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Abstract—Gridded spatial datasets arise naturally in environ-
mental, climatic, meteorological, and ecological settings. Each
grid point encapsulates a vector of variables representing differ-
ent measures of interest. Gridded datasets tend to be voluminous
since they encapsulate observations for long timescales. Visual-
izing such datasets poses significant challenges stemming from
the need to preserve interactivity, manage I/O overheads, and
cope with data volumes. Here we present our methodology to
significantly alleviate I/O requirements by leveraging deep neural
network-based models.

I. INTRODUCTION

The proliferation of sensors, observational equipment, and
networked measurement devices has contributed to substantial
growth in data volumes. In addition to the observations of
interest, spatial datasets have geocodes (such as ⟨lat/long⟩),
associated with them. Several data also have timestamps
associated with the observations; the observations are often
multidimensional encapsulating multiple, related features of
interest. We consider gridded spatial datasets that frequently
arise in climate, meteorological, ecological, and satellite-based
remote sensing datasets. In gridded spatial datasets, the data
are available at fixed, spatially dispersed points based on the
spatial resolution which determines the spatial increments at
which data are available.

Scientists, stakeholders, and users alike rely on visual-
izations to understand spatial variation of phenomena. The
pairwise combinations in which they can be layered have
the asymptotic bound of O(N2) where N is the number of
variables. Each feature of interest may be visualized indepen-
dently, or multiple features may be layered to understand how
they vary with respect to each other. The crux of this effort is
to enable interactive visualizations of gridded spatial datasets.

The paper is an extended abstract of [1] and included as
part of the Early Career and Students’ Showcase.

II. APPROACH SUMMARY

Our methodology targets interactive visualizations of grid-
ded spatial datasets. We design and train models that generate
effective visualizations. Rather than extensively performing
disk and network I/O during visualizations, we use models to
render phenomena. We train models for multiple zoom levels
while allowing users to interactively engage with the visu-
alizations using panning, zoom-in, and zoom-out operations.

Fig. 1: Rending maximum air temperature phenomenon over
CONUS exhaustively takes up to 56.1805 secs.

Constructing models at different resolutions that are aligned
with zoom levels allows us to reduce model complexity while
ensuring fidelity.

Rather than exhaustively retrieve all data that must be
visualized, we rely on retrieving a fraction of the dataset;
this fractional dataset is then used by our models to render
phenomena while ensuring fidelity and preserving interactivity.
Inferences are performed during the critical path of visualiza-
tions. During inferences, we seed the model(s) responsible for
rendering tiles within a viewport with a fraction of the ground
truth data.

Our benchmarks demonstrate the suitability of our approach
to rendering visualizations. Consider exhaustively rendering
phenomena by retrieving all observations; this takes 56.1805
secs to complete the fetch-and-render operations. Our ap-
proach of seeding machine learning models renders the same
phenomenon in 4.3043 secs, a 92.3% reduction in rendering
times while preserving a high PSNR accuracy of 38.7 dB.

The proposed methodology does not make any assumptions
about the underlying spatial referencing system. As such, it
is broadly applicable to gridded datasets that arise in other
domains such as computational fluid dynamics. Similarly,
gridded datasets occur in non-terrestrial settings such as atmo-
spheric and oceanic phenomena; this work translates to those
as well.

III. METHODOLOGY

Our methodology targets the visualization of gridded
datasets; each grid point is identified by ⟨lat/long⟩ coordi-
nates and includes a vector of observations alongside a times-
tamp. In this study, we consider one of the most well-known



Fig. 2: Range of values for various meteorological parameters
at sampled locations from MACA dataset.

gridded datasets, MACA Multivariate Adaptive Constructed
Analogs) [2]. The MACA dataset represents an amalgamation
of over 20 global climate models (GCMs) downscaled to 4km
(1/24th degree) spatial resolution and representing different
outcomes for the Radiative Concentration pathways for green-
house gas emissions. We consider the RCP 8.5 trajectory. We
consider data encompassing projections for the years 2023-
2030 for the continental United States (CONUS).

Figure 2 shows the meteorological parameters of the dataset
that we focused on and the range of their values. This includes
multiple parameters such as maximum and minimum temper-
ature, maximum and minimum relative humidity, precipitation
accumulation, downward surface shortwave radiation, wind
velocity, and specific humidity.

Our methodology involves seeding the models with a frac-
tion of the actual data. This allows us to alleviate expensive
disk and network I/O requirements by leveraging DNN models
to render the phenomena. Rather than using the entire set
of available observations, we train DNN models to super-
resolve and learn non-linear interactions from a small fraction
of available data to render the finest resolution tile of size
64x64 pixels for 8 meteorological parameters.

Our DNN network ingests a fraction of data to infer real-
time meteorological information by leveraging self-supervised
learning. The core of our deep neural network architecture is
inspired by SRGAN [3], which is a super-resolution generative
adversarial network as depicted in Figure 3. We provide the
model with a location hint by generating an embedding vector
for the geostring associated with the input tile. The model also
ingests the temporal hint provided as an embedding of the
associated month. This helps in learning interactions between
the labeled pairs - input and full output images, based on a
particular region and seasonality. Both the spatial and temporal
hints are passed through the repeat vector layer and reshaped
into 4x4x1 dimensions so that they can be merged with low-
resolution input data (4x4x10).

The low-resolution input image is generated by selecting
every 16th pixel of the tile in both the x and y dimensions
for each meteorological parameter. Training the DNN model
with limited true information results in very low network
I/O performed to get these values from our back-end to the
client’s device. The model learns to map as low as 0.003906
fractions of true values (16 points) to generate high-resolution
visualization of the tile (4096 points). We also allow the
single DNN model to train across multiple features of interest
by leveraging the non-linear interactions occurring between

Fig. 3: The architecture for our super-resolution DNN. Re-
peated cells of convolutional layers with skip connections
followed downscaling blocks to increase spatial resolution.

these variables. The meteorological variables are often inter-
connected; for example, the temperature is inversely pro-
portional to relative humidity throughout the day. Providing
the model with all parameters allows the model to learn
inter-feature relationships. This low-resolution input image
is concatenated with temporal and spatial hints and passed
through pre-residual blocks comprising 2D convolution layers
and a ReLU activation function. The input meteorological
parameters are normalized and scaled individually between 0-
1 for land regions. The ReLU activation function ensures that
values emerging from the convolution layer do not saturate.

The pre-residual blocks are followed by 8 blocks of residual
blocks connected through skip-connections to avoid vanish-
ing gradients. The residual block comprises two convolution
layers, layer normalization, and a ReLU activation function.
The number of features in convolution layers is increased and
kernel size is kept at 5x5 to extract low-level feature maps
across the neighboring spatial region in the image in order
to retain crucial information for higher spatial resolutions.
Here, we perform layer normalization that normalizes the
activations along the parameter/feature dimension instead of
normalizing the batches. This is to account for the fact that
each of the parameter values is at different ranges. Next, we
perform upsampling of the image by consecutively increasing
the spatial dimension of the features maps using a block of
convolutional transpose layers and an activation layer to infer
the full image with all 8 output parameters.

The number of output features at each convolutional,
convolution layer, learning rates, and kernel sizes is fixed
by performing hyper-parameter tuning using Hyperband [4].
Determining a robust set of hyperparameters is crucial for
expedited model training and better performance. We leverage
the Tensorflow Hyperband tuner which speeds up extensive
parameter grid searches through adaptive resource allocation
and early stopping to identify best-performing combinations.

Our benchmarks demonstrate that deploying our lightweight
models can reduce the client’s query response time by 92.3%
while maintaining a high perceptual quality with a PSNR (peak
signal-to-noise ratio) of 38.7 dB.
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