
Dynamic Shapley Value Computation

Jiayao Zhang∗, Haocheng Xia∗, Qiheng Sun∗, Jinfei Liu†, Li Xiong‡, Jian Pei§, Kui Ren∗

∗Zhejiang University, {jiayaozhang,xiahc,qiheng sun,kuiren}@zju.edu.cn
†Zhejiang University, ZJU-Hangzhou Global Scientific and Technological Innovation Center, {jinfeiliu}@zju.edu.cn

‡Emory University, lxiong@emory.edu
§Simon Fraser University, jpei@cs.sfu.ca

Abstract—With the prevalence of data-driven research, data
valuation has attracted attention from the computer science field.
How to appraise a single datum becomes an imperative problem,
especially in the context of machine learning. Shapley value is
widely used to fairly measure the contribution of data points in
machine learning since it is the unique definition that satisfies
all four desired properties: balance, symmetry, additivity, and zero
element. However, computing Shapley value is known to be a #P-
hard problem. As data is subject to changes, dynamic data exists
pervasively in real-world scenarios. Pricing such dynamic data
is more challenging due to the prohibitively expensive cost of
recalculation from scratch. In this paper, we study the problem
of Dynamic Shapley Value Computation, which updates Shapley
value when dynamically adding/deleting data points. For adding
data points, to prune unnecessary computation of overlapping
model utilities, we propose the pivot-based algorithm that can
reduce half computation time in general. We also propose the
delta-based algorithm to capture Shapley value changes, which
requires a smaller sample size to converge. For deleting data
points, we present the YN-NN algorithm that derives the new
Shapley value from the data structure of precomputed model
utilities in an efficient way. Based on Shapley value changes, we
give another version of the delta-based algorithm for deleting
data points. Besides, we propose heuristic algorithms to draw
on experimental observations for both adding and deleting data
points. Extensive experimental results demonstrate the efficiency
and effectiveness of our proposed algorithms.

I. INTRODUCTION

Since data creates a steady stream of wealth, the economic

value of data attracts great attention from both industry and

academia. Data-driven applications, and more specifically ma-

chine learning, promote data valuation to become an increas-

ingly important discipline in data science. How to quantify the

value of a single datum equitably is a significant topic in the

emerging data market field [5, 16, 22, 23, 28, 29, 30, 33].

As depicted in Figure 1, a model-based data market connects

data owners, the broker, and model buyers [33, 37]. Data

owners sell data to the broker in exchange for compensation;

the broker collects data from multiple data owners, builds and

sells various machine learning models to model buyers; model

buyers pay for cost-effective models that satisfy their demands.

We focus on the interaction between data owners and the

broker in this paper. Data owners supply data to the broker

for compensation which should be allocated from the model

revenue and distributed fairly based on their contribution. To

enforce this desideratum, data valuation assigns a value to each

The first three authors contributed equally. Jinfei Liu is the corresponding
author.

Fig. 1: Overview of the data market.

data owner based on her contribution to this model task. That

is, the total compensation of each data owner is the sum of

compensation on all model tasks. One prevalent approach for

data valuation is Shapley value.

Shapley value is a concept used to measure the contribution

of each participant in cooperative game theory, which was

named in honor of Lloyd Shapley [38]. In decades, Shapley

value has been widely adopted in many domains [7, 17, 32, 36]

on the strength of its profound theoretical foundation. Shapley

value is demonstrated to be the only definition that satisfies all

four desired properties for payoff division: balance, symme-

try, additivity, and zero element [38]. Balance indicates that

the total payoff is fully distributed to all players; Symmetry

specifies that two players have the same valuation if they

have the same marginal contributions; Additivity indicates that

value on individual tasks sums up to the value on a combined

task; Zero element specifies that the value of players is null if

their marginal contributions are null, i.e., no contribution, no

payment.

In the context of machine learning, Shapley value has been

extensively applied to appraise the contribution of data points.

Shapley value of each data point is the average marginal

contribution of the data point over all possible permutations

of data points, where the marginal contribution refers to

the difference of utilities or accuracy of models trained on

(sub)coalitions of the dataset with and without the data point.

This value represents the contribution or the relevance of the

data point toward the model task. Empirical experiments show

that the prediction accuracy of models trained on data points

selected by Shapley value is substantially better than that of

the other popular data valuation method called leave-one-out

scores - the difference between model accuracy when trained

on the entire dataset with and without the data point [9]. How-

639

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00055

2
0
2
3
 I

E
E

E
 3

9
th

 I
n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 D

at
a

E
n
g
in

ee
ri

n
g
 (

IC
D

E
)

| 9
7
9
-8

-3
5
0
3
-2

2
2
7
-9

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

C
D

E
5
5
5
1
5
.2

0
2
3
.0

0
0
5
5

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

ever, computing the exact Shapley value is known to be a #P-

hard problem [12]. Complete enumeration consists of generat-

ing O(2n) (sub)coalitions of n data points and computing all

marginal contributions of each point. This prohibitively expen-

sive computational cost discourages Shapley value from being

implemented in practical applications. Several approximation

methods have been proposed to overcome such intractability.

Monte Carlo algorithms are the most general approaches

approximating Shapley value through permutation sampling

or coalition sampling [3, 19, 35].

Motivation. The prior works assume that all data points are

stable and immutable. They mainly attempt to approximate

Shapley value efficiently on a fixed dataset. In practice, a

dataset can be continuously changed with new or removed data

points. Shapley value derived from an original dataset is no

longer valid when the dataset is updated. Blindly reevaluating

Shapley value for a large dataset from scratch is inefficient

due to the exponential computation cost, which becomes more

intolerable under the complexity of machine learning models

particularly.

Different from the traditional Shapley value computation,

our work focuses on Shapley value calculated on the dynamic

dataset, referred to as Dynamic Shapley Value Computation,

which aims at improving the efficiency and effectiveness of

computing Shapley value with respect to dynamically adding

or deleting data points.

TABLE I: The patient information (before addition).
Id Age Sex Cp Rbps Chol Fbs Disease

z1 61 male level 4 138 166 <120 severe

z2 46 female level 2 105 204 <120 none

TABLE II: The patient information (after addition).
Id Age Sex Cp Rbps Chol Fbs Disease

z1 61 male level 4 138 166 <120 severe

z2 46 female level 2 105 204 <120 none

z3 59 male level 3 150 212 >120 none

TABLE III: Marginal contributions.

(a) Before addition.
Permutation z1 z2

[z1, z2] 5 7

[z2, z1] 6 6

(b) After addition.
Permutation z1 z2 z3

[z1, z2, z3] 5 7 8

[z1, z3, z2] 5 10 5

[z2, z1, z3] 6 6 8

[z2, z3, z1] 7 6 7

[z3, z1, z2] 7 10 3

[z3, z2, z1] 7 10 3

Motivating Example. There are many example applications

that dynamic Shapley value computation may be desired. For

instance, a medical institution known for treating heart disease

patients may wish to construct a predictive classifier for heart

disease in order to aid diagnosis. The patients contribute their

data for the model construction and get compensated according

to the corresponding contributions. It is common that new

patients may join and original participants drop out.

Tables I and II demonstrate a dynamic patient dataset from

the Cleveland Heart Disease Data Set [14] before and after

addition of patient z3, respectively. Each data point represents

the disease related information of a patient: the age, the resting

blood pressure, the degree of heart disease, etc. Given the

data update, a naive way is to recalculate Shapley value for

all patients from scratch. With the marginal contributions in

Table III where each value corresponds to column zi indicates

the marginal contribution of zi with respect to the permutation

on each row, the Shapley value of the two patients {z1, z2}
is {SV1,SV2} = { 11

2 , 13
2 }. The new Shapley value of the

patients’ data in Table II is {SV1,SV2,SV3} = {37
6 , 49

6 , 17
3 }.

The detailed formula of Shapley value is shown in Section III,

which requires all possible marginal contributions generated

by data points. Recomputing the new Shapley value of patients

in Table II naively incurs repetitive evaluation of model

utilities U({z1}),U({z2}), and U({z1, z2}), which are al-

ready computed when evaluating Shapley value for patients in

Table I. Hence, we aim to propose more efficient and effective

approaches for incrementally computing Shapley values on

dynamic datasets.

Contribution. In this paper, for the first time, we give the

definition of dynamic Shapley value computation and propose

efficient approaches to solve it. For adding a data point, we

propose the pivot-based algorithm that utilizes precomputation

to replace half of marginal contributions in permutation-based

sampling. Different from traditional Monte Carlo algorithms, it

costs almost half with the same sampled permutations. Also,

we propose the delta-based algorithm based on the Shapley

value changes that can achieve an (ε, δ)-approximation in

O(
Tnd2 ln 2

δ

ε2) time. We demonstrate that the pivot-based al-

gorithm and the delta-based algorithm are suitable for adding

multiple data points as well. For deleting a data point, we

construct dynamic data structure of two three-dimension arrays

to store utility functions efficiently. It is easy to extend the

data structure to cope with deleting multiple data points by

using two additional multiple-dimensional arrays. Based on

the concept, we propose an algorithm with O(nk) space

complexity for deleting k data points. Inspired by empirical

observations, we propose heuristic algorithms when adding

or deleting data points, which allows us to efficiently update

Shapley value but comes with a small cost of accuracy.

Apart from data valuation, our proposed algorithms are

practical for Shapley value computation among dynamic play-

ers in the general class of games with characteristic utility

function forms. We briefly summarize our contributions.

• We identify the problem of dynamic Shapley value com-

putation and propose several algorithms that are capable of

deriving Shapley value on dynamic datasets.

• For optimization of dynamic Shapley value computation,

we offer some practical methods including intermediate

result reorganization, differential marginal contribution, and

heuristics.

• Extensive experiments on Iris and Adult datasets are con-

ducted, which demonstrate the effectiveness and efficiency

of our proposed algorithms for updating Shapley value when

data points are dynamically changed.

640

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Data Market. The growing interest in data trading has led

to the emergence of data markets. Data markets with data-

based pricing sell raw data directly or supply the personalized

datasets for specific tasks, while data markets with query-

based pricing sell queries [4, 24, 25]. Data markets with

model-based pricing are proposed recently [5, 33], which allow

machine learning model trading among stakeholders instead

of raw data or queries. Kurtulmus et al. [26] developed a

model exchange market via blockchain technology. Chen et

al. [5] proposed a pricing framework for machine learning

over relational data. It sells model instances with different

accuracy options via a random noise injection approach, and

the price of the purchased model depends on its accuracy. Liu

et al. [33] proposed the first end-to-end model marketplace

with differential privacy, which responds to the needs of data

owners, the broker, and model buyers. Those efforts are made

to establish complete data market platforms to bridge gaps

in data exchange. In this paper, we focus on the interaction

between data owners and the broker in model-based markets.

Dynamic Shapley value computation is proposed to efficiently

and fairly distribute compensation among data owners in

response to the data owner dynamically joins or exits.

Shapley Value Computation. Shapley value [38] has an

incredible impact on the cooperative game theory, which has

been applied in tackling many problems, such as terrorist

network [32], profit allocation [39], query answering [13],

data/feature selection [15, 19], and data pricing [1, 5, 6, 21,

33, 31]. Computing the exact Shapley value can be a #P-hard

problem [12]. To overcome the drawback, several techniques

are developed to approximate Shapley value. Castro et al. [3]

estimated Shapley value based on permutation sampling for the

general class of games. Maleki et al. [35] provided a stratified

sampling algorithm with non-asymptotic error bounds. Zhang

et al. [42] proposed a novel stratification design based on

complementary contributions.

In machine learning, Shapley value is used to quantify the

contributions of data points toward training a model. The

interpretation of the utility function is usually the model per-

formance trained by subsets of the training dataset predicted on

the test dataset. Ghorbani et al. [19] proposed Truncated Monte

Carlo Shapley and Gradient Shapley, which leads to substantial

computational savings of near-zero marginal contributions. Jia

et al. [22] focused on k-NN classifier which is considered

lazy and developed an algorithm based on Locality Sensi-

tive Hashing with sublinear complexity. Ghorbani et al. [18]

proposed distributional Shapley to measure the value of data

points where the dataset is drawn i.i.d from the underlying

distribution. On the basis of this work, Kwon et al. [27] derived

the analytic expressions for distributional Shapley for the

canonical problems of linear regression, binary classification,

and non-parametric density estimation. Distributional Shapley

can derive the Shapley value distribution of a subset from the

Shapley value distribution of the whole dataset, but cannot

estimate Shapley value for a specific data point.

Dynamic Problem. Dynamic problem is a classic area not

only in computational geometry but also in networking, data

mining, etc. Those computational problems arise in contexts

where the input is changing and we call this setting dynamic

as opposed to static. Algorithms in dynamic setting have

been studied for decades. For instance, a self-balancing binary

search tree attempts to keep its height under random insertions

or deletions [20]. Tong et al. [40] formally defined the global

dynamic pricing problem in spatial crowdsourcing, presented a

base pricing strategy and developed MAPS to optimize supply

and pricing. Similarly, Liu et al. [34] proposed a skyline

diagram which can be used to facilitate dynamic skyline

queries.

The most related literature to our work is [10, 11, 41] for

dynamic query-based pricing in data markets, which refers to

price temporal views on data stream properly. Upadhyaya et

al. [41] designed a notion of refunds on data APIs to achieve

optimal history-aware pricing so that buyers do not have to be

charged twice for the same data. As Deep and Koutris [10]

pointed out, the refund mechanism gives no guarantee to

arbitrage-freeness. A pricing platform, called Qirana [10, 11],

provided a query-based real-time pricing mechanism with an

arbitrage-free guarantee. These works offer dynamic prices for

buyers, while our work focuses on the dynamic contribution

evaluation of data owners based on Shapley value. Further-

more, those existing techniques on dynamic problems cannot

be adopted to our problem directly.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first revisit the definition of Shapley value

in data markets as well as the classical approximation method.

Then, we present the problem statement.

Algorithm 1: Monte Carlo Shapley value computation.

input : data points z1, . . . , zn and τ > 0
output: Shapley value SVi for each data point zi (1 ≤ i ≤ n)

1 SVi ← 0 (1 ≤ i ≤ n);

2 for k=1 to τ do

3 let πk be a random permutation of {1, . . . , n};

4 for i=1 to n do

5 SV(z
πk(i)

) =

U({z
πk(1)

, . . . , z
πk(i)

}) − U({z
πk(1)

, . . . , z
πk(i−1)

});

6 SV
πk(i)

+ = SV(z
πk(i)

);

7 for i=1 to n do

8 SVi/ = τ ;

9 return SV1, . . . ,SVn;

Consider n data owners Di, . . . , Dn such that data owner

Di owns a data point zi (1 ≤ i ≤ n). A coalition S is a

subset of {z1, . . . , zn}. Denote by U(S) a utility function that

represents the performance of a model trained on coalition

S towards a task, e.g., model accuracy. Shapley [38] gave

a function that evaluates the contribution from each owner

Di to the whole coalition {z1, . . . , zn}, which is the unique

function satisfying four desirable properties, namely balance,

symmetry, additivity, and having a zero element.

SVi =
1

n

∑

S⊆{z1...zn}\zi

U(S ∪ {zi})− U(S)
(
n−1
|S|

) (1)

641

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

Computing the exact Shapley value is exponential in time.

In practice, the Monte Carlo simulation method [3] is a well-

known technique to approximate Shapley value, as shown in

Algorithm 1. Concretely, let τ be the number of sampled

permutations and zπk(i) be the data point with position index i
in permutation πk. In line 3, we randomly sample permutations

of all data points. In lines 4-5, we traverse each permutation

from the head to the tail and then calculate the marginal

contribution of each data point. Finally, we compute the

average of the marginal contributions as the approximate

Shapley value in line 6. This Monte Carlo simulation gives an

unbiased estimation of the exact Shapley value. The number

of permutations controls the trade-off between approximation

error and time cost. A larger number of samples brings more

accurate Shapley value at the expense of more running time.

In this paper, we consider computing Shapley value in a

dynamic dataset. A dataset D is said to be dynamic if the data

points in the dataset may be added or deleted over time.

Addition A set of data points Dadd are added to D to form

a new dataset N+ = D ∪Dadd.

Deletion A subset of data points Ddel ⊆ D are removed from

D to form a new dataset N− = D −Ddel.

Given a dynamic dataset with n data points D =
{z1, . . . , zn}, denote by SVi the Shapley value of zi in

D. For a set of added data points Dadd = {zn+1, . . . , zm}
(m ≥ n) and the updated data set N+ = {z1, . . . , zn} ∪
{zn+1, . . . , zm}, denote by SV+

i the Shapley value of zi in

N+ (1 ≤ i ≤ m). That is,

SV+
i =

1

m

∑

S⊆N+\zi

U(S ∪ {zi})− U(S)
(
m−1
|S|

) . (2)

Similarly, for a set of data points Ddel = {zp, . . . , zq} ⊆ D
and the updated data set N− = {z1, . . . , zn}− {zp, . . . , zq},

denote by SV−
i the Shapley value of zi in N− (1 ≤ i ≤ n).

That is,

SV−
i =

1

n+ p− q − 1

∑

S⊆N−\zi

U(S ∪ {zi})− U(S)
(
n+p−q−2

|S|
) . (3)

Trivially, for any i (1 ≤ i ≤ n) such that zi ∈ Ddel, since

zi is removed from D and thus does not appear in N− at all,

SV−
i = 0. In this paper, we only focus on the Shapley values

of those data points zi that belong to N− in the deletion case.

In dynamic schema, the dataset can be sequentially added

or delete a data point. Thus, the problem of dynamic Shapley

value computation is to compute SV+
i /SV−

i for all the data

points in N+ and N− efficiently in real time.

It is far from trivial to compute dynamic Shapley values.

A straightforward approach is to compute the new Shapley

value using the Monte Carlo simulation method on the new

dataset once changes occur. Because the measurement of

utility functions involves model training, the time cost is

dramatic. We notice that not all utilities of subsets are affected

by changes, an efficient dynamic Shapley value computation

method should try to reduce or avoid recomputing utility

functions.

IV. ADDING DATA POINTS

We start from the basic scenario where only one data point is

added. In Section IV-A we develop the pivot-based algorithm,

which can reuse half of the utility results. While the pivot-

based method focuses on reducing redundant computation, a

method which aims to reduce the number of permutations is

needed. Thus, in Section IV-B, we develop the delta-based

algorithm, which evaluates differential marginal contributions.

In Section IV-C, we extend the delta-based algorithm to handle

the general situation where multiple data points are added

sequentially.

A. The Pivot-based Algorithm

As discussed in Algorithm 1, the Shapley value can be in-

terpreted as the average marginal contribution over all possible

permutations. Consider dataset D = {z1, . . . , zn} and updated

dataset N+ = {z1, . . . , zn, zn+1}. For the permutations in the

updated dataset N+, each original data point zi (1 ≤ i ≤ n)
appears either before or after the new data point zn+1 with

equal frequency. It is easy to see that, for the half of the

permutations where zi appears before the new point zn+1,

the marginal contributions of zi remain the same as in D. For

example, in Table II, data point z1 appears before new point z3
in three permutations [z1, z2, z3], [z2, z1, z3], and [z1, z3, z2].
The marginal contributions of z1, i.e., U({z1}) − U(∅),
U({z1, z2}) − U({z2}), and U({z1}) − U(∅), respectively,

are the same as in the original dataset and can be reused.

Motivated by this observation, we propose the pivot-based

algorithm that reuses the unchanged marginal contributions

computed in the original dataset for the new dataset. For each

data point zi (1 ≤ i ≤ n) in the original dataset, taking

the new data point zn+1 as the pivot, we can divide all

permutations in the new dataset into two groups: Gi
L consists

of the permutations where zi is located in front of the pivot and

Gi
R consists of the permutations where zi is located behind

the pivot. For example, consider z3 in Table II as a pivot. For

z1, G1
L contains [z1, z2, z3], [z2, z1, z3], and [z1, z3, z2], and

G1
R contains [z3, z2, z1], [z2, z3, z1], and [z3, z1, z2].
It is easy to see that the Shapley value of zi is the average

of marginal contributions over the two groups. The marginal

contributions in Gi
L can be inherited from the original dataset.

We propose a new representation of Shapley value as shown

in Lemma 1.

Lemma 1: In datasets D = {z1, . . . , zn} and N+ =
{z1, . . . , zn, zn+1}, for zi (1 ≤ i ≤ n), denote by

LSV+
i =

1

(n+ 1)!

∑

πk∈Gi
L

[U(zπk(1), . . . , zπk(j)})

− U({zπk(1), . . . , zπk(j−1)})]

the average marginal contribution in group Gi
L and by

RSV+
i =

1

(n+ 1)!

∑

πk∈Gi
R

[U({{zn+1, zπk(1), . . . , zπk(j)})

− U({{zn+1, zπk(1), . . . , zπk(j−1)})]

642

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

the average marginal contribution in group Gi
R, zπk(j) is zi.

Then, the Shapley value of zi in N+ is SV+
i = LSV+

i +
RSV+

i .

We first compute Shapley value on D adopting the Monte

Carlo algorithm and store LSV+
i (1 ≤ i ≤ n) at the same

time. This computation is performed only once, which is

described in Algorithm 2. Denote by τ1 the number of sampled

permutations. We follow the steps of Algorithm 1 to compute

SV on D. Then we compute LSV+. In line 1, we define

LSV+
i to store marginal contributions in Gi

L. In lines 8-9, we

design a uniform sampling distribution for the position index

of the new data point and accumulate LSV+.

Algorithm 2: Initialization (computing SV in D).

input : datasets D = {z1, . . . , zn} and sample size τ > 0
output: SVi for each data point zi (1 ≤ i ≤ n), LSV+

i for each data

point zi (1 ≤ i ≤ n), the set of permutations π1, . . . , πτ1 , and

the set of indexes t1, . . . , tτ1

1 SVi,LSV+
i ← 0 (1 ≤ i ≤ n);

2 for k=1 to τ1 do

3 let πk be a random permutation of {1, . . . , n};

4 let tk be an integer uniformly randomly drawn from {0, . . . , n};

5 for i=1 to n do

6 SV(z
πk(i)

) =

U({z
πk(1)

, . . . , z
πk(i)

}) − U({z
πk(1)

, . . . , z
πk(i−1)

});

7 SV
πk(i)

+ = SV(z
πk(i)

);

8 if i ≤ tk then

9 LSV+

πk(i)
+ = SV(z

πk(i)
);

10 for i=1 to n do

11 LSV+
i / = τ1;

12 SVi/ = τ1;

13 return SV1, . . . ,SVn,LSV+
1 , . . . ,LSV+

n , π1, . . . , πτ1 , t1, . . . , tτ1 ;

We then develop two incremental algorithms which aim

to compute Shapley value on N+. SV+
i can be obtained by

summing LSV+
i and RSV+

i which can be approximated by

sampling the same or different permutations. The algorithm

with the same permutations is shown in Algorithm 3. We store

the set of permutations π1, . . . , πτ1 and the set of indexes

t1, . . . , tτ1 used in computing SV on D, and take them as

input. In line 4, we update πk by inserting zn+1 at tk. In lines

7-8, we calculate marginal contributions containing zn+1 for

RSV+
i . In lines 11-12, we combine LSV+

i and RSV+
i to get

SV+
i . In lines 15-16, we update t to p because p is the set of

indexes corresponding to new permutations.

Given the same number of sampled permutations, sampling

the same permutations can provide more accurate Shapley

value than sampling different permutations. However, if more

sampled permutations for LSV are allowed, sampling different

permutations outperforms sampling the same permutations

in terms of space cost and accuracy. First, no storage of

permutations is required for sampling different permutations,

which can save space. Second, as the size of coalitions

increases, the change in model utility by adding a data point

becomes smaller. Therefore, LSV+
i plays a more important

role in SVi than RSV+
i . To improve the accuracy, we can

sample more permutations when computing LSV+
i offline,

which does not affect the time cost of the online dynamic

processing. Moreover, we can sample fewer permutations

when computing RSV+
i online due to the limitation of time

Algorithm 3: The pivot-based algorithm with the same

sampled permutations.

input : datasets N+ = {z1, . . . , zn, zn+1}, the set of permutations

π1, . . . , πτ1 , the set of indexes t1, . . . , tτ1 , and sample size

τ1 > 0
output: Shapley value SV+

i for each data point zi (1 ≤ i ≤ n + 1),

LSV+
i for each data point zi (1 ≤ i ≤ n + 1), a set of

permutations π1, . . . , πτ1 , and the set of indexes t1, . . . , tτ1

1 SV+
i ,RSV+

i ,∆LSV+
i ← 0 (1 ≤ i ≤ n + 1);

2 LSV+
n+1 ← 0;

3 for k = 1 to τ1 do

4 πk ← {z
πk(1)

, . . . , z
πk(tk−1)

, zn+1, zπk(tk)
, . . . , z

πk(n)
};

5 let pk be an integer uniformly randomly drawn from {0, . . . , n + 1};

6 for i = tk to n + 1 do

7 SV(z
πk(i)

) =

U({z
πk(1)

, . . . , z
πk(i)

}) − U({z
πk(1)

, . . . , z
πk(i−1)

});

8 RSV+
i + = SV(z

πk(i)
);

9 if i ≤ pk then

10 ∆LSV+

πk(i)
+ = SV(z

πk(i)
);

11 for i=1 to n+1 do

12 SV+

πk(i)
= LSV+

i + RSV+
i /τ1;

13 for i=1 to n+1 do

14 LSV+
i = 2

3LSV+
i + ∆LSV+

πk(i)
/τ1;

15 for i=1 to τ1 do

16 ti = pi;

17 return

SV+
1 , . . . ,SV+

n+1,LSV+
1 , . . . ,LSV+

n+1, π
1, . . . , πτ1 , t1, . . . , tτ1 ;

cost. These important advantages of sampling different per-

mutations lead to computing LSV+
i and RSV+

i with different

sampled permutations.

Algorithm 4 shows the processing of computing RSV+
i and

SV+
i (1 ≤ i ≤ n + 1) via sampling different permutations.

Denote by τ2 the number of sampled permutations. In line

1, we define RSV+
i to store marginal contributions in Gi

R.

We begin with drawing permutations sampled from a uniform

distribution. In line 5, we find the position index t of the

added data point. In lines 8-9, we scan each permutation from

t to n+1, and calculate marginal contributions to approximate

RSV+
i . Finally, we derive the new Shapley value via summing

LSV+
i and RSV+

i in lines 12-13.

LSV+
i should be constantly updated according to the dy-

namic changes of the dataset. In Algorithm 3 and Algorithm 4,

we update LSV+ in the same way. Taking Algorithm 4 as

an example, we record the changes of LSV+
i as ∆LSV+

i

in line 1. Suppose that we add data point zn+2 after adding

data point zn+1. For data point zi (0 < i < n), we can

construct permutations [zi, zn+1, zn+2], [zi, zn+2, zn+1], and

[zn+2, zi, zn+1], which are computed in LSV+
i . We take

2
3LSV

+
i because only [zi, zn+1, zn+2] and [zi, zn+2, zn+1]

are still valid for computing LSV+
i after adding zn+2. We

then compute marginal contributions in permutations like

[zn+1, zi, zn+2]. In line 6, we uniformly randomly draw the

position index p of zn+2. In lines 10-11, we obtain ∆LSV+
i .

In lines 14-15, we update LSV+
i by summing up 2

3LSV
+
i and

∆LSV+
i .

Example 1: Given D = {z1,z2} and N+ = {z1,z2,z3}, we

compute SV+

i
for zi ∈ N+. In Algorithm 2 with τ1 = 2, suppose

that we sample π1 = {z1,z2} and t1 = 1 at k = 1. We can get

643

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

LSV+

1
= U({z1}) − U(∅) and LSV+

2
= 0. Suppose that we sample

π2 = {z2,z1} and t2 = 2 at k = 2. We can get LSV+

1
= U({z1}) −

U(∅) + U({z1,z2}) − U({z2}) and LSV+

2
= U({z2}) − U(∅). In

Algorithm 4 with τ2 = 2, suppose that we sample π1 = {z1,z3,z2} at

k = 1. We can get RSV+

1
= 0, RSV+

2
= U({z1,z2,z3})−U({z1,z3}),

and RSV+

3
= U({z1,z3})−U({z1}). We then sample π2 = {z3,z2,z1}

at k = 2. We can get RSV+

1
= U({z1,z2,z3}) − U({z2,z3}),

RSV+

2
= U({z1,z2,z3})−U({z1,z3})+U({z2,z3})−U({z3}), and

RSV+

3
= U({z1,z3}) − U({z1}) + U({z3}) − U(∅). Finally, we get

SV+

1
= LSV+

1
+RSV+

1
, SV+

2
= LSV+

2
+RSV+

2
, and SV+

3
= RSV+

3
.

Algorithm 4: The pivot-based algorithm with different

sampled permutations.

input : datasets N+ = {z1, . . . , zn, zn+1}, LSV+
i for each data point

zi (1 ≤ i ≤ n), and sample size τ2 > 0
output: Shapley value SV+

i for each data point zi (1 ≤ i ≤ n + 1) and

LSV+
i for each data point zi (1 ≤ i ≤ n + 1)

1 SV+
i ,RSV+

i ,∆LSV+
i ← 0 (1 ≤ i ≤ n + 1);

2 LSV+
n+1 ← 0;

3 for k=1 to τ2 do

4 let πk be a random permutation of {0, . . . , n + 1};

5 let t be the index of zn+1 in πk;

6 let p be an integer uniformly randomly drawn from {0, . . . , n + 1};

7 for i=t to n+1 do

8 SV(z
πk(i)

) =

U({z
πk(1)

, . . . , z
πk(i)

}) − U({z
πk(1)

, . . . , z
πk(i−1)

});

9 RSV+

πk(i)
+ = SV(z

πk(i)
);

10 if i ≤ p then

11 ∆LSV+

πk(i)
+ = SV(z

πk(i)
);

12 for i=1 to n+1 do

13 SV+
i = LSV+

i + RSV+
i /τ2;

14 for i=1 to n+1 do

15 LSV+
i = 2

3LSV+
i + ∆LSV+

πk(i)
/τ2;

16 return SV+
1 , . . . ,SV+

n+1,LSV+
1 , . . . ,LSV+

n+1;

By drawing a sufficient number of samples of permutations

in line 4 in Algorithm 4, the pivot-based algorithm with differ-

ent sampled permutations can provide an (ε, δ)-approximation

for RSV+
i of all data points in the updated dataset.

Theorem 1: Algorithm 4 returns an (ε, δ)-approximation to

RSV+
i if the number of sampled permutations τ satisfies τ ≥

2r2 ln 2
δ

ε2 with time complexity O(
Tnr2 ln 2

δ

ε2), where T is the

time of training the model once, r is the range of marginal

contributions, and n is the size of the new dataset.

Proof 1: Let U({zπ(1), . . . , zπ(k)})−U({zπ(1), . . . , zπ(k−1)}
be R. Given R ∈ [−r, r] (r ≥ 0), an error bound ε, and

a confidence 1 − δ, according to Hoeffding’s inequality, the

number of sampled permutations required such that P (|R −
E(RSV+

i)| ≥ ε) ≤ δ is P (| 1τ
∑τ

k=1 R − E(RSV+
i)| ≥ ε) ≤

2 exp (− 2τ2ε2
∑

τ
k=1 (2r)2).

Since we want the right hand side to be at most δ, we have

τ ≥ 2r2 ln 2
δ

ε2 . Therefore, the time complexity is O(
Tnr2 ln 2

δ

ε2).

B. The Delta-based Algorithm

As sampling-based methods in approximating Shapley value

raise the question of finding a compromise between accuracy

and computation time, the approach that gives better results

with a sample of the same size is always desired. Generally

speaking, the sample size needed for achieving the stability of

a variable with a small range is smaller than that of a larger one

according to Hoeffding’s inequality. In this part, we propose

an approach that requires a smaller sample to achieve the same

accuracy by representing the difference of Shapley value with

the differential marginal contribution, whose absolute value

is smaller than the marginal contribution. Given the original

data points with previous Shapley values, the key idea is to

compute the relative changes of their Shapley values instead

of their absolute values. Utilizing the definition of Shapley

value, the difference between the precomputed Shapley value

and the new Shapley value for each original data point can be

represented formally as Lemma 2.

Lemma 2: In datasets D = {z1, . . . , zn} and N+ =
{z1, . . . , zn, zn+1}, for any zi ∈ D, the difference between

the new Shapley value and the precomputed Shapley value

of zi is ∆SVi = 1
n+1

∑

S⊆D\zi

|S|+1

n(n−1
|S|)

{[U(S ∪ {zn+1} ∪
{zi}) − U(S ∪ {zi})] − [U(S ∪ {zn+1}) − U(S)]}, where

[U(S∪{zn+1}∪{zi})−U(S∪{zi})]−[U(S∪{zn+1})−U(S)]
denotes the differential marginal contribution.

Proof 2:

∆SVi =
1

n + 1

∑

S⊆D\zi

U(S ∪ {zn+1} ∪ {zi}) − U(S ∪ {zn+1})
(

n
|S|+1

)

+
1

n + 1

∑

S⊆D\zi

U(S ∪ {zi}) − U(S)
(

n
|S|

) − 1

n

∑

S⊆D\zi

U(S ∪ {zi}) − U(S)
(

n−1
|S|

)

=
1

n + 1

∑

S⊆D\zi

U(S ∪ {zn+1} ∪ {zi}) − U(S ∪ {zn+1})
(

n
|S|+1

)

−
∑

S⊆D\zi

(|S| + 1)!(n − 1 − |S|)!
(n + 1)!

[U(S ∪ {zi}) − U(S)]

=
1

n + 1

∑

S⊆D\zi

|S| + 1

n
(

n−1
|S|

)
{[U(S ∪ {zn+1} ∪ {zi}) − U(S ∪ {zi})]

− [U(S ∪ {zn+1}) − U(S)]}.

Based on Lemma 2, we present the delta-based algorithm

based on the precomputed Shapley value and the difference

of Shapley value. It is shown in Algorithm 5 in detail. The

computation starts with the given precomputed Shapley value.

In line 4, we randomly sample permutations of all original data

points. In lines 5-7, we scan the permutation from the first data

point to the last data point, and then construct and calculate

the differential marginal contribution of each data point. In

line 8, we estimate the Shapley value of the new data point

via marginal contributions. Repeating the same procedure over

multiple permutations, the difference of Shapley value can be

approximated by the average of all the calculated differential

marginal contributions. Finally, in lines 9-10, it combines the

precomputed Shapley value and the Shapley value difference

to infer the new Shapley value of original data points. As

Shapley value computation is reduced to the estimation of

the average differential marginal contributions, fewer sampled

permutations are required to achieve the same accuracy.
Example 2: Given D = {z1,z2} and N+ = {z1,z2,z3}, we com-

pute ∆SVi (1 ≤ i ≤ 2). In Algorithm 5 with τ = 2, suppose that we sample

π1 = {z1,z2} at k = 1. We can get ∆SV1 = 1

6
[U({z1,z3})−U({z1})−

U({z3}) + U(∅)] and ∆SV2 = 1

3
[U({z1,z2,z3}) − U({z1,z2}) −

U({z1,z3}) + U({z1})]. Suppose that we then sample π2 = {z2,z1}
at k = 2. We can get ∆SV1 = 1

6
[U({z1,z3}) − U({z1}) − U({z3}) +

U(∅)]+ 1

3
[U({z1,z2,z3})−U({z1,z2})−U({z2,z3})+U({z2})] and

∆SV2 = 1

3
[U({z1,z2,z3})−U({z1,z2})−U({z1,z3})+U({z1})]+

1

6
[U({z2,z3})− U({z2})− U({z3}) + U(∅)].

644

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5: The delta-based algorithm (adding a data

point).

input : datasets N+ = {z1, . . . , zn, zn+1}, SVi for each data point zi

(1 ≤ i ≤ n), and sample size τ > 0
output: Shapley value SV+

i for each data point zi (1 ≤ i ≤ n + 1)
1 ∆SVi ← 0 (1 ≤ i ≤ n);

2 SV+
i ← 0 (1 ≤ i ≤ n + 1);

3 for k=1 to τ do

4 let πk be a random permutation of {1, . . . , n};

5 for i=1 to n do

6 ∆SV(z
πk(i)

) = [U({z
πk(1)

, . . . , z
πk(i)

, zn+1}) −
U({z

πk(1)
, . . . , z

πk(i)
})] −

[U({z
πk(1)

, . . . , z
πk(i−1)

, zn+1}) −
U({z

πk(1)
, . . . , z

πk(i−1)
})];

7 ∆SV
πk(i)

+ = ∆SV(z
πk(i)

)/τ/(n + 1) · i;
8 SV+

n+1+ = [U({z
πk(1)

, . . . , z
πk(i)

, zn+1}) −
U({z

πk(1)
, . . . , z

πk(i)
})]/nτ ;

9 for k=1 to n do

10 SV+
k

= SVk + ∆SVk;

11 return SV+
1 , . . . ,SV+

n+1;

The following theorem provides an error bound on the

number of sampled permutations τ needed to achieve an (ε, δ)-
approximation.

Theorem 2: Algorithm 5 returns an (ε, δ)-approximation to

∆SV i if the number of sampled permutations τ satisfies τ ≥
2n2d2 ln 2

δ

(n+1)2ε2 with time complexity O(
Tnd2 ln 2

δ

ε2), where n is the

size of the original dataset, and d is the range of differential

marginal contributions.

Proof 3: Let φk
i denote k+1

n+1{[U(S ∪ {zn+1} ∪ {zi}) −
U(S ∪ {zi})] − [U(S ∪ {zn+1}) − U(S)]}, where |S| = k.

Suppose that φk
i is drawn with the following sampler. First,

uniformly sample the length k from 0, 1, . . . , n − 1. Second,

uniformly sample a coalition S from
(
n−1
k

)
all possible length-

k coalitions.

E(φk
i) =

n−1∑

k=0

1

n

1
(
n−1
k

)

∑

zi /∈S,|S|=k

φk
i

=
1

n+ 1

∑

S⊆{z1,...,zn}\zi

|S|+ 1

n
(
n−1
|S|

){[U(S ∪ {zn+1} ∪ {zi})

− U(S ∪ {zi})]− [U(S ∪ {zn+1})− U(S)]} = ∆SVi

Now, E(φk
i) = ∆SVi. Given [U(S ∪ {zn+1} ∪ {zi}) −

U(S ∪ {zi})] − [U(S ∪ {zn+1}) − U(S)] ∈ [−d, d] (d ≥ 0),
an error bound ε, and a confidence 1 − δ, according to

Hoeffding’s inequality, the sample size required such that

P (φk
i − E(∆SVi) ≥ ε) ≤ δ is:

P (|1
τ

τ∑

k=1

φk
i − E(∆SVi)| ≥ ε) ≤ 2 exp (− 2τ2ε2

∑τ
k=1

(k+1)2

(n+1)2 (2d)
2
)

≤ 2 exp (− τ2ε2

2τd2 n2

(n+1)2

).

Since we want the right hand side to be at most δ, we

have τ ≥ 2n2d2 ln 2
δ

(n+1)2ε2 . For τ random sampled permutations, the

number of model training required is 2nτ . Therefore, the time

complexity is O(
Tnd2 ln 2

δ

ε2).

The following theorem provides that Algorithm 5 can

achieve a convergence rate of O(1/
√
τ).

Theorem 3: Algorithm 5 returns an unbiased estimator of

Shapley value difference with a convergence rate of O(1/
√
τ),

which is the same as the convergence rate of the Monte

Carlo algorithm and the pivot-based algorithm with different

sampled permutations, where τ is the number of sampled

permutations.

Proof 4: As the calculation of ∆SVi is a discretiza-

tion method, the convergence rate of ∆SVi should be

E[1τ
∑τ

t=1 Xt − ∆SVi|], where Xt represents the sam-

pled value of φk
i . According to Central Limit Theorem,

E[(1τ
∑τ

t=1 Xt−∆SVi)
2] =

δ2d
τ , where δ2d represents the vari-

ance of φk
i . Meanwhile, for any random variable Z, E[|Z|]2 ≤

E[Z2]. So E[| 1τ
∑τ

t=1 Xt − ∆SVi|]2 ≤ E[(1τ
∑τ

t=1 Xt −
∆SVi)

2] =
δ2d
τ . Obviously, E[| 1τ

∑τ
t=1 Xt −∆SVi|] ≤ δd√

τ
=

O(1/
√
τ). The same conclusion can be obtained that the

convergence rate of Shapley value calculated by the Monte

Carlo algorithm or the pivot-based algorithm with different

sampled permutations is E[1τ
∑τ

t=1 Yt − SVi|] ≤ δ2m
τ , where

Yt represents the sampled value of R and δ2m represents the

variance of R. It is worth noting that because δ2d is smaller than

δ2m, the actual convergence rate of the delta-based algorithm

is better than both the pivot-based algorithm and the Monte

Carlo algorithm.

C. Adding Multiple Data Points

Update operation of adding multiple data points can be

thought of as gradually adding a single data point at a time.

Thereby, the problem of updating Shapley value when adding

multiple data points can be solved by applying Algorithm 3,

Algorithm 4, or Algorithm 5 progressively. However, apply-

ing the pivot-based algorithm or the delta-based algorithm

while adding a large amount of data points could be more

time-consuming than using the Monte Carlo algorithm once.

Thereby, we introduce heuristic algorithms with stable time

cost in Section VI.

V. DELETING DATA POINTS

In this section, we tackle the case of deleting data points.

The marginal contributions in the original dataset cover all

marginal contributions in the new dataset. Motivated by this,

we design the YN-NN algorithm with a polynomial-time

bound based on dynamic data structure which maintains

marginal contributions of unchanged data points in an efficient

way in Section V-A. In Section V-B, we present the delta-

based algorithm based on differential marginal contributions.

In Section V-C, we show how to extend our algorithms towards

deleting multiple data points. The two algorithms are proposed

from two angles. The YN-NN algorithm aims to reduce un-

necessary computation, while the delta-based algorithm aims

to reduce the number of sampled permutations.

A. The YN-NN Algorithm

To avoid unnecessary marginal contribution computation,

we capture the storage of utilities which are performed before

645

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

data points are changed. Our proposed solution contains two

phases: Phase Preprocessing - computing Shapley value over

the original dataset and Phase Merging - updating Shapley

value over the new dataset.

Phase Preprocessing is performed only once. We design

and utilize two three-dimensional arrays: YN and NN , which

store the utilities for all data points. Y refers to ”Yes” and N
refers to ”No”. We give the definition of YN and NN as

follows.

Definition 1: Given a dataset of n data points D =
{z1 . . . zn},

YN [zi][zj][k] =
∑

S⊆D,|S|=k,zi∈S,zj /∈S
U(S)

NN [zi][zj][k] =
∑

S⊆D,|S|=k,zi /∈S,zj /∈S
U(S)

In Phase Merging, the aforementioned two arrays YN and

NN assist in averting superfluous computation. Based on

the definition of Shapley value, one can derive the following

formula of the new Shapley value after deleting a data point.

Lemma 3: Suppose that zdel is the deleted data point. N− =
{z1, . . . , zn} \ zdel. For any remaining data point zi ∈ N−,

the new Shapley value is

SV−
i =

1

n− 1

n−1∑

k=1

(YN [zi][zdel][k]−NN [zi][zdel][k − 1])
(
n−2
k−1

)

Example 3: Given three patients’ data points {z1,z2,z3} shown in
Table II and the deleted data point z3, as for z1, arrays are shown as follows.

YN [z1][z3][0] = U(∅) NN [z1][z3][0] = U(∅)

YN [z1][z3][1] = U({z1}) NN [z1][z3][1] = U({z2})

YN [z1][z3][2] = U({z1,z2}) NN [z1][z3][2] = U(∅)

The new Shapley value of z1 can be calculated as follows.

SV−

1
=

1

2

2
∑

k=1

YN [z1][z3][k]−NN [z1][z3][k − 1]
(

1

k−1

)

=
1

2
U({z1,z2}) +

1

2
U({z1})−

1

2
U({z2})−

1

2
U(∅)

Based on Lemma 3, the key idea of updating Shapley value

is generating the utility arrays. We show the pseudo-code for

filling YN and NN during computing original Shapley value

in Algorithm 6 and show how to derive the new Shapley value

from YN and NN succinctly in Algorithm 7. Concretely, in

Algorithm 6, we store utility functions in two arrays when

calculating Shapley value on the original dataset in lines 8-

10, which does not lead to extra computational overhead. Then

we can recover Shapley value of the remaining data points in

O(n2) whichever a data point is removed in Algorithm 7.

B. The Delta-based Algorithm

Based on similar rationale in Section IV-B, we introduce

another version of Lemma 2. Suppose that zdel is the deleted

data point in the dataset. For any zi ∈ D\zdel, the difference

between the new Shapley value and the original Shapley value

of zi is ∆SVi = − 1
n

∑

S⊆D\{zi,zdel}
|S|+1

(n−1)(n−2
|S|)

{[U(S ∪
{zdel}∪{zi})−U(S ∪{zi})]− [U(S ∪{zdel})−U(S)]}. The

Algorithm 6: Preprocessing (deleting a data point).

input : datasets D = {z1, . . . , zn}, and sample size τ > 0
output: SVi for each data point zi (1 ≤ i ≤ n), YN , and NN

1 let YN and NN be two n3 arrays;

2 SVi,YN [zi][zj][k],NN [zi][zj][k] ← 0 (1 ≤ i, j, k ≤ n);

3 for k=1 to τ do

4 let πk be a random permutation of {1, . . . , n};

5 for i=1 to n do

6 SV(z
πk(i)

) =

U({z
πk(1)

, . . . , z
πk(i)

}) − U({z
πk(1)

, . . . , z
πk(i−1)

});

7 SV
πk(i)

+ = SV(z
πk(i)

);

8 for j=i to n do

9 YN [z
πk(i)

][z
πk(j)

][i]+ =

U({z
πk(1)

, . . . , z
πk(i)

})/τ ;

10 NN [z
πk(i)

][z
πk(j)

][i − 1]+ =

U({z
πk(1)

, . . . , z
πk(i−1)

})/τ ;

11 return SV1, . . . ,SVn,YN ,NN ;

Algorithm 7: Merging (deleting a data point).

input : datasets N− = {z1, . . . , zn} \ zp,YN , and NN
output: Shapley value SV−

i for each data point zi (1 ≤ i ≤ n, i �= p)
1 for i=1 to n do

2 if i �= p then

3 for j=1 to n do

4 SV−
i + =

(YN [zi][zp][j]−NN [zi][zp][j−1])·(n−1)/(n−j);

5 return SV−
1 , . . . ,SV−

n ;

pseudo-code can be seen in Algorithm 8. We aim at deriving

new Shapley value from Shapley value changes. In line 3, we

uniformly sample a permutation. In lines 5-6, we calculate the

difference of marginal contributions to model Shapley value

changes based on differential marginal contributions.

The following theorem provides an error bound on the

number of sampled permutations τ needed to achieve an (ε, δ)-
approximation.

Theorem 4: Algorithm 8 returns an (ε, δ)-approximation to

∆SV i if the number of sampled permutations τ satisfies τ ≥
2(n−1)2d2 ln 2

δ

n2ε2 with time complexity O(
Tnd2 ln 2

δ

ε2), where n is

the size of the original dataset, and d is the range of differential

marginal contributions.

Proof 5: The proof is similar to the proof of Theorem 2.

Algorithm 8: The delta-based algorithm (deleting a

data point).

input : datasets N− = {z1, . . . , zn} \ zp, SVi for each data point zi

(1 ≤ i ≤ n), and sample size τ > 0.

output: Shapley value SV−
i for each data point zi (1 ≤ i ≤ n, i �= p)

1 SV−
i ,∆SVi ← 0 (1 ≤ i ≤ n);

2 for k=1 to τ do

3 let πk be a random permutation of {1, . . . , n} \ p;

4 for i=1 to n-1 do

5 ∆SV(z
πk(i)

) = −[U({z
πk(1)

, . . . , z
πk(i)

, zp}) −
U({z

πk(1)
, . . . , z

πk(i)
})] +

[U({z
πk(1)

, . . . , z
πk(i−1)

, zp}) −
U({z

πk(1)
, . . . , z

πk(i−1)
})];

6 ∆SV
πk(i)

+ = ∆SV(z
πk(i)

)/τ/n · i;

7 for i=1 to n do

8 SV−
i = SVi+∆SVi

9 return SV−
1 , . . . ,SV−

n ;

646

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

C. Deleting Multiple Data Points

In this section, we show how to retrieve Shapley value in a

scenario where multiple data points are deleted.

For the YN-NN algorithm, we introduce multiple-dimension

utility arrays as follows.

Definition 2: Given a dataset of n data points D =
{z1 . . . zn},

Y
d

︷ ︸︸ ︷

N , . . . ,N [zt]

d
︷ ︸︸ ︷

[zi], . . . , [zj][k] =
∑

S⊆D,|S|=k,zt∈S
zi,...,zj /∈S

U(S)

N
d

︷ ︸︸ ︷

N , . . . ,N [zt]

d
︷ ︸︸ ︷

[zi], . . . , [zj][k] =
∑

S⊆D,|S|=k,zt /∈S
zi,...,zj /∈S

U(S)

Analogously, one can derive the following formula naturally.

Lemma 4: Suppose that zp, . . . , zq are d deleted data points.

N− = {z1, . . . , zn} \ {zp, . . . , zq}. For any remaining data

point zi ∈ N−, the new Shapley value is

SV−
i =

1

n− d

n−d∑

k=1

1
(
n−d−1
k−1

) (Y
d

︷ ︸︸ ︷

N , . . . ,N [zi]

d
︷ ︸︸ ︷

[zp], . . . , [zq][k]

−N
d

︷ ︸︸ ︷

N , . . . ,N [zi]

d
︷ ︸︸ ︷

[zp], . . . , [zq][k − 1])

For deleting d data points, we obtain the two (d+2)-

dimension utility arrays in the process of Shapley value

computation on the original dataset. Based on Lemma 4, we

then derive the new Shapley value via conducting pairwise

subtraction operations between the two utility arrays similar

to deleting a data point.

For the delta-based algorithm, the problem of updating

Shapley value when deleting multiple data points can be

solved by applying the delta-based algorithm progressively.

Moreover, due to the fact that the delta-based algorithm only

requires the original Shapley value and the added/deleted data

points, it is natural to apply the delta-based algorithm on

dynamic datasets of interspersed addition and deletion.

VI. HEURISTIC ALGORITHM

In this section, two different heuristic algorithms are studied

to efficiently update Shapley value, which is inspired by our

empirical observations of changes in Shapley value caused by

dynamic data points on the labeled datasets.

Extrapolating from property Symmetry, data points with

similar features tend to have a similar performance on machine

learning models, which results in similar utility functions and

similar Shapley value. Thus, we develop a technique which

finds adjacent data points of the added data points powered by

k-nearest neighbors algorithm (k-NN) and averages over the

Shapley values. The pseudo-code is presented in Algorithm 9.

In lines 2-4, we assign the average Shapley value of adjacent

data points to the added data points.

The above algorithm assumes the Shapley values of the orig-

inal data points do not change when a new data point is added.

Algorithm 9: Heuristic SV computation (KNN).

input : datasets N+ = {z1, . . . , zn, zn+1, . . . , zm} (m > n), SVi

for each data point zi (1 ≤ i ≤ n)
output: Shapley value SV+

i for each data point zi (1 ≤ i ≤ m)

1 SV+
i ← 0 (1 ≤ i ≤ m);

2 for i = n+1 to m do

3 let nz1, . . . ,nzk be k neighbors of zi;

4 SV+
i = 1

k
(SVnz1

+ . . . + SVnzk
);

5 for i = 1 to n do

6 SV+
i = SVi;

7 return SV+
1 , . . . ,SV+

m;

However, this is not the case. Figure 2 illustrates the changes

of Shapley values of the original data points after adding a

new point (star). We observed that the changes depend on their

similarity with the new data point. Concretely, when adding a

data point, Shapley values of data points with the same label

decrease, and those with different labels increase. Moreover,

the degree of changes decreases as the similarity distance

increases, which can be fitted into a function to represent

the corresponding relationship of 1) the similarity between

original data points and new data points and 2) the changes

of Shapley value.

4.5 5.0 5.5 6.0 6.5

Sepal.Length

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

S
e
p
a
l.
W
id
th

add

−0.006

−0.004

−0.002

0.000

0.002

(a) Iris.

���� ���� ���� ���� ���� ���

Age

��

��

�

����

����

E
d
u
c
a
ti
o
n
N
u
m

�D�G�G

�����������

�����������

����������

����������

����������

(b) Adult.

Fig. 2: Changes of Shapley value.

With the discovery, we develop another heuristic technique,

as shown in Algorithm 10. The main idea is to learn a

regression function for the changes of Shapley values based

on their similarity to the new data point and use this function

to derive the updated Shapley values of original data points.

In lines 5-7, we sample a set of data points from the whole

original dataset and calculate the changes of Shapley value

through the Monte Carlo algorithm. In line 8, we fit the

changes into a function to represent the relationship between

changes and similarity. In lines 9-13, we update Shapley value

of original data points based on the changes derived from

similarity and assign the average Shapley value of several data

points selected by k-NN to new data points.

Both KNN and KNN+ are adoptable for deleting data

points. For KNN, we assign Shapley value of deleted data

points averagely to their neighbors, which is similar to Al-

gorithm 9. For KNN+, we update Shapley value based on

the relationship between the changes of Shapley value and the

similarity between original data points and deleted data points,

which is similar to Algorithm 10.

647

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

Algorithm 10: Heuristic SV computation (KNN+).

input : datasets N+ = {z1, . . . , zn, zn+1, . . . , zm} (m > n), SVi

for each data point zi (1 ≤ i ≤ n)
output: Shapley value SV+

i for each data point zi (1 ≤ i ≤ m)

1 SV+
i ← 0 (1 ≤ i ≤ m);

2 ∆SVi ← 0 (1 ≤ i ≤ n);

3 for i = 1 to n do

4 SV+
i = SVi;

5 sample train data points
{

zt1 , . . . , ztd

}

from train data points

{z1, . . . , zn};

6 for i = 1 to d do

7 ∆SV = MonteCarloShapley({z1, . . . , zn}) −
MonteCarloShapley({z1, . . . , zn} \ zti

);

8 CurveFuncs[the label of zti
] =

CurveFitting(simi(zti
, {z1, . . . , zn}),∆SV);

9 for i=n+1 to m do

10 for j = 1 to n do

11 SV+
j += CurveFuncs[the label of zi](simi(zi, zj));

12 let nz1, . . . ,nzk be k neighbors of zi;

13 SV+
i = 1

k
(SVnz1 + . . . + SVnzk

);

14 return SV+
1 , . . . ,SV+

m;

VII. EXPERIMENTS

A. Experiment Setup

We ran experiments on a machine with 2 Montage(R) Jin-

tide(R) C6226R @ 2.90GHz and 4 Geforce RTX 3090 running

Ubuntu 18.04 LTS 64-bit with 256GB memory. Support Vector

Machine (SVM) is employed as the machine learning model,

and the utility function is the accuracy score of the trained

SVM model on the test dataset. We used both Iris dataset and

Adult dataset from the UCI machine learning repository [14]

in our experiments. We adopt the Monte Carlo algorithm

as our benchmark, which is the universal baseline method

for Shapley value computation [19]. Even the state-of-the-

art Monte Carlo algorithm cannot support large datasets. It is

hard to obtain a sufficiently accurate Shapley value in tolerable

time for comparison on a large dataset. To make it feasible,

we performed analysis on datasets by sampling 10000 data

points at most. Our algorithms can be applied to larger datasets

in practical applications, which are comparable to the state-

of-the-art Monte Carlo algorithm because our algorithms are

much faster than the Monte Carlo algorithm in general when

they are used to compute fairly accurate dynamic Shapley

value.

For adding a data point, we compare the baseline algorithms

including MC (Alg. 1), Base which adopts original Shapley

value and assigns the average Shapley value of all data points

to the added data point, and TMC developed by [19] (the

performance tolerance is set to 1e-12 and the truncated point

must be in [n/2, n]) with the proposed algorithms including

Pivot-s (Alg. 3), Pivot-d (Alg. 4), Delta (Alg. 5), KNN

(Alg. 9), and KNN+ (Alg. 10).

For adding multiple data points, we compare the baseline

algorithms including MC, Base, and TMC with the proposed

algorithms including Pivot-s (Alg. 3), Pivot-d (Alg. 4), Delta

(Alg. 5), KNN (Alg. 9), and KNN+ (Alg. 10).

For deleting a data point, we compare the baseline algo-

rithms including MC and TMC with the proposed algorithms

including YN-NN (Alg. 7), Delta (Alg. 8), a variant of KNN,

and a variant of KNN+. The last two algorithms are briefly

discussed in Section VI.

For deleting multiple data points, we compare the base-

line algorithms including MC and TMC with the proposed

algorithms including YNN-NNN demonstrated in Section V-C

which is the extension of Alg. 4, Delta (Alg. 8), a variant of

KNN, and a variant of KNN+.

We compute the p-value [2, 8] of the differences between

the MSEs of our algorithms and MC for the following exper-

iments. All p-values are much smaller than 0.05, confirming

the statistical significance of the difference.

B. Evaluation Metrics

Effectiveness. We adopt the average of the mean squared

errors (MSEs) to verify the effectiveness of the proposed

algorithms. Given benchmark Shapley value SVi and esti-

mated Shapley value SVi (1 ≤ i ≤ n) computed by the

proposed algorithms, the mean squared error for the estimated

Shapley value compared to the benchmark Shapley value is

MSE(SV,SV) = 1
n

∑n
i=1(SVi −SVi)

2. Computing the ex-

act Shapley value SVi for evaluation purposes is prohibitively

expensive because it grows exponentially with the number of

data points. Therefore, we use the estimated Shapley value

computed by Algorithm 1 with τ = 1000n as the benchmark

Shapley value in the experiments.

Efficiency. We propose a time-based metric to verify the

efficiency of the proposed algorithms. Given benchmark Shap-

ley value MCSV+ and MCSV computed by Algorithm 1

with τ = 1000n and τ = 20n respectively, and estimated

Shapley value SV computed by the proposed algorithms, we

simulate the number of sampled permutations and its cor-

responding runtime to achieve |MSE(MCSV+,MCSV) −
MSE(MCSV+,SV)| < 0.2MSE(MCSV+,MCSV).

C. Adding A Data Point

10 50 100

number of original data points

10
-7

10
-6

10
-5

10
-4

10
-3

M
S

E

MC

Base

TMC

Pivot-d

Delta

KNN

KNN+

(a) MSEs.

10 50 100

number of original data points

10
-5

10
0

10
5

ti
m

e
(s

)

MC

Base

TMC

Pivot-d

Delta

KNN

KNN+

(b) Time cost.

Fig. 3: Adding a data point.

TABLE IV: MSEs for adding a data point.
MC Base TMC Pivot-d Delta KNN KNN+

2.48e-6 2.66e-6 5.47e-5 2.45e-7 1.53e-7 1.65e-6 1.46e-6

TABLE V: MSEs for adding a data point.
τLSV = 20n
τRSV = 20n

τLSV = 100n
τRSV = 20n

τLSV = 500n
τRSV = 20n

Pivot-s 2.18e-6 N/A N/A

Pivot-d 2.36e-6 5.86e-7 3.01e-7

Effectiveness. We first study the effectiveness of the proposed

algorithms for adding a data point on Iris dataset. We take

a sample of size 100 and add one data point further. In

648

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

order to make a fair comparison, we set τMC = τTMC =
τPivot−d = τDelta = 20n. Table IV presents the MSEs of

the proposed algorithms. We can observe that Pivot-d and

Delta outperform KNN and KNN+, and the MSE of Delta

is smaller than that of Pivot-d. KNN and KNN+ significantly

perform better than baseline algorithms, although they cannot

recover the new Shapley value as well as Pivot-d and Delta.

Figure 3(a) shows the MSEs on varying numbers of original

data points. We can find that the MSEs of Pivot-d and Delta

are always lower than baseline algorithms. We compare Pivot-s

and Pivot-d when sampling different numbers of permutations

to estimate LSV . Experimental results are shown in Table V.

When τLSV = τRSV , Pivot-s outperforms Pivot-d. When

τLSV 	= τRSV , Pivot-s is not applicable since it requires the

same number of sampled permutations for LSV and RSV . As

τLSV increases, the MSE of Pivot-d gets smaller than Pivot-s.

Efficiency. We experimentally study the efficiency of the

proposed algorithms for adding a data point on Iris dataset.

Figure 3(b) shows the time cost of algorithms on varying

numbers of original data points. Base only needs to calculate

the average Shapley value of original data points. The MSEs

of results given by KNN, and KNN+ are not involved with

the number of sampled permutations. Thus, the time cost of

Base, KNN, and KNN+ is very low and their output cannot

guarantee the output quality. The time cost of Pivot-d and

Delta is consistently less than that of MC and TMC with the

number of data points, which verifies the efficiency of the

proposed algorithms.

D. Adding Multiple Data Points

10 50 100

number of original data points

10
-7

10
-6

10
-5

10
-4

10
-3

M
S

E

MC

Base

TMC

Pivot-d

Delta

KNN

KNN+

(a) MSEs.

10 50 100

number of original data points

10
-5

10
0

10
5

ti
m

e
(s

)

MC

Base

TMC

Pivot-d

Delta

KNN

KNN+

(b) Time cost.

2 4 6 8 10

number of added data points

0

50

100

150

200

ti
m

e
(s

)

MC

Delta

KNN

KNN+

(c) Time cost.

Fig. 4: Adding multiple data points.

TABLE VI: MSEs for adding two data points.
MC Base TMC Pivot-d Delta KNN KNN+

2.17e-6 3.17e-6 1.54e-5 1.39e-6 1.06e-7 2.36e-6 2.00e-6

TABLE VII: MSEs for adding two data points.
τLSV = 20n
τRSV = 20n

τLSV = 100n
τRSV = 20n

τLSV = 500n
τRSV = 20n

Pivot-s 5.98e-6 N/A N/A

Pivot-d 6.53e-6 6.07e-6 4.88e-6

Effectiveness. We study the effectiveness of the proposed

algorithms for adding multiple data points on Iris dataset. We

take a sample of size 100 and add two data points further.

In order to make a fair comparison, we set τMC = τTMC =
τPivot−d = τDelta = 20n. Table VI presents the MSEs of the

proposed algorithms. We can observe Delta owns the smallest

MSE, which means that it is closest to the benchmark Shapley

value. Pivot-d owns the second smallest MSE and is the second

best algorithm. Since the accuracy of the new round of LSV
is lower than that of the original Shapley value, Delta provides

the Shapley value with MSE lower than Pivot-d. Heuristic

algorithms, KNN and KNN+, have better performance than

Base and TMC. Figure 4(a) shows the MSEs on varying

numbers of original data points. We can find that the MSEs of

Pivot-d and Delta are always lower than baseline algorithms.

Table VII shows findings similar to adding a data point.

Efficiency. We experimentally study the efficiency of the

proposed algorithms for adding two data points on Iris dataset.

Figure 4(b) shows the time cost of algorithms on varying

numbers of original data points. The time cost of MC and

TMC is larger than Pivot-d and Delta as anticipated, which

further confirms the superiority of Pivot-d and Delta. For

adding more data points, we add 2-10 data points to the 100-

size dataset sampled from Iris dataset, respectively. As the

number of added data points increases, the loss of precision

in LSV makes Pivot-d less and less effective. The time cost is

shown in Figure 4(c). KNN and KNN+ can quickly compute

the new Shapley value, but not necessarily achieve the required

MSE. The time cost for MC and Delta to reach the same level

of MSE increases with the number of added data points and

Delta achieves greater efficiency.

E. Deleting A Data Point

10 50 100

number of original data points

10
-15

10
-10

10
-5

M
S

E

MC

TMC

YN-NN

Delta

KNN

KNN+

(a) MSEs.

10 50 100

number of original data points

10
-4

10
-2

10
0

10
2

10
4

ti
m

e
(s

)

MC

TMC

YN-NN

Delta

KNN

KNN+

(b) Time cost.

Fig. 5: Deleting a data point.

TABLE VIII: MSEs for deleting a data point.
MC TMC YN-NN Delta KNN KNN+

1.34e-6 1.71e-5 0 1.51e-7 1.52e-6 1.30e-6

TABLE IX: Memory consumption.
n 10 50 100

cost (MB) 0.014668 1.927675 15.25421

Effectiveness. We experimentally study the effectiveness of

the proposed algorithms for deleting a data point on Iris

dataset. We take a sample of size 100 and delete one data

point further. In order to make a fair comparison, we set

τMC = τTMC = τDelta = 20n. Table VIII presents the MSEs

of the proposed algorithms. YN-NN can recover the exact new

benchmark Shapley value. Delta gives the second best result,

while KNN and KNN+ perform worse than MC and TMC.

Figure 5(a) shows the MSEs on varying number of original

data points. We can find that the MSEs of YN-NN and Delta

are always lower than baseline algorithms.

Efficiency. We experimentally study the efficiency of the

proposed algorithms for deleting a data point on Iris dataset.

Figure 5(b) shows the time cost of algorithms on varying num-

bers of original data points. KNN and KNN+ have a low time

cost and cannot guarantee the output quality. Because YN-NN

only needs to scan Y N and NN once, the time cost is very

649

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

low. The time cost of MC and TMC is limited by the number

of sampled permutations but grows prohibitively high with

the number of data points. In contrast, Delta takes less time

than MC and TMC to achieve the satisfying Shapley value

approximation. Table IX shows the memory consumption of

YN-NN with the same experimental settings as Figure 5(b).

F. Deleting Multiple Data Points

10 50 100

number of original data points

10
-15

10
-10

10
-5

10
0

M
S

E

MC

TMC

YNN-NNN

Delta

KNN

KNN+

(a) MSEs.

10 50 100

number of original data points

10
-4

10
-2

10
0

10
2

10
4

ti
m

e
(s

)

MC

TMC

YNN-NNN

Delta

KNN

KNN+

(b) Time cost.

2 4 6 8 10

number of deleted data points

0

20

40

60

80

100

120

140

ti
m

e
(s

)

MC

Delta

KNN

KNN+

(c) Time cost.

Fig. 6: Deleting multiple data points.

TABLE X: MSEs for deleting two data points.
MC TMC YNN-NNN Delta KNN KNN+

1.83e-6 1.41e-5 0 1.93e-7 4.16e-6 2.10e-6

Effectiveness. We experimentally study the effectiveness of

the proposed algorithms for deleting multiple data points on

Iris dataset. We take a sample of size 100 and delete two

data points further. In order to make a fair comparison, we set

τMC = τTMC = τDelta = 20n. Table X presents the MSEs of

the proposed algorithms. YNN-NNN has the lowest MSE and

Delta performs better than MC and TMC, which agrees with

what is observed in the previous experiment. Moreover, we

can see that KNN and KNN+ have higher MSEs concerning

sampling-based algorithms. Figure 6(a) shows the MSEs on

varying numbers of original data points. We can find that the

MSEs of YNN-NNN and Delta are always lower than baseline

algorithms.

Efficiency. We experimentally study the efficiency of the

proposed algorithms for deleting two data points on Iris

dataset. Figure 6(b) shows the time cost of algorithms on

varying numbers of original data points. Because YNN-NNN

only needs to scan Y NN and NNN once, the time cost is

very low. The time cost of MC, TMC, and Delta grows with

the number of data points, but Delta still performs better than

MC and TMC. For deleting more data points, we delete 2-

10 data points from the 100-size dataset sampled from Iris

dataset, respectively. The time cost is shown in Figure 6(c).

KNN and KNN+ can compute new Shapley value quickly but

at the expense of accuracy. Since Delta processes deleted data

points sequentially, the time cost of Delta increases with the

number of deleted data points, while MC does the opposite.

Nevertheless, the time cost of Delta is always less than that of

MC when deleting a couple of data points, which implies that

Delta can be used for dynamic Shapley value computation.

G. Large Dataset

We compare the time cost of the proposed algorithms on a

dataset of size 10000 and 3 features constructed from the Adult

dataset. We set τMC = τTMC = τPivot−d = τDelta = 100
and τMC+ = 1000. It should be mentioned that MC, TMC,

Pivot-d, and Delta are parallelizable and the time cost can

become less using more machines in parallel with k threads

(here k = 48). In Tables XI, XII, XIII, and XIV, we

observe the time cost of algorithms for adding or deleting

data points and omit the MSE comparison as MC is not

converging under this small number of permutations. KNN

and KNN+ significantly outperform other algorithms due to

their simplicity. Pivot-d has the intermediate time cost. Delta

costs a high time because it needs to evaluate more utility

functions than MC with the same number of permutations.

However, as we have shown in previous results, even given

a much smaller number of permutations compared with other

algorithms, Delta can produce fairly accurate Shapley value.

TABLE XI: Time cost for adding one data point (s).
MC+ MC TMC Pivot-d Delta KNN KNN+

2.08e5 2.10e4 4.89e3 1.83e4 6.32e4 1.43e-3 15.25

TABLE XII: Time cost for adding two data points (s).
MC+ MC TMC Pivot-d Delta KNN KNN+

2.08e5 2.10e4 4.89e3 3.24e4 8.88e4 2.03e-3 14.92

TABLE XIII: Time cost for deleting one data point (s).
MC+ MC TMC YN-NN Delta KNN KNN+

2.08e5 2.10e4 4.89e3 3.27e2 4.27e4 1.44e-2 16.08

TABLE XIV: Time cost for deleting two data points (s).
MC+ MC TMC YNN-NNN Delta KNN KNN+

2.08e5 2.10e4 4.89e3 4.09e2 8.37e4 1.63e-2 30.11

VIII. CONCLUSION AND FUTURE WORK

In this paper, for the first time, we proposed the problem of

dynamic Shapley value computation and presented approaches

that are capable of deriving Shapley value on dynamic datasets.

In the case of adding data points, we proposed the pivot-based

algorithm and the delta-based algorithm. The pivot-based

algorithm focuses on reusing computation, while the delta-

based algorithm focuses on reducing the number of sampled

permutations. In the case of deleting data points, we defined

and proposed the YN-NN algorithm of polynomial complexity

achieving full accuracy. We then presented the delta-based

algorithm, based on Shapley value difference similar to adding

data points. Inspired by empirical observations, we proposed

similarity-based heuristic algorithms. Experiments on Iris and

Adult datasets verified the efficiency and effectiveness of our

proposed algorithms. When the datasets are from different

distribution, we expect that the KNN algorithm may not be

very effective given its assumption of the original data points

not change when new data points are added. However, we

expect other algorithms to work similarly. We will explore

this case in future work.

IX. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their helpful comments. This work was supported in

part by NSFC grants (62102352), the National Key R&D

Program of China (2021YFB3101100, 2021YFB3101102),

NSF grants (CNS-2124104, CNS-2125530), and NIH grants

(R01ES033241, R01LM013712, UL1TR002378).

650

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Agarwal, M. A. Dahleh, and T. Sarkar. A market-

place for data: An algorithmic solution. In A. Karlin,

N. Immorlica, and R. Johari, editors, Proceedings of the

2019 ACM Conference on Economics and Computation,

EC 2019, Phoenix, AZ, USA, June 24-28, 2019, pages

701–726. ACM, 2019.

[2] S. Agarwal, S. Dutta, and A. Bhattacharya. Chisel: Graph

similarity search using chi-squared statistics in large

probabilistic graphs. Proc. VLDB Endow., 13(10):1654–

1668, 2020.

[3] J. Castro, D. Gómez, and J. Tejada. Polynomial calcula-

tion of the shapley value based on sampling. Computers

& OR, 36(5):1726–1730, 2009.

[4] S. Chawla, S. Deep, P. Koutrisw, and Y. Teng. Revenue

maximization for query pricing. Proceedings of the

VLDB Endowment, 13(1):1–14, 2019.

[5] L. Chen, P. Koutris, and A. Kumar. Towards model-based

pricing for machine learning in a data marketplace. In

P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande,

and T. Kraska, editors, SIGMOD, pages 1535–1552.

ACM, 2019.

[6] L. Chen, H. Wang, L. Chen, P. Koutris, and A. Ku-

mar. Demonstration of nimbus: Model-based pricing

for machine learning in a data marketplace. In P. A.

Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and

T. Kraska, editors, Proceedings of the 2019 International

Conference on Management of Data, SIGMOD Confer-

ence 2019, Amsterdam, The Netherlands, June 30 - July

5, 2019, pages 1885–1888. ACM, 2019.

[7] S. B. Cohen, E. Ruppin, and G. Dror. Feature selection

based on the shapley value. In L. P. Kaelbling and A. Saf-

fiotti, editors, IJCAI-05, Proceedings of the Nineteenth

International Joint Conference on Artificial Intelligence,

Edinburgh, Scotland, UK, July 30 - August 5, 2005, pages

665–670. Professional Book Center, 2005.

[8] W. J. Conover. Practical nonparametric statistics, vol-

ume 350. john wiley & sons, 1999.

[9] R. D. Cook. Detection of influential observation in linear

regression. Technometrics, 42(1):65–68, 2000.

[10] S. Deep and P. Koutris. QIRANA: A framework for

scalable query pricing. In S. Salihoglu, W. Zhou,

R. Chirkova, J. Yang, and D. Suciu, editors, Proceedings

of the 2017 ACM International Conference on Manage-

ment of Data, SIGMOD Conference 2017, Chicago, IL,

USA, May 14-19, 2017, pages 699–713. ACM, 2017.

[11] S. Deep, P. Koutris, and Y. Bidasaria. QIRANA demon-

stration: Real time scalable query pricing. Proc. VLDB

Endow., 10(12):1949–1952, 2017.

[12] X. Deng and C. H. Papadimitriou. On the complexity

of cooperative solution concepts. Math. Oper. Res.,

19(2):257–266, 1994.

[13] D. Deutch, N. Frost, B. Kimelfeld, and M. Monet.

Computing the shapley value of facts in query answering.

In SIGMOD Conference 2022, 2022.

[14] D. Dua and C. Graff. UCI machine learning repository,

2017.

[15] E. Farchi, R. Narayanam, and L. Nagalapatti. Ranking

data slices for ML model validation: A shapley value

approach. In 37th IEEE International Conference on

Data Engineering, ICDE 2021, Chania, Greece, April

19-22, 2021, pages 1937–1942. IEEE, 2021.

[16] R. C. Fernandez, P. Subramaniam, and M. J. Franklin.

Data market platforms: Trading data assets to solve data

problems. Proc. VLDB Endow., 13(11):1933–1947, 2020.

[17] V. Fragnelli, I. Garcı́a-Jurado, H. Norde, F. Patrone, and

S. Tijs. How to share railways infrastructure costs? In

Game practice: contributions from applied game theory,

pages 91–101. Springer, 2000.

[18] A. Ghorbani, M. P. Kim, and J. Zou. A distributional

framework for data valuation. In Proceedings of the 37th

International Conference on Machine Learning, ICML

2020, 13-18 July 2020, Virtual Event, volume 119 of

Proceedings of Machine Learning Research, pages 3535–

3544. PMLR, 2020.

[19] A. Ghorbani and J. Y. Zou. Data shapley: Equitable

valuation of data for machine learning. In K. Chaudhuri

and R. Salakhutdinov, editors, Proceedings of the 36th

International Conference on Machine Learning, ICML

2019, 9-15 June 2019, Long Beach, California, USA, vol-

ume 97 of Proceedings of Machine Learning Research,

pages 2242–2251. PMLR, 2019.

[20] L. J. Guibas and R. Sedgewick. A dichromatic frame-

work for balanced trees. In 19th Annual Symposium on

Foundations of Computer Science, Ann Arbor, Michigan,

USA, 16-18 October 1978, pages 8–21. IEEE Computer

Society, 1978.

[21] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gurel,

B. Li, C. Zhang, C. Spanos, and D. Song. Efficient task-

specific data valuation for nearest neighbor algorithms.

Proceedings of the VLDB Endowment, 12(11):1610–

1623, 2019.

[22] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gürel, B. Li,

C. Zhang, C. J. Spanos, and D. Song. Efficient task-

specific data valuation for nearest neighbor algorithms.

Proc. VLDB Endow., 12(11):1610–1623, 2019.

[23] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M.

Gürel, B. Li, C. Zhang, D. Song, and C. J. Spanos.

Towards efficient data valuation based on the shapley

value. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 1167–1176. PMLR,

2019.

[24] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and

D. Suciu. Query-based data pricing. In PODS, pages

167–178. ACM, 2012.

[25] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe,

and D. Suciu. Toward practical query pricing with

querymarket. In SIGMOD, pages 613–624. ACM, 2013.

[26] A. B. Kurtulmus and K. Daniel. Trustless machine

learning contracts; evaluating and exchanging machine

learning models on the ethereum blockchain. CoRR,

651

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

abs/1802.10185, 2018.

[27] Y. Kwon, M. A. Rivas, and J. Zou. Efficient computation

and analysis of distributional shapley values. CoRR,

abs/2007.01357, 2020.

[28] C. Li, D. Y. Li, G. Miklau, and D. Suciu. A theory of

pricing private data. In W. Tan, G. Guerrini, B. Cata-

nia, and A. Gounaris, editors, Joint 2013 EDBT/ICDT

Conferences, ICDT ’13 Proceedings, Genoa, Italy, March

18-22, 2013, pages 33–44. ACM, 2013.

[29] C. Li, D. Y. Li, G. Miklau, and D. Suciu. A theory

of pricing private data. ACM Trans. Database Syst.,

39(4):34:1–34:28, 2014.

[30] C. Li, D. Y. Li, G. Miklau, and D. Suciu. A theory

of pricing private data. Commun. ACM, 60(12):79–86,

2017.

[31] Q. Lin, J. Zhang, J. Liu, K. Ren, J. Lou, J. Liu, L. Xiong,

J. Pei, and J. Sun. Demonstration of dealer: An end-to-

end model marketplace with differential privacy. Proc.

VLDB Endow., 14(12):2747–2750, 2021.

[32] R. Lindelauf, H. Hamers, and B. Husslage. Cooperative

game theoretic centrality analysis of terrorist networks:

The cases of jemaah islamiyah and al qaeda. Eur. J.

Oper. Res., 229(1):230–238, 2013.

[33] J. Liu, J. Lou, J. Liu, L. Xiong, J. Pei, and J. Sun. Dealer:

An end-to-end model marketplace with differential pri-

vacy. Proc. VLDB Endow., 14(6):957–969, 2021.

[34] J. Liu, J. Yang, L. Xiong, J. Pei, and J. Luo. Skyline

diagram: Finding the voronoi counterpart for skyline

queries. In 34th IEEE International Conference on Data

Engineering, ICDE 2018, Paris, France, April 16-19,

2018, pages 653–664. IEEE Computer Society, 2018.

[35] S. Maleki, L. Tran-Thanh, G. Hines, T. Rahwan, and

A. Rogers. Bounding the estimation error of sampling-

based shapley value approximation with/without stratify-

ing. CoRR, abs/1306.4265, 2013.

[36] T. P. Michalak, T. Rahwan, P. L. Szczepanski, O. Skibski,

R. Narayanam, N. R. Jennings, and M. J. Wooldridge.

Computational analysis of connectivity games with ap-

plications to the investigation of terrorist networks. In

F. Rossi, editor, IJCAI 2013, Proceedings of the 23rd

International Joint Conference on Artificial Intelligence,

Beijing, China, August 3-9, 2013, pages 293–301. IJ-

CAI/AAAI, 2013.

[37] J. Pei. A survey on data pricing: from economics to data

science. IEEE Trans. Knowl. Data Eng., 2021.

[38] L. S. Shapley. A value for n-person games. Contributions

to the Theory of Games, 2(28):307–317, 1953.

[39] T. Song, Y. Tong, and S. Wei. Profit allocation for

federated learning. In C. Baru, J. Huan, L. Khan, X. Hu,

R. Ak, Y. Tian, R. S. Barga, C. Zaniolo, K. Lee, and Y. F.

Ye, editors, 2019 IEEE International Conference on Big

Data (IEEE BigData), Los Angeles, CA, USA, December

9-12, 2019, pages 2577–2586. IEEE, 2019.

[40] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye.

Dynamic pricing in spatial crowdsourcing: A matching-

based approach. In G. Das, C. M. Jermaine, and P. A.
Bernstein, editors, Proceedings of the 2018 International

Conference on Management of Data, SIGMOD Confer-

ence 2018, Houston, TX, USA, June 10-15, 2018, pages

773–788. ACM, 2018.

[41] P. Upadhyaya, M. Balazinska, and D. Suciu. Price-

optimal querying with data apis. Proc. VLDB Endow.,

9(14):1695–1706, Oct. 2016.

[42] J. Zhang, Q. Sun, J. Liu, L. Xiong, J. Pei, and K. Ren.

Efficient sampling approaches to shapley value approxi-

mation. In SIGMOD. ACM, 2023.

652

Authorized licensed use limited to: Emory University. Downloaded on August 29,2023 at 22:02:56 UTC from IEEE Xplore. Restrictions apply.

