
ARGUS: Rapid Wildfire Tracking using Satellite
Data Collections

Saptashwa Mitra, Paahuni Khandelwal, Shrideep Pallickara, Sangmi Lee Pallickara
Department of Computer Science, Colorado State University, Fort Collins, USA

{sapmitra,paahuni,shrideep,sangmi}@colostate.edu

Abstract—Interactive visual analytics over distributed systems
housing voluminous datasets is hindered by three main factors -
disk and network I/O, and data processing overhead. Requests
over geospatial data are prone to erratic query load and hotspots
due to users’ simultaneous interest over a small sub-domain of the
overall data space at a time. Interactive analytics in a distributed
setting is further hindered in cases of voluminous datasets
with large/high-dimensional data objects, such as multi-spectral
satellite imagery. The size of the data objects prohibits efficient
caching mechanisms that could significantly reduce response
latencies. Additionally, extracting information from these large
data objects incurs significant data processing overheads and they
often entail resource-intensive computational methods.

Here, we present our framework, ARGUS, that extracts low-
dimensional representation (embeddings) of high-dimensional
satellite images during ingestion and houses them in the cache
for use in model-driven analysis relating to wildfire detection.
These embeddings are versatile and are used to perform model-
based extraction of analytical information for a set of dif-
ferent scenarios, to reduce the high computational costs that
are involved with typical transformations over high-dimensional
datasets. The models for each such analytical process are trained
in a distributed manner in a connected, multi-task learning
fashion, along with the encoder network that generates the
original embeddings.

Index Terms—embedding, multi-task learning, science-guided
machine learning, visual analytics

I. INTRODUCTION

Over the past decade, there has been a significant increase in
the number of wildfire incidents across northern Europe and
North America fueled by higher temperatures and drought.
Heatwaves with prolonged dry conditions in western Europe
resulted in increased wildfire activity and intensity; the ensuing
wildfires burned 1.2 million acres over 4 summer months
in 2022, which is more than double the average over the
period 2006 – 2021 [1]. In Northern America, wildfires burned
through 363,917 acres in California, USA alone [2], and over
3.9 million acres in Canada [3] in 2022. Forest fires have
adverse effects like smogs from dense smokes on the urban
fringes of forests leading to thousands of premature deaths [4].

Wildfires often occur in remote regions, where surveillance
infrastructure is not always available, making remote sensing
a viable option. To monitor and track wildfires, planet-scale
geospatial observations such as satellite images have been
widely used [5], [6]. These datasets offer critical capabilities to
identify the locations of wildfires, discover underlying patterns
and track their progress. However, identifying and retrieving
highly relevant subsets of satellite images from voluminous

satellite imagery in real-time is an extremely challenging task.
Atmospheric conditions at proximate locations of an ongoing
wildfire are often covered with smoke and temperature-based
fire masking operations often create ambiguity in detecting the
precise extent of the wildfire coverage [7].

Most satellite observations have associated identifiers such
as timestamps and geospatial coordinates. Remotely sensed
satellite images have low pass frequency (temporal resolution),
which makes active fire detection challenging. Typically, the
key indicator of the relevance between a particular phe-
nomenon (e.g., wildfire) and observations, such as scientific
labels or annotations, are not available in the low-level data
product. It is quite common to see a small portion of highly
relevant datasets labeled by the subject matter experts [8], [9]
prior to being archived and hosted for broader dissemination.
Since manual labeling is extremely time-consuming, this solu-
tion is not well-suited for scenarios such as navigating recent
data collection or real-time monitoring. Similarly, it is hard to
extend the existing set of labels for different use cases. Despite
their low temporal frequency, periodically observed satellite
imagery are often the most feasible as well as economical and
less time-consuming solution for the analysis of phenomena
such as wildfire, since they often occur in remote regions, than
conventional methods of such as aerial images [10].

There have been several recent approaches to extracting
patterns using machine learning to indicate the presence or
absence of phenomena in observations [11]–[13]. However,
since training and executing models over large amounts of
data entails substantial computational requirements as well
as increased network and disk I/O, ad-hoc integration of
this approach into traditional data retrieval systems poses
significant overheads in the latency for the operations and
computing resources needed to complete them.

In this study, we present our framework, ARGUS, that
allows rapid retrieval of satellite observations that are closely
related to ongoing wildfire activities from unlabeled satellite
imagery. ARGUS indexes satellite imagery using novel low-
dimensional latent representations maintained in the memory
of a distributed cluster, where the underlying datastore is
continuously evolving with new observations continuously
ingested. With our approach, a storage system is able to
evaluate the user’s spatiotemporal query with phenomena-
specific keywords such as “has a wildfire”, “wildfire affected
area”, or “level of severity of a wildfire” of “wildfire affected
area” to retrieve more accurately relevant satellite tiles.

1

A. Challenges

Enabling rapid multi-faceted query analytics over high-
dimensional voluminous datasets over a distributed system
poses several challenges:
1) It is important to ensure that supporting frameworks or
data structures needed for efficient retrieval of a related set
of analytics over these large data objects have low memory
utilization and can be generated/updated relatively quickly to
adapt to the fast-evolving nature of the underlying data store.
2) Data pre-processing, be it in the form of efficient indexing,
metadata extraction, or data-compression, to support interac-
tive query analytics over high-dimensional data objects can
negatively impact the data ingestion rate. Furthermore, it is
important to ensure that the processed data retain enough
information to be amenable for reuse in different analytical
queries.
3) Efficient orchestration of clients’ spatiotemporal query
evaluations, such as mapping and executing individual queries
to the list of data objects required for model evaluation, is a
challenge. To significantly reduce the overall query latency,
effective buffering/batching of image tiles as model inputs is
necessary. Also, avoiding redundant or overlapping operations
in a multi-user system introduces additional challenges.

B. Research Questions

Research questions that we explore in this study include
RQ1: How can we identify the existence or absence of wildfire
(or relevant characteristics) automatically and rapidly without
relying on human-generated annotations or labels? This also
involves identifying multiple related characteristics such as the
level of severity.
RQ2: How can we effectively index and rapidly evaluate
geospatial queries over voluminous, high-dimensional satellite
imagery while ensuring low memory footprints and computing
requirements?
RQ3: How can we design an indexing scheme that flexibly
increases the scope of the searchable target characteristics
without adding a significant overhead for memory or com-
puting capacity? The indexing scheme should also be able to
cope with additional computing requirements for fire-tracking
while maintaining a low memory footprint.

C. Overview of Methodology

We use multi-spectral satellite imagery as our proving
ground and attempt to create versatile low-dimensional latent
representations from the underlying image objects. These la-
tent representations(embeddings) are loaded into a distributed
in-memory cache and used to evaluate the level of relevance
of the satellite tile to a wildfire event, while completely
circumventing the need to access original data objects stored
on disk. This approach enables us to (1) reduce memory
footprints of the in-memory data objects, (2) improve the cache
hit ratio, and (3) facilitate faster data processing and reduce
response times.

The generated embeddings are amenable to analytics over
a collection of related target phenomena by training a set

of corresponding deep-learning models without generating
a separate set of embeddings for each phenomenon. The
embeddings are generated by an autoencoder network [14] that
is composed of multiple model heads, where each head uses
the generated embedding as input and is optimized to estimate
the level of relevance to a target phenomenon. These models
are trained simultaneously through multi-task learning [15] as
a conjoined network to enhance the accuracy and convergence
speed of the overall network. As a result, a single set of latent
representations is versatile enough to serve multiple types
of target geospatial events. The multi-task learning approach
enables these networks to have better generalization through-
out the shared representations. Training over these concise,
representative inputs also speeds up the model training (faster
convergence rates) while ensuring lightweight models.

We explore the problem of identification of wildfire regions
from satellite imagery from the Visible Infrared Imaging
Radiometer Suite (VIIRS) Thermal Anomalies (VNP14) [16]
dataset using the available bands (e.g., thermal and infrared)
as the inputs to our models. To evaluate the versatility of
our embeddings with various characteristics of the wildfire,
we have selected a set of related tasks that can benefit from
a multi-task learning setup. The set of related tasks that
we attempt to simultaneously train over our embeddings are
- 1) classification of wildfire image tiles, 2) classification
of wildfire severity, 3) bounding box object recognition for
wildfire-affected regions, and 4) semantic segmentation of
wildfire regions for each image tile.

Our benchmarks demonstrate that, with a compression fac-
tor of 120x for the generated embeddings, ARGUS segmenta-
tion models achieved an accuracy of 88% of that achieved with
a SegCaps segmentation model trained with actual satellite im-
age objects. Additionally, we demonstrate up to 27x reduction
in evaluation times for varying levels of overlapping queries
by fast identification of previously evaluated spatiotemporal
domains and avoiding re-evaluation through our models.

D. Paper Contributions

Our framework facilitates model-driven value extraction
over low-dimensional latent representations generated from
multi-spectral images to reduce memory footprint and improve
query evaluation speed for real-time wildfire monitoring. In
particular, our contributions include:
1) Our model-based evaluation scheme accurately predicts
the relevance of pixels to the ongoing wildfire event with-
out human intervention. The framework generates a concise,
representative latent representation of multispectral satellite
images, and parameterizes them for machine learning models
that evaluate relevance to the wildfire event.
2) Our approach significantly reduces the amount of data to
be stored in-memory, while ensuring comparable accuracy to
cases with actual data. Since satellite imagery is voluminous,
repeated retrievals and the corresponding network and disk I/O
would result in inefficiencies: our methodology circumvents
this inefficiency.
3) Our framework allows the storage system to enhance the

2

set of target phenomena while still maintaining a single set of
embeddings. A set of different deep learning networks, each
optimized to evaluate relevance to different phenomena can be
trained in parallel using multi-task learning [17].

E. Paper Organization

The remainder of this paper is organized as follows. Section
II outlines related works, followed by the background in
Section III that introduces the nature of the actions and
spatiotemporal user queries. Section IV describes the various
components of ARGUS’s deep-learning architecture and its in-
memory data model. Section V details our in-memory data
store and its role in fast query evaluation. Experimental setups,
performance benchmarks, and analysis of results are outlined
in Section VI. Finally, Section VII outlines our conclusions,
followed by acknowledgements in Section VIII.

II. RELATED WORK

There have been several research studies on active fire de-
tection and burned area segmentation to automatically identify
the regions of an image that correspond to fire and sepa-
rate them from non-fire regions. Dataset collections such as
those from Landsat, Sentinel-2, and MODIS are popular open
databases that have been used for model-driven monitoring
of phenomena [18]–[20]. Specifically, semantic segmentation
through deep-learning has commonly been applied to satellite
images for fire detection due to their ability to learn complex
relationships from multi-spectral data [21]–[23].

Caching of highly-requested data elements is a common
strategy in enabling scalable visual analytics over voluminous
datasets. Forecache [24] implements a prefetching scheme that
predicts the data tiles to be queried in the future into the
memory to improve latency. In other words, multivariate data
tiles at various resolutions are precomputed to provide scalable
panning and zooming as done in Google Maps [25]–[28].
Since disk I/O is significantly more time-consuming than in-
memory operations, loading data objects in memory has been
an effective strategy to reduce latency. However, this is not
a feasible strategy if memory space is limited or if the data
objects involved are large in size. A compressed representation
of large data objects could be an alternative in such scenarios.

Deep neural networks-based autoencoders [29], [30] are
commonly used for a number of different applications, in-
cluding feature extraction and dimensionality reduction. The
driving principle behind an autoencoder is that the high-
dimensional data has a significantly smaller lower-dimensional
embedding in a latent space that is sufficient to represent
the information of the original data. The encoder part of
the autoencoder compresses the input data into a bottleneck
representation, which is then used by the decoder for re-
construction, the goal being to minimize the reconstruction
error. Autoencoders have been used for data compression [31],
[32] by training the network to learn a lower-dimensional
representation of the input data. A common approach is
to use a deep autoencoder network with multiple layers in
the encoder and decoder. The deeper layers of the network

learn higher-level features of the input data, which can be
used to accurately reconstruct the original data with a lower-
dimensional representation [33], [34].

Multi-task learning (MTL) [17] is an effective modeling
technique where multiple models learn related tasks jointly
to support a mutual exchange of knowledge that facilitates
generalization. MTL allows the model to learn shared repre-
sentations between tasks, which can lead to more efficient and
effective learning [35]. Feature-based multi-task learning aims
at learning common features through generalization among
related tasks as a way to exchange common knowledge. Multi-
task learning involves training of machine learning models
with data from multiple tasks simultaneously, using shared
representations. This enables the models to acquire shared
knowledge between a set of related tasks and also improve
its robustness by assimilating knowledge across multiple do-
mains. These shared representations increase data efficiency
and can potentially yield faster learning speed for related
or downstream tasks, helping to alleviate the well-known
weaknesses of deep learning: large-scale data requirements and
computational demand. Additionally, MTL can also reduce the
amount of data needed to train a model, as the model can use
data from one task to improve performance on another task
[36].

MTL has been successfully applied to the problem of object
detection and semantic segmentation through models such as
Faster R-CNN [37] and Masked R-CNN [38], where related
tasks like object boundary detection and image segmentation
are trained collaboratively through a shared trunk (backbone)
followed by branched heads for downstream individual tasks.
A potential pitfall of this approach is that training multiple
models jointly can be both compute and resource-intensive
since all the model layers combined have to be optimized si-
multaneously. This is especially true for deep learning models.

III. BACKGROUND

In this study, we explore rapid analytical keyword query
evaluation over voluminous multi-spectral satellite imagery.
Each of these data-objects have high spatial resolutions and
multiple data bands, making them large in size. Caching them
in their original form would significantly strain cache capacity
and negatively impact the hit-rate and the interactivity of
spatiotemporal query analytics. Our goal is to ensure high
fidelity for model-driven analytical information compared to
geoprocessing over actual data objects. Scalable management
of voluminous data collections [39], [40] underpins effective
training of deep networks [41]; data accesses are also pred-
icated on effective queries [42] and federation [43]. Several
systems also rely on outlier detection [44] to preferentially
identify training data of interest.

Useful analytical information can be extracted from these
multi-spectral images using geoprocessing algorithms such as
the computation of slopes, and curvatures from raster images
using spatial tools provided in frameworks like ArcGIS [45].
However, these algorithms are often not optimized for parallel
or GPU-driven execution, making them significantly slow,

3

especially when the number of candidate tiles required to be
processed is large. This is particularly true in cases of sparse
events like wildfires.

For instance, the following SQL query provides a sample of
the type of spatiotemporal queries that the ARGUS framework
aims to evaluate for multiple simultaneous users. In particular,
we show a wildfire segmentation query for identifying and
demarcating potential wildfire regions (has fire) from multi-
spectral satellite imagery dataset (VIIRS) over a given spatial
and temporal range specified through the Query Polygon and
Query Time Range, respectively.

s e l e c t h a s f i r e (band 1 , band 2 , . . . , band n)
from VIIRS Data
where c o o r d i n a t e s in Query Polygon
and t ime s t amp in Query Time Range

The evaluation of the above query over a distributed storage
system would involve identifying image tiles with intersecting
spatiotemporal bounds, evaluating their wildfire-affected re-
gions, if any, and returning the compiled results back to the
users. ARGUS attempts to speed up the above process by im-
plementing the following - (1) the creation of embeddings out
of image tiles for easier storage in a distributed cache for rapid
identification, (2) training deep-learning analytical models that
use embeddings as input, circumventing the need for on-disk
data access as well as geoprocessing algorithms, (3) using
a combination of classification models for identification of
potential tiles with wildfires and running segmentation model
on those only, and (4) using efficient in-memory caching and
indexing schemes to avoid both disk access and re-evaluation
of embeddings. Since events like wildfires are sparse, running
a simpler classification model to weed-out unnecessary tiles
can significantly improve interactivity.

IV. METHODOLOGY

A. System Overview

ARGUS is designed to work in conjunction with any dis-
tributed hash table (DHT)-based spatiotemporal storage system
[46]. The overall ARGUS framework can be partitioned down
into two main components -
1) ARGUSNET: A collection of deep learning models trained
to perform encoding and keyword-based evaluation from the
unlabeled satellite data collections, and
2) Hierarchical Embedding Store: A graph-based in-memory
caching framework built to house latent representations gen-
erated by the ARGUSNET module.

Fig.1 shows the various components of our framework. The
ARGUSNET models utilize data from the underlying DHT
storage for their training through distributed modeling. Once
trained, the ingestion module utilizes the encoder portion of
the network to intercept data ingestion requests and house
them in the hierarchical embedding store. The classification
and segmentation models are used during query evaluations
over the cached latent representations in the embedding store.

Fig. (1) ARGUS System Overview: Hierarchical Embedding
Store is our distributed in-memory caching system. Encoder,
Decoder, Classifiers and Segmentation constitute the various
components of ARGUSNET

B. ARGUSNET

1) Model Overview: Ideally, the latent representations of
our image tiles must be versatile enough to support multiple
keywords (e.g., occurrence of wildfire and the level of severity)
without maintaining multiple embeddings for each problem.
To accomplish this, we train the models in a conjoined manner
through multi-task learning and generate a single embedding
for each tile that is used for multiple analytical models later
on. Related tasks trained through multi-task learning have been
shown to have better accuracy and convergence speed and
as evidenced by our benchmarks. Our models demonstrate
improved accuracy as well. Fig.2 depicts the overall model
architecture. We can see that it consists of the following
main components – an autoencoder network, classification
networks, and a segmentation network. Additional models
for the extraction of related analytical information from the
embeddings can be added to our network as needed. Apart
from the autoencoder network, all other networks (heads) use
embeddings as their input.

Fig. (2) ARGUSNET Architecture: Encoder forms the back-
bone of the network used during data ingestion to generated
embeddings. Decoder, Classifiers, and Segmentation heads are
used during query evaluations.

4

2) Model Input: Let us denote our multi-spectral image
input as IRaw - this is the input to our ARGUSNET network,
which gets converted to its corresponding latent representation,
denoted by Ie, which is significantly smaller in size. In our
case, IRaw is complied by integrating various distributed
spatiotemporal datasets and extracting relevant bands from
them that are relevant to wildfire prediction. The target band,
along with the classification labels is extracted by combining
the fire-band available in the VIIRS dataset [47] along with
historical wildfire perimeter (and duration) information to cre-
ate a single-channel target mask for each image tile (ITarget).

C. Selection of Training Data:

Our input is created through a combination of multiple
remote-sensing data sources and includes bands relating to
emissivity, soil moisture, vegetation index, and land cover
type, all of which are known to be contributing factors that
influence wildfire. In total, our input, IRaw, consists of 15
bands/channels.

Class imbalance is common in case of wildfires since the
majority of the image tiles will not contain fire-pixels. In
order to circumvent models prioritizing the majority class, we
oversample the wildfire-containing tiles. We use the California
Fire Perimeter Database [48] for historical information on
wildfire perimeters and dates to identify tiles that have fire
pixels in them. Additionally, to reduce the uncertainty in the
training data, we ignore tiles that contain wildfires with an
overall perimeter area of more than 10 km2. Finally, we use
a 1:1 distribution of fire and non-fire tiles in our training.

D. Network Architecture:

Our goal is to perform semantic segmentation through
convolutional networks for the detection of wildfires from
multi-spectral imagery. ARGUSNET consists of two main
stages: a set of convolutional layers for feature extraction and
a set of heads for performing reconstruction, classification,
and segmentation. We explain each section of the overall deep
learning model below.
Encoder: The encoder constitues the backbone of the AR-
GUSNET architecture. In the first stage, this encoder portion
of our autoencoder, comprising a set of convolutional layers,
generates a dense representation of a multi-spectral image tile.
We expect these convolutional layers to take a multispectral
image vector as input and encapsulate complex and abstract
features from the input image for analytics. This extracted
feature map serves as an input to the three heads of the
ARGUSNET network.

The encoder network comprises a series of convolutional
layers followed by a downsampling through max-pooling that
incrementally reduces the spatial dimension while increasing
the number of channels leading to bottleneck. We introduce
batch normalization between the two layers to stabilize the
training process to avoid bias during training by normalizing
the input to each layer and accelerating the convergence
speed of the training. The output of the encoder network
produces our embeddings (Ie), a compressed representation

of the abstract features of the input image (as shown in Fig.2).

The main goal is to be able to utilize the generated Ie for the
extraction of multiple analytical observations. In order to make
it versatile enough, we have to ensure that the training process
takes into consideration the loss of each of these model-driven
analytical tasks during the construction of the embedding
and not just the reconstruction loss. Multi-task learning
(MTL) is an effective approach to training and optimizing
a combined model to perform multiple tasks simultaneously.
This conjoined training methodology, where a cumulative loss
from all the related tasks affects the weights of the network,
enables the model to leverage shared information between
tasks. This has been shown to produce better representation
learning, regularization, transfer learning, and improved data
efficiency. Multi-task learning can improve the accuracy of all
models in several ways, including the ability to learn more
general representations of the data, prevent overfitting, and
facilitate the reuse of learned features for related tasks. Over-
all, training our models through the combined architecture, as
shown in Fig. 2, can significantly improve the accuracy and
generalization of machine learning models.
Decoder: The compressed latent representation is passed on
to the decoder network, which uses upsampling of feature
maps through a series of transposed convolutional layers
(deconvolution) and increases the spatial dimensions of the
data to eventually reconstruct the input (IRec). Maintaining
a decoder head trained for image reconstruction serves two
purposes. First, it allows us to use the embedding to recreate
the bands of the original image in case of queries over the
actual bands. Secondly, it allows us to introduce new heads
into the network while ensuring faster re-training convergence
speed.
Classifier: The classifier heads are responsible for generating
a probability distribution over either a binary flag that predicts
whether an image tile has wildfire, or over the possible
wildfire intensity classes. The classifier head takes the latent
representation, Ie, as input and flattens it into a 1D vector.
This vector then passes through a set of fully connected layers
to produce a vector of scores, one for each object class. A
softmax activation is applied to these scores to generate a
probability distribution over the classes.
Semantic Segmentation: We implement a SegCaps [49]
architecture as the deep semantic segmentation head for our
network. We leverage capsules, which are a variation of a
neuron or instantiations that represent a specific aspect of the
object and can encapsulate various properties of an object,
including, its spatial orientation, and scale. This feature of cap-
sule network helps us adapt to wildfires of different geospatial
scales and additionally leverages the capsule’s ability to under-
stand relative positions and orientations of objects in an image
to train on wildfires which also have regional characteristics.
Similar to [49], our network also contains a set of 8 primary
capsules, followed by digit capsules as the output layer that
generates the segmentation output. Another important benefit
of using capsule networks for wildfire segmentation is their

5

ability to reduce the number of labeled datapoints for training,
which is useful for wildfire events, that tend to be pretty sparse.

E. Loss Function:

Our multi-task loss function is a combination of losses from
the heads of the ARGUSNET network. We explain each of
these components below.
Reconstruction Loss: This is the loss component from the
decoder head. Since we mainly want Ie to be useful in extrac-
tion of model-driven analytical information, we prioritize min-
imizing the reconstruction loss (Mean Squared Error) of bands
that are more closely correlated to wildfires, such as NDVI,
land-cover type, and soil-moisture. We update reconstruction
loss and give more weight(W1) to the bands with more
correlation(B1) to wildfire than the remaining bands(B2), i.e.,
W1 > W2:

Lrec = W1 ∗ Lrec(IRec[B1]) +W2 ∗ Lrec(IRec[BRem])

Classification Loss: Our classification loss (Lclass) is com-
puted as Cross Entropy loss. For predicting the presence of a
wildfire in a tile, we train using Binary Cross Entropy Loss
(BCE) and for the multi-label prediction of fire-severity, we
use BCE with Logits loss (combination of a Sigmoid layer
and BCE Loss).
Segmentation Loss: Wildfire-affected regions can comprise
varying portions of the pixels in an image. In case of smaller
fire perimeters, we ensure that we avoid a biased segmentation
model that prioritizes classifying the background pixels. Dice
loss has been shown to be suitable for such class-imbalance
problems [50]. So we make our overall segmentation loss
(Lseg) a combination of the BCE loss and the Dice Loss.

The overall loss of the network is computed as follows:

Lrec = WR ∗ Lrec +WC ∗ Lclass +WS ∗ Lseg

The weights of each loss, i.e. WR,WC ,WS are hyperparam-
eters that we optimize during the training process.

F. Distributed Training

Our ARGUSNET module is trained over a distributed spa-
tiotemporal filesystem. The server-side cluster tracks the fresh-
ness of the trained models with respect to new, incoming data
and triggers a fresh round of training iterations to further fine-
tune old models.

The training of the models is agnostic of the underlying
distributed file system. Our training leverages the spatiotem-
poral partitioning scheme of the storage system by collocating
the training modules with the partitioned data to avoid data
movements during training. The distributed training utilizes
a parameter server to aggregate the weights asynchronously
at certain intervals. We have used Pytorch Lightning [51] in
the Distributed Data Parallel (DDP) mode for our distributed
learning. Once trained, we use the encoder part of the net-
work for our ingestion processes, while the classification and
segmentation branches are used during query evaluations.

G. Hierarchical Embedding Store

The Hierarchical Embedding Store is a lightweight index-
ing scheme to better organize the in-memory latent representa-
tion of the on-disk images tile on each node in the distributed
cluster. The embedding store is a decentralized in-memory
metadata graph that holds the embedding object, Ie, in its
leaf nodes, along with other information that gets populated
with subsequent query evaluations, such as, predicted fire-
masks and flags marking the presence of wildfire pixels in
the corresponding tile. The graph is organized based on the
spatiotemporal metadata of the underlying tile, as shown in
Fig.3 to facilitate fast query evaluation and identification of
relevant in-memory embeddings for each node.

In addition to the Hierarchical Embedding Store, ARGUS
maintains the trained modules, mentioned in the previous
section, in-memory on each node for fast generation of embed-
dings (during ingestion) and for model-based query evaluation
(during runtime).

V. DATA MODEL AND QUERY EVALUATION

Here, we explain the various stages of data ingestion into
our embedding store and the subsequent process of querying
analytical information out of it.

A. Dataset Description

Our input data is curated to incorporate attributes that are
known to influence the likelihood and impact of wildfires in
a region. In doing so, our approach leverages science-guided
machine learning in our modeling for wildfire detection and
segmentation. Science-guided machine learning [52] combines
domain knowledge and scientific principles to enhance inter-
pretability, reliability, and generalization of the trained models.
In order to incorporate prior scientific knowledge into our
model building, we integrate multiple data sources containing
remote-sensing satellite data that provide global, near real-time
information that includes active fires, thermal anomalies, and
the Normalized Difference Vegetation Index (NDVI), which
is computed from the red and near-infrared (NIR) bands of
the VIIRS sensor [47]. Additionally, we incorporate relevant
attributes such as land-cover type, soil moisture, and water
retention, which are scientifically correlated with wildfires. By
integrating these attributes, our model improves the accuracy
of wildfire detection. The target segmentation mask is created
by intersecting the active fire band from the remote-sensing
data with historical wildfire perimeter information. For this
study, we use the wildfires in California during 2019 [48] as
our use-case.

B. Data Preprocessing and Partitioning

The raw data once downloaded and merged needs to be
partitioned for efficient storage, distribution, and querying
over a cluster. We split each multispectral image swath in
terms of its geospatial hash (9-character quadtile key) for
efficient indexing. These image tiles are then partitioned over
the cluster based on their temporal metadata and quadtile key.

6

Quadtiles [53] is a hierarchical grid system that can re-
cursively partition the overall geospatial coordinate space,
incrementally, into a set of squares, each divided into four
sub-squares of equal size. Each sub-square is assigned a
unique code, which is appended to the unique code of the
cumulative square, forming a unique hash string that represents
the geospatial region contained within it. This quadtile key can
be easily manipulated to identify both neighboring geospatial
quadtiles/regions, along with encapsulated sub-regions.

In this work, we use the entire coordinate space of Cal-
ifornia as the overall geospatial region, represented by a
single square with a key of “0”, and recursively partition
them into incrementally smaller quadtile boxes, each divided
into four sub-squares, and appending each with either “0”,
“1”, “2”, or “3”. The generated tiles are distributed among
the cluster nodes based on their quadtile key and within
each node, are organized based on their date and time of
recording. This distribution scheme helps the zero-hop DHT
efficiently identify relevant tiles both during training and query
evaluation.

C. Embedding Store Population

The lightweight indexing scheme of the Hierarchical Em-
bedding Store enables fast population of entries. During data
ingestion, each incoming image tile, before being stored on
disk, gets converted into its low-dimensional latent represen-
tation, Ie, through the encoder module (E), and stored in-
memory. The spatiotemporal information of the tile is used to
add it to Hierarchical Embedding Store, with the reference to
the in-memory Ie object being added to the leaf-node. This
ensures co-location between the on-disk data objects and their
latent counterparts and the embeddings follow the partitioning
scheme of the underlying distributed system.

The creation of latent embeddings using the encoder, along
with its population into the hierarchical embedding store con-
stitutes the computation overhead during data ingestion. AR-
GUS ensures that this computational overhead is insignificant
compared to the actual ingestion process by (1) ensuring that
the tree-based structure of the embedding store facilitates fast
indexing, (2) the encoder-decoder network is kept relatively
shallow, and (3) the multiple incoming tiles are ingested as
batched inputs to the encoder network for faster computation.

D. Containerized Data Ingestion

Since our query analytics framework relies on the effective-
ness of in-memory embedding cache, along with the trained
deep-learning models, we need to ensure that a sufficient
amount of memory and computational resources is available
at all times. We ensure that our data ingestion process, which
also requires GPU for the encoder network, does not adversely
affect the query analytics.

In order to ensure a scalable ingestion throughput, while
maintaining an upper bound on resource utilization, we paral-
lelize and containerize our data ingestion processes. Ingestion
requests for each node in the distributed system are inserted
into a job queue from which they are handled by one of our

Fig. (3) Hierarchical Embedding Store

available ingestion processes. We use Kubernetes [54] replica
sets to ensure parallelization. We set a limit on resource uti-
lization by configuring maximum resource limits on the overall
utilization of our data ingestion containers. The threshold is
set at 10% of the overall CPU, memory, and GPU cores.

E. Query Evaluation

The Hierarchical Embedding Store enables fast identifica-
tion of relevant embeddings for each spatiotemporal query on
each node of the distributed cluster. In a cold start scenario,
the graph is evaluated against the spatiotemporal bounds of the
query in a top-down fashion to identify the latent embeddings
that satisfy the specified predicate. These embeddings are
meant to be probed for potential wildfire regions using our
trained models. However, exhaustively evaluating all candidate
tile embeddings against our segmentation mode, which has
the most complicated architecture, for a sparse event such
as wildfire might lead to prolonged response times. Rather,
ARGUSNET maintains a simpler binary classification model
for the identification of wildfires, which is first run to identify
potential embeddings (containing wildfire) that get evaluated
against the segmentation model. As we show in our bench-
marks, this strategy leads to significantly reduced response
times with comparable accuracy. Additionally, similar to the
case of the encoder, the evaluation of embeddings for both
classification and segmentation models is done in batches.

F. Avoiding Redundant Evaluations

Geospatial access patterns have been shown to follow spatial
and temporal locality [55], i.e., at a given instant, users’
queries over the entire dataset are focused on a small spa-
tiotemporal neighborhood. While effective caching can lever-
age these patterns and greatly improve the hit-rates of our in-
memory structures, this does not avoid redundant evaluation of
our embeddings against the classification and the segmentation
model, which require GPU resources.

The structure of our Hierarchical Embedding Store makes
it conducive to support simultaneous query evaluations and
collaborative analytics. Since it is structurally a feature graph,
it can easily be traversed in a top-down manner while evaluat-
ing a spatiotemporal query. Fig.3 demonstrates our hierarchical

7

strategy of tagging potential wildfire nodes in the Hierarchical
Embedding Store.

Upon evaluation of a tile against a spatiotemporal query, if
a non-zero fire-mask is returned by our segmentation model,
we store a compressed representation of the 2d array along
with the embedding object in the leaf node. When no wildfire
is detected, it will have a blank object and all unevaluated
tiles have a null object attached to their leaf. This helps our
framework avoid redundant computations of the same image
tile against our trained models when there are subsequent
overlapping requests. Additionally, it is to be noted that the
memory overhead of having this fire-mask info is quite low -
given the sparsity of the event, very few nodes will actually
require the fire-mask object to be stored.

G. Optimized Graph Evaluation

Due to the large number of tiles (leaf nodes) that might
be involved in queries over large spatiotemporal extents, we
attempt to identify parent nodes that do not have any tiles
of interest in their sub-tree. We keep track of these nodes
through successive query evaluations over our emdedding store
by maintaining an additional attribute (node importance)
on each node of the Hierarchical Embedding Graph. This
attribute signifies the combined number of unevaluated and
wildfire tiles under each parent node in the graph - a non-
zero importance value means that during evaluation, a parent
node may contain a tile of interest in one of the leaves in its
subtree. Over time, with a meaningful number of queries being
evaluated over our system, a majority of these tags should
amount to 0 (since wildfire is a sparse spatiotemporal event),
which would help us avoid unnecessary traversals down the
graph for irrelevant spatiotemporal extents.

Fig.3 demonstrates the update strategy of node importance
during the evaluation of queries over ARGUS. When the
segmentation output on a tile embedding is found to have
no fire pixels, the node importance of its immediate parent
is decremented. If the count of the parent is 0, we decrement
the count of its immediate parent, and so on, up the graph.
In general cases, this upward traversal of a tree would require
bidirectional links or extra computation. Since our Hierarchical
Embedding Store is a metadata graph, actual upward traversal
up the tree can be avoided, since, given the spatiotemporal
metadata of a node, we can easily deduce the exact parent
node. In successive query evaluations, any node with impor-
tance of 0 will not need to be traversed further since it signifies
non-fire tiles underneath.

H. Pruning: Node Replacement Strategy

Due to the limited size of the cache, we need an effi-
cient strategy to maintain frequently accessed and relevant
information in the cache in case of overflow. In order to
facilitate interactivity in evaluations over the metadata graph,
we need to maintain the most relevant regions in memory,
and to efficiently detect stale nodes and swap them out for
more requested regions, in case we breach the threshold due
to overpopulation.

In case of an overflow, we utilize the importance attribute
of a node in conjunction with the product of the number of
accesses to a node (updated every time it gets accessed), and
a time decay function that takes into consideration the last
time the node was accessed. Using this metric, which we call
adjusted node imporance, our cache pruning strategy
takes into consideration both the relevance of a node at a
particular instant alongside the contents of the sub-tree. Sub-
trees in ARGUS are replaced based on this adjusted importance
score. To leverage the spatial and temporal locality of access
patterns, when a request for a spatiotemporal region comes in,
we mark both the set of Cells in that region and the immediate
spatiotemporal neighborhood of that region as being of future
interest as prescribed in [56].

VI. SYSTEM EVALUATION

A. Experimental Setup

To evaluate compute-intensive operations with high-density
observations, we profiled our system while performing spa-
tiotemporal queries with spatiotemporal data on a cluster of 50
nodes. Each node in our distributed cluster is an Intel Xeon E5-
2620v3, with 64 GB RAM, each with a Quadro P2200 GPU
(5GB of memory) with 1280 cores and several local 7200RPM
SATA hard disks. The data is partitioned throughout the cluster
uniformly based on the first 9 characters of their Quadtile key.

Throughout our experiments, we use 2 types of spatiotem-
poral queries - state-level and county-level. These represent
2 geospatial query sizes with a fixed temporal extent of 2
weeks. We experiment with these 2 ranges to demonstrate
the scalability of our query evaluation. The state-level query
has a Query Polygon (see section III) that covers the state
of California. The county-level query is set to mimic the
size of an average county-wide region, with a latitudinal and
longitudinal extent of 4◦ and 8◦ respectively.

B. Study Region and Datasets

The dataset we use is a composite from multiple remote-
sensing satellite datasets. The first dataset we use is the VNP14
Active Fire Dataset [47], which provides global, and near real-
time information on active fires and thermal anomalies. The
dataset is produced by the Visible Infrared Imaging Radiome-
ter Suite (VIIRS) instrument aboard the Suomi National Polar-
orbiting Partnership (SNPP) and NOAA-20 satellites [57]. The
data has a spatial resolution of 750 meters and is updated
daily and encapsulates information regarding the location, tem-
perature, radiative power, fire mask, and confidence level of
active fires. We coalesce this dataset with VIIRS VNP21/NPP
Land Surface Temperature and Emissivity 6-Min L2 Swath
750m [58] which contains information derived from satellite
observations using physics-based algorithms. The dataset con-
tains multiple data fields, including land surface temperature,
emissivity, quality indicators, and other attributes for both
active fire and non-active fire regions. Both datasets have a
spatial resolution of 750 meters at daily temporal resolution.

8

TABLE (I) Breakdown of Data Staging: Comparison be-
tween time taken to download and pre-process the data against
time to index and load it into ARGUS

Fetch Processing Staging Indexing
Time (Seconds) 132.07 539.53 303 2.04

Percentage 13.52% 55.24% 31.02% 0.2%

Normalized Difference Vegetation Index (NDVI) informa-
tion is incorporated in our data using the VNP09 prod-
uct, which provides the atmospherically corrected surface
reflectance, derived from the VIIRS/NPP Atmospherically
Corrected Reflectance (ACR) algorithm. It provides the surface
reflectance values at a spatial resolution of 375 meters for
the red and near-infrared (NIR) bands of the VIIRS sensor.
The red band of the VIIRS sensor has a wavelength range
of 0.6 to 0.7 micrometers and is sensitive to the reflectance
of vegetation, soil, and water surfaces. The NIR band of
the VIIRS sensor has a wavelength range of 0.84 to 0.88
micrometers and is sensitive to the reflectance of vegetation,
especially the chlorophyll absorption feature. We downscale
these 375m spatial resolution surface reflectance bands (I-
bands) to integrate the information into our dataset. All the
VIIRS [59] data products mentioned above are provided in
NetCDF format tiles that are approximately 3248×3200 pixels
in size, covering an area that is roughly 2436×2400 km2. The
scans of both satellites are co-located, that is, both satellites
capture the same regions at the same timestamp, resulting in
overlapping tiles that can be correctly merged together.

We also incorporate land-cover type information using the
National Land Cover Database (NLCD) [60], as well as at-
tributes relating to soil moisture, erodibility, and water capacity
through the STATSGO [61] dataset. Since the land-cover and
soil-related attributes are static in nature, they are generated
only once for each spatial bound of the image tiles through
the spatial analytics tool over ESRI’s ArcMap. We use the
California Fire Perimeter Database from the Fire and Resource
Assessment Program [48] to create the fire mask using the
methodology explained in section V. The database includes
records of perimeters of wildfires that occurred in the state of
California between the years 1950 and 2019 (inclusive). Our
merged tiles are split into non-overlapping bounds for regions
with quadtiles hashes 9 characters in length over California
and uniformly distributed across a cluster of 50 machines. Our
quadtile distribution is deterministic such that neighboring tiles
are co-located on the same machine. We leverage data locality
by avoiding any network I/O to transfer input tiles by locally
reading data available on each machine.

C. Model Training: Rate of Convergence

Fig.4 shows the rate of convergence of our MTL setup with
encoder output connected to the decoder, segmentation, and
classification heads. We profile the segmentation loss, which is
a combination of Binary Cross Entropy and Dice Loss for our
predicted wildfire-affected area (mask) for both our training
and validation data.

TABLE (II) Comparison of ARGUSNET Evaluation Perfor-
mance against Standalone Segmentation Model

Convergence Time(minutes) Epochs
ARGUSNET 6.31 31

SegCaps 155.8 164

We compare the performance of our multi-task learning
setup with a Classifier, Decoder, and Segmentation head
against that of the dedicated SegCaps modeled after [49]. We
can see, from Table II that the model stabilizes at around
31 iterations. The convergence of the SegCaps model is
significantly slower, around 155 minutes and 164 epochs,
which can be attributed to both the larger input size and the
number of model parameters involved – the total number of
optimizable parameters for our MTL setup was 47.35% that
of a standalone SegCaps model for image segmentation.

Fig. (4) Convergence Speed of Model: Variation of training
and validation error for ARGUSNET over epochs.

D. Model-driven Evaluation Latency vs Query Accuracy

We demonstrate the improvement in evaluation latency of
ARGUSNET over a standalone SegCaps model by profiling
the average evaluation latency of a single-batched input. As
expected, due to the simpler structure of the Segmentation
head compared to a standalone SegCaps, the evaluation latency
of our network is ∼27x faster than that of the SegCaps using
raw image (Table III). This improved latency is achieved while
maintaining a comparable accuracy, as shown in Table III; the
accuracy achieved by the ARGUSNET model is nearly 88%
of that achieved by the SegCaps model. The accuracy can be
attributed to the stability that model training of related tasks
through multi-task learning provides.

E. Data Ingestion Latency

We profile the ingestion rate of our framework. Since our
data is a combination of multiple satellite datasets, we have
evaluated the time taken for downloading, pre-processing,
staging, and indexing time of a day’s worth of data over the
entire state of California. ARGUS is responsible for the index-
ing phase of this process, where embeddings are generated and
entries are populated into the ARGUS metadata graph. Table I
demonstrates a breakdown of time for these ingestion-related
operations. We can see that the indexing phase of the process is

9

very fast and insignificant (0.2%), compared to the remainder
of the process, which requires downloading and processing of
satellite images.

Fig. 5 shows a further breakdown of the indexing process.
Here we index and load a total of 5000 image tiles into
our distributed in-memory graph and evaluate the overall
throughput on each node. Here, we show the overhead of the
encoding process that creates embeddings for each incoming
image tile and stores a reference of the embedding object
on the in-memory graph. Our encoder is simple enough and
combined with the batched computation of embeddings, we
can see that the indexing throughput is only reduced by 16.7%.

Fig. (5) Ingestion Throughput With/Without Embedding:
Comparison of throughput of indexing the in-memory meta-
data graph with and without generation of embeddings through
encoder during ingestion.

F. Query Evaluation

We demonstrate the scalability of our model-driven query
evaluation in Fig.6. We profiled the average query latency for
state and county-level spatiotemporal queries for 2 scenarios -
one over spatiotemporal regions where we know had wildfires
and second over random spans and regions. We execute 1000
different queries over our cluster and evaluated the average
response time at a client node.

As expected, state-level queries take longer to evaluate than
county-level queries, but the average query time is reasonable.
Additionally, we can see that in fire-prone scenarios, the query
latency is higher than in average case scenarios, since the
number of tiles that are actually subjected to the segmentation
model is significantly low, due to the classifier model filtering
them out. The box-plots in Fig.6 show that a majority of the
queries have significantly lower query latency in the average
case since the majority of the spatiotemporal queries have
no wildfire in them and most of the server-side overhead is
simply from evaluation and classification over the in-memory
metadata graph.

Fig.7 demonstrates the utility of having a trained classifier
module to filter candidate tiles before being subject to segmen-
tation models. The evaluation was done using spatiotemporal
queries over a set of county-level wildfire scenarios. We see a
significant improvement in average query evaluation latency in
Fig.7 for evaluation with a filtering using classifier compared

Fig. (6) Query Latency vs Query Size: Evaluation of increase
in latency with the scale of the query’s spatiotemporal extent.

TABLE (III) Comparison of ARGUSNET Evaluation Latency
against Standalone Segmentation Model: ARGUSNET-based
evaluation is 27x faster

Eval. Latency Error(BCE)
ARGUSNET 0.0026 0.195

SegCaps 0.054 0.1714

to segmentation-driven evaluation for all candidate tiles. This
is due to the much simpler structure of the classifier network
than the segmentation head of the ARGUSNET.

G. Avoiding Redundant Computations

Fig.8 demonstrates the effectiveness of our framework in
avoiding duplicate evaluations for overlapping queries from
multiple user requests. We compare the average query eval-
uation latency for a county-size query for wildfire regions
at various levels of cache population. Fig.8 shows the query
evaluation times for a cold-start scenario, where no embedding
has been evaluated yet, a 50% evaluated tree, where we
remove half of the evaluated nodes, and a case where all
candidate tiles in a spatiotemporal query have evaluated entries
in the hierarchical metadata graph. We can see that there is
a significant improvement in query latency for overlapping
queries and our framework effectively identifies and avoids
redundant tile evaluation.

Fig. (7) Latency Improvement With Classifier Head: Com-
parison of latency of a State-level query with and without
running candidate tiles through a classifier first.

10

Fig. (8) Improvement in Query Latency with cached evalu-
ations from historical queries.

VII. CONCLUSION

We described our methodology to track key characteristics
of wildfires over unlabeled high-dimensional satellite image
data collections and enable keyword search for image tiles in
a distributed storage system.
RQ1: Our approach leverages multiple machine-learning
based models to evaluate keyword search queries and the mod-
els demonstrate reliable accuracy. Instead of storing original
image tiles in memory, Argus maintains representative (space-
efficient) embeddings in memory and these embeddings are
used as inputs for the model execution as part of keyword
query evaluation. Our empirical evaluation demonstrates that
the multi-task learning effectively trains the encoder network
that generates a single set of embeddings for multiple wildfire
keywords.
RQ2: Our distributed, in-memory hierarchical embedding
store is structured in the form of a metadata graph for
fast evaluation of spatiotemporal queries and identification
of candidate embeddings. Also, the collaborative update of
the node importance metric of each node in the graph with
successive evaluations leads to a further reduction in evaluation
time for future queries.
RQ3: Our approach reduces the required memory footprints
significantly; this, in turn, allows the number of data objects
indexed in the memory to increase substantially. More im-
portantly, these embeddings reduce model complexity signifi-
cantly by lowering the number of parameters. This allows our
models to consider larger spatiotemporal extents to capture
more comprehensive conditions from the surrounding area
during keyword query evaluations.

VIII. ACKNOWLEDGEMENT

This research was supported by the National Science Foun-
dation [OAC-1931363, ACI-1553685], the National Institute
of Food and Agriculture [COL0-FACT-2019], and a Cochran
Family Professorship.

REFERENCES

[1] Europe’s summer wildfire emissions highest in 15 years, 2022,
https://atmosphere.copernicus.eu/europes-summer-wildfire-emissions-
highest-15-years.

[2] 2022 Incident Archive, 2022, https://www.fire.ca.gov/incidents/2022/.

[3] National Wildland Fire Situation Report, 2022,
https://cwfis.cfs.nrcan.gc.ca/report.

[4] S. N. Koplitz, L. J. Mickley, M. E. Marlier, J. J. Buonocore, P. S. Kim,
T. Liu, M. P. Sulprizio, R. S. DeFries, D. J. Jacob, J. Schwartz et al.,
“Public health impacts of the severe haze in equatorial asia in september–
october 2015: demonstration of a new framework for informing fire man-
agement strategies to reduce downwind smoke exposure,” Environmental
Research Letters, vol. 11, no. 9, p. 094023, 2016.

[5] E. Chuvieco Salinero, F. Mouillot, G. R. Van Der Werf, J. San Miguel,
M. Tanasse, N. Koutsias, M. Garcı́a Alonso, M. Yebra Álvarez,
M. Padilla Parellada, I. Gitas et al., “Historical background and current
developments for mapping burned area from satellite earth observation,”
2019.

[6] D. Fornacca, G. Ren, and W. Xiao, “Performance of three modis
fire products (mcd45a1, mcd64a1, mcd14ml), and esa fire cci in a
mountainous area of northwest yunnan, china, characterized by frequent
small fires,” Remote Sensing, vol. 9, no. 11, p. 1131, 2017.

[7] J. Engelbrecht, A. Theron, L. Vhengani, and J. Kemp, “A simple
normalized difference approach to burnt area mapping using multi-
polarisation c-band sar,” Remote Sensing, vol. 9, no. 8, p. 764, 2017.

[8] U. FEMA, OpenFEMA data sets, 2022,
https://www.fema.gov/about/reports-and-data/openfema.

[9] J. Welty and M. Jeffries, Combined wildfire datasets for the United
States and certain territories, 1878-2019: US Geological Survey data
release., 2020, https://www.usgs.gov/data/combined-wildfire-datasets-
united-states-and-certain-territories-1878-2019.

[10] M. H. Ismail and K. Jusoff, “Satellite data classification accuracy
assessment based from reference dataset,” International Journal of
Geological and Environmental Engineering, vol. 2, no. 3, pp. 23–29,
2008.

[11] Y. Ban, P. Zhang, A. Nascetti, A. R. Bevington, and M. A. Wulder,
“Near real-time wildfire progression monitoring with sentinel-1 sar time
series and deep learning,” Scientific reports, vol. 10, no. 1, p. 1322,
2020.

[12] Z. Tang, X. Liu, H. Chen, J. Hupy, and B. Yang, “Deep learning based
wildfire event object detection from 4k aerial images acquired by uas,”
AI, vol. 1, no. 2, pp. 166–179, 2020.

[13] H. U. A. Tahir, A. Waqar, S. Khalid, and S. M. Usman, “Wildfire
detection in aerial images using deep learning,” in 2022 2nd Interna-
tional Conference on Digital Futures and Transformative Technologies
(ICoDT2). IEEE, 2022, pp. 1–7.

[14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[15] Y. Zhang and Q. Yang, “An overview of multi-task learning,” National
Science Review, vol. 5, no. 1, pp. 30–43, 2018.

[16] W. Schroeder and L. Giglio, “Viirs/npp thermal anomalies/fire 6-min l2
swath 750m v001,” NASA EOSDIS Land Processes DAAC, 2017.

[17] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.
41–75, 1997.

[18] G. H. de Almeida Pereira, A. M. Fusioka, B. T. Nassu, and R. Minetto,
“Active fire detection in landsat-8 imagery: A large-scale dataset and
a deep-learning study,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 178, pp. 171–186, 2021.

[19] P. Borrelli, L. A. S. Rondón, and B. Schütt, “The use of landsat imagery
to assess large-scale forest cover changes in space and time, minimizing
false-positive changes,” Applied Geography, vol. 41, pp. 147–157, 2013.

[20] K. S. Yankovich, E. P. Yankovich, and N. V. Baranovskiy, “Classification
of vegetation to estimate forest fire danger using landsat 8 images: Case
study,” Mathematical Problems in Engineering, vol. 2019, 2019.

[21] D. Rashkovetsky, F. Mauracher, M. Langer, and M. Schmitt, “Wild-
fire detection from multisensor satellite imagery using deep semantic
segmentation,” IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, vol. 14, pp. 7001–7016, 2021.

[22] C.-Y. Chiang, C. Barnes, P. Angelov, and R. Jiang, “Deep learning-based
automated forest health diagnosis from aerial images,” IEEE Access,
vol. 8, pp. 144 064–144 076, 2020.

[23] R. Ghali, M. A. Akhloufi, M. Jmal, W. Souidene Mseddi, and R. Attia,
“Wildfire segmentation using deep vision transformers,” Remote Sensing,
vol. 13, no. 17, p. 3527, 2021.

[24] L. Battle, R. Chang, and M. Stonebraker, “Dynamic prefetching of
data tiles for interactive visualization,” in Proceedings of the 2016
International Conference on Management of Data. ACM, 2016, pp.
1363–1375.

11

[25] L. Lins, J. T. Klosowski, and C. Scheidegger, “Nanocubes for real-
time exploration of spatiotemporal datasets,” IEEE Transactions on
Visualization and Computer Graphics, vol. 19, no. 12, pp. 2456–2465,
2013.

[26] C. A. Pahins, S. A. Stephens, C. Scheidegger, and J. L. Comba,
“Hashedcubes: Simple, low memory, real-time visual exploration of
big data,” IEEE transactions on visualization and computer graphics,
vol. 23, no. 1, pp. 671–680, 2017.

[27] W. Tao, X. Liu, Ç. Demiralp, R. Chang, and M. Stonebraker, “Kyrix:
Interactive visual data exploration at scale.” CIDR, 2019.

[28] L. Santos, J. Coutinho-Rodrigues, and C. H. Antunes, “A web spatial de-
cision support system for vehicle routing using google maps,” Decision
Support Systems, vol. 51, no. 1, pp. 1–9, 2011.

[29] W. H. L. Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli, “Autoen-
coders,” in Machine learning. Elsevier, 2020, pp. 193–208.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[31] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[32] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Deep convolutional
autoencoder-based lossy image compression,” in 2018 Picture Coding
Symposium (PCS). IEEE, 2018, pp. 253–257.

[33] S. Mitra, D. Rammer, S. Pallickara, and S. L. Pallickara, “Glance: A
generative approach to interactive visualization of voluminous satellite
imagery,” in 2021 IEEE International Conference on Big Data (Big
Data). IEEE, 2021, pp. 359–367.

[34] ——, “A generative approach to visualizing satellite data,” in 2021 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2021, pp. 815–816.

[35] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn by
gradient descent by gradient descent,” Advances in neural information
processing systems, vol. 29, 2016.

[36] B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer learning for low-
resource neural machine translation,” arXiv preprint arXiv:1604.02201,
2016.

[37] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[38] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[39] S. L. Pallickara, S. Pallickara, and M. Pierce, “Scientific data manage-
ment in the cloud: A survey of technologies, approaches and challenges,”
Handbook of Cloud Computing, pp. 517–533, 2010.

[40] S. Mitra, Y. Qiu, H. Moss, K. Li, and S. L. Pallickara, “Effective
integration of geotagged, ancilliary longitudinal survey datasets to
improve adulthood obesity predictive models,” in 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). IEEE, 2018, pp.
1738–1746.

[41] S. Mitra, M. Warushavithana, M. Arabi, J. Breidt, S. Pallickara, and
S. Pallickara, “Alleviating resource requirements for spatial deep learn-
ing workloads,” in 2022 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). IEEE, 2022, pp. 452–462.

[42] M. Malensek, S. Pallickara, and S. Pallickara, “Fast, ad hoc query eval-
uations over multidimensional geospatial datasets,” IEEE Transactions
on Cloud Computing, vol. 5, no. 1, pp. 28–42, 2015.

[43] M. Malensek, S. L. Pallickara, and S. Pallickara, “Hermes: Federating
fog and cloud domains to support query evaluations in continuous
sensing environments,” IEEE Cloud Computing, vol. 4, no. 2, pp. 54–62,
2017.

[44] W. Budgaga, M. Malensek, S. Lee Pallickara, and S. Pallickara, “A
framework for scalable real-time anomaly detection over voluminous,
geospatial data streams,” Concurrency and Computation: Practice and
Experience, vol. 29, no. 12, p. e4106, 2017.

[45] Esri, An overview of the Spatial Analyst toolbox,
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-
analyst/an-overview-of-the-spatial-analyst-toolbox.htm.

[46] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”

ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, pp.
149–160, 2001.

[47] W. Schroeder, P. Oliva, L. Giglio, and I. A. Csiszar, “The new viirs 375
m active fire detection data product: Algorithm description and initial
assessment,” Remote Sensing of Environment, vol. 143, pp. 85–96, 2014.

[48] (2023, March) Fire perimeters. [Online]. Available:
https://frap.fire.ca.gov/frap-projects/fire-perimeters/

[49] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” Advances in neural information processing systems, vol. 30,
2017.

[50] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in 2016
fourth international conference on 3D vision (3DV). Ieee, 2016, pp.
565–571.

[51] W. Falcon, “Pytorch lightning,” GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, vol. 3, 2019.

[52] A. Karpatne, G. Atluri, J. H. Faghmous, M. Steinbach, A. Banerjee,
A. Ganguly, S. Shekhar, N. Samatova, and V. Kumar, “Theory-guided
data science: A new paradigm for scientific discovery from data,” IEEE
Transactions on knowledge and data engineering, vol. 29, no. 10, pp.
2318–2331, 2017.

[53] (2018, November) Quadtiles. [Online]. Available:
https://wiki.openstreetmap.org/wiki/QuadTiles

[54] M. Luksa, Kubernetes in action. Simon and Schuster, 2017.
[55] D. Fisher, “Hotmap: Looking at geographic attention,” IEEE transac-

tions on visualization and computer graphics, vol. 13, no. 6, pp. 1184–
1191, 2007.

[56] S. Mitra, P. Khandelwal, S. Pallickara, and S. L. Pallickara, “Stash:
Fast hierarchical aggregation queries for effective visual spatiotemporal
explorations,” in 2019 IEEE International Conference on Cluster Com-
puting (CLUSTER). IEEE, 2019, pp. 1–11.

[57] C. Cao, F. J. De Luccia, X. Xiong, R. Wolfe, and F. Weng, “Early
on-orbit performance of the visible infrared imaging radiometer suite
onboard the suomi national polar-orbiting partnership (s-npp) satellite,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 2,
pp. 1142–1156, 2013.

[58] Hulley, G., Hook, S., Distributed by NASA EOSDIS Land
Processes DAAC., “VIIRS/NPP Land Surface Temperature
and Emissivity 6-Min L2 Swath 750m V001 [Data set].”
https://doi.org/10.5067/VIIRS/VNP21.001, 2012.

[59] Schroeder, W., L. Giglio, NASA EOSDIS Land Processes DAAC.,
“VIIRS/NPP Thermal Anomalies/Fire 6-Min L2 Swath 750m V001
[Data set],” https://doi.org/10.5067/VIIRS/VNP14.001, 2012.

[60] (2016) National land cover database 2016 (nlcd2016) legend.
[Online]. Available: https://www.mrlc.gov/data/legends/national-land-
cover-database-2016-nlcd2016-legend

[61] G. E. Schwarz and R. Alexander, “State soil geographic (statsgo) data
base for the conterminous united states,” Tech. Rep., 1995.

12

