment to inform early action167. Specifically, there is a need to 
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link drought information to its potential impacts — that is, linking 
monitoring tools to impact collection and assessment.

Connecting droughts and impacts
Current indicators (Fig. 1) and existing monitoring systems (such as 
USDM) primarily focus on identifying droughts and assessing their 
frequency and severity. However, for decision makers to make informed 
choices, they require information not only about the location and 
severity of droughts, but also about the expected impacts associated 
with them. These impacts encompass a wide range of factors, such as 
changes in crop yield, food exportation, forest health, water quality, 
energy generation, greenhouse gas emissions, and unemployment 
resulting from the effects on the agriculture sector.

To go beyond the realm of drought monitoring and effectively 
quantify potential drought impacts, additional models are often 
necessary. Currently, there exist numerous statistical and physically 
based crop models designed to estimate crop yield under various cli-
mate conditions or crop–snowmelt dependence and their associated 
risks13,20,168–170. However, these models are not yet integrated into the 
existing drought monitoring systems.

Providing real-time drought impact monitoring is expected to 
bring substantial benefits, particularly with regard to food and water 
security171–173. Such assessments would enable authorities to antici-
pate potential drought impacts several months in advance, albeit 
with variations in lead times depending on the affected sector or 
ecosystem174,175. For instance, linking snow drought information to 
agricultural systems72 would provide critical information for under-
standing the consequences of extreme events (such as snow droughts) 
for human and agricultural systems (for example, irrigated agriculture 
and food security) (Fig. 5). These benefits would be especially critical 
in food-producing countries, where drought impacts can propagate 

globally through trade networks, amplifying drought impacts such 
as food insecurity176. Collectively, these strategies would enable fund-
ing and management procedures at an earlier stage than is currently 
possible, linking to hotspots where adaptation strategies and policy 
interventions are most vital.

The Drought Impact Reporter177 and the Condition Monitoring 
and Observation Reports on Drought are among such attempts, with 
the latter including citizen science information and a bottom-up 
approach to drought impact data collection. These systems allow 
end-user, local decision makers and citizens to report drought-related 
impacts through an online system. However, operational drought 
monitoring models and tools largely remain disconnected from impact 
assessment15,124,125, preventing broader adoption.

Preventative factors
Several factors prevent the more widespread creation and use of 
impact-based approaches, primarily a lack of information about socio-
economic impacts, water demand, local water storage and groundwater 
resources. In many cases, drought indices based on climate variables 
alone do not offer sufficient information about water deficit; they 
neglect critical human factors at local and regional levels, and hence 
consideration of water demand and management.

Although demand management is considered a major tool for 
drought response, current drought monitoring systems do not incor-
porate demand information into the existing top-down indicators. For 
example, in the United States, several federal and state agencies col-
lect and disseminate information about river discharge, groundwater 
tables and reservoir levels at high spatial and temporal resolutions. 
However, information on the water used by economic sectors is only 
available from the US Geological Survey Water Use Data at the county 
level at 5-year intervals. Information about the locations and amounts 
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Fig. 5 | Snow drought impacts on the agriculture sector. a, Historical 
(1985–2015) dependence of wheat growth on snowmelt. Basin-level irrigated 
agriculture is characterized as snowmelt-dependent along two dimensions: 
relatively high amounts of irrigation water consumption (x-axis in key) and a 

large share of irrigation surface water demand met by snowmelt runoff (y-axis 
in key). b, As in a, but for rice. c, As in a, but for maize. Snow drought can be linked 
to major crops for impact-based drought monitoring.
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of water withdrawals and diversions for various uses is largely lacking 
across river basins globally, even within developed countries. Moreo-
ver, in many locations, knowledge of drought in one region requires 
data on drought-related variables in another location. For instance, 
monitoring of urban drought in Los Angeles, California needs to go 
beyond meteorological drought in that location; it must account for 
human activities within Los Angeles and its remote supply basins, 
which includes hydroclimatic factors in the source regions of northern 
California and the Colorado River Basin.

Lack of information on the quality and accessibility of water and 
water-use data is an additional limitation to impact-based drought 
monitoring. Increased resolution data is needed to monitor and 
quantify water shortages at scales appropriate for local and regional 
water resources planning and management. The lack of real time and 
consistent information on local water storage adds to this challenge, 
particularly the absence of adequate in situ measurements of water 
surface area and elevation in many parts of the world. Remote sensing 
of water bodies has become increasingly important in this regard178,179, 
particularly using a combination of active and passive sensors180–188. 
Similarly, spatially consistent groundwater information for drought 
monitoring is not yet available for most regions; in situ groundwater 
observations are limited and spatially irregular, and satellite-based 
water storage observations are typically too coarse for local basin-scale 
drought assessment.

Other challenges in the monitoring of water demand and use 
include inconsistent methodology and procedures; spatial and tem-
poral discrepancy and inconsistency of data from various socioeco-
nomic sectors189,190, data privacy and sharing constraints; voluntary 
laws and statutes for collecting and sharing water-use information; 
lack of institutional capacity (staffing and financial resources); and 
robust information technologies for integration of heterogeneous 
data and information from various sources191.

The role of governance and local institutions can also not be easily 
quantified, yet is vital in the context of vulnerability to drought, espe-
cially in urban settings192,193. Increased efforts are needed to develop 
frameworks for assessing local vulnerabilities and institutional capaci-
ties to actively monitor and respond to droughts. An example of such a 
framework is a paired event approach; that is, the collection of detailed 
hazard, exposure, vulnerability, impact and management data from 
events that have occurred consecutively in the same area. The analy-
sis of changes between events supports the attribution of changes in 
impacts and enables detailed context-specific and location-specific 
assessments194.

Opportunities
These preventative factors act to highlight the needs to make 
impact-based drought monitoring a reality. However, it is crucial to 
recognize that achieving effective impact-based monitoring requires 
drought-related human activities to be taken into account. The concept 
of anthropogenic drought195,196 corresponds to a combined top-down/
bottom-up perspective for understanding drought, including feed-
backs between human activities and climate conditions with a focus 
on the actual or potential impacts.

Moving toward impact-based drought monitoring requires a 
bottom-up prospective that starts with actual or potential impacts 
(crop yield, food prices and availability, accessible water, regional and 
global food trades, drought-related cascading hazards). Consistent 
long-term monitoring of drought impacts and their respective causes 
and costs is essential for identifying global hotspots and developing 

sustainable, efficient risk management strategies and policies197–200. 
Collecting drought impact data requires protocols to ensure data 
consistency across space and time. Government agencies should invest 
in data collection, long-term storage and dissemination.

Research and operational efforts should increasingly prioritize 
the integration of impact assessment models and drought monitor-
ing tools. For example, crop yield models can be linked with real-time 
drought severity maps, or energy generation models integrated with 
hydrological drought conditions. One approach to achieving this inte-
gration is by combining traditional drought indicators with indicators 
that represent local coping and management capacity.

For instance, leveraging data on water consumption and supply 
can enable the development of an index for measuring vulnerability to 
socioeconomic drought, such as the Multivariate Standardized Reli-
ability and Resilience Index (MSRRI201). This index assesses the ability 
of surface water supply to meet demand across all sectors, including 
urban municipalities. Additionally, the use of the Water Resources 
System Resilience Index offers an alternative approach to investigating 
socioeconomic drought under growing populations and a chang-
ing climate, while also considering the resilience of water resource 
systems202. Various socioeconomic factors have also been integrated 
to derive a socioeconomic Drought Vulnerability Index, generating 
composite risk maps that help visualize the information flow within the 
natural system responsible for the evolution of droughts203. Although 
these existing methods enable the linkage of top-down hazard informa-
tion with drought impacts and local coping capacity, further efforts 
should concentrate on the development of regionally relevant and 
sector-specific impact-based drought models.

Emerging data are also becoming available to make impact-based 
monitoring more feasible. Specifically, an absence of data on local 
water storage was identified as a major challenge. The Surface Water 
Ocean Topography (SWOT) mission204–206 is a wide-swath instrument 
that offers area and altimetry information for water bodies at an 
unprecedented scale and accuracy. In contrast to other remote sens-
ing data, SWOT coincidental readings of area and altimetry enable 
estimation of the global inland large-body freshwater availability 
and variability, offering a unique avenue for impact-based drought 
assessment linking meteorological drought to local coping capacity 
and local-scale water availability (for example, based on reservoir 
dynamics). New insights, drought monitoring and impact-based 
models are expected once the data become available to the science 
community. Similarly, the exponential growth in data volumes across 
diverse fields, including non-climate data (such as crop yield, impact 
data and local infrastructure), contributes to these opportunities 
in moving from traditional drought monitoring to near-real-time 
impact assessment207.

Summary and future perspectives
Current top-down drought monitoring and prediction methods encom-
pass a wide range of approaches, ranging from single-variable indi-
ces (precipitation, soil moisture, evapotranspiration) to composite 
indices (combining multiple single-variable indices) that emphasize 
climate drivers and indicators of drought (Fig. 1). Although substan-
tial advances have been achieved in multi-index drought monitoring, 
various hazards (such as drought, heatwaves and wildfires) continue 
to be monitored in isolation, despite their interconnectedness. The 
importance of integrating drought and flood monitoring systems has 
been underscored by experts, but this rationale can be extended to 
encompass all drought-related hazards.
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Top-down drought monitoring models and tools are limited since 
they remain disconnected from bottom-up, impact-based assess-
ment models15,124,125. Decision makers require information beyond the 
physical drivers of drought in order to forecast the potential impacts 
of drought events for developing effective adaptation and response 
plans. Therefore, drought monitoring and prediction methods must 
advance beyond their current drought-related variable focus and 
move toward impact-based monitoring systems. To aid the develop-
ment of impact-based indices, consistent, long-term monitoring of 
drought impacts (for example health, food security, human migration, 
economic) and of their respective causes and costs is essential.

Many water-data-related challenges remain that must be 
addressed to improve drought monitoring metrics for both top-down 
and bottom-up approaches, and combinations thereof. These chal-
lenges include establishing consistent methodology and procedures 
for data collection and sharing, standardization of data from various 
socioeconomic sectors spatially and temporally for compatibility, 
the establishment of laws and statutes for collecting and sharing 
water-use information, building institutional capacity (staffing and 
financial resources), and development of robust information tech-
nologies for integrating heterogeneous data and information from 
various sources189–191. Increased efforts and collaboration across 
sectors are needed to develop frameworks for assessing local vulner-
abilities and institutional capacities to actively monitor and respond 
to droughts.

Drought planning tools should allow models and data to work in 
concert with each other to assess impacts at diverse timescales. Such 
tools should facilitate exploration of hypothetical scenarios and allow 
stakeholders to plan data-driven responses based on the expected 
impacts. Examples include ‘what-if’ scenario tools for evaluating hypo-
thetical drought scenarios on hydropower energy generation or local 
food production.

Given the growing data volumes, manual inspection quickly 
becomes untenable. Drought monitoring and assessment tools should 
be designed to learn from such big data. Artificial Intelligence (AI) 
powered by deep neural network architectures offers considerable 
promise208–210. Deep networks leverage representational learning to 
derive features from complex multi-dimensional data211,212. Novel AI 
methods underpin the ability to assess impacts at diverse timescales, 
including the impact of cascading and co-occurring stresses.

AI models and rich data availability provide opportunities for 
science-guided learning213–215, and could be used to inform the design 
of loss functions for training deep networks, enforce constraints on 
expected drought impacts, and set drought thresholds on values/
deviations that attributes might possess with respect to each other. 
Such science-guided deep networks have shown promise by out-
performing models that are either exclusively domain-theoretic or 
machine-learning based216. For example, a domain-theoretic snow 
drought model can be used to inform the spatial extent impacted by 
variations in snow drought. A deep network could then be used to learn 
nonlinear relationships across attributes representing the impacted 
regions for example, estimating the impact of snow drought on agri-
culture (Fig. 5) in real time based on snow drought monitoring (Fig. 3) 
and on local crop yield information.

Classes of deep networks enable the generation of embeddings or 
latent-space representations (that is, a representation of compressed 
data) that attempt to understand and interpret large datasets217. On 
successful training and validation, predictive models based on these 
deep networks218 allow experimentation with extreme hypothetical 

scenarios that are representative of the nonlinear interactions between 
different drought drivers. Currently, data systems that reconcile and 
harmonize data encoding and representational formats across several 
domains are not available. Increased efforts should focus on develop-
ing not only data repositories but also smart systems that make it 
easier to harness data across sectors, along with powerful learning 
algorithms for drought monitoring and real-time impact assessment. 
Moving toward real-time expected drought impacts and systems for 
hypothetical scenario analysis will substantially advance the current 
state-of-the-art in drought monitoring and planning capabilities. Given 
the strong relationship between drought and its cascading hazards, an 
ideal impact-based drought monitoring system should include impacts 
caused by other relevant hazards. Therefore, a move toward multihaz-
ard monitoring systems is necessary, integrating systems designed for 
drought and other relevant and potentially cascading hazards.
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