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Abstract—Gridded spatial datasets arise naturally in environ-
mental, climatic, meteorological, and ecological settings. Each
grid point encapsulates a vector of variables representing differ-
ent measures of interest. Gridded datasets tend to be voluminous
since they encapsulate observations for long timescales. Visual-
izing such datasets poses significant challenges stemming from
the need to preserve interactivity, manage I/O overheads, and
cope with data volumes. Here we present our methodology to
significantly alleviate I/O requirements by leveraging deep neural
network-based models and a distributed, in-memory cache to
facilitate interactive visualizations. Our benchmarks demonstrate
that deploying our lightweight models coupled with back-end
caching and prefetching schemes can reduce the client’s query
response time by 92.3% while maintaining a high perceptual
quality with a PSNR (peak signal-to-noise ratio) of 38.7 dB.

Index Terms—gridded datasets, interactive visualizations, spa-
tial transfer learning, distributed cache, geo-ai

I. INTRODUCTION

The proliferation of sensors, observational equipment, and
networked measurement devices has contributed to substantial
growth in data volumes. In addition to the observations of
interest, spatial datasets have geocodes (such as ⟨lat/long⟩),
associated with them. Several data also have timestamps
associated with the observations; the observations are often
multidimensional encapsulating multiple, related features of
interest. We consider gridded spatial datasets that arise fre-
quently in climate, meteorological, ecological, and satellite-
based remote sensing datasets. In gridded spatial datasets,
the data are available at fixed, spatially dispersed points
based on the spatial resolution which determines the spatial
increments at which data are available. For e.g., a 1 km
spatial resolution represents the case that data are available
at 1 km spatial increments. Gridded spatial datasets also arise
in statistically downscaled datasets that produce data points
using interpolation techniques.

Gridded spatial datasets tend to be voluminous, and the
data vector associated with individual grid points includes the
spatial coordinates and chronological timestamps associated
with them. These datasets may be managed using relational,
No-SQL, or document-oriented storage formats. Observations
at each grid point for a particular timestamp are organized
as a single record. Retrieving data for a viewport, thus en-
tails retrievals of records corresponding to the spatial extent
encapsulating the viewport.

Scientists, stakeholders, and users alike rely on visual-

izations to understand spatial variation of phenomena. The
pairwise combinations in which they can be layered have
the asymptotic bound of O(N2) where N is the number of
variables. Each feature of interest may be visualized indepen-
dently, or multiple features may be layered to understand how
they vary with respect to each other. The crux of this effort is
to enable interactive visualizations of gridded spatial datasets.

A. Challenges
Visualizing gridded spatial datasets introduces challenges

that stem from:
1) I/O costs: Visualizations entail data retrievals from the

server side entailing both disk I/O and network I/O. A
related issue is that the back-end storage subsystem services
multiple users concurrently. As an increasing number of
requests come in, I/O contention increases causing through-
puts to plummet on the server side.

2) Interactivity: During visualization operations, users expect
timeliness of the rendering operations during pivots, pan-
ning, roll-ups, and drill-downs.

3) Data volumes: Besides individual data points being mul-
tidimensional, the data are voluminous and exacerbate
challenges relating to both I/O and interactivity.

B. Research Questions
The overall objective of this effort is to significantly reduce

I/O operations performed during ST visualizations. Within this
broader goal, we explore the following research questions:

RQ-1: How can we effectively design models that render
multivariate phenomena over large spatial extents?

RQ-2: How can we alleviate the resource-intensive nature
of model training for large spatiotemporal extents?

RQ-3: How can we effectively combine the space-efficiency
of models with the information available in voluminous,
ground-truth observational data?

C. Approach Summary
Our methodology targets interactive visualizations of grid-

ded spatial datasets. We get there in four phases: (1) we
partition the viewport into tiles and use models to render
tile visualizations; (2) we design and train models that gen-
erate effective visualizations; (3) manage the computational
complexity of training models; and (4) design a scalable,
distributed cache to seed models during inferences.



We first partition the viewport into tiles. The size of the tiles
(i.e., the spatial extent that they represent) is dependent on the
zoom level. Similarly, the number of titles that comprise the
viewport is also dependent on the zoom levels.

Rather than extensively performing disk and network I/O
during visualizations, we use models to render phenomena.
Our models are based on deep neural networks (DNN). We
train models for multiple zoom levels while allowing users
to interactively engage with the visualizations using panning,
zoom-in, and zoom-out operations. Constructing models at
different resolutions that are aligned with zoom levels allows
us to reduce model complexity while ensuring fidelity.

Rather than exhaustively retrieve all data that must be
visualized, we rely on retrieving a fraction of the dataset;
this fractional dataset is then used by our models to render
phenomena while ensuring fidelity and preserving interactivity.

Inferences are performed during the critical path of visual-
izations. During inferences, we seed the model(s) responsible
for rendering tiles within a viewport with a fraction of the
ground truth data. Our models work in tandem with a dis-
tributed, in-memory cache to support the effective seeding of
models during rendering operations.

Training deep networks is resource intensive. We leverage
transfer learning across the different zoom levels to manage
computational complexity. In particular, the structural com-
position of the model at different zoom levels is the same.
The models are parameterized differently for different zoom
levels. Our novel transfer learning scheme performs transfer
learning across different refinement depths. This has two
benefits: (1) the base model, at the coarsest resolution across
diverse variations that occur at larger spatial scales, while (2)
the refined models at higher resolutions account for subtle
variations at the regional levels.

Together, our transfer learning scheme allows the models
to generalize (to diverse input distributions observed over
larger spatial extents), be accurate because they are fine-tuned
to account for regional variations, and be resource efficient
(eliminate duplicate processing).

An in-memory, distributed cache is used for model infer-
ences during runtime. The distributed cache performs prefetch-
ing and evictions based on spatiotemporal cubes. The dimen-
sionality of the cube is based on the tile size for the highest
resolution and the typical size of the temporal window used
for drill-down and roll-up operations. Each cube is assigned a
weighted score based on its past accesses and the likelihood of
subsequent accesses. Crucially, because the weights assigned
to individual scores are across accesses from diverse users, the
eviction scheme accounts for usage across users.

Our benchmarks demonstrate the suitability of our approach
to rendering visualizations; we discuss this in our bench-
marks section. Consider exhaustively rendering phenomena
by retrieving all observations; this takes 56.1805 secs to
complete the fetch-and-render operations. Our approach of
seeding machine learning models while incorporating caching
and prefetching mechanisms renders the same phenomenon

Fig. 1: Rending maximum air temperature phenomenon over
CONUS exhaustively takes up to 56.1805 secs.

in 4.3043 secs, a 92.3% reduction in rendering times while
preserving a high PSNR accuracy of 38.7 dB.

D. Paper Contributions and Translational Impact
Our methodology for rendering spatially evolving phenom-

ena includes the following contributions:
1) A novel scheme to alleviate network and disk I/O costs by

leveraging models to render visualizations at scale.
2) Our transfer learning scheme facilitates the effective reuse

of network layers across different zoom levels. This allows
our models to generalize better while preserving fidelity
while utilizing resources efficiently.

3) A distributed, in-memory caching scheme that facilitates
eviction and prefetching decisions across different user
sessions and exploration trajectories.
Translational impact: The proposed methodology does not

make any assumptions about the underlying spatial referencing
system. As such, it is broadly applicable to gridded datasets
that arise in other domains such as computational fluid dy-
namics. Similarly, gridded datasets occur in non-terrestrial
settings such as atmospheric and oceanic phenomena; this
work translates to those as well.

E. Paper Organization
The rest of the paper is structured as follows. Related

research works in image super-resolution GANs, autoencoders,
inpainting techniques, caching, and rendering schemes for vi-
sualization are discussed in Section II. The approach including
model architecture, back-end caching, and transfer learning
schemes are covered in Section III. Section IV covers the
experimental setup, network, disk I/O reduction, and model
performances deployed using caching schemes. In Section V,
we conclude our work and present future directions.

II. RELATED WORK

Front-end visualization - Visualizing voluminous geospa-
tial datasets can incur high latency, network I/O, and memory
consumption for transferring data across servers and client
machines. Kraak et al. [1] provide techniques to optimize the
visualization of geospatial data. In paper [2], authors leverage
data reduction techniques to project high-dimensional data
to 2D planes for fast visualizations. Similarly, in paper [3],
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authors leverage the concept of self-organizing map methods
for dimensionality reductions and clustering. Paraview [4] is
a visualization tool for voluminous datasets that allows clients
to run tasks in parallel over distributed memory.

Caching - Visualization can also be accelerated by de-
ploying caching mechanism [5], [6] in the back-end servers
or client’s machine. In the paper [7], authors present an in-
memory caching mechanism distributed across machines that
performs hierarchical aggregation for serving fast queries.
Authors in [8] propose intelligent caching strategies using
replication and distributing data using spatial properties. In
another work [9], a predictive model was presented to pri-
oritize caching of geospatial tiles by learning high-priority
geographic regions. Such caching schemes are often combined
with streaming [10] and sketching [11] to facilitate rapid
visualizations.

Autoencoders - Autoencoders are machine learning al-
gorithms utilized for representational learning. Autoencoders
are widely used for reducing data dimensionality and noise
in inputs. There are many different variants of autoencoders
developed for a variety of applications. Such as image com-
pression [12]–[15] where the model learns to interpret the
relation between input and output using an informational latent
vector. Another variant is de-noising autoencoders where the
model is generalized well enough to regenerate a noisy input
vector and it is widely used in speech recognition [16], [17].

An autoencoder [18] comprises an encoder, a decoder DNN,
and a feature vector. Encoders are utilized to extract the latent
vectors (features) from a given set of input features. The
extracted features typically capture nuances of the input image
such as color hint, object position, etc. The bottleneck latent
vectors are forced to learn a compressed form of the input
and can vary in size depending on the complexity of the
input dataset and desired compression [19], [20]. The decoder
network reconstructs the latent vector back to its closest true
representation. The major drawback of autoencoders arises
from storing these latent vectors on the client machines for
reconstruction while assuring high fidelity.

Super-resolution GANs - Super-resolution GANs are ML
models, which we also deploy in our approach. Super-
resolution is an image reconstruction technique to enhance
the quality/resolution of a low-resolution input image. There
are several areas in which super-resolution methods are applied
such as medical imaging, video processing, satellite imageries,
etc [21]–[24]. The super-resolution can be performed by utiliz-
ing multiple shifted low-resolution images capturing different
regions in a low-resolution image or employing convolution
layers in DNN models.

A high-performance boost was observed when these net-
works were incorporated with Generative Adversarial training
[25]. GANs comprise two separate neural networks, a gener-
ator to predict high-resolution images and a discriminator to
distinguish between the generated images and corresponding
true values to push the learning of the generative model. Mod-
els [26] enhance the perpetual quality of the image by reducing
artifacts and blurriness. The GAN models are usually memory

intensive and require high computational requirements.
In [27] authors propose a memory-efficient method to de-

ploy these GAN models in mobile devices using a multi-scale
feature aggregation network while maintaining the desired
accuracy. The major drawback of many of these networks is
the dwindling perpetual quality of images when performing
super-resolution of more than x4 resolution.

Inpainting ML models - Our approach can also commune
to inpainting techniques [28], [29] which involves ML models
to reconstruct missing patches in the input image. These
techniques are proven to perform well for tasks such as
removing clouds from satellite images, image restoration [30],
or object removal. The patches can be filled by capturing
patterns or textures from similar neighborhood regions. How-
ever, they eventually suffer from failure in capturing global
patterns [31], [32]. Some works [33], [34] involve using
GANs with dilated convolutions and ResNet architectures to
improve image quality. In [35], authors suggest using partial
convolutions for reconstructing irregular patches. While in [36]
authors improvise the UNet architecture to reconstruct patches
in the corrupted images. Our work involves filling the missing
regions at regular space intervals and thus is more acceptable
as a super-resolution application.

III. METHODOLOGY

Our proposed methodology encompasses models, data struc-
tures, algorithms, and caches working in concert with each
other to ensure effective visualizations at scale. In particular,
these include:
• Data wrangling and sculpting operations including construc-

tion of GeoTIFFs from gridded datasets.
• Designing deep learning models to render spatiotemporally

evolving phenomena.
• Designing transfer learning schemes that manage computa-

tional complexity and accelerate the training of models.
• A distributed cache to facilitate fast, effective seeding of

models during inferences.
• Dynamic visualizations at the client side.

The distributed cache is a memory resident. It incorporates
mechanisms to perform evictions and prefetching based on
the access trajectories.

A. Data Wrangling: [RQ-1]
Our methodology targets the visualization of gridded

datasets; each grid point is identified by ⟨lat/long⟩ coordi-
nates and includes a vector of observations alongside a times-
tamp. In this study, we consider one of the most well-known
gridded datasets, MACA Multivariate Adaptive Constructed
Analogs) [37]. The MACA dataset represents an amalgamation
of over 20 global climate models (GCMs) downscaled to 4km
(1/24th degree) spatial resolution and representing different
outcomes for the Radiative Concentration pathways for green-
house gas emissions. We consider the RCP 8.5 trajectory. We
consider data encompassing projections for the years 2023-
2030 for the continental United States (CONUS).

Figure 2 shows the meteorological parameters of the dataset
that we focused on and the range of their values. This includes
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Fig. 2: Range of values for various meteorological parameters
at sampled locations from the MACA dataset.

multiple parameters such as maximum and minimum temper-
ature, maximum and minimum relative humidity, precipitation
accumulation, downward surface shortwave radiation, wind
velocity, and specific humidity.

Tiling scheme. An integral part of our methodology
involves constructing GeoTiff images out of gridded datasets
and partitioning them into smaller spatial extents of 256 x 256
km. The raw gridded MACA dataset for CONUS is stored in
an Apache Druid datastore. Druid includes support for query
plan optimizations over large data collections. We construct
3D images/GeoTIFFs using latitude and longitude information
provided for each grid point at 4 km resolutions alongside 10
meteorological variables.

Zoom levels. Within the viewport, the canvas is partitioned
into tiles. The size of these tiles corresponds to the spatial ex-
tent under consideration. Visual explorations result in changes
to the tiles being rendered, the spatial extents that the tiles
correspond to, zoom levels, and the resolutions associated with
the visual artifacts.

During visual explorations, we support (1) spatial naviga-
tions encompassing zooming-in and zooming-out, (2) temporal
navigations encompassing drill-downs and roll-ups over time
for the entire viewport, and (3) panning operations where
a user might navigate sideways in space and/or time. Con-
sequently, tiles exist across space and time; these tiles are
materialized (i.e., computed and rendered) based on the user’s
exploration trajectories.

From the perspective of how tiles occur in space-and-time,
there is a great deal of structural similarity. Zooming in renders
spatial extents at increasingly higher resolutions. The spatial
extent being rendered is smaller, but the rendering themselves
gets more detailed e.g., topographical or structural characteris-
tics; similarly, during zoom-outs, while one set of tiles is fused
into a large tile, multiple new tiles at coarser resolutions are
rendered to complete the viewport. Hierarchically, the zoom-
in/zoom-out (and the temporal drill-down/roll-up) result in
tiles being created, fused, and/or new ones brought in. This
is analogous to fractals where self-similar patterns appear at
different scales.

To ensure residency of the DNN models within the GPU
RAM during training, we partition the GeoTIFF images into
smaller tiles each of 256x256 pixels at 4 km resolution. As
shown in Figure 3 (a), we start at resolution level 1 (coarsest
spatial resolution), where the raw tile (256x256 pixels) is
spatially sampled such that each pixel is 16 km apart, resulting

Fig. 3: Constructing images out of gridded dataset and break-
ing them into multiple tiles at different spatial resolutions. At
resolutions 1, 2, and 3, pixels are spatially 16 km, 8 km, and
4 km apart respectively. Here, blue dots represent the fraction
of data ingested by the model for inferring the complete tile.

in a tile of size 64x64 pixels. While refining tiles at resolution
level 2, raw tiles are sampled to have pixels at an 8 km spatial
distance as shown in Figure 3 (b). Merging four such nearby
tiles each of 64x64 pixels in size at resolution level 2 results in
the same image as in Figure 3 (a) but at finer spatial resolution.
The last resolution level, level 3 is where the finest resolution
of a given region is available; here, every pixel is 4 km apart as
in the actual dataset. Merging 16 such tiles each of 64x64 size
results in the same image as in Figure 3 (a and b), however
at the finest spatial resolution possible.

Geocoding. At each spatial zoom level, the gridded dataset
tiles are partitioned into smaller tiles with 64x64 pixels. The
model is trained to reconstruct high-resolution meteorological
values for a fixed-size spatial extent. The size of the spatial
extent is based on the memory and computational footprints
associated with model training. Our partitioning scheme in-
corporates a deterministic scheme where each such tile is
associated with a character or string of characters called a
geostring. This allows us to partition spatial extents into a set
of equal-sized non-overlapping bounding boxes. Proximity (or
closeness) in the geostring space translates to spatial proximity
at any zoom level. As we refine the spatial resolution of
the tile, we subsequently divide the geostring into 4 smaller
bounding boxes and attach a single character - ‘a’, ‘b’, ‘c’,
or, ‘d’. The partitioning scheme is hierarchical and maintains
parent-child relationships, for say, part of the observations
captured by geostring ‘f’ at resolution level 1, are represented
at finer resolution by geostring ‘fd’ at resolution level 2 and
geostrings ‘fda’, ‘fdb’, ‘fdc’, and ‘fdd’ at resolution level 3 as
shown in Figure 4.

B. Designing Deep Neural Network (DNN) to render phe-
nomena: [RQ-1]

Our methodology involves seeding the models with a frac-
tion of the actual data. This allows us to alleviate expensive
disk and network I/O requirements by leveraging DNN models
to render the phenomena. Rather than using the entire set
of available observations, we train DNN models to super-
resolve and learn non-linear interactions from a small fraction
of available data to render the finest resolution tile of size
64x64 pixels for 8 meteorological parameters.

DNNs. In this section, we discuss modeling the network
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Fig. 4: Hierarchical partitioning of CONUS into non-
overlapping equal-sized tiles at three different zoom levels.

Fig. 5: The architecture for our super-resolution DNN. Re-
peated cells of convolutional layers with skip connections
followed by downscaling blocks to increase spatial resolution.

which ingests a fraction of data to infer real-time meteorolog-
ical information by leveraging self-supervised learning. The
core of our deep neural network architecture is inspired by
SRGAN [38], which is a super-resolution generative adversar-
ial network as depicted in Figure 5. We provide the model
with a location hint by generating an embedding vector for
the geostring associated with the input tile. The model also
ingests the temporal hint provided as an embedding of the
associated month. This helps in learning interactions between
the labeled pairs - input and full output images, based on a
particular region and seasonality. One such example is the low
temperature in the winter months or the high humidity during
the rainy seasons. This allows the model to generalize better
on unseen data (e.g., from different years than training data
but during the same season). Both the spatial and temporal
hints are passed through the repeat vector layer and reshaped
into 4x4x1 dimensions so that they can be merged with low-
resolution input data (4x4x10).

The low-resolution input image is generated by selecting
every 16th pixel of the tile in both the x and y dimensions
for each meteorological parameter. Training the DNN model
with limited true information results in very low network I/O
performed to get these values from our back-end distributed
cache to the client’s device. The model learns to map as low

as 0.003906 fractions of true values (16 points) to generate
high-resolution visualization of the tile (4096 points). We also
allow the single DNN model to train across multiple features
of interest by leveraging the non-linear interactions occurring
between these variables. The meteorological variables are of-
ten inter-connected; for example, the temperature is inversely
proportional to relative humidity throughout the day. Providing
the model with all parameters allows the model to learn
inter-feature relationships. This low-resolution input image
is concatenated with temporal and spatial hints and passed
through pre-residual blocks comprising 2D convolution layers
and a ReLU activation function. The input meteorological
parameters are normalized and scaled individually between 0-
1 for land regions. The ReLU activation function ensures that
values emerging from the convolution layer do not saturate.

The pre-residual blocks are followed by 8 blocks of residual
blocks connected through skip-connections to avoid vanish-
ing gradients. The residual block comprises two convolution
layers, layer normalization, and a ReLU activation function.
The number of features in convolution layers is increased and
kernel size is kept at 5x5 to extract low-level feature maps
across the neighboring spatial region in the image in order
to retain crucial information for higher spatial resolutions.
Here, we perform layer normalization that normalizes the
activations along the parameter/feature dimension instead of
normalizing the batches. This is to account for the fact that
each of the parameter values is at different ranges. Next, we
perform upsampling of the image by consecutively increasing
the spatial dimension of the features maps using a block of
convolutional transpose layers and an activation layer to infer
the full image with all 8 output parameters.

The number of output features at each convolutional, con-
volution layer, learning rates, and kernel size is fixed by
performing hyper-parameter tuning using Hyperband [39].
Determining a robust set of hyperparameters is crucial for
expedited model training and better performance. We leverage
the Tensorflow Hyperband tuner which speeds up extensive
parameter grid searches through adaptive resource allocation
and early stopping to identify best-performing combinations.

Loss Function. Our DNN model’s weight and biases get
reparameterized using an adaptive loss function. The MACA
dataset we consider is available for terrestrial regions over
CONUS. To deal with missing observations, we force our
model training to learn from a land mask. The mask pixel
is set to 0 if there is no observation available for that
location, otherwise, to 1. Therefore given a model-predicted
image and target image, we allow the model to pass the
errors through back-propagation based on only the MSE errors
(Mean-squared errors) over land pixels only and update the
gradients accordingly. This is shown in the equation below -

Loss =
∑64∗64

n=1 (|Predictedn−Targetn|2∗land mask)
64∗64 (1)

Distributed Training. To orchestrate model training and
targeted refinements across different spatial scales, we leverage
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Fig. 6: The tree structure fixed at depth of 4 maintained to keep
track of model instances prediction accuracies and a pointer
to the model image in memory.

a tree-based data structure, the refinement tree. The refine-
ment tree encapsulates information about the spatial extents
(identified using geostrings) for which model instances were
created and the hierarchical relationships, via transfer learning,
that exist between the parent and child. Each node includes
metadata information regarding the model’s performance and
informs refinement efforts. The root node represents the entire
spatial extent under consideration and serves as the conduit
for all traversal operations within the tree. Traversing the
root refinement tree at different depths represents models for
progressively higher resolutions and smaller spatial extents.
This is depicted in Figure 6.

Initially, the models associated with all nodes at depth 1
are marked with a testing accuracy of 0 dB PSNR indicating
that the corresponding model instance needs to be refined.
Model instances associated with a particular depth are trained
in parallel across separate GPU cores over multiple machines.

Model instances that meet the desired accuracy thresholds
are deemed performant and are not subject to further refine-
ments. The desired threshold values are configured to conform
with acceptable PSNR values for images within the range of 30
to 50 dB (the highest possible value) [40]. In our methodology,
PSNRs were set at 30 dB, 34 dB, and 36 dB for resolution
levels 1, 2, and 3 respectively.

The model structure and weights are then used to transfer
learning and warm-start model training for the smaller spatial
extents. During transfer learning the latter upscaling stages are
deemed trainable and the process repeats till we spatially cover
all refinement levels. Model instances for the smaller spatial
extents are fine-tuned with data that are specific to the extent
under consideration. Once all nodes are deemed to have met
the accuracy thresholds, the training phase is completed. The
models are then used for inferring.

C. Hierarchical Transfer Learning: [RQ-2]
We design DNN models for different resolutions that are

aligned with the diverse zoom levels that we support. This
reduces model complexity while also ensuring high fidelity.
Models are trained separately for each refinement/zoom level.
At any zoom level, we identify spatiotemporally proximate
data during model training and inferences to seed the model.
At any zoom level, there are multiple instances of DNN mod-
els trained to achieve the highest fidelity for every location.

Fig. 7: MSE Errors while training the DNN models using
our spatial hierarchical transfer learning approach for each
refinement level.

We start our model training at zoom level 1 which renders the
phenomenon at the coarsest spatial resolution, here we separate
CONUS into three distinct regions requiring the seeding of
models. Each of these three models is trained in parallel
over multiple machines. The weights and biases are initially
parameterized by random Gaussian distribution vectors. Once
all the models reach the threshold of testing PSNR (Peak-to-
signal ratio) accuracy of 30 dB, we halt the training.

The trained models from the previous zoom level l are then
used to initialize the weights and biases at the subsequent
zoom level. At the next zoom level (l+1) and similarly
(l+2), we render full tiles at a much finer spatial resolution,
by reducing the spatial extent of each bounding box while
increasing the spatial resolution of the inferred sample. We
group spatiotemporally proximate regions into a much higher
number of clusters, this is to ensure that seeded models fine-
tune better for diverse geo-locations and generate outputs at
higher fidelity as the same 64x64x8 image now carries much
finer meteorological information.

The improvement of transfer learned models by passing
model parameters hierarchically across spatial resolutions is
evident from Figure 7, where we show the reduction in MSE
loss over training progression for models seeded for zoom
level 1 (trained from scratch) vs loss errors for subsequent
zoom levels after warm-starting the learning from previous
zoom refinement level. While the model for coarsest resolution
takes much longer to converge and has high errors (0.5 MSE
errors) at the start, models at subsequent zoom levels 2 and
3 benefit from transfer learning and the non-linear patterns
observed at those spatial extents at coarser levels. The learning
begins at very low MSE errors (0.1 and 0.05 MSE errors) and
converges much faster at every consecutive spatial zoom level.

Our overall spatial transfer learning scheme is hierarchical
with each refinement being performed on a finer, more-
proximate zoom level. The transfer freezes the weights and
biases of the initial residual blocks of the model, and only
the final layers of the DNN are trainable. This results in
expedited training of the model while improving the quality
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Fig. 8: A comparison of MSE losses during our DNN model
training with and without spatial transfer learning at zoom
levels 2 and 3.

of inferences. Before training the individual models at zoom
levels l+1 and l+2, we identify regions where our parent model
produces images that exceed the image quality thresholds and
are thus deemed performant for generating inferences for that
spatial extent. The scheme further allows us to reduce the
number of regions (and the new models) that need to be fine-
tuned thus facilitating a reduction in training times. In Figure
8 we provide training loss from models at zoom levels l+1
and l+2 trained by “cold-start” weight initialization vs getting
“warm-starts” from coarser spatial resolution models. Models
trained from scratch have much higher error loss and take an
extensive number of iterations to converge when compared to
the transferred learned model. Further, models at l+2 spatial
zoom level entail reduced training times with higher accuracy
when contrasted with models at zoom level l+1. In Section
IV, we provide empirical benchmarks and profile resource
requirements for training models at each zoom level.

D. Back-end Distributed Caching: [RQ-3]
We designed a distributed cache service that enables fast

querying over the gridded datasets. The cache is distributed,
memory-resident, and backed with eviction and prefetching
schemes that ensure that only a small subset of the data is
preferentially selected for inclusion in the case. The distributed
cache presents a service interface to the visualization clients
and comprises three components: (1) A REST API that inter-
cepts queries issued by the client to the cache/database service,
2) A coordinator node that reads and writes data to the storage
nodes, and 3) a query interface to issues queries to the primary,
on-disk database during cache-misses and prefetching, (see
Figure 9). We leverage the Python Flask library [41] and the
Redis in-memory key-value store [42] to implement the REST
API and distributed cache respectively. Our primary, on-disk
data store comprises a distributed cluster of Apache Druid [43]
nodes.

Data items within the cache are organized as data cubes
so called because they encapsulate data from a 2D spatial
extent alongside time. Each cube represents data from the

Fig. 9: Components of the back-end distributed caching.

finest resolution geostring and the temporal scope of the cube
is based on the average drill-down/roll-up along the temporal
axis as discussed in III-E. The size of the cubes allows us
to address boundary conditions during incremental panning
operations. Additionally, the caching service supports batched
aggregate operations that process read/write operations for
multiple days i.e., multiple cubes with a single call to the
storage server, thus reducing the number of network I/O
operations. Data evictions are performed in units of data cubes
as well.

The interactions of the aforementioned components take
place in multiple stages. When the client issues a query
containing the geostrings and the corresponding timestamps,
the REST API intercepts the requests and issues a call to the
caching service. The caching service then looks up the data
record to check if it is present in the cache. If the record is
found (a cache hit), the service returns the record back to the
client. Otherwise, the caching service issues a query to the
main database and sends the data queried from the database
back to the client machine, while also caching the newly
queried record for future use. The cache uses an LRU-based
eviction scheme to make space available for newly fetched
items.

Data Prefetching. In addition to servicing queries as they
occur (the reactive mode), the caching service also incorpo-
rates a proactive mechanism that tries to anticipate queries
that may be issued in the future and prefetch any necessary
data by storing them in the cache. Anticipatory prefetching
ensures that any I/O that may need to be performed during
cache misses is performed away from the critical path during
interactive visualizations.

Our prefetching schemes target both the temporal and
spatial dimensions of the dataset.
• Spatial prefetching: The client usually issues a query for

a viewport containing multiple spatial extents (geostrings).
When a query comes in, we prefetch and store data spe-
cific to proximate spatial extents. Such prefetching allows
effective support for typical spatial panning and zooming
operations.

• Temporal Prefetching: We supplement our spatial prefetch-
ing with prefetches in temporal proximity with 2n days’
worth of data (+/- n days around the original query times-
tamp). The variable n is a configurable parameter. We also
include support for prefetching data in temporal increments
of weeks or months around the specified time point.
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Fig. 10: Spatial prefetching performed by the back-end
cache. The region highlighted in purple represents one of the
geostring included in the client’s initial query over a random
viewport. The pink regions depict the spatial extents that are
prefetched at the same resolution level along with regions at
finer and coarser spatial resolutions.

Scalability. The caching service is distributed over a cluster
of 12 storage nodes. To enable horizontal scaling, we imple-
mented functionality to dynamically add or remove storage
nodes based on loads at the backend services. The service is
also capable of rebalancing (re-sharding) based on data dis-
tribution and dispersion in the cache. Rebalancing operations
are invoked periodically at configurable intervals, based on
sustained utilization spikes at certain nodes.

Eviction schemes. The caching service leverages the basic
LRU scheme and updates metadata to ensure targeted evictions
of records. We allow users to configure the caching service
with evictions based on LRU with optional support for an LRU
scheme that incorporates elements of LFU (Least frequently
used to achieve finer control over the eviction process. We
maintain a stateful variable to record the number of times a
record has been accessed. At the time of eviction, we check
each element’s access frequency against a preset threshold
which allows us to keep the most frequently accessed records
in the cache, thereby overriding the primary eviction policy
for a select number of records.

E. Interactive Visualization: [RQ-2]
Our overall system comprises the front-end client machine

that issues queries over a viewport. The viewport is partitioned
into fixed-size tiles for each spatial resolution. At spatial
resolution 1, the viewport tiles are represented by a 416 km
x 556.6 km area, at resolution level 2 it is 227 km x 417
km and at resolution level 3 viewport captures an area of 138
km x 283 km. Given the lat/long bounds of the viewport, our
framework identifies the geostrings that are enclosed by the
bounding box.

Users have the ability to request time-series data for any
timeframe. This information is encapsulated in a JSON object
and passed as a request to our back-end cache. The query
response is the fraction of true values for each geostring for n
number of days. This response is then ingested by our DNN
models deployed on the client’s machine. The inferences of
the model are stitched together to render the phenomena over
the viewport.

Model Pruning. To render visualization at the client’s
machine, it is crucial that the model inferences are performed
fast while assuring the low memory footprints and high
quality of inferences. The client machine can be a commodity
machine with a single GPU core, fitting the model instances in
machine memory is crucial for our framework. To ensure space
efficiency and reduce the memory footprints of our model, we
leverage Tensorflow optimizations post-model training [44]. In
particular, these optimizations allow us to prune the weights
gradually for all layers in the model which don’t affect the
model’s outputs. The models are fine-tuned for 10 epochs at
5% increments in the amount of pruning (starting with pruning
40% weights) until it reaches 80% pruning. At each step, the
weights of the newly pruned model are adjusted to attain
desired inference accuracy. Finally, we use the Tensorflow
Lite library [45], [46] which converts the model weights
into Tensorflow Lite graphs that are lightweight models with
weights at 8-bit precision. The optimization aids in reducing
latency and inference time, especially for mobile applications.
In Table II, we report the amount of compression achieved
for all models at different spatial resolutions. We achieve x23,
x19, and x16 fold reduction in memory footprints at resolution
levels 1, 2, and 3 respectively.

User query design. To assess the performance of our
framework, we synthesize queries that are aligned with visual
analytic operations over large spatial-temporal extents [47].
These queries include multiple types of operations such as
panning, zooming (along the spatial dimension), and drilling-
down/roll-ups along the temporal dimension. Spatial panning
includes moving the viewport around the target region at the
same spatial resolution level to explore a neighborhood. We
also zoom in/out spatially over a region to render finer or
coarser-grained images respectively. For temporal panning op-
erations, users can query multiple days’ worth of information.
Our system is capable of rendering visualization for 7, 14,
and 21 days. The temporal operations incorporate configurable
support for weekly (+/- 3), monthly (+/- 5), and yearly (+/- 3)
temporal jumps into the past or the future.

IV. SYSTEMS BENCHMARKS

A. Experimental Setup
We profile our methodology over a cluster of machines. The

backend distributed storage that hosts our MACA dataset is
dispersed over 50 machines. Our distributed, memory-resident
cache encompasses 12 machines. We synthesize client queries
using a service that is deployed on each client machine and ini-
tiate a set of concurrent queries that are aligned with common
user interaction patterns. Each of our client services runs on
machines with Xeon E5-2620, 64 GB Memory coupled with a
single Quadro P2200 GPU (5GB of memory with 1280 cores).

Throughout the experimentations for rendering phenomena,
we report performance across three spatial resolutions as
discussed in Section III i.e., resolution level 1 (coarsest with
16 km pixel spacing), resolution level 2 (medium with 8
km pixel spacing), and resolution level 3 (finest with 4 km
pixel spacing). To profile our system, we design queries
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Total Training Time
(in epochs)

Number of training
samples requiredResolution Level Scratch Transfer Learned Scratch Transfer Learned

Level 1- Coarse 7000 - 23,725 -
Level 2 - Medium 8000 700 76,650 25,570

Level 3 - Fine 10,000 500 262,800 127,750

TABLE I: Comparing the training requirements for models at
each spatial resolution level in terms of epochs and the number
of training samples models got trained.

that reflect typical user query patterns such as spatial zoom-
in/outs, panning around a region, and exploring temporal drill-
downs/roll-ups (jumps w.r.t weeks, months, and years). Lastly,
to gauge the efficiency of our back-end cache, we contrast
performance in three different settings - (1) bounding box
queries that exhaustively fetch all the gridded points over the
queried lat/long bounds at 4 km spatial resolution, (2) Without
caching where back-end responds with a fraction of data
points essential for performing model inferences but without
caching and prefetching operations, and (3) With caching and
prefetching only a fraction of data.

B. Modelling and Transfer learning scheme: [RQ-1, RQ-2]
One of our objectives is to profile model training require-

ments to render high-quality phenomena with and without
the transfer learning scheme discussed in Section III-C. The
training cost of the model is directly associated with the
memory footprint of the model, the number of training samples
ingested which can further be data parallelized using dis-
tributed training across machines, and the number of iterations
required to reach the desired accuracy threshold.

As seen from Table I, the number of training iterations
reduces 11-fold and 20-fold for resolution levels 2 and 3 re-
spectively when utilizing our spatial transfer learning scheme.
This directly affects the training time requirements for transfer-
learned models, as models are pre-initialized with weights
over diverse and coarser resolutions spatial extents but still
incorporate phenomena hints for the localized region. The
reduction in training time is also contributed by the fact
that while performing transfer learning we first estimate the
accuracy of the parent model over finer spatial extents. At
some of the spatial extents, the parent models are deemed to
be the performant, and training data for those extents need
not be accessed. At resolution levels 2 and 3, the number of
training samples is reduced by one-third and one-half when
compared to training models from scratch. At resolution level
1, each tile covers larger spatial regions, the number of samples
is very low and we stop training models at a relatively low
accuracy threshold to render coarser images.

In Table II, we report inference times for models to render
phenomena at each resolution level for a day, a week, and
two weeks. With increasing resolutions, CONUS is divided
into a higher number of smaller spatial extents which entails
a greater number of models. We also report the number of
models deployed at each resolution level. At level 1, three
models suffice to reach threshold accuracy across all the
spatial regions. At finer resolution levels, 6 model instances are
needed at level 2 and 10 for level 3. For any resolution, models

Time taken to render
gridded dataset for n daysResolution

Level
1 Day 7 days 14 days

No. of model
instances

Total memory
consumption

Total memory
consumption

(After compression)Level 1- Coarse 31.2 ms 88.6 ms 142.6 ms 3 1.575 Gb 68.47 Mb
Level 2 - Medium 32.1 ms 106.6 ms 193.16 ms 6 3.15 Gb 165.78 Mb

Level 3 - Fine 36 ms 189.1 ms 364.1 ms 10 5.25 Gb 328.125 Mb

TABLE II: Comparing the inference time for rendering tiles
over CONUS for each spatial resolution over 7, 14, and 21
days. The table also contrasts the number of models deployed
at each resolution level and their memory consumption.

Fig. 11: (a) PSNR accuracy and (b) MAE errors on testing
samples with error bars for each of the 8 meteorological
parameters.

that are being used are compressed and memory-resident.

We also compare the quality of inferences made by models
across a variety of meteorological parameters (shown in Figure
11). We train models to learn inter-feature dependencies over
multiple phenomena. A key aspect of our methodology is
to render phenomena with high fidelity. From the figure,
we observe that models perform equally well on all the
parameters with an average PSNR accuracy of above 30 dB.
We observe slightly high errors for the maximum relative
humidity parameter due to a higher variance in the original
raw values.

In Figures 12-15, we compare the perceptual quality of the
model inferences to render the visualization of four the mete-
orological phenomenon alongside the actual sample points at
different resolution levels. At each resolution level the model
inferences are stitched together to render tiles over CONUS
or a viewport on the client’s machine. At resolution level 1,
the visualization has slightly low perpetual quality with high
variations along the borders of the smaller spatial extents or
tiles. As the resolution of inferences is refined, the visual
quality of the phenomenon is also improved and becomes
indistinguishable from real samples at the finest resolution.

The observation can also be reinforced by Table III, where
we report the testing PSNR accuracy and mean absolute errors
for tiles captured from the timeframe that is unseen by models
during training. The PSNR accuracy achieved is 36.2 dB,
36.34 dB, and the highest with 38.78 dB.
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Fig. 12: Visualizing the vapor pressure deficit phenomenon over CONUS at resolution level 1, and smaller viewport at
subsequent resolution levels. It measures the difference between the amount of moisture in the air and the amount of moisture
the air can hold when it is saturated at 2m above the surface of the earth. (a) Inferences predicted by models. (b) The actual
sampled image without model deployment.

Fig. 13: Visualizing the northward wind component at three resolution levels. It depicts the wind speed in meters per second
in the northward direction at 10m height above the surface. (a) Inferences predicted by models. (b) The actual sampled image.

PSNR (dB) MAEResolution Level Accuracy Standard Deviation Error Standard Deviation
Level 1- Course 36.26 2.15 0.011275 0.000622

Level 2 - Medium 36.34 1.7 0.011270 0.000696
Level 3 - Fine 38.78 1.87 0.009750 0.000611

TABLE III: The testing accuracy of models at each resolution
level for years 2028-2030 in terms of PSNR and Mean
Absolute Errors along with standard deviations.

C. Interactive queries: [RQ-3]

To measure the overall performance of our proposed work,
we report the turnaround time to service an end-to-end client

query over a viewport for 7 days. This also includes the time
taken to infer and render the phenomenon. We also contrast
the quantity of data requested from the back-end server for
both the bounding box queries and our approach.

In Table IV, we observe that there is a 99.96%, 99.86%,
and 99.55% decrease in the number of data points retrieved by
the back-end service for each spatial resolution exhaustively
versus our approach. Similarly, we measure the turnaround
time with and without caching and prefetching and compare
it with a bounding box query. There is a 96.88%, 90.46%, and
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Fig. 14: Visualizing the maximum air temperature over CONUS. (a) Inferences predicted by models. (b) The actual sampled
image without model deployment.

Fig. 15: Visualizing the minimum relative humidity. It is the lowest value of relative humidity in a day, which is measured as
the amount of moisture in the air relative to the maximum amount of moisture the air can hold at a given temperature. (a)
Inferences predicted by models. (b) The actual sampled image without model deployment.

79.32% reduction in time taken for rendering visualization at
each resolution level without cache but with only retrieving a
fraction of data from Druid. At finer resolutions, the number of
queried data points also increases, as the viewport covers more
tiles but at smaller spatial extents compared to exhaustively
requesting all the points. With caching, partial data is retrieved
from the memory of the back-end server nodes, while in the
case of cache-miss, the remaining data points are accessed
through the Druid data store. With the prefetching and caching
scheme in place, we observed 65.26%, 78.089%, and 65.023%
time reduction compared to without cache.

Bounding Box Our Method
Resolution Level No. of points queried Time Taken

(secs/query) No. of points queried No cache -
Time Taken

With cache -
Time Taken

Level 1- Course 999,775 points 70.78108 336 points 2.2080 secs/query 0.767 secs/query
Level 2 - Medium 568,617 points 46.296098 784 points 4.4133 secs/query 0.967 secs/query

Level 3 - Fine 405,104 points 40.10531 1792 points 8.2912 secs/query 2.9 secs/query

TABLE IV: Given a viewport comparing the number of points
queried at each spatial resolution for 7 days and the time taken
to respond to the client’s query, perform model inferences, and
render the phenomenon in diverse back-end settings.

Figure 17 shows the average completion time for the three
main types of queries we utilize on five different variations of
user queries (drill-in/out and temporal jumps). Overall, com-
pared to the bounding box queries where all data points within
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a given spatial area are retrieved from the main database, we
observed a 65.02% reduction in completion time for queries
with no cache access and a 99.44% reduction for queries with
cache access and prefetching.

Fig. 16: Disk I/O - with and without caching

D. Back-end Service: [RQ-3]

Fig. 17: Time taken by different query types (in log scale)

(a) Network reads (b) Network writes

Fig. 18: Network I/O - with and without caching

Percentage reduction Disk I/O (%) Network Reads (%) Network Writes (%)
Without cache 78.24 89.45 94.76

With cache (and prefetching) 95.15 98.66 99.33

TABLE V: Reduction of I/O for query evaluations compared
to exhaustive bounding box queries

We also profiled access on the back-end cluster during
query evaluations. Figures 16 and 18 show the variation in
disk I/O and network I/O operations respectively. The average
reduction in the number of disk and network read/write
operations for cached queries (with prefetching) and queries

without cached access, compared to bounding box queries,
are summarized in Table V. In almost all the cases, we were
able to eliminate over 90% of the I/O operations required for
querying by utilizing our distributed cache.

V. CONCLUSIONS AND FUTURE WORK

In this study, we described our methodology to facilitate
interactive visualizations over voluminous, gridded spatiotem-
poral datasets.

RQ-1: Having a multiplicity of model instances, each
calibrated to particular spatial extents, allows us to reconcile
heterogeneity in the spatiotemporal dynamics of phenomena.
Considering a multiplicity of variables in the multivariate
phenomena allows us to capture non-linear interactions that
exist between features. Our methodology allows us to render
phenomena with high fidelity of 38.7 dB PSNR.

RQ-2: Rather than train models from the ground up us-
ing cold-starts, we leverage our hierarchical spatiotemporal
transfer learning scheme that allows us to target our model
refinement efforts. Our methodology allows smaller spatial
extents at higher resolutions to utilize significant portions
of the parent network. Crucially, because the parent model
was trained on data from a larger spatial extent we expect
the refined models to generalize better. As our benchmarks
demonstrate, our transfer learning scheme allows the models
to train faster (number of epochs) and have better performance
(36-39 dB).

RQ-3: Seeding models, during inferences, with a limited
number of ground truth data allows us to reconcile the space
efficiency of models with voluminous observational data.
Having a distributed cache that preferentially prefetches and
evicts data based on the user’s navigational patterns allows
significant reductions in the I/O (percentage reduction in I/O
from benchmarks); especially, those that occur in the critical
path during interactive explorations. Finally, leveraging model-
specific compression optimizations allows us to preserve the
space efficiency of models.

As part of future work, we will explore extensions to
support non-gridded datasets such as fine-scale topographical
information and shape files. In particular, we plan to explore
diffusion methods in the design of our deep networks.
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[43] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli,

“Druid: A real-time analytical data store,” in Proceedings of the 2014
ACM SIGMOD international conference on Management of data, 2014,
pp. 157–168.

[44] Tensorflow. Optimize machine learning models. [Online]. Available:
https://www.tensorflow.org/model optimization

[45] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning
and Systems, vol. 3, pp. 800–811, 2021.

[46] Tensorflow. Tensorflow lite. [Online]. Available:
https://www.tensorflow.org/lite

[47] J. K. Udupa, “Three-dimensional visualization and analysis methodolo-
gies: a current perspective,” Radiographics, vol. 19, no. 3, pp. 783–806,
1999.

13


